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Chapter 1. Deep Learning Profiler

1.1.  Overview
Deep Learning Profiler is a tool for profiling deep learning models to help data scientists
understand and improve performance of their models visually via the DLProf Viewer or
by analyzing text reports. We will refer to Deep Learning Profiler simply as DLProf for the
remainder of this guide.

1.2.  What's New in 1.8.0
‣ This is the final release of DLProf .

1.3.  Features
This release includes these commands and features:

‣ Tensor Core Usage and Eligibility Detection: DLProf can determine if an operation has
the potential to use Tensor Cores and whether or not Tensor Core enabled kernels are
being executed for those operations.

‣ Multiple Deep Learning Framework Support: Individual frameworks supported by
DLProf can be profiled by selecting the appropriate profile mode.

‣ Custom Viewer: DLProf will automatically generate a DLProf database. This file can be
viewed with NVIDIA's DLProf Viewer to visualize and analyze the profile results in a web
browser.

‣ Multi-GPU Support: DLProf can profile runs with multiple GPUs.

‣ Iteration Detection: Iterations can be detected from specifying a key node. Reports
can be aggregated based on iterations, allowing users to further drill down
performance bottlenecks.

‣ Time Correlation with NVTX Markers: DLProf uses NVTX markers inserted into the
profile data to correlate CPU and GPU time with model operations.

https://docs.nvidia.com/deeplearning/frameworks/dlprof-viewer-user-guide/index.html
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‣ Report Generation: A number of reports can be generated that aggregate data based
on operation, iteration, layer, or kernel. Both JSON and CSV formats are supported for
most reports.

‣ Expert Systems: A feature that analyzes the profiling data, identifying common
improvement areas and performance bottlenecks, and provides suggestions on how
to address the issues to improve the overall performance.

‣ XLA Support: DLProf fully supports analyzing XLA compiled TensorFlow models.

‣ Profile with Delay and Duration: DLProf can delay the start of profile and stop the
profile after a set duration.
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Chapter 2. Quick Start

2.1.  Installing Using a Python Wheel File
A stand-alone, framework agnostic version of DLProf is available as a python(pip) wheel
on the NVIDIA PY index. First, install nvidia-pyindex:
$ pip install nvidia-pyindex

Then install DLProf.
$ pip install nvidia-dlprof

This will install just DLProf and the immediate dependencies. This option assumes
a supported framework is installed. See Profiling from a PythonPIP Wheel for more
installation options.

2.2.  Using the NGC Docker Container
The following steps are required to use pre-built NGC containers:

‣ Ensure you have access and are logged into NGC. For step-by-step instructions, see
the NGC Getting Started Guide.

‣ Install Docker and nvidia-docker. For DGX users, see Preparing to use NVIDIA
Containers. For users other than DGX, see nvidia-docker installation documentation.

Use docker pull to get the TensorFlow container from NGC:
$ docker pull [<container name>]

Where [<container name>] is the location for the NGC framework container. Supported
containers include:

‣ Tensorflow 1.x: nvcr.io/nvidia/tensorflow:21.11-tf1-py3

‣ Tensorflow 2: nvcr.io/nvidia/tensorflow:21.11-tf2-py3

‣ PyTorch: nvcr.io/nvidia/pytorch:21.11-py3

Assuming the training data for the model is available in /full/path/to/training/data, you can
launch the container with the following command:
$ docker run --rm --gpus=1 --shm-size=1g --ulimit memlock=-1 \
--ulimit stack=67108864 -it -p8000:8000 -v/path/to/training/data:/data \

http://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html
http://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html
http://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html
https://github.com/NVIDIA/nvidia-docker
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[<container name>]

2.3.  Running DLProf
This simplest way to profile your model training from an NGC container is with the
following command (extra steps are required for PyTorch):
 $ dlprof python <train script>

Where <train script> is the full command line you would normally use to train your
model. NVIDIA recommends that you provide options to your script to only train your
model for 5 minutes or less. That will be long enough to gather a reasonable snapshot of
training. Running for too long can result in too much data being generated.

DLProf automatically creates the correct Nsight System command line needed to profile
your training session and creates the DLProf database needed to view the results in the
DLProf Viewer. The following collateral is created:

‣ nsys_profile.qdrep : The QDREP file is generated by Nsight Systems and can be
opened in the Nsight Systems GUI to view the timeline of the profile.

‣ nsys_profile.sqlite : A SQLite database of the profile data that is used by DLprof.

‣ dlprof_dldb.sqlite: The DLProf database which contains the aggregated statistic from
the run.

2.4.  Analyzing Results
To analyze the results in the DLProf Viewer, run the following command:
$ dlprofviewer ./dlprof_dldb.sqlite

This command launches the server. To view the results, enter http://<IP Address>:8000
in a browser.

See the NVIDIA DLProf Viewer User Guide for more information.

https://docs.nvidia.com/deeplearning/frameworks/tensorboard-plugin-user-guide/index.html
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Chapter 3. Multiple Deep Learning
Framework Support

DLProf is designed to be agnostic to the underlying Deep Learning framework when
analyzing and presenting profile results. However, profiling is very specific to the
individual framework. It is not always possible to automatically detect which framework a
training or inferencing script is using. In DLProf, the correct framework can be selected by
setting the execution mode with the --mode command line option. The available modes of
operation are listed below.

A special build of DLProf is created for each supported framework container on the
NVIDIA GPU Cloud (NGC). This build will set the appropriate default mode to the
underlying framework in the container, so it is not necessary to set the --mode flag
within the container. Additional options may be limited depending on which features
are supported in each framework. See Command Line Options for a full list of available
options per framework.

3.1.  Simple Mode
DLProf provides a Simple Mode that is completely framework agnostic and works with any
framework, both supported and unsupported. Simple mode is activated with the DLProf
command line option --mode=simple.

Unlike framework specific modes, simple mode does not require NVTX annotation
markers to be embedded at the framework level. These markers are already present in
the NGC TensorFlow1 but not in TensorFlow2 or PyTorch. Simple mode will only provide
the Total Wall Clock Time, Total GPU Time, and Total Tensor Core Kernel Time. Additionally,
simple mode can generate a Kernel Report showing the time aggregation for each
executed kernel.

Without the aid of NVTX markers, all additional features and reports are not available
in simple mode. This includes creating files needed for the DLProf viewer and Expert
Systems output. However, simple mode can provide an overview of GPU utilization and
Tensor Core Kernel utilization.

Simple mode still requires Nsight Systems and you can use --delay and --duration
options to limit the profile window for the training script.

https://ngc.nvidia.com/
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3.2.  TensorFlow 1.X
To profile a TensorFlow 1.x model, use the command line option --mode=tensorflow1.
This mode is set by default in the DLProf released in the NGC TensorFlow 1.x container
and does not need to be explicitly called.

All reports and features are fully supported in TensorFlow 1.x. See the Command Line
Options section for a full list of available options.

3.3.  TensorFlow 2.x
To profile a TensorFlow 2.x model, use the command line option --mode=tensorflow2.
This mode is set by default in the DLProf released in the NGC TensorFlow 2.x container
and does not need to be explicitly called.

All reports and features are fully supported in TensorFlow 2.x. See the Command Line
Options section for a full list of available options.

Unlike TensorFlow 1.x, TensorFlow 2.x does not have a not common node like "global_step"
that can be used to detect iteration (or step) boundaries. However, there is a two-step
process that TF2 users can perform to generate textual reports and visualizations that
display profiled data split on iteration boundaries.

‣ First step: run the model without a key_node, and specify --reports=detail on the
command line.

‣ Inspect the detail report CSV file, and manually determine which op node can be
used to determine iteration (ie, "step") boundaries. This will be used as in the --
key_node argument in the second step below.

‣ Locate the dlprof database with the network's profile information
(dlprof_dldb.sqlite). This will be used in the second step below.

‣ Second step: run dlprof again using the --key_node and --database arguments:

‣ Add --key_node=<the Op ID determined from the first step above>

‣ Add --database=<the name of the dlprof database located from this first step
above>

‣ Remove "python" and all the arguments after it to run DLProf without profiling

‣ Add --reports=<list of reports you're interested in>

‣ Finally, add --force=true to overwrite any old reports/outputs from the last run.

