GPT model training#

GPT is a decoder-only Transformer model.

Quick start#

Steps below demonstrate training of a GPT style model with NeMo

Data download & pre-processing#

Note

Data download, pre-processing and tokenizer training in the example below will take ~3 hours.

Step 1: Download data

The step below will download Wikipedia data (around 20GB) and can take some several hours.

wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2

Step 2: Extract raw data

pip install wikiextractor
python -m wikiextractor.WikiExtractor enwiki-latest-pages-articles.xml.bz2 --json
find text -name 'wiki_*' -exec cat {} \; > train_data.jsonl

Now, train_data.jsonl will contain our training data in the json line format. We are interested in the data under “text” field.

Step 3: Train tokenizer

Below we will condider 2 options for training data tokenizers: Using pre-built HuggingFace BPE and training and using your own Google Sentencepiece tokenizer. Note that only second option allows you to experiment with vocabulary size.

Option 1: Using HuggingFace GPT2 tokenizer files.

With this option we will just download pre-built vocabulary and merge files for BPE tokenizer.

wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt

Option 2: Using Google Sentencepiece tokenizer library.

It comes as dependency with NeMo, so if you have installed NeMo it should already be installed. Note that training tokenizer model will also take some time.

sudo apt install jq
jq .text train_data.jsonl >> text_for_tokenizer.txt
spm_train --input=text_for_tokenizer.txt \
     --model_prefix=spm_32k_wiki \
     --vocab_size=32768 \
     --character_coverage=0.9999 \
     --model_type=bpe \
     --byte_fallback=true \
     --pad_id=0 --unk_id=1 --bos_id=2 --eos_id=3 \
     --split_digits true

After this is done (will take a while), you’ll have two files: `spm_32k_wiki.model and spm_32k_wiki.vocab which correspond to model and vocabulary.

Step 4: Convert training data into memory map format

This format makes trainig more efficient, especially with many nodes and GPUs. This step will also tokenize data using tokenizer model from Step 3.

Option 1: Using HuggingFace GPT2 tokenizer files.

python <NeMo_ROOT_FOLDER>/scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=train_data.jsonl \
--json-keys=text \
--tokenizer-library=megatron \
--vocab gpt2-vocab.json \
--dataset-impl mmap \
--tokenizer-type GPT2BPETokenizer \
--merge-file gpt2-merges.txt \
--output-prefix=hfbpe_gpt_training_data \
--append-eod \
--workers=32

Option 2: Using Google Sentencepiece tokenizer library.

python <NeMo_ROOT_FOLDER>/scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=train_data.jsonl \
--json-keys=text \
--tokenizer-library=sentencepiece \
--tokenizer-model=spm_32k_wiki.model \
--output-prefix=gpt_training_data \
--append-eod \
--workers=32

Train GPT-style Model#

Once you have prepared training data and tokenizer, you are ready to train the model. The configuration we present below has about 124M parameters and it should fit on a single 16GB GPU if using float16. Let’s go!!!

Option 1: Using HuggingFace GPT2 tokenizer files.

