IIIIIII

1.1, Benefits Of DALL ...uiintiiiitiii it teieeeteteeatereneeeeaneesanneeeansesesneesenneeesnnesanns 1
1.2. Where Does DAL Fit2. ...t ettt ettt e et e et e et e eenaeeeanaesaannans 2
1.3, HOW DO | Gt DALz, .ttt e it e ettt ettt eieeeeaeaneeeneeaneenneeanaennaenns 3
Chapter 2. Getting Started With DALL.......ccceiiiieiiiiiiiiiiiiiieeeieeeeenecenencecnnccccnnsccnnnees 4
2.1. Defining A Pipeling Graph......ciiiiiiiiiii it it et e eii et eeeeiaaeeeaaanas 4
2.2. Building A Pipeline Graph.....ccoeiiiiiiiiiiiiii i et e eeiieeeeereannnenessaannnnes 6
2.3. RUNNING A Pipeling Graph......ueiiiiiiiiiiiiiiiiiiii ittt et ittt teeeiieaeeeeeennnaeeeeeanns 6
Chapter 3. Supported Operations......c.cceeeiiieeeiiieieieerereeeeeeeceeienceesnneeesnssesnnsscsnnseannsans 9
3.1. Color AugmMENTation OPEratorS. .cuueuuetetieiiiiteteteeiieteeteeeineeeeeeesnnseeessesennnsesseennns 9
3.2, DECOAET OPEIATOIS. . vt etneteeenteteaueeeenueeeaneeeeaneeeenneeesnaseesneeessneeesnaseesnessssneeesnnes 11
3.3, DisplacemeEnt O PEratorS. .o ettt teeiiitttteeiiieeeeteeeneeeeeeeernseeeeeessnnesessessrnnneseesones 12
I (o) 000 - 1 74 0 o= - o] T PN 15
KT 2 =T Ve [g 00 =T - | (o] T TP 17
T T] (=T 0 0T L) e 21
KB ARV o]0 o] g 0] o 1] - 1 o] £ SO PO PPN 27
IR T U a [T O o 1] - L o] £ PPN 28
Chapter 4. SamPles. . .uuiiieiiiieeiiiiteiiateianeteeaaeeeenceeenneeesnnsecsnssessnseesnssesnnssesnnseennnenn 30
4.1. Working With Deep Learning FrameWOrKs.uueiiiiiiiiiiiiiiiiiieieiiiieeeeeeniineaeeeanns 30
4.1.1. Data Loading: TFRECOId....cocuuiiiitiiii ittt e et eeieeeeeeeeenaeeaanaeas 30
4.1.2. PyTorch: Execute ResNet-50 Pipeline......cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i ieiiii e eeeenas 30
4.1.3. TensorFlow: Execute ResNet-50 Pipeline......ccuiiiiiiiiiiiiiiiiiiiiiiiiiieiieieeeanns 31
4.2. Data Loading: LIMDB.......ccuiiiiiiieittiiiiiitetteeeinneteeeeeeneneeeeesnnneeeeeessnnseseessnnnneees 31
4.3. Data Loading: ReCOrdIO. .. .uiiiuuiiiitiiiitteitteeeteteneteeaeereaneerenneeesneesenneeeenneeennes 31
4.4. MXNet: Execute ResNet-50 Pipeling.......ciiiiiiiiiiiiiiiiiiiiii ittt eiiiieeeeeeeennnnaeens 32
R TN o =1L - o] o PO PP PP PP 32
4.6, AUGMENTATION GallErY. . .ueuritiiiiiiiii ittt it eeiieeeeeerneeeeeearnnaneesessnnnneesesannnns 32
www.nvidia.com

DALI DU-09050-001 _v0.1 Beta Release | ii

Chapter 1.
WHAT IS DALI?

DALl s a data loading library that accelerates the preprocessing of input data for

deep learning applications. By offloading augmentations onto GPUs, DALI addresses
performance bottlenecks in today’s computer vision deep learning applications that
include complex, multi-stage data augmentation steps. With DALI 0.1 beta release, deep
learning researchers can scale training performance on image classification models such
as ResNet-50 with MXNet", TensorFlow' , and PyTorchTM across Amazon Web Services
P3 8 GPU instances or DGX-1 systems with Volta architecture. Framework developers
will have less duplication due to better code reuse and maintainability.

DALI offers both performance and flexibility of accelerating different data pipelines
(graphs that can have multiple inputs and outputs), as a single library, that can be easily
integrated into different deep learning training and inference applications.

1.1. Benefits Of DALI

There are 3 key factors that DALI brings to deep learning training and inference

applications:

Performance
On dense GPU systems, deep learning applications can be significantly bottlenecked
on the CPU, limiting the overall performance and scalability of training and inference
tasks. DALI enables offloading key deep learning augmentation steps on to GPUs,
alleviating CPU bottleneck on the deep learning preprocessing pipelines. This results
in out-of-box performance of overall training workflow and efficient utilization of
multi-GPU resources on the system.

Drop-in Integration
DALI comes with built-in plugins for key frameworks such as MXNet, TensorFlow,
and PyTorch™ . This enables automatic integration with frameworks so that
researchers and developers can get up and running with DALI easily and quickly.

Flexibility
DALI supports multiple input data formats that are commonly used in computer
vision deep learning applications, for example, JPEG images, raw formats, Lightning
Memory-Mapped Database (LMDB), RecordIO and TFRecord. The flexibility of input
data formats allows portability of training workflows across different frameworks

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 1

What Is DALI?

and models, and helps to avoid intermediate data conversion steps. DALI enables
better code reuse and maintainability with optimized building blocks and support for

different data formats.

