NVIDIA.

NVIDIA DIGITS with TensorFlow

Getting Started Guide

DU-09197-001 _v1.0 September 2021

Table of Contents

Chapter 1. OVEIVIEW. ... 1
1.1. Contents Of The DIGITS AppliCation.......couiiiiiiiii e 1
Chapter 2. Enabling support for TensorFlow in DIGITS. ..o 2
Chapter 3. Selecting TensorFlow when creating a model in DIGITS........ccooiiiiiiiiiin. 3
3.1. Defining a TensorFlow model iIn DIGITS. 3
31T, Provided PrO eI IES. . i i 4
312, INterNal PrOPEITIES . i 5
TR G B =Y T L TSP PR PPPSPRTPPRPPP 6

3.2. Other TensorFlow Tools IN DIGITS. ..o 6
3.2.1. Provided Helpful FUNCHIONS.oiii e 6
3.2.2. Visualization With TensorBoard..........ocoiiiiiiiii e 7

3.3 EXAMNIPLES o 9
3.3.1. Simple Auto-Encoder NetWOrK........ooiiiiiiiii e 9
3.3.2. Freezing Variables in Pre-Trained Models by Renaming.........cccccooviiiiiiiiiiii, 10
Chapter 4. TroubleShOotiNg .. cooo s 12
AT SUP PO T e 12

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 | i

Chapter 1. QOverview

DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning
models. TensorFlow is the currently supported framework. DIGITS puts the power of deep
learning into the hands of engineers and data scientists.

DIGITS is not a framework. DIGITS is a wrapper for TensorFlow; which provides a graphical
web interface to those frameworks rather than dealing with them directly on the command-
line.

DIGITS can be used to rapidly train highly accurate deep neural network (DNNs) for image
classification, segmentation, object detection tasks, and more. DIGITS simplifies common
deep learning tasks such as managing data, designing and training neural networks on multi-
GPU systems, monitoring performance in real time with advanced visualizations, and selecting
the best performing model from the results browser for deployment. DIGITS is completely
interactive so that data scientists can focus on designing and training networks rather than
programming and debugging.

DIGITS is available through multiple channels such as:
» GitHub download

» NVIDIA's Docker repository, nvcr.io

DIGITS also includes the NVIDIA Caffe and TensorFlow deep learning frameworks.

1.1. Contents Of The DIGITS Application

The container image available in the NVIDIA® GPU Cloud™ (NGC) registry and NVIDIA® DGX™
container registry, nvcr.io, is pre-built and installed into the /usr/local/python/ directory.

DIGITS also includes the TensorFlow deep learning framework.

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 | 1

Chapter 2. Enabling support for
TensorFlow in DIGITS

DIGITS will automatically enable support for TensorFlow if it detects that TensorFlow-gpu is
installed in the system. This is done by a line of python code that attempts to import tensorflow
to see if it actually imports.

If DIGITS cannot enable TensorFlow, a message will be printed in the console saying:
TensorFlow support is disabled.

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 | 2

Chapter 3. Selecting TensorFlow when
creating a model in DIGITS

About this task

Click the TensorFlow tab on the Model Creation page:

Standard Networks Previous Networks Pretrainid Menworks Custom Metwork
Calfe Tensorfiow
Network Details Intended image size
* LeMet Onginal paper [1958] 28x%28 (gray) Cusiomize
AlexNet Original paper [2012] 256x256
GoogLeNet Original paper [2014] 256%256

[%] Note:

By default, Torch7 initializes the weights of linear and convolutional layers according to the
method introduced in LeCun, Yann A, et al. "Efficient backprop.” Neural networks: Tricks of
the trade. Springer Berlin Heidelberg, 2012. 9-48.. Although this weight initialization scheme
performs reasonably well under many diverse circumstances, this is rarely optimal and

you might notice that Caffe is sometimes able to learn more quickly when using e.g. Xavier
initialization. See these examples for more information.

