
DU-08601-001_v1.15.5, 2.5.0    |    March 2024

TensorFlow

User Guide



TensorFlow DU-08601-001_v1.15.5, 2.5.0   |   ii

Table of Contents

Chapter 1. Overview Of TensorFlow................................................................................................. 1
1.1. Contents Of The NVIDIA TensorFlow Container............................................................................... 1

Chapter 2. Pulling The TensorFlow Container.............................................................................. 3

Chapter 3. Running A TensorFlow Container................................................................................4

Chapter 4. Verifying TensorFlow........................................................................................................ 5

Chapter 5. Customizing And Extending TensorFlow................................................................. 6
5.1. Benefits And Limitations To Customizing TensorFlow...................................................................7

5.2. Example 1: Customizing TensorFlow Using Dockerfile.................................................................. 7

5.3. Example 2: Customizing TensorFlow Using docker commit........................................................8

5.4. Accelerating Inference In TensorFlow With TensorRT................................................................. 10

Chapter 6. TensorFlowParameters..................................................................................................12
6.1. Added And Modified Parameters.......................................................................................................... 12

Chapter 7. TensorFlow Environment Variables..........................................................................14
7.1. Added Or Modified Variables................................................................................................................... 14

Chapter 8. Performance......................................................................................................................19
8.1. Tensor Core Math.......................................................................................................................................... 19

8.1.1. Float16 Training......................................................................................................................................19

8.2. Automatic Mixed Precision (AMP)......................................................................................................... 20

8.2.1. Automatic Mixed Precision Training In TensorFlow.............................................................. 20

8.2.2. Conditions And Limitations.............................................................................................................. 21

8.2.3. FAQs..............................................................................................................................................................22

Chapter 9. XLA Best Practices.........................................................................................................24
9.1. XLA Introduction............................................................................................................................................ 24

9.1.1. Why Use XLA?.........................................................................................................................................24

9.1.2. Enabling XLA............................................................................................................................................24

9.1.2.1. XLA Lite..............................................................................................................................................25

9.1.3. XLA Caveats............................................................................................................................................. 25

9.2. TF-XLA Integration........................................................................................................................................ 26

9.2.1. Changes to the TensorFlow Graph............................................................................................... 26

9.2.1.1. Clustering.......................................................................................................................................... 26

9.2.1.2. TensorFlow Graph Execution with XLA...............................................................................28

9.2.2. Symptoms of XLA Issues.................................................................................................................. 28

9.2.2.1. Functional Issues........................................................................................................................... 28

9.2.2.2. Performance Issues......................................................................................................................29



TensorFlow DU-08601-001_v1.15.5, 2.5.0   |   iii

9.3. Identifying and Managing the Issues.................................................................................................. 29

9.3.1. Controlling XLA with Environment Variables........................................................................... 29

9.3.2. Out of Memory Issue.......................................................................................................................... 30

9.3.2.1. Memory Fragmentation..............................................................................................................31

9.3.3. TensorFlow-XLA Performance Issues.......................................................................................... 31

9.3.3.1. TensorFlow-XLA Integration Issues...................................................................................... 31

9.3.3.2. Compilation Overhead.................................................................................................................33

9.3.3.3. Compute/Communication Overlap....................................................................................... 33

9.3.4. XLA Optimizer and Code Generation...........................................................................................34

9.3.4.1. XLA Autotune.................................................................................................................................. 34

9.3.4.2. Various Options.............................................................................................................................. 34

9.4. XLA Options Reference...............................................................................................................................35

Chapter 10. Troubleshooting.............................................................................................................37
10.1. Support.............................................................................................................................................................37



TensorFlow DU-08601-001_v1.15.5, 2.5.0   |   iv



TensorFlow DU-08601-001_v1.15.5, 2.5.0   |   1

Chapter 1. Overview Of TensorFlow

TensorFlow is an open-source software library for numerical computation using data flow
graphs.

Nodes in the graph represent mathematical operations, while the graph edges represent
the multidimensional data arrays (tensors) that flow between them. This flexible
architecture lets you deploy computation to one or more CPUs or GPUs in a desktop,
server, or mobile device without rewriting code.

TensorFlow was originally developed by researchers and engineers working on the Google
Brain team within Google's Machine Intelligence research organization for the purposes
of conducting machine learning and deep neural networks (DNNs) research. The system is
general enough to be applicable in a wide variety of other domains, as well.

For visualizing TensorFlow results, the Docker®  image also contains TensorBoard.
TensorBoard is a suite of visualization tools. For example, you can view the training
histories as well as what the model looks like.

For information about the optimizations and changes that have been made to TensorFlow,
see the TensorFlow Release Notes.

1.1.  Contents Of The NVIDIA
TensorFlow Container

This image contains source and binaries for TensorFlow. The pre-built and installed
version of TensorFlow is located in the /usr/local/[bin,lib] directories. The complete
source code is located in /opt/tensorflow.

To achieve optimum TensorFlow performance, there are sample scripts within the
container image. For more information, see Performance.

TensorFlow includes TensorBoard, a data visualization toolkit developed by Google.

Additionally, this container image also includes several built-in TensorFlow examples that
you can run using commands like the following. These examples perform training of
convolutional neural networks (CNNs). For more information, see MNIST For ML Beginners
. The following Python commands run two of these examples:
python -m tensorflow.models.image.mnist.convolutional
python -m tensorflow.models.image.cifar10.cifar10_multi_gpu_train

https://www.tensorflow.org/tensorboard/get_started
http://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/index.html
https://www.tensorflow.org/tutorials/quickstart/beginner
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The first command uses the MNIST data set, for example, THE MNIST DATABASE. The
second command uses the CIFAR-10 dataset, for example, The CIFAR-10 dataset.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
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Chapter 2. Pulling The TensorFlow
Container

To pull a TensorFlow container, see Pulling A Container

https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/pullcontainer.html#pullcontainer
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Chapter 3. Running A TensorFlow
Container

About this task

To run a TensorFlow container, see Running TensorFlow.

https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/running.html#running
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Chapter 4. Verifying TensorFlow

The simplest way to verify that TensorFlow is running correctly, is to run the examples
that are included in the /nvidia-examples/ directory.

Each example contains a README that describes the basic usage.
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Chapter 5. Customizing And
Extending TensorFlow

The nvidia-docker images come prepackaged, tuned, and ready to run; however, you may
want to build a new image from scratch or augment an existing image with custom code,
libraries, data, or settings for your corporate infrastructure. This section will guide you
through exercises that will highlight how to create a container from scratch, customize a
container, extend a deep learning framework to add features, develop some code using
that extended framework from the developer environment, then package that code as a
versioned release.

About this task

By default, you do not need to build a container. The NVIDIA container repository,
nvcr.io, has a number of containers that can be used immediately including containers
for deep learning as well as containers with just the CUDA® Toolkit™ .

One of the great things about containers is that they can be used as starting points for
creating new containers. This can be referred to as customizing or extending a container.
You can create a container completely from scratch, however, since these containers
are likely to run on GPUs, it is recommended that you at least start with a nvcr.io
container that contains the OS and CUDA® . However, you are not limited to this and can
create a container that runs on the CPUs which does not use the GPUs. In this case,
you can start with a bare OS container from another location such as Docker. To make
development easier, you can still start with a container with CUDA; it is just not used
when the container is used.