1.2. Where Does DALI Fit?

DALI focuses on data loading and augmentations, in other words, all the preprocessing
stages before you start training your model.

Without DALI, a ResNet-50 model pipeline operations are primarily processed on
CPUs. These functions are implemented differently in each of the frameworks and not

currently optimized to scale across multi-GPU environments.

Images

Decode Resize Augment

Training

Figure 1 ResNet-50 pipeline without DALI

With DALL the same pipeline is now accelerated by offloading key augmentation
functions onto the GPU. The hybrid approach of efficiently utilizing available CPU and
GPU resources helps maximize the overall training and inference performance.

Labels

Loader

Figure 2 ResNet-50 pipeline with DALI

www.nvidia.com

DALI DU-09050-001 _v0.1 Beta Release | 2

What Is DALI?

1.3. How Do | Get DALI?

For step-by-step instructions on how to install DALI, see the DALI Quick Start Guide.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 3

https://docs.nvidia.com/deeplearning/sdk/dali-install-guide/index.html

Chapter 2.
GETTING STARTED WITH DALI

The following tasks assume you've already installed DALL If you have not installed
DALLI, see the DALI Quick Start Guide.

The following sections highlight the user goals and tasks that you can perform with
DALL In DALI 0.1 beta release, you can define and execute a pipeline graph. In order to
perform these tasks, ensure you have the following software installed:

» Optionally, install Jupyter to work in interactive mode.
» Install NumPy.
» Install Matplotlib.

To interact with the code, see the Getting Started Tutorial.

2.1. Defining A Pipeline Graph

DALI data pipelines are graphs that can have multiple outputs and inputs.
Fundamentally, a pipeline can have multiple data processing connections where the
output of one connection is the input of the next connection. The pipeline class contains
all the necessary information and multiple functions related to defining, building and
running the pipeline.

In order to create our own input and augmentation pipeline, we will make subclasses of
it. The first step to running your data pipeline is to import DALL

from dali.pipeline import Pipeline

Let’s define a simple pipeline for a classifier that determines whether a picture contains a
cat or dog. Our pipeline is called SimplePipeline.

import os
import fnmatch

for root, dir, files in os.walk("images"):
depth = root.count('/')
ret = nn
if depth > 0:

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 4

https://docs.nvidia.com/deeplearning/sdk/dali-install-guide/index.html
http://jupyter.org/install
http://www.numpy.org/
https://matplotlib.org/
https://github.com/NVIDIA/DALI/blob/v0.1.1/examples/Getting%20Started.ipynb

Getting Started With DALI

ret += " " * (depth - 1) + "|-"
print ret + root
for items in fnmatch.filter (files, "*"):
print (" " * len(ret)) + "|-" + items

We prepared a directory structure that contains pictures of dogs and cats. The following
output code shows the structure of our directory:

images

| -images/dog
|-dog_1.Jjpg
| -dog_8.Jjpg
| -dog_7.3pg
| -dog_6.Jjpg
|-dog_2.Jjpg
|-dog_11.3pg
| -dog_10.jpg
| -dog_9.Jjpg
| -dog_5.Jjpg
| -dog_4.]jpg
| -dog_3.Jjpg

| -images/kitten
|-cat_7.]jpg
|-cat_10.jpg
|-cat_3.]jpg
|-cat_2.jpg
|-cat_4.]jpg
|-cat_9.]jpg
|-cat_1.]jpg
|-cat_8.]jpg
|-cat_5.]jpg
|-cat_6.]jpg

This pipeline will read images from the directory where the images are stored, decode
them, and return (image, label) pairs.

import dali.ops as ops
import dali.types as types

image_dir = "images"
batch_size = 8

class SimplePipeline (Pipeline):
def _ init__ (self, batch_size, num_threads, device_id):
super (SimplePipeline, self). init (batch_size, num_ threads, device_id,
seed = 12)
self.input = ops.FileReader (file_root = image_dir)
self.decode = ops.HostDecoder (output_type = types.RGB)

def define graph (self):
jpegs, labels = self.input()
images = self.decode (jpegs)
return (images, labels)
The SimplePipeline class is a subclass of dali.pipeline.Pipeline, which provides
most of the methods to create and launch a pipeline. The only two methods we need to

implement is the constructor, (__init__), and define_graph function.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 5

Getting Started With DALI

Constructor Function

In the constructor function, we first call our superclass constructor, in order to set global
parameters of the pipeline. The global parameters consist of:

> Dbatch size
» number of threads used to perform computation on the CPU

» which GPU device to use (SimplePipeline does not yet use GPU for compute
though)
» seed for random number generation

We also define member variables of our SimplePipeline class as operations defined in
the dali.ops module. The member variables are:
FileReader
Traverses the directory and returns pairs of (encoded image, label).
HostDecoder
Takes an encoded image input and outputs decoded RGB image.

define_graph Function

In the define_graph function, we define the actual flow of computation. We use our
input operation to create jpegs (encoded images) and labels.

jpegs, labels = self.input()
Next, we use the decode operation to create images (decoded RGB images).

images = self.decode (jpegs)

Finally, we specify which of the intermediate variables should be returned as outputs of
the pipeline.

return (images, labels)

2.2. Building A Pipeline Graph

Before we can use our SimplePipeline, we need to build it by calling the build
function.

pipe = SimplePipeline (batch_size, 1, 0)
pipe.build()

2.3. Running A Pipeline Graph

We're now ready to run our SimplePipeline and view the batch of results.

pipe_out = pipe.run()
print (pipe_out)

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 6

Getting Started With DALI

The output of SimplePipeline is saved to the pipe_out variable. The output is a list
of two elements since we specified two outputs in the define_graph function in the
SimplePipeline class. Both of these elements are TensorListCPU objects; meaning,
each element contains a list of tensors on the CPU.

