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Chapter 1. Introduction

There are numerous benefits to using numerical formats with lower precision than 32-
bit floating point. First, they require less memory, enabling the training and deployment of
larger neural networks. Second, they require less memory bandwidth which speeds up data
transfer operations. Third, math operations run much faster in reduced precision, especially
on GPUs with Tensor Core support for that precision. Mixed precision training achieves all
these benefits while ensuring that no task-specific accuracy is lost compared to full precision
training. It does so by identifying the steps that require full precision and using 32-bit floating
point for only those steps while using 16-bit floating point everywhere else.
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Chapter 2. Mixed Precision Training

Mixed precision training offers significant computational speedup by performing operations
in half-precision format, while storing minimal information in single-precision to retain as
much information as possible in critical parts of the network. Since the introduction of Tensor
Cores in the Volta and Turing architectures, significant training speedups are experienced by
switching to mixed precision -- up to 3x overall speedup on the most arithmetically intense
model architectures. Using mixed precision training requires two steps:

 1. Porting the model to use the FP16 data type where appropriate.
 2. Adding loss scaling to preserve small gradient values.

The ability to train deep learning networks with lower precision was introduced in the Pascal
architecture and first supported in CUDA 8 in the NVIDIA Deep Learning SDK.

Mixed precision is the combined use of different numerical precisions in a computational
method.

Half precision (also known as FP16) data compared to higher precision FP32 vs FP64 reduces
memory usage of the neural network, allowing training and deployment of larger networks,
and FP16 data transfers take less time than FP32 or FP64 transfers.

Single precision (also known as 32-bit) is a common floating point format (float in C-derived
programming languages), and 64-bit, known as double precision (double).

Deep Neural Networks (DNNs) have led to breakthroughs in a number of areas, including:

‣ image processing and understanding

‣ language modeling

‣ language translation

‣ speech processing

‣ game playing, and many others.

DNN complexity has been increasing to achieve these results, which in turn has increased
the computational resources required to train these networks. One way to lower the required
resources is to use lower-precision arithmetic, which has the following benefits.
Decrease the required amount of memory.

Half-precision floating point format (FP16) uses 16 bits, compared to 32 bits for single
precision (FP32). Lowering the required memory enables training of larger models or
training with larger mini-batches.

https://arxiv.org/abs/1710.03740
https://developer.nvidia.com/tensor-cores
https://developer.nvidia.com/tensor-cores
https://developer.nvidia.com/blog/tag/fp16/
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Shorten the training or inference time.
Execution time can be sensitive to memory or arithmetic bandwidth. Half-precision halves
the number of bytes accessed, thus reducing the time spent in memory-limited layers.
NVIDIA GPUs offer up to 8x more half precision arithmetic throughput when compared to
single-precision, thus speeding up math-limited layers.

Figure 1. Training curves for the bigLSTM English language model shows
the benefits of the mixed-precision training techniques. The
Y-axis is training loss. Mixed precision without loss scaling
(grey) diverges after a while, whereas mixed precision with loss
scaling (green) matches the single precision model (black).

Since DNN training has traditionally relied on IEEE single-precision format, this guide will
focus on how to train with half precision while maintaining the network accuracy achieved with
single precision (as Figure 1). This technique is called mixed-precision training since it uses
both single and half-precision representations.

2.1.  Half Precision Format
IEEE 754 standard defines the following 16-bit half-precision floating point format: 1 sign bit, 5
exponent bits, and 10 fractional bits.

Exponent is encoded with 15 as the bias, resulting in [-14, 15] exponent range (two exponent
values, 0 and 31, are reserved for special values). An implicit lead bit 1 is assumed for
normalized values, just like in other IEEE floating point formats.

Half precision format leads to the following dynamic range and precision:
Normalized values

2-14 to 215, 11 bits of significand
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Denormal values
2-24 to 2-15, significand bits decrease as the exponent gets smaller. Exponent k in [-24, -15]
range results in (25 - k) bits of significand precision.

Some example magnitudes:
Maximum normalized

65,504
Minimum normalized

2-14= ~6.10e-5
Minimum denormal

2-24= ~5.96e-8

Half precision dynamic range, including denormals, is 40 powers of 2. For comparison, single
precision dynamic range including denormals is 264 powers of 2.

2.2.  Tensor Core Math
The Volta generation of GPUs introduces Tensor Cores, which provide 8x more throughput
than single precision math pipelines. Each Tensor Core performs D = A x B + C, where A, B,
C, and D are matrices. A and B are half precision 4x4 matrices, whereas D and C can be either
half or single precision 4x4 matrices. In other words, Tensor Core math can accumulate half
precision products into either single or half precision outputs.

In practice, higher performance is achieved when A and B dimensions are multiples of 8.
cuDNN v7 and cuBLAS 9 include some functions that invoke Tensor Core operations, for
performance reasons these require that input and output feature map sizes are multiples of 8.
For more information, see the NVIDIA cuDNN Developer Guide.

The reason half precision is so attractive is that the V100 GPU has 640 Tensor Cores, so
they can all be performing 4x4 multiplications all at the same time. The theoretical peak
performance of the Tensor Cores on the V100 is approximately 120 TFLOPS. This is about an
order of magnitude (10x) faster than double precision (FP64) and about four times faster than
single precision (FP32).

Matrix multiplies are at the core of Convolutional Neural Networks (CNN). CNNs are very
common in deep learning on many networks. Beginning in CUDA 9 and cuDNN 7, the
convolution operations are done using Tensor Cores whenever possible. This can greatly
improve the training speed as well as the inference speed of CNNs or models that contain
convolutions.

2.3.  Considering When Training With
Mixed Precision

Assuming the framework supports Tensor Core math, simply enabling the Tensor Core path in
the framework trains many networks faster. You can choose the FP16 format for tensors and/
or convolution/fully-connected layers and keep all the hyperparameters of the FP32 training
session. For more details, refer to Frameworks.

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html


Mixed Precision Training

Train with Mixed Precision DA-08617-001_v001   |   5

However, some networks require their gradient values to be shifted into FP16 representable
range to match the accuracy of FP32 training sessions. The figure below illustrates one such
case.

Figure 2. Histogram of activation gradient magnitudes throughout FP32
training of Multibox SSD network. The x-axis is logarithmic,
except for the zero entry. For example, 66.8% of values were 0
and 4% had magnitude in the (2-32 , 2-30) range.

However, this isn’t always the case. You may have to do some scaling and normalization to use
FP16 during training.
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Figure 3. Histogram of activation gradient magnitudes throughout FP32
training of Multibox SSD network. Both x- and y-axes are
logarithmic.

Consider the histogram of activation gradient values (shown with linear and log y-scales
above), collected across all layers during FP32 training of the Multibox SSD detector network
(VGG-D backbone). When converted to FP16, 31% of these values become zeros, leaving only
5.3% as nonzeros which for this network lead to divergence during training.

Note: Much of the FP16 representable range was left unused by the gradient values. Therefore,
if we shift the gradient values to occupy more of that range, we can preserve many values that
are otherwise lost to 0s.

For this particular network, shifting by three exponent values (multiply by 8) was sufficient to
match the accuracy achieved with FP32 training by recovering the relevant values lost to 0.
Shifting by 15 exponent values (multiplying by 32K) would recover all but 0.1% of values lost
to 0 when converting to FP16 and still avoid overflow. In other words, FP16 dynamic range
is sufficient for training, but gradients may have to be scaled to move them into the range to
keep them from becoming zeros in FP16.

2.3.1.  Loss Scaling To Preserve Small Gradient
Magnitudes

As was shown in the previous section, successfully training some networks requires gradient
value scaling to keep them from becoming zeros in FP16. This can be achieved with a single
multiplication. You can scale the loss values computed in the forward pass, before starting
backpropagation. By the chain rule, backpropagation ensures that all the gradient values of
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the same amount are scaled. This requires no extra operations during backpropagation and
keeps the relevant gradient values from becoming zeros and losing that gradient information.

Weight gradients must be unscaled before weight update, to maintain the magnitude of
updates the same as in FP32 training. It is simplest to perform this descaling right after the
backward pass but before gradient clipping or any other gradient-related computations. This
ensures that no hyperparameters (such as gradient clipping threshold, weight decay, etc.)
have to be adjusted.

While many networks match FP32 training results when all tensors are stored in FP16, some
require updating an FP32 copy of weights. Furthermore, values computed by large reductions
should be left in FP32. Examples of this include statistics (mean and variance) computed by
batch-normalization, SoftMax.

Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth
compared to FP32, it’s just that the statistics and value adjustment should be done in FP32.
This leads to the following high-level procedure for training:

 1. Maintain a primary copy of weights in FP32.
 2. For each iteration:

 a). Make an FP16 copy of the weights.
 b). Forward propagation (FP16 weights and activations).
 c). Multiply the resulting loss with the scaling factor S.
 d). Backward propagation (FP16 weights, activations, and their gradients).
 e). Multiply the weight gradient with 1/S.
 f). Complete the weight update (including gradient clipping, etc.).

2.3.2.  Choosing A Scaling Factor
The procedure described in the previous section requires you to pick a loss scaling factor to
adjust the gradient magnitudes. You can choose a large scaling factor as long as it doesn’t
cause overflow during backpropagation. This would lead to weight gradients containing
infinities or NaNs, which in turn would irreversibly damage the weights during the update.
These overflows can be easily and efficiently detected by inspecting the computed weight
gradients, for example, multiplying the weight gradient with 1/S step in the previous section.

There are several options to choose the loss scaling factor. The simplest one is to pick a
constant scaling factor. We trained a number of feed-forward and recurrent networks with
Tensor Core math for various tasks. The network's scaling factors ranged from 8 to 32K (many
networks did not require a scaling factor). The network accuracy was achieved from training
in FP32. However, since the minimum required scaling factor can depend on the network,
framework, minibatch size, etc., some trial and error may be required when picking a scaling
value. A constant scaling factor can be chosen more directly if gradient statistics are available.
Choose a value so that its product with the maximum absolute gradient value is below 65,504
(the maximum value representable in FP16).

A more robust approach is to choose the loss scaling factor dynamically. The basic idea is to
start with a large scaling factor and then reconsider it in each training iteration. If no overflow
occurs for a chosen number of iterations N, then increase the scaling factor. If an overflow
occurs, skip the weight update and decrease the scaling factor. We found that as long as one
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skips updates infrequently the training schedule does not have to be adjusted to reach the
same accuracy as FP32 training. Note that N effectively limits how frequently we may overflow
and skip updates. The rate for scaling factor update can be adjusted by picking the increase/
decrease multipliers as well as N, the number of nonoverflow iterations before the increase.
We successfully trained networks with N = 2000, increasing scaling factor by 2, decreasing
scaling factor by 0.5, many other settings are valid as well. Dynamic loss-scaling approach
leads to the following high-level training procedure:

 1. Maintain a primary copy of weights in FP32.
 2. Initialize S to a large value.
 3. For each iteration:

 a). Make an FP16 copy of the weights.
 b). Forward propagation (FP16 weights and activations).
 c). Multiply the resulting loss with the scaling factor S.
 d). Backward propagation (FP16 weights, activations, and their gradients).
 e). If there is an Inf or NaN in weight gradients:

 i. Reduce S.
 ii. Skip the weight update and move to the next iteration.

 f). Multiply the weight gradient with 1/S.
 g). Complete the weight update (including gradient clipping, etc.).
 h). If there hasn’t been an Inf or NaN in the last N iterations, increase S.
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Chapter 3. Automatic Mixed Precision

Using mixed precision training requires three steps:

 1. Converting the model to use the float16 data type where possible.
 2. Keeping float32 master weights to accumulate per-iteration weight updates.
 3. Using loss scaling to preserve small gradient values.

Frameworks that support fully automated mixed precision training also support:

‣ Automatic loss scaling and master weights integrated into optimizer classes

‣ Automatic casting between float16 and float32 to maximize speed while ensuring no loss in
task-specific accuracy

In those frameworks with automatic support, using mixed precision can be as simple as
adding one line of code or enabling a single environment variable. Currently, the frameworks
with support for automatic mixed precision are TensorFlow, PyTorch, and MXNet. Refer to
NVIDIA Automatic Mixed Precision for Deep Learning for more information, along with the
Frameworks section below.

https://developer.nvidia.com/automatic-mixed-precision
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Chapter 4. Optimizing For Tensor
Cores

NVIDIA Tensor Cores provide hardware acceleration for mixed precision training. On a V100
GPU, Tensor Cores can speed up matrix multiply and convolution operations by up to 8x in
float16 over their float32 equivalents.

Taking full advantage of Tensor Cores may require changes to model code. This section
describes three steps you can take to maximize the benefit that Tensor Cores provide:

 1. Satisfy Tensor Core shape constraints
 2. Increase arithmetic intensity
 3. Decrease fraction of work in non-Tensor Core operations

Note: The above benefits are ordered by increasing complexity, and in particular, the first step
(satisfying shape constraints) usually provides most of the benefit for little effort.

4.1.  Satisfying Tensor Core Shape
Constraints

Due to their design, Tensor Cores have shape constraints on their inputs.

For matrix multiplication:

‣ On FP16 inputs, all three dimensions (M, N, K) must be multiples of 8.

‣ On INT8 inputs (Turing only), all three dimensions must be multiples of 16.

For convolution:

‣ On FP16 inputs, input and output channels must be multiples of 8.

‣ On INT8 inputs (Turing only), input and output channels must be multiples of 16.

In practice, for mixed precision training, our recommendations are:

 1. Choose mini-batch to be a multiple of 8
 2. Choose linear layer dimensions to be a multiple of 8
 3. Choose convolution layer channel counts to be a multiple of 8
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 4. For classification problems, pad vocabulary to be a multiple of 8
 5. For sequence problems, pad the sequence length to be a multiple of 8

4.2.  Increasing Arithmetic Intensity
Arithmetic intensity is a measure of how much computational work is to be performed in a
kernel per input byte. For example, a V100 GPU has 125 TFLOPs of math throughput and 900
GB/s of memory bandwidth. Taking the ratio of the two, we see that any kernel with fewer
than ~140 FLOPs per input byte will be memory-bound. That is, Tensor Cores cannot run at
full throughput because memory bandwidth will be the limiting factor. A kernel with sufficient
arithmetic intensity to allow full Tensor Core throughput is compute-bound.

It is possible to increase arithmetic intensity both in model implementation and model
architecture.

To increase arithmetic intensity in model implementation:

‣ Concatenate weights and gate activations in recurrent cells.

‣ Concatenate activations across time in sequence models.

To increase arithmetic intensity in model architecture:

‣ Prefer dense math operations.

‣ For example, vanilla convolutions have much higher arithmetic intensity than depth-
wise separable convolutions.

‣ Prefer wider layers when possible accuracy-wise.

4.3.  Decreasing Non-Tensor Core Work
Many operations in deep neural networks are not accelerated by Tensor Cores, and it is
important to understand the effect this has on end-to-end speed-ups. For example, suppose
that a model spends one half of the total training time in Tensor Core-accelerated operations
(matrix multiplication and convolution). If Tensor Cores provide a 5x speed-up for those
operations, then the total speedup will be 1. / (0.5 + (0.5 / 5.)) = 1.67x.

In general, as Tensor Core operations represent a decreasing fraction of total work, the more
important it is to focus on optimizing non-Tensor Core operations. It is possible to speed-
up these operations by hand, using custom CUDA implementations along with framework
integration. Furthermore, frameworks are beginning to provide support for automatically
speeding up non-Tensor Core ops with compiler tools. Examples include XLA for TensorFlow
and the PyTorch JIT.
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Chapter 5. Multi-GPU Training

For multi-GPU training, the same strategy applies for loss scaling. NCCL supports both
half precision floats and normal floats, therefore, a developer can choose which precision
they want to use to aggregate gradients. Batch size considerations depend on your training
framework.
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Chapter 6. Prerequisites

To take advantage of mixed precision training, ensure you meet the following minimum
requirements:

Procedure

 1. Run on the Volta or Turing architecture.
 2. Install an NVIDIA Driver. Currently CUDA 10.1 is supported, which requires NVIDIA driver

release 418.xx+. However, if you are running on a Tesla (Tesla V100, Tesla P4, Tesla P40,
or Tesla P100), you may use the NVIDIA driver release 384.111+ or 410. The CUDA driver's
compatibility package only supports particular drivers. For a complete list of supported
drivers, see the CUDA Application Compatibility topic. For more information, see CUDA
Compatibility and Upgrades.

 3. Install the CUDA® Toolkit™ .
 4. Install cuDNN.

Note: If using an NVIDIA optimized framework container, that was pulled from the NGC
container registry, you will still need to install an NVIDIA driver on your base operating
system. However, CUDA and cuDNN will come included in the container. For more
information, refer to the Frameworks Support Matrix.

http://www.nvidia.com/Download/index.aspx?lang=en-us
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#cuda-application-compatibility
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html
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Chapter 7. Frameworks

Most major deep learning frameworks have begun to merge support for half precision training
techniques that exploit Tensor Core calculations in Volta and Turing. Additional optimization
pull requests are at various stages and listed in their respective sections.