The customized or extended containers can be saved to a user's private container
repository. They can also be shared with other users but this requires some administrator
help.

It is important to note that all NGC deep learning framework images include the source to
build the framework itself as well as all of the prerequisites.

ATTENTION: Do not install an NVIDIA driver into the Docker image at docker build time.
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A best-practice is to avoid docker commit usage for developing new Docker images, and
to use Dockerfiles instead. The Dockerfile method provides visibility and capability to
efficiently version-control changes made during the development of a Docker image. The
Docker commit method is appropriate for short-lived, disposable images only.

For more information on writing a Docker file, see the best practices documentation.

5.1.  Benefits And Limitations To
Customizing TensorFlow

You can customize a container to fit your specific needs for numerous reasons; for
example, you depend upon specific software that is not included in the container that
NVIDIA provides. No matter your reasons, you can customize a container.

The container images do not contain sample data-sets or sample model definitions
unless they are included with the framework source. Be sure to check the container for
sample data-sets or models.

5.2.  Example 1: Customizing TensorFlow
Using Dockerfile

For the latest instructions using Dockerfile to customize TensorFlow, see the
instructions provided inside the container in the file /workspace/docker-examples/
Dockerfile.customtensorflow.

Before customizing the container, you should ensure the TensorFlow 21.08 container has
been loaded into the NGC container registry using the docker pull command before
proceeding. For example:
$ docker pull nvcr.io/nvidia/tensorflow:21.08

The Docker containers on nvcr.io also provide a sample Dockerfile that explains how
to patch a framework and rebuild the Docker image. In the directory, /workspace/
docker-examples, there are two sample Dockerfiles that you can use. The first one,
Dockerfile.addpackages, can be used to add packages to the TensorFlow image. The
second one, Dockerfile.customtensorflow, illustrates how to patch TensorFlow and
rebuild the image.
FROM nvcr.io/nvidia/tensorflow:21.08

# Bring in changes from outside container to /tmp
# (assumes my-tensorflow-modifications.patch is in same directory as Dockerfile)
COPY my-tensorflow-modifications.patch /tmp

# Change working directory to TensorFlow source path
WORKDIR /opt/tensorflow

# Apply modifications
RUN cd tensorflow-source \
  && patch -p1 < /tmp/my-tensorflow-modifications.patch

# Rebuild TensorFlow

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices
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RUN ./nvbuild.sh

# Reset working directory
WORKDIR /workspace

This DockerFile will rebuild the TensorFlow image in the same way as it was built in the
original image. For more information, see Dockerfile reference.

To better understand the Dockerfile, let's walk through the major commands. The first
line in the Dockerfile is the following:
FROM nvcr.io/nvidia/tensorflow:21.08

This line starts with the NVIDIA 21.08 version image for TensorFlow being used as the
starting point.

The second line is the following:
COPY my-tensorflow-modifications.patch /tmp

It brings in changes from outside the container into your /tmp directory. This assumes
that the my-tensorflow-modifications.patch file is in the same directory as Dockerfile.

The next important line in the file changes the working directory to the TensorFlow
source path.
WORKDIR /opt/tensorflow

This is followed by the command to apply the modifications patch to the source.
RUN cd tensorflow-source \
 && patch -p1 < /tmp/my-tensorflow-modifications.patch

After the patch is applied, the TensorFlow image can be rebuilt. This is done via the RUN
command in the DockerFile/.
RUN ./nvbuild.sh

Finally, the last major line in the DockerFile resets the default working directory.
WORKDIR /workspace

5.3.  Example 2: Customizing TensorFlow
Using docker commit

This example uses the docker commit command to flush the current state of the
container to a Docker image.

About this task

This is not a recommended best practice, however, this is useful when you have a
container running to which you have made changes and want to save them. In this
example, we are using the apt-get tag to install a package that requires the user to run
as root.

Note:

‣ The TensorFlow image release 21.07 is used in the example instructions for illustrative
purposes.

https://docs.docker.com/engine/reference/builder
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‣ Do not use the --rm flag when running the container. If you use the --rm flag when
running the container your changes will be lost when exiting the container.

Procedure

 1. Pull the Docker container from the nvcr.io repository to your DGX™  system. For
example, the following command will pull the TensorFlow container:
$ docker pull  nvcr.io/nvidia/tensorflow:21.07

 2. Run the container on your DGX.

Note: Do not use the --rm flag when running the container. If you use the --rm flag
when running the container your changes will be lost when exiting the container.

docker run --gpus all -ti nvcr.io/nvidia/tensorflow:21.07
================
== TensorFlow ==
================

NVIDIA Release 21.07 (build 31239)

Container image Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
Copyright 2021 The TensorFlow Authors.  All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION.  All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying
 project or file.

NOTE: The SHMEM allocation limit is set to the default of 64MB.  This may be
   insufficient for TensorFlow.  NVIDIA recommends the use of the following flags:
   docker run --gpus all --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 ...

root@8db6076d82c4:/workspace#

 3. You should now be the root user in the container (notice the prompt). You can use the
apt command to pull down a package and put it in the container.

Note: The NVIDIA containers are built using Ubuntu which uses the apt-get package
manager. Check the container release notes in Deep Learning Documentation for
details on the specific container you are using.

In this example, we will install octave; the GNU clone of MATLAB, into the container.
# apt-get update
# apt install octave

Note: You have to first issue apt-get update before you install Octave using apt.

 4. Exit the workspace.
# exit

 5. Display the list of running containers.
$ docker ps -a

As an example, here is some of the output from the docker ps -a command:
$ docker ps -a
CONTAINER ID     IMAGE                                 CREATED        ...      
8db6076d82c4     nvcr.io/nvidia/tensorflow:21.07      3 minutes ago   ... 

http://docs.nvidia.com/deeplearning/frameworks
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 6. Now you can create a new image from the container that is running where you have
installed Octave. You can commit the container with the following command.
$ docker commit 8db6076d82c4 nvcr.io/nvidian_sas/tensorflow_octave:21.07
sha256:25198e37ae2e3416bebcf1d3084ff3a95600d978811fe7f4f184de0af3878b51

 7. Display the list of images.
$ docker images
REPOSITORY                              TAG                           IMAGE ID       ...
nvidian_sas/tensorflow_octave           21.07                         25198e37ae2e   ...

 8. To verify, run the container again and see if Octave is actually there.
docker run --gpus all -ti nvidian_sas/tensorflow_octave:21.07

================
== TensorFlow ==
================

NVIDIA Release 21.07 (build 31239)

Container image Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved. Copyright
 2021 The TensorFlow Authors.  All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION.  All rights reserved. NVIDIA
 modifications are covered by the license terms that apply to the underlying project or
 file.

NOTE: The SHMEM allocation limit is set to the default of 64MB.  This may be insufficient
 for TensorFlow.  NVIDIA recommends the use of the following flags:
   docker run --gpus all --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 ...

root@87e8dde4be6d:/workspace# octave
octave: X11 DISPLAY environment variable not set
octave: disabling GUI features
GNU Octave, version 4.0.0
Copyright (C) 2015 John W. Eaton and others.
This is free software; see the source code for copying conditions.
There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  For details, type 'warranty'.