The second step will be much faster than the first step since the profile was captured in
the database during the first step.

After these two steps are performed, the textual reports are available for review as well as
the DLProf database that can be used for visualization inside of the DLProf Viewer.

https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow
https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow
https://docs.google.com/document/d/12-eMOJStAtPtzcN3HuPk4pkf5tZzP6yIgbwgVDinanw/edit#bookmark=id.h3ekd6p2w6r0
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3.4.  TensorRT
To profile a TensorRT model, use --mode=tensorrt. This mode is available in both the
standalone DLProf pip install and all of the NGC containers that DLProf is installed in.

DLProf TensorRT support includes models that run only TensorRT. This includes models
run using trtexec or created from scratch via the TensorRT python/C++ APIs. DLProf
does not support TF-TRT yet.

All reports and features are fully supported in TensorRT mode. See the Command Line
Options section for a full list of available options.

3.5.  PyTorch
To profile a PyTorch model, use the command line option --mode=pytorch. This mode is
set by default in the DLProf released in the NGC PyTorch container and does not need to
be explicitly called.

DLProf uses both its own python pip package and Nsight Systems to profile PyTorch
models and are available in the NGC PyTorch container.

All reports and features are fully supported in PyTorch. See the Command Line Options
section for full list of available options.

https://ngc.nvidia.com/catalog/containers/nvidia:pytorch


NVIDIA Deep Learning Profiler DU-09461-001 _v21.12   |   8

Chapter 4. Profiling

For the best experience, make sure to use the compatible versions of the GPU Driver,
CUDA, TensorFlow, and Nsight Systems specified in the release notes.

DLProf is a wrapper tool around Nsight Systems that correlates profile timing data and
kernel information to a Machine Learning model. The correlated data is presented in a
format that can be easily digested and understood by the user. The results highlight GPU
utilization of model and DL/ML operations. The tools provide different reports to aid in
identifying bottlenecks and Tensor Core usage.

4.1.  Profiling from a PythonPIP Wheel
DLProf is available as a Python wheel file on the NVIDIA PY index. This will install a
framework generic build of DLProf that will require the user to specify the framework
with the --mode flag. To install the DLProf from a PIP wheel, first install the NVIDIA PY
index:
$ pip install nvidia-pyindex

Then install DLProf.
$ pip install nvidia-dlprof

This will install just DLProf along with any immediate dependencies. This option assumes
a supported framework is installed or that you just want to run in "simple" mode to profile
an unsupported framework.

To install additional dependencies for a specific framework, pass the name of the
framework as an option.

4.1.1.  TensorFlow 1.X
$ pip install nvidia-dlprof[tensorflow]

This option will also install the nvidia-tensorflow pip package from the NVIDIA PY index.
This version of Tensorflow contains the functionality to insert the NVTX markers needed
by DLProf.

4.1.2.  TensorFlow 2.X
The PythonPIP wheel file is not supported at this time.

https://docs.nvidia.com/deeplearning/frameworks/dlprof-release-notes/index.html
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4.1.3.  PyTorch
$ pip install nvidia-dlprof[pytorch]

This option also installs the nvidia-pytorch pip package from the NVIDIA PY index and
dlprof’s python pip package for pytorch models, nvidia_dlprof_pytorch_nvtx. Both
components are required to insert the NVTX markers needed by DLProf.

4.2.  Profiling from the NGC TensorFlow
Docker Container

DLProf is provided in the TensorFlow container on the NVIDIA GPU Cloud (NGC). The
version of TensorFlow inside the container has been modified by NVIDIA to automatically
insert NVTX range markers around the TensorFlow executor. The NVTX markers are
required for DLProf in order to correlate GPU time with the TensorFlow model.

4.2.1.  Pulling NGC Framework Containers
Before you can pull a container from the NGC container registry, you must have Docker
and nvidia-docker installed. For DGX users, this is explained in Preparing to use NVIDIA
Containers Getting Started Guide. For users other than DGX, follow the nvidia-docker
installation documentation to install the most recent version of CUDA, Docker, and nvidia-
docker.

After performing the above setup, you can use the following commands to pull the
desired framework container.

TensorFlow 1.x
$ docker pull nvcr.io/nvidia/tensorflow:21.11-tf1-py3

TensorFlow 2.x
$ docker pull nvcr.io/nvidia/tensorflow:21.11-tf2-py3

PyTorch
$ docker pull nvcr.io/nvidia/pytorch:21.11-py3

Replace the current container version with the version of the container and profiler
release that you want to pull.

4.2.2.  Launching the NGC Container
Assuming the training data for the model is available in /full/path/to/training/data, you can
launch the container with the following command:
$ docker run --rm --gpus=1 --shm-size=1g --ulimit memlock=-1 \
 --ulimit stack=67108864 -it -p8000:8000 -v/path/to/training/data:/data \

[<container name>]

Replace [<container name>] with the name of the container used in the previous docker
pull instruction.

https://ngc.nvidia.com/
http://docs.nvidia.com/deeplearning/dgx/preparing-containers/index.html
http://docs.nvidia.com/deeplearning/dgx/preparing-containers/index.html
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
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The --gpus option is required to use nvidia-docker and specifies the number of GPUs to
provide to the container.

The docker -v option maps /path/to/training/data on the host into the container at
/data. You may also map additional host directories into the container with separate -v
options.

The -p flag exposes the container port for the DLProf Viewer's server (port 8000).

The--shm-size and --ulimit flags are recommended to improve the server’s
performance. For --shm-size the minimum recommended size is 1g but smaller or larger
sizes may be used depending on the number and size of models being served.

4.3.  Profiling with DLProf CLI
One of the main goals for DLProf is to automate and simplify the profiling experience. In
its simplest form, a user would just need to prepend the training script with dlprof.
$ dlprof [training_script.py]

DLProf automatically creates the correct Nsight System command line needed to profile
your training session and creates the necessary files needed to view the results in DLProf
Viewer. The following collateral is created:

‣ nsys_profile.qdrep: The QDREP file is generated by Nsight Systems and can be
opened in the Nsight Systems GUI to view the timeline of the profile.

‣ nsys_profile.sqlite: A SQLite database of the profile data that is used by DLProf.

‣ dlprof_dldb.sqlite: The DLProf database that is used in the DLProf Viewer.

All DLProf specific options must be passed before the training script in the following
format:
$ dlprof <args> [training_script.py]

4.4.  Passing arguments to Nsight
Systems

Nsight Systems passively logs CUDA API calls. The result is the ability to profile the entire
model network, both GPU and CPU, in near real time. DLProf then extracts the timing
and NVTX range information for every executed kernel. Getting timing information for
the operations that ran during model training can be an important debugging tool to
determine where optimization is needed.

DLProf determines the Tensor Core utilization from the name of the kernel. This method
can accurately identify cuDNN kernels that use Tensor Cores, but will not identify custom
kernels or kernels outside of cuDNN that use Tensor Cores.
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DLProf enables you to customize the Nsight Systems command line. By default, DLProf
calls Nsight Systems with the following command line arguments:
$ nsys profile -t cuda,nvtx -s none --show-output=true --export-sqlite -o ./
nsys_profile <training_script.py>

You can customize the NSight System arguments using this DLProf option:
--nsys_opts="[option list]"

For example,
$ dlprof --nsys_opts="-t osrt,cuda,nvtx" <training_script.py>

creates and executes the following Nsight Systems command:
$ nsys profile -t osrt,cuda,nvtx --show-output=true --export-sqlite -o ./
nsys_profile <training_script.py>

The output level sent to Nsight Systems depends on the DLProf verbosity level. To hide
output from NSight Systems, you can use the either quiet or minimal verbosity level. For
example, the following DLProf command:
dlprof --verbosity=quiet <training_script.py>

creates the following Nsight Systems command:
nsys profile -t cuda,nvtx -s none --show-output=false --export-sqlite -o ./
nsys_profile <training_script.py>

The base filename for Nsight Systems output files can be changed from nsys_profile
with

--nsys_base_output_filename=<basename>

This can be useful when profiling multiple configurations and you require keeping the
profile data from each run.

