Advection diffusion equation Reference: https://en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
- class modulus.eq.pdes.advection_diffusion.AdvectionDiffusion(T='T', D='D', Q=0, rho='rho', dim=3, time=False, mixed_form=False)[source]
Bases:
PDE
Advection diffusion equation
- Parameters
T (str) – The dependent variable.
D (float, Sympy Symbol/Expr, str) – Diffusivity. If D is a str then it is converted to Sympy Function of form ‘D(x,y,z,t)’. If ‘D’ is a Sympy Symbol or Expression then this is substituted into the equation.
Q (float, Sympy Symbol/Expr, str) – The source term. If Q is a str then it is converted to Sympy Function of form ‘Q(x,y,z,t)’. If ‘Q’ is a Sympy Symbol or Expression then this is substituted into the equation. Default is 0.
rho (float, Sympy Symbol/Expr, str) – The density. If rho is a str then it is converted to Sympy Function of form ‘rho(x,y,z,t)’. If ‘rho’ is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressible Navier Stokes.
dim (int) – Dimension of the diffusion equation (1, 2, or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is False.
mixed_form (bool) – If True, use the mixed formulation of the wave equation.
Examples
>>>ad = AdvectionDiffusion(D=0.1, rho=1.) >>>ad.pprint() advection_diffusion: u*T__x + v*T__y + w*T__z - 0.1*T__x__x - 0.1*T__y__y - 0.1*T__z__z >>>ad = AdvectionDiffusion(D='D', rho=1, dim=2, time=True) >>>ad.pprint() advection_diffusion: -D*T__x__x - D*T__y__y + u*T__x + v*T__y - D__x*T__x - D__y*T__y + T__t
Basic equations
- class modulus.eq.pdes.basic.Curl(vector, curl_name=['u', 'v', 'w'])[source]
Bases:
PDE
del cross vector operator
- Parameters
vector (tuple of 3 Sympy Exprs, floats, ints or strings) – This will be the vector to take the curl of.
curl_name (tuple of 3 strings) – These will be the output names of the curl operations.
Examples
>>>c = Curl((0,0,'phi'), ('u','v','w')) >>>c.pprint() u: phi__y v: -phi__x w: 0
- class modulus.eq.pdes.basic.GradNormal(T, dim=3, time=True)[source]
Bases:
PDE
Implementation of the gradient boundary condition
- Parameters
T (str) – The dependent variable.
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
Examples
>>>gn = ns = GradNormal(T='T') >>>gn.pprint() normal_gradient_T: normal_x*T__x + normal_y*T__y + normal_z*T__z
- class modulus.eq.pdes.basic.NormalDotVec(vec=['u', 'v', 'w'])[source]
Bases:
PDE
Normal dot velocity
- Parameters
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
Diffusion equation
- class modulus.eq.pdes.diffusion.Diffusion(T='T', D='D', Q=0, dim=3, time=True, mixed_form=False)[source]
Bases:
PDE
Diffusion equation
- Parameters
T (str) – The dependent variable.
D (float, Sympy Symbol/Expr, str) – Diffusivity. If D is a str then it is converted to Sympy Function of form ‘D(x,y,z,t)’. If ‘D’ is a Sympy Symbol or Expression then this is substituted into the equation.
Q (float, Sympy Symbol/Expr, str) – The source term. If Q is a str then it is converted to Sympy Function of form ‘Q(x,y,z,t)’. If ‘Q’ is a Sympy Symbol or Expression then this is substituted into the equation. Default is 0.
dim (int) – Dimension of the diffusion equation (1, 2, or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
mixed_form (bool) – If True, use the mixed formulation of the diffusion equations.
Examples
>>>diff = Diffusion(D=0.1, Q=1, dim=2) >>>diff.pprint() diffusion_T: T__t - 0.1*T__x__x - 0.1*T__y__y - 1 >>>diff = Diffusion(T='u', D='D', Q='Q', dim=3, time=False) >>>diff.pprint() diffusion_u: -D*u__x__x - D*u__y__y - D*u__z__z - Q - D__x*u__x - D__y*u__y - D__z*u__z
- class modulus.eq.pdes.diffusion.DiffusionInterface(T_1, T_2, D_1, D_2, dim=3, time=True)[source]
Bases:
PDE
Matches the boundary conditions at an interface
- Parameters
T_1 (str) – Dependent variables to match the boundary conditions at the interface.
T_2 (str) – Dependent variables to match the boundary conditions at the interface.
D_1 (float) – Diffusivity at the interface.
D_2 (float) – Diffusivity at the interface.