Octave was configured for "x86_64-pc-linux-gnu".

Additional information about Octave is available at http://www.octave.org.

Please contribute if you find this software useful.
For more information, visit http://www.octave.org/get-involved.html

Read http://www.octave.org/bugs.html to learn how to submit bug reports.
For information about changes from previous versions, type 'news'.

octave:1>

Since the Octave prompt displayed, Octave is installed.
 9. If you are using a DGX-1 or DGX Station, and you want to save the container into

your private repository (Docker uses the phrase "push"), then you can use the docker
push ... command.
$ docker push nvcr.io/nvidian_sas/tensorflow_octave:21.07

5.4.  Accelerating Inference In
TensorFlow With TensorRT
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About this task
For step-by-step instructions on how to use TensorRT with the TensorFlow framework,
see Accelerating Inference In TensorFlow With TensorRT User Guide. To view the key
features, software enhancements and improvements, and known issues, see the Release
Notes.

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/index.html
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/index.html
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Chapter 6. TensorFlowParameters

The TensorFlow container in the NGC container registry (nvcr.io) comes pre-configured
as defined by the following parameters. These parameters are used to pre-compile GPUs,
enable support for the Accelerated Linear Algebra (XLA) backend, and disable support for
Google Cloud Platform (GCP) and the Hadoop Distributed File System (HDFS).

6.1.  Added And Modified Parameters
In addition to the parameters within the Dockerfile that is included in the Google
TensorFlow container, the following parameters have either been added for modified with
the NVIDIA version of TensorFlow.

For parameters not mentioned in this guide, see the TensorFlow documentation.

6.1.1.  TF_CUDA_COMPUTE_CAPABILITIES
The TF_CUDA_COMPUTE_CAPABILITIES parameter enables the code to be pre-compiled
for specific GPU architectures.

The container comes built with the following setting, which targets Pascal, Volta, Turing,
and NVIDIA Ampere architecture GPUs:
TF_CUDA_COMPUTE_CAPABILITIES "6.0,6.1,7.0,7.5,8.0,8.6"

Where the numbers correspond to GPU architectures:

6.0+6.1 Pascal

7.0 Volta

7.5 Turing

8.0+8.6 NVIDIA Ampere architecture

6.1.2.  TF_NEED_GCP
The TF_NEED_GCP parameter, as defined, disables support for the Google Cloud Platform
(GCP).

The container comes built with the following setting, which turns off support for GCP:
TF_NEED_GCP 0

https://www.tensorflow.org/api_docs
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6.1.3.  TF_NEED_HDFS
The TF_NEED_HDFS parameter, as defined, disables support for the Hadoop Distributed
File System (HDFS).

The container comes built with the following setting, which turns off support for HDFS:
TF_NEED_HDFS 0

6.1.4.  TF_ENABLE_XLA
The TF_ENABLE_XLA parameter, as defined, enables support for the Accelerated Linear
Algebra (XLA) backend.

The container comes built with the following setting, which turns on support for XLA:
TF_ENABLE_XLA 1
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Chapter 7. TensorFlow Environment
Variables

The following environment variable settings enable certain features within TensorFlow.
They change and reduce the precision of the computation slightly and are enabled by
default.

7.1.  Added Or Modified Variables
In addition to the variables within the Dockerfile that are included in the Google
TensorFlow container, the following variables have either been added or modified with the
NVIDIA version of TensorFlow.

For variables not mentioned in this guide, see the TensorFlow documentation.

7.1.1.  TF_ADJUST_HUE_FUSED
The TF_ADJUST_HUE_FUSED variable enables the use of fused kernels for the image hue.

This variable is enabled by default:
TF_ADJUST_HUE_FUSED         1

To disable the variable, run the following command:
export TF_ADJUST_HUE_FUSED=0

7.1.2.  TF_ADJUST_SATURATION_FUSED
The TF_ADJUST_SATURATION_FUSED variable enables the use of fused kernels for the
saturation adjustment.

This variable is enabled by default:
TF_ADJUST_SATURATION_FUSED  1

To disable the variable, run the following command:
export TF_ADJUST_SATURATION_FUSED=0

7.1.3.  TF_ENABLE_WINOGRAD_NONFUSED
The TF_ENABLE_WINOGRAD_NONFUSED variable enables the use of the non-fused
Winograd convolution algorithm.

https://www.tensorflow.org/api_docs
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This variable is enabled by default:
TF_ENABLE_WINOGRAD_NONFUSED 1

To disable the variable, run the following command:
export TF_ENABLE_WINOGRAD_NONFUSED=0

7.1.4.  TF_AUTOTUNE_THRESHOLD
The TF_AUTOTUNE_THRESHOLD variable improves the stability of the auto-tuning process
used to select the fastest convolution algorithms. Setting it to a higher value improves
stability, but requires a larger number of trial steps at the beginning of training before the
best algorithms are found.

Within the container, this variable is set to the following:
export TF_AUTOTUNE_THRESHOLD=2

To set this variable to its default setting, run the following command:
export TF_AUTOTUNE_THRESHOLD=1

7.1.5.  CUDA_DEVICE_MAX_CONNECTIONS
The CUDA_DEVICE_MAX_CONNECTIONS variable solves performance issues related to
streams on Tesla K80 GPUs.

Within the container, this variable is set to the following:
export CUDA_DEVICE_MAX_CONNECTIONS=12

To set this variable to its default setting, run the following command:
export CUDA_DEVICE_MAX_CONNECTIONS=8

7.1.6.  TF_DISABLE_CUDNN_TENSOR_OP_MATH
The TF_DISABLE_CUDNN_TENSOR_OP_MATH variable enables and disables Tensor Core
math for cuDNN convolutions in TensorFlow.

Tensor Core math is enabled by default, but can be disabled by setting this variable to 1.
For more information, see Tensor Core Math.

This variable is disabled by default:
export TF_DISABLE_CUDNN_TENSOR_OP_MATH=0

To enable the variable, run the following command:
export TF_DISABLE_CUDNN_TENSOR_OP_MATH=1

7.1.7.  TF_DISABLE_CUDNN_RNN_TENSOR_OP_MATH
The TF_DISABLE_CUDNN_RNN_TENSOR_OP_MATH variable enables and disables Tensor
Core math for cuDNN RNNs in TensorFlow.

Tensor Core math is enabled by default, but can be disabled by setting this variable to 1.
For more information, see Tensor Core Math.

This variable is disabled by default:
export TF_DISABLE_CUDNN_RNN_TENSOR_OP_MATH=0

To enable the variable, run the following command:
export TF_DISABLE_CUDNN_RNN_TENSOR_OP_MATH=1
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7.1.8.  TF_DISABLE_CUBLAS_TENSOR_OP_MATH
The TF_DISABLE_CUBLAS_TENSOR_OP_MATH  variable enables and disables Tensor Core
math for cuBLAS convolutions in TensorFlow.

Tensor Core math is enabled by default, but can be disabled by setting this variable to 1.
For more information, see Tensor Core Math.