4.5.  Profiling PyTorch with
nvidia_dlprof_pytorch_nvtx

When profiling PyTorch models, DLProf uses a python pip package called
nvidia_dlprof_pytorch_nvtx to insert the correct NVTX markers.
nvidia_dlprof_pytorch_nvtx must first be enabled in the PyTorch Python script before
it can work correctly. To enable it, you must add the following lines to your PyTorch
network:
import nvidia_dlprof_pytorch_nvtx
nvidia_dlprof_pytorch_nvtx.init()

You should also run the training/inference loop with PyTorch’s NVTX Context Manager
with the following:

with torch.autograd.profiler.emit_nvtx():

The PyTorch model can then be profiled normally with DLProf.

https://docs.nvidia.com/nsight-systems/
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4.6.  Profiling within a range
DLProf can profile within a range set in your model.
  --nsys_profile_range=true

Enabling this option causes DLProf to respect the profiler.start() and profiler.stop()
boundaries set in your model, which results in data only collected inside that boundary.
Profiler.stop() does not immediately end the profiler, only the collection of data.

4.7.  Profiling with Delay and Duration
DLProf can delay the start of the profile with this command line option:
--delay <seconds>

This adds the correct command line to Nsight Systems that will delay the start of the
profile by the specified number of seconds. Note that the first iteration starts with the
first key node found after the delay, and will not include any iterations before the delayed
time.

DLProf can stop the profile and the execution of the model after a specified number of
seconds with the following command line option:
--duration <seconds>

Both delay and duration can be used together to limit the profiling to a specified number
of seconds in the middle of a model run.

4.8.  Running DLProf without Profiling
It is possible to run DLProf without calling Nsight Systems to profile the model again.
This is useful to create a new report, specify a different key node, or aggregate data over
different iteration ranges. In each of these cases, it is better to reuse profile data that has
already been collected.

In order to run DLProf without profiling, an SQLite database created by an initial Nsight
Systems profile or a DLProf sqlite database is required. If both are available, the DLProf
sqlite database is preferred.The format for the DLProf command line becomes:
 $ dlprof --database=[nsys_profile.sqlite] [<args>]

or
 $ dlprof --database=[dbdlprof.sqlite] [<args>]

where [nsys_profile.sqlite] is the SQLITE file generated by Nsight Systems, and
dbdlprof.sqlite is the SQLITE file generated by DLProf. All other DLProf options are valid
and optional.
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4.8.1.  Backwards Compatibility
Some older versions of the DLProf database can be used as input to the latest DLProf
CLI:

‣ A DLProf database’s initial version is the version of DLProf used to create it.

‣ DLProf databases v1.3+ can be used as input to DLProf CLI v1.3+

‣ The DLProf database version should still be less than or equal to the DLProf CLI
version.

‣ DLProf databases v1.0, v1.1, and v1.2 cannot be used as input to DLProf CLI v1.3+.

‣ When an older DLProf database is used as input, some minor changes will be made to
it to allow it to be used correctly with the latest DLProf CLI.

‣ Backwards compatibility gets “reset” each major release.

‣ DLProf CLI v2.x will not support DLProf databases v1.y.
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Chapter 5. Tensor Core Usage

NVIDIA's Tensor Cores is a revolutionary technology that accelerates AI performance by
enabling efficient mixed-precision implementation. It accelerates large matrix multiples
and accumulates operations in a single operation.

5.1.  Mixed Precision Training
Mixed precision methods combine the use of different numerical formats in one
computational workload. Mixed precision training offers significant computational
speedup by performing operations in half-precision format, while storing minimal
information in single-precision to retain as much information as possible in critical
parts of the network. Since the introduction of Tensor Cores in the Volta, Turing, and
Ampere architecture, significant training speedups are experienced by switching to
mixed precision -- up to 3x overall speedup on the most arithmetically intense model
architectures.

5.2.  Determining Tensor Core Eligibility
A feature of DLProf that provides feedback on Tensor Core utilization in the model. Tensor
Cores are mixed precision floating point operations available for Volta GPUs (Titan V)
and beyond. The cuDNN and cuBLAS libraries contain several Tensor Core enabled GPU
kernels for most Convolution and GEMM operations.

DLProf determines the Tensor Core eligibility of each operation. Tensor Core usage is
determined from executed GPU kernels found in the Nsight Systems profile results.

https://arxiv.org/abs/1710.03740
https://developer.nvidia.com/tensor-cores
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Chapter 6. DLProf Viewer

The NVIDIA DLProf Viewer makes it easy to find and visualize the performance of your
models by showing Top 10 operations that took the most time, eligibility of Tensor Core
operations and Tensor Core usage, interactive iteration reports. For information on how to
use the Viewer, see the NVIDIA DLProf Viewer User Guide.

6.1.  Starting the DLProf Viewer
The DLProf Viewer is installed in all containers that DLProf is installed in the NVIDIA GPU
Cloud (NGC). The container must be run with the -p8000:8000 option to open port 8000
for the Viewer's server.

The Viewer is launched directly from the container:
$ dlprofviewer <dlprof_database>

Where <dlprof_database> is the name of the DLProf database, usually dlprof_dldb.sqlite.
Once running, the data can be viewed in a browser with the URL:
http://<machine IP Address>:8000

https://docs.nvidia.com/deeplearning/frameworks/dlprof-viewer-user-guide/index.html
https://ngc.nvidia.com/
https://ngc.nvidia.com/
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Chapter 7. Iteration Detection

An iteration interval is one pass through both forward and backward propagation, for a
single batch. DLProf attempts to automatically determine iteration intervals using the
NVTX stop times of a key node. A key node is an op node that is executed only once,
each iteration, preferably the very first operation of each iteration. Typically this would be
GlobalStep, or something similar.

Once the iteration intervals are found, every model operation and kernel call instance are
sorted into the intervals. Metrics can be aggregated per interval for specific reports and
is an extremely useful aid in locating bottlenecks.

Iteration intervals always start from time 0 and end with the final stopping timestamp in
the profile. For N instances of Key Node, the intervals would be:
[0,Node[1].stop-1], [Node[1].stop,Node[2].stop-1], ..., [Node[N].stop, last]

Resulting in N+1 intervals.

Note: If no iterations are found, then the entire profiled model is treated as a single
iteration. This will be reflected in the Iteration Report and the Summary Report will show 0
iterations found.

7.1.  Specifying the Key Node
By default, DLProf will look for a framework-specific node as the key node. However, not
all models will use this default name. If DLProf outputs 0 iterations, then the current key
node was not found in the model.

When the default key node is not found, you need to identify and select a new key node
with the following command argument:
--key_node=<key_node>

where <key_node> is the name or Op ID of the new key node as listed in the Detailed
report.
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7.2.  Limiting Aggregation to an Iteration
Range

DLProf can specify an interval range to use when aggregating the profile data for all of
the reports. This is useful to ignore profile data captured during the warm up and tear
down phases. To limit the aggregation range, use the following command line arguments:
--iter_start <start_iter> --iter_stop <stop_iter>

The aggregation range is inclusive. All timing data aggregates from iteration
<start_iter> to <stop_iter>, including both <start_iter> and <stop_iter>.
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Chapter 8. Correlating Time with
NVTX Markers

The core purpose of DLProf is to correlate NVTX (NVIDIA Tools Extension) annotated
results from Nsight Systems profiles with a high-level model description. From here, any
number of reports can be created to deliver the profile results in a format familiar to the
Data Scientist.

8.1.  NVTX Markers in TensorFlow
TensorFlow in the NGC TensorFlow container has been modified to automatically insert
NVTX Start/Stop range markers into the execution of the model. The NVTX markers are
wrapped around the execution nodes of the model and named exactly the same as the
node. Nsight Systems will associate all GPU kernels to the NVTX range that was active
when the kernel was scheduled.

Note: The modification to TensorFlow to automatically insert NVTX ranges has not been
upstreamed to TensorFlow and is only available in the version of TensorFlow provided in
the NGC Tensorflow container.

Since the NVTX name has a 1:1 mapping to a node in the TensorFlow graph, DLProf can
correlate kernels to a particular node. DLProf will also associate any metrics gathered for
a kernel from Nsight Systems, such as Tensor Core usage, start time, and stop time.