In order to show the results (for debugging purposes since during the actual training
we would not do this step because it would make our batch of images do a round trip
from GPU to CPU and back), we can send our data from DALI's Tensor to NumPy
array. Not every TensorList can be accessed that way though. TensorList is more
general than NumPy array and can hold tensors with different shapes. In order to check
whether we can send it to NumPy directly, we can call the is_dense_tensor function
of TensorList.

images, labels = pipe out
print("Images is_dense_tensor: " + str(images.is_dense_tensor()))
print ("Labels is_dense_tensor: " + str(labels.is_dense_tensor()))

Images is_dense_tensor: False
Labels is_dense_tensor: True

As it turns out, TensorList containing labels can be represented by a tensor, while the
TensorList containing images cannot.

Let us see, what is the shape and contents of the returned labels.

import numpy as np
labels_tensor = labels.as_tensor ()

print (labels_ tensor.shape())
print (np.array(labels tensor))

In order to see the images, we will need to loop over all tensors contained in
TensorList, accessed with its at method.

from _ future import division

import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
$matplotlib inline

def show_images (image batch) :
columns = 4
rows = (batch size + 1) // (columns)
fig = plt.figure(figsize = (32, (32 // columns) * rows))
gs = gridspec.GridSpec (rows, columns)
for j in range(rows*columns) :
plt.subplot(gs[]j])
plt.axis ("off")
plt.imshow (image batch.at(j))

show_images (images)

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 7

Getting Started With DALI

Figure 3 SimplePipeline results output

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 8

Chapter 3.
SUPPORTED OPERATIONS

The following sections describe the operations that are supported by DALI These
operations enable you to create the desired input and augmentation pipeline.

3.1. Color Augmentation Operators

The color augmentation operators enable you to change the color of the image.

3.1.1. Brightness

The Brightness class controls the brightness of an image.

The following table lists the supported parameters for the Brightness class.

Table 1 Brightness class parameters

Parameter Required Description Type Values
brightness No Brightness change | float or float A value of 0
factor values >=0 tensor produces a black
are accepted. image.
A value of 1 is no
change.
A value of 2

increases the light
twice as much.

The default value

is 1.000000.
image_type No The color space dali.types.DALIImaheThpbault value
of the input and is RGB.

output image.

3.1.2. Contrast

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 9

The Contrast class controls the color contrast of the image.

Supported Operations

The following table lists the supported parameters for the Contrast class.

Table 2 Contrast class parameters

Parameter Required Description Type Values
contrast No Contrast change float or float A value of 0
factor values >=0 tensor produces a gray
are accepted. image.
A value of 1 is no
change.
A value of 2
increases the
contrast twice as
much.
The default value
is 1.000000.
image_type No The color space dali.types.DALIImaheThpfault value
of the input and iSRGB.
output image.
3.1.3. Hue
The Hue class controls the hue level of the image.
The following table lists the supported parameters for the Hue class.
Table 3 Hue class parameters
Parameter Required Description Type Values
hue No Hue change in float or float The default value
angles. tensor i50.000000.
image_type No The color space dali.types.DALIImbheThgfault value

of the input and
output image.

iSRGB.

3.1.4. Saturation

The saturation class controls the saturation level of the image.

The following table lists the supported parameters for the Saturation class.

Table 4 saturation class parameters

Parameter

Required

Description

Type

Values

image_ type

No

The color space
of the input and
output image.

dali.types.DALIImbhheThpfault value

iSRGB.

www.nvidia.com
DALI

DU-09050-001 _v0.1 Beta Release | 10

Supported Operations

Parameter Required Description Type Values
saturation No Saturation change | float or float Values >=0 are
factor. tensor supported. For
example:

A value of 0 gives
you a completely
desaturated
image.

A value of 1 is
no change to the
images saturation.

The default value
i$1.000000.

3.2. Decoder Operators

The decoder operators enable you to decode encoded input into an image.

3.2.1. HostDecoder

The HostDecoder class decodes images on the host using OpenCV. When applicable, it
will pass execution to faster, format-specific decoders, like 1ibjpeg-turbo. Output of
the decoder is in HWC ordering.

The following table lists the supported parameters for the HostDecoder class.

Table 5 HostDecoder class parameters

Parameter Required Description Type Values
output_type No The color space of | dali.types.DALIImaheTpbault value
the output image. lrliSRGB.

3.2.2. nvJPEGDecoder

The nvJPEGDecoder decodes JPEG images using the nvJPEG library. Output of the
decoder is on the GPU and uses an HWC ordering.

The following table lists the supported parameters for the nvJPEGDecoder class.

Table 6 nvJPEGDecoder class parameters

Parameter Required Description Type Values
output_type No The color space of | dali.types.DALIImaheTipbault value
the output image. iSRGB.
use_batched decoddo Use nvJPEG's bool The default value
batched decoding isFalse.
API.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 11

3.3. Displacement Operators

Supported Operations

The displacement operators enable you to perform spatial transformations (such as
rotation) of images.

