NVIDIA PhysicsNeMo Core (Latest Release)

deeplearning/physicsnemo/physicsnemo-core/_modules/physicsnemo/utils/generative/utils.html

Source code for physicsnemo.utils.generative.utils

# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""Miscellaneous utility classes and functions."""

import contextlib
import ctypes
import datetime
import fnmatch
import importlib
import inspect
import os
import re
import shutil
import sys
import types
import warnings
from typing import Any, Iterator, List, Tuple, Union

import cftime
import numpy as np
import torch

# ruff: noqa: E722 PERF203 S110 E713 S324


[docs]class EasyDict(dict): # pragma: no cover """ Convenience class that behaves like a dict but allows access with the attribute syntax. """ def __getattr__(self, name: str) -> Any: try: return self[name] except KeyError: raise AttributeError(name) def __setattr__(self, name: str, value: Any) -> None: self[name] = value def __delattr__(self, name: str) -> None: del self[name]
[docs]class StackedRandomGenerator: # pragma: no cover """ Wrapper for torch.Generator that allows specifying a different random seed for each sample in a minibatch. """ def __init__(self, device, seeds): super().__init__() self.generators = [ torch.Generator(device).manual_seed(int(seed) % (1 << 32)) for seed in seeds ] def randn(self, size, **kwargs): if size[0] != len(self.generators): raise ValueError( f"Expected first dimension of size {len(self.generators)}, got {size[0]}" ) return torch.stack( [torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators] ) def randn_like(self, input): return self.randn( input.shape, dtype=input.dtype, layout=input.layout, device=input.device ) def randint(self, *args, size, **kwargs): if size[0] != len(self.generators): raise ValueError( f"Expected first dimension of size {len(self.generators)}, got {size[0]}" ) return torch.stack( [ torch.randint(*args, size=size[1:], generator=gen, **kwargs) for gen in self.generators ] )
[docs]def parse_int_list(s): # pragma: no cover """ Parse a comma separated list of numbers or ranges and return a list of ints. Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10] """ if isinstance(s, list): return s ranges = [] range_re = re.compile(r"^(\d+)-(\d+)$") for p in s.split(","): m = range_re.match(p) if m: ranges.extend(range(int(m.group(1)), int(m.group(2)) + 1)) else: ranges.append(int(p)) return ranges

# Small util functions # -------------------------------------------------------------------------------------

[docs]def convert_datetime_to_cftime( time: datetime.datetime, cls=cftime.DatetimeGregorian ) -> cftime.DatetimeGregorian: """Convert a Python datetime object to a cftime DatetimeGregorian object.""" return cls(time.year, time.month, time.day, time.hour, time.minute, time.second)
[docs]def time_range( start_time: datetime.datetime, end_time: datetime.datetime, step: datetime.timedelta, inclusive: bool = False, ): """Like the Python `range` iterator, but with datetimes.""" t = start_time while (t <= end_time) if inclusive else (t < end_time): yield t t += step
[docs]def format_time(seconds: Union[int, float]) -> str: # pragma: no cover """Convert the seconds to human readable string with days, hours, minutes and seconds.""" s = int(np.rint(seconds)) if s < 60: return "{0}s".format(s) elif s < 60 * 60: return "{0}m {1:02}s".format(s // 60, s % 60) elif s < 24 * 60 * 60: return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60) else: return "{0}d {1:02}h {2:02}m".format( s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60 )
[docs]def format_time_brief(seconds: Union[int, float]) -> str: # pragma: no cover """Convert the seconds to human readable string with days, hours, minutes and seconds.""" s = int(np.rint(seconds)) if s < 60: return "{0}s".format(s) elif s < 60 * 60: return "{0}m {1:02}s".format(s // 60, s % 60) elif s < 24 * 60 * 60: return "{0}h {1:02}m".format(s // (60 * 60), (s // 60) % 60) else: return "{0}d {1:02}h".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24)
[docs]def tuple_product(t: Tuple) -> Any: # pragma: no cover """Calculate the product of the tuple elements.""" result = 1 for v in t: result *= v return result

_str_to_ctype = { "uint8": ctypes.c_ubyte, "uint16": ctypes.c_uint16, "uint32": ctypes.c_uint32, "uint64": ctypes.c_uint64, "int8": ctypes.c_byte, "int16": ctypes.c_int16, "int32": ctypes.c_int32, "int64": ctypes.c_int64, "float32": ctypes.c_float, "float64": ctypes.c_double, }