8.2.  NVTX Markers in Pytorch
Pytorch does not have built in NVTX ranges around operations. As such, DLProf has to
rely on a python pip package called nvidia_dlprof_pytorch_nvtx to add NVTX ranges
around the operations.

https://docs.nvidia.com/gameworks/content/gameworkslibrary/nvtx/nvidia_tools_extension_library_nvtx.htm


Correlating Time with NVTX Markers

NVIDIA Deep Learning Profiler DU-09461-001 _v21.12   |   19

8.3.  Data outside of NVTX Markers
For various reasons, not all cuda calls and kernel calls end up being inside of NVTX ranges.
In order to capture all the CPU and GPU information from the run, DLProf will create a
new op with the name unassociated_<cuda_or_kernel_name>, and will set the operation
type to <cuda_or_kernel_name>. All cuda calls or kernel calls of that type that aren’t
inside of NVTX ranges will be associated with that “operation”.

8.4.  Mapping GPU Time
NVTX ranges are used as the time stamps for the start and end of operations on a CPU
thread. This range then becomes synonymous with the CPU time for that instance of the
operation. To determine the GPU time, Nsight Systems correlates all of the CUDA API calls
to specific NVTX range in which they were called.

CUDA API calls on the CPU thread schedule a corresponding CUDA kernel onto the GPU.
A CUDA kernel is a small, parallel function executed on the GPU and makes GPGPU
computing possible. Nsight Systems tracks which CUDA API call started each kernel and
can correlate the actual execution of the kernel back to the CPU API call and NVTX range.

Nsight Systems has a notion of Mapped GPU Time for each NVTX range. The mapped GPU
time starts with the starting time stamp on the GPU for the first kernel from the NVTX
range, and stops with the stopping time stamp for the last kernel executed on the GPU
from that same NVTX time range.

8.5.  Aggregating Time
There are two ways that time is combined when computing statistics:

‣ Flattening is done by taking multiple time intervals and performing a union, where
any intervals that share any time are joined. This eliminates any overlaps from being
double counted. This is done when gathering global statistics such as GPU IDLE time,
or when gathering parent node statistics from multiple children like the group_node
report.

‣ Accumulating is done by taking multiple time intervals and summing their times
together, while keeping a count of how many time intervals have been added. This is
used when aggregating multiple instances of a single object, such as the GPU times
for all instances of a single kernel or the CPU time for all instances of a single op
node. The end result is the calculation of the total/average/min/max statistics that
exist in most reports.
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Chapter 9. Multi-GPU Support

DLProf supports running multiple GPUs on a single node. Nothing special needs to be
done by the user to have DLProf profile a multi-GPU training run.

All “total” metrics reported in output reports are a summation of values across all visible
GPUs. The “GPU Utilization” metric is the average GPU Utilization across all visible GPUs
(including unused GPUs).

For multi-GPU iteration detection, DLProf assumes data parallelism and looks for the case
where there is an equal number of instances of the key node on each GPU. If that is true
then DLProf looks at the Nth instance of the key node on each GPU and uses the end of
the last one in time order as the splitting point between iterations N-1 and N for the run.
If DLProf is not able to find the case of equal number of instances on each GPU, then it
falls back to assuming that every instance of the key node on any GPU indicates a new
iteration.



NVIDIA Deep Learning Profiler DU-09461-001 _v21.12   |   21

Chapter 10. Report Generation

DLProf can create several textual reports in both JSON and CSV formats. This section
details the available reports that can be created.

10.1.  Specifying Reports and Formats
This section discusses how to select which reports will be created and in what file
formats.

10.1.1.  Selecting Reports
A user may choose to generate reports by passing the report types to the --report
option:
--reports=<type1>[,type2][,...]

The following types are allowed:

‣ summary: creates a Summary Report

‣ detail: creates a Detailed Report

‣ iteration : creates an Iteration Report

‣ kernel: creates a Kernel Report

‣ tensor: creates a Tensor Core Report

‣ node_op: creates a Node Op Report.

‣ group_node: creates a Group Node Report.

‣ expert_systems: creates an Expert Systems Report.

‣ all: creates all reports in this list

Some usage examples include:
--reports=kernel,iteration,summary
--reports iteration tensor node_op --
--reports all
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10.1.2.  Selecting File Formats
By default, DLProf will create a CSV file for each report specified by --report. DLPROF
can also output reports in a JSON file format. If multiple formats are selected, then a
report will be created in each format, if possible.To specify the output format for the
reports, use the --file_formats option:
--file_formats=<opt1>[,opt2][,...]

The following format options are allowed:

‣ csv: a comma-separated file format that can be easily imported into a spreadsheet

‣ json: a JSON file format, useful for importing data into third-party applications

Some usage examples include:
--file_formats json
--file_formats=csv,json
--file_formats json csv --

10.1.3.  Report Names
The file names for the reports are in the following format:
[base_name]_[report_type]_.[csv|json]

Where [profile_name] is the name of the profile (as specified by --profile_name,
replacing spaces with underscores), [report_type] is the same string passed to --reports
to select the report, and the final extension is either csv or json, depending on the file
format. By default, the profile name is dlprof, but can be changed with:
 --profile_name <base_name> 

For example, the following options:
 --reports=summary,iteration --file_formats=csv,json

creates the following files:

‣ dlprof_summary.csv

‣ dlprof_summary.json

‣ dlprof_iteration.csv

‣ dlprof_iteration.json

10.1.4.  Output Path
By default, all reports will be written in the current working directory. However, you may
choose a different output directory for reports with:
--output_path <path/to/output>

where <path/to/output> is the new results folder. If the folder does not exist, DLProf will
attempt to create it.

http://www.json.org/
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10.2.  Summary Report
The Summary Report provides high level metrics on the performance results of all the
operations and kernels in the entire model. This report contains several individual tables.

System config

This table provides configuration of the system used to profile the model.

Row Name Description

Profile Name The user-specified name of the profile (hidden if unspecified)

GPU Count The number of GPUs found while profiling.

GPU Name(s) The name for each GPU found while profiling.

CPU Model The CPU model used to profile.

GPU Driver Version The version of the GPU Driver found while profiling.

Framework The framework/version found while profiling.

CUDA Version The version of CUDA found while profiling.

cuDNN Version The version of cuDNN found while profiling.

NSys Version The version of Nsight Systems found while profiling.

DLProf Version The version of DLProf used to profile.

DLProf Build The build ID for DLProf used to profile.

Summary Report

This table provides several high level metrics for the aggregated profile data.

Row Name Description

Wall Clock Time (ns) Total wall clock time for the found iteration range.

Tensor Core Kernel Utilization
%

100 * (Time of Tensor Core Kernels) / (Total time of all kernels in
Tensor Core eligible nodes). Higher is better.

GPU Utilization % Percent of the time that the GPU is active. In the case of a multi-
gpu run, it is the average of all visible GPU utilizations.

Tensor Core Kernel Duration
%

Percent of the time Tensor Core kernels are active. In the case of
a multi-gpu run, it is the average of all visible GPUs.

Non-Tensor Core Kernel
Duration %

Percent of the time Non-Tensor Core kernels are active, while
Tensor Core kernels are inactive. In the case of a multi-gpu run, it
is the average of all visible GPUs.

Memory Duration % Percent of the time Memory kernels are active, while TC and non-
TC kernels are inactive. In the case of a multi-gpu run, it is the
average of all visible GPUs.

Dataloader Duration % Percent of the time the Dataloader is active while TC, non-TC, and
Memory kernels are inactive. In the case of a multi-gpu run, it is
the average of all visible GPUs.
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I/O Duration % Percent of the time the CPU is doing fread or fwrite, while TC,
non-TC, Memory, and Dataloader are inactive. In the case of a
multi-gpu run, it is the average of all visible GPUs.

CPU Duration % Percent of the time CPU is active while TC, non-TC, and Memory,
Dataloader, and I/O are inactive. In the case of a multi-gpu run, it
is the average of all visible GPUs.

Other Duration % Percent of the time that doesn’t fall under any of the other above
categories. In the case of a multi-gpu run, it is the average of all
visible GPUs.

