NVIDIA DIGITS WITH TENSORFLOW

DU-09197-001_v1.0 | September 2019

Getting Started Guide
TABLE OF CONTENTS

Chapter 1. Overview

1. Overview... 1

1.1. Contents Of The DIGITS Application... 1

Chapter 2. Enabling support for TensorFlow in DIGITS.

2. Enabling support for TensorFlow in DIGITS.. 2

Chapter 3. Selecting TensorFlow when creating a model in DIGITS.

3. Selecting TensorFlow when creating a model in DIGITS................................. 3

3.1. Defining a TensorFlow model in DIGITS.. 3

3.1.1. Provided properties... 4

3.1.2. Internal properties... 5

3.1.3. Tensors... 6

3.2. Other TensorFlow Tools in DIGITS... 6

3.2.1. Provided Helpful Functions.. 6

3.2.2. Visualization With TensorBoard... 7

3.3. Examples.. 9

3.3.1. Simple Auto-Encoder Network.. 9

3.3.2. Freezing Variables in Pre-Trained Models by Renaming............................ 10

Chapter 4. Troubleshooting

4. Troubleshooting.. 12

4.1. Support... 12
DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe and TensorFlow. DIGITS puts the power of deep learning into the hands of engineers and data scientists.

DIGITS is not a framework. DIGITS is a wrapper for Caffe and TensorFlow; which provides a graphical web interface to those frameworks rather than dealing with them directly on the command-line.

DIGITS can be used to rapidly train highly accurate deep neural network (DNNs) for image classification, segmentation, object detection tasks, and more. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real time with advanced visualizations, and selecting the best performing model from the results browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging.

DIGITS is available through multiple channels such as:

- GitHub download
- NVIDIA’s Docker repository, nvcr.io

DIGITS also includes the NVIDIA Caffe and TensorFlow deep learning frameworks.

1.1. Contents Of The DIGITS Application

The container image available in the NVIDIA® GPU Cloud™ (NGC) registry and NVIDIA® DGX™ container registry, nvcr.io, is pre-built and installed into the /usr/local/python/ directory.

DIGITS also includes the NVCAFFE, Torch, and TensorFlow deep learning frameworks.
Chapter 2.
ENABLING SUPPORT FOR TENSORFLOW IN DIGITS

DIGITS will automatically enable support for TensorFlow if it detects that TensorFlow-gpu is installed in the system. This is done by a line of python code that attempts to import tensorflow to see if it actually imports.

If DIGITS cannot enable TensorFlow, a message will be printed in the console saying: TensorFlow support is disabled.
Chapter 3.
SELECTING TENSORFLOW WHEN CREATING A MODEL IN DIGITS

Click the TensorFlow tab on the Model Creation page:

<table>
<thead>
<tr>
<th>Network</th>
<th>Details</th>
<th>Intended image size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeNet</td>
<td>Original paper [1998]</td>
<td>28x28 (gray)</td>
</tr>
<tr>
<td>AlexNet</td>
<td>Original paper [2012]</td>
<td>224x224</td>
</tr>
<tr>
<td>GoogLeNet</td>
<td>Original paper [2014]</td>
<td>224x224</td>
</tr>
</tbody>
</table>

By default, Torch7 initializes the weights of linear and convolutional layers according to the method introduced in LeCun, Yann A., et al. "Efficient backprop." Neural networks: Tricks of the trade. Springer Berlin Heidelberg, 2012. 9-48. Although this weight initialization scheme performs reasonably well under many diverse circumstances, this is rarely optimal and you might notice that Caffe is sometimes able to learn more quickly when using e.g. Xavier initialization. See these examples for more information.

3.1. Defining a TensorFlow model in DIGITS

To define a TensorFlow model in DIGITS, you need to write a python class that follows this basic template:

```python
class UserModel(Tower):
    @model_property
```

Other TensorFlow Tools in DIGITS
```python
def inference(self):
    # Your code here
    return model

@model_property
with tf.variable_scope(digits.GraphKeys.MODEL, reuse=None):
def loss(self):
    # Your code here
    return loss
```

For example, this is what it looks like for LeNet-5, a model that was created for the classification of hand written digits by Yann Lecun:

```python
class UserModel(Tower):
    @model_property
    def inference(self):
        x = tf.reshape(self.x, shape=[-1, self.input_shape[0],
            self.input_shape[1], self.input_shape[2]])
        # scale (divide by MNIST std)
        x = x * 0.0125
        with slim.arg_scope([slim.conv2d, slim.fully_connected],
            weights_initializer=tf.contrib.layers.xavier_initializer(),
            weights_regularizer=slim.l2_regularizer(0.0005)):
            model = slim.conv2d(x, 20, [5, 5], padding='VALID', scope='conv1')
            model = slim.max_pool2d(model, [2, 2], padding='VALID',
                scope='pool1')
            model = slim.conv2d(model, 50, [5, 5], padding='VALID',
                scope='conv2')
            model = slim.max_pool2d(model, [2, 2], padding='VALID',
                scope='pool2')
            model = slim.flatten(model)
            model = slim.fully_connected(model, 500, scope='fc1')
            model = slim.dropout(model, 0.5, is_training=self.is_training,
                scope='do1')
            model = slim.fully_connected(model, self.nclasses,
                activation_fn=None, scope='fc2')
        return model

    @model_property
    def loss(self):
        loss = digits.classification_loss(self.inference, self.y)
        accuracy = digits.classification_accuracy(self.inference, self.y)
        self.summaries.append(tf.summary.scalar(accuracy.op.name, accuracy))
        return loss
```

