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Chapter 1. Overview

The NVIDIA NeMo Toolkit is available on GitHub as open source as well as a Docker container
on NGC. This guide assumes that the user has already installed NeMo by following the Quick
Start instructions in the NVIDIA NeMo User Guide.

The conversational AI pipeline consists of three major stages:

‣ Automatic Speech Recognition (ASR)

‣ Natural Language Processing (NLP) or Natural Language Understanding (NLU)

‣ Text-to-Speech (TTS) or voice synthesis

As you talk to a computer, the ASR phase converts the audio signal into text, the NLP stage
interprets the question and generates a smart response, and finally the TTS phase converts
the text into speech signals to generate audio for the user. The toolkit enables development
and training of deep learning models involved in conversational AI and easily chain them
together.

https://github.com/NVIDIA/NeMo
https://ngc.nvidia.com/catalog/containers/nvidia:nemo
https://ngc.nvidia.com/catalog/containers/nvidia:nemo
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/starthere/intro.html#quick-start
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/starthere/intro.html#quick-start
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Chapter 2. Why NeMo?

Deep learning model development for Conversational AI is complex. It involves defining,
building, and training several models in specific domains; experimenting several times to
get high accuracy, fine tuning on multiple tasks and domain specific data, ensuring training
performance and making sure the models are ready for deployment to inference applications.

Neural modules are logical blocks of AI applications which take some typed inputs and
produce certain typed outputs. By separating a model into its essential components in a
building block manner, NeMo helps researchers develop state-of-the-art accuracy models for
domain specific data faster and easier.

Collections of modules for core tasks as well as specific to speech recognition, natural
language, speech synthesis help develop modular, flexible, and reusable pipelines.

A neural module’s inputs/outputs have a neural type, that describes the semantics, the axis
order and meaning, and the dimensions of the input/output tensors. This typing allows neural
modules to be safely chained together to build models for applications.

NeMo can be used to train new models or perform transfer learning on existing pre-trained
models. Pre-trained weights per module (such as encoder, decoder) help accelerate model
training for domain specific data.

ASR, NLP and TTS pre-trained models are trained on multiple datasets (including some
languages such as Mandarin) and optimized for high accuracy. They can be used for transfer
learning as well.

NeMo supports developing models that work with Mandarin Chinese data. Tutorials help
users train or fine tune models for conversational AI with the Mandarin Chinese language. The
export method provided in NeMo makes it easy to transform a trained model into inference
ready format for deployment.

A key area of development in the toolkit is interoperability with other tools used by speech
researchers. Data layer for Kaldi compatibility is one such example.
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Chapter 3. NeMo, PyTorch Lightning,
And Hydra

Conversational AI architectures are typically very large and require a lot of data and compute
for training. NeMo uses Pytorch Lightning for easy and performant multi-GPU/multi-node
mixed precision training.

Pytorch Lightning is a high-performance PyTorch wrapper that organizes PyTorch code,
scales model training, and reduces boilerplate. PyTorch Lightning has two main components,
the LightningModule and the Trainer. The LightningModule is used to organize PyTorch
code so that deep learning experiments can be easily understood and reproduced. The Pytorch
Lightning Trainer is then able to take the LightningModule and automate everything needed
for deep learning training.

NeMo models are LightningModules that come equipped with all supporting infrastructure
for training and reproducibility. This includes the deep learning model architecture, data
preprocessing, optimizer, check-pointing and experiment logging. NeMo models, like
LightningModules, are also PyTorch modules and are fully compatible with the broader
PyTorch ecosystem. Any NeMo model can be taken and plugged into any PyTorch workflow.

Configuring conversational AI applications is difficult due to the need to bring together many
different Python libraries into one end-to-end system. NeMo uses Hydra for configuring both
NeMo models and the PyTorch Lightning Trainer. Hydra is a flexible solution that makes it
easy to configure all of these libraries from a configuration file or from the command-line.