Iterations

This table provides information on the number of iterations found and aggregated.

Row Name Description

Total Iterations The total number of iterations found based on the number of
unique key node operation instances.

Aggregated Iterations The total number of iterations used to aggregate the profile
data over and used to generate report data.

Start Iteration The starting iteration in the aggregated iteration range.

Stop Iteration The stopping iteration in the aggregated iteration range.

Average Iteration Time (ns) The average time for all aggregated iterations in nanoseconds.

Iteration Time Standard
Deviation (ns)

The standard deviation for all aggregated iterations in
nanoseconds.

All Ops

This table provides a high level breakdown of all operations found in the model.

Row Name Description

All Op Total metrics for all operations aggregated.

Ops Using TC Total metric for operations that use Tensor Core kernels.

Op eligible for TC but not
using

Total metrics for operations that are eligible to use Tensor Core
kernels but are currently not using any.

All other ops Total metrics for all other operations.

Column Name Description

GPU Time (ns) Total time of all kernels for the operation spent executing on the GPU.

CPU Time (ns) Total time for the operation spent executing on the CPU.

# Ops The number of unique operations found in this category.

All Kernels

This table provides a high level breakdown of all kernels found in the model.

Row Name Description

All Kernels Total metrics for all kernels found.
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Kernels Using
TC

Total metric for kernels that use Tensor Core enabled operations.

Memory Total metrics for memory based kernels, including device-to-device, device-to-
host, and host-to-device.

All other
kernels

Total metrics for all other kernels.

Column Name Description

GPU Time (ns) Total time of all kernels spent executing on the GPU.

CPU Time (ns) Total time on the CPU spent calling the CUDA API for these kernels.

# Kernels The number of unique kernels found in this category.

10.3.  Detailed Report
The Detailed Report contains correlated information for every group node, leaf node, and
kernel executed in the profile. The report contains the GPU and CPU time metrics, kernel
counts, and whether Tensor Core are used in the node. By sorting this report, a user can
identify the top N GPU/CPU nodes, and identify quickly which operations can use and are
using Tensor Cores.

Each row in the table represents a unique operation in the model as determined by an
NVTX range. The report contains the following columns:

Column name Description

Op ID An ID string that uniquely identifies the
operation and can be used to associate
other report data with this one. The string
is based on a combination of the op type
and direction.

Op Name Name of the op.

Direction The direction (fprop vs bprop) of the op.
This column only exists for PyTorch runs.

Op Type The operation type.

No. Calls Number of instances that the operation
was called / executed.

TC Eligibility Indicates if the node can use Tensor Cores
based on operation name.

Using TC Indicates if a Tensor Core enabled kernel
was used by the node.

Total CPU Time (ns) The total CPU time of all instances of the
node.
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Column name Description

Avg. CPU Time (ns) The average CPU time of all instances of
the node.

Min CPU Time (ns) The minimum CPU time found amongst all
instances of the node.

Max CPU Time (ns) The maximum CPU time found amongst all
instances of the node.

Total GPU Time (ns) The total GPU time of all instances of the
node.

Avg. GPU Time (ns) The average GPU time of all instances of
the node.

Min GPU Time (ns) The minimum GPU time found amongst all
instances of the node.

Max GPU Time (ns) The maximum GPU time found amongst all
instances of the node.

Total CPU Overhead Time (ns) The total CPU overhead of all instances of
the node.

Avg. CPU Overhead Time (ns) The average CPU overhead of all instances
of the node.

Min CPU Overhead Time (ns) The minimum CPU overhead found
amongst all instances of the node.

Max CPU Overhead Time (ns) The maximum CPU overhead found
amongst all instances of the node.

Total GPU Idle Time (ns) The total GPU idle time of all instances of
the node.

Avg. GPU Idle Time (ns) The average GPU idle time of all instances
of the node.

Min GPU Idle Time (ns) The minimum GPU idle time found
amongst all instances of the node.

Max GPU Idle Time (ns) The maximum GPU idle time found
amongst all instances of the node.

Data Type The data type of the operation. This
column won’t exist if the user specifies
detailed_mode=false.

Input Shapes A list of shapes for all inputs into the
operation. This column won’t exist if the
user specifies detailed_mode=false.
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Column name Description

Stack Trace The stack trace of the code that ran this
op. This column only exists for PyTorch
runs.

CPU overhead is the time spent within the NVTX range that is not attributed to the CUDA
API call. GPU idle time is the time between GPU kernel operations for a node when the
GPU is not executing a kernel.

10.4.  Iteration Report
The Iteration Report lists each kernel executed for every node and on every iteration. The
kernel start time has been included as well, so the table can be sorted chronologically by
kernels. Each row in the iteration report represents an instance of a kernel call. The report
contains the following columns:

Column Name Description

Iteration The iteration interval number that the
kernel was launched.

Op ID An ID string that uniquely identifies the
operation and can be used to associate
other report data with this one. The string
is based on a combination of the op type
and direction.

Op Name The name of the node / NVTX range that
call the kernel.

Direction The direction (fprop vs bprop) of the op.
This column only exists for PyTorch runs.

Op Type The operation type.

Kernel Name The name of the GPU kernel.

Device ID The device ID of the GPU kernel.

GPU Start Time (ns) The time stamp for when the kernel began
executing on the GPU.

GPU Time (ns) The time spent on the GPU executing the
kernel.

API Call Start (ns) The time stamp for when the kernel was
called by the CPU.

API Call Time (ns) The time spent on the CPU making the
CUDA API call.
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Column Name Description

Uses TC True if the kernel uses Tensor Cores.

Grid X The x dimension of the grid size of the
kernel.

Grid Y The y dimension of the grid size of the
kernel.

Grid Z The z dimension of the grid size of the
kernel.

Block X The x dimension of the block size of the
kernel.

Block Y The y dimension of the block size of the
kernel.

Block Z The z dimension of the block size of the
kernel.

Data Type The data type of the op calling this kernel.

Input Shapes The input shapes of the op calling this
kernel.

Parameters The parameter values of the op calling this
kernel.

Output Shapes The output shapes of the op calling this
kernel.

Long Kernel Name The full kernel name from the database.

See Iteration Detection for more information on how to specify iteration intervals.

10.5.  Kernel Report
The Kernel Report lists all the kernels launched in the network. Unlike the Iteration
Report, this report contains an entry in the report for each unique kernel and provides
timing metrics for instances of that kernel. The report contains the following columns:

Column Description

Kernel Name The name of the GPU kernel.

Op ID An ID string that uniquely identifies the
operation and can be used to associate
other report data with this one. The string
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Column Description

is based on a combination of the op type
and direction.

Op Name The name of the op that call the kernel.

Direction The direction (fprop vs bprop) of the op.
This column only exists for PyTorch runs.

Uses TC True if the kernel uses Tensor Cores.

Total GPU Time (ns) The total GPU time for all instances of the
node.

Avg. GPU Time (ns) The average GPU time for all instances of
the node.

Min GPU Time (ns) The minimum GPU time found amongst all
instances of the node.

Max GPU Time (ns) The maximum GPU time found amongst all
instances of the node.

Total API Time (ns) The total CPU time spent on CUDA API call
for all instances of the node.

Avg. API Time (ns) The average CPU time spent on CUDA API
for all instances of the node.

Min API Time (ns) The minimum CPU time spent on CUDA API
found amongst all instances of the node.

Max API Time (ns) The maximum CPU time spent on CUDA
API found amongst all instances of the
node.

10.6.  Tensor Core Report
The Tensor Core Report lists all Tensor Core eligible operations and details about their
Tensor Core usage. The report contains the following columns:

Column Description

Op ID An ID string that uniquely identifies the
operation and can be used to associate
other report data with this one. The string
is based on a combination of the op type
and direction.

Op Name The name of the node / NVTX range that
call the kernel.
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Column Description

Direction The direction (fprop vs bprop) of the op.
This column only exists for PyTorch runs.

Op Type The operation type.

Uses TC True if the node uses Tensor Cores.

Total GPU Time The total GPU time for all instances of the
node.

TC GPU Time The GPU time executing Tensor Cores for
all instances of the node.

