TABLE OF CONTENTS

Chapter 1. cuDNN Overview... 1
Chapter 2. cuDNN Release Notes v7.6.0.. 2
Chapter 3. cuDNN Release Notes v7.5.1.. 5
Chapter 4. cuDNN Release Notes v7.5.0.. 7
Chapter 5. cuDNN Release Notes v7.4.2.. 12
Chapter 6. cuDNN Release Notes v7.4.1.. 14
Chapter 7. cuDNN Release Notes v7.3.1.. 16
Chapter 8. cuDNN Release Notes v7.3.0.. 18
Chapter 9. cuDNN Release Notes v7.2.1.. 21
Chapter 10. cuDNN Release Notes v7.1.4... 25
Chapter 11. cuDNN Release Notes v7.1.3... 27
Chapter 12. cuDNN Release Notes v7.1.2... 29
Chapter 13. cuDNN Release Notes v7.1.1... 31
Chapter 14. cuDNN Release Notes v7.0.5... 35
Chapter 15. cuDNN Release Notes v7.0.4... 37
Chapter 16. cuDNN Release Notes v7.0.3... 39
Chapter 17. cuDNN Release Notes v7.0.2... 41
Chapter 18. cuDNN Release Notes v7.0.1... 43
Chapter 1.
CUDNN OVERVIEW

NVIDIA cuDNN is a GPU-accelerated library of primitives for deep neural networks. It provides highly tuned implementations of routines applied frequently in DNN applications:

- Convolution forward and backward, including cross-correlation
- Pooling forward and backward
- Softmax forward and backward
- Neuron activations forward and backward:
 - Rectified linear (ReLU)
 - Sigmoid
 - Hyperbolic tangent (TANH)
- Tensor transformation functions
- LRN, LCN and batch normalization forward and backward

cuDNN’s convolution routines aim for performance that is competitive with the fastest GEMM (matrix multiply)-based implementations of such routines while using significantly less memory.

cuDNN features customizable data layouts supporting flexible dimension ordering, striding, and subregions for the 4D tensors used as inputs and outputs in all of its routines. This flexibility allows easy integration into any neural network implementation, and avoids the input/output transposition steps sometimes necessary with GEMM-based convolutions.

cuDNN offers a context-based API that allows for easy multi-threading and (optional) interoperability with CUDA streams.
Key Features and Enhancements

The following features and enhancements have been added to this release:

- A new API is introduced for fused ops, which can accelerate many use cases in ResNet-like networks. With this new API it is now possible to execute various fused operations such as apply per channel scale and bias, perform activation, compute convolution, and generate batchnorm statistics. Below is a list of supported datatype and functions in this API:

Datatypes:

1. cudnnFusedOpsVariantParamPack_t
2. cudnnFusedOpsConstParamPack_t
3. cudnnFusedOpsPlan_t
4. cudnnFusedOps_t
5. cudnnFusedOpsConstParamLabel_t
6. cudnnFusedOpsPointerPlaceHolder_t
7. cudnnFusedOpsVariantParamLabel_t

Functions:

1. cudnnCreateFusedOpsConstParamPack
2. cudnnDestroyFusedOpsConstParamPack
3. cudnnSetFusedOpsConstParamPackAttribute
4. cudnnGetFusedOpsConstParamPackAttribute
5. cudnnCreateFusedOpsVariantParamPack
6. cudnnDestroyFusedOpsVariantParamPack
7. cudnnSetFusedOpsVariantParamPackAttribute
8. cudnnGetFusedOpsVariantParamPackAttribute
9. cudnnCreateFusedOpsPlan
10. cudnnDestroyFusedOpsPlan
11. cudnnMakeFusedOpsPlan
12. cudnnFusedOpsExecute

- Improved the performance of grouped convolution layers in ResNeXt-50, for cudnnConvolutionBackwardData() in the configuration below:

 - On NVIDIA Volta (compute capability 7.0)
 - Algorithm is CUDNN_CONVOLUTION_BWD_DATA_ALGO_1
 - Stride of 1
 - Math type is CUDNN_TENSOR_OP_MATH or CUDNN_TENSOROP_MATH_ALLOW_CONVERSION
 - Tensor format for filter is NHWC
 - Input and outputs are in FP16 and computation is in FP32

- A new API is introduced to enhance the inference time. With this new API it is now possible to separate the filter layout transformation that was applied on every call, which in turn leads to inference time enhancement. Below is a list of supported datatype and functions in this API.

 1. cudnnReorderType_t
 2. cudnnReorderFilterAndBias
 3. cudnnSetConvolutionReorderType
 4. cudnnGetConvolutionReorderType

- Performance is enhanced (by selecting a faster kernel) on NVIDIA T4 cards for INT8x4 and INT8x32.

Fixed Issues

The following issues have been fixed in this release:

- In cuDNN 7.5.0 and cuDNN 7.5.1, a bug in the cudnnRNNBackwardData() function affected the thread synchronization. This effect is limited to only the first iteration of the loop, and only in some paths. This occurs when using the function with the CUDNN_RNN_ALGO_PERSIST_STATIC method. This is fixed in cuDNN 7.6.0.

Known Issues

The following issues and limitations exist in this release:

- The cudnnConvolutionBackwardData() function for CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 fails with CUDNN_STATUS_NOT_SUPPORTED when the input size is large.
- A general known issue for cuDNN library: the Tensor pointers and the filter pointers require at a minimum 4-byte alignment, including for FP16 or INT8 data.
- On RHEL7 only, the /usr/src/cudnn_samples_v7/samples_common.mk file is missing. This will prevent compiling the cuDNN samples. The workaround
is to copy the below contents into “samples_common.mk” text file and place this file in the “/usr/src/cudnn_samples_v7/” directory, so that the /usr/src/cudnn_samples_v7/samples_common.mk file exists.

```makefile
# Setting SMS for all samples
# architecture
ifeq ($(TARGET_ARCH), ppc64le)
CUDA_VERSION := $(shell cat $(CUDA_PATH)/include/cuda.h |grep "define CUDA_VERSION" | awk '{print $$3}')
else
CUDA_VERSION := $(shell cat $(CUDA_PATH)/targets/ppc64le-linux/include/cuda.h |grep "define CUDA_VERSION" | awk '{print $$3}')
endif

# Link against cublasLt for CUDA 10.1 and up.
CUBLASLT:=false
ifeq ($(shell test $(CUDA_VERSION) -ge 10010; echo $$?),0)
CUBLASLT:=true
endif
$(info Linking against cublasLt = $(CUBLASLT))
ifeq ($(CUDA_VERSION),8000 )
SMS_VOLTA =
else
ifeq ($(TARGET_ARCH), ppc64le)
ifeq ($(CUDA_VERSION), $(filter $(CUDA_VERSION), 9000 9010 9020))
SMS_VOLTA ?= 70
else
ifeq ($(TARGET_OS), darwin)
SMS_VOLTA ?= 70
else
SMS_VOLTA ?= 70 72 75
endif #ifndef ($(TARGET_OS), darwin)
endif #ifeq ($(CUDA_VERSION), $(filter $(CUDA_VERSION), 9000 9010 9020))
else
SMS_VOLTA ?= 70
endif #ifndef ($(TARGET_ARCH), ppc64le)
endif #ifndef ($(CUDA_VERSION),8000 )
SMS ?= 30 35 50 53 60 61 62 $(SMS_VOLTA)
```

Chapter 3.
CUDNN RELEASE NOTES V7.5.1

Key Features and Enhancements
The following features and enhancements have been added to this release:

‣ The function cudnnMultiHeadAttnForward() is now enabled to sweep through all the time-steps in a single API call. This is indicated by a negative value of the currIdx argument in the inference mode, i.e., when reserveSpace=NULL so that either cudnnMultiHeadAttnBackwardData() or cudnnMultiHeadAttnBackwardWeights() will not be invoked. This sweep mode can be used to implement self-attention on the encoder side of the transformer model.