For NVCaffe, Caffe2, MXNet, Microsoft Cognitive Toolkit, PyTorch, TensorFlow and Theano,
Tensor Core acceleration is automatically enabled if FP16 storage is enabled.

While frameworks like Torch will tolerate the latest architecture, it currently does not exploit
Tensor Core functionality.

7.1.  PyTorch
PyTorch includes support for FP16 storage and Tensor Core math. To achieve optimum
performance, you can train a model using Tensor Core math and mixed precision.

7.1.1.  Automatic Mixed Precision Training In
PyTorch

The automatic mixed precision feature is available starting inside the NVIDIA NGC PyTorch
19.03+ containers.

To get started, we recommend using AMP (Automatic Mixed Precision), which enables mixed
precision in only 3 lines of Python. AMP is available through NVIDIA’s Apex repository of mixed
precision and distributed training tools. The AMP API is documented in detail here.

7.1.2.  Success Stories
The models where we have seen speedup using mixed precision are:

Table 1. PyTorch Mixed Precision Model Speedup

Model Speedup
NVIDIA Sentiment Analysis 4.5X speedup

FAIRSeq 3.5X speedup

GNMT 2X speedup

http://pytorch.org/
https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
https://github.com/nvidia/apex
https://nvidia.github.io/apex/amp.html
https://github.com/NVIDIA/sentiment-discovery
https://github.com/facebookresearch/fairseq
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/GNMT
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7.1.3.  Tensor Core Optimized Model Scripts For
PyTorch

The Tensor Core examples provided in GitHub focus on achieving the best performance and
convergence using NVIDIA Volta Tensor Cores . It uses the latest deep learning example
networks and model scripts for training.

These examples focus on achieving the best performance and convergence from NVIDIA Volta
Tensor Cores by using the latest deep learning example networks for training.

Each example model trains with mixed precision Tensor Cores on Volta, therefore you can
get results much faster than training without Tensor Cores. This model is tested against each
NGC monthly container release to ensure consistent accuracy and performance over time.
This container includes the following Tensor Core examples.

‣ ResNeXt101-32x4d model. The ResNeXt101-32x4d is a model introduced in the Aggregated
Residual Transformations for Deep Neural Networks paper. It is based on the regular
ResNet model, substituting 3x3 convolutions inside the bottleneck block for 3x3 grouped
convolutions. This model script is available on GitHub as well as NVIDIA GPU Cloud (NGC).

‣ SE-ResNext model. The SE-ResNeXt101-32x4d is a ResNeXt101-32x4d  model with added
Squeeze-and-Excitation (SE) module introduced in the Squeeze-and-Excitation Networks
paper. This model script is available on GitHub as well as NVIDIA GPU Cloud (NGC).

‣ Jasper model. This repository provides an implementation of the Jasper model in PyTorch
from the paper Jasper: An End-to-End Convolutional Neural Acoustic Model. The Jasper
model is an end-to-end neural acoustic model for ASR. It provides near state-of-the-art
results on LibriSpeech among end-to-end ASR models without any external data. This
model script is available on GitHub as well as NVIDIA GPU Cloud (NGC).

‣ BERT model. BERT, or Bidirectional Encoder Representations from Transformers, is a new
method of pre-training language representations. It obtains state-of-the-art results on a
wide array of Natural NLP tasks. This model is based on the BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding paper. NVIDIA's implementation
of BERT is an optimized version of the Hugging Face implementation. It leverages mixed
precision arithmetic and Tensor Cores on V100 GPUs for faster training times while
maintaining target accuracy. This model script is available on GitHub as well as NVIDIA
GPU Cloud (NGC).

‣ Mask R-CNN model. Mask R-CNN is a convolution based neural network for the task of
object instance segmentation. The paper describing the model can be found here. NVIDIA’s
Mask R-CNN model is an optimized version of Facebook’s implementation. It leverages
mixed precision arithmetic using Tensor Cores on NVIDIA Tesla V100 GPUs for 1.3x faster
training while maintaining target accuracy. This model script is available on GitHub as well
as NVIDIA GPU Cloud (NGC).

‣ Tacotron 2 and WaveGlow v1.1 model. This text-to-speech (TTS) system is a combination of
two neural network models:

‣ a modified Tacotron 2 model from the Natural TTS Synthesis by Conditioning WaveNet
on Mel Spectrogram Predictions paper, and

‣ a flow-based neural network model from the WaveGlow: A Flow-based Generative
Network for Speech Synthesis paper

https://github.com/NVIDIA/DeepLearningExamples/tree/master
https://developer.nvidia.com/deep-learning-examples
https://ngc.nvidia.com/catalog/model-scripts
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper
https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_pytorch
https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Segmentation/MaskRCNN
https://arxiv.org/abs/1703.06870
https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Segmentation/MaskRCNN
https://ngc.nvidia.com/catalog/model-scripts/nvidia:mask_r_cnn_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
https://arxiv.org/abs/1712.05884
https://arxiv.org/abs/1712.05884
https://arxiv.org/abs/1811.00002
https://arxiv.org/abs/1811.00002


Frameworks

Train with Mixed Precision DA-08617-001_v001   |   16

This model script is available on GitHub as well as NVIDIA GPU Cloud (NGC).

‣ SSD300 v1.1 model. The SSD300 v1.1 model is based on the SSD: Single Shot MultiBox
Detector paper. The main difference between this model and the one described in the
paper is in the backbone. Specifically, the VGG model is obsolete and is replaced by the
ResNet50 model. This model script is available on GitHub as well as NVIDIA GPU Cloud
(NGC).

‣ Neural Collaborative Filtering (NCF) model. The NCF model focuses on providing
recommendations, also known as collaborative filtering; with implicit feedback. The
training data for this model should contain binary information about whether a user
interacted with a specific item. NCF was first introduced by Xiangnan He, Lizi Liao,
Hanwang Zhang, Liqiang Nie, Xia Hu and Tat-Seng Chua in the Neural Collaborative
Filtering paper. This model script is available on GitHub as well as NVIDIA GPU Cloud
(NGC).

‣ Transformer model. The Transformer model is based on the optimized implementation
in Facebook's Fairseq NLP Toolkit and is built on top of PyTorch. The original version in
the Fairseq project was developed using Tensor Cores, which provides significant training
speedup. Our implementation improves the performance and is tested on a DGX-1V 16GB.
This model script is available on GitHub as well as NVIDIA GPU Cloud (NGC).

‣ GNMT v2 model. The GNMT v2 model is similar to the one discussed in the Google's
Neural Machine Translation System: Bridging the Gap between Human and Machine
Translation paper. This model script is available on GitHub as well as NVIDIA GPU Cloud
(NGC).

7.1.4.  Manual Conversion To Mixed Precision In
PyTorch

We recommend using AMP to implement mixed precision in your model. However, if you wish
to implement mixed precision yourself, refer to our GTC talk on manual mixed precision (video,
slides).

7.2.  TensorFlow
TensorFlow supports FP16 storage and Tensor Core math. Models that contain convolutions
or matrix multiplications using the tf.float16 data type will automatically take advantage of
Tensor Core hardware whenever possible.

In order to make use of Tensor Cores, FP32 models will need to be converted to use a mix of
FP32 and FP16. This can be done either automatically using automatic mixed precision (AMP)
or manually.

7.2.1.  Automatic Mixed Precision Training In
TensorFlow

For models already using a tf.train.Optimizer or tf.keras.optimizers.Optimizer
for both compute_gradients() and apply_gradients() operations

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
https://ngc.nvidia.com/catalog/model-scripts/nvidia:tacotron_2_and_waveglow_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
https://ngc.nvidia.com/catalog/model-scripts/nvidia:ssd_for_pytorch
https://ngc.nvidia.com/catalog/model-scripts/nvidia:ssd_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
https://arxiv.org/abs/1708.05031
https://arxiv.org/abs/1708.05031
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
https://ngc.nvidia.com/catalog/model-scripts/nvidia:ncf_for_pytorch
https://ngc.nvidia.com/catalog/model-scripts/nvidia:ncf_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/Transformer
https://github.com/pytorch/fairseq
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/Transformer
https://ngc.nvidia.com/catalog/model-scripts/nvidia:transformer_for_pytorch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/GNMT
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/GNMT
https://ngc.nvidia.com/catalog/model-scripts/nvidia:gnmt_v2_for_pytorch
https://ngc.nvidia.com/catalog/model-scripts/nvidia:gnmt_v2_for_pytorch
http://on-demand.gputechconf.com/gtc-taiwan/2018/video/STW8021.mp4
http://on-demand.gputechconf.com/gtc-taiwan/2018/pdf/5-1_Internal%20Speaker_Michael%20Carilli_PDF%20For%20Sharing.pdf
https://www.tensorflow.org
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(for example, by calling optimizer.minimize() or model.fit()),
automatic mixed precision can be enabled by wrapping the optimizer with
tf.train.experimental.enable_mixed_precision_graph_rewrite().