[docs]def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]: # pragma: no cover """ Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes. """ type_str = None if isinstance(type_obj, str): type_str = type_obj elif hasattr(type_obj, "__name__"): type_str = type_obj.__name__ elif hasattr(type_obj, "name"): type_str = type_obj.name else: raise RuntimeError("Cannot infer type name from input") if type_str not in _str_to_ctype.keys(): raise ValueError("Unknown type name: " + type_str) my_dtype = np.dtype(type_str) my_ctype = _str_to_ctype[type_str] if my_dtype.itemsize != ctypes.sizeof(my_ctype): raise ValueError( "Numpy and ctypes types for '{}' have different sizes!".format(type_str) ) return my_dtype, my_ctype

# Functionality to import modules/objects by name, and call functions by name # -------------------------------------------------------------------------------------

[docs]def get_module_from_obj_name( obj_name: str, ) -> Tuple[types.ModuleType, str]: # pragma: no cover """ Searches for the underlying module behind the name to some python object. Returns the module and the object name (original name with module part removed). """ # allow convenience shorthands, substitute them by full names obj_name = re.sub("^np.", "numpy.", obj_name) obj_name = re.sub("^tf.", "tensorflow.", obj_name) # list alternatives for (module_name, local_obj_name) parts = obj_name.split(".") name_pairs = [ (".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1) ] # try each alternative in turn for module_name, local_obj_name in name_pairs: try: module = importlib.import_module(module_name) # may raise ImportError get_obj_from_module(module, local_obj_name) # may raise AttributeError return module, local_obj_name except: pass # maybe some of the modules themselves contain errors? for module_name, _local_obj_name in name_pairs: try: importlib.import_module(module_name) # may raise ImportError except ImportError: if not str(sys.exc_info()[1]).startswith( "No module named '" + module_name + "'" ): raise # maybe the requested attribute is missing? for module_name, local_obj_name in name_pairs: try: module = importlib.import_module(module_name) # may raise ImportError get_obj_from_module(module, local_obj_name) # may raise AttributeError except ImportError: pass # we are out of luck, but we have no idea why raise ImportError(obj_name)
[docs]def get_obj_from_module( module: types.ModuleType, obj_name: str ) -> Any: # pragma: no cover """ Traverses the object name and returns the last (rightmost) python object. """ if obj_name == "": return module obj = module for part in obj_name.split("."): obj = getattr(obj, part) return obj
[docs]def get_obj_by_name(name: str) -> Any: # pragma: no cover """ Finds the python object with the given name. """ module, obj_name = get_module_from_obj_name(name) return get_obj_from_module(module, obj_name)
[docs]def call_func_by_name( *args, func_name: str = None, **kwargs ) -> Any: # pragma: no cover """ Finds the python object with the given name and calls it as a function. """ if func_name is None: raise ValueError("func_name must be specified") func_obj = get_obj_by_name(func_name) if not callable(func_obj): raise ValueError(func_name + " is not callable") return func_obj(*args, **kwargs)
[docs]def construct_class_by_name( *args, class_name: str = None, **kwargs ) -> Any: # pragma: no cover """ Finds the python class with the given name and constructs it with the given arguments. """ return call_func_by_name(*args, func_name=class_name, **kwargs)
[docs]def get_module_dir_by_obj_name(obj_name: str) -> str: # pragma: no cover """ Get the directory path of the module containing the given object name. """ module, _ = get_module_from_obj_name(obj_name) return os.path.dirname(inspect.getfile(module))
[docs]def is_top_level_function(obj: Any) -> bool: # pragma: no cover """ Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'. """ return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
[docs]def get_top_level_function_name(obj: Any) -> str: # pragma: no cover """ Return the fully-qualified name of a top-level function. """ if not is_top_level_function(obj): raise ValueError("Object is not a top-level function") module = obj.__module__ if module == "__main__": module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0] return module + "." + obj.__name__

# File system helpers # ------------------------------------------------------------------------------------------

[docs]def list_dir_recursively_with_ignore( dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False ) -> List[Tuple[str, str]]: # pragma: no cover """ List all files recursively in a given directory while ignoring given file and directory names. Returns list of tuples containing both absolute and relative paths. """ if not os.path.isdir(dir_path): raise RuntimeError(f"Directory does not exist: {dir_path}") base_name = os.path.basename(os.path.normpath(dir_path)) if ignores is None: ignores = [] result = [] for root, dirs, files in os.walk(dir_path, topdown=True): for ignore_ in ignores: dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)] # dirs need to be edited in-place for d in dirs_to_remove: dirs.remove(d) files = [f for f in files if not fnmatch.fnmatch(f, ignore_)] absolute_paths = [os.path.join(root, f) for f in files] relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths] if add_base_to_relative: relative_paths = [os.path.join(base_name, p) for p in relative_paths] if len(absolute_paths) != len(relative_paths): raise ValueError("Number of absolute and relative paths do not match") result += zip(absolute_paths, relative_paths) return result
[docs]def copy_files_and_create_dirs( files: List[Tuple[str, str]] ) -> None: # pragma: no cover """ Takes in a list of tuples of (src, dst) paths and copies files. Will create all necessary directories. """ for file in files: target_dir_name = os.path.dirname(file[1]) # will create all intermediate-level directories if not os.path.exists(target_dir_name): os.makedirs(target_dir_name) shutil.copyfile(file[0], file[1])

