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Chapter 1. Background: Matrix-Matrix
Multiplication

GEMMs (General Matrix Multiplications) are a fundamental building block for many operations
in neural networks, for example fully-connected layers, recurrent layers such as RNNs,
LSTMs or GRUs, and convolutional layers. In this guide, we describe GEMM performance
fundamentals common to understanding the performance of such layers.

GEMM is defined as the operation , with A and B as matrix inputs, α and β as
scalar inputs, and C as a pre-existing matrix which is overwritten by the output. A plain matrix
product AB is a GEMM with α equal to one and β equal to zero. For example, in the forward
pass of a fully-connected layer, the weight matrix would be argument A, incoming activations
would be argument B, and α and β would typically be 1 and 0, respectively. β can be 1 in
some cases, for example, if we’re combining the addition of a skip-connection with a linear
operation.



Matrix Multiplication Background DU-09799-001_v001   |   2

Chapter 2. Math And Memory Bounds

Following the convention of various linear algebra libraries (such as BLAS), we will say that
matrix A is an M x K matrix, meaning that it has M rows and K columns. Similarly, B and C will
be assumed to be K x N and M x N matrices, respectively.

The product of A and B has M x N values, each of which is a dot-product of K-element vectors.
Thus, a total of M * N * K fused multiply-adds (FMAs) are needed to compute the product.
Each FMA is 2 operations, a multiply and an add, so a total of 2 * M * N * K FLOPS are
required. For simplicity, we are ignoring the α and β parameters for now; as long as K is
sufficiently large, their contribution to arithmetic intensity is negligible.

To estimate if a particular matrix multiply is math or memory limited, we compare its
arithmetic intensity to the ops:byte ratio of the GPU, as described in Understanding
Performance. Assuming an NVIDIA® V100 GPU and Tensor Core operations on FP16 inputs
with FP32 accumulation, the FLOPS:B ratio is 138.9 if data is loaded from the GPU’s memory.

As an example, let’s consider a M x N x K = 8192 x 128 x 8192 GEMM. For this specific
case, the arithmetic intensity is 124.1 FLOPS/B, lower than V100’s 138.9 FLOPS:B, thus
this operation would be memory limited. If we increase the GEMM size to 8192 x 8192 x 8192
arithmetic intensity increases to 2730, much higher than FLOPS:B of V100 and therefore
the operation is math limited. In particular, it follows from this analysis that matrix-vector
products (general matrix-vector product or GEMV), where either M=1 or N=1, are always
memory limited; their arithmetic intensity is less than 1.

It is worth keeping in mind that the comparison of arithmetic intensity with the ops:byte ratio is
a simplified rule of thumb, and does not consider many practical aspects of implementing this
computation (such as non-algorithm instructions like pointer arithmetic, or the contribution of
the GPU’s on-chip memory hierarchy).

2.1.  GPU Implementation
GPUs implement GEMMs by partitioning the output matrix into tiles, which are then assigned
to thread blocks.

Tile size, in this guide, usually refers to the dimensions of these tiles (Mtile x Ntile in Figure
1). Each thread block computes its output tile by stepping through the K dimension in tiles,

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#understand-perf
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#understand-perf
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loading the required values from the A and B matrices, and multiplying and accumulating
them into the output.

Figure 1. Tiled outer product approach to GEMMs

2.2.  Tensor Core Requirements
As we discussed in GPU Architecture Fundamentals, the latest NVIDIA GPUs have introduced
Tensor Cores to maximize the speed of tensor multiplies. Requirements to use Tensor Cores
depend on NVIDIA library versions. Performance is better when equivalent matrix dimensions
M, N, and K are aligned to multiples of 16 bytes (or 128 bytes on A100). With NVIDIA cuBLAS
versions before 11.0 or NVIDIA cuDNN versions before 7.6.3, this is a requirement to use
Tensor Cores; as of cuBLAS 11.0 and cuDNN 7.6.3, Tensor Cores may be used regardless,
but efficiency is better when matrix dimensions are multiples of 16 bytes. For example, when
using FP16 data, each FP16 element is represented by 2 bytes, so matrix dimensions would
need to be multiples of 8 elements for best efficiency (or 64 elements on A100).

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-arch
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Table 1. Tensor Core requirements by cuBLAS or cuDNN version for
some common data precisions. These requirements apply to
matrix dimensions M, N, and K.

Tensor Cores can be used
for...

cuBLAS version < 11.0

cuDNN version < 7.6.3

cuBLAS version ≥ 11.0

cuDNN version ≥ 7.6.3

INT8 Multiples of 16 Always but most efficient
with multiples of 16; on A100,
multiples of 128.

FP16 Multiples of 8 Always but most efficient
with multiples of 8; on A100,
multiples of 64.