The properties inference and loss must be defined and the class must be called UserModel and it must inherit Tower. This is how DIGITS will interact with the python code.

3.1.1. Provided properties

Properties that are accessible through `self`:

<table>
<thead>
<tr>
<th>Property name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nclasses</td>
<td>number</td>
<td>Number of classes (for classification datasets). For</td>
</tr>
</tbody>
</table>
Property name | Type | Description
---|---|---
other type of datasets, this is undefined.
input_shape | Tensor | Shape (1D Tensor) of the first input Tensor. For image data, this is set to height, width, and channels accessible by [0], [1], and [2] respectively.
is_training | boolean | Whether or not this is a training graph.
is_inference | boolean | Whether or not this is a graph is created for inference/testing.
x | Tensor | The input node, with the shape of [N, H, W, C].
y | Tensor | The label, [N] for scalar labels, [N, H, W, C] otherwise. Defined only if self.is_training is True.
fineTuneHook | function | A function(net) that returns the model to be used for fine-tuning. The untuned model is passed as a function parameter.
disableAutoDataParallelism | boolean | By default models are encapsulated in a nn.DataParallelTable container to enable multi-GPU training when more than 1 GPUs are selected. Setting this flag to true disables this mechanism.

3.1.2. Internal properties

These properties are in the UserModel class written by the user:

Property name	Type	Description
__init__() | None | The constructor for the UserModel class. |
inference() | Tensor | Called during training and inference. |
3.1.3. Tensors

Networks receive TensorFlow Tensor objects as input in the NxCxHxW format (index in batch x channels x height x width). If a GPU is available, Tensors are provided as Cuda tensors and the model and criterion are moved to GPUs through a call to their cuda() method. In the absence of GPUs, Tensors are provided as Float tensors.

3.2. Other TensorFlow Tools in DIGITS

DIGITS provides a few useful tools to help with your development with TensorFlow.

3.2.1. Provided Helpful Functions

DIGITS provides a few helpful functions to help you with creating the model. Here are the functions we provide inside the digits class:

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>classification_loss</td>
<td>pred - the images to be classified</td>
<td>Used for classification training to calculate the loss of image classification.</td>
</tr>
<tr>
<td></td>
<td>y - the labels</td>
<td></td>
</tr>
<tr>
<td>mse_loss</td>
<td>lhs - left hand tensor</td>
<td>Used for calculating the mean square loss between 2 tensors.</td>
</tr>
<tr>
<td></td>
<td>rhs - right hand tensor</td>
<td></td>
</tr>
<tr>
<td>constrastive_loss</td>
<td>lhs - left hand tensor</td>
<td>Calculates the contrastive loss with respect to the Caffe definition.</td>
</tr>
<tr>
<td></td>
<td>rhs - right hand tensor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y - the labels</td>
<td></td>
</tr>
<tr>
<td>classification_accuracy</td>
<td>pred - the image to be classified</td>
<td>Used to measure the accuracy of the classification task.</td>
</tr>
<tr>
<td></td>
<td>y - the labels</td>
<td></td>
</tr>
<tr>
<td>nhwc_to_nchw</td>
<td>x - the tensor to transpose</td>
<td>Transpose the tensor that was originally NHWC format to NCHW. The tensor must be a degree of 4.</td>
</tr>
<tr>
<td>nchw_to_nhwc</td>
<td>x - the tensor to transpose</td>
<td>Transpose the tensor that was originally NCHW</td>
</tr>
<tr>
<td>Function Name</td>
<td>Parameters</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>format to NHWC. The tensor must be a degree of 4.</td>
</tr>
<tr>
<td>hwc_to_chw</td>
<td>x - the tensor to transpose</td>
<td>Transpose the tensor that was originally HWC format to CHW. The tensor must be a degree of 3.</td>
</tr>
<tr>
<td>chw_to_hwc</td>
<td>x - the tensor to transpose</td>
<td>Transpose the tensor that was originally CHW format to HWC. The tensor must be a degree of 3.</td>
</tr>
<tr>
<td>bgr_to_rgb</td>
<td>x - the tensor to transform</td>
<td>Transform the tensor that was originally in BGR channels to RGB.</td>
</tr>
<tr>
<td>rgb_to_bgr</td>
<td>x - the tensor to transform</td>
<td>Transform the tensor that was originally in RGB channels to BGR.</td>
</tr>
</tbody>
</table>

3.2.2. Visualization With TensorBoard

TensorBoard is a visualization tool provided by TensorFlow to see a graph of your neural network. DIGITS provides easy access to TensorBoard network visualization for your network while creating it. This can be accessed by clicking on the Visualize button under Custom Network as seen in the image below.