This variable is disabled by default:
export TF_DISABLE_CUBLAS_TENSOR_OP_MATH=0

To enable the variable, run the following command:
export TF_DISABLE_CUBLAS_TENSOR_OP_MATH=1

7.1.9.  TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32
The TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32 variable enables and disables Tensor
Core math for float32 matrix multiplication operations in TensorFlow.

Tensor Core math for float32 operations is disabled by default, but can be enabled by
setting this variable to 1. For more information, see Tensor Core Math.

This variable is disabled by default:
export TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32=0

To enable this variable, run the following command:
export TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32=1

7.1.10.  TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32
The TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32 variable enables and disables Tensor
Core math for float32 convolution operations in TensorFlow.

Tensor Core math for float32 operations is disabled by default, but can be enabled by
setting this variable to 1. For more information, see Tensor Core Math.

This variable is disabled by default:
export TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32=0

To enable this variable, run the following command:
export TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32=1

7.1.11.  TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32
The TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32 variable enables and disables
Tensor Core math for float32 cuDNN RNN operations in TensorFlow.Tensor Core math for
float32 operations is disabled by default, but can be enabled by setting this variable to 1.
For more information, see Tensor Core Math.

This variable is disabled by default:
export TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32=0

To enable this variable, run the following command:
export TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32=1
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7.1.12.  TF_ENABLE_LAYOUT_NHWC
The TF_ENABLE_LAYOUT_NHWC variable enforces the NHWC (channels_last) format during
the model execution. It is mainly useful for float32 and NVIDIA Ampere Architecture GPUs
or later, where the TF32 Tensor Core will be used and NHWC format is preferred.

This environment variable is disabled by default. When disabled, the data format will be
automatically selected by TensorFlow.

To enable the variable, run the following command:
export TF_ENABLE_LAYOUT_NHWC=1

7.1.13.  TF_ENABLE_NVTX_RANGES
NVIDIA Tools Extension (NVTX) ranges add operation name annotations to the execution
timeline when profiling an application with Nsight Systems or the NVIDIA Visual Profiler.

For more information on NVTX, see https://docs.nvidia.com/cuda/profiler-users-guide/
index.html#nvtx

Instructions since the 21.03 release

The TF_ENABLE_NVTX_RANGES variable enables and disables NVTX ranges in TensorFlow.
NVTX ranges are disabled by default, but can be enabled by setting this variable to 1.

This variable is disabled by default:
export TF_ENABLE_NVTX_RANGES=0

To enable the variable, run the following command:
export TF_ENABLE_NVTX_RANGES=1

In addition to setting TF_ENABLE_NVTX_RANGES=1, the variable
TF_ENABLE_NVTX_RANGES_DETAILED can be set to 1 to obtain NVTX ranges with more
detailed information (such as shapes and attributes).

This variable is disabled by default:
export TF_ENABLE_NVTX_RANGES_DETAILED=0

To enable the variable, run the following command:
export TF_ENABLE_NVTX_RANGES_DETAILED=1

Note that the TF_DISABLE_NVTX_RANGES variable (see below) is no longer supported.

Instructions prior to the 21.03 release

The TF_ENABLE_NVTX_RANGES variable is disabled by default:
export TF_DISABLE_NVTX_RANGES=0

To enable this variable, run the following command:
export TF_DISABLE_NVTX_RANGES=1

7.1.14.  TF_CUDNN_CTC_LOSS
The TF_CUDNN_CTC_LOSS variable enables the cuDNN CTC loss backend via nn.ctc_loss
for Tensorflow 2.x (for example, 19.11-tf2-py3) or nn.ctc_loss_v2 for Tensorflow 1.x
(for example, 19.11-tf1-py3).

https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvtx
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvtx
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This variable is disabled by default:
export TF_CUDNN_CTC_LOSS=0

To enable this variable, run the following command:
export TF_CUDNN_CTC_LOSS=1

7.1.15.  TF_GPU_ALLOCATOR
The TF_GPU_ALLOCATOR variable enables the memory allocator using cudaMallocAsync
available since CUDA 11.2. It has fewer fragmentation issues than the default BFC
memory allocator. Note, this could become the default in the future.

This environment variable is unset by default.

To enable the variable, run the following command:
export TF_GPU_ALLOCATOR=cuda_malloc_async

7.1.16.  TF_GRAPPLER_GRAPH_DEF_PATH
The TF_GRAPPLER_GRAPH_DEF_PATH variable outputs the Graphdef files before
and after the TF grappler optimizations (For more information about the
grappler optimizations, see the TensorFlow graph optimization with Grappler). In
checking the optimized operation graph during the TF runtime, users can specify
TF_GRAPPLER_GRAPH_DEF_PATH=/path/to/graphdef.

This environment variable is unset by default.

To enable the variable, run the following command:
export TF_GRAPPLER_GRAPH_DEF_PATH="path/to/graphdef"

https://www.tensorflow.org/guide/graph_optimization
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Chapter 8. Performance

To achieve optimum TensorFlow performance, for image based training, the container
includes sample scripts that demonstrate efficient training of CNNs. The sample scripts
may need to be modified to fit your application.

The scripts can be found in the /opt/tensorflow/nvidia-examples/cnn/ directory.
Along with the training scripts, there is also some documentation that can be found in
the /opt/tensorflow/nvidia-examples/cnn/README.md directory.

For more information, see Performance models and Benchmarks.

8.1.  Tensor Core Math
The TensorFlow container includes support for Tensor Cores starting in Volta’s
architecture, available on Tesla V100 GPUs. Tensor Cores deliver up to 12x higher peak
TFLOPs for training. The container enables Tensor Core math by default; therefore, any
models containing convolutions or matrix multiplies using the tf.float16 data type will
automatically take advantage of Tensor Core hardware whenever possible.

Tensor Core math can also be enabled for tf.float32 matrix multiply, convolution,
and RNN operations by setting the TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32=1,
TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32=1, and
TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32=1 (for RNNs that use the cudnn_rnn op)
environment variables, respectively. This mode causes data to be internally reduced to
float16 precision, which may affect training convergence.

With Tensor Core math enabled, inputs of matrix multiply, convolution,
and RNN operations are implicitly down-cast from FP32 to FP16. Internal
accumulation and outputs remain in FP32. This allows FP32 models to run faster
by using GPU Tensor Cores when available. Additionally, users should augment
models to include loss scaling (for example, by wrapping the optimizer in a
tf.contrib.mixed_precision.loss_scale_optimizer).

For more information about the architecture, see Inside Volta and Inside Turing.

8.1.1.  Float16 Training
Training with reduced precision can in some cases lead to poor or unstable convergence.

hhttps://www.tensorflow.org/lite/models/build
https://www.tensorflow.org/lite/performance/measurement
https://devblogs.nvidia.com/parallelforall/inside-volta/
https://www.nvidia.com/en-us/geforce/turing/
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NVIDIA recommends the following strategies to minimize the effects of reduced precision
during training (see nvidia-examples/cnn/nvcnn.py for a complete demonstration of
float16 training):

 1. Keep trainable variables in float32 precision and cast them to float16 before using
them in the model. For example:
tf.cast(tf.get_variable(..., dtype=tf.float32), tf.float16)

 2. Apply loss-scaling if the model struggles or fails to converge. Loss scaling involves
multiplying the loss by a scale factor before computing gradients and then dividing
the resulting gradients by the same scale again to re-normalize them. A typical loss
scale factor for recurrent neural network models is 128. For example:
loss, params = ...
scale = 128
grads = [grad / scale for grad in tf.gradients(loss * scale, params)]

8.2.  Automatic Mixed Precision (AMP)
Using mixed precision training requires three steps:

 1. Converting the model to use the float16 data type where possible.
 2. Keeping float32 master weights to accumulate per-iteration weight updates.
 3. Using loss scaling to preserve small gradient values.