3.3.1. Jitter

The Jitter class performs a random jitter augmentation. The output image is produced
by moving each pixel by a random amount bounded by half of nDegree parameter (in
both x and y dimensions).

The following table lists the supported parameters for the Jitter class.

Table 7 Jitter class parameters

Parameter Required Description Type Values
£ill_value No Color value used float The default value
for padding pixels. is0.000000.
interp_type No Type of dali.types.DALIInthepefpelt value
interpolation used. iSINTERP_NN.
mask No Whether to apply int or int A value of 0 will
this augmentation | tensor not apply this
to the input image transformation.
or not. A value of 1
will apply this
transformation.
The default value
is1.
nDegree No Each pixel is int The default value
moved by a is2.
random amount
in range [-
nDegree/2,
nDegree/2].

3.3.2. Rotate

The Rotate class rotates the image.

The following table lists the supported parameters for the Rotate class.

Table 8 Rotate class parameters

Parameter

Required

Description

Type

Values

angle

Yes

Rotation angle.

float or float
tensor

www.nvidia.com
DALI

DU-09050-001

_v0.1 Beta Release | 12

Supported Operations

to the input image.

Parameter Required Description Type Values
£ill_value No Color value used float The default value
for padding pixels. is0.000000.
interp_type No Type of dali.types.DALIInthepefpelt value
interpolation used. is INTERP_NN.
mask No Whether to apply int or int A value of 0 will
this augmentation | tensor not apply this

transformation.

A value of 1
will apply this
transformation.

The default value

is 1.

3.3.3. Sphere

The Sphere class performs a sphere augmentation.

The following table lists the supported parameters for the Sphere class.

Table 9 sphere class parameters

to the input image.

Parameter Required Description Type Values

£ill value No Color value used float The default value
for padding pixels. iS 0.000000.

interp_type No Type of dali.types.DALIIntkemrypelt value
interpolation used. iS INTERP_NN.

mask No Whether to apply int Or int A value of 0 will
this augmentation | tensor not apply this

transformation.

A value of 1
will apply this
transformation.

The default value
is 1.

3.3.4. WarpAffine

The WarpAffine class applies an affine transformation to the image.

The following table lists the supported parameters for the WarpAf£fine class.

Table 10 wWarpAffine class parameters

Parameter

Required

Description

Type

Values

matrix

www.nvidia.com
DALI

Yes

Matrix of the
transform (dst -
src).

list of float

DU-09050-001

Given a list of
values (M11,
M12, M13, M21,

_v0.1 Beta Release | 13

Supported Operations

Parameter

Required

Description

Type

Values

M22, M23) this
operation will
produce a new
image using the
formula:

dst(x,y)

src (M11 b3
+ M12 * +
M13, M21 * x
+ M22 * y +
M23)

L |

It is equivalent
to OpenCV's
warpAffine
operation

with a flag
WARP_INVERSE_ MAP
set.

£ill value

No

Color value used
for padding pixels.

float

The default value
i$ 0.000000.

interp_type

No

Type of

interpolation used.

dali. types.DALI]]

nteepiefpalt value
is INTERP_NN.

mask

No

Whether to apply
this augmentation

to the input image.

int or int
tensor

A value of 0 will
not apply this
transformation.

A value of 1
will apply this
transformation.

The default value
is 1.

use_image_center

No

Whether to use
the image center
as the center of
transformation.

bool

When set to true,
the coordinates
are calculated
from the center of
the image.

The default value
is False.

3.3.5. water

The Water class performs a water augmentation.

The following table lists the supported parameters for the Water class.

www.nvidia.com
DALI

DU-09050-001

_v0.1 Beta Release | 14

Su

pported Operations

Table 11 wWater class parameters
Parameter Required Description Type Values
ampl x No Amplitude of float The default value
the wave in x i$10.000000.
direction.
ampl_y No Amplitude of float The default value
the wave in y i$10.000000.
direction.
£ill_value No Color value used float The default value
for padding pixels. is 0.000000.
freq x No Frequency of float The default value
the wave in x is0.049087.
direction.
freq y No Frequency of float The default value
the wave in y is 0.049087.
direction.
interp_type No Type of dali.types.DALIIntheprfpelt value
interpolation used. is INTERP_NN.
mask No Whether to apply | int or int A value of 0 will
this augmentation | tensor not apply this
to the input image. transformation.
A value of 1
will apply this
transformation.
The default value
is -1.
phase_x No Phase of the wave | float The default value
in x direction. i$ 0.000000.
phase_y No Phase of the wave | float The default value
in y direction. is 0.000000.

3.4. Normalize Operators

The normalize operators enable you to normalize the images with mean and standard
deviation, as well as prepare them for ingestion in the framework by converting
datatype to float and layout to NCHW.

3.4.1. CropMirrorNormalize

The CropMirrorNormalize class performs fused cropping, normalization, format
conversion (NHWC to NCHW) if desired, and type casting. The normalization takes the

input image and produces an output using the formula:
output = (input - mean) / std

The following table lists the supported parameters for the CropMirrorNormalize class.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 15

Table 12 CropMirrorNormalize class parameters

Supported Operations

the output to
the number of
channels being
multiple of 4.