3.1. Defining a TensorFlow model in
DIGITS

To define a TensorFlow model in DIGITS , you need to write a python class that follows this
basic template:

class UserModel (Tower) :

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 | 3

https://github.com/NVIDIA/DIGITS/blob/f3a21f49cccb84a7cd0956382d955e5a40ac97dc/examples/weight-init/README.md

Selecting TensorFlow when creating a model in DIGITS

@model propertyOther TensorFlow Tools in DIGITS
def inference(self):

Your code here

return model

@model property#with tf.variable scope(digits.GraphKeys.MODEL, reuse=None) :
def loss (self):

Your code here

return loss

For example, this is what it looks like for LeNet-5, a model that was created for the
classification of hand written digits by Yann Lecun:

class UserModel (Tower) :

@model property
def inference (self):
x = tf.reshape(self.x, shape=[-1, self.input shape[0], self.input shape[l],
self.input shape[2]])
scale (divide by MNIST std)
x = x * 0.0125
with slim.arg scope([slim.conv2d, slim.fully connected],

weights_initializer:tf.contrib.layers.xavier_initializer(),
weights regularizer=slim.l2 regularizer(0.0005)):
model = slim.conv2d(x, 20, [5, 5], padding='VALID', scope='convl')
model = slim.max pool2d(model, [2, 2], padding='VALID', scope='pooll')
model = slim.conv2d(model, 50, [5, 5], padding='VALID', scope='conv2')
model = slim.max pool2d(model, [2, 2], padding='VALID', scope='pool2')

model = slim.flatten (model)

model = slim.fully connected (model, 500, scope='fcl')

model = slim.dropout (model, 0.5, is training=self.is training,
scope="dol")

model = slim.fully connected(model, self.nclasses, activation fn=None,

scope="fc2"')
return model
@model property
def loss(self):
loss = digits.classification loss(self.inference, self.y)
accuracy = digits.classification accuracy(self.inference, self.y)

self.summaries.append(tf.summary.scalar (accuracy.op.name, accuracy))
return loss

The properties inference and loss must be defined and the class must be called UserModel
and it must inherit Tower. This is how DIGITS will interact with the python code.

3.1.1. Provided properties
Properties that are accessible through selft:

Property name Type Description

nclasses number Number of classes (for
classification datasets). For

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 |

4

http://yann.lecun.com/exdb/lenet/

Property name

input_shape

Is_training

is_inference

fineTuneHook

disableAutoDataParallelism

3.1.2. Internal properties

Type

Tensor

boolean

boolean

Tensor

Tensor

function

boolean

Selecting TensorFlow when creating a model in DIGITS

Description

other type of datasets, this is
undefined.

Shape (1D Tensor) of the first
input Tensor. For image data,
this is set to height, width,
and channels accessible by
[0], [1], and [2] respectively.

Whether or not this is a
training graph.

Whether or not this is a graph
is created for inference/
testing.

The input node, with the
shape of [N, H, W, C].

The label, [N] for scalar
labels, [N, H, W, C] otherwise.
Defined only if self.is_training
is True.

A function(net) that returns
the model to be used for
fine-tuning. The untuned
model is passed as a function
parameter.

By default models

are encapsulated in a
nn.DataParallelTable
container to enable multi-
GPU training when more than
1 GPUs are selected. Setting
this flag to true disables this
mechanism.

These properties are in the UserModel class written by the user:

Property name

Cinitl)

inferencel()

NVIDIA DIGITS with TensorFlow

Type

None

Tensor

Description

The constructor for the
UserModel class.

Called during training and
inference.

DU-09197-001 _v1.0 | 5

Property name

loss|)

3.1.3. Tensors

Selecting TensorFlow when creating a model in DIGITS

Type

Tensor

Description

Called during training to
determine the loss and
variables to train.

Networks receive TensorFlow Tensor objects as input in the NxCxHxW format (index in batch x
channels x height x width). If a GPU is available, Tensors are provided as Cuda tensors and the
model and criterion are moved to GPUs through a call to their cuda(] method. In the absence

of GPUs, Tensors are provided as Float tensors.

3.2.

Other TensorFlow Tools in DIGITS

DIGITS provides a few useful tools to help with your development with TensorFlow.

3.2.1.