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
Example
>>>diff = DiffusionInterface('theta_s', 'theta_f', 0.1, 0.05, dim=2) >>>diff.pprint() diffusion_interface_dirichlet_theta_s_theta_f: -theta_f + theta_s diffusion_interface_neumann_theta_s_theta_f: -0.05*normal_x*theta_f__x + 0.1*normal_x*theta_s__x - 0.05*normal_y*theta_f__y + 0.1*normal_y*theta_s__y
Maxwell’s equation
- class modulus.eq.pdes.electromagnetic.MaxwellFreqReal(ux='ux', uy='uy', uz='uz', k=1.0, mixed_form=False)[source]
Bases:
PDE
Frequency domain Maxwell’s equation
- Parameters
ux (str) – Ex
uy (str) – Ey
uz (str) – Ez
k (float, Sympy Symbol/Expr, str) – Wave number. If k is a str then it is converted to Sympy Function of form ‘k(x,y,z,t)’. If ‘k’ is a Sympy Symbol or Expression then this is substituted into the equation.
mixed_form (bool) – If True, use the mixed formulation of the diffusion equations.
- class modulus.eq.pdes.electromagnetic.PEC(ux='ux', uy='uy', uz='uz', dim=3)[source]
Bases:
PDE
Perfect Electric Conduct BC for
- Parameters
ux (str) – Ex
uy (str) – Ey
uz (str) – Ez
dim (int) – Dimension of the equations (2, or 3). Default is 3.
- class modulus.eq.pdes.electromagnetic.SommerfeldBC(ux='ux', uy='uy', uz='uz')[source]
Bases:
PDE
Frequency domain ABC, Sommerfeld radiation condition Only for real part Equation: ‘n x _curl(E) = 0’
- Parameters
ux (str) – Ex
uy (str) – Ey
uz (str) – Ez
Equations related to linear elasticity
- class modulus.eq.pdes.linear_elasticity.LinearElasticity(E=None, nu=None, lambda_=None, mu=None, rho=1, dim=3, time=False)[source]
Bases:
PDE
Linear elasticity equations. Use either (E, nu) or (lambda_, mu) to define the material properties.
- Parameters
E (float, Sympy Symbol/Expr, str) – The Young’s modulus
nu (float, Sympy Symbol/Expr, str) – The Poisson’s ratio
lambda (float, Sympy Symbol/Expr, str) – Lamé’s first parameter
mu (float, Sympy Symbol/Expr, str) – Lamé’s second parameter (shear modulus)
rho (float, Sympy Symbol/Expr, str) – Mass density.
dim (int) – Dimension of the linear elasticity (2 or 3). Default is 3.
Example
>>>elasticity_equations = LinearElasticity(E=10, nu=0.3, dim=2) >>>elasticity_equations.pprint() navier_x: -13.4615384615385*u__x__x - 3.84615384615385*u__y__y - 9.61538461538461*v__x__y navier_y: -3.84615384615385*v__x__x - 13.4615384615385*v__y__y - 9.61538461538461*u__x__y stress_disp_xx: -sigma_xx + 13.4615384615385*u__x + 5.76923076923077*v__y stress_disp_yy: -sigma_yy + 5.76923076923077*u__x + 13.4615384615385*v__y stress_disp_xy: -sigma_xy + 3.84615384615385*u__y + 3.84615384615385*v__x equilibrium_x: -sigma_xx__x - sigma_xy__y equilibrium_y: -sigma_xy__x - sigma_yy__y traction_x: normal_x*sigma_xx + normal_y*sigma_xy traction_y: normal_x*sigma_xy + normal_y*sigma_yy
- class modulus.eq.pdes.linear_elasticity.LinearElasticityPlaneStress(E=None, nu=None, lambda_=None, mu=None, rho=1, time=False)[source]
Bases:
PDE
Linear elasticity plane stress equations. Use either (E, nu) or (lambda_, mu) to define the material properties.
- Parameters
E (float, Sympy Symbol/Expr, str) – The Young’s modulus
nu (float, Sympy Symbol/Expr, str) – The Poisson’s ratio
lambda (float, Sympy Symbol/Expr, str) – Lamé’s first parameter.
mu (float, Sympy Symbol/Expr, str) – Lamé’s second parameter (shear modulus).
rho (float, Sympy Symbol/Expr, str) – Mass density.