TF32 N/A Always but most efficient
with multiples of 4; on A100,
multiples of 32.

FP64 N/A Always but most efficient
with multiples of 2; on A100,
multiples of 16.

The requirement is in fact more relaxed - only the fastest varying dimensions in memory
are required to obey this rule - but it is easiest to just think of all three dimensions the same
way. Following these alignments for all dimensions ensures Tensor Cores will be enabled
and run efficiently. This effect can be seen in Figure 5 - calculations are fastest (durations
are lowest) when K is divisible by 8. When K is not divisible by 8, switching from cuBLAS 10.2
to cuBLAS 11.0 allows Tensor Cores to be used and results in 2-4x speedup. It is also worth
noting that with cuBLAS 11.0, among values of K that are not divisible by 8, even values still
result in faster calculation than odd values. We recommend choosing matrix dimensions to be
multiples of 16 bytes (8 for FP16 as in Table 1); if this is not possible, choosing multiples of a
smaller power of two (such as 8 or 4 bytes) often still helps performance with cuBLAS 11.0 and
higher. On A100, choosing multiples of larger powers of two up to 128 bytes (64 for FP16) can
further improve efficiency.
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Figure 2. Comparison of GEMM execution times with (a) cuBLAS 10.1
and (b) cuBLAS 11.0, both with FP16 data. Calculation is fastest
(duration is lowest) when K is divisible by 8. “NN” means A and
B matrices are both accessed non-transposed. NVIDIA V100-
DGXS-16GB GPU.

(a) (b)

2.3.  Typical Tile Dimensions In cuBLAS
And Performance

The cuBLAS library contains NVIDIA’s optimized GPU GEMM implementations (refer to here
for documentation).

While multiple tiling strategies are available, larger tiles have more data reuse, allowing
them to use less bandwidth and be more efficient than smaller tiles. On the other hand, for a
problem of a given size, using larger tiles will generate fewer tiles to run in parallel, which can
potentially lead to under-utilization of the GPU. When frameworks like TensorFlow or PyTorch
call into cuBLAS with specific GEMM dimensions, a heuristic inside cuBLAS is used to select
one of the tiling options expected to perform the best. Alternatively, some frameworks provide
a “benchmark” mode, where prior to the training they time all implementation choices and
pick the fastest one (this constitutes a once per training session overhead).

This tradeoff between tile efficiency and tile parallelism suggests that the larger the GEMM,
the less important this tradeoff is: at some point, a GEMM has enough work to use the largest
available tiles and still fill the GPU. Conversely, if a GEMM is too small, the reduction in
either tile efficiency or tile parallelism will likely prevent the GPU from running at peak math
utilization. Figure 3 and Figure 4 illustrate this general trend; larger GEMMs achieve higher
throughput.

https://docs.nvidia.com/cuda/cublas/index.html
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Figure 3. Performance improves as the M-N footprint of the GEMM
increases. Duration also increases, but not as quickly as the M-
N dimensions themselves; it is sometimes possible to increase
the GEMM size (use more weights) for only a small increase in
duration. NVIDIA A100-SXM4-80GB, CUDA 11.2, cuBLAS 11.4.

Figure 4. Performance improves as the K dimension increases,
even when M=N is relatively large, as setup and tear-down
overheads for the computation are amortized better when the
dot product is longer. NVIDIA A100-SXM4-80GB, CUDA 11.2,
cuBLAS 11.4.

For cuBLAS GEMMs, thread block tile sizes typically but not necessarily use power-of-two
dimensions. Different tile sizes might be used for different use cases, but as a starting point,
the following tiles are available:

‣ 256x128 and 128x256 (most efficient)



Math And Memory Bounds

Matrix Multiplication Background DU-09799-001_v001   |   7

‣ 128x128

‣ 256x64 and 64x256

‣ 128x64 and 64x128

‣ 64x64 (least efficient)

Figure 5 shows an example of the efficiency difference between a few of these tile sizes:

Figure 5. Larger tiles run more efficiently. The 256x128-based GEMM
runs exactly one tile per SM, the other GEMMs generate
more tiles based on their respective tile sizes. NVIDIA A100-
SXM4-80GB, CUDA 11.2, cuBLAS 11.4.

The chart shows the performance of a MxNxK = 6912x2048x4096 GEMM with different tile
sizes. It demonstrates that the increased tile parallelism with smaller tiles (64x64 enables 8x
more parallelism than 256x128) comes at a notable efficiency cost. In practice, cuBLAS will
avoid using small tiles for GEMMs that are large enough to have sufficient parallelism with
larger tiles and will resort to the smaller ones only when substantially smaller GEMMs than
the one in this example are being run. As a side note, NVIDIA libraries also have the ability
to “tile” along the K dimension in case both M and N are small but K is large. Because K is
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the direction of the dot product, tiling in K requires a reduction at the end, which can limit
achievable performance. For simplicity, most of this guide assumes no K tiling.
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Chapter 3. Dimension Quantization
Effects

As described in GPU Execution Model, a GPU function is executed by launching a number of
thread blocks, each with the same number of threads. This introduces two potential effects on
execution efficiency - tile and wave quantization.