Using automatic mixed precision with the TensorFlow framework can be as simple as
adding one line of code. It accomplishes this by automatically rewriting all computation
graphs with the necessary operations to enable mixed precision training and loss scaling.
See Automatic Mixed Precision for Deep Learning for more information.

8.2.1.  Automatic Mixed Precision Training In
TensorFlow

For models already using an optimizer from tf.train or tf.keras.optimizers
for both compute_gradients() and apply_gradients() operations
(for example, by calling optimizer.minimize() or model.fit()),
automatic mixed precision can be enabled by wrapping the optimizer with
tf.train.experimental.enable_mixed_precision_graph_rewrite().

Graph-based example:
opt = tf.train.AdamOptimizer()
opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)
train_op = opt.miminize(loss)

Keras-based example:
opt = tf.keras.optimizers.Adam()
opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)
model.compile(loss=loss, optimizer=opt)
model.fit(...)

For more information on this function, see the TensorFlow documentation here.

For backward compatibility with previous container releases, AMP can also be enabled for
tf.train optimizers by defining the following environment variable:

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://developer.nvidia.com/automatic-mixed-precision
https://www.tensorflow.org/versions/r1.14/api_docs/python/tf/train/experimental/enable_mixed_precision_graph_rewrite
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export TF_ENABLE_AUTO_MIXED_PRECISION=1

When enabled, automatic mixed precision will do two things:

 1. Insert the appropriate cast operations into your TensorFlow graph to use float16
execution and storage where appropriate -- this enables the use of Tensor Cores along
with memory storage and bandwidth savings.

 2. Turn on automatic loss scaling inside the training Optimizer object.

8.2.2.  Conditions And Limitations
Ensure you are familiar with the following conditions:

Additional control

It is possible to enable the automatic insertion of cast operations
without automatic loss scaling. The environment variable for doing so is
TF_ENABLE_AUTO_MIXED_PRECISION_GRAPH_REWRITE=1.

Caveats
Model types

Convolutional architectures that rely primarily on grouped or depth-separable
convolutions (MobileNet and ResNeXt are popular examples) will not presently see
speedups from float16 execution. This is due to the library constraints outside the
scope of automatic mixed precision, though we expect them to be relaxed soon.

Optimizers

Automatic mixed precision loss scaling requires that the model code use a subclass
of the built-in tf.train.optimizer or tf.keras.optimizers.optimizer classes.
Furthermore:

‣ TensorFlow code that directly calls tf.gradients and uses those gradients “by
hand” will not be supported.

‣ Instead, automatic mixed precision requires the paired calls to
optimizer.compute_gradients and optimizer.apply_gradients, or a call to the
high-level function optimizer.minimize.

‣ If the optimizer class is a custom subclass of tf.train.optimizer (not one
built into TensorFlow), then it may not be supported by automatic mixed
precision loss scaling. In particular, if the custom subclass overrides either
compute_gradients or apply_gradients, it must take care to also call into the
superclass implementations of those methods.

Multi-GPU

Prior to TensorFlow 1.14.0, automatic mixed precision did not support TensorFlow
"Distributed Strategies." Instead, multi-GPU training needed to use Horovod (or
TensorFlow device primitives).

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#scalefactor
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Other notes

If your code already has automatic loss scaling support built-in, it will need to be
disabled in order to avoid conflicting with automatic mixed precision own automatic
loss scaling. Alternatively, the automatic mixed precision graph rewrite can be enabled
without enabling loss scaling by using the option described above.

8.2.3.  FAQs

Q: What if my model code already supports mixed precision training?

If the code is already written in such a way to follow the Mixed Precision Training Guide,
then automatic mixed precision will leave things as they are. For example, the CNN
examples provided inside the NVIDIA TensorFlow container use mixed precision training
by default. If you would like to evaluate how they work with automatic mixed precision, be
sure to run them with the flag --precision=fp32.

Q: How much faster will my model run with automatic mixed precision?

There are no precise rules for mixed precision speedups, but here are a few guidelines:

‣ The more time is spent in matrix multiplication (dense layers) or convolutions, the
more Tensor Cores can accelerate the model. This means that “bigger” models often
see larger speedups. In particular, very small dense and convolution layers will see
limited benefit from automatic mixed precision, since there is not enough math to
fully exploit Tensor Cores.

‣ Mixed precision models use less memory than FP32, so it is possible to increase the
batch size when running with automatic mixed precision. Thus, you can often increase
the speedup by increasing the batch size after enabling automatic mixed precision.

Q: How can I see what changes automatic mixed precision makes to my
model?

Because automatic mixed precision operates at the level of TensorFlow graphs, it can
be challenging to quickly grasp the changes it makes: often it will tweak thousands of
TensorFlow operations, but those correspond to many fewer logical layers. You can set
the environment variable TF_CPP_VMODULE="auto_mixed_precision=2" to see a full log
of the decisions automatic mixed precision makes (note that this may generate a lot of
output).

Q: Why do I see only FP32 datatypes in my saved model GraphDef?

When you save a model graph or inspect the graph with Session.graph for
Session.graph_def, TensorFlow returns the unoptimized version of the graph. Automatic
mixed precision works as an optimization pass over the original graph, so its changes
are not included in the unoptimized graph. You can set the environment variable

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
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TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_LOG_PATH=”my/log/path”, and automatic
mixed precision will save out pre- and post-optimization copies of each graph it processes
to that directory.

Q: Why do I see step=0 repeated multiple times when training with automatic
mixed precision?

The automatic loss scaling algorithm that automatic mixed precision enables can
choose to “skip” training iterations as it searches for the optimal loss scale. When it
does so, it does not increment the global step count. Since most of the skips occur at
the beginning of training (usually fewer than ten iterations), this behavior manifests as
multiple iterations where the step counter stays at zero.

Q: How are user-defined custom TensorFlow operations handled?

By default, automatic mixed precision will leave alone any op types it doesn’t know about,
including custom operations. That means the types of the op’s inputs and outputs are
not changed, and automatic mixed precision will insert casts as necessary to interoperate
with the rest of the (possibly-changed) graph.

If you would like to make automatic mixed precision aware of a custom op type, there are
three environment variables you can use:
TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_ALLOWLIST_ADD

These are ops for which it is worth casting the inputs to FP16 to get FP16 execution.
Mostly, they are ops that can take advantage of Tensor Cores.

TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_INFERLIST_ADD
These are ops for which FP16 execution is available, so they can use FP16 if the inputs
happen to already be in FP16 because of an upstream ALLOWLIST op.

TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_DENYLIST_ADD
These are ops for which FP32 is necessary for numerical precision, and the outputs are
not safe to cast back to FP16. Example ops include Exp and Log.

