TENSORFLOW FOR JETSON PLATFORM

Installation Guide
TABLE OF CONTENTS

Chapter 1. Overview.. 1
 1.1. Benefits of TensorFlow on Jetson Platform.. 2
Chapter 2. Prerequisites and Dependencies... 3
Chapter 3. Installing TensorFlow.. 4
 3.1. Installing Multiple TensorFlow Versions... 4
 3.2. Upgrading TensorFlow... 5
Chapter 4. Verifying The Installation.. 6
Chapter 5. Best Practices.. 7
Chapter 6. Uninstalling... 8
Chapter 7. Troubleshooting.. 9
Chapter 8. Support... 10
Chapter 1.
OVERVIEW

TensorFlow on Jetson Platform

TensorFlow™ is an open-source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) that flow between them. This flexible architecture lets you deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device without rewriting code.

Jetson AGX Xavier

The NVIDIA Jetson AGX Xavier developer kit for Jetson platform is the world’s first AI computer for autonomous machines. The Jetson AGX Xavier delivers the performance of a GPU workstation in an embedded module under 30W.

Jetson Nano

NVIDIA Jetson Nano is a small, powerful computer for embedded AI systems and IoT that delivers the power of modern AI in a low-power platform. The Jetson Nano is targeted to get started fast with the NVIDIA Jetpack SDK and a full desktop Linux environment, and start exploring a new world of embedded products.

Jetson TX2

The Jetson TX2 Developer Kit enables a fast and easy way to develop hardware and software for the Jetson TX2 AI supercomputer on a module. It exposes the hardware capabilities and interfaces of the developer board, comes with design guides and other documentation, and is pre-flashed with a Linux development environment. The Jetson TX2 also supports NVIDIA Jetpack—a complete SDK that includes the BSP, libraries for deep learning, computer vision, GPU computing, multimedia processing, and much more.
1.1. Benefits of TensorFlow on Jetson Platform

Installing TensorFlow for Jetson Platform provides you with the access to the latest version of the framework on a lightweight, mobile platform without being restricted to TensorFlow Lite.
Chapter 2.
PREREQUISITES AND DEPENDENCIES

Before you install TensorFlow for Jetson Platform, ensure you:

1. Install JetPack on your Jetson device.
2. Install system packages as required by TensorFlow:

   ```sh
   sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev zlib1g-dev
   zip libjpeg8-dev
   ```
3. Install and upgrade pip3.

   ```sh
   sudo apt-get install python3-pip
   sudo pip3 install -U pip
   ```
4. Install the following Python packages:

   ```sh
   sudo pip3 install -U numpy grpcio absl-py py-cpuinfo psutil portpicker six
   mock requests gast h5py astor termcolor protobuf keras-applications keras-
   preprocessing wrapt google-pasta setuptools testresources
   ```
Chapter 3.
INSTALLING TENSORFLOW

Install TensorFlow using the `pip3` command. This command will install the latest version of TensorFlow.

```
$ sudo pip3 install --pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 tensorflow-gpu
```

If you want to install a specific version of TensorFlow, issue the following command:

```
$ sudo pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 tensorflow-gpu==${TF_VERSION}+nv${NV_VERSION}
```

Where:

- **TF_VERSION**
 The released version of TensorFlow, for example, `1.12.0`.

- **NV_VERSION**
 The monthly NVIDIA container version of TensorFlow, for example, `19.01`.

For example, to install TensorFlow 19.01, the command would look similar to the following:

```
$ sudo pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 tensorflow-gpu==1.12.0+nv19.1
```

3.1. Installing Multiple TensorFlow Versions

If you want to have multiple versions of TensorFlow available at the same time, this can be accomplished using virtual environments. See below.

Set up the Virtual Environment

First, install the `virtualenv` package and create a new Python 3 virtual environment:

```
$ sudo apt-get install virtualenv
$ python3 -m virtualenv -p python3 <chosen_venv_name>
```
Activate the Virtual Environment

Next, activate the virtual environment:

$ source <chosen_venv_name>/bin/activate

Install the desired version of TensorFlow and its dependencies:

$ pip3 install -U numpy grpcio absl-py py-cpuinfo psutil portpicker six mock requests gast h5py astor termcolor protobuf keras-applications keras-preprocessing wrapt google-pasta setuptools testresources
$ pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 tensorflow-gpu==$TF_VERSION+nv$NV_VERSION

Deactivate the Virtual Environment

Finally, deactivate the virtual environment:

$ deactivate

Run a Specific Version of TensorFlow

After the virtual environment has been set up, simply activate it to have access to the specific version of TensorFlow. Make sure to deactivate the environment after use:

$ source <chosen_venv_name>/bin/activate
$ <Run the desired TensorFlow scripts>
$ deactivate

3.2. Upgrading TensorFlow

To upgrade to a more recent release of TensorFlow, if one is available, run the install command with the ‘upgrade’ flag:

$ sudo pip3 install --upgrade --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 tensorflow-gpu
Chapter 4.

VERIFYING THE INSTALLATION

To verify that TensorFlow has been successfully installed on Jetson AGX Xavier, you’ll need to launch a Python prompt and import TensorFlow.

1. From the terminal, run:

 $ python3

2. Import TensorFlow:

 >>> import tensorflow

 If TensorFlow was installed correctly, this command should execute without error.
Chapter 5.
BEST PRACTICES

Performance model

It is recommended to choose the right performance mode to get the best possible performance given energy usage limitations. There is a command line tool (`nvpmode`) that can be used to change the performance mode. In order to check the current performance mode, issue:

```
$ sudo nvpmode -q --verbose
```

To change the mode to MAX-N, issue:

```
$ sudo nvpmode -m 0
```

For more information, see:

- How do you switch between max-q and max-p?
- Jetson/Performance
- Two cores disabled

Swap space on Jetson Xavier

On Jetson Xavier, certain applications could run out of memory (16GB shared between CPU and GPU). This problem can be resolved by creating a swap partition on the external memory. Typically 4GB of swap space is enough.
Chapter 6. UNINSTALLING

TensorFlow can easily be uninstalled using the `pip3 uninstall` command, as below:

```
$ pip3 uninstall -y tensorflow-gpu
```
Join the NVIDIA Jetson and Embedded Systems community to discuss Jetson Platform-specific issues.
Chapter 8.
SUPPORT

TensorFlow

For more information about TensorFlow, see:

- TensorFlow tutorials
- TensorFlow API
- Install TensorFlow on Ubuntu
- NVIDIA TensorFlow documentation

Jetson Platform

For more information about Jetson Platform, see:

- NVIDIA Jetson AGX Xavier Developer Kit
- NVIDIA Jetson Nano Developer Kit
- Jetson software documentation

NVIDIA SDK Manager

- See NVIDIA SDK Manager for more information.
Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license, either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, DGX, DGX-1, DGX-2, and DGX Station are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com