If there is something wrong with the network model, DIGITS will automatically provide you with the stacktrace and the error message to help you locate the problem. You can also spin up the full TensorBoard server while your model is training using this command:

```
$ tensorboard --logdir <job_dir>/tb/
```

where `<job_dir>` is the directory where the model is being trained at, which can be found here:
Afterwards, go to http://localhost:6006 to open the TensorBoard page or click TensorBoard under Visualization.
3.3. Examples

3.3.1. Simple Auto-Encoder Network

The following network is a simple auto encoder to demonstrate the structure of how to use TensorFlow in DIGITS. An auto encoder is a 2 part network that basically acts as a compression mechanism. The first part will try to compress an image to a size smaller than original while the second part will try to decompress the compressed representation created by the compression network.

```python
class UserModel(Tower):
    @model_property
    def inference(self):
        # this is because tensorflow's default order is NHWC
```

For more information on using TensorBoard see: https://www.tensorflow.org/guide/summaries_and_tensorboard.
model = tf.reshape(self.x, shape=[-1, self.input_shape[0],
 self.input_shape[1], self.input_shape[2]])
 image_dim = self.input_shape[0] * self.input_shape[1]

 with slim.arg_scope([slim.fully_connected],
 weights_initializer=tf.contrib.layers.xavier_initializer(),
 weights_regularizer=slim.l2_regularizer(0.0005)):

 # first we reshape the images to something
 model = tf.reshape(_x, shape=[-1, image_dim])

 # encode the image
 model = slim.fully_connected(model, 300, scope='fc1')
 model = slim.fully_connected(model, 50, scope='fc2')

 # decode the image
 model = slim.fully_connected(model, 300, scope='fc3')
 model = slim.fully_connected(model, image_dim, activation_fn=None,
 scope='fc4')

 # form it back to the original
 model = tf.reshape(model, shape=[-1, self.input_shape[0],
 self.input_shape[1], self.input_shape[2]])

 return model

@model_property
def loss(self):
 # In an autoencoder, we compare the encoded and then decoded image with
 # the original
 original = tf.reshape(self.x, shape=[-1, self.input_shape[0],
 self.input_shape[1], self.input_shape[2]])

 # self.inference is called to get the processed image
 model = self.inference
 loss = digits.mse_loss(original, model)

 return loss

3.3.2. Freezing Variables in Pre-Trained Models by Renaming

The following is a demonstration of how to specify which weights you would like to use
for training. This works best if you are using a pre-trained model. This is applicable for
fine tuning a model.

When you first train a model, TensorFlow will save the variables with their specified
names. When you reload the model to retrain it, tensorflow will simultaneously reload
all those variables and mark them available to retrain if they are specified in the model
definition. When you change the name of the variables in the model, TensorFlow will
then know to not train that variable and thus "freezes" it.

class UserModel(Tower):
 @model_property
def inference(self):
 model = construct_model()
 """code to construct the network omitted"""
assuming the original model have weight2 and bias2 variables
in here, we renamed them by adding the suffix _not_in_use
this tells TensorFlow that these variables in the pre-trained model
should not be retrained and it should be frozen
If we would like to freeze a weight, all we have to do is just rename it
self.weights = {
 'weight1': tf.get_variable('weight1', [5, 5, self.input_shape[2], 20],
 initializer=tf.contrib.layers.xavier_initializer()),
 'weight2': tf.get_variable('weight2_not_in_use', [5, 5, 20, 50],
 initializer=tf.contrib.layers.xavier_initializer())
}

self.biases = {
 'bias1': tf.get_variable('bias1', [20],
 initializer=tf.constant_initializer(0.0)),
 'bias2': tf.get_variable('bias2_not_in_use', [50],
 initializer=tf.constant_initializer(0.0))
}
return model

@model_property
def loss(self):
 loss = calculate_loss()
 """code to calculate loss omitted""
 return loss
Chapter 4.
TROUBLESHOOTING

For troubleshooting tips see the Nvidia DIGITS Troubleshooting and Support Guide.

4.1. Support

For the latest Release Notes, see the DIGITS Release Notes Documentation website.

For more information about DIGITS, see:

- DIGITS website
- DIGITS 6.0 project
- GitHub documentation

There may be slight variations between the nvidia-docker images and this image.
Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license, either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX Station, DLProf, Jetson, Kepler, Maxwell, NCCL, Nsight Compute, Nsight Systems, NvCaffe, PerfWorks, Pascal, SDK Manager, Tegra, TensorRT, TensorRT Inference Server, Tesla, TF-TRT, and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com