Example
>>>plane_stress_equations = LinearElasticityPlaneStress(E=10, nu=0.3) >>>plane_stress_equations.pprint() stress_disp_xx: -sigma_xx + 10.989010989011*u__x + 3.2967032967033*v__y stress_disp_yy: -sigma_yy + 3.2967032967033*u__x + 10.989010989011*v__y stress_disp_xy: -sigma_xy + 3.84615384615385*u__y + 3.84615384615385*v__x equilibrium_x: -sigma_xx__x - sigma_xy__y equilibrium_y: -sigma_xy__x - sigma_yy__y traction_x: normal_x*sigma_xx + normal_y*sigma_xy traction_y: normal_x*sigma_xy + normal_y*sigma_yy
Equations related to Navier Stokes Equations
Bases:
PDE
Compressible Integral Continuity
- Parameters
rho (float, Sympy Symbol/Expr, str) – The density of the fluid. If rho is a str then it is converted to Sympy Function of form ‘rho(x,y,z,t)’. If ‘rho’ is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressibility. Default is 1.
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
Bases:
PDE
del cross vector operator
- Parameters
vector (tuple of 3 Sympy Exprs, floats, ints or strings) – This will be the vector to take the curl of.
curl_name (tuple of 3 strings) – These will be the output names of the curl operations.
Examples
>>>c = Curl((0,0,'phi'), ('u','v','w')) >>>c.pprint() u: phi__y v: -phi__x w: 0
Bases:
PDE
Flux Continuity for arbitrary variable. Includes advective and diffusive flux
- Parameters
T (str) – The dependent variable.
rho (float, Sympy Symbol/Expr, str) – The density of the fluid. If rho is a str then it is converted to Sympy Function of form ‘rho(x,y,z,t)’. If ‘rho’ is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressibility. Default is 1.
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
Bases:
PDE
Implementation of the gradient boundary condition
- Parameters
T (str) – The dependent variable.
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
Examples
>>>gn = ns = GradNormal(T='T') >>>gn.pprint() normal_gradient_T: normal_x*T__x + normal_y*T__y + normal_z*T__z
Bases:
PDE
Compressible Navier Stokes equations
- Parameters
nu (float, Sympy Symbol/Expr, str) – The kinematic viscosity. If nu is a str then it is converted to Sympy Function of form nu(x,y,z,t). If nu is a Sympy Symbol or Expression then this is substituted into the equation. This allows for variable viscosity.
rho (float, Sympy Symbol/Expr, str) – The density of the fluid. If rho is a str then it is converted to Sympy Function of form ‘rho(x,y,z,t)’. If ‘rho’ is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressible Navier Stokes. Default is 1.
dim (int) – Dimension of the Navier Stokes (2 or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
mixed_form (bool) – If True, use the mixed formulation of the Navier-Stokes equations.
Examples
>>>ns = NavierStokes(nu=0.01, rho=1, dim=2) >>>ns.pprint() continuity: u__x + v__y momentum_x: u*u__x + v*u__y + p__x + u__t - 0.01*u__x__x - 0.01*u__y__y momentum_y: u*v__x + v*v__y + p__y + v__t - 0.01*v__x__x - 0.01*v__y__y >>>ns = NavierStokes(nu='nu', rho=1, dim=2, time=False) >>>ns.pprint() continuity: u__x + v__y momentum_x: -nu*u__x__x - nu*u__y__y + u*u__x + v*u__y - nu__x*u__x - nu__y*u__y + p__x momentum_y: -nu*v__x__x - nu*v__y__y + u*v__x + v*v__y - nu__x*v__x - nu__y*v__y + p__y
Screened Poisson Distance Equation taken from, https://www.researchgate.net/publication/266149392_Dynamic_Distance-Based_Shape_Features_for_Gait_Recognition, Equation 6 in paper.
- class modulus.eq.pdes.signed_distance_function.ScreenedPoissonDistance(distance='normal_distance', tau=0.1, dim=3)[source]
Bases:
PDE
Screened Poisson Distance
- Parameters
distance (str) – A user-defined variable for distance. Default is “normal_distance”.
tau (float) – A small, positive parameter. Default is 0.1.
dim (int) – Dimension of the Screened Poisson Distance (1, 2, or 3). Default is 3.
Example
>>>s = ScreenedPoissonDistance(tau=0.1, dim=2) >>>s.pprint() screened_poisson_normal_distance: -normal_distance__x**2 + 0.316227766016838*normal_distance__x__x - normal_distance__y**2 + 0.316227766016838*normal_distance__y__y + 1
Zero Equation Turbulence model References: https://www.eureka.im/954.html https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/SimCFD-Learning/files/GUID-BBA4E008-8346-465B-9FD3-D193CF108AF0-htm.html
- class modulus.eq.pdes.turbulence_zero_eq.ZeroEquation(nu, max_distance, rho=1, dim=3, time=True)[source]
Bases:
PDE
Zero Equation Turbulence model
- Parameters
nu (float) – The kinematic viscosity of the fluid.