Each of these environment variables takes a comma-separated
list of string op names. For example, you might set export
TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_ALLOWLIST_ADD=MyOp1,MyOp2. The op name
is the string name used in the call to REGISTER_OP, which corresponds to the name
attribute on the operation’s OpDef.

Q: Can I change the algorithmic behavior of automatic mixed precision?

The primary lever for controlling automatic mixed precision behavior is to manipulate
what ops lie on each of the allowlists, inferlists, and denylists. You can add ops to each
using the three environment variables above, and there is a corresponding variable
TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_{ALLOWLIST,INFERLIST,DENYLIST}_REMOVE

to take built-in ops off of each list.
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Chapter 9. XLA Best Practices

9.1.  XLA Introduction
XLA is an optimizing graph compiler for TensorFlow. It optimizes parts of the TensorFlow
GraphDef in an attempt to improve performance.

Unlike native TensorFlow, which executes GraphDef nodes one at a time, XLA considers
many GraphDef nodes at once and generates optimized code for these nodes.

9.1.1.  Why Use XLA?
In many cases, XLA improves performance over native TensorFlow. The major
difference between these two is the fusion optimizer in XLA. Instead of executing
many small kernels back to back, XLA optimizes these into larger kernels. This greatly
reduces execution time of bandwidth bound kernels. XLA also offers many algebraic
simplifications, far superior to what Tensorflow offers.

9.1.2.  Enabling XLA
XLA can be enabled in a few ways:

‣ Opt in for specific parts of the model, referred to as manual clustering.

tf.function is one way for users to control which parts of a model to optimize with XLA.
See here for TF1.X, and here for TF2.X how to use a tf.function.

Alternatively, a so-called jit_scope can be used to control which parts of a model to
optimize with XLA. See here for TF1.X, and here for TF2.X how to use a jit_scope. Be
advised that this is merely a hint, as unsupported nodes are not compiled.

Make TensorFlow decide which parts of the model to optimize, referred to as auto
clustering.

‣ Opt in at the source level.

For TF 1.X, users can opt in to auto clustering at the session level by adding the
following line of code to change the session configuration argument:

config.graph_options.optimizer_options.global_jit_level =

tf.OptimizerOptions.ON_1

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/function
https://www.tensorflow.org/api_docs/python/tf/function
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/xla/experimental/jit_scope
https://www.tensorflow.org/api_docs/python/tf/xla/experimental/jit_scope
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For TF 2.X, users can opt in to auto clustering at the global level by adding the
following line of code at the beginning of the script:

tf.config.optimizer.set_jit(True)

‣ Opt in through environment variable.

Users can opt into auto clustering, where TensorFlow decides which nodes go to XLA,
without any source code changes by setting the following environment variable:

TF_XLA_FLAGS=--tf_xla_auto_jit=1

This environment variable works for both TF 1.X, and TF 2.X. For models that have XLA
enabled through the session config, XLA can be disabled with:

TF_XLA_FLAGS=--tf_xla_auto_jit=-1

The environment variable takes precedence over the global_jit_level and the
jit_scope, but not over tf.function. This document focuses primarily on auto
clustering. Most of it applies to manual clustering as well.

9.1.2.1.  XLA Lite
TensorFlow autoclustering clusters operations based on an allow-list.

By default, this list is quite extensive. This can result in large clusters which can result in
loss of performance or excessive memory usage (see below). To mitigate such problems,
users can make TensorFlow only cluster “small” and fusible operations such as pointwise
and reduction operations, by setting:

TF_XLA_FLAGS=--tf_xla_auto_jit=fusible

Note that since models always have matrix multiplications or convolutions, this results in
more, but smaller clusters.

9.1.3.  XLA Caveats
Using XLA incurs two different costs when comparing against a native TensorFlow
execution:

 1. Compilation time

Code must be compiled at runtime. This takes time depending on the size of the
generated clusters and the number of times it is compiled (once for every shape
instance), this time might not be recoverable during execution.

 2. Execution time overhead due to the TF-XLA interface.

The way that XLA integrates back into TensorFlow adds a cost to the graph execution.

Both of these are discussed in more depth throughout the document. These caveats are
mentioned here to highlight that XLA is not a silver bullet that speeds up all models under
all scenarios. Short running scripts, on small batch sizes, are typically not good candidates
for XLA. Models that exhibit dynamic shapes are another class of models that often don’t
do well when using XLA.
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Furthermore, the overhead incurred from using XLA is hard to pin-point. Some overhead
occurs at the beginning of the model, others occur throughout the execution with fixed
cost, and others yet occur irregularly during execution. It is important to be aware of this
when instructing the code to get timing information from a model execution.

Besides these performance caveats, XLA sometimes causes an out-of-memory during
execution. This is discussed in more detail later as well.

9.2.  TF-XLA Integration
This section describes how XLA currently changes the executed graph, and how it affects
the execution of the graph.

This helps developers understand how TensorFlow interfaces with XLA, and how this
affects performance. This section, as well as the remainder of this document, assumes
the reader to have a rudimentary knowledge of TensorFlow GraphDef, and how the
TensorFlow stream executor executes it.

9.2.1.  Changes to the TensorFlow Graph

9.2.1.1.  Clustering
When auto clustering is enabled, a part of the graph is chosen to be compiled with XLA.
This part (G), has a set of inputs (I) and a set of outputs (O).

When XLA is enabled, this graph is transformed into the following graph for execution:
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The part (G) has been clustered into a cluster (C). Be aware that C is merely a cluster
of operations and has not yet been compiled. It cannot be compiled yet, as the actual
shapes of the input and output tensors are not available until execution time.

When auto clustering, each part of the model that is clustered is replaced with a graph
depicted above, referring to a cluster that represents that part. Note that the original
GraphDef representation of the graph is still there to serve as a fallback path. The merge
nodes (in the actual graph, there is one merge node per output) forward the outputs from
either the native TensorFlow execution or the XLA execution.
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9.2.1.2.  TensorFlow Graph Execution with XLA
During the graph execution, when the above graph is reached, the following happens for
each unique shape instance of the set of inputs.1

 1. The first two times the _XlaCompile node is executed, it falls back to the original
GraphDef execution of G.

 2. The third time the _XlaCompile node is executed, cluster C is compiled into an XLA
binary. After the compilation has finished, the binary is stored in a cache, accessible
through a key that encodes the cluster, and the shapes and types of the inputs.
This key is passed to the _XlaRun node, and the binary is executed. If compilation of
the cluster took longer than 30 seconds, it will not be compiled for any other shape
instance in the future.

 3. Any subsequent time the _XlaCompile node is executed, compilation is skipped and
the key of the cached binary is passed to _XlaRun node to execute.

Note that in order for the _XlaCompile node to execute, all inputs (I) must be
ready. Similarly, none of the outputs (O) are ready until either G or _XlaRun are done
executing.

Note that the above steps are for each unique shape instance. If the shape of any
input changes throughout the model execution, recompilation of the cluster happens.

9.2.2.  Symptoms of XLA Issues
This section mentions the most common issues observed when using XLA, and why these
can happen. The next section focuses on how to address them.