3.1.  Tile Quantization
Tile quantization occurs when matrix dimensions are not divisible by the thread block tile size.

The number of thread block tiles is large enough to make sure all output elements are
covered, however, some tiles have very little actual work as illustrated in Figure 6, which
assumes 128x128 tiles and two matrix dimensions.

Figure 6. Example of tiling with 128x128 thread block tiles. (a) Best
case - matrix dimensions are divisible by tile dimensions (b)
Worse case - tile quantization results in six thread blocks being
launched, two of which waste most of their work.

(a) (b)

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-execution
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While libraries ensure that invalid memory accesses are not performed by any of the tiles, all
tiles will perform the same amount of math. Thus, due to tile quantization, the case in Figure
6 (b) executes 1.5x as many arithmetic operations as Figure 6 (a) despite needing only 0.39%
more operations algorithmically. As this shows, the highest utilization is achieved when output
matrix dimensions are divisible by tile dimensions.

For another example of this effect, let’s consider GEMM for various choices of N, with M =
27648, K = 4096, and a library function that uses 256x128 tiles. As N increases from 136 to
256 in increments of 8, the Tensor Core accelerated GEMM always runs the same number of
tiles, meaning the N dimension is always divided into 2 tiles. While the number of tiles remains
constant, the fraction of those tiles containing useful data and hence the number of useful
FLOPS performed an increase with N, as reflected by the GFLOPS in Figure 7 below. Notice
that throughput reduces significantly between N = 128 (where the single tile per row is filled
with useful data) and N = 136 (where a second tile is added per row but contains only 8/128
= 6.25% useful data). Also, note how the duration is constant whenever the number of tiles is
constant.

Figure 7. Tile quantization effect on (a) achieved FLOPS throughput and
(b) elapsed time, alongside (c) the number of tiles created.
Measured with a function that forces the use of 256x128
tiles over the MxN output matrix. In practice, cuBLAS would
select narrower tiles (for example, 64-wide) to reduce the
quantization effect. NVIDIA A100-SXM4-80GB, CUDA 11.2,
cuBLAS 11.4.

(a) (b) (c)

3.2.  Wave Quantization
While tile quantization means the problem size is quantized to the size of each tile, there is
a second quantization effect where the total number of tiles is quantized to the number of
multiprocessors on the GPU: Wave quantization.

Let’s consider a related example to the one before, again varying N and with K = 4096, but
with a smaller M = 2304. An NVIDIA A100 GPU has 108 SMs; in the particular case of 256x128
thread block tiles, it can execute one thread block per SM, leading to a wave size of 108 tiles
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that can execute simultaneously. Thus, GPU utilization will be highest when the number of
tiles is an integer multiple of 108 or just below.

The M dimension will always be divided into 2304/256 = 9 tiles per column. When N = 1536,
the N dimension is divided into 1536/128 = 12 tiles per row, and a total of 9*12 = 108 tiles are
created, comprising one full wave. When 1536 < N <= 1664, an additional tile per row is
created for a total of 9*13 = 117 tiles, leading to one full wave and a ‘tail’ wave of only 9 tiles.
The tail wave takes nearly the same time to execute as the full 108-tile wave in this example
but uses only 9/108 = 8.33% of A100’s SMs during that time. Consequently, GFLOPS roughly
halve and duration roughly doubles from N = 1536 to N = 1544 (Figure 8). Similar jumps can
be seen after N = 3072, N = 4608, and N = 6144, which also map to an integer number of
full waves.

Figure 8. The effects of wave quantization in terms of (a) achieved FLOPS
throughput and (b) elapsed time, as well as (c) the number
of tiles created. Measured with a function that uses 256x128
tiles over the MxN output matrix. Note that the quantization
effect occurs when the number of tiles passes a multiple of
108. NVIDIA A100-SXM4-80GB, CUDA 11.2, cuBLAS 11.4.

(a) (b) (c)

It is worth noting that the throughput and duration graphs for wave quantization look very
similar to those for tile quantization, except with a different scale on the horizontal axis.
Because both phenomena are quantization effects, this is expected. The difference lies in
where the quantization occurs: tile quantization means work is quantized to the size of the tile,
whereas wave quantization means work is quantized to the size of the GPU. Figure 7 (c) and
Figure 8 (c) in both the tile and wave quantization illustrations show this difference.
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