Parameter Required Description Type Values
crop Yes Size of the int or list of If only a single
cropped image. int value of c is
provided, the
resulting crop will
be a square with
size (¢, ¢).
mean Yes Mean pixel list of float
values for image
normalization.
std Yes Standard deviation | 1ist of float
values for image
normalization.
crop_pos_x No Horizontal position | float or float The default value
of the crop in tensor is 0.500000.
image coordinates
(0.0 - 1.0).
crop_pos_y No Vertical position of | float or £loat The default value
the crop in image | tensor is 0.500000.
coordinates (0.0 -
1.0).
image_type No The color space dali.types.DALIImakheThpbault value
of the input and is RGB.
output image.
mirror No Mask for horizontal | int or int A value of 0 will
flip. tensor not perform a
horizontal flip for
this image.
A value of 1
will perform a
horizontal flip for
this image.
The default value
is 0.
output_dtype No Output data type. | dali.types.DALIDath@geéault value
is FLOAT.
output_layout No Output tensor data | dali. types.DALITlehke drigatitvalue
type. is NCHW.
pad_output No Whether to pad bool The default value

is False.

3.4.2. NormalizePermute

www.nvidia.com
DALI

DU-09050-001 _v0.1 Beta Release | 16

Supported Operations

The NormalizePermute class performs fused normalization, format conversion from
NHWC to NCHW and type casting. Normalization takes an input image and produces
output using the formula:

output = (input - mean) / std

The following table lists the supported parameters for the NormalizePermute class.

Table 13 NormalizePermute class parameters

Parameter Required Description Type Values
height Yes Height of the input | int

image.
mean Yes Mean pixel list of float

values for image
normalization.

std Yes Standard deviation | 1ist of float
values for image
normalization.

width Yes Width of the input | int
image.
image type No The color space dali.types.DALIImbhheThgfault value
of the input and is RGB.
output image.
output_dtype No Output data type. | dali.types .DALIT‘Ebﬂ'méault value
is FLOAT.

3.5. Reader Operators

The reader operators enable you to read data stored on the disk in various formats.

3.5.1. caffe2Reader

The caffe2Reader class reads the sample data from a Caffe2” LMDB.

The following table lists the supported parameters for the Caffe2Reader class.

Table 14 caffe2Reader class parameters

Parameter Required Description Type Values

path Yes Path to Caffe2 string
LMDB.

additional_inputsNo Additional int The default value
auxiliary data is 0.

tensors provided
for each sample.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 17

Supported Operations

Parameter Required Description Type Values

bbox No Denotes if bool The default value
bounding-box is False.
information is
present.

initial fill No Size of the buffer | int The default value
used for shuffling. is 1024.

label type No Enum describing int SINGLE LABEL
the type of label = 0 is a single
stored in the integer label
dataset. for multi-class

classification.

MULTI_LABEL_SPARSE
= 1is a sparse
active label indices
for multi-label
classification.

MULTI_LABEL DENSE
= 2 is a dense
label embedding
vector for label
embedding
regression.

MULTI_LABEL WEIGHTED SPARSE
= 3is asparse
active label
indices with per-
label weights
for multi-label
classification.

The default value

is 0.
num_labels No Number of classes | int The default value
. in the dataset. is 1.
This parameter
is required when
sparse labels are
used.
num_shards No Partitions the data | int The default value
into this many is 1.
parts.
random _shuffle [No Whether to shuffle | bool The default value
data or not. is False.
shard id No The id of the part | int The default value
to read. is 0.
tensor_init bytesNo Hint for how int The default value
much memory is 1048576.
to allocate per
image.

3.5.2. caffeReader

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 18

Supported Operations

The caffeReader class reads (image and label) pairs from a Caffe” LMDB.

The following table lists the supported parameters for the CaffeReader class.

Table 15 caffeReader class parameters

much memory
to allocate per
image.

Parameter Required Description Type Values

path Yes Path to Caffe string
LMDB.

initial fill No Size of the buffer | int The default value
used for shuffling. is 1024.

num_shards No Partitions the data | int The default value
into this many is 1.
parts.

random _shuffle [No Whether to shuffle | bool The default value
data or not. is False.

shard id No The id of the part | int The default value
to read. is 0.

tensor_init bytesNo Hint for how int The default value

is 1048576.

3.5.3. FileReader

The FileReader class reads (image and label) pairs from a directory.

The following table lists the supported parameters for the FileReader class.

Table 16 FileReader class parameters

to read.

Parameter Required Description Type Values
file root Yes Path to a directory | string
containing data
files.
file list No Path to the file string Leave empty
with a list of pairs to traverse the
file label. file root
directory to obtain
files and labels.
initial fill No Size of the buffer | int The default value
used for shuffling. is 1024.
num_shards No Partitions the data | int The default value
into this many is 1.
parts.
random_shuffle [No Whether to shuffle | bool The default value
data or not. is False.
shard id No The id of the part | int The default value

is 0.

www.nvidia.com
DALI

DU-09050-001 _v0.1 Beta Release | 19

Supported Operations

Parameter Required Description Type Values
tensor_init_ bytesNo Hint for how int The default value
much memory is 1048576.
to allocate per
image.

3.5.4. MXNetReader

The MXNetReader class reads sample data from an MXNet RecordIO.

The following table lists the supported parameters for the MXNetReader class.

Table 17 MXNetReader class parameters

Parameter Required Description Type Values

index_path Yes List (of length list of string
1) containing a
path to index
(.idx) file. It is
generated by the
MXNet im2rec.py
script together
with an RecordlO
file. It can also be
generated using
the rec2idx script
distributed with

DALL.
path Yes List of paths to list of string
RecordIO files.
initial fill No Size of the buffer | int The default value
used for shuffling. is 1024.
num_shards No Partitions the data | int The default value
into this many is 1.
parts.
random_shuffle [No Whether to shuffle | bool The default value
data or not. is False.
shard id No The id of the part | int The default value
to read. is 0.
tensor_init bytefsNo Hint for how int The default value
much memory is 1048576.
to allocate per
image.