Provided Helpful Functions

DIGITS provides a few helpful functions to help you with creating the model. Here are the
functions we provide inside the digits class:

Function Name

classification_loss

mse_loss

constrastive_loss

classification_accuracy

nhwc_to_nchw

nchw_to_nhwc

NVIDIA DIGITS with TensorFlow

Parameters

pred - the images to be
classified

y - the labels

lhs - left hand tensor
rhs - right hand tensor
lhs - left hand tensor
rhs - right hand tensor

y - the labels

pred - the image to be
classified

y - the labels

x - the tensor to transpose

x - the tensor to transpose

Description

Used for classification
training to calculate the loss
of image classification.

Used for calculating the
mean square loss between 2
tensors.

Calculates the contrastive
loss with respect to the Caffe
definition.

Used to measure the
accuracy of the classification
task.

Transpose the tensor that
was originally NHWC format
to NCHW. The tensor must be
a degree of 4.

Transpose the tensor that
was originally NCHW format

DU-09197-001 _v1.0 | 6

Selecting TensorFlow when creating a model in DIGITS

Function Name Parameters Description

to NHWC. The tensor must be
a degree of 4.

hwc_to_chw x - the tensor to transpose Transpose the tensor that
was originally HWC format to
CHW. The tensor must be a
degree of 3.

chw_to_hwc x - the tensor to transpose Transpose the tensor that
was originally CHW format to
HWC. The tensor must be a
degree of 3.

bgr_to_rgb x - the tensor to transform Transform the tensor
that was originally in BGR
channels to RGB.

rgb_to_bgr x - the tensor to transform Transform the tensor
that was originally in RGB
channels to BGR.

3.2.2. Visualization With TensorBoard

TensorBoard is a visualization tool provided by TensorFlow to see a graph of your neural
network. DIGITS provides easy access to TensorBoard network visualization for your network
while creating it. This can be accessed by clicking on the Visualize button under Custom
Network as seen in the image below.

Standard Networks Previous Networks Pretrained Networks Custom Network
Caffe Tensorflow

Custom Network @

If there is something wrong with the network model, DIGITS will automatically provide you with
the stacktrace and the error message to help you locate the problem. You can also spin up the
full TensorBoard server while your model is training using this command

$ tensorboard --logdir <job dir>/tb/

where <job_dir> is the directory where them model is being trained at, which can be found
here:

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 | 7

Selecting TensorFlow when creating a model in DIGITS

DIGITS Image Classification Model

mnist TFg

Owner: ethan

Job Directory
[disk1/digits_GAN/digits/jobs/EINN gL i
Disk Size

86.4 MB

Network

network.py

Raw tensorflow output

tensorflow_output.log

Afterwards, go to http://localhost:6006 to open the TensorBoard page or click
TensorBoard under Visualization.

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 | 8

Selecting TensorFlow when creating a model in DIGITS

DIGITS Generic Image Model

celeba-gan-encoderc

Owner: ethan

Job Directory

[disk1/digits GAN/digits/jobs/20170627-132142-
9do7

Disk Size

13.5 GB

Network

network.py

Raw tensorflow output

tensorflow_output.log

Pretrained Model

[disk1/digits GAN/digits/jobs/20170626-175444-
efbb/snapshot_60.ckpt

Visualizations

Tensorboard

For more information on using TensorBoard see: https://www.tensorflow.org/quide/
summaries_and_tensorboard.

3.3. Examples

3.3.1. Simple Auto-Encoder Network

The following network is a simple auto encoder to demostate the structure of how to

use TensorFlow in DIGITS. An auto encoder is a 2 part network that basically acts as a
compression mechanism. The first part will try to compress an image to a size smaller than
original while the second part will try to decompress the compressed representation created
by the compression network.

class UserModel (Tower) :

@model property
def inference(self):

the order for input shape is [0] -> H, [1] -> W, [2] -> C
this is because tensorflow's default order is NHWC