Non-TC GPU Time The GPU time not executing Tensor Cores
for all instances of the node.

TC Utilization (%) 100 * (TC GPU Time) / (Total GPU Time)

Total Kernel Count The total number of unique kernels
executed by the node.

TC Kernel Count The total number of unique kernels that
use Tensor Cores for this node.

TC Kernel Names A list of all the names of kernels using
Tensor Cores for this node.

Non-TC Kernel Count The total number of unique kernels that do
not useTensor Cores for this node.

Non-TC Kernel Names A list of all the names of kernels not using
Tensor Cores for this node.

10.7.  Op Type Summary Report
This report lists op types in the network. For each op type, the CPU and GPU times are
flattened and rolled up. Statistical values are calculated across the individual instances
to find the total sum, average, minimum, and maximum values for each measured metric.
The report generates a table with the following columns:

Column name Description

Op Name The operation name.

No. Nodes The total number of nodes operation is
included in.

No. Calls Number of instances that the operation
was called / executed.

TC Eligibility Indicates if the node can use Tensor Cores
based on operation name.



Report Generation

NVIDIA Deep Learning Profiler DU-09461-001 _v21.12   |   31

Column name Description

Using TC Indicates if a Tensor Core enabled kernel
was used by the node.

Total CPU Time (ns) The total CPU time of all instances of the
node.

Avg. CPU Time (ns) The average CPU time of all instances of
the node.

Min CPU Time (ns) The minimum CPU time found amongst all
instances of the node.

Max CPU Time (ns) The maximum CPU time found amongst all
instances of the node.

Total GPU Time (ns) The total GPU time of all instances of the
node.

Avg. GPU Time (ns) The average GPU time of all instances of
the node.

Min GPU Time (ns) The minimum GPU time found amongst all
instances of the node.

Max GPU Time (ns) The maximum GPU time found amongst all
instances of the node.

Total CPU Overhead Time (ns) The total CPU overhead of all instances of
the node.

Avg. CPU Overhead Time (ns) The average CPU overhead of all instances
of the node.

Min CPU Overhead Time (ns) The minimum CPU overhead found
amongst all instances of the node.

Max CPU Overhead Time (ns) The maximum CPU overhead found
amongst all instances of the node.

Total GPU Idle Time (ns) The total GPU idle time of all instances of
the node.

Avg. GPU Idle Time (ns) The average GPU idle time of all instances
of the node.

Min GPU Idle Time (ns) The minimum GPU idle time found
amongst all instances of the node.

Max GPU Idle Time (ns) The maximum GPU idle time found
amongst all instances of the node.



Report Generation

NVIDIA Deep Learning Profiler DU-09461-001 _v21.12   |   32

10.8.  Group Node Report
The Group Node Report lists all non-leaf nodes in the network. For each non-leaf node,
it flattens and rolls up all statistics from its sub-tree. All metrics are calculated on a per-
iteration basis. The report contains the following columns:

Column name Description

Name The name (hierarchy) of the sub-tree.

No. Calls Aggregated Total number of leaf node instances in this
sub-tree.

No. TC Eligibility Ops Total number of leaf nodes in this sub-tree
that are eligible to use Tensor Cores.

No. Node Ops Using TC Total number of leaf nodes in this sub-tree
that use Tensor Cores.

Total CPU Time (ns) The total CPU time of all instances of the
sub-tree.

Avg. CPU Time (ns) The average CPU time for all instances of
the sub-tree on a per-iteration basis.

Min CPU Time (ns) The minimum CPU time for all instances of
the sub-tree on a per-iteration basis.

Max CPU Time (ns) The maximum CPU time for all instances of
the sub-tree on a per-iteration basis.

Total GPU Time (ns) The total GPU time for all instances of the
sub-tree.

Avg. GPU Time (ns) The average GPU time for all instances of
the sub-tree on a per-iteration basis.

Min GPU Time (ns) The minimum GPU time for all instances of
the sub-tree on a per-iteration basis.

Max GPU Time (ns) The maximum GPU time for all instances of
the sub-tree on a per-iteration basis.

Total CPU Overhead Time (ns) The total CPU overhead time for all
instances of the sub-tree.

Avg. CPU Overhead Time (ns) The average CPU overhead time for all
instances of the sub-tree on a per-iteration
basis.

Min CPU Overhead Time (ns) The minimum CPU overhead time for all
instances of the sub-tree on a per-iteration
basis.



Report Generation

NVIDIA Deep Learning Profiler DU-09461-001 _v21.12   |   33

Column name Description

Max CPU Overhead Time (ns) The maximum CPU overhead time for all
instances of the sub-tree on a per-iteration
basis.

Total GPU Idle Time (ns) The total GPU idle time for all instances of
the sub-tree.

Avg. GPU Idle Time (ns) The average GPU idle time for all instances
of the sub-tree on a per-iteration basis.

Min GPU Idle Time (ns) The minimum GPU idle time for all
instances of the sub-tree on a per-iteration
basis.

Max GPU Idle Time (ns) The maximum GPU idle time for all
instances of the sub-tree on a per-iteration
basis.

10.9.  Expert Systems Report
The expert systems report will list all of the problems detected by Expert Systems and
give actionable feedback for how to resolve the potential problems. The report contains
the following columns:

Column Name Description

Problem The potential problem that was discovered.

Recommendation The recommended action to take to try to
resolve the problem.

10.10. Expert Systems
Expert Systems is a feature (currently in beta) that analyzes the model and the profile
data to detect potential problems or inefficiencies. Any problems detected will come with
a recommendation of action for you to attempt to resolve the issue. The results can be
found by enabling the Expert Systems Report.

Expert Systems contains a number of problem detectors. Each detector will look for a
specific problem. More detectors are planned in the future. Here is the current list of
detectors and what they look for:

Name Problem Detected Frameworks

Bad Iteration Range
Detector

Detects the case when the
Iteration Range contains a

All
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Name Problem Detected Frameworks

lot of variations between
iterations, and recommends
an ideal range if one is
detected.

No Iteration Detector Detects the case where no
iterations are found because
the Key Node is unspecified
or invalid.

All

Bad Tensor Shape Detector Detects the case where
tensor cores are not used
because of bad tensor
shape or data type in the
model.

Tensorflow

No Fusion Detector Detects the case where
fusion is disabled.

Tensorflow 1.x

AMP Detector Detects the case where
AMP is not used.

Pytorch, Tensorflow

Dataloader Detector Detects when a significant
portion of the run is spent
in the dataloader.

Pytorch

Cudnn Benchmark Detector Detects if
torch.backends.cudnn.benchmarks
is set to false.

Pytorch

Slow Api Detector Detects if any of the
following are set to True in
the pytorch framework:

‣ detect_anomaly

‣ gradcheck

‣ gradgradcheck

‣ record_function

‣ autograd_profile

‣ autograd_set_detect_anomaly

Pytorch

Imbalanced GPU Detector Detects when one or more
GPUs is used significantly
less than other GPUs.

All

Underutilized GPU Detector Detects when one or more
GPUs is unused or overall
GPU utilization is below 50%.

All
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Name Problem Detected Frameworks

Batch Size Detector Detects cases where the
batch size isn't large enough
to utilize the available
memory in the GPU.

PyTorch, TensorFlow

Emit NVTX Missing Detector Detects if Pytorch
emit_nvtx was not used.

PyTorch
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Chapter 11. PyTorch Support

11.1.  Op Names
The op names as listed in various reports are created based on the function call hierarchy
that lead to the operation being executed. Multiple function calls of the same name from
the same source function will have a number added to the end to distinguish between
them. For example, if a network had a function “a”, which calls function “b” twice, and
function “b” executes two different “conv1d” operations, then the following 4 op names
would be created:

‣ /a/b/conv1d

‣ /a/b/conv1d(2)

‣ /a/b(2)/conv1d

‣ /a/b(2)/conv1d(2)

11.2.  Op ID
It is rare but possible for multiple operations to have the exact same op name in PyTorch.
As a result, whenever trying to identify a unique operation it is best to use the Op ID,
which is available in most output reports.