3.5.5. TFRecordReader

The TFRecordReader class reads sample data from a TensorFlow TFRecord file.

The following table lists the supported parameters for the TFRecordReader class.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 20

Supported Operations

Table 18 TFRecordReader class parameters

Parameter Required Description Type Values
features Yes Dictionary of dict of

names and (string,

configuration of dali.tfrecord.Feature)

features existing

in the TFRecord
file. Typically
obtained using
helper functions
dali. tfrecord.FilxedLenFeature
and :lx
dali.tfrecord.Var

they are
equivalent to
TensorFlow
tf.FixedLenFeature
and
tf.VarLenFeature
functions
respectively.

LenFeature,

index_path Yes List of paths to list of string
index files (one
index file for every
TFRecord file).
Index files may

be obtained from

the TFRecord
files using the
tfrecord2idx
script distributed
with DALI.
path Yes List of paths to list of string
TFRecord files.
initial fill No Size of the buffer | int The default value
used for shuffling. is 1024.
num_shards No Partitions the data | int The default value
into this many is 1.
parts.
random_shuffle [No Whether to shuffle | bool The default value
data or not. is False.
shard id No The id of the part | int The default value
to read. is 0.
tensor_init bytesNo Hint for how int The default value
much memory is 1048576.
to allocate per
image.

3.6. Resize Operators

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 21

Supported Operations

The resize operators enable you to resize images.

3.6.1. FastResizeCropMirror

The FastResizeCropMirror class performs a fused resize, crop, and mirror operation.
It handles both fixed and random resizing and cropping. It also backprojects the desired
crop through the resize operation to reduce the amount of work performed.

The following table lists the supported parameters for the FastResizeCropMirror
class.

Table 19 FastResizeCropMirror class parameters

Parameter Required Description Type Values
crop Yes Size of the int or list of If only a single
cropped image. int value of c is
provided, the
resulting crop will
be a square with
size (¢, c).
crop_pos_x No Horizontal position | £loat or float The default value
of the crop in tensor is 0.500000.
image coordinates
(0.0 - 1.0).
crop_pos_y No Vertical position of | £1oat or £loat The default value
the crop in image | tensor is 0.500000.
coordinates (0.0 -
1.0).
mirror No Mask for horizontal | int or int A value of 0 will
flip. tensor not perform a
horizontal flip for
this image.
A value of 1
will perform a
horizontal flip for
this image.
The default value
is 0.
resize shorter [No The length of the | float or float The default value
shorter dimension | tensor is 0.000000.
of the resized
image. This
option is mutually
exclusive with
resize x and
resize y. The
operation will keep
the aspect ratio of
the original image.
resize_x No The length of the [float or float The default value
x dimension of the | tensor is 0.000000.
resized image. This

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 22

Supported Operations

Parameter Required Description Type Values

option is mutually
exclusive with
resize_shorter.
If the resize_y is
left at 0, then the
operation will keep
the aspect ratio of
the original image.

resize_y No The length of the | float or float The default value
Y dimension of the | tensor i$ 0.000000.
resized image. This
option is mutually
exclusive with
resize_shorter.
If the resize xis
left at 0, then the
operation will keep
the aspect ratio of
the original image.

3.6.2. RandomResizedCrop

The RandomResizedCrop class performs a crop with a randomly chosen area and aspect
ratio, then resizes it to a given size.

The following table lists the supported parameters for the RandomResizedCrop class.

Table 20 RandomResizedCrop class parameters

Parameter Required Description Type Values

size Yes Size of the resized | 1ist of float
image.

interp_type No Type of dali.types.DALIInthepgefpelt
interpolation used. value is

INTERP_LINEAR.

num_attempts No Maximum number | int The default value

of attempts used is 10.

to choose random
area and aspect
ratio.

If the maximum
number of
attempts is
reached without
finding the crop
that fits in the
input image,
then a square
shaped crop
from the center
of the image is
chosen instead.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 23

Supported Operations

Parameter

Required

Description

Type

Values

The square size

is equal to the
shorter side of the
input image.

random_area

No

Range from

which to choose
a random area
factor a. Before
resizing, the
cropped images
area will be equal
to A * original
images area.

list of float

The default value
is [0.080000,
1.000000, 1.

random_aspect_ralthle

Range from which
to choose the
random aspect
ratio.

list of float

The default value
is [0.750000,
1.333333, 1.

3.6.3. Resize

The Resize class resizes images. This class controls both fixed and random resizes,
along with fuse cropping (random and fixed), and image mirroring.

The following table lists the supported parameters for the Resize class.

Table 21 Resize class parameters
Parameter Required Description Type Values
resize_a Yes Lower bound for int If neither

www.nvidia.com
DALI

resize.

random_resize
nor warp_resize
is set, then the
shorter side of
the input image
is resized to
resize_a and
resize b is
ignored.

If wvarp_image

is set and
random_resize

is not set, then

the input image is
resized so that the
height is resize _a
and the width is
resize_b.

If random resize
is set and
warp_resize

is not set, then
the shorter side

DU-09050-001 _v0.1 Beta Release | 24

Supported Operations

Parameter Required Description Type Values

of the input
image is resized
to a random
value between
[resize_a,
resize b].