9.2.2.1.  Functional Issues
The most common functional issues fall into two categories:

 1. Different output.

XLA is a compiler that performs semantically equivalent transformations only.2 Since
these transformations are on floating point tensors, the outcome is most likely
(slightly) different compared to the native TensorFlow execution. Developers should be
aware of this.

 2. Out of memory.

XLA, by nature of its design, increases the amount of memory needed to execute.
As mentioned earlier, all inputs must be ready before execution, and all outputs are
ready at the same time after execution. This means memory for all inputs and outputs
must be allocated for the execution. Furthermore, all memory required to hold the
intermediate tensors in the XLA binary must be allocated.

1 This is based on TF 1.15.2+nv. The numbers in the heuristic can change between releases.
2 XLA bugs excluded. XLA does not change the accuracy of the operations.
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9.2.2.2.  Performance Issues
The most common performance issues fall into four categories:

 1. TF-XLA integration.

The way that TF interfaces with XLA (as described in 9.2.1), comes at a performance
cost, partly due to the extra nodes inserted in the graph.

 2. Compile time overhead.

When a model has input data of varying shapes (for example sentences for an NLP
model), compilation overhead can add up. Large clusters contribute to this as well.

 3. Compute/communication overlap.

XLA requires all inputs to be ready before execution, and the outputs are ready when
the execution finishes. This synchronization can contribute to a performance when
compared to Tensorflow. TensorFlow has a fine-grained execution model, that allows
for overlap of copy and computation, which is not possible when using XLA.

 4. XLA optimization and code generation.

Sometimes the XLA optimizer or code generator don’t do as well as they could. In
our experience this is the least common scenario when dealing with performance
regressions.

9.3.  Identifying and Managing the
Issues

For developers, XLA is mostly a black box. This section sheds some light on how to
identify the symptoms, and take appropriate action in an attempt to solve these issues.

9.3.1.  Controlling XLA with Environment Variables
XLA exposes many ways to either retrieve information from it, or control the behavior of
it. These options are not (well) documented, and can even change from release to release
(behavior, format, and even existence). Even then, they offer lots of insights into XLA’s
innards. They come in two classes:

‣ TF_XLA_FLAGS environment variable
This variable can be set to options that control the TF-XLA boundary. It can be set to
a space separated list of options, which can be found in tensorflow/compiler/jit/
flags.cc

‣ XLA_FLAGS environment variable

This variable can be set to options that control the XLA optimizer and code generator.
It can be set to a space separated list of options, which can be found in tensorflow/
compiler/xla/debug_options_flags.cc
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Most of the options in these source files are primarily used by XLA developers and go
beyond the scope of this document. Some are useful to model developers, and are
mentioned below.

9.3.2.  Out of Memory Issue
This is very easy to identify, as it is reported by the TensorFlow allocator. The reason for
out-of-memory has been described in Functional Issues. When this happens, run the
model with this extra parameter:

TF_XLA_FLAGS=--tf_xla_always_defer_compilation=true 3

This option instructs TensorFlow to never compile a cluster, but always execute the
fallback path. If this still results in an out-of-memory error, the problem is that the inputs
(I) and outputs (O) don’t all fit in memory simultaneously. If the execution succeeds, the
problem is that the inputs (I), outputs (O) and all intermediate tensors in the XLA binary
don’t all fit in memory simultaneously.

In both cases, the only way to guranteed address an out-of-memory issue in XLA is by
reducing the number of operations in a cluster. The number of operations (in)directly
affects the number of inputs, outputs, and intermediate tensors.

One way to reduce the cluster sizes is by enabling XLA-Lite. This pretty much guarantees
this issue to disappear, as the cluster sizes are reduced rather drastically.

Another way is to limit the maximum size of each cluster. By default, there is no upper
bound to the size of a cluster. The sizes of clusters can by retrieved with:

TF_CPP_VMODULE=mark_for_compilation_pass=2

Look for occurrences of " *** Clustering info for graph" to get the sizes of the generated
clusters.

When running with:

TF_XLA_FLAGS=--tf_xla_max_cluster_size=<n>

where <n> is smaller than the largest cluster size, an upper bound can be found that
avoids the out-of-memory.

Reducing the mini-batch size is another proactive way an out-of-memory issue can
possibly be avoided. This requires no changes to XLA. A smaller mini-batch size, in
combination with XLA, can still outperform native TensorFlow.

The TensorFlow stream executor executes many operations in parallel. This increases
the memory requirement as more intermediate tensors are alive concurrently. Limiting
the amount of parallelism in the stream executor often reduces the amount of memory
needed. The amount of parallelism is controlled by specifying the number of threads the
executor can use, by setting the following environment variable:

TF_NUM_INTEROP_THREADS=<n>

3 The real setting should be: TF_XLA_FLAGS=’--tf_xla_auto_jit=1,--tf_xla_always_defer_compilation=true’. The
remainder of the document uses this shorthand. It is assumed that XLA is on in all these cases.
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9.3.2.1.  Memory Fragmentation
By default, XLA allocates the required memory for the intermediate tensors in one
allocation. Because of memory fragmentation, it can happen that the TensorFlow
allocator can not allocate a contiguous memory buffer eventhough ample memory is still
available.

By setting

XLA_FLAGS=--xla_multiheap_size_constraint_per_heap=<n>

a user can break up the monolithic memory allocation into multiple ones, each with a
maximum size of n bytes.

Alternatively, TensorFlow-XLA Integration Issues describes an option that sometimes
successfully circumvents memory fragmentation.

9.3.3.  TensorFlow-XLA Performance Issues

9.3.3.1.  TensorFlow-XLA Integration Issues

When XLA performs worse than native TensorFlow, one of first things to try is to run it
again with:

TF_XLA_FLAGS=--tf_xla_always_defer_compilation=true

If the performance is still worse, the TF-XLA integration is the issue, as this option will run
the fallback path without any compilation. In that case, run again with:

TF_XLA_FLAGS=--tf_xla_enable_lazy_compilation=false

This will completely change the way that TensorFlow interfaces with XLA. Unlike the
diagram in Clustering, the graph now looks like:
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Note that the fallback path is no longer present. This option often delivers good
performance results for nodes that are executed many times for a given shape instance.
It avoids the merge nodes and the compilation heuristics, as it must compile on first
execution. A direct side effect of this option is a very different graphDef node execution
(execute a single _XlaRun node instead of many nodes in the fallback path), and therefore
a very different usage of the TensorFLow memory allocator. There are scenarios where
this option successfully avoids the memory fragmentation issue mentioned before. This is
a mere accidental side-effect, and not a fix.

A second manner in which the TX-XLA interface can manifest itself as a performance
issue is when lots of smaller clusters occur. When this happens, the overhead of the extra
nodes in the graph, the compilation time (little as it is), and the XLA executor is worse
than the performance gain achieved by the XLA compiler. By default, the lower bound for
a cluster size is 4 operations. When running with:

TF_XLA_FLAGS=--tf_xla_min_cluster_size=<n>

where <n> is larger than 4, any cluster with less than <n> operations will be ignored, and
the graph remains unchanged.
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9.3.3.2.  Compilation Overhead
Compile time overhead can cause severe performance degradation, especially in models
with varying shapes of input data.

