Using DALI in PyTorchΒΆ

OverviewΒΆ

This example shows how to use DALI in PyTorch.

This example uses CaffeReader. See other examples for details on how to use different data formats.

Let us start from defining some global constants

DALI_EXTRA_PATH environment variable should point to the place where data from DALI extra repository is downloaded. Please make sure that the proper release tag is checked out.

[1]:
import os.path

test_data_root = os.environ['DALI_EXTRA_PATH']

# Caffe LMDB
lmdb_folder = os.path.join(test_data_root, 'db', 'lmdb')

N = 8             # number of GPUs
BATCH_SIZE = 128  # batch size per GPU
ITERATIONS = 32
IMAGE_SIZE = 3

Let us define a pipeline with a reader:

[2]:
from nvidia.dali.pipeline import Pipeline
import nvidia.dali.ops as ops
import nvidia.dali.types as types

class CaffeReadPipeline(Pipeline):
    def __init__(self, batch_size, num_threads, device_id, num_gpus):
        super(CaffeReadPipeline, self).__init__(batch_size, num_threads, device_id)

        self.input = ops.CaffeReader(path = lmdb_folder,
                                     random_shuffle = True, shard_id = device_id, num_shards = num_gpus)
        self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB)
        self.resize = ops.Resize(device = "gpu",
                                 interp_type = types.INTERP_LINEAR)
        self.cmn = ops.CropMirrorNormalize(device = "gpu",
                                            dtype = types.FLOAT,
                                            crop = (227, 227),
                                            mean = [128., 128., 128.],
                                            std = [1., 1., 1.])
        self.uniform = ops.Uniform(range = (0.0, 1.0))
        self.resize_rng = ops.Uniform(range = (256, 480))

    def define_graph(self):
        inputs, labels = self.input(name="Reader")
        images = self.decode(inputs)
        images = self.resize(images, resize_shorter = self.resize_rng())
        output = self.cmn(images, crop_pos_x = self.uniform(),
                          crop_pos_y = self.uniform())
        return (output, labels)

Let us create the pipeline and pass it to PyTorch generic iterator

[3]:
import numpy as np
from nvidia.dali.plugin.pytorch import DALIGenericIterator

label_range = (0, 999)
pipes = [CaffeReadPipeline(batch_size=BATCH_SIZE, num_threads=2, device_id = device_id, num_gpus = N) for device_id in range(N)]
pipes[0].build()
dali_iter = DALIGenericIterator(pipes, ['data', 'label'], pipes[0].epoch_size("Reader"))
for i, data in enumerate(dali_iter):
    if i >= ITERATIONS:
        break
    # Testing correctness of labels
    for d in data:
        label = d["label"]
        image = d["data"]
        ## labels need to be integers
        assert(np.equal(np.mod(label, 1), 0).all())
        ## labels need to be in range pipe_name[2]
        assert((label >= label_range[0]).all())
        assert((label <= label_range[1]).all())
print("OK")
OK