max_distance (float) – The maximum wall distance in the flow field.
rho (float, Sympy Symbol/Expr, str) – The density. If rho is a str then it is converted to Sympy Function of form ‘rho(x,y,z,t)’. If ‘rho’ is a Sympy Symbol or Expression then this is substituted into the equation. Default is 1.
dim (int) – Dimension of the Zero Equation Turbulence model (2 or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
Example
>>>zeroEq = ZeroEquation(nu=0.1, max_distance=2.0, dim=2) >>>kEp.pprint() nu: sqrt((u__y + v__x)**2 + 2*u__x**2 + 2*v__y**2) *Min(0.18, 0.419*normal_distance)**2 + 0.1
Wave equation Reference: https://en.wikipedia.org/wiki/Wave_equation
- class modulus.eq.pdes.wave_equation.HelmholtzEquation(u, k, dim=3, mixed_form=False)[source]
Bases:
PDE
- class modulus.eq.pdes.wave_equation.WaveEquation(u='u', c='c', dim=3, time=True, mixed_form=False)[source]
Bases:
PDE
Wave equation
- Parameters
u (str) – The dependent variable.
c (float, Sympy Symbol/Expr, str) – Wave speed coefficient. If c is a str then it is converted to Sympy Function of form ‘c(x,y,z,t)’. If ‘c’ is a Sympy Symbol or Expression then this is substituted into the equation.
dim (int) – Dimension of the wave equation (1, 2, or 3). Default is 2.
time (bool) – If time-dependent equations or not. Default is True.
mixed_form (bool) – If True, use the mixed formulation of the wave equation.
Examples
>>>we = WaveEquation(c=0.8, dim=3) >>>we.pprint() wave_equation: u__t__t - 0.64*u__x__x - 0.64*u__y__y - 0.64*u__z__z >>>we = WaveEquation(c='c', dim=2, time=False) >>>we.pprint() wave_equation: -c**2*u__x__x - c**2*u__y__y - 2*c*c__x*u__x - 2*c*c__y*u__y
- class modulus.eq.derivatives.Derivative(bwd_derivative_dict: Dict[Key, List[Key]])[source]
Bases:
Module
Module to compute derivatives using backward automatic differentiation
- forward(input_var: Dict[str, Tensor]) → Dict[str, Tensor][source]
Defines the computation performed at every call.
Should be overridden by all subclasses.
NoteAlthough the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class modulus.eq.derivatives.MeshlessFiniteDerivative(model: Module, derivatives: List[Key], dx: Union[float, Callable], order: int = 2, max_batch_size: Optional[int] = None, double_cast: bool = True, input_keys: Optional[List[Key]] = None)[source]
Bases:
Module
Module to compute derivatives using meshless finite difference
- Parameters
model (torch.nn.Module) – Forward torch module for calculating stencil values
derivatives (List[Key]) – List of derivative keys to calculate
dx (Union[float, Callable]) – Spatial discretization of all axis, can be function with parameter count which is the number of forward passes for dynamically adjusting dx
order (int, optional) – Order of derivative, by default 2
max_batch_size (Union[int, None], optional) – Max batch size of stencil calucations, by default uses batch size of inputs
double_cast (bool, optional) – Cast fields to double precision to calculate derivatives, by default True
jit (bool, optional) – Use torch script for finite deriv calcs, by default True
- forward(inputs: Dict[str, Tensor]) → Dict[str, Tensor][source]
Defines the computation performed at every call.
Should be overridden by all subclasses.
NoteAlthough the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- classmethod make_node(node_model: Union[Node, Module], derivatives: List[Key], dx: Union[float, Callable], order: int = 2, max_batch_size: Optional[int] = None, name: Optional[str] = None, double_cast: bool = True, input_keys: Optional[Union[List[Key], List[str]]] = None)[source]
Makes a meshless finite derivative node.
- Parameters
node_model (Union[Node, torch.nn.Module]) – Node or torch.nn.Module for computing FD stencil values. Part of the inputs to this model should consist of the independent variables and output the functional value
derivatives (List[Key]) – List of derivatives to be computed
dx (Union[float, Callable]) – Spatial discretization for finite diff calcs, can be function
order (int, optional) – Order of accuracy of finite diff calcs, by default 2
max_batch_size (Union[int, None], optional) – Maximum batch size to used with the stenicl foward passes, by default None
name (str, optional) – Name of node, by default None
double_cast (bool, optional) – Cast tensors to double precision for derivatives, by default True
input_keys (Union[List[Key], List[str], None], optional) – List of input keys to be used for input of forward model. Should be used if node_model is not a
Node
, by default None