Every NeMo model has an example configuration file and a corresponding script that contains
all configurations needed for training to state-of-the-art accuracy. NeMo models have the
same look and feel so that it is easy to do conversational AI research across multiple domains.

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/facebookresearch/hydra
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Chapter 4. Using Optimized Pretrained
Models With NeMo

The NVIDIA GPU Cloud (NGC) is a software repository that has containers and models
optimized for deep learning. NGC hosts many conversational AI models developed with NeMo
that have been trained to state-of-the-art accuracy on large datasets. NeMo models on NGC
can be automatically downloaded and used for transfer learning tasks.

Pretrained models are the quickest way to get started with conversational AI on your own data.
NeMo has many example scripts and Jupyter Notebook tutorials showing step-by-step how to
fine-tune pretrained NeMo models on your own domain-specific datasets.

The table below shows all pretrained models available to use. For BERT based models, the
model weights provided are ready for downstream NLU tasks. For speech models, it can be
helpful to start with a pretrained model and then continue pretraining on your own domain-
specific data. Jasper and QuartzNet base model pretrained weights have been known to be
very efficient when used as base models. For an easy to follow guide on transfer learning and
building domain specific ASR models, you can follow this blog. All pre-trained NeMo models
can be found on the NGC NeMo Collection. Everything needed to quickly get started with NeMo
ASR, NLP, and TTS models is there.

Pre-trained models are packaged as a .nemo file and contain the PyTorch checkpoint along
with everything needed to use the model. NeMo models are trained to state-of-the-art
accuracy and trained on multiple datasets so that they are robust to small differences in data.
NeMo contains a large variety of models such as speaker identification and Megatron BERT
and the best models in speech and language are constantly being added as they become
available. NeMo is the premier toolkit for conversational AI model building and training.

Below you can find a description of the models available in NeMo as well as links to tutorials
to run training/fine tuning workflow.

Table 1. Tutorials

Domain Title GitHub URL

NeMo Simple Application with NeMo Voice swap app

NeMo Exploring NeMo Fundamentals NeMo primer

NeMo Models Exploring NeMo Model
Construction

NeMo models

ASR ASR with NeMo ASR with NeMo

https://ngc.nvidia.com/
https://github.com/NVIDIA/NeMo/tree/main/examples
https://github.com/NVIDIA/NeMo#tutorials
https://devblogs.nvidia.com/how-to-build-domain-specific-automatic-speech-recognition-models-on-gpus/
https://ngc.nvidia.com/catalog/collections/nvidia:nemotrainingframework
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/NeMo_voice_swap_app.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/00_NeMo_Primer.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/01_NeMo_Models.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/asr/01_ASR_with_NeMo.ipynb
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ASR Speech Commands Speech commands

ASR Speaker Recognition and
Verification

Speaker Recognition and
Verification

ASR Online Noise Augmentation Online noise augmentation

NLP Using Pretrained Language
Models for Downstream Tasks

Pretrained language models for
downstream tasks

NLP Exploring NeMo NLP Tokenizers NLP tokenizers

NLP Text Classification (Sentiment
Analysis) with BERT

Text Classification (Sentiment
Analysis)

NLP Question answering with SQuAD Question answering Squad

NLP Token Classification (Named
Entity Recognition)