Fixed Issues
The following issues have been fixed in this release:

‣ In cuDNN 7.5.0, using the static link for cudnnConvolutionBiasActivationForward() function may result in CUDNN_STATUS_NOT_SUPPORTED error message. The workaround is to perform a whole-archive link. This issue is fixed in cuDNN 7.5.1.

‣ In cuDNN 7.5.0 and 7.4.x, in some cases of input images with large dimensions, the 3D forward convolution operations with CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM will cause a crash with “illegal memory access” error. This is fixed in cuDNN 7.5.1.

‣ In cuDNN 7.5.0, setting attnDropoutDesc= NULL in cudnnSetAttnDescriptor() triggered a segmentation fault in cudnnMultiHeadAttnForward(), even though the user is required to set it to NULL in the inference mode. This is fixed in cuDNN 7.5.1.

Known Issues
The following issues and limitations exist in this release:
In cuDNN 7.5 and cudnn 7.5.1, image size smaller than filter size is unsupported, even with sufficient padding.
Key Features and Enhancements

The following features and enhancements have been added to this release:

- In `cudnnConvolutionForward()` for 2D convolutions, for `wDesc` NCHW, the IMPLICIT_GEMM algorithm (algo 0) now supports the Data Type Configuration of `INT8x4_CONFIG`, and `INT8x4_EXT_CONFIG` also.

- A new set of APIs are added to provide support for Multi-Head Attention computation. The following is a list of the new functions and data types:

 Datatypes:
 - `cudnnSeqDataAxis_t`
 - `cudnnMultiHeadAttnWeightKind_t`
 - `cudnnSeqDataDescriptor_t`
 - `cudnnWgradMode_t`
 - `cudnnAttnQueryMap_t`
 - `cudnnAttnDescriptor_t`

 Functions:
 - `cudnnCreateAttnDescriptor`
 - `cudnnDestroyAttnDescriptor`
 - `cudnnSetAttnDescriptor`
 - `cudnnGetAttnDescriptor`
 - `cudnnGetMultiHeadAttnBuffers`
 - `cudnnGetMultiHeadAttnWeights`
 - `cudnnMultiHeadAttnForward`
 - `cudnnMultiHeadAttnBackwardData`
 - `cudnnMultiHeadAttnBackwardWeights`
 - `cudnnSetSeqDataDescriptor`
cuDNN Release Notes v7.5.0

A new set of APIs for general tensor folding is introduced. The following is a list of the new functions and data types:

Datatypes:
- `cudnnTensorTransformDescriptor_t`
- `cudnnFoldingDirection_t`

Functions:
- `cudnnTransformTensorEx`
- `cudnnCreateTensorTransformDescriptor`
- `cudnnDestroyTensorTransformDescriptor`
- `cudnnInitTransformDest`
- `cudnnSetTensorTransformDescriptor`
- `cudnnGetTensorTransformDescriptor`

A new set of APIs, and enhancements for the existing APIs, are introduced for RNNs. The following is the list of the new and enhanced functions and data types:

Datatypes:
- `cudnnRNNBiasMode_t` (new)
- `cudnnRNNMode_t` (enhanced)

Functions:
- `cudnnSetRNNBiasMode` (new)
- `cudnnGetRNNBiasMode` (new)
- `cudnnGetRNNLinLayerBiasParams` (enhanced)

All `cudnnRNNForward/Backward*` functions are enhanced to support FP16 math precision mode when both input and output are in FP16. To switch to FP16 math precision, set the `mathPrec` parameter in `cudnnSetRNNDescriptor` to `CUDNN_DATA_HALF`. To switch to FP32 math precision, set the `mathPrec` parameter in `cudnnSetRNNDescriptor` to `CUDNN_DATA_FLOAT`. This feature is only available for `CUDNN_ALGO_STANDARD` and for the compute capability 5.3 or higher.

Added support for INT8x4 and INT8x32 data type for `cudnnPoolingForward`. Using these will provide improved performance over scalar data type.

Fixed Issues

The following issues have been fixed in this release:

- When the following is true for the `cudnnConvolutionBackwardData()` function:
used with CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, and
‣ convDesc's vertical stride is exactly 2, and
‣ the vertical padding is a multiple of 2, and
‣ the filter height is a multiple of 2

OR

‣ used with CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, and
‣ convDesc's horizontal stride is exactly 2, and
‣ the horizontal padding is a multiple of 2, and
‣ the filter width is a multiple of 2

then the resulting output is incorrect. This issue was present in cuDNN 7.3.1 and later. This is fixed in cuDNN 7.5.0.

‣ The mathPrec parameter in cudnnSetRNNDescriptor is reserved for controlling math precision in RNN, but was not checked or enforced. This parameter is now strictly enforced. As a result, the following applies:

‣ For the input/output in FP16, the parameter mathPrec can be CUDNN_DATA_HALF or CUDNN_DATA_FLOAT.
‣ For the input/output in FP32, the parameter mathPrec can only be CUDNN_DATA_FLOAT, and
‣ For the input/output in FP64, double type, the parameter mathPrec can only be CUDNN_DATA_DOUBLE.

‣ Users upgrading to cuDNN 7.4 may see insufficiently small values returned from the function cudnnGetConvolutionBackwardFilterWorkspaceSize() for dimensions 5 and greater, resulting in a CUDNN_STATUS_EXECUTION_FAILED error message. In cuDNN 7.4, the workaround for this issue is to calculate the workspace by using the formula below:

Let M be the product of output tensor (gradDesc) dimensions starting at 1.
Let N be the output tensor dimension 0.
Let Mp = (M+31)/32
Let Np = (N+31)/32
W = 2 * M * N * sizeof(int) is the workspace that should be used.

This is fixed.

‣ In earlier cuDNN versions, when all the conditions below are true:

‣ 3-D convolution
‣ Batch size > 1
‣ Algorithm is "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1"
‣ convDesc's dataType is CUDNN_DATA_HALF,

then, calls to cudnnConvolutionBackwardFilter() may produce incorrect (and non-deterministic) results. This is fixed in cuDNN 7.5.0.
In cuDNN 7.4.2, for some cases the 3D convolution resulted in a reduced performance on Turing GPUs, compared to the previous cuDNN releases. This is fixed.

For int8x32 datatype, the function `cudnnSetTensor4dDescriptorEx` erroneously returns CUDNN_STATUS_BAD_PARAM. Now it is fixed in cuDNN 7.5 so it no longer returns bad param.

In cuDNN 7.4.1 and 7.4.2, when `cudnnBatchNormMode_t` is set to CUDNN_BATCHNORM_SPATIAL_PERSISTENT and the input/output tensors are in NHWC format and of CUDNN_DATA_HALF datatype, then, on Windows only, the `cudnnBatchNormalization*Ex` functions are supported only with the device in TCC mode. See Tesla Compute Cluster Mode for Windows.

Starting with cuDNN 7.5.0, the following checks are added for the driver mode on Windows. If on Windows and not in TCC mode:

- The functions will fallback to a slower implementation if `bnOps` in the `cudnnBatchNormalization*Ex` function is set to CUDNN_BATCHNORM_OPS_BN.
- If `bnOps` is set to CUDNN_BATCHNORM_OPS_BN_ACTIVATION, or CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION, the CUDNN_STATUS_NOT_SUPPORTED is returned.

In cuDNN 7.4.2, in some cases the `cudnnConvolutionBackwardData()` function, when used with NHWC tensor format, resulted in the “disallowed mismatches” error. This is fixed.

In some cases, using `cudnnConvolutionBiasActivationForward()` with `GroupCount() > 1` and `xDesc`'s data type is CUDNN_DATA_HALF will produce incorrect results for all groups except the first. This is fixed.