11.3.  Op Direction
As long as the source script wraps the training with
torch.autograd.profiler.emit_nvtx(), then forward and backwards passes of the
operations will be distinguished. The forward pass of an operation will be listed in reports
with “fprop” in the direction field. The backward pass of the operation will have the same
op name, but will have “bprop” in the direction field.

If the source script does not wrap the training with
torch.autograd.profiler.emit_nvtx(), then forward pass will still be collected as
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usual, but the backward pass of all operations will be combined into a single operation
with op type of “backward”.
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Chapter 12. User Goals

When profiling any computer program, the objective is to inspect its code to determine
if performance can be improved. In DLProf, profiling determines if GPUs are being fully
utilized to take advantage of the hardware optimization. Typically, profiling is done at the
time of training a model, so that adjustments can be made based on the results. DLProf
can be used to understand how a deep learning model is performing with respect to the
Tensor Core hardware. Objectives may be summarized as follows:

 1. Determine how the deep learning model performed in terms of GPU utilization time
and percent usage as a summary.

 2. Understand the prominent nodes where optimization with mixed precision is possible.
 3. Drill down into the prominent node to understand individual operations and their

correlation with Tensor Core compatibility.
 4. Get deeper insights into Kernel level information, which kernels are using Tensor

Cores, for how long and what percent of the entire run.

12.1.  How do I profile a deep learning
network?

Start with downloading the NGC TensorFlow container.

Issue the dlprof command to profile training run. Nvidia recommends running the model
for under 5 minutes.

12.2.  How can I improve my network if
I’m not using Tensor Cores?

Navigate to the Top 10 Op Nodes in the DLProf Viewer and sort by GPU. Find the longest
running Op Node in the last that is eligible for Tensor Cores, but is not using Tensor Cores.
In the python code, find out if operations that are running in floating point 32 mode can
be switched to floating point 16. Use Automatic Mixed Precision to automatically change
operations to use mixed precision operations wherever safe. By optimizing the model to
use Tensor Cores, you will speed up the performance of training.

https://docs.nvidia.com/deeplearning/frameworks/tensorflow-user-guide/index.html#tfamp
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12.3.  How do I find a good Key Node?
Using a good node for the key op is essential to maximize the analysis at a per iteration
step level. By default, DLProf will use a key node that is found by default in most
framework models. However this is not always the case and there may be models that the
node operation does not exist. In this event, DLProf will alert the user to find a new key
node.

First, run the profile as normal, making sure to save the generated SQL database and the
Detailed Report. If possible, try to limit the number of steps executed, such as running
only 20 batches.
 $ dlprof --reports=detail python my_script.pl

In the detail report, sort the data by "No. Calls". Choose a node operation that has "No.
Calls" value that is close to the same number of steps executed in the script. You will also
want to choose the operation that occurs as close to the start of the iteration step as
possible. This may require analyzing the graph or script.

When a node has been selected, you can re-run DLProf on the previous profile to specify
the new Key Node without re-profiling the model.
 $ dlprof --key_node=[<op_name_or_op_ID>] --database=[dbdlprof.sqlite]

DLProf should now show more than one iteration found and the Iteration Report will
provide a GPU usage breakdown per iteration.

12.4.  How do I choose a good iteration
range to analyze?

By default, DLProf aggregates the data for all iterations found in the profile. However,
this may not provide an accurate representation of the stabilized run-time performance.
Most frameworks will typically have special warm-up and tear-down iteration, which can
dramatically throw off the overall results. For a standard non-RNN network, iterations
should have little time variation.

To find an ideal set of iteration, run the profile as normal, but generate an Iteration Report
and save the generated SQL database.
  dlprof --reports=iteration python my_script.pl

It should be trivial to view the iteration report in a spreadsheet application. A simple bar
chart on the iteration times can expose an iteration range that has consistent time. Note
the starting and stopping iteration number in this range. DLProf can then be re-ran using
this new range and the existing SQL database to quickly re-aggregate the results over
that range.
  dlprof --iter_start=[<start iter>] --iter_stop=[<stop_iter>] --
database=[dbdlprof.sqlite]

All reports will then be generated from data gathered only between and including these
two iterations.
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Chapter 13. Tutorials

The following tutorial examples are run within the NGC TensorFlow container. See
Profiling from the NGC TensorFlow Container for instructions on how to setup and run
the container.

13.1.  Resnet50
This is an example of running DLProf to profile Resnet50 model (resnet50_v1.5).

13.1.1.  Preparing the Example
 1. Copy training data locally to /path/to/training/data Training data can be

downloaded from ImageNet.
 2. Run the NGC TensorFlow container, mapping the training data and result data

directories.
  docker run --rm --gpus=1 --shm-size=1g --ulimit memlock=-1 \
  --ulimit stack=67108864 -it -p8000:8000 -v<path/to/training/data>:/data \
  -v<path/to/results>:/results nvcr.io/nvidia/tensorflow:21.09-tf1-py3

 3. Enable profiling of Pytorch (using nvidia_dlprof_pytorch_nvtx)

13.1.2.  Profiling Resnet50
To profile with DLProf, use the command shown below. This command will profile over the
training data and generate detailed reports in addition to DLProf database.
$ git clone https://github.com/NVIDIA/DeepLearningExamples.git
$  pip install -r ./DeepLearningExamples/TensorFlow/Classification/ConvNets/
requirements.txt
$ cd /workspace/DeepLearningExamples/TensorFlow/Classification/ConvNets/
$ mkdir results
$ dlprof --reports=summary,detail,iteration \
--iter_start 20 --iter_stop 80 \
python main.py \
--mode=train --iter_unit=batch --num_iter=100 \
--batch_size=128  --warmup_steps=1 --use_cosine_lr \
--label_smoothing 0.1 --lr_init=0.256 --lr_warmup_epochs=8 \
--momentum=0.875 --weight_decay=3.0517578125e-05 --use_tf_amp \
--data_dir=/data/train-val-tfrecord-480 --results_dir=./results

http://image-net.org/download
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This command profiles 100 batches of the NVIDIA Resnet50 example using Automatic
Mixed Precision (AMP). There will be three output report files in /workspace/nvidia-
examples/resnet50v1.5.

‣ dlprof_summary.csv - The summary report

‣ dlprof_detailed.csv - The detailed node report

‣ dlprof_iteration.csv - The detailed iteration report

13.1.3.  Viewing Results in DLProf
DLProf database file dlprof_dldb.sqlite will end up in /workspace/nvidia-examples/
resnet50v1.5. The results can be visualized in the DLProf Viewer.
$ dlprofviewer /workspace/nvidia-examples/resnet50v1.5/dlprof_dldb.sqlite

To view the results, enter http://<IP Address>:8000 in a browser.

13.2.  MobileNet
Here's an example of running DLProf to profile MobileNetV2 from TensorFlow.

13.2.1.  Preparing the Example

 1. Copy training data locally to /path/to/training/data

Training data can be downloaded from ImageNet http://image-net.org/download
 2. Run the NGC TensorFlow docker container, and mapping the training data and result

data directories.
docker run --rm --gpus=1 --shm-size=1g --ulimit memlock=-1 \
--ulimit stack=67108864 -it -p8000:8000 -v<path/to/training/data>:/data \
-v<path/to/results>:/results nvcr.io/nvidia/tensorflow:21.10-tf1-py3

 3. In the docker container, install the TensorFlow benchmarks into /workspace
mkdir /workspace/tensorflow-examples && \
cd /workspace/tensorflow-examples && \
git clone https://github.com/tensorflow/models.git && \
git clone https://github.com/tensorflow/benchmarks.git && \
cd benchmarks && \
git checkout cnn_tf_v1.15_compatible && \
export PYTHONPATH=/workspace/tensorflow-examples/models && \
cd /workspace/tensorflow-examples/benchmarks/scripts/tf_cnn_benchmarks

13.2.2.  Profiling MobileNet
The following command line is the minimum needed to profile the model and generate an
event file.
dlprof \
/usr/bin/python tf_cnn_benchmarks.py \
--num_gpus=1 --batch_size=256 --model=mobilenet --device=gpu --gpu_indices=1 \
--data_name=imagenet --data_dir=/data/train-val-tfrecord-480 \
--num_batches=50 --use_fp16 --fp16_enable_auto_loss_scale

https://developer.nvidia.com/automatic-mixed-precision
https://developer.nvidia.com/automatic-mixed-precision
http://image-net.org/download
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13.2.3.  Viewing Results in DLProf Viewer
The following command line will launch DLProf Viewer:
$ dlprofviewer ./dlprof_dldb.sqlite

To view the results, enter http://<IP Address>:8000 in a browser.