Graph-based example:
opt = tf.train.AdamOptimizer()
opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)
train_op = opt.miminize(loss)

Keras-based example:
opt = tf.keras.optimizers.Adam()
opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)
model.compile(loss=loss, optimizer=opt)
model.fit(...)

You can also set the environment variable inside a TensorFlow Python script. Issue the
following code at the beginning of the script:
os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'

When enabled, automatic mixed precision will do two things:

 1. Insert the appropriate cast operations into your TensorFlow graph to use float16 execution
and storage where appropriate. This enables the use of Tensor Cores along with memory
storage and bandwidth savings.

 2. Turn on automatic loss scaling inside the training Optimizer object.

For more information on automatic mixed precision, refer to the NVIDIA TensorFlow User
Guide.

7.2.2.  Success Stories
The models where we have seen speedup using mixed precision are:

Table 2. TensorFlow Mixed precision Model Speedup

Model Speedup
BERT Q&A 3.3X speedup

GNMT 1.7X speedup

NCF 2.6X speedup

SSD-RN50-FPN-640 2.5X speedup

7.2.3.  Tensor Core Optimized Model Scripts For
TensorFlow

The Tensor Core examples provided in GitHub focus on achieving the best performance and
convergence using NVIDIA Volta Tensor Cores . It uses the latest deep learning example
networks and model scripts for training.

Each example model trains with mixed precision Tensor Cores on Volta, therefore you can
get results much faster than training without Tensor Cores. This model is tested against each
NGC monthly container release to ensure consistent accuracy and performance over time.
This container includes the following Tensor Core examples.

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#scalefactor
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-user-guide/index.html#tensorcore
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-user-guide/index.html#tensorcore
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Translation/GNMT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/NCF
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/NVIDIA/DeepLearningExamples/tree/master
https://developer.nvidia.com/deep-learning-examples
https://ngc.nvidia.com/catalog/model-scripts
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‣ U-Net Medical model. The U-Net model is a convolutional neural network for 2D image
segmentation. This repository contains a U-Net implementation as described in the
paper U-Net: Convolutional Networks for Biomedical Image Segmentation, without any
alteration. This model script is available on GitHub as well as NVIDIA GPU Cloud (NGC).

‣ SSD320 v1.2 model. The SSD320 v1.2 model is based on the SSD: Single Shot MultiBox
Detector paper, which describes an SSD as “a method for detecting objects in images
using a single deep neural network”. Our implementation is based on the existing model
from the TensorFlow models repository. This model script is available on GitHub as well as
NVIDIA GPU Cloud (NGC).

‣ Neural Collaborative Filtering (NCF) model. The NCF model is a neural network that
provides collaborative filtering based on implicit feedback, specifically, it provides product
recommendations based on user and item interactions. The training data for this model
should contain a sequence of user ID, item ID pairs indicating that the specified user has
interacted with, for example, was given a rating to or clicked on, the specified item. This
model script is available on GitHub as well as NVIDIA GPU Cloud (NGC).

‣ BERT model. BERT, or Bidirectional Encoder Representations from Transformers, is a new
method of pre-training language representations which obtains state-of-the-art results on
a wide array of Natural Language Processing (NLP) tasks. This model is based on BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding paper.
NVIDIA's BERT is an optimized version of Google's official implementation, leveraging
mixed precision arithmetic and Tensor Cores on V100 GPUS for faster training times while
maintaining target accuracy. This model script is available on GitHub as well as NVIDIA
GPU Cloud (NGC).

‣ U-Net Industrial Defect Segmentation model. This U-Net model is adapted from the
original version of the U-Net model, which is a convolutional auto-encoder for 2D
image segmentation. U-Net was first introduced by Olaf Ronneberger, Philip Fischer,
and Thomas Brox in the paper: U-Net: Convolutional Networks for Biomedical Image
Segmentation. This work proposes a modified version of U-Net, called TinyUNet, which
performs efficiently and with very high accuracy on the industrial anomaly dataset
DAGM2007. This model script is available on GitHub as well as NVIDIA GPU Cloud (NGC).

‣ GNMT v2 model. The GNMT v2 model is similar to the one discussed in the Google's
Neural Machine Translation System: Bridging the Gap between Human and Machine
Translation paper. The most important difference between the two models is in the
attention mechanism. In our model, the output from the first LSTM layer of the decoder
goes into the attention module, then the re-weighted context is concatenated with inputs
to all subsequent LSTM layers in the decoder at the current timestep. This model script is
available on GitHub as well as NVIDIA GPU Cloud (NGC).

7.2.4.  Manual Conversion To Mixed Precision
Training In TensorFlow

Procedure

 1. Pull the latest TensorFlow container from the NVIDIA GPU Cloud (NGC) container
registry. The container is already built, tested, tuned, and ready to run. The TensorFlow
container includes the latest CUDA version, FP16 support, and is optimized for the latest

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Medical
https://arxiv.org/abs/1505.04597
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Medical
https://ngc.nvidia.com/catalog/model-scripts/nvidia:unet_medical_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync.config
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD
https://ngc.nvidia.com/catalog/model-scripts/nvidia:ssd_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/NCF
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/NCF
https://ngc.nvidia.com/catalog/model-scripts/nvidia:ncf_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://github.com/google-research/bert
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_tensorflow
https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://resources.mpi-inf.mpg.de/conference/dagm/2007/prizes.html
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://ngc.nvidia.com/catalog/model-scripts/nvidia:unet_industrial_for_tensorflow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Translation/GNMT
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Translation/GNMT
https://ngc.nvidia.com/catalog/model-scripts/nvidia:gnmt_v2_for_tensorflow
https://ngc.nvidia.com
https://ngc.nvidia.com
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architecture. For step-by-step pull instructions, refer to the NVIDIA Containers for Deep
Learning Frameworks User Guide.

 2. Use the tf.float16 data type on models that contain convolutions or matrix
multiplications. This data type automatically takes advantage of the Tensor Core hardware
whenever possible, in other words, to increase your chances for Tensor Core acceleration,
choose where possible multiple of eight linear layer matrix dimensions and convolution
channel counts. For example:
dtype = tf.float16
data = tf.placeholder(dtype, shape=(nbatch, nin))
weights = tf.get_variable('weights', (nin, nout), dtype)
biases  = tf.get_variable('biases',        nout,  dtype,
                          initializer=tf.zeros_initializer())
logits = tf.matmul(data, weights) + biases

 3. Ensure that the trainable variables are in float32 precision and cast them to float16 before
using them in the model. For example:
tf.cast(tf.get_variable(..., dtype=tf.float32), tf.float16)

This can also be achieved by using the float32_variable_storage_getter shown in the
following example.

 4. Ensure that the SoftMax calculation is in float32 precision. For example:
tf.losses.softmax_cross_entropy(target, tf.cast(logits, tf.float32))

 5. Apply loss-scaling as outlined in the previous sections. Loss scaling involves multiplying
the loss by a scale factor before computing gradients, and then dividing the resulting
gradients by the same scale again to re-normalize them. For example, to apply a constant
loss scaling factor of 128:
loss, params = ...
scale = 128
grads = [grad / scale for grad in tf.gradients(loss * scale, params)]

7.3.  MXNet
MXNet includes support for FP16 storage and Tensor Core math. To achieve optimum
performance, you need to train a model using Tensor Core math and FP16 mode on MXNet.

The following procedure is typical for when you want to have your entire network in FP16.
Alternatively, you can take output from any layer and cast it to FP16. Subsequent layers will be
in FP16 and will use Tensor Core math if applicable.

7.3.1.  Automatic Mixed Precision Training In MXNet
The automatic mixed precision feature is available starting inside the NVIDIA NGC MXNet
19.04+ containers.

Training deep learning networks is a very computationally intensive task. Novel model
architectures tend to have an increasing number of layers and parameters, which slows down
training. Fortunately, new generations of training hardware as well as software optimizations
make training these new models a feasible task.

Most of the hardware and software training optimization opportunities involve exploiting lower
precision like FP16 in order to utilize the Tensor Cores available on new Volta and Turing
GPUs. While training in FP16 showed great success in image classification tasks, other more

https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html
http://mxnet.io
https://ngc.nvidia.com/catalog/containers/nvidia:mxnet
https://ngc.nvidia.com/catalog/containers/nvidia:mxnet
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complicated neural networks typically stayed in FP32 due to difficulties in applying the FP16
training guidelines that are needed to ensure proper model training.