When using cuDNN 7.3.1 on Quadro P4000, when calling the `cudnnConvolutionForward()` function with CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm, there was a small chance of seeing intermittent inaccurate results. This is fixed.

When `cudnnConvolutionForward()` is called with these settings: Datatype is CUDNN_DATA_INT8x4, Convolution is 2D, architecture is sm_61, filter size is larger than 8x8, then incorrect result and potential illegal memory access error occurs. This is fixed.

For sm_72 and sm_75, the function `cudnnConvolutionBiasActivationForward()`, when used with INT8x32, failed to run. This is fixed.

In the function `cudnnSetRNNDataDescriptor`, if API logging is turned on, the `seqLengthArray` field in the log may not display the correct number of array elements. This is fixed.

For the batchNorm functions `cudnnBatchNormalization{Backward|BackwardEx|ForwardInference|ForwardTraining|ForwardTrainingEx}`, the value of `epsilon` is required to be greater or equal to CUDNN_BN_MIN_EPSILON.
which was defined in the `cudnn.h` file to the value 1e-5. This threshold value is now lowered to 0.0 to allow a wider range of `epsilon` value. However, users should still choose the `epsilon` value carefully, since a too small a value of `epsilon` may cause batchNormalization to overflow when the input data’s standard deviation is close to 0.

- Some Grouped Convolutions (particularly those used in Depthwise-Separable convolutions) may return INTERNAL_ERROR if they have all inputs/outputs as NHWC-packed and do not match one of the following criteria:
 - `filter_height = 1, filter_width = 1, vertical_conv_stride = 1, horizontal_conv_stride = 1`
 - `filter_height = 3, filter_width = 3, vertical_conv_stride = 1, horizontal_conv_stride = 1`
 - `filter_height = 3, filter_width = 3, vertical_conv_stride = 2, horizontal_conv_stride = 2`

Known Issues

The following issues and limitations exist in this release:

- The RNN persist-static algorithm returns incorrect results for GRU problems in backwards mode, when the hidden size is greater than 1024. Due to this, RNN persist-static algorithm is disabled in cuDNN 7.5.0. Users with such GRU problems are advised to use the standard or persist-dynamic RNN algorithms. See `cudnnRNNAlgo_t()`. This note applies to all previous cuDNN 7 releases.
- The function `cudnnConvolutionBackwardFilter()`, when used with `CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1`, returns the error "`Uninitialized __global__ memory read of size 4`".
Chapter 5.
CUDNN RELEASE NOTES V7.4.2

Fixed Issues
The following issues have been fixed in this release:

- In some cases when the data is in CUDNN_DATA_HALF and NHWC, illegal memory access may occur for `cudnnBatchNormalization*` functions in the cuDNN 7.4.1 library. This is now fixed.
- When the data is in CUDNN_DATA_HALF and NHWC, for `cudnnBatchNormalization*` functions when (N*H*W) is large and odd number, the output may contain wrong results. This is fixed.
- When calling the `cudnnConvolutionBiasActivationForward()` function with the `algo` parameter set to CUDNN_CONVOLUTION_FWD_ALGO_FFT and the `activationDesc` parameter set to CUDNN_ACTIVATION_RELU and sufficiently large inputs, the ReLU operation is not applied and negative values are passed through to the output. This issue is now fixed. This issue was present in all previous cuDNN versions.
- Performance regression was introduced in cuDNN 7.4.1 for `cudnnConvolutionBwdFilterAlgo_t()` function with CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 algorithm. This is fixed.

Known Issues
The following issues and limitations exist in this release:

- When `cudnnBatchNormMode_t` is set to CUDNN_BATCNORM_SPATIAL_PERSISTENT and the input/output tensors are in NHWC format and of CUDNN_DATA_HALF datatype, then, on Windows only, the `cudnnBatchNormalization*Ex` functions are supported only with the device in TCC mode. See Tesla Compute Cluster Mode for Windows. This issue is not present on Linux systems. This issue is present in cuDNN 7.4.1 and this current version.
- In some cases the 3D convolution will have a reduced performance on Turing GPUs, compared to the previous cuDNN releases.
- The functions `cudnnGetConvolutionForwardAlgorithm_v7()` and `cudnnGetConvolutionForwardWorkspaceSize()` will return CUDNN_STATUS_SUCCESS, but the execution of the convolution returns CUDNN_STATUS_NOT_SUPPORTED. This issue is present in cuDNN 7.2.2 library and later versions.
Chapter 6.
CUDNN RELEASE NOTES V7.4.1

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Added a new family of fast NHWC batch normalization functions. See the following five new functions and one new type descriptor:
 ▶ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(),
 ▶ cudnnBatchNormalizationForwardTrainingEx,
 ▶ cudnnGetBatchNormalizationBackwardExWorkspaceSize(),
 ▶ cudnnBatchNormalizationBackwardEx(),
 ▶ cudnnGetBatchNormalizationTrainingExReserveSpaceSize() functions, and
 ▶ cudnnBatchNormOps_t type descriptor
‣ For API Logging, a conversion specifier for the process id is added. With this, the process id can be included in the log file name. See API Logging.
‣ Performance of cudnnPoolingBackward() is enhanced for the average pooling when using NHWC data format--for both the CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING and CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING cases of cudnnPoolingMode_t.
‣ Performance of the strided convolution in cudnnConvolutionBackwardData() is enhanced when the filter is in NHWC format and the data type is TRUE_HALF_CONFIG or PSEUDO_HALF_CONFIG or FLOAT_CONFIG. For strides u,v < r,s the performance is further enhanced.
‣ Significantly improved the performance of cudnnConvolutionForward(), cudnnConvolutionBackwardData() & cudnnConvolutionBackwardFilter() functions on RCNN models such as Fast RCNN, Faster RCNN, & Mask RCNN.

Fixed Issues

The following issues have been fixed in this release:
The following set up was giving “Misaligned Address” error in cuDNN 7.3.x. This is fixed in cuDNN 7.4.1: For the `cudnnConvolutionForward()` function with the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm, in the data type configuration of PSEUDO_HALF_CONFIG, when the input and output tensors are in NHWC and the filter is 1x1 and NCHW, and Tensor Op is enabled.

For a few convolution sizes for ALGO_0 and ALGO_1, the performance of the function `cudnnConvolutionBackwardFilter()` was degraded in cuDNN 7.3.1. This is now fixed.

Fixed. In cuDNN 7.3.1 the function `cudnnAddTensor` was computing incorrect results when run on GPUs with the compute capability < 6.0 (prior to Pascal).

Known Issues

The following issues and limitations exist in this release:

When calling the `cudnnConvolutionBiasActivationForward()` function with the `algo` parameter set to CUDNN_CONVOLUTION_FWD_ALGO_FFT and the `activationDesc` parameter set to CUDNN_ACTIVATION_RELU and sufficiently large inputs, the ReLU operation is not applied and negative values are passed through to the output. This issue is present in all previous cuDNN versions.
Key Features and Enhancements

The following enhancements have been added to this release:

- The FFT tiling algorithms for convolution have been enhanced to support strided convolution. In specific, for the algorithms CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING and CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, the convDesc’s vertical and horizontal filter stride can be 2 when neither the filter width nor the filter height is 1.

- The CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD algorithm for cudnnConvolutionForward() and cudnnConvolutionBackwardData() now give superior performance for Volta architecture. In addition, the mobile version of this algorithm in the same functions gives superior performance for Maxwell and Pascal architectures.

- Dilated convolutions now give superior performance for cudnnConvolutionForward(), cudnnConvolutionBackwardData(), and cudnnConvolutionBackwardFilter() on Volta architecture, in some cases.

