
CUDNN

RN-08667-001_v07 | March 2018

Release Notes

www.nvidia.com
cuDNN RN-08667-001_v07 | ii

TABLE OF CONTENTS

Chapter 1. cuDNN Overview... 1
Chapter 2. cuDNN Release Notes v7.1.2.. 2
Chapter 3. cuDNN Release Notes v7.1.1.. 4
Chapter 4. cuDNN Release Notes v7.0.5.. 8
Chapter 5. cuDNN Release Notes v7.0