That is where AMP (Automatic Mixed Precision) comes into play- it automatically applies the
guidelines of FP16 training, using FP16 precision where it provides the most benefit, while
conservatively keeping in full FP32 precision operations unsafe to do in FP16.

The MXNet AMP tutorial, located in /opt/mxnet/nvidia-examples/AMP/AMP_tutorial.md
inside this container, shows how to get started with mixed precision training using AMP for
MXNet, using by example the SSD network from GluonCV.

7.3.2.  Tensor Core Optimized Model Scripts For
MXNet

The Tensor Core examples provided in GitHub focus on achieving the best performance and
convergence using NVIDIA Volta Tensor Cores. It also uses the latest deep learning example
networks and model scripts for training.

Each example model trains with mixed precision Tensor Cores starting with the Volta
architecture, therefore you can get results much faster than training without Tensor Cores.
This model is tested against each NGC monthly container release to ensure consistent
accuracy and performance over time. The MXNet container includes the following MXNet
Tensor Core examples:

‣ The ResNet50 v1.5 model is a slightly modified version of the original ResNet50 v1 model
that trains to a greater accuracy. This model script is available on GitHub as well as
NVIDIA GPU Cloud (NGC).

7.3.3.  Manual Conversion To Mixed Precision
Training In MXNet

Procedure

 1. Pull the latest MXNet container from the NVIDIA GPU Cloud (NGC) container registry. The
container is already built, tested, tuned, and ready to run. The MXNet container includes
the latest CUDA version, FP16 support, and is optimized for the latest architecture.
For step-by-step pull instructions, refer to the NVIDIA Containers for Deep Learning
Frameworks User Guide.

 2. To use the IO pipeline, use the IndexedRecordIO format of input. It differs from the
legacy RecordIO format, by including an additional index file with an .idx extension. The
.idx file is automatically generated when using the im2rec.py tool, to generate new
RecordIO files. If you already have the .rec file without the corresponding .idx file, you
can generate the index file with tools/rec2idx.py tool:
python tools/rec2idx.py <path to .rec file> <path to newly created .idx file>

 3. To use FP16 training with MXNet, cast the data (input to the network) to FP16.
mxnet.sym.Cast(data=input_data, dtype=numpy.float16)

 4. Cast back to FP32 before the SoftMax layer.

https://github.com/NVIDIA/DeepLearningExamples/tree/master
https://developer.nvidia.com/deep-learning-examples
https://ngc.nvidia.com/catalog/model-scripts
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/
https://github.com/NVIDIA/DeepLearningExamples/blob/master/MxNet/Classification/RN50v1.5
https://arxiv.org/abs/1512.03385
https://github.com/NVIDIA/DeepLearningExamples/blob/master/MxNet/Classification/RN50v1.5
https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_mxnet
https://ngc.nvidia.com
https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html
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 5. If you encounter precision problems, it is beneficial to scale the loss up by 128, and scale
the application of the gradients down by 128. This ensures higher gradients during the
backward pass calculation, but will still correctly update the weights. For example, if out
last layer is mx.sym.SoftmaxOutput (cross-entropy loss), and the initial learning rate is
0.1, add a grad_scale parameter:
mxnet.sym.SoftmaxOutput(other_args, grad_scale=128.0)

When initializing the optimizer, rescale the gradient down before the application:
mxnet.optimizer.SGD(other_args, rescale_grad=1.0/128)

Tip: When training in FP16, it is best to use multi-precision optimizers that keep the
weights in FP32 and perform the backward pass in FP16. For example, for SGD with
momentum, you would issue the following:
mxnet.optimizer.SGD(other_args, momentum=0.9, multi_precision=True)

Alternatively, you can pass 'multi_precision': True to the optimizer_params option
in the model.fit method.

7.4.  Caffe2
Caffe2 includes support for FP16 storage and Tensor Core math. To achieve optimum
performance, you can train a model using Tensor Core math and FP16 mode on Caffe2.

When training a model on Caffe2 using Tensor Core math and FP16, the following actions need
to take place:

‣ Prepare your data. You can generate data in FP32 and then cast it down to FP16. The GPU
transforms path of the ImageInput operation can do this casting in a fused manner.

‣ Forward pass. Since data is given to the network in FP16, all of the subsequent operations
will run in FP16 mode, therefore:

‣ Select which operators need to have both FP16 and FP32 parameters by setting
the type of Initializer used. Typically, the Conv and FC operators need to have both
parameters.

‣ Cast the output of forward pass, before SoftMax, back to FP32.

‣ To enable Tensor Core, pass enable_tensor_core=True to ModelHelper when
representing a new model.

‣ Update the primary FP32 copy of the weights using the FP16 gradients you just
computed. For example:

‣ Cast up gradients to FP32.

‣ Update the FP32 copy of parameters.

‣ Cast down the FP32 copy of parameters to FP16 for the next iteration.

‣ Gradient scaling.

‣ To scale, multiply the loss by the scaling factor.

‣ To descale, divide LR and weight_decay by the scaling factor.

https://research.fb.com/downloads/caffe2/
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7.4.1.  Running FP16 Training On Caffe2

Procedure

 1. Pull the latest Caffe2 container from the NVIDIA GPU Cloud (NGC) container registry.
The container is already built, tested, tuned, and ready to run. The Caffe2 container
includes the latest CUDA version, FP16 support, and is optimized starting with the Volta
architecture. For step-by-step pull instructions, see the NVIDIA Containers for Deep
Learning Frameworks User Guide.

 2. Run the following Python script with the appropriate command line arguments. You can
test using the ResNet-50 image classification training script included in Caffe2.
python caffe2/python/examples/resnet50_trainer.py --train_data
<path> --test_data <path> --num-gpus <int> --batch-size <int>
--dtype float16 --enable-tensor-core --cudnn_workspace_limit_mb 
1024 --image_size 224

For more information about the additional command-line arguments, issue the following
command:
caffe2/python/examples/resnet50_trainer.py --help

To enhance performance, the following changes must be made:

‣ The network definition in caffe2/python/models/resnet.py must be changed to
reflect version 1 of the network by changing the residual block striding from the 3x3
convolution to the first 1x1 convolution operator.

‣ Enable optimized communication operators and disable some communication ops
by adding the use_nccl=True and broadcast_computed_params=False flags
to the data_parallel_model.Parallelize call in caffe2/python/examples/
resnet50_trainer.py.

‣ Add decode_threads=3 and use_gpu_transform=True to the brew.image_input
call. This tweaks the amount of CPU threads used for data decode and augmentation
(value is per-GPU) and enables the use of the GPU for some data augmentation work.

‣ Increase the number of host threads used to schedule operators on the GPUs by
adding train_model.net.Proto().num_workers = 4 * len(gpus) after the call to
data_parallel_model.Parallelize.

7.5.  Microsoft Cognitive Toolkit
Microsoft Cognitive Toolkit includes support for FP16 storage and Tensor Core math. To
achieve optimum performance, you need to train a model using Tensor Core math and FP16
mode on Microsoft Cognitive Toolkit.

https://ngc.nvidia.com
https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html
https://www.microsoft.com/en-us/cognitive-toolkit/
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7.5.1.  Running FP16 Training On Microsoft
Cognitive Toolkit

After you have trained a neural network, you can optimize and deploy the model for GPU
inferencing with TensorRT™ . For more information about optimizing and deploying using
TensorRT, refer to the NVIDIA TensorRT documentation.

Tensor Core math is turned on by default in FP16. The following procedure is typical of
Microsoft Cognitive Toolkit using FP16 in a multi-layer perceptron MNIST example.
import cntk as C
import numpy as np
 
input_dim = 784
num_output_classes = 10
num_hidden_layers = 1
hidden_layers_dim = 200
 
# Input variables denoting the features and label data
feature = C.input_variable(input_dim, np.float32)
label = C.input_variable(num_output_classes, np.float32)
 
feature16 = C.cast(feature, np.float16)
label16 = C.cast(label, np.float16)
 
with C.default_options(dtype=np.float16):
 # Instantiate the feedforward classification model
 scaled_input16 = C.element_times(C.constant(0.00390625, dtype=np.float16), feature16)
 
 z16 = C.layers.Sequential([C.layers.For(range(num_hidden_layers),
                               lambda i: C.layers.Dense(hidden_layers_dim,
 activation=C.relu)),
                               C.layers.Dense(num_output_classes)])(scaled_input16)
 
 ce16 = C.cross_entropy_with_softmax(z16, label16)
 pe16 = C.classification_error(z16, label16)
 
z = C.cast(z16, np.float32)
ce = C.cast(ce16, np.float32)
pe = C.cast(pe16, np.float32)
 
# fake data with batch_size = 5
batch_size = 5
feature_data = np.random.randint(0, 256, (batch_size,784)).astype(np.float32)
label_data = np.eye(num_output_classes)[np.random.randint(0, num_output_classes, batch_size)]
ce.eval({feature:feature_data, label:label_data})

7.5.2.  Microsoft Cognitive Toolkit FP16 Example
For a more complete example of ResNet-50 with distributed training, refer to the
TrainResNet_ImageNet_Distributed.py example.