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 | 9

https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard

Selecting TensorFlow when creating a model in DIGITS

model = tf.reshape(self.x, shape=[-1, self.input shape[0],
self.input shape[l], self.input shape[2]])
image dim = self.input shape[0] * self.input shape([1l]

with slim.arg scope([slim.fully connected],
weights initializer=tf.contrib.layers.xavier initializer(),
weights regularizer=slim.l2 regularizer(0.0005)) :

first we reshape the images to something
model = tf.reshape(x, shape=[-1, image dim])

encode the image
model = slim.fully connected(model, 300, scope='fcl')
model = slim.fully connected (model, 50, scope='fc2'")

decode the image

model = slim.fully connected(model, 300, scope='fc3'")

model = slim.fully connected(model, image dim, activation fn=None,
scope="fc4"')

form it back to the original
model = tf.reshape(model, shape=[-1, self.input shape[0],
self.input shape[l], self.input shape[2]])

return model

@model property
def loss (self):

In an autoencoder, we compare the encoded and then decoded image with the
original

original = tf.reshape(self.x, shape=[-1, self.input shape[0],
self.input shape[l], self.input shape[2]])

self.inference is called to get the processed image
model = self.inference
loss = digits.mse loss(original, model)

return loss

3.3.2. Freezing Variables in Pre-Trained Models by
Renaming

The following is a demonstration of how to specify which weights you would like to use for
training. This works best if you are using a pre-trained model. This is applicable for fine tuning
a model.

When you first train a model, TensorFlow will save the variables with their specified names.
When you reload the model to retrain it, tensorflow will simutainously reload all those
variables and mark them available to retrain if they are specified in the model definition. When
you change the name of the variables in the model, TensorFlow will then know to not train that
variable and thus “freezes” it.

class UserModel (Tower) :

@model property
def inference (self):

model = construct model ()
"""code to construct the network omitted"""

assuming the original model have weight2 and bias2 variables

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 | 10

Selecting TensorFlow when creating a model in DIGITS

in here, we renamed them by adding the suffix not in use
this tells TensorFlow that these variables in the pre-trained model should
not be retrained and it should be frozen
If we would like to freeze a weight, all we have to do is just rename it
self.weights = {

'weightl': tf.get variable('weightl', [5, 5, self.input shape[2], 20],
initializer=tf.contrib.layers.xavier initializer()),

'weight2': tf.get variable('weight2 not in use', [5, 5, 20, 50],
initializer=tf.contrib.layers.xavier initializer())

}

e o e

self.biases = {
'biasl': tf.get variable('biasl', [20],
initializer=tf.constant initializer(0.0)),
'bias2': tf.get variable('bias2 not in use', [50],
initializer=tf.constant initializer (0.0))

}
return model

@model property

def loss(self):
loss = calculate loss()
"""code to calculate loss omitted"""
return loss

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 | 11

Chapter 4. Troubleshooting

For troubleshooting tips see the Nvidia DIGITS Troubleshooting and Support Guide.

4.1. Support

For the latest Release Notes, see the DIGITS Release Notes Documentation website.

For more information about DIGITS, see:
» DIGITS website
» DIGITS 6.0 project

» GitHub documentation

Note: There may be slight variations between the nvidia-docker images and this image.

NVIDIA DIGITS with TensorFlow DU-09197-001 _v1.0 | 12

http://docs.nvidia.com/deeplearning/digits/digits-release-notes/index.html
https://developer.nvidia.com/digits
https://github.com/NVIDIA/DIGITS/releases/tag/v6.0.0
https://github.com/NVIDIA/nvidia-docker/wiki/DIGITS

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation ["NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined belowl), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX Station, DLProf, Jetson, Kepler, Maxwell, NCCL, Nsight Compute,
Nsight Systems, NvCaffe, PerfWorks, Pascal, SDK Manager, Tegra, TensorRT, Triton Inference Server, Tesla, TF-TRT, and Volta are trademarks and/or registered
trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright
© 2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	Overview
	1.1. Contents Of The DIGITS Application

	Enabling support for TensorFlow in DIGITS
	Selecting TensorFlow when creating a model in DIGITS
	3.1. Defining a TensorFlow model in DIGITS
	3.1.1. Provided properties
	3.1.2. Internal properties
	3.1.3. Tensors

	3.2. Other TensorFlow Tools in DIGITS
	3.2.1. Provided Helpful Functions
	3.2.2. Visualization With TensorBoard

	3.3. Examples
	3.3.1. Simple Auto-Encoder Network
	3.3.2. Freezing Variables in Pre-Trained Models by Renaming

	Troubleshooting
	4.1. Support