# ---------------------------------------------------------------------------- # Cached construction of constant tensors. Avoids CPU=>GPU copy when the # same constant is used multiple times. _constant_cache = dict()

[docs]def constant( value, shape=None, dtype=None, device=None, memory_format=None ): # pragma: no cover """Cached construction of constant tensors""" value = np.asarray(value) if shape is not None: shape = tuple(shape) if dtype is None: dtype = torch.get_default_dtype() if device is None: device = torch.device("cpu") if memory_format is None: memory_format = torch.contiguous_format key = ( value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format, ) tensor = _constant_cache.get(key, None) if tensor is None: tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device) if shape is not None: tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape)) tensor = tensor.contiguous(memory_format=memory_format) _constant_cache[key] = tensor return tensor

# ---------------------------------------------------------------------------- # Replace NaN/Inf with specified numerical values. try: nan_to_num = torch.nan_to_num # 1.8.0a0 except AttributeError: def nan_to_num( input, nan=0.0, posinf=None, neginf=None, *, out=None ): # pylint: disable=redefined-builtin # pragma: no cover """Replace NaN/Inf with specified numerical values""" if not isinstance(input, torch.Tensor): raise TypeError("input should be a Tensor") if posinf is None: posinf = torch.finfo(input.dtype).max if neginf is None: neginf = torch.finfo(input.dtype).min if nan != 0: raise ValueError("nan_to_num only supports nan=0") return torch.clamp( input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out ) # ---------------------------------------------------------------------------- # Symbolic assert. try: symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access except AttributeError: symbolic_assert = torch.Assert # 1.7.0 # ---------------------------------------------------------------------------- # Context manager to temporarily suppress known warnings in torch.jit.trace(). # Note: Cannot use catch_warnings because of https://bugs.python.org/issue29672

[docs]@contextlib.contextmanager def suppress_tracer_warnings(): # pragma: no cover """ Context manager to temporarily suppress known warnings in torch.jit.trace(). Note: Cannot use catch_warnings because of https://bugs.python.org/issue29672 """ flt = ("ignore", None, torch.jit.TracerWarning, None, 0) warnings.filters.insert(0, flt) yield warnings.filters.remove(flt)

# ---------------------------------------------------------------------------- # Assert that the shape of a tensor matches the given list of integers. # None indicates that the size of a dimension is allowed to vary. # Performs symbolic assertion when used in torch.jit.trace().

[docs]def assert_shape(tensor, ref_shape): # pragma: no cover """ Assert that the shape of a tensor matches the given list of integers. None indicates that the size of a dimension is allowed to vary. Performs symbolic assertion when used in torch.jit.trace(). """ if tensor.ndim != len(ref_shape): raise AssertionError( f"Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}" ) for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)): if ref_size is None: pass elif isinstance(ref_size, torch.Tensor): with suppress_tracer_warnings(): # as_tensor results are registered as constants symbolic_assert( torch.equal(torch.as_tensor(size), ref_size), f"Wrong size for dimension {idx}", ) elif isinstance(size, torch.Tensor): with suppress_tracer_warnings(): # as_tensor results are registered as constants symbolic_assert( torch.equal(size, torch.as_tensor(ref_size)), f"Wrong size for dimension {idx}: expected {ref_size}", ) elif size != ref_size: raise AssertionError( f"Wrong size for dimension {idx}: got {size}, expected {ref_size}" )

# ---------------------------------------------------------------------------- # Function decorator that calls torch.autograd.profiler.record_function().

[docs]def profiled_function(fn): # pragma: no cover """Function decorator that calls torch.autograd.profiler.record_function().""" def decorator(*args, **kwargs): with torch.autograd.profiler.record_function(fn.__name__): return fn(*args, **kwargs) decorator.__name__ = fn.__name__ return decorator

# ---------------------------------------------------------------------------- # Sampler for torch.utils.data.DataLoader that loops over the dataset # indefinitely, shuffling items as it goes.