7.6.  NVCaffe
NVCaffe includes support for FP16 storage and Tensor Core math. To achieve optimum
performance, you can train a model using Tensor Core math and FP16 mode on NVCaffe.

https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://github.com/Microsoft/CNTK/blob/master/Examples/Image/Classification/ResNet/Python/TrainResNet_ImageNet_Distributed.py
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7.6.1.  Running FP16 Training On NVCaffe

Procedure

 1. Pull the latest NVCaffe container from the NVIDIA GPU Cloud (NGC) container registry. The
container is already built, tested, tuned, and ready to run. The NVCaffe container includes
the latest CUDA version, FP16 support, and is optimized for the latest architecture. For
step-by-step pull instructions, if you have a DGX-1, refer to the NVIDIA Containers for Deep
Learning Frameworks User Guide, otherwise refer to the Using NGC with Your NVIDIA
TITAN or Quadro PC Setup Guide.

 2. Experiment with the following training parameters:
 a). Before running the training script below, adjust the batch size for better performance.

To do so, open the training settings with your choice of editor, for example, vim:
caffe$ vim models/resnet50/train_val_fp16.prototxt

And change the batch_size: 32 setting value to [64...128] * <Number of GPUs
installed>.

 b). Experiment with pure FP16 mode by setting:
default_forward_type:  FLOAT16
default_backward_type: FLOAT16
default_forward_math:  FLOAT16
default_backward_math: FLOAT16

And by adding solver_data_type: FLOAT16 to the file models/resnet50/
solver_fp16.prototxt.

 c). If you get NaN or INF values, try adaptive scaling:
global_grad_scale_adaptive: true

 3. Train ResNet-50. Open:
caffe$ ./models/resnet50/train_resnet50_fp16.sh

When the training is finished, it should look similar to the following:
I0806 06:54:20.037241   276 parallel.cpp:79] Overall multi-GPU performance: 5268.04 img/
sec*

Note: The performance number of 5268 img/sec was trained on an 8-GPU system. For a
single GPU system, you could expect around 750 img/sec training with NVCaffe.

 4. View the output. Issue the following command:
caffe$ python plot_top5.py -s 
models/resnet50/logs/resnet50_fp16.log

Your output should look similar to the following:

https://ngc.nvidia.com
https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html
https://docs.nvidia.com/ngc/ngc-titan-setup-guide/index.html#abstract
https://docs.nvidia.com/ngc/ngc-titan-setup-guide/index.html#abstract


Frameworks

Train with Mixed Precision DA-08617-001_v001   |   25

Figure 4. ResNet-50 FP16 training log

7.6.2.  NVCaffe FP16 Example
For examples on optimization, refer to the models/resnet50/train_val_fp16.prototxt
file.
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Chapter 8. Deploying DNNs

After you have trained a neural network, you can optimize and deploy the model for GPU
inferencing with TensorRT™ . For more information about optimizing and deploying using
TensorRT, refer to the NVIDIA TensorRT documentation.

https://docs.nvidia.com/deeplearning/tensorrt/index.html
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Chapter 9. FAQs

9.1.  General FAQs

Q: What additional resources are available for how to use mixed precision?

A: Here are some additional resources that can help with understanding mixed precision:

‣ Mixed Precision Training (ICLR 2018).

‣ Mixed-Precision Training of Deep Neural Networks (NVIDIA Developer Blog).

Q: What is Automatic Mixed Precision (AMP) and how can it help with training
my model?

A: Automatic Mixed Precision (AMP) makes all the required adjustments to train models using
mixed precision, providing two benefits over manual operations:

‣ Developers need not modify network model code, reducing development and maintenance
effort.

‣ Using AMP maintains forward and backward compatibility with all the APIs for defining and
running models.

The benefits of mixed precision training are:

‣ Speed up of math-intensive operations, such as linear and convolution layers, by using
Tensor Cores.

‣ Speed up memory-limited operations by accessing half the bytes compared to single-
precision.

‣ Reduction of memory requirements for training models, enabling larger models or larger
minibatches.

For more information, refer to Automatic Mixed Precision for Deep Learning.

Q: How does AMP automate mixed precision?

A: Using mixed precision training requires two steps:

https://openreview.net/pdf?id=r1gs9JgRZ
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://developer.nvidia.com/tensor-cores
https://developer.nvidia.com/automatic-mixed-precision
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
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 1. Porting the model to use the FP16 data type where appropriate.

 2. Using loss scaling to preserve small gradient values.

AMP automates both these steps. In particular in TF-AMP, this is controlled by means of a
single environment variable.

Q: How does dynamic scaling work?

A: Dynamic loss scaling basically attempts to ride the edge of the highest loss scale it can use
without causing gradient overflow, to make full use of the FP16 dynamic range.

It does so by beginning with a high loss scale value (say, 2^24), then in each iteration, checking
the gradients for overflows (infs/NaNs). If none of the gradients overflowed, gradients are
unscaled (in FP32) and optimizer.step() is applied as usual. If an overflow was detected,
optimizer.step is patched to skip the actual weight update (so that the inf/NaN gradients do
not pollute the weights) and the loss scale is reduced by some factor F (F=2 by default). This
takes care of reducing the loss scale to a range where overflows are not produced. However,
it's only half the story.

What if, at some later point, training has stabilized and a higher loss scale is permissible? For
example, later in training, gradient magnitudes tend to be smaller, and may require a higher
loss scale to prevent underflow. Therefore, dynamic loss scaling also attempts to increase
the loss scale by a factor of F every N iterations (N=2000 by default). If increasing the loss
scale causes an overflow once more, the step is skipped and the loss scale is reduced back to
the pre-increase value as usual. In this way, by: reducing the loss scale whenever a gradient
overflow is encountered, and Intermittently attempting to increase the loss scale, the goal of
riding the edge of the highest loss scale that can be used without causing overflow is (roughly)
accomplished.

Q: How do you increase the batch size when AMP is enabled? Do you just
increase the batch size by 2?

A: It depends on how much memory you saved, which depends on the model. A quick way is to
watch -n 0.5 nvidia-smi from a separate terminal while you launch your run, to see how
much device memory you're using. In general, using a larger batch per GPU tends to improve
utilization, as long as you obey the guidelines to allow Tensor Core usage (refer to Issue �221
for more information).

Q: How is AllowList/DenyList/InferList determined? What are the
corresponding ops that are in each list?

A: We determine these based on our experience with numeric stability from our research.
AllowList operations are operations that take advantage of our GPU Tensor Cores. DenyList
operations are operations that may overflow the range of FP16, or require the higher precision
of FP32. InferList operations are operations that are safely done in either FP32 or FP16.
Typical ops included in each list are:

https://github.com/NVIDIA/apex/issues/221#issuecomment-478084841
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‣ AllowList: Convolutions, Fully-connected layers

‣ DenyList: Large reductions, Cross entropy loss, L1 Loss, Exponential

‣ InferList: Element-wise operations (add, multiply by a constant)

To view/review, modify, and recompile to experiment, or to use environment variables in our
container to modify AllowList/DenyList, see:

‣ For TensorFlow, to modify, use this.

‣ For PyTorch, to modify, use this. Reinstall APEX, however, you don’t need to recompile
PyTorch at this time.

Q: What are the minimum hardware and software requirements to use AMP?

A: In order to run AMP effectively, you need Tensor Cores in your GPU; for training, we
recommend V100; and for inference, we recommend T4. You can access this hardware
through cloud service providers (AWS, Azure or Google Cloud).

When using a framework, TensorFlow 1.14 supports AMP natively or support for AMP is
available using NVIDIA’s containers 19.07+. In PyTorch, 1.0 AMP is available through APEX.

Q: How do I enable AMP for my deep learning training?

A: Enabling AMP is framework dependent:

‣ In TensorFlow, AMP is controlled by wrapping the optimizer as follows:
tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)

‣ In PyTorch, AMP is available through the APEX extension:
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()

‣ In MXNET, AMP is available through the contrib library:
amp.init()
amp.init_trainer(trainer)
with amp.scale_loss(loss, trainer) as scaled_loss:
   autograd.backward(scaled_loss)

Q: What are the models that are suitable for AMP? And what kind of speed-up
can I expect?