Known Issues and Limitations

The following issues and limitations exist in this release:

- For the cudnnConvolutionForward(), when using a 1x1 filter with input and output tensors of NHWC format and of CUDNN_DATA_HALF (half precision) type, and the filter format is NCHW, with compute type of float, cuDNN will generate incorrect results.

- On Quadro P4000, when calling cudnnConvolutionForward() function with CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm, there may be a small chance of seeing intermittent inaccurate results.
When using `cudnnConvolutionBackwardFilter()` with CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 in mixed precision computation, with input/output in CUDNN_DATA_HALF (half precision) and compute type of float, when the number of batches (N) is larger than 1 the results might include INF due to an intermediate down-convert to half float. In other words, with an accumulation of float for all intermediate values (such as in CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) the result will be a finite half precision float. This limitation also exists in all previous cuDNN versions.

Fixed Issues

The following issues have been fixed in this release:

- Fixed a pointer arithmetic integer overflow issue in RNN forward and backward functions, when sequence length and mini-batch size are sufficiently large.
- When tensor cores are enabled in cuDNN 7.3.0, the `cudnnConvolutionBackwardFilter()` calculations were performing an illegal memory access when K and C values are both non-integral multiples of 8. This issue is fixed.
- For the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 algorithm in `cudnnConvolutionBackwardFilter()`, on Volta, the tensor operations were occasionally failing when the filter spatial size (filter $h \times filter\, w$) was greater than 64. This issue is fixed.
- While running cuDNN 7.3.0 on Turing with CUDA 10.0, r400 driver, the functions `cudnnRNNForwardTraining(Ex)` and `cudnnRNNForwardInference(Ex)` errored out returning CUDNN_STATUS_NOT_SUPPORTED. This issue is fixed.
- In cuDNN 7.3.0, when using CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 with tensor data or filter data in NHWC format, the function might have resulted in a silent failure. This is now fixed.
Chapter 8.
CUDNN RELEASE NOTES V7.3.0

Key Features and Enhancements

The following enhancements have been added to this release:

- Support is added to the following for the dilated convolution, for NCHW and NHWC filter formats:
 - `cudnnConvolutionForward()` for 2D, `CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM`,
 - `cudnnConvolutionBackwardData()` for 2D, `CUDNN_CONVOLUTION_BWD_DATA_ALGO_1`, and
 - `cudnnConvolutionBackwardFilter()` for 2D, `CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1`

For these supported cases, the dilated convolution is expected to offer superior speed, compared to the existing dilated convolution with algo 0.

- Grouped convolutions for depth-wise separable convolutions are optimized for the following NHWC formats: HHH (input: Half, compute: Half, output: Half), HSH, and SSS.

- While using `CUDNN_TENSOR_OP_MATH` or `CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION`, with the tensor cores, the \(c\) and \(k\) dimensions of the tensors are now padded to multiples of 8 (as needed), to allow a tensor core kernel to run.

- The `CUDNN_BATCHNORM_SPATIAL_PERSISTENT` algo is enhanced in `cudnnBatchNormalizationForwardTraining()` and `cudnnBatchNormalizationBackward()` to propagate NaN-s or Inf-s as in a pure floating point implementation (the "persistent" flavor of the batch normalization is optimized for speed and it uses integer atomics for inter thread-block reductions). In earlier versions of cuDNN we recommended invoking `cudnnQueryRuntimeError()` to ensure no overflow was encountered. When it happened, the best practice was to discard the results, and use
CUDNN_BATCHNORM_SPATIAL_PERSISTENT could be finite but invalid. This behavior is now corrected: NaN-s and/or Inf-s are consistently output when intermediate results are out of range. The refined implementation simulates math operations on special floating point values, for example, +Inf-Inf=NaN.

Known Issues and Limitations

Following issues and limitations exist in this release:

- When tensor cores are enabled in cuDNN 7.3.0, the wgrad calculations will perform an illegal memory access when K and C values are both non-integral multiples of 8. This will not likely produce incorrect results, but may corrupt other memory depending on the user buffer locations. This issue is present on Volta & Turing architectures.

- Using `cudnnGetConvolution*_v7` routines with `cudnnConvolutionDescriptor_t` set to `CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION` leads to incorrect outputs. These incorrect outputs will consist only of `CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION` cases, instead of also returning the performance results for both `DEFAULT_MATH` and `CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION` cases.

Fixed Issues

The following issues have been fixed in this release:

- Using `cudnnConvolutionBackwardData()` with `CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD` algorithm produced incorrect results due to an incorrect filter transform. This issue was present in cuDNN 7.2.1.

- For INT8 type, with `xDesc` and `yDesc` of NHWC format, the `cudnnGetConvolutionForwardAlgorithm_v7` function was incorrectly returning `CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM` as a valid algorithm. This is fixed.

- `cudnnConvolutionForward()` using `CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD` intermittently produced incorrect results in cuDNN 7.2, due to a race condition. This issue is fixed.

- When running `cudnnConvolutionBackwardFilter()` with NHWC filter format, when `n`, `c`, and `k` are all multiple of 8, and when the `workspace` input is exactly as indicated by `cudnnGetConvolutionBackwardFilterWorkspaceSize()`, leads to error in cuDNN 7.2. This is fixed.

- When the user runs `cudnnRNNForward*` or `cudnnRNNBackward*` with FP32 input/output on sm_70 or sm_72, with RNN descriptor’s `algo` field set to `CUDNN_RNN_ALGO_PERSIST_STATIC`, and `cudnnMathType_t` type set to...
CUDNN_TENSOR_OP_MATH via **cudnnSetRNNMatrixMathType**, then the results were incorrect. This is fixed.

- When the user runs `cudnnRNNForward*` or `cudnnRNNBackward*` with FP32 input/output on sm_70 or sm_72, with RNN descriptor's `algo` field set to CUDNN_RNN_ALGO_PERSIST_STATIC, and `cudnnMathType_t` type set to CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION via **cudnnSetRNNMatrixMathType**, then the resulting performance was suboptimal. This is fixed.

- Convolution routines with filter format as NHWC require both input and output formats to be NHWC. However, in cuDNN 7.2 and earlier, this condition was not being checked for, as a result of which silent failures may have occurred. This is fixed in 7.3.0 to correctly return CUDNN_STATUS_NOT_SUPPORTED.
Key Features and Enhancements

The following enhancements have been added to this release:

- The following new functions are added to provide support for the padding mask for the cudnnRNN* family of functions:
 - `cudnnSetRNNPaddingMode()`: Enables/disables the padded RNN input/output.
 - `cudnnGetRNNPaddingMode()`: Reads the padding mode status.
 - `cudnnCreateRNNDataDescriptor()` and `cudnnDestroyRNNDataDescriptor()`: Creates and destroys, respectively, a RNN data descriptor.
 - `cudnnSetRNNDataDescriptor()` and `cudnnGetRNNDataDescriptor()`: Initializes and reads, respectively, the RNN data descriptor.
 - `cudnnRNNForwardTrainingEx()`: An extended version of the `cudnnRNNForwardTraining()` to allow for the padded (unpacked) layout for the input/output.
 - `cudnnRNNForwardInferenceEx()`: An extended version of the `cudnnRNNForwardInference()` to allow for the padded (unpacked) layout for the input/output.
 - `cudnnRNNBackwardDataEx()`: An extended version of the `cudnnRNNBackwardData()` to allow for the padded (unpacked) layout for the input/output.
 - `cudnnRNNBackwardWeightsEx()`: An extended version of the `cudnnRNNBackwardWeights()` to allow for the padded (unpacked) layout for the input/output.

- Added support for cell clipping in cuDNN LSTM. The following new functions are added:
 - `cudnnRNNSetClip()` and `cudnnRNNGetClip()`: Sets and retrieves, respectively, the LSTM cell clipping mode.
Accelerate your convolution computation with this new feature: When the input channel size c is a multiple of 32, you can use the new data type CUDNN_DATA_INT8x32 to accelerate your convolution computation.

