Normalizations#
Batchnorm Forward#
The batchnorm operation computes:
\( output = scale*{input - mean \over \sqrt{variance + epsilon}} + bias \)
Optionally the operation also computes:
\(next\_running\_mean = (1 - momentum)*previous\_running\_mean + momentum*current\_running\_mean\)
\(next\_running\_variance = (1 - momentum)*previous\_running\_variance + momentum*current\_running\_variance\)
C++ API#
std::array<std::shared_ptr<Tensor_attributes>, 5> batchnorm(std::shared_ptr<Tensor_attributes>& input,
                                                            std::shared_ptr<Tensor_attributes>& scale,
                                                            std::shared_ptr<Tensor_attributes>& bias,
                                                            Batchnorm_attributes attributes); 
Where the output array has tensors in order of: [output, saved_mean, saved_invariance, next_running_mean, next_running_variance]
Batchnorm attributes is a lightweight structure with setters for providing optional input tensors and other operation attributes:
Batchnorm_attributes&
set_previous_running_stats(std::shared_ptr<Tensor_attributes>& previous_running_mean,
                            std::shared_ptr<Tensor_attributes>& previous_running_variance,
                            std::shared_ptr<Tensor_attributes>& momentum)
Batchnorm_attributes&
set_name(std::string const&)
Batchnorm_attributes&
set_compute_data_type(DataType_t value)
Python API#
batchnorm
input
scale
bias
in_running_mean
in_running_var
epsilon
momentum
compute_data_type
name
Batchnorm Finalize#
The bn_finalize operation calculates the statistics required for the next iteration from the statistics generated by the genstat operation.
C++ API#
    std::array<std::shared_ptr<Tensor_attributes>, 6> bn_finalize(std::shared_ptr<Tensor_attributes>,
                                                                  std::shared_ptr<Tensor_attributes>,
                                                                  std::shared_ptr<Tensor_attributes>,
                                                                  std::shared_ptr<Tensor_attributes>,
                                                                  std::shared_ptr<Tensor_attributes>,
                                                                  std::shared_ptr<Tensor_attributes>,
                                                                  BN_finalize_attributes);
The outputs are [EQ_SCALE, EQ_BIAS, MEAN, INV_VARIANCE, NEXT_RUNNING_MEAN, NEXT_RUNNING_VAR].
Batchnorm Backward (DBN)#
The DBN operation computes data gradient, scale gradient, bias gradient during backpropagation of batchnorm forward operation.
C++ API#
std::array<std::shared_ptr<Tensor_attributes>, 3> batchnorm_backward(std::shared_ptr<Tensor_attributes> loss,
                                                                         std::shared_ptr<Tensor_attributes> input,
                                                                         std::shared_ptr<Tensor_attributes> scale,
                                                                         Batchnorm_backward_attributes);
The output array has tensors in order of: [input gradient, scale gradient, bias gradient].
DBN attributes is a lightweight structure with setters:
Batchnorm_backward_attributes&
set_saved_mean_and_inv_variance(std::shared_ptr<Tensor_attributes> saved_mean,
                                std::shared_ptr<Tensor_attributes> saved_inverse_variance)
                                
Batchnorm_backward_attributes&
set_epsilon(std::shared_ptr<Tensor_attributes> epsilon)
Batchnorm_backward_attributes&
set_name(std::string const&)
Batchnorm_backward_attributes&
set_compute_data_type(DataType_t value)
Only setting either (saved mean and inverse_variance) or (epsilon) is necessary.
Generate Stats#
The Genstats operation computes the sum and sum of squares per-channel dimension.
C++ API#
std::array<std::shared_ptr<Tensor_attributes>, 2>
cudnn_frontend::graph::genstats(std::shared_ptr<Tensor_attributes>, Genstats_attributes);
The output array has tensors in order of: [sum, square_sum]
Genstats attributes is a lightweight structure with setters:
Genstats_attributes&
set_name(std::string const&)
Genstats_attributes&
set_compute_data_type(DataType_t value)
Python API#
genstats
input
compute_data_type
name
Layernorm Forward#
The layernorm operation computes
\( output = scale*{input - mean \over \sqrt{variance + epsilon}} + bias \)
Normalization happens across features, independently for each sample.
C++ API#
std::array<std::shared_ptr<Tensor_attributes>, 3> layernorm(std::shared_ptr<Tensor_attributes>& input,
                                                            std::shared_ptr<Tensor_attributes>& scale,
                                                            std::shared_ptr<Tensor_attributes>& bias,
                                                            Layernorm_attributes attributes); 
The output array has tensors in order of: [output, mean, variance]
Layernorm_attributes is a lightweight structure with setters for providing optional input tensors and other operation attributes:
Layernorm_attributes&
set_name(std::string const&)
Layernorm_attributes&
set_compute_data_type(DataType_t value)
Python API#
layernorm
norm_forward_phase
input
scale
bias
epsilon
compute_data_type
name
Layernorm Backward (DLN)#
The DLN operation computes data gradient, scale gradient, and bias gradient during backpropagation of a layernorm forward operation.
C++ API#
std::array<std::shared_ptr<Tensor_attributes>, 3>
            layernorm_backward(std::shared_ptr<Tensor_attributes> dy,
                          std::shared_ptr<Tensor_attributes> x,
                          std::shared_ptr<Tensor_attributes> scale,
                          Layernorm_backward_attributes options);
The output array has tensors in order of: [input gradient, scale gradient, bias gradient].
Layernorm_attributes is a lightweight structure with setters for providing optional input tensors and other operation attributes:
Layernorm_attributes&
set_name(std::string const&)
Layernorm_attributes&
set_compute_data_type(DataType_t value)
Python API#
layernorm
input
scale
loss
compute_data_type
name
Instancenorm Forward#
The instancenorm operation computes
\( output = scale*{input - mean \over \sqrt{variance + epsilon}} + bias \)
Normalization happens across each sample.
C++ API#
std::array<std::shared_ptr<Tensor_attributes>, 3> instancenorm(std::shared_ptr<Tensor_attributes>& input,
                                                            std::shared_ptr<Tensor_attributes>& scale,
                                                            std::shared_ptr<Tensor_attributes>& bias,
                                                            Instancenorm_attributes attributes); 
The output array has tensors in order of: [output, mean, variance].
Instancenorm_attributes is a lightweight structure with setters for providing optional input tensors and other operation attributes:
Instancenorm_attributes&
set_name(std::string const&)
Instancenorm_attributes&
set_compute_data_type(DataType_t value)
Python API#
instancenorm
norm_forward_phase
input
scale
bias
epsilon
compute_data_type
name
Instancenorm Backward (DIN)#
The DIN operation computes data gradient, scale gradient, and bias gradient during backpropagation of an instancenorm forward operation.
C++ API#
std::array<std::shared_ptr<Tensor_attributes>, 3>
            instancenorm_backward(std::shared_ptr<Tensor_attributes> dy,
                          std::shared_ptr<Tensor_attributes> x,
                          std::shared_ptr<Tensor_attributes> scale,
                          Instancenorm_backward_attributes options);
The output array has tensors in order of: [input gradient, scale gradient, bias gradient].
Instancenorm_attributes is a lightweight structure with setters for providing optional input tensors and other operation attributes:
Instancenorm_attributes&
set_name(std::string const&)
Instancenorm_attributes&
set_compute_data_type(DataType_t value)
Python API#
layernorm
input
scale
loss
compute_data_type
name