A: All models are suitable for AMP, although the speed-up may vary from model to model. The
following table provides some examples of the speed-up for different models:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/optimizers/auto_mixed_precision_lists.h
https://github.com/NVIDIA/apex/blob/master/apex/amp/lists/functional_overrides.py
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Table 3. FP32 Speedup and Mixed Precision Models

Model
Script FrameworkData Set

FP32
Accuracy

Mixed
Precision
Accuracy

FP32
Throughput

Mixed
Precision
ThroughputSpeed-up

BERT Q&A TensorFlow SQuAD 90.83

Top 1%

90.99

Top 1%

66.65
sentences/
sec

129.16
sentences/
sec

1.94

SSD w/
RN50

TensorFlow COCO 2017 0.268

mAP

0.269

mAP

569
images/
sec

752
images/
sec

1.32

GNMT PyTorch WMT16
English to
German

24.16

BLEU

24.22

BLEU

314,831
tokens/sec

738,521
tokens/sec

2.35

Neural
Collaborative
Filter

PyTorch MovieLens
20M

0.959

HR

0.960

HR

55,004,590
samples/
sec

99,332,230
samples/
sec

1.81

U-Net
Industrial

TensorFlow DAGM
2007

0.965-0.988 0.960-0.988 445
images/
sec

491
images/
sec

1.10

ResNet-50
v1.5

MXNet ImageNet 76.67

Top 1%

76.49

Top 1%

2,957
images/
sec

10,263
images/
sec

3.47

Tacotron
2 /
WaveGlow
1.0

PyTorch LJ Speech
Dataset

0.3629/-6.10870.3645/-6.025810,843 tok/
s

257,687
smp/s

12,742 tok/
s

500,375
smp/s

1.18/1.94

Values are measured with the model running on DGX-1V 8GPU 16G, DGX-1V 8GPU 32G, or
DGX-2V 16GPU 32G.

When enabling AMP, there are other aspects to consider such as the reduction in memory and
in bandwidth needed to train the mixed precision model.

Q: How much faster will my model run with AMP?

A: There are no precise rules for mixed precision speedups, but here are a few guidelines:

‣ The more time is spent in matrix multiplication (linear layers) or convolutions, the more
Tensor Cores can accelerate the model. This means that "bigger" models often see larger
speedups.

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Translation/GNMT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
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‣ In particular, very small linear and convolution layers will see limited benefit from
AMP, since there is not enough math to fully exploit Tensor Cores.

‣ Mixed precision models use less memory than FP32, so it is possible to increase the batch
size when running with AMP. Therefore, you can often increase the speedup by increasing
the batch size after enabling AMP.

Q: How do I see reduced memory consumption?

A: In TensorFlow, set the allow_growth flag so it only allocates what it needs and view in
nvidia-smi. For PyTorch, nvidia-smi can show memory utilization. The best way to test, is
to try a larger batch size that would have otherwise led to out-of-memory when AMP is not
enabled.

Q: What if I have already implemented manual mixed precision, how will AMP
further improve my model performance? What benefits should I expect from
AMP?

A: If the code is already written in such a way to follow the NVIDIA Mixed Precision Training
Guide, then AMP will leave things as they are.

Q: Why do I observe only a little speedup with AMP turned on?

A: First, you need to identify the bottleneck in your workflow, is it data I/O or compute bound?
To find out what is limiting the performance of your workflow use DLProf to profile it.

If the slowest part of the workflow is in the GPU, check if the layers of your model are actually
making use of mixed precision. This can be done in a TensorBoard extension after profiling
your network with DLProf, or manually by profiling with Nsight Systems or nvprof and
looking for kernel names including the strings [i|s|h]884 or [i|s|h]1688 (for example,
volta_h884gemm_… or turing_fp16_s1688cudnn_fp16_…).

Some layers of a network are DenyListed, meaning that they cannot use mixed precision for
accuracy reasons. The DenyList is framework dependent. Refer to the following resources for
more information:

‣ TensorFlow

‣ PyTorch

Furthermore, Tensor Cores are optimizing GEMMs (generalized (dense) matrix-matrix
multiplies) operations, there are restrictions on the dimensions of the matrices in order to
effectively optimize such operations:

‣ For A x B where A has size (M, K) and B has size (K, N):

‣ N, M, K should be multiples of 8

‣ GEMMs in fully connected layers:

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://github.com/tensorflow/tensorflow/blob/c4a34bd7081f00df0adc75dff466c2e3a128e87b/tensorflow/core/grappler/optimizers/auto_mixed_precision_lists.h
https://github.com/NVIDIA/apex/tree/master/apex/amp/lists
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‣ Batch size, input features, output features should be multiples of 8

‣ GEMMs in RNNs:

‣ Batch size, hidden size, embedding size, and dictionary size should be multiples of 8

Q: Is accuracy worse when AMP is turned on?

A: AMP is designed to leave accuracy unchanged with respect to FP32 training. And, in
practice, we never observed noticeable degradation of accuracy when training with AMP.

Q: What if the model code crashes after I have enabled AMP?

A: First, make sure that your model doesn’t crash without using AMP. Then, if you have
experienced such issues after enabling AMP, file a bug.

Q: How do I know that AMP is working for me or Tensor Cores are being
enabled?

A: The log outputs whether AMP is working, and is framework specific. In TensorFlow, for
instance, you will see log messages similar to the following:
TF AMP log messages are of the form ‘Converted 405/4897 nodes to float16 precision
 using
        2 cast(s) to float16 (excluding Const and Variable casts)

9.2.  TensorFlow FAQs

Q: Is Automatic Mixed Precision (AMP) dependent on a TensorFlow version or
can any TensorFlow version enable AMP?

A: AMP is available in the NGC TensorFlow containers starting from 19.03 and is enabled
using the TF_ENABLE_AUTO_MIXED_PRECISION=1 environment variable. It is now enabled by
wrapping the optimizer object as follows:
opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)

More information is available in the following webinar. Starting with TensorFlow 1.14, AMP will
be available natively in the framework.

Q: What is the scheme for TensorFlow to decide which operations to cast to
FP16 (which level of the graph or where to decide)? Does TensorFlow also keep
a DenyList and an AllowList like PyTorch?

A: Our GTC Silicon Valley session S91029, Automated Mixed-Precision Tools for TensorFlow
Training discusses how this works. TensorFlow also uses the DenyList and AllowList concepts,
but with some subtle differences because TensorFlow has the advantage of a static graph to
analyze and convert.

https://developer.nvidia.com/nvidia_bug/add
https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow
https://info.nvidia.com/webinar-mixed-precision-in-tensorflow-reg-page.html?ncid=em-ded-d3-83439
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s91029-automated+mixed-precision+tools+for+tensorflow+training
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s91029-automated+mixed-precision+tools+for+tensorflow+training
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Q: What is TF-AMP and what is the goal?

A:The top-level goal is that our customers who use TensorFlow to train on V100 have a great
mixed precision training experience utilizing all the acceleration possible offered by the
hardware. That means accuracy that matches FP32 and real speedups without much manual
effort.

In practice, achieving that goal requires a few things to happen:

 1. Correctly porting the model to mixed precision. Meaning, updating dtypes in code to FP16
as well as making sure that numerically “unsafe” operations stay in FP32.

 2. Using loss scaling to avoid gradient flush-to-zero (important for accuracy).

 3. The existence of fast FP16 kernels for the relevant operations, along with the software
stack from the user down to the kernels ensuring that those kernels get called correctly.

Q: How is TF-AMP implemented?

A:TF-AMP optimizes the model graph mainly by:

 1. Inserting the appropriate cast operations into your TensorFlow graph to use FP16
execution and storage where appropriate; this enables both the use of Tensor Cores along
with memory storage and bandwidth savings.

 2. Turn on automatic loss scaling inside the Optimizer object.

It is possible to separately enable the automatic insertion of cast operations and automatic
loss scaling. For more details, refer to this NVIDIA TensorFlow User Guide.

It must be emphasized that this is only one part of making mixed precision successful, the
most important part is to ensure that these changes do not reduce accuracy.

Q: Is AMP dependent on a TensorFlow version or can any TensorFlow version
enable AMP?

A: AMP is available in the NGC TensorFlow containers:

‣ The environment variable method for enabling TF-AMP is available starting in 19.03.

‣ The optimizer-wrapper method for enabling TF-AMP is available starting in the 19.06
container.

Furthermore AMP is available with the official distribution of TensorFlow starting with version
1.14. More information is available in the following webinar.

Q: How does AMP know which layer of the model to optimize?