This new data type CUDNN_DATA_INT8x32 is only supported by sm_72.

Enhanced the family of cudnnFindRNN* functions. The findIntensity input to these functions now enable the user to control the overall runtime of the RNN find algorithms, by selecting a percentage of a large Cartesian product space to be searched.

A new mode CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is added to cudnnMathType_t. The computation time for FP32 tensors can be reduced by selecting this mode.

The functions cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData(), and cudnnRNNBackwardWeights() will now perform down conversion of FP32 input/output only when CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is set.

Improved the heuristics for cudnnGet*Algorithm() functions.

Known Issues and Limitations

Following issues and limitations exist in this release:

- For FP16 inputs, the functions cudnnGetConvolutionForwardAlgorithm(), cudnnGetConvolutionBackwardDataAlgorithm(), and cudnnGetConvolutionBackwardFilterAlgorithm() will obtain a slower algorithm.
- For cases where beta is not equal to zero, and when the input channel size is greater than 65535, then the below cudnnConvolutionBackwardFilter() algorithms may return EXECUTION_FAILED error:
 - CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0,
 - CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, and
 - CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3
- This is a rare occurrence: When beta is not equal to zero, the function cudnnFindConvolutionBackwardFilterAlgorithm() may not return the fastest algorithm available for cudnnConvolutionBackwardFilter().

Grouped convolutions are not supported in the TRUE_HALF_CONFIG (convDesc is CUDNN_DATA_HALF) data type configuration. As a workaround, the PSEUDO_HALF_CONFIG (convDesc is CUDNN_DATA_FLOAT) data type configuration can be used without losing any precision.

For the cudnnConvolutionBiasActivationForward() function, if the input cudnnActivationMode_t is set to enum value CUDNN_ACTIVATION_IDENTITY,
then the input `cudnnConvolutionFwdAlgo_t` must be set to the enum value `CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM`.

- When the user runs `cudnnRNNForward` or `cudnnRNNBackward` with FP32 input/output, on sm_70 or sm_72, with RNN descriptor’s `algo` field set to `CUDNN_RNN_ALGO_PERSIST_STATIC`, and math type set to `CUDNN_TENSOR_OP_MATH` via `cudnnSetRNNMatrixMathType()`, then the results are incorrect.
- When the user runs `cudnnRNNForward` or `cudnnRNNBackward` with FP32 input/output, on sm_70 or sm_72, with RNN descriptor’s `algo` field set to `CUDNN_RNN_ALGO_PERSIST_STATIC`, and math type set to `CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION` via `cudnnSetRNNMatrixMathType()`, then the resulting performance is suboptimal.

Fixed Issues

The following issues have been fixed in this release:

- The `cudnnConvolutionBackwardData()` function produced incorrect result under these conditions:
 - The `algo` input is set to `CUDNN_CONVOLUTION_BWD_DATA_ALGO_1` in `cudnnConvolutionBwdDataAlgo_t`, and
 - `CUDNN_TENSOR_OP_MATH` is selected.
 - Under above conditions, the dgrad computation was giving incorrect results when the data is not packed and the data format is NCHW. This is fixed.
- When the `cudnnConvolutionFwdAlgo_t()` was set to `CONVOLUTION_FWD_ALGO_FFT_TILING` then the function `cudnnConvolutionForward()` was leading to illegal memory access. This is now fixed.
- `cudnnPoolingBackward()` was failing when using a large kernel size used for 'global_pooling' with NHWC I/O layout. This is fixed.
- The below two items are fixed: If you set RNN mathtype to `CUDNN_TENSOR_OP_MATH`, and run RNN on `sm6x` or earlier hardware:
 - a. You may have received `CUDNN_STATUS_NOT_SUPPORTED` when algo selected is `CUDNN_RNN_ALGO_STANDARD` or `CUDNN_RNN_ALGO_PERSIST_STATIC`.
 - b. You may have received incorrect results when algo selected is `CUDNN_RNN_ALGO_PERSIST_DYNAMIC`.
- If you passed in variable sequence length input tensor to `cudnnRNNForwardInference()`, `cudnnRNNForwardTraining()`, `cudnnRNNBackwardData()`, and used `CUDNN_RNN_ALGO_PERSIST_STATIC` or `CUDNN_RNN_ALGO_PERSIST_DYNAMIC`, then you may have received incorrect
results. Now this is being checked, and CUDNN_STATUS_NOT_SUPPORTED will be returned.
Key Features and Enhancements

The following enhancements have been added to this release:

- Improved performance for some cases of data-gradient convolutions and maxpooling. This is expected to improve performance of ResNet-50 like networks.
- The runtime of the RNN Find algorithm suite is improved in v7.1.4 resulting in slightly improved runtime of cudnnFindRNN***AlgorithmEx.

Known Issues

Following are known issues in this release:

- cudnnGet picks a slow algorithm that does not use Tensor Cores on Volta when inputs are FP16 and it is possible to do so.
- The cudnnConvolutionBackwardFilter() function may output incorrect results for CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution mode is CUDNN_CONVOLUTION. This function should not be used in this mode.

Fixed Issues

The following issues have been fixed in this release:

- cudnnAddTensorNd might cause a segmentation fault if called with bad arguments (e.g. null pointer), this issue is in 7.1.3 only and fixed in 7.1.4.
- cudnnRNNBackwardData LSTM cell with fp16 (half) inputs might generate wrong values (silently), this issue exists in cudnn 7.1.3 binaries compiled with cuda toolkit 9.0 and toolkit cuda 9.2, and does not exist in cudnn 7.1.3 binaries compiled with toolkit 9.1.
- cudnnGetRNNLinLayerMatrixParams wrongly returns CUDNN_STATUS_BAD_PARAM when cudnnSetRNNDescriptor is called with dataType == CUDNN_DATA_FLOAT. This is an issue in 7.1.3 only and will be fixed
in 7.1.4. The dataType argument as of today supports only `CUDNN_DATA_FLOAT` and we plan to support additional compute types in the future.

- There is a small memory leak issue when calling `cudnnRNNBackwardData` with `CUDNN_RNN_ALGO_STANDARD`. This issue also affects previous cuDNN v7 releases. This is fixed in 7.1.4.

- RNN with half precision returns `CUDNN_EXECUTION_FAILED` on Kepler gpu in 7.1.3. This is fixed in 7.1.4 to use pseudo-fp16 computation.

- The RNN Find algorithm suite mistakenly did not test `CUDNN_RNN_ALGO_PERSIST_STATIC` and `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` kernels with tensor operations enabled when it was possible to do so. This is fixed in v7.1.4.
Known Issues

Following are known issues in this release:

- **cudnnGet** picks a slow algorithm that does not use Tensor Cores on Volta when inputs are FP16 and it is possible to do so.

- The **cudnnConvolutionBackwardFilter()** function may output incorrect results for **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING** when the convolution mode is CUDNN_CONVOLUTION and the product "n*k" (n - batch size, k - number of output feature maps) is large, i.e., several thousand or more. It appears that the CUDNN_CROSS_CORRELATION mode is not affected by this bug.

- There is a small memory leak issue when calling **cudnnRNNBackwardData** with **CUDNN_RNN_ALGO_STANDARD**. This issue also affects previous cuDNN v7 releases.

- RNN with half precision will not work on Kepler GPUs and will return **CUDNN_EXECUTION_FAILED**. This will be fixed in future releases to return **CUDNN_STATUS_UNSUPPORTED**.

Fixed Issues

The following issues have been fixed in this release:

- **cudnnRNNbackwardData** for LSTM with recurrent projection in half precision may fail in rare cases with misaligned memory access on Pascal and Maxwell.