13.3.  Pytorch
This demonstrates how to use DLProf to profile a deep learning model, using Pytorch,
visualize the results, using the DLProf Viewer, and finally improve the model using the
provided recommendations.

13.3.1.  Preparing the Example
‣ Copy training data locally to /path/to/training/data. Training data can be

downloaded from ImageNet

‣ Run the NGC TensorFlow container, using Pytorch, and map the training data and
result data directories

‣  $ docker run --rm --gpus=1 --shm-size=1g --ulimit memlock=-1 \
  --ulimit stack=67108864 -it -p8000:8000 -v<path/to/training/data>:/data \
  -v<path/to/results>:/results nvcr.io/nvidia/pytorch:21.10-tf1-py3

‣ Enable profiling of PyTorch  (using nvidia_dlprof_pytorch_nvtx).

13.3.2.  Profiling Unoptimized Resnet
The following command will profile and create the DLProf database:
$ git clone https://github.com/NVIDIA/DeepLearningExamples.git
$ cd  /workspace/DeepLearningExamples/PyTorch/Classification/ConvNets
$ dlprof --mode=pytorch -f true --reports=summary,detail,iteration,kernel,tensor \
--delay 60 --duration 60 python main.py \  
--arch resnet50 -b 16 --training-only  --raport-file benchmark.json \ 
--epochs 90 --prof 100 /data/imagenet

13.3.3.  Starting DLProf Viewer and Analyzing the
Results

The following command line will launch the viewer:
  $ dlprofviewer /workspace/examples/resnet50v1.5/dlprof_dldb.sqlite

To view the results, enter http://<IP Address>:8000 in a browser.

The results indicate that a large percentage of ops are Tensor Core eligible, but are not
utilizing the Tensor Cores:

http://image-net.org/download
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Two problems are listed with recommended solutions:

13.3.4.  Profiling Optimized Resnet
Using the above recommendations, we can constrain the iteration range and enable AMP,
with the following command:
$ dlprof -f true --reports=summary,detail,iteration,kernel,tensor \
  --delay 60 --duration 60 --iter_start=47 --iter_stop=111 python \ 
/workspace/examples/resnet50v1.5/main.py --arch resnet50 -b 16 \ 
--training-only --raport-file benchmark.json --epochs 90 --prof 100 --amp \ 
--static-loss-scale 256 /data/imagenet

Relaunching the Viewer and examining the results, you will see the majority of previously
eligible ops are now using Tensor Cores:
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Chapter 14. Troubleshooting FAQ

14.1.  Error loading libnvidia-ml.so.1
If you get this error:
dlprof: error while loading shared libraries: libnvidia-ml.so.1: cannot open 
shared object file: No such file or directory

You may not meet the prerequisite drivers and CUDA version. Update your driver and
CUDA SDK to match the minimal versions needed for this release.

14.2.  Unrecognized token: “0xFFFFFF”
If you get this error:
[DLProf-10:01:52] unrecognized token: "0xFFFFFF"

Your version of sqlite3 is too old. Update sqlite3 to at least 3.8.6 or later and try again.
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Chapter 15. Reference

The following section contains additional reference material.

15.1.  Command Line Options
DLProf command lines can have one of two forms:
dlprof [optional switch_options] [application] [optional application_options]

or
dlprof [optional swith_options] --database=dbdlprof.sqlite

All command line options are case sensitive. For optional switch options, when short
options are used, the parameters should follow the switch after a space; e.g. -m simple.
When long options are used, the switch should be followed by an equal sign and then the
parameter(s); e.g. --mode=simple.

Not all command line switch options and features are available for every mode and
framework build. Please refer to dlprof --help for the complete list of available switch
options for a specific framework build.

15.1.1.  CLI Global Options
The following options are available for every mode and framework build, unless otherwise
specified.

Global Options
Short

Global Options
Long

Description

-h --help Help message providing information about available
command switches and their options.

-V --version Output DLProf CLI version information.

Generic Option
Short

Generic Option
Long

Possible
Parameters

Default Description

-f --force true, false false If true, overwrite
all existing
result files
with the same
output filename
(QDSTREM,
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QDREP, SQLITE,
CSV, JSON).

-v --verbosity quiet, minimal,
normal, detailed,
diagnostic

normal Specify the
output verbosity
level.

-m --mode simple,
tensorflow1,
tensorflow2,
tensorrt,pytorch

build dependent Specify the
target framework
being profiled.
Use 'simple' to
generate only
high level metrics
agnostic to any
framework. Use
all other options
to generate
detailed metrics
and reports
specific to the
framework.

The mode options and availability is dependent on the specific container build. For
a simple mode only build, the --mode switch is not available and defaults to 'simple'.
For all other framework specific builds, the default mode is the target framework; e.g.
'tensorflow1' for the DLProf built for the TensorFlow 1.x NGC container. All framework
specific builds will always have the option to run in simple mode.

15.1.2.  Nsight System Options
The following Nsight System options are available for all profile modes unless otherwise
specified.

Short Long Possible
Parameters

Default Description

--database < database
filename >

NA Input SQLITE file. It can
be the one generated by
Nsight Systems or the
one createe by DLProf.
When specified, DLProf
will aggregate profile data
directly from the database.
If specified, additional
application commands are
ignored and the application
will not be profiled.

--
nsys_base_name

[ base name ] nsys_profile Specify the base name for all
Nsight Systems output files.

--
nsys_options

"[<nsys args>]" "-t cuda,nvtx -s
none"

Customize the args passed
to Nsight Systems. Option
must include the default for
DLProf to operate correctly.
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-y --delay < seconds > 0 Collection start delay in
seconds.

-d --duration < seconds > NA Collection duration in
seconds, duration must be
greater than zero.

--
detailed_mode

true, false true Gather detailed NVTX
information, including tensor
shapes and data types.

Note: --detailed_mode is a feature that is only available in tensorflow1 and tensorflow2
operation mode, or in the TensorFlow NGC containers. This feature is enabled by default
and will add more information to the NVTX markers which may increase profiling
overhead.

Setting custom Nsight Systems options requires surrounding the custom options in
quotes, e.g. --nsys_options="-t cuda,nvtx -s none".

15.1.3.  Data Aggregation Options
Data aggregation options are not available in simple mode or the simple mode only builds
of DLProf.

Short Long Possible
Parameters

Default Description

--key_node < op name or op ID
>

global_stepIteration intervals are determined from
the NVTX start times of each key node
instance. If DLProf is not detecting
intervals correctly, try specifying a
different key node.

--iter_start < iteration number > 0 Set the iteration interval to start
aggregating data. Profile data from
iteration intervals less than the starting
interval are excluded from all aggregated
reports.

--iter_stop < iteration number > NA Set the iteration interval to stop
aggregating data. Profile data from
iteration intervals greater than the
stopping interval are excluded from all
aggregated reports. The stop iteration
number must be greater than or equal to
the start iteration.

15.1.4.  Output Report Options
Unless specified, the following output report options are available in all modes and builds.

Short Long Possible
Parameters

Default Description
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--output_path < path > ./ Specify the output path for all generated
aggregated collateral.

--base_name < profile
name >

dlprof Specify a name for the profile that is
prepended to all generated report file names
and displayed in the Viewer.

--reports summary,
detail, kernel,
iteration,
tensor,
op_type,
group_node,
expert_systems

NA Select the aggregated report(s) to generate.
Multiple reports can be selected, separated
by commas only (no spaces).

--formats csv, json csv Specify output file format(s). Multiple
formats can be selected, separated by
commas only (no spaces). A separate report
is created for each file format.

--
dump_model_data

true, false false If true, a json file is created that contains the
raw, correlated model data.

Note: The only available report type for simple mode is 'kernel'.
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