[docs]class InfiniteSampler(torch.utils.data.Sampler[int]): # pragma: no cover """Sampler for torch.utils.data.DataLoader that loops over the dataset indefinitely. This sampler yields indices indefinitely, optionally shuffling items as it goes. It can also perform distributed sampling when rank and num_replicas are specified. Parameters ---------- dataset : torch.utils.data.Dataset The dataset to sample from rank : int, default=0 The rank of the current process within num_replicas processes num_replicas : int, default=1 The number of processes participating in distributed sampling shuffle : bool, default=True Whether to shuffle the indices seed : int, default=0 Random seed for reproducibility when shuffling window_size : float, default=0.5 Fraction of dataset to use as window for shuffling. Must be between 0 and 1. A larger window means more thorough shuffling but slower iteration. """ def __init__( self, dataset: torch.utils.data.Dataset, rank: int = 0, num_replicas: int = 1, shuffle: bool = True, seed: int = 0, window_size: float = 0.5, ): if not len(dataset) > 0: raise ValueError("Dataset must contain at least one item") if not num_replicas > 0: raise ValueError("num_replicas must be positive") if not 0 <= rank < num_replicas: raise ValueError("rank must be non-negative and less than num_replicas") if not 0 <= window_size <= 1: raise ValueError("window_size must be between 0 and 1") super().__init__() self.dataset = dataset self.rank = rank self.num_replicas = num_replicas self.shuffle = shuffle self.seed = seed self.window_size = window_size def __iter__(self) -> Iterator[int]: order = np.arange(len(self.dataset)) rnd = None window = 0 if self.shuffle: rnd = np.random.RandomState(self.seed) rnd.shuffle(order) window = int(np.rint(order.size * self.window_size)) idx = 0 while True: i = idx % order.size if idx % self.num_replicas == self.rank: yield order[i] if window >= 2: j = (i - rnd.randint(window)) % order.size order[i], order[j] = order[j], order[i] idx += 1

# ---------------------------------------------------------------------------- # Utilities for operating with torch.nn.Module parameters and buffers.

[docs]def params_and_buffers(module): # pragma: no cover """Get parameters and buffers of a nn.Module""" if not isinstance(module, torch.nn.Module): raise TypeError("module must be a torch.nn.Module instance") return list(module.parameters()) + list(module.buffers())
[docs]def named_params_and_buffers(module): # pragma: no cover """Get named parameters and buffers of a nn.Module""" if not isinstance(module, torch.nn.Module): raise TypeError("module must be a torch.nn.Module instance") return list(module.named_parameters()) + list(module.named_buffers())
[docs]@torch.no_grad() def copy_params_and_buffers( src_module, dst_module, require_all=False ): # pragma: no cover """Copy parameters and buffers from a source module to target module""" if not isinstance(src_module, torch.nn.Module): raise TypeError("src_module must be a torch.nn.Module instance") if not isinstance(dst_module, torch.nn.Module): raise TypeError("dst_module must be a torch.nn.Module instance") src_tensors = dict(named_params_and_buffers(src_module)) for name, tensor in named_params_and_buffers(dst_module): if not ((name in src_tensors) or (not require_all)): raise ValueError(f"Missing source tensor for {name}") if name in src_tensors: tensor.copy_(src_tensors[name])

# ---------------------------------------------------------------------------- # Context manager for easily enabling/disabling DistributedDataParallel # synchronization.

[docs]@contextlib.contextmanager def ddp_sync(module, sync): # pragma: no cover """ Context manager for easily enabling/disabling DistributedDataParallel synchronization. """ if not isinstance(module, torch.nn.Module): raise TypeError("module must be a torch.nn.Module instance") if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel): yield else: with module.no_sync(): yield

# ---------------------------------------------------------------------------- # Check DistributedDataParallel consistency across processes.

[docs]def check_ddp_consistency(module, ignore_regex=None): # pragma: no cover """Check DistributedDataParallel consistency across processes.""" if not isinstance(module, torch.nn.Module): raise TypeError("module must be a torch.nn.Module instance") for name, tensor in named_params_and_buffers(module): fullname = type(module).__name__ + "." + name if ignore_regex is not None and re.fullmatch(ignore_regex, fullname): continue tensor = tensor.detach() if tensor.is_floating_point(): tensor = nan_to_num(tensor) other = tensor.clone() torch.distributed.broadcast(tensor=other, src=0) if not (tensor == other).all(): raise RuntimeError(f"DDP consistency check failed for {fullname}")

# ---------------------------------------------------------------------------- # Print summary table of module hierarchy.

# ----------------------------------------------------------------------------

© Copyright 2023, NVIDIA PhysicsNeMo Team. Last updated on Jun 11, 2025.