- **cudnnRNNbackwardData** for bidirectional LSTM with recurrent projection may produce inaccurate results, or **CUDNN_STATUS_UNSUPPORTED**.

- Algo 1 for forward convolution and dgrad may produce erroneous results when the filter size is greater than the input size. This issue is fixed in 7.1.3.

- For very large RNN networks, the function **cudnnGetRNNWorkspaceSize** and **cudnnGetRNNTrainingReserveSize** may internally overflow and give incorrect results.
• The small performance regression on multi-layer RNNs using the STANDARD algorithm and Tensor Core math in 7.1.2, as compared to 7.0.5, is fixed in this release.
• Fixed an issue with Persistent LSTM backward pass with a hidden state size in the range 257 to 512 on GPUs with number of SMs between 22 and 31 might hang. This issue also exists in 7.1.1. This is fixed in 7.1.3.
• Fixed an issue Persistent GRU backward pass with a hidden state size in the range 513->720 on GPUs with exactly 30 SMs would hang. This issue also exists in 7.1.1. This is fixed in 7.1.3.
Chapter 12.
CUDNN RELEASE NOTES V7.1.2

Key Features and Enhancements
The following enhancements have been added to this release:

‣ RNN search API extended to support all RNN algorithms.
‣ Newly added projection Layer supported for inference bidirectional RNN cells and for backward data and gradient.
‣ Support IDENTITY Activation for all cudnnConvolutionBiasActivationForward data types for CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.
‣ Added documentation to clarify RNN/LSTM weight formats.

Known Issues
Following are known issues in this release:

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on Volta when inputs are FP16 and it is possible to do so.
‣ There may be a small performance regression on multi-layer RNNs using the STANDARD algorithm with Tensor Core math in this release compared to v7.0.5.
‣ LSTM projection dgrad half precision may fail in rare cases with misaligned memory access on Pascal and Maxwell.
‣ Dgrad for bidirectional LSTM with projection should not be used, may produce inaccurate results, or CUDNN_STATUS_UNSUPPORTED.
‣ The cudnnConvolutionBackwardFilter() function may output incorrect results for CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution mode is CUDNN_CONVOLUTION and the product “n*k” (n - batch size, k - number of output feature maps) is large, i.e., several thousand or more. It appears that the CUDNN CROSS_CORRELATION mode is not affected by this.
Persistent LSTM backward pass with a hidden state size in the range 257 to 512 on GPUs with number of SMs between 22 and 31 might hang. This issue also exists in 7.1.1 and will be fixed in 7.1.3.

Persistent GRU backward pass with a hidden state size in the range 513 to 720 on GPUs with exactly 30 SMs would hang. This issue also exists in 7.1.1 and will be fixed in 7.1.3.

Algo 1 for forward convolution and dgrad may produce erroneous results when the filter size is greater than the input size.

Fixed Issues

The following issues have been fixed in this release:

- The uint8 input for convolution is restricted to Volta and later. We added support for older architectures, for algo: CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.
- In some cases when algorithm CUDNN_CONVOLUTION_BWD_FILTER_ALGO1 was selected, the routine cudnnConvolutionBackwardFilter could fail at runtime and return CUDNN_STATUS_EXECUTION_FAILED. It now returns CUDNN_STATUS_NOT_SUPPORTED.
- cudnnSetRNNDescriptor no longer needs valid Dropout Descriptor in inference mode, user can pass NULL for Dropout Descriptor in inference mode.
Key Features and Enhancements

The following enhancements have been added to this release:

- Added new API `cudnnSetRNNProjectionLayers` and `cudnnGetRNNProjectionLayers` to support Projection Layer for the RNN LSTM cell. In this release only the inference use case will be supported. The bi-directional and the training forward and backward for training is not supported in 7.1.1 but will be supported in the upcoming 7.1.2 release without API changes. For all the unsupported cases in this release, `CUDNN_NOT_SUPPORTED` is returned when projection layer is set and the RNN is called.

- The `cudnnGetRNNLinLayerMatrixParams()` function was enhanced and a bug was fixed without modifying its prototype. Specifically:

 - The `cudnnGetRNNLinLayerMatrixParams()` function was updated to support the RNN projection feature. An extra linLayerID value of 8 can be used to retrieve the address and the size of the “recurrent” projection weight matrix when "mode" in `cudnnSetRNNDescriptor()` is configured to `CUDNN_LSTM` and the recurrent projection is enabled via `cudnnSetRNNProjectionLayers()`.

 - Instead of reporting the total number of elements in each weight matrix in the “linLayerMatDesc” filter descriptor, the `cudnnGetRNNLinLayerMatrixParams()` function returns the matrix size as two dimensions: rows and columns. This allows the user to easily print and initialize RNN weight matrices. Elements in each weight matrix are arranged in the row-major order. Due to historical reasons, the minimum number of dimensions in the filter descriptor is three. In previous versions of the cuDNN library, `cudnnGetRNNLinLayerMatrixParams()` returned the total number of weights as follows: `filterDimA[0]=total_size, filterDimA[1]=1, filterDimA[2]=1`. In v7.1.1, the format was changed to: `filterDimA[0]=1, filterDimA[1]=rows, filterDimA[2]=columns`. In both cases, the
"format" field of the filter descriptor should be ignored when retrieved by `cudnnGetFilterNdDescriptor()`.

- A bug in `cudnnGetRNNLinLayerMatrixParams()` was fixed to return a zeroed filter descriptor when the corresponding weight matrix does not exist. This occurs, for example, for `linLayerID` values of 0-3 when the first RNN layer is configured to exclude matrix multiplications applied to RNN input data (inputMode=CUDNN_SKIP_INPUT in `cudnnSetRNNDescriptor()` specifies implicit, fixed identity weight matrices for RNN input). Such cases in previous versions of the cuDNN library caused `cudnnGetRNNLinLayerMatrixParams()` to return corrupted filter descriptors with some entries from the previous call. A workaround was to create a new filter descriptor for every invocation of `cudnnGetRNNLinLayerMatrixParams()`.

- The `cudnnGetRNNLinLayerBiasParams()` function was updated to report the bias column vectors in "linLayerBiasDesc" in the same format as `cudnnGetRNNLinLayerMatrixParams()`. In previous versions of the cuDNN library, `cudnnGetRNNLinLayerBiasParams()` returned the total number of adjustable bias parameters as follows: `filterDimA[0]=total_size, filterDimA[1]=1, filterDimA[2]=1`. In v7.1.1, the format was changed to: `filterDimA[0]=1, filterDimA[1]=rows, filterDimA[2]=1` (number of columns). In both cases, the "format" field of the filter descriptor should be ignored when retrieved by `cudnnGetFilterNdDescriptor()`. The recurrent projection GEMM does not have a bias so the range of valid inputs for the "linLayerID" argument remains the same.

- Added support for use of Tensor Core for the CUDNN_RNN_ALGO_PERSIST_STATIC. This required cuda cuDNN v7.1 build with CUDA 9.1 and 387 or higher driver. It will not work with CUDA 9.0 and 384 driver.

- Added RNN search API that allows the application to provide an RNN descriptor and get a list of possible algorithm choices with performance and memory usage, to allow applications to choose between different implementations. For more information, refer to the documentation of: `cudnnFindRNNForwardInferenceAlgorithmEx`, `cudnnFindRNNForwardTrainingAlgorithmEx`, `cudnnFindRNNBackwardDataAlgorithmEx`, and `cudnnFindRNNBackwardWeightsAlgorithmEx`. In this release, the search will operate on STANDARD algorithm and will not support PERSISTENT algorithms of RNN.

