
CUDNN

RN-08667-001_v07 | May 2017

Release Notes

www.nvidia.com
cuDNN RN-08667-001_v07 | ii

TABLE OF CONTENTS

Chapter 1. cuDNN Overview... 1
Chapter 2. cuDNN Release Notes v7.0.2.. 2
Chapter 3. cuDNN Release Notes v7.0.1.. 4

www.nvidia.com
cuDNN RN-08667-001_v07 | 1

Chapter 1.
CUDNN OVERVIEW

NVIDIA cuDNN is a GPU-accelerated library of primitives for deep neural networks.
It provides highly tuned implementations of routines arising frequently in DNN
applications:

‣ Convolution forward and backward, including cross-correlation
‣ Pooling forward and backward
‣ Softmax forward and backward
‣ Neuron activations forward and backward:

‣ Rectified linear (ReLU)
‣ Sigmoid
‣ Hyperbolic tangent (TANH)

‣ Tensor transformation functions
‣ LRN, LCN and batch normalization forward and backward

cuDNN's convolution routines aim for performance competitive with the fastest GEMM
(matrix multiply) based implementations of such routines while using significantly less
memory.

cuDNN features customizable data layouts, supporting flexible dimension ordering,
striding, and subregions for the 4D tensors used as inputs and outputs to all of its
routines. This flexibility allows easy integration into any neural network implementation
and avoids the input/output transposition steps sometimes necessary with GEMM-based
convolutions.

cuDNN offers a context-based API that allows for easy multi-threading and (optional)
interoperability with CUDA streams.

www.nvidia.com
cuDNN RN-08667-001_v07 | 2

Chapter 2.
CUDNN RELEASE NOTES V7.0.2

Key Features and Enhancements

This is a patch release of cuDNN 7.0 and includes bug fixes and performance
improvements mainly on Volta.
Algo 1 Convolutions Performance Improvements

Performance improvements were made to
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, and
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1. These improvements consist of new SASS
kernels and improved heuristics. The new kernels implement convolutions over
various data sizes and tile sizes. The improved heuristics take advantage of these new
kernels.

Known Issues

The following are known issues in this release:

‣ cudnnGetConvolutionForwardWorkspaceSize() returns overflowed size_t
value for certain input shape for CUDNN_CONVOLUTION_*_ALGO_FFT_TILING.

Fixed Issues

The following issues have been fixed in this release:

‣ Batch Norm CUDNN_BATCHNORM_SPATIAL_PERSISTENT might get into race
conditions in certain scenarios.

‣ cuDNN convolution layers using TENSOR_OP_MATH with fp16 inputs and outputs
and fp32 compute will use “round to nearest” mode instead of “round to zero”
mode as in 7.0.1. This rounding mode has proven to achieve better results in
training.

cuDNN Release Notes v7.0.2

www.nvidia.com
cuDNN RN-08667-001_v07 | 3

‣ Fixed synchronization logic in the CUDNN_CTC_LOSS_ALGO_DETERMINISTIC algo
for CTC. The original code would hang in rare cases.

‣ Convolution algorithms using TENSOR_OP_MATH returned a workspace size from
*GetWorkspaceSize() smaller than actually necessary.

‣ cuDNN pooling backwards fails for pooling window size > 256.

‣ The results of int8 are inaccurate in certain cases when calling
cudnnConvolutionForward() in convolution layer.

‣ cudnnConvolutionForward() called with xDesc’s channel = yDesc’s
channel = groupCount could compute incorrect values when vertical padding >
0.

www.nvidia.com
cuDNN RN-08667-001_v07 | 4

Chapter 3.
CUDNN RELEASE NOTES V7.0.1

cuDNN v7.0.1 is the first release to support the Volta GPU architecture. In addition,
cuDNN v7.0.1 brings new layers, grouped convolutions, and improved convolution find
as error query mechanism.

Key Features and Enhancements

This cuDNN release includes the following key features and enhancements.

Tensor Cores
Version 7.0.1 of cuDNN is the first to support the Tensor Core operations in its
implementation. Tensor Cores provide highly optimized matrix multiplication
building blocks that do not have an equivalent numerical behavior in the traditional
instructions, therefore, its numerical behavior is slightly different.

cudnnSetConvolutionMathType, cudnnSetRNNMatrixMathType, and
cudnnMathType_t

The cudnnSetConvolutionMathType and cudnnSetRNNMatrixMathType
functions enable you to choose whether or not to use Tensor Core operations in
the convolution and RNN layers respectively by setting the math mode to either
CUDNN_TENSOR_OP_MATH or CUDNN_DEFAULT_MATH.

Tensor Core operations perform parallel floating point accumulation of multiple
floating point products.