Token classification: named
entity recognition

NLP Joint Intent Classification and
Slot Filling

Joint Intent and Slot
Classification

NLP GLUE Benchmark GLUE benchmark

NLP Punctuation and Capitialization Punctuation and capitalization

NLP Named Entity Recognition -
BioMegatron

Named Entity Recognition -
BioMegatron

NLP Relation Extraction -
BioMegatron

Relation Extraction -
BioMegatron

TTS Speech Synthesis TTS inference

https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/asr/03_Speech_Commands.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/speaker_recognition/Speaker_Recognition_Verification.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/speaker_recognition/Speaker_Recognition_Verification.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/asr/05_Online_Noise_Augmentation.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/01_Pretrained_Language_Models_for_Downstream_Tasks.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/01_Pretrained_Language_Models_for_Downstream_Tasks.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/02_NLP_Tokenizers.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Text_Classification_Sentiment_Analysis.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Text_Classification_Sentiment_Analysis.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Question_Answering_Squad.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Joint_Intent_and_Slot_Classification.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Joint_Intent_and_Slot_Classification.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/GLUE_Benchmark.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Punctuation_and_Capitalization.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification-BioMegatron.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification-BioMegatron.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Relation_Extraction-BioMegatron.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/nlp/Relation_Extraction-BioMegatron.ipynb
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/tts/1_TTS_inference.ipynb
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Chapter 5. ASR Guidance

This section is to help guide your decision making by answering our most asked ASR
questions.

Q: Is there a way to add domain specific vocabulary in NeMo? If so, how do I do
that?

A: QuartzNet and Jasper models are character-based. So pretrained models we provide for
these two output lowercase English letters and ‘. Users can re-retrain them on vocabulary
with upper case letters and punctuation symbols.

Q: When training, there are “Reference” lines and “Decoded” lines that are
printed out. It seems like the reference line should be the “truth” line and the
decoded line should be what the ASR is transcribing. Why do I see that even the
reference lines do not appear to be correct?

A: Because our pre-trained models can only output lowercase letters and apostrophe,
everything else is dropped. So the model will transcribe 10 as ten. The best way forward
is to prepare the training data first by transforming everything to lowercase and convert
the numbers from digit representation to word representation using a simple library such
asinflect. Then, add the uppercase letters and punctuation back using the NLP punctuation
model. Here is an example of how this is incorporated: NeMo voice swap demo.

Q: What languages are supported in NeMo currently?

A: Along with English, Mandarin Chinese is supported. A pre-trained model for Mandarin,
QuartzNet15x5Base-Zh, is provided that works for that language. For more information, see
NeMo Speech Models.

https://pypi.org/project/inflect/
https://colab.research.google.com/github/NVIDIA/NeMo/blob/main/tutorials/NeMo_voice_swap_app.ipynb
https://ngc.nvidia.com/catalog/models/nvidia:nemospeechmodels
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Chapter 6. Data Augmentation

Data augmentation in ASR is invaluable. It comes at the cost of increased training time if
samples are augmented during training time. To save training time, it is recommended to pre-
process the dataset offline for a one time preprocessing cost and then train the dataset on this
augmented training set.

For example, processing a single sample involves:

‣ Speed perturbation

‣ Time stretch perturbation (sample level)

‣ Noise perturbation

‣ Impulse perturbation

‣ Time stretch augmentation (batch level, neural module)

A simple tutorial guides users on how to use these utilities provided in NeMo: GitHub: NeMo.

https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/05_Online_Noise_Augmentation.ipynb
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Chapter 7. Speech Data Explorer

Speech data explorer is a Dash-based tool for interactive exploration of ASR/TTS datasets.

Speech data explorer it helps find out:

‣ Dataset statistics. For example, alphabet, vocabulary, and duration-based histograms.

‣ Navigation across dataset. For example, sorting and filtering.

‣ Inspection of individual utterances. For example, waveform, spectrogram, and audio
player.

‣ Errors analysis. For example, word error rate, character error rate, word match rate,
mean word accuracy, and diff.

In order to use the tool, it needs to be installed separately. Perform the steps here to install
speech data explorer.

https://plotly.com/dash/
https://github.com/NVIDIA/NeMo/tree/main/tools/speech_data_explorer
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Chapter 8. Using Kaldi Formatted Data

The Kaldi Speech Recognition Toolkit project began in 2009 at Johns Hopkins University. It is a
toolkit written in C++. If researchers have used Kaldi and have datasets that are formatted to
be used with the toolkit; they can use NeMo to develop models based on that data.