- Added uint8 for support for the input data for `cudnnConvolutionBiasActivationForward` and `cudnnConvolutionForward`. Currently the support is on Volta (sm 70) and later architectures. Support for older architectures will be gradually added in the upcoming releases.
Suport for CUDNN_ACTIVATION_IDENTITY is added to
cudnnConvolutionBiasActivationForward. This allows users to perform
Convolution and Bias without Activation.

All API functions now support logging. User can trigger logging by
setting environment variable “CUDNN_LOGINFO_DBG=1” and
“CUDNN_LOGDEST_DBG= <option>” where <option> (i.e., the output destination
of the log) can be chosen from “stdout”, “stderr”, or a file path. User may also use
the new Set/GetCallBack functions to install their customized callback function. Log
files can be added to the reported bugs or shared with us for analysis and future
optimizations through partners.nvidia.com.

Improved performance of 3D convolution on Volta architecture.

The following algo-related functions have been added for this
release: cudnnGetAlgorithmSpaceSize, cudnnSaveAlgorithm,
cudnnRestoreAlgorithm, cudnnCreateAlgorithmDescriptor,
cudnnSetAlgorithmDescriptor, cudnnGetAlgorithmDescriptor,
cudnnDestroyAlgorithmDescriptor, cudnnCreateAlgorithmPerformance,
cudnnSetAlgorithmPerformance, cudnnGetAlgorithmPerformance,
cudnnDestroyAlgorithmPerformance.

All algorithms for convolutions now support groupCount > 1. This includes
cudnnConvolutionForward(), cudnnConvolutionBackwardData(), and
cudnnConvolutionBackwardFilter().

Known Issues

Following are known issues in this release:

- RNN search Algorithm is restricted to STANDARD algorithm.
- Newly added projection Layer supported for inference and one direction RNN
cells.
- uint8 input for convolution is restricted to Volta and later.
- cudnnGet picks a slow algorithm that doesn’t use Tensor Cores on Volta when
inputs are FP16 and it is possible to do so.
- There may be a small performance regression on multi-layer RNNs using the
STANDARD algorithm with Tensor Core math in this release compared to 7.0.5.

Fixed Issues

The following issues have been fixed in this release:

- 3D convolution performance improvements for Volta.
- Added support for Algorithm 0 data gradients to cover cases previously not
supported.
- Removed the requirement for dropout Descriptor in RNN inference. Before
application had to set a non point for the dropout Descriptor which was not used.
Use of CUDNN_TENSOR_NCHW_VECT_C with non-zero padding resulted in a return status of CUDNN_STATUS_INTERNAL_ERROR. This issue is now fixed.
Chapter 14.
CUDNN RELEASE NOTES V7.0.5

Key Features and Enhancements
The following enhancements have been added to this release:

‣ None.

Known Issues
Following are known issues in this release:

‣ cuDNN library may trigger a CPU floating point exception when FP exceptions are enabled by user. This issue exists for all 7.0.x releases.

‣ There are heavy use cases of RNN layers that might hit a memory allocation issue in the CUDA driver when using cuDNN v7 with CUDA 8.0 and R375 driver on pre-Pascal architectures (Kepler and Maxwell). In these cases, subsequent CUDA kernels may fail to launch with an Error Code 30. To resolve the issue, it is recommended to use the latest R384 driver (from NVIDIA driver downloads) or to ensure that the persistence daemon is started. This behavior is observed on all 7.0.x releases.

‣ When using TENSOR_OP_MATH mode with cudnnConvolutionBiasActivationForward, the pointer to the bias must be aligned to 16 bytes and the size of allocated memory must be multiples of 256 elements. This behavior exists for all 7.0.x releases.

Fixed Issues
The following issues have been fixed in this release:

‣ Corrected the algorithm fallback behavior in RNN when user set to use CUDA_TENSOR_OP_MATH when using compute card without Tensor Cores. Instead of returning CUDNN_STATUS_NOT_SUPPORTED, the RNN algorithm will now continue to run using CUDNN_DEFAULT_MATH. The correct behavior is to fall back
to using default math when Tensor Core is not supported. Fixed to the expected behavior.

- On Volta hardware, `BWD_FILTER_ALGO_1` and `BWD_DATA_ALGO_1` convolutions using a number of filter elements greater than 512 were causing `CUDA_ERROR_ILLEGAL_ADDRESS` and `CUDNN_STATUS_INTERNAL_ERROR` errors. Logic was added to fall back to a generic kernel for these filter sizes.

- cuDNN v7 with CUDA 8.0 produced erroneous results on Volta for some common cases of Algo 1. Logic was added to fall back to a generic kernel when cudnn v7 with CUDA 8.0 is used on Volta.
Chapter 15.
CUDNN RELEASE NOTES V7.0.4

Key Features and Enhancements
Performance improvements for grouped convolutions when input channels and output channels per group are 1, 2, or 4 for the following algorithms:

- CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM
- CUDNN_CONVOLUTION_BWD_DATA_ALGO0
- CUDNN_CONVOLUTION_BWD_DATA_ALGO_1
- CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0
- CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

Known Issues
Following are known issues in this release:

- The CUDA 8.0 build of cuDNN may produce incorrect computations when run on Volta.
- cuDNN library triggers CPU floating point exception when FP exceptions are enabled by user. This issue exists for all 7.0.x releases.
- There are heavy use cases of RNN layers that might hit a memory allocation issue in the CUDA driver when using cuDNN v7 with CUDA 8.0 and R375 driver on pre-Pascal architectures (Kepler and Maxwell). In these cases, subsequent CUDA kernels may fail to launch with an Error Code 30. To resolve the issue, it is recommended to use the latest R384 driver (from NVIDIA driver downloads) or to ensure that the persistence daemon is started. This behavior is observed on all 7.0.x releases.
- When using TENSOR_OP_MATH mode with cudnnConvolutionBiasActivationForward, the pointer to the bias must be aligned to 16 bytes and the size of allocated memory must be multiples of 256 elements. This behavior exists for all 7.0.x releases.
Fixed Issues

The following issues have been fixed in this release:

- Fixed out-of-band global memory accesses in the 256-point 1D FFT kernel. The problem affected convolutions with 1x1 filters and tall but narrow images, e.g., 1x500 (WxH). In those cases, the workspace size for the FFT_TILING algo was computed incorrectly. There was no error in the FFT kernel.

- Eliminated a source of floating point exceptions in the CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm. The host code to generate a negative infinity floating point value was substituted with a different logic. By default, FP exceptions are disabled. However, a user program enabled them by invoking feenableexcept(). There are at least two other sources of FP exceptions in the cuDNN library, affecting for example BATCHNORM_SPATIAL_PERSISTENT. Those sources of FP exceptions will be eliminated in future releases of the cuDNN library.
Chapter 16.
CUDNN RELEASE NOTES V7.0.3

Key Features and Enhancements
Performance improvements for various cases:

- Forward Grouped Convolutions where input channel per groups is 1, 2 or 4 and hardware is Volta or Pascal.
- `cudnnTransformTensor()` where input and output tensor is packed.

This is an improved fallback, improvements will not be seen in all cases.

Known Issues
The following are known issues in this release:

- `CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING` may cause `CUDA_ERROR_ILLEGAL_ADDRESS`. This issue affects input images of just one 1 pixel in width and certain \(n, c, k, h \) combinations.

Fixed Issues
The following issues have been fixed in this release:

- `AddTensor` and `TensorOp` produce incorrect results for half and INT8 inputs for various use cases.
- `cudnnPoolingBackward()` can produce incorrect values for rare cases of non-deterministic MAX pooling with `window_width > 256`. These rare cases are when the maximum element in a window is duplicated horizontally (along width) by a stride of \(256 \times k \) for some \(k \). The behavior is now fixed to accumulate derivatives for the duplicate that is left-most.
- `cudnnGetConvolutionForwardWorkspaceSize()` produces incorrect workspace size for algorithm `FFT_TILING` for 1d convolutions. This only occurs for large sized
convolutions where intermediate calculations produce values greater than 2^{31} (2 to the power of 31).