Setting the math mode to CUDNN_TENSOR_OP_MATH indicates that the library will use
Tensor Core operations.

The default is CUDNN_DEFAULT_MATH. This default indicates that the Tensor Core
operations will be avoided by the library. The default mode is a serialized operation

cuDNN Release Notes v7.0.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 5

whereas, the Tensor Core is a parallelized operation, therefore, the two might result
in slightly different numerical results due to the different sequencing of operations.

The library falls back to the default math mode when Tensor Core operations are
not supported or not permitted.

cudnnSetConvolutionGroupCount
A new interface that allows applications to perform convolution groups in the
convolution layers in a single API call.

cudnnCTCLoss
cudnnCTCLoss provides a GPU implementation of the Connectionist Temporal
Classification (CTC) loss function for RNNs. The CTC loss function is used for
phoneme recognition in speech and handwriting recognition.

CUDNN_BATCHNORM_SPATIAL_PERSISTENT
The CUDNN_BATCHNORM_SPATIAL_PERSISTENT function is a new batch
normalization mode for cudnnBatchNormalizationForwardTraining
and cudnnBatchNormalizationBackward. This mode is similar to
CUDNN_BATCHNORM_SPATIAL, however, it can be faster for some tasks.

cudnnQueryRuntimeError
The cudnnQueryRuntimeError function reports error codes written by GPU
kernels when executing cudnnBatchNormalizationForwardTraining
and cudnnBatchNormalizationBackward with the
CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode.

cudnnGetConvolutionForwardAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionForwardAlgorithm.

cudnnGetConvolutionBackwardDataAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionBackwardAlgorithm.

cudnnGetConvolutionBackwardFilterAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionBackwardFilterAlgorithm.

CUDNN_REDUCE_TENSOR_MUL_NO_ZEROS
The MUL_NO_ZEROS function is a multiplication reduction that ignores zeros in the
data.

cuDNN Release Notes v7.0.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 6

CUDNN_OP_TENSOR_NOT
The OP_TENSOR_NOT function is a unary operation that takes the negative of
(alpha*A).

cudnnGetDropoutDescriptor
The cudnnGetDropoutDescriptor function allows applications to get dropout
values.

Using cuDNN v7.0.1

Ensure you are familiar with the following notes when using this release.

‣ Multi-threading behavior has been modified. Multi-threading is allowed only when
using different cuDNN handles in different threads.

‣ In cudnnConvolutionBackwardFilter, dilated convolution did not support cases
where the product of all filter dimensions was odd for half precision floating point.
These are now supported by CUDNN_CONVOLUTION_BWD_FILTER_ALGO1.

‣ Fixed bug that produced a silent computation error for when a batch size was larger
than 65536 for CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.

‣ In getConvolutionForwardAlgorithm, an error was not correctly
reported in v5 when the output size was larger than expected. In v6 the
CUDNN_STATUS_NOT_SUPPORTED, error message displayed. In v7, this error is
modified to CUDNN_STATUS_BAD_PARAM.

‣ In cudnnConvolutionBackwardFilter, cuDNN now runs
some exceptional cases correctly where it previously erroneously
returned CUDNN_STATUS_NOT_SUPPORTED. This impacted the
algorithms CUDNN_CONVOLUTION_BWD_FILTER_ALGO0 and
CUDNN_CONVOLUTION_BWD_FILTER_ALGO3.

Deprecated Features

The following routines have been removed:

‣ cudnnSetConvolution2dDescriptor_v4

‣ cudnnSetConvolution2dDescriptor_v5

‣ cudnnGetConvolution2dDescriptor_v4

‣ cudnnGetConvolution2dDescriptor_v5

Only the non-suffixed versions of these routines remain.

The following routines have been created and have the same API prototype as their non-
suffixed equivalent from cuDNN v6:

cuDNN Release Notes v7.0.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 7

‣ cudnnSetRNNDescriptor_v5 - The non-suffixed version of the routines in cuDNN
v7.0.1 are now mapped to their _v6 equivalent.

Attention It is strongly advised to use the non-suffixed version as the _v5 and
_v6 routines will be removed in the next cuDNN release.

‣ cudnnGetConvolutionForwardAlgorithm,
cudnnGetConvolutionBackwardDataAlgorithm, and
cudnnGetConvolutionBackwardFilterAlgorithm - A _v7 version of this
routine has been created. For more information, see the Backward compatibility and
deprecation policy chapter of the cuDNN documentation for details.

Known Issues

‣ cuDNN pooling backwards fails for pooling window size > 256.

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DIGITS, DGX, DGX-1, Jetson, Kepler,

NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	cuDNN Overview
	cuDNN Release Notes v7.0.2
	cuDNN Release Notes v7.0.1