python /home/okuchaiev/repos/NeMo/examples/nlp/language_modeling/megatron_gpt_pretraining.py  \
    --config-path=/home/okuchaiev/repos/NeMo/examples/nlp/language_modeling/conf \
    --config-name=megatron_gpt_config \
    trainer.devices=1 \
    trainer.num_nodes=1 \
    trainer.max_epochs=null \
    trainer.max_steps=300000 \
    trainer.val_check_interval=300 \
    trainer.log_every_n_steps=50 \
    trainer.limit_val_batches=50 \
    trainer.limit_test_batches=50 \
    trainer.accumulate_grad_batches=1 \
    trainer.precision=16 \
    model.micro_batch_size=6 \
    model.global_batch_size=192 \
    model.tensor_model_parallel_size=1 \
    model.pipeline_model_parallel_size=1 \
    model.max_position_embeddings=1024 \
    model.encoder_seq_length=1024 \
    model.hidden_size=768 \
    model.ffn_hidden_size=3072 \
    model.num_layers=12 \
    model.num_attention_heads=12 \
    model.init_method_std=0.021 \
    model.hidden_dropout=0.1 \
    model.layernorm_epsilon=1e-5 \
    model.tokenizer.vocab_file=gpt2-vocab.json \
model.tokenizer.merge_file=gpt2-merges.txt \
    model.data.data_prefix=[1.0,hfbpe_gpt_training_data_text_document] \
    model.data.num_workers=2 \
    model.data.seq_length=1024 \
    model.data.splits_string=\'980,10,10\' \
    model.optim.name=fused_adam \
    model.optim.lr=6e-4 \
    model.optim.betas=[0.9,0.95] \
    model.optim.weight_decay=0.1 \
    model.optim.sched.name=CosineAnnealing \
    model.optim.sched.warmup_steps=750 \
    model.optim.sched.constant_steps=80000 \
    model.optim.sched.min_lr=6e-5 \
    exp_manager.resume_if_exists=True \
    exp_manager.resume_ignore_no_checkpoint=True \
    exp_manager.create_checkpoint_callback=True \
    exp_manager.checkpoint_callback_params.monitor=val_loss \
    exp_manager.checkpoint_callback_params.save_top_k=3 \
    exp_manager.checkpoint_callback_params.mode=min \
    exp_manager.checkpoint_callback_params.always_save_nemo=False

Option 2: Using Google Sentencepiece tokenizer library.

python /home/okuchaiev/repos/NeMo/examples/nlp/language_modeling/megatron_gpt_pretraining.py  \
    --config-path=/home/okuchaiev/repos/NeMo/examples/nlp/language_modeling/conf \
    --config-name=megatron_gpt_config \
    trainer.devices=1 \
    trainer.num_nodes=1 \
    trainer.max_epochs=null \
    trainer.max_steps=300000 \
    trainer.val_check_interval=300 \
    trainer.log_every_n_steps=50 \
    trainer.limit_val_batches=50 \
    trainer.limit_test_batches=50 \
    trainer.accumulate_grad_batches=1 \
    trainer.precision=16 \
    model.micro_batch_size=6 \
    model.global_batch_size=192 \
    model.tensor_model_parallel_size=1 \
    model.pipeline_model_parallel_size=1 \
    model.max_position_embeddings=1024 \
    model.encoder_seq_length=1024 \
    model.hidden_size=768 \
    model.ffn_hidden_size=3072 \
    model.num_layers=12 \
    model.num_attention_heads=12 \
    model.init_method_std=0.021 \
    model.hidden_dropout=0.1 \
    model.layernorm_epsilon=1e-5 \
    model.tokenizer.library=sentencepiece \
    model.tokenizer.model=spm_32k_wiki.model \
    model.data.data_prefix=[1.0,gpt_training_data_text_document] \
    model.data.num_workers=2 \
    model.data.seq_length=1024 \
    model.data.splits_string=\'980,10,10\' \
    model.optim.name=fused_adam \
    model.optim.lr=6e-4 \
    model.optim.betas=[0.9,0.95] \
    model.optim.weight_decay=0.1 \
    model.optim.sched.name=CosineAnnealing \
    model.optim.sched.warmup_steps=750 \
    model.optim.sched.constant_steps=80000 \
    model.optim.sched.min_lr=6e-5 \
    exp_manager.resume_if_exists=True \
    exp_manager.resume_ignore_no_checkpoint=True \
    exp_manager.create_checkpoint_callback=True \
    exp_manager.checkpoint_callback_params.monitor=val_loss \
    exp_manager.checkpoint_callback_params.save_top_k=3 \
    exp_manager.checkpoint_callback_params.mode=min \
    exp_manager.checkpoint_callback_params.always_save_nemo=False

Next, simply launch Tensorboard to monitor training like so:

tensorboard --logdir nemo_experiments --bind_all

Next steps#

Please refer to:

  • Batching section for batch size adjustments

  • Parallelisms section for understanding various types of parallelisms

  • Prompt Learning section for details on prompt-tuning and p-tuning