To load Kaldi-formatted data, you can simply use KaldiFeatureDataLayer instead of
AudioToTextDataLayer. The KaldiFeatureDataLayer takes in the argument kaldi_dir
instead of a manifest_filepath. The manifest_filepath argument should be set to the
directory that contains the files feats.scp and text.

https://kaldi-asr.org/
https://www.jhu.edu/
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Chapter 9. Using Speech Command
Recognition Task For ASR
Models

Speech Command Recognition is the task of classifying an input audio pattern into a set of
discrete classes. It is a subset of ASR, sometimes referred to as Key Word Spotting, in which a
model is constantly analyzing speech patterns to detect certain action classes.

Upon detection of these commands, a specific action can be taken. An example Jupyter
notebook provided in NeMo shows how to train a QuartzNet model with a modified decoder
head trained on a speech commands dataset.

Note: It is preferred that you use absolute paths to data_dir when preprocessing the dataset.

https://github.com/NVIDIA/NeMo/blob/master/examples/asr/notebooks/3_Speech_Commands_using_NeMo.ipynb
https://github.com/NVIDIA/NeMo/blob/master/examples/asr/notebooks/3_Speech_Commands_using_NeMo.ipynb
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Chapter 10. NLP Fine-Tuning BERT

BERT, or Bidirectional Encoder Representations from Transformers, is a neural approach
to pre-train language representations which obtains near state-of-the-art results on a wide
array of Natural Language Processing (NLP) tasks, including the GLUE benchmark and
SQuAD Question & Answering dataset.

BERT model checkpoints (BERT-large-uncased and BERT-base-uncased) are provided can
be used for either fine tuning BERT on your custom dataset, or fine tuning downstream tasks,
including GLUE benchmark tasks, Question & Answering tasks, Joint Intent & Slot detection,
Punctuation and Capitalization, Named Entity Recognition, and Speech Recognition post
processing model to correct mistakes.

Note: Almost all NLP examples also support RoBERTa and ALBERT models for
downstream fine-tuning tasks (see the list of all supported models by calling
nemo.collections.nlp.modules.common.lm_utils.get_pretrained_lm_models_list().
The user needs to specify the name of the model desired while running the example scripts.

https://ngc.nvidia.com/catalog/models/nvidia:bertlargeuncasedfornemo
https://ngc.nvidia.com/catalog/models/nvidia:bertbaseuncasedfornemo
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Chapter 11. BioMegatron Medical BERT

BioMegatron is a large language model (Megatron-LM) trained on larger domain text corpus
(PubMed abstract + full-text-commercial). It achieves state-of-the-art results for certain
tasks such as Relationship Extraction, Named Entity Recognition and Question &nAnswering.
Follow these tutorials to learn how to train and fine tune BioMegatron; pretrained models are
provided on NGC:

‣ Relation_Extraction-BioMegatron.ipynb

‣ Token_Classification-BioMegatron.ipynb

https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Relation_Extraction-BioMegatron.ipynb
https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Token_Classification-BioMegatron.ipynb
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Chapter 12. Efficient Training With
NeMo

12.1.  Using Mixed Precision
Mixed precision accelerates training speed while protecting against noticeable loss. Tensor
Cores is a specific hardware unit that comes starting with the Volta and Turing architectures
to accelerate large matrix to matrix multiply-add operations by operating them on half
precision inputs and returning the result in full precision.

Neural networks which usually use massive matrix multiplications can be significantly sped up
with mixed precision and Tensor Cores. However, some neural network layers are numerically
more sensitive than others. Apex AMP is an NVIDIA library that maximizes the benefit of mixed
precision and Tensor Cores usage for a given network.

12.2.  Multi-GPU Training
This section is to help guide your decision making by answering our most asked multi-GPU
training questions.

Q: Why is multi-GPU training preferred over other types of training?

A: Multi-GPU training can reduce the total training time by distributing the workload onto
multiple compute instances. This is particularly important for large neural networks which
would otherwise take weeks to train until convergence. Since NeMo supports multi-GPU
training, no code change is needed to move from single to multi-GPU training, only a slight
change in your launch command is required.