If both
random_resize
and warp_resize
are set, then

both sides of the
input image are
resized to random
values in range
[resize_a,
resize Db].

resize b Yes Upper bound for int If neither

resize. random resize
nor warp_ resize
is set, then this
parameter is
ignored.

If wvarp_image

is set and
random_resize

is not set, then

the input image is
resized so that the
height is resize _a
and the width is
resize b.

If random resize
is set and

warp resize
is not set, then
the shorter side
of the input
image is resized
to a random
value between
[resize_a,
resize b].

If both
random_resize
and warp_resize
are set, then

both sides of the
input image are
resized to random
values in range
[resize_a,
resize b].

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 25

Supported Operations

the aspect ratio of
the image.

Parameter Required Description Type Values
image_type No The color space dali.types.DALIImbhheThpbault value
of the input and is RGB.
output image.
interp_type No Type of dali.types.DALIInthepefpelt value
interpolation used. is INTERP_LINEAR
random resize No Whether to bool The default value
randomly resize is False.
images or not.
save_attrs No Save the reshape | bool The default value
attributes for is False.
testing.
warp_resize No Whether to modify | bool The default value

is False.

3.6.4. ResizeCropMirror

The ResizeCropMirror class performs a fused resize, crop, and mirror operation. It
handles both fixed and random resizing and cropping.

The following table lists the supported parameters for the ResizeCropMirror class.

Table 22 ResizeCropMirror class parameters

Parameter Required Description Type Values
crop Yes Size of the int or list of If only a single
cropped image. int value of ¢ is
provided, the
resulting crop will
be a square with
size (¢, c).
crop_pos_x No Horizontal position | float or float The default value
of the crop in tensor is 0.500000.
image coordinates
(0.0 - 1.0).
crop_pos_y No Vertical position of | float or float The default value
the crop in image | tensor is 0.500000.
coordinates (0.0 -
1.0).
mirror No Mask for horizontal | int or int A value of 0 will
flip. tensor not perform a

horizontal flip for
this image.

A value of 1

will perform a
horizontal flip for
this image.

The default value
is 0.

www.nvidia.com
DALI

DU-09050-001

_v0.1 Beta Release | 26

Supported Operations

Parameter Required Description Type Values
resize_shorter [No The length of the | £loat The default value
shorter dimension i50.000000.
of the resized
image. This

option is mutually
exclusive with
resize x and
resize_y. The
operation will keep
the aspect ratio of
the original image.

resize x No The length of the | float The default value
X dimension of the is 0.000000.
resized image. This
option is mutually
exclusive with
resize_shorter.
If the resize y is
left at 0, then the
operation will keep
the aspect ratio of
the original image.

resize y No The length of the float The default value
Y dimension of the iS 0.000000.
resized image. This
option is mutually
exclusive with
resize_shorter.
If the resize xis
left at 0, then the
operation will keep
the aspect ratio of
the original image.

3.7. Support Operators

The support operators are a class of operators, the result of which can be used as
arguments to other functions. Currently only Random Number Generators are members
of this class.

3.7.1. CoinFlip

The CoinFlip class produces tensor filled with 0 and 1; the results of a random coin
flip. It's useable as an argument for select operations.

The following table lists the supported parameters for the CoinFlip class.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 27

Supported Operations

Table 23 coinFlip class parameters

Parameter Required Description Type Values
probability No Probability of float The default value
returning 1. is 0.500000.

3.7.2. Uniform

The Uniform class produces tensors that are filled with uniformly distributed random
numbers.

The following table lists the supported parameters for the Uniform class.

Table 24 Uniform class parameters

Parameter Required Description Type Values
range No Range of produced | 1ist of float The default value
random numbers. is [-1.000000,
1.000000, 1.

3.8. Utility Operators

The utility operators is a collection of common operations to help with casting, copying,
and debugging.

3.8.1. cast

The cast class casts the tensor to a different type.

The following table lists the supported parameters for the Cast class.

Table 25 cast class parameters

Parameter Required Description Type Values

dtype Yes Output data type. | dali.types .DALIqataType

3.8.2. Copy

The Copy class makes a copy of the input tensor.

There are no parameters for this class.

3.8.3. DummyOp

The DummyOp class is the dummy operator for testing.

The following table lists the supported parameters for the DummyOp class.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 28

Table 26 DummyOp class parameters

Supported Operations

Parameter Required Description Type Values
num_outputs No Number of The default value
outputs. is2.

3.8.4. DumpImage

The DumpImage class saves the images in batch to disk in PPM format.

The following table lists the supported parameters for the DumpImage class.

Table 27 DumpImage class parameters

to the output file
names.

Parameter Required Description Type Values

input_layout No Layout of input dali.types.DALITehbe drigutitvalue
images. iSNHWC.

suffix No Suffix to be added | string

3.8.5. ExternalSource

The ExternalSource class enables externally provided data to be passed as an input to

the pipeline.

There are no parameters for this class.

www.nvidia.com
DALI

DU-09050-001 _v0.1 Beta Release | 29

Chapter 4.
SAMPLES

The dali/examples directory contains a series of examples, in the form of Jupyter
notebooks, that show different features of DALI. The examples also show how to use
DALI to interface with the deep learning frameworks.

4.1. Working With Deep Learning Frameworks

DALI enables frameworks, such as MXNet, PyTorch, and TensorFlow, to bypass the
native input data pipeline across deep learning tasks such as managing data, designing,
and training neural networks on multi-GPU systems.

