PhysicsNeMo Sym Validators#
Continuous Validators#
- class physicsnemo.sym.domain.validator.continuous.PointVTKValidator(
- vtk_obj: VTKBase,
- nodes: List[Node],
- input_vtk_map: Dict[str, List[str]],
- true_vtk_map: Dict[str, List[str]],
- invar: Dict[str, array] = {},
- true_outvar: Dict[str, array] = {},
- batch_size: int = 1024,
- plotter: ValidatorPlotter = None,
- requires_grad: bool = False,
- log_iter: bool = False,
Bases:
PointwiseValidator
Pointwise validator using mesh points of VTK object
- Parameters:
vtk_obj (VTKBase) – PhysicsNeMo VTK object to use point locations from
nodes (List[Node]) – List of PhysicsNeMo Nodes to unroll graph with.
input_vtk_map (Dict[str, List[str]]) – Dictionary mapping from PhysicsNeMo input variables to VTK variable names {“physicsnemo.sym.name”: [“vtk name”]}. Use colons to denote components of multi-dimensional VTK arrays (“name”:# )
true_vtk_map (Dict[str, List[str]]) – Dictionary mapping from PhysicsNeMo target variables to VTK variable names {“physicsnemo.sym.name”: [“vtk name”]}.
invar (Dict[str, np.array], optional) – Dictionary of additional numpy arrays as input, by default {}
true_outvar (Dict[str, np.array], optional) – Dictionary of additional numpy arrays used to validate against validation, by default {}
batch_size (int) – Batch size used when running validation.
plotter (ValidatorPlotter) – PhysicsNeMo plotter for showing results in tensorboard.
requires_grad (bool, optional) – If automatic differentiation is needed for computing results., by default True
log_iter (bool, optional) – Save results to different file each call, by default False
- class physicsnemo.sym.domain.validator.continuous.PointwiseValidator(
- nodes: List[Node],
- invar: Dict[str, array],
- true_outvar: Dict[str, array],
- batch_size: int = 1024,
- plotter: ValidatorPlotter = None,
- requires_grad: bool = False,
Bases:
Validator
Pointwise Validator that allows walidating on pointwise data
- Parameters:
nodes (List[Node]) – List of PhysicsNeMo Nodes to unroll graph with.
invar (Dict[str, np.ndarray (N, 1)]) – Dictionary of numpy arrays as input.
true_outvar (Dict[str, np.ndarray (N, 1)]) – Dictionary of numpy arrays used to validate against validation.
batch_size (int, optional) – Batch size used when running validation, by default 1024
plotter (ValidatorPlotter) – PhysicsNeMo plotter for showing results in tensorboard.
requires_grad (bool = False) – If automatic differentiation is needed for computing results.
Discrete Validators#
- class physicsnemo.sym.domain.validator.discrete.DeepONet_Data_Validator(
- nodes: List[Node],
- invar_branch: Dict[str, array],
- invar_trunk: Dict[str, array],
- true_outvar: Dict[str, array],
- batch_size: int = 100,
- plotter: DeepONetValidatorPlotter = None,
- requires_grad: bool = False,
Bases:
_DeepONet_Validator
DeepONet Validator
- class physicsnemo.sym.domain.validator.discrete.DeepONet_Physics_Validator(
- nodes: List[Node],
- invar_branch: Dict[str, array],
- invar_trunk: Dict[str, array],
- true_outvar: Dict[str, array],
- batch_size: int = 100,
- plotter: DeepONetValidatorPlotter = None,
- requires_grad: bool = False,
- tile_trunk_input: bool = True,
Bases:
_DeepONet_Validator
DeepONet Validator
- class physicsnemo.sym.domain.validator.discrete.GridValidator(
- nodes: List[Node],
- dataset: Dataset,
- batch_size: int = 100,
- plotter: GridValidatorPlotter = None,
- requires_grad: bool = False,
- num_workers: int = 0,
Bases:
Validator
Data-driven grid field validator
- Parameters:
nodes (List[Node]) – List of PhysicsNeMo Nodes to unroll graph with.
dataset (Dataset) – dataset which contains invar and true outvar examples
batch_size (int, optional) – Batch size used when running validation, by default 100
plotter (GridValidatorPlotter) – PhysicsNeMo plotter for showing results in tensorboard.
requires_grad (bool = False) – If automatic differentiation is needed for computing results.
num_workers (int, optional) – Number of dataloader workers, by default 0