Q: What are the advantages of mixed precision training?

A: Mixed precision accelerates training speed while protecting against noticeable loss in
precision. Tensor Cores is a specific hardware unit that comes starting with the Volta and
Turing architectures to accelerate large matrix multiply-add operations by operating on half
precision inputs and returning the result in full precision in order to prevent loss in precision.
Neural networks which usually use massive matrix multiplications can be significantly sped up



Efficient Training With NeMo

NVIDIA NeMo DU-09886-001_v1.0.0rc1   |   14

with mixed precision and Tensor Cores. However, some neural network layers are numerically
more sensitive than others. Apex AMP is a NVIDIA library that maximizes the benefit of mixed
precision and Tensor Core usage for a given network.

Q: What is the difference between multi-GPU and multi-node training?

A: Multi-node is an abstraction of multi-GPU training, which requires a distributed compute
cluster, where each node can have multiple GPUs. Multi-node training is needed to scale
training beyond a single node to large amounts of GPUs.

From the framework perspective, nothing changes from moving to multi-node training.
However, a master address and port needs to be set up for inter-node communication. Multi-
GPU training will then be launched on each node with passed information. You might also
consider the underlying inter-node network topology and type to achieve full performance,
such as HPC-style hardware such as NVLink, InfiniBand networking, or Ethernet.
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Chapter 13. Exporting Models

Deep learning model development for Conversational AI is complex. It involves defining,
building, and training several models in specific domains; experimenting several times to
get high accuracy, fine tuning on multiple tasks and domain specific data, ensuring training
performance and making sure the models are ready for deployment to inference applications.

Modules fine-tuned or trained in NeMo can be exported for efficient deployment in a variety of
formats. The nemo.core.neural_factory.NeuralModuleFactory contains the API
deployment_export(module, output: str, d_format: nemo.core.neural_factory.DeploymentFormat,
 input_example=None, output_example=None)

which handles the export.

Currently, the nemo.core.neural_factory.NeuralModuleFactory API provides several
deployment format targets:

‣ ONNX

‣ TORCHSCRIPT

‣ TRTONNX

‣ PYTORCH

‣ JARVIS

The recommended format to export your modules is ONNX. However, not all modules may
support export to all formats. PYTORCH target will work for all modules and will simply save
the module's weights in a PyTorch checkpoint.

For core ASR models such as Jasper and QuartzNet, all 4 formats will work. Example scripts
for export to NVIDIA Jarvis ASR service can be found under the scripts folder in the NeMo
repository.

QuartzNetModel.ipynb is an example of a NeMo model. For ASR, specifically, a NeMo model
is a kind of neural module which contains other neural modules inside it. The NeMo model
can have other neural modules inside and their mode, and topology of connections can depend
on the mode in which the NeMo model is used (training or evaluation). Exporting to .nemo file
greatly simplifies the experience of deployment with Jarvis.

https://github.com/NVIDIA/NeMo/blob/v0.11.0/examples/asr/QuartzNetModel.ipynb
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Chapter 14. Recommendations For
Optimization And FAQs

This section is to help guide your decision making by answering our most asked NeMo
questions.

Q: Are there areas where performance can be increased?

A: You should try using mixed precision for improved performance. Note that typically when
using mixed precision, memory consumption is decreased and larger batch sizes could be
used to further improve the performance.

When fine-tuning ASR models on your data, it is almost always possible to take advantage
of NeMo's pre-trained modules. Even if you have a different target vocabulary, or even a
different language; you can still try starting with pre-trained weights from Jasper or QuartzNet
encoder and only adjust the decoder for your needs.

Q: What is the recommended sampling rate for ASR?

A: The released models are based on 16 KHz audio, therefore, ensure you use models with 16
KHz audio. Reduced performance should be expected for any audio that is up-sampled from a
sampling frequency less than 16 KHz data.

Q: How do we use this toolkit for audio with different types of compression and
frequency than the training domain for ASR?