In order to minimize the steps needed to replace the native data pipeline in deep
learning frameworks, DALI provides a built-in plugins to simplify integration into
MXNet, PyTorch, and TensorFlow frameworks.

4.1.1. Data Loading: TFRecord

What Does This Sample Do?

The DataLoading-TFRecord. ipynb sample demonstrates how to use DALI with data
stored in TensorFlow TFRecord file format.

Where Is This Sample Located?

The DataLoading-TFRecord. ipynb sample is located in the examples directory.
4.1.2. PyTorch: Execute ResNet-50 Pipeline

What Does This Sample Do?

The Pytorch-ResNet50.md sample uses the results from a DALI pipeline to train a
classification model, such as ResNet-50, using PyTorch.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 30

Samples

Where Is This Sample Located?

The Pytorch-ResNet50.md sample is located in the examples/pytorch/ directory.
4.1.3. TensorFlow: Execute ResNet-50 Pipeline

What Does This Sample Do?

DALI provides a custom TensorFlow op called DALIIterator. The purpose of the
DALIIterator op is to understand both DALI tensors and TensorFlow tensors and
transform one into the other.

The TensorFlow-ResNet50 . ipynb sample demonstrates how to use DALI with
TensorFlow training. There are three parts to this sample:

» Define the DALI pipeline
» Give the pipeline to the custom op

» Use the custom op in a TensorFlow graph to train a classification model, such as
ResNet-50.

Where Is This Sample Located?

The TensorFlow-ResNet50. ipynb sample is located in the examples/tensorflow/
directory.

4.2. Data Loading: LMDB

What Does This Sample Do?

The DataLoading-LMDB. ipynb sample demonstrates how to use DALI with data
stored in LMDB in either Caffe or Caffe2? format.

Where Is This Sample Located?

The DataLoading-LMDB. ipynb sample is located in the examples directory.

4.3. Data Loading: RecordIO

What Does This Sample Do?

The DataLoading-RecordIO. ipynb sample demonstrates how to use DALI with data
stored in MXNet RecordIO file format.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 31

Samples

Where Is This Sample Located?

The DataLoading-RecordIO. ipynb sample is located in the examples directory.

4.4, MXNet: Execute ResNet-50 Pipeline

What Does This Sample Do?

The MXNet-ResNet50 . ipynb sample uses the results from a DALI pipeline to train a
classification model, such as ResNet-50, using MXNet.

Where Is This Sample Located?

The MXNet-ResNet50 . ipynb sample is located in the examples/mxnet/ directory.

4.5. Serialization

What Does This Sample Do?

The serialization.ipynb sample demonstrates how to serialize the pipeline defined
in Python so you can use it with either C API or training with TensorFlow.

Where Is This Sample Located?

The Serialization.ipynb sample is located in the examples directory.

4.6. Augmentation Gallery

What Does This Sample Do?

The AugmentationGallery. ipynb sample lists the different image augmentations you
can use in DALL

Where Is This Sample Located?

The AugmentationGallery. ipynb sample is located in the examples directory.

www.nvidia.com
DALI DU-09050-001 _v0.1 Beta Release | 32

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION
REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,
MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,
AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A
SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE
(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER
LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS
FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR
IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and
fit for the application planned by customer and to do the necessary testing for the application in order
to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect
the quality and reliability of the NVIDIA product and may result in additional or different conditions and/
or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any
default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,
either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information
in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,
Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered
trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVIbIA®

	Table of Contents
	What Is DALI?
	1.1. Benefits Of DALI
	1.2. Where Does DALI Fit?
	1.3. How Do I Get DALI?

	Getting Started With DALI
	2.1. Defining A Pipeline Graph
	2.2. Building A Pipeline Graph
	2.3. Running A Pipeline Graph

	Supported Operations
	3.1. Color Augmentation Operators
	3.1.1. Brightness
	3.1.2. Contrast
	3.1.3. Hue
	3.1.4. Saturation

	3.2. Decoder Operators
	3.2.1. HostDecoder
	3.2.2. nvJPEGDecoder

	3.3. Displacement Operators
	3.3.1. Jitter
	3.3.2. Rotate
	3.3.3. Sphere
	3.3.4. WarpAffine
	3.3.5. Water

	3.4. Normalize Operators
	3.4.1. CropMirrorNormalize
	3.4.2. NormalizePermute

	3.5. Reader Operators
	3.5.1. Caffe2Reader
	3.5.2. CaffeReader
	3.5.3. FileReader
	3.5.4. MXNetReader
	3.5.5. TFRecordReader

	3.6. Resize Operators
	3.6.1. FastResizeCropMirror
	3.6.2. RandomResizedCrop
	3.6.3. Resize
	3.6.4. ResizeCropMirror

	3.7. Support Operators
	3.7.1. CoinFlip
	3.7.2. Uniform

	3.8. Utility Operators
	3.8.1. Cast
	3.8.2. Copy
	3.8.3. DummyOp
	3.8.4. DumpImage
	3.8.5. ExternalSource

	Samples
	4.1. Working With Deep Learning Frameworks
	4.1.1. Data Loading: TFRecord
	4.1.2. PyTorch: Execute ResNet-50 Pipeline
	4.1.3. TensorFlow: Execute ResNet-50 Pipeline

	4.2. Data Loading: LMDB
	4.3. Data Loading: RecordIO
	4.4. MXNet: Execute ResNet-50 Pipeline
	4.5. Serialization
	4.6. Augmentation Gallery