To know how much time is spent on compilation, run the model with:

TF_CPP_VMODULE=xla_compilation_cache=1

This dumps information after each compilation happens. It shows how long the last
compilation took, and the accumulated time of all compilations up to that moment. When
running with:

TF_CPP_VMODULE=nvptx_compiler=2

it also dumps information regarding the size of the .ptx files and .cub files. Compile time
overhead can be reduced by either increasing the lower bound for clusters (when there
are many small compilations):

TF_XLA_FLAGS=--tf_xla_min_cluster_size=<n>

or by decreasing the upper bound for cluster sizes when some compilations take too
long:

TF_XLA_FLAGS=--tf_xla_max_cluster_size=<n>

XLA can also perform cluster compilations in the background, while execution of the
fallback path can make progress. These background compilations take CPU resources
away from the main execution pipeline, but for many cases, not blocking the execution
while waiting for compilation to finish can lower the end to end latency. Asynchronous
compilation can be opted into by setting

TF_XLA_FLAGS=--tf_xla_async_compilation=true

Asynchronous compilation is not compatible with disabling of lazy compilation. When lazy
compilation is disabled, it takes precedence over asynchronous compilation.

XLA can persistently cache parts of a cluster compilation to disk. This cache can be used
to speed up the compilation time of subsequent runs by reusing cached compilation
results. Persistent caching is enabled by setting

TF_XLA_FLAGS=--xla_gpu_persistent_cache_dir=<dir_name>

dirname must refer to an existing directory, with read and write permissions. It will be
used to store new entries, and retrieve existing entries. The recommended usage is a
small cache per model, as all cache entries are read at initialization time and entries not
used by the model will therefore be read, but never used. This is an experimental feature,
and compatibilty of the cache with respect to the TensorFlow version is not guaranteed.

9.3.3.3.  Compute/Communication Overlap
As mentioned earlier, as a direct side effect of how XLA integrates with TensorFlow, all
outputs of an _XlaRun node are ready at the same time.

This means that any consumer of any XLA output must wait until all outputs
are produced. This limits the TensorFlow executor to execute computation and
communication in parallel. The fact is that inside an XLA cluster it is often the case that
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outputs have already been computed, and could be passed on to a consumer. XLA has
an optimization referred to as AyncIO, that allows consumers of XLA outputs to start
execution the moment the output is available.

If XLA on one GPU outperforms native TensorFlow, but performs worse on multi-GPU
systems, it could be because of the lack of compute and computation overlap. Run
TensorFlow with:

TF_XLA_FLAGS=--tf_xla_async_io_level=1

to enable AsyncIO.

9.3.4.  XLA Optimizer and Code Generation
In most cases, the TF-XLA interface issues disappear when:

‣ Running long enough. Compilation overhead decreases over time, as most shape
instances of the clusters will hit in the cache.

‣ Running with large enough tensors, i.e., a large enough batch size.

‣ Filtering out tiny clusters.

If XLA compiled clusters run slower than the fallback path, the XLA compiler could be the
reason for the performance degradation.

9.3.4.1.  XLA Autotune
By default, XLA performs autotuning over the GEMM and CONV algorithms in cuBLAS
and cuDNN.  For each GEMM, all possible alternatives in cuBLAS are tried, and the fastest
one is picked; similarly for each CONV operation into cuDNN. Autotuning is controlled with
a level [0..4]. Level 4 is the default and it performs some functional tests between the
different alternatives to catch cuBLAS and cuDNN problems.

Try running with:

XLA_FLAGS=--xla_gpu_autotune_level=2

This does full autotuning, but skips some initialization and comparisons done at level 4.
For short running scripts, even disabling autotuning altogether can improve performance:

XLA_FLAGS=--xla_gpu_autotune_level=0

9.3.4.2.  Various Options
cuDNN Batch Normalization

By default the XLA breaks down the batch normalization layer into many smaller
operations that then get optimized by XLA. For Training only, XLA has an option to
preserve batch normalization as a single operation that targets the cuDNN batch
normalization API to execute it. Run with:

XLA_FLAGS=--xla_gpu_use_cudnn_batchnorm_level=2

to use cuDNN to execute the batch normalization layer for both forward and backward
layers.
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tf.enable_resource_variables()

TensorFlow resource variables are improved versions of TensorFlow variables. XLA does
not cluster variables, whereas is does cluster resource variables. Clustering resource
variables therefore clusters more graphDef nodes, including assign nodes. We’ve seen
at least one model in which many assign nodes were all depending on outputs from an
XLA cluster. Enabling resource variables made these nodes a part of the XLA cluster,
improving the latency, as these assign nodes did not have to wait for the XLA cluster to
finish. Enabling resource variables is achieved by adding:

tf.enable_resource_variables()

to the model source before any variables have been created.

--xla_backend_optimization_level

XLA_FLAGS=--xla_backend_optimization_level=0

--xla_gpu_disable_ptxas_optimizations

XLA_FLAGS=--xla_gpu_disable_ptxas_optimizations=true

9.4.  XLA Options Reference
This section lists the options mentioned throughout this document with a short
description.

TF_XLA Options

‣ --tf_xla_auto_jit

Controls clustering. 0: off , 1: on, fusible: Xla-Lite

‣ --tf_xla_always_defer_compilation

Controls deferred compilation. true: fallback path, false: default strategy

‣ --tf_xla_max_cluster_size

Sets upper bound for cluster size

‣ --tf_xla_min_cluster_size

Sets lower bound for cluster size

‣ --tf_xla_enable_lazy_compilation

Controls lazy compilation. false: always compile, true: default strategy

‣ --tf_xla_async_compilation

Controls asynchronous compilation. false: default strategy, true: compile
asynchronously

Available as of 20.10

‣ --xla_gpu_persistent_cache_dir

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/enable_resource_variables
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Controls a persistent compilation cache. When set to an existing directory, that
directory is used as the compilation cache.

Available as of 21.04

‣ --tf_xla_async_io_level

Enable asynchronous IO. 0: off, 1: on

XLA Options

‣ --xla_gpu_autotune_level

Controls autotune level, 0: off, 1: w/o initialization, 2: w/ initalizalization, 3: w/ re-
initialization, 4: w/ functional check

‣ --xla_multiheap_size_constraint_per_heap

Controls whether to multiple heaps. -1: single heap, n: use multiple allocations with a
maximum of n bytes each.

Available as of 20.11

‣ --xla_gpu_use_cudnn_batchnorm+level

Controls whether to use cuDNN batchnorm. 0 no, 1: BatchNorm+Bias+Act only, 2: all
cases.
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Chapter 10. Troubleshooting

10.1.  Support
For more information about TensorFlow, including tutorials, documentation, and
examples, see:

‣ TensorFlow tutorials

‣ TensorFlow API

‣ Automatic mixed precision

‣ Tensor Cores

‣ Deep Learning Examples optimized for Tensor Cores

For the latest TensorFlow Release Notes, see the https://docs.nvidia.com/deeplearning/
frameworks/tensorflow-release-notes/index.html.

https://www.tensorflow.org/tutorials
https://www.tensorflow.org/api_docs/python
https://developer.nvidia.com/automatic-mixed-precision
https://developer.nvidia.com/tensor-cores
https://developer.nvidia.com/deep-learning-examples
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/index.html
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/index.html
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