A: You have to match the compression and frequency.

Q: How do you replace the 6-gram out of the ASR model with a custom
language model? What is the language format supported in NeMo?

A: NeMo’s Beam Search decoder with Levenberg-Marquardt (LM) neural module supports the
KenLM language model.

‣ This Jupyter notebook tutorial demonstrates the usage of the language model.

‣ Instructions on using KenLM

https://github.com/NVIDIA/NeMo/blob/master/examples/asr/notebooks/1_ASR_tutorial_using_NeMo.ipynb
https://nvidia.github.io/NeMo/asr/tutorial.html#using-kenlm
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‣ You should retrain the KenLM language model on your own dataset. To do so, there are
two options:

‣ Refer to KenLM’s documentation.

‣ Refer to the build_6-gram_OpenSLR_lm.sh script and adjust to use your own dataset.

‣ If you want to use a different language model, other than KenLM, you will need to
implement a corresponding decoder module.

‣ Transformer-XL example is present in OS2S. It would need to be updated to work with
NeMo. Here is the code.

Q: How do I use text-to-speech (TTS)?

A:

‣ Obtain speech data ideally at 22050 Hz or alternatively at a higher sample rate and then
down sample to 22050 Hz.

‣ If less than 22050 Hz and above 16000 Hz:

‣ Retrain WaveGlow on your own dataset.

‣ Tweak the spectrogram generation parameters, namely the window_size and the
window_stride for their fourier transforms.

‣ For below 16000 Hz, look into obtaining new data.

‣ In terms of bitrate/quantization, the general advice is the higher the better. We have not
experimented enough to state how much this impacts quality.

‣ For the amount of data, again the more the better, and the more diverse in terms of
phonemes the better. Aim for around 20 hours of speech after filtering for silences and
non-speech audio.

‣ Most open speech datasets are in ~10 second format so training Tacotron 2 on audio on
the order of 10s - 20s per sample is known to work. Additionally, the longer the speech
samples, the more difficult it will be to train Tacotron 2.

‣ Audio files should be clean. There should be little background noise or music. Data
recorded from a studio mic is likely to be easier to train compared to data captured using a
phone.

‣ To ensure pronunciation of words are accurate; the technical challenge is related to the
dataset, text to phonetic spelling is required, use phonetic alphabet (notation) that has the
name correctly pronounced.

‣ Here are some example parameters you can use to train Tacotron 2:

‣ Tacotron 2 requires a single speaker dataset

‣ Use AMP level O0

‣ Trim long silences in the beginning and end

‣ optimizer="adam"

‣ beta1 = 0.9

https://github.com/kpu/kenlm#kenlm
https://github.com/NVIDIA/NeMo/blob/master/scripts/build_6-gram_OpenSLR_lm.sh
https://github.com/NVIDIA/OpenSeq2Seq/tree/master/external_lm_rescore
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‣ beta2 = 0.999

‣ lr=0.001 (constant)

‣ amp_opt_level="O0"

‣ weight_decay=1e-6

‣ batch_size=48 (per GPU)

‣ trim_silence=True
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Chapter 15. Resources

Ensure you are familiar with the following resources for NeMo.

Developer blogs

‣ How to Build Domain Specific Automatic Speech Recognition Models on GPUs

‣ Develop Smaller Speech Recognition Models with NVIDIA’s NeMo Framework

‣ Neural Modules for Fast Development of Speech and Language Models

Domain specific, transfer learning, Docker container with Jupyter Notebooks

Domain Specific NeMo ASR Application

https://devblogs.nvidia.com/how-to-build-domain-specific-automatic-speech-recognition-models-on-gpus/
https://devblogs.nvidia.com/develop-smaller-speech-recognition-models-with-nvidias-nemo-framework/
https://devblogs.nvidia.com/neural-modules-for-speech-language-models/
https://ngc.nvidia.com/catalog/containers/nvidia:nemo_asr_app_img
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