- **CUDNN_STATUS_NOT_SUPPORTED** returned by `cudnnPooling*()` functions for small image (channels * height * width < 4).

Chapter 17.
CUDNN RELEASE NOTES V7.0.2

Key Features and Enhancements

This is a patch release of cuDNN 7.0 and includes bug fixes and performance improvements mainly on Volta.

Algo 1 Convolutions Performance Improvements

Performance improvements were made to
- CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM,
- CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, and
- CUDNN_CONVOLUTION_BWD_DATA_ALGO_1. These improvements consist of new SASS kernels and improved heuristics. The new kernels implement convolutions over various data sizes and tile sizes. The improved heuristics take advantage of these new kernels.

Known Issues

The following are known issues in this release:

- cudnnGetConvolutionForwardWorkspaceSize() returns overflowed size_t value for certain input shape for CUDNN_CONVOLUTION_*_ALGO_FFT_TILING.
- cudnnPoolingBackward() fails for pooling window size > 256.

Fixed Issues

The following issues have been fixed in this release:

- Batch Norm CUDNN_BATCHNORM_SPATIAL_PERSISTENT might get into race conditions in certain scenarios.
- cuDNN convolution layers using TENSOR_OP_MATH with fp16 inputs and outputs and fp32 compute will use “round to nearest” mode instead of “round to zero” mode as in 7.0.1. This rounding mode has proven to achieve better results in training.
Fixed synchronization logic in the **CUDNN_CTC_LOSS_ALGO_DETERMINISTIC** algo for CTC. The original code would hang in rare cases.

Convolution algorithms using **TENSOR_OP_MATH** returned a workspace size from `*GetWorkspaceSize()` smaller than actually necessary.

The results of int8 are inaccurate in certain cases when calling `cudnnConvolutionForward()` in convolution layer.

`cudnnConvolutionForward()` called with `xDesc’s channel = yDesc’s channel = groupCount` could compute incorrect values when vertical padding > 0.
cuDNN v7.0.1 is the first release to support the Volta GPU architecture. In addition, cuDNN v7.0.1 brings new layers, grouped convolutions, and improved convolution find as error query mechanism.

Key Features and Enhancements
This cuDNN release includes the following key features and enhancements.

Tensor Cores
Version 7.0.1 of cuDNN is the first to support the Tensor Core operations in its implementation. Tensor Cores provide highly optimized matrix multiplication building blocks that do not have an equivalent numerical behavior in the traditional instructions, therefore, its numerical behavior is slightly different.

cudnnSetConvolutionMathType, cudnnSetRNNMatrixMathType, and cudnnMathType_t
The cudnnSetConvolutionMathType and cudnnSetRNNMatrixMathType functions enable you to choose whether or not to use Tensor Core operations in the convolution and RNN layers respectively by setting the math mode to either CUDNN_TENSOR_OP_MATH or CUDNN_DEFAULT_MATH.

Tensor Core operations perform parallel floating point accumulation of multiple floating point products.

Setting the math mode to CUDNN_TENSOR_OP_MATH indicates that the library will use Tensor Core operations.

The default is CUDNN_DEFAULT_MATH. This default indicates that the Tensor Core operations will be avoided by the library. The default mode is a serialized operation.
whereas, the Tensor Core is a parallelized operation, therefore, the two might result in slightly different numerical results due to the different sequencing of operations.

The library falls back to the default math mode when Tensor Core operations are not supported or not permitted.

cudnnSetConvolutionGroupCount
A new interface that allows applications to perform convolution groups in the convolution layers in a single API call.

cudnnCTCLoss

cudnnCTCLoss provides a GPU implementation of the Connectionist Temporal Classification (CTC) loss function for RNNs. The CTC loss function is used for phoneme recognition in speech and handwriting recognition.

CUDNN_BATCHNORM_SPATIAL_PERSISTENT
The CUDNN_BATCHNORM_SPATIAL_PERSISTENT function is a new batch normalization mode for cudnnBatchNormalizationForwardTraining and cudnnBatchNormalizationBackward. This mode is similar to CUDNN_BATCHNORM_SPATIAL, however, it can be faster for some tasks.

cudnnQueryRuntimeError
The cudnnQueryRuntimeError function reports error codes written by GPU kernels when executing cudnnBatchNormalizationForwardTraining and cudnnBatchNormalizationBackward with the CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode.

cudnnGetConvolutionForwardAlgorithm_v7
This new API returns all algorithms sorted by expected performance (using internal heuristics). These algorithms are output similarly to cudnnFindConvolutionForwardAlgorithm.

cudnnGetConvolutionBackwardDataAlgorithm_v7
This new API returns all algorithms sorted by expected performance (using internal heuristics). These algorithms are output similarly to cudnnFindConvolutionBackwardAlgorithm.

cudnnGetConvolutionBackwardFilterAlgorithm_v7
This new API returns all algorithms sorted by expected performance (using internal heuristics). These algorithms are output similarly to cudnnFindConvolutionBackwardFilterAlgorithm.

CUDNN_REDUCE_TENSOR_MUL_NO_ZEROS
The MUL_NO_ZEROS function is a multiplication reduction that ignores zeros in the data.
CUDNN_OP_TENSOR_NOT

The **OP_TENSOR_NOT** function is a unary operation that takes the negative of (alpha*A).

cudnnGetDropoutDescriptor

The **cudnnGetDropoutDescriptor** function allows applications to get dropout values.

Using cuDNN v7.0.1

Ensure you are familiar with the following notes when using this release.

- Multi-threading behavior has been modified. Multi-threading is allowed only when using different cuDNN handles in different threads.
- In **cudnnConvolutionBackwardFilter**, dilated convolution did not support cases where the product of all filter dimensions was odd for half precision floating point. These are now supported by **CUDNN_CONVOLUTION_BWD_FILTER_ALGO1**.
- Fixed bug that produced a silent computation error for when a batch size was larger than 65536 for **CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM**.
- In **getConvolutionForwardAlgorithm**, an error was not correctly reported in v5 when the output size was larger than expected. In v6 the **CUDNN_STATUS_NOT_SUPPORTED**, error message displayed. In v7, this error is modified to **CUDNN_STATUS_BAD_PARAM**.
- In **cudnnConvolutionBackwardFilter**, cuDNN now runs some exceptional cases correctly where it previously erroneously returned **CUDNN_STATUS_NOT_SUPPORTED**. This impacted the algorithms **CUDNN_CONVOLUTION_BWD_FILTER_ALGO0** and **CUDNN_CONVOLUTION_BWD_FILTER_ALGO3**.

Deprecated Features

The following routines have been removed:

- **cudnnSetConvolution2dDescriptor_v4**
- **cudnnSetConvolution2dDescriptor_v5**
- **cudnnGetConvolution2dDescriptor_v4**
- **cudnnGetConvolution2dDescriptor_v5**

Only the non-suffixed versions of these routines remain.

The following routines have been created and have the same API prototype as their non-suffixed equivalent from cuDNN v6:
cuDNN SetRNNDescriptor_v5 - The non-suffixed version of the routines in cuDNN v7.0.1 are now mapped to their _v6 equivalent.

Attention It is strongly advised to use the non-suffixed version as the _v5 and _v6 routines will be removed in the next cuDNN release.

cudnnGetConvolutionForwardAlgorithm, cudnnGetConvolutionBackwardDataAlgorithm, and cudnnGetConvolutionBackwardFilterAlgorithm - A _v7 version of this routine has been created. For more information, see the Backward compatibility and deprecation policy chapter of the cuDNN documentation for details.

Known Issues

- cuDNN pooling backwards fails for pooling window size > 256.
Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license, either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson, Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.