A: AMP maintains lists of the layers that can be optimized:

‣ AllowList: cast everything to FP16

‣ DenyList: cast everything to FP32

https://docs.nvidia.com/deeplearning/frameworks/tensorflow-user-guide/index.html#tfamp
https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow
https://info.nvidia.com/webinar-mixed-precision-in-tensorflow-reg-page.html?ncid=em-ded-d3-83439
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‣ Everything else: cast everything to match the widest input type (can’t allow type mismatch)

The TensorFlow list is located here. TensorFlow has the advantage of a static graph to analyze
and convert with respect to other frameworks.

Our GTC Silicon Valley session S91029, Automated Mixed-Precision Tools for TensorFlow
Training discusses how this works in more detail.

Q: How can I see what changes automatic mixed precision makes to my model?

A: Because automatic mixed precision operates at the level of TensorFlow graphs, it can be
challenging to quickly grasp the changes it makes: often it will tweak thousands of TensorFlow
operations, but those correspond to many fewer logical layers. You can set the environment
variable TF_CPP_VMODULE="auto_mixed_precision=2" to see a full log of the decisions
automatic mixed precision makes (note that this may generate a lot of output).

Q: Why do I see only FP32 datatypes in my saved model GraphDef?

A: When you save a model graph or inspect the graph with Session.graph for
Session.graph_def, TensorFlow returns the unoptimized version of the graph.
TF-AMP works as an optimization pass over the original graph, so its changes
are not included in the unoptimized graph. You can set the environment variable
TF_AMP_LOG_PATH=some_directory, and TF-AMP will save pre- and post-optimization copies
of each graph it processes to that directory.

Note: There will be many hard-to-distinguish graph files since TensorFlow processes
initialization (for example) as a disjoint graph.

Q: Why do I see step=0 repeated multiple times when training with TF-AMP?

A: The automatic loss scaling algorithm that TF-AMP enables can choose to “skip” training
iterations as it searches for the optimal loss scale. When it does so, it does not increment the
global step count. Since most of the skips occur at the beginning of training (usually fewer
than ten iterations), this behavior manifests as multiple iterations where the step counter
stays at zero.

Q: How are user-defined custom TF operations handled?

A: By default, TF-AMP will leave alone any op types it doesn’t know about, including custom
operations. That means the types of op’s inputs and outputs are not changed, and TF-AMP will
insert casts as necessary to interoperate with the rest of the (possibly-changed) graph.

If you would like to make TF-AMP aware of a custom op type, there are three environment
variables you can use:
TF_AMP_ALLOWLIST_ADD

These are ops for which it is worth casting the inputs to FP16 to get FP16 execution. Mostly,
they are ops that can take advantage of Tensor Cores.

https://github.com/tensorflow/tensorflow/blob/c4a34bd7081f00df0adc75dff466c2e3a128e87b/tensorflow/core/grappler/optimizers/auto_mixed_precision_lists.h
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s91029-automated+mixed-precision+tools+for+tensorflow+training
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s91029-automated+mixed-precision+tools+for+tensorflow+training
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#scalefactor
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TF_AMP_INFERLIST_ADD
These are ops for which FP16 execution is available, so they can use FP16 if the inputs
happen to already be in FP16 because of an upstream AllowList op.

TF_AMP_DENYLIST_ADD
These are ops for which FP32 is necessary for numerical precision, and the outputs are not
safe to cast back to FP16. Example ops include Exp and Log.

Each of these environment variables takes a comma-separated list of string op names. For
example, you might set export TF_AMP_ALLOWLIST_ADD=MyOp1,MyOp2. The op name is the
string name used in the call to REGISTER_OP, which corresponds to the name attribute on the
operation’s OpDef.

Q: Can I change the algorithmic behavior of automatic mixed precision?

A: The primary lever for controlling automatic mixed precision behavior is to manipulate
what ops lie on each of the AllowList, InferList, and DenyList. You can add ops to each
using the three environment variables above, and there is a corresponding variable
TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_{ALLOWLIST,INFERLIST,DENYLIST}_REMOVE

to take built-in ops off of each list.

Q: Why doesn’t my model achieve full accuracy when I enable AMP?

A: The most likely explanation is that loss scaling is not being applied during
gradient evaluation. This can happen if the optimizer is not wrapped by
tf.trian.experimental.enable_mixed_precision_graph_rewrite() or if gradients
are computed directly using tf.gradients() rather than with Optimizer.minimize() or
Optimizer.compute_gradients().

Q: Do we have examples or documentation showing how to use AMP with
tf.gradients() along with static and/or dynamic loss scaling?

A: For static loss scaling, it’s straightforward:
loss = some_loss()
loss *= loss_scale # Scale by the loss scale
scaled_grads = tf.gradients(loss, …) # Compute gradients
 
# Now unscale, handling sparse grads
grads = []
for scaled_grad in scaled_grads:
  if scaled_grad is not None:
    if isinstance(scaled_grad, tf.IndexedSlices):
      grads.append(tf.IndexedSlices(
                    scaled_grad.values * (1. / loss_scale),
                    scaled_grad.indices,
                    scaled_grad.dense_shape))
    else:
      grads.append(scaled_grad * (1. / loss_scale))
  else:
    grads.append(None)
 
# Now use `grads` as you would normally
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9.3.  PyTorch FAQs

Q: Is Automatic Mixed Precision (AMP) dependent on a PyTorch version or can
any PyTorch version enable AMP?

A: AMP with CUDA and CPP extensions requires PyTorch 1.0 or later. The Python-only build
might be able to work with PyTorch 0.4, however, 1.0+ is strongly recommended.

Q: How does dynamic scaling choose a good scaling factor?

A: Dynamic loss scaling basically attempts to ride the edge of the highest loss scale it can use
without causing gradient overflow, to make full use of the FP16 dynamic range.

It does so by beginning with a high loss scale value (say, 2^24), then in each iteration, checking
the gradients for overflows (infs/NaNs). If none of the gradients overflowed, gradients are
unscaled (in FP32) and optimizer.step() is applied as usual. If an overflow was detected,
optimizer.step is patched to skip the actual weight update (so that the inf/NaN gradients do
not pollute the weights) and the loss scale is reduced by some factor F (F=2 by default). This
takes care of reducing the loss scale to a range where overflows are not produced. However,
it's only half the story.

What if, at some later point, training has stabilized and a higher loss scale is permissible? For
example, later in training, gradient magnitudes tend to be smaller, and may require a higher
loss scale to prevent underflow. Therefore, dynamic loss scaling also attempts to increase the
loss scale by a factor of F every N iterations (N=2000 by default). If increasing the loss scale
causes an overflow once more, the step is skipped and the loss scale is reduced back to the
pre-increase value as usual. In this way, by:

 1. Reducing the loss scale whenever a gradient overflow is encountered, and

 2. Intermittently attempting to increase the loss scale, the goal of riding the edge of the
highest loss scale that can be used without causing overflow is (roughly) accomplished.

Q: How do you increase the batch size when AMP is enabled? Do you just
increase the batch size by 8?

A: It depends on how much memory you saved, which depends on the model. A quick-and-dirty
way is to watch -n 0.5 nvidia-smi from a separate terminal while you launch your run, to
see how much device memory you're using. In general, using a larger batch per GPU tends
to improve utilization, as long as you obey the guidelines to allow Tensor Core usage (refer to
Issue �221 for more information).

https://github.com/NVIDIA/apex/issues/221#issuecomment-478084841
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Q:Is AMP dependent on a PyTorch version or can any PyTorch version enable
AMP?

A: AMP with CUDA and CPP extensions requires PyTorch 1.0 or later. The Python-only build
might be able to work with PyTorch 0.4, however, 1.0+ is strongly recommended.

Q: How to use O0, O1, O2, O3? Which is recommended for AMP? What are the
differences?

A:

‣ Use O0 for baseline FP32.

‣ Use O1 for AMP.

Note: In the future, AMP O1 functionality will be moved upstream.

‣ O2 is slightly faster, but could be harder to converge/stabilize, or may not converge to
FP32 results. In O2, all the ops are in FP16, so generally not recommended.

‣ Use O3 for everything in FP16, no primary weights. O3 is intended for performance
comparison to see the AMP overhead.

Q: Can AMP save checkpoints of the model in FP32?

A: O1 checkpoints of the model will be saved in FP32, with O2 checkpoints of the model will
not be saved in FP32, and the optimizer primary weights must be saved separately. The best
practice is always to use O1 to save checkpoints.

9.4.  MXNet FAQs

Q: Is Automatic Mixed Precision (AMP) dependent on an MXNet version or can
any MXNet version enable AMP?

A: AMP is available in the NGC MXNet container starting from 19.04. Starting with MXNet 1.5,
AMP will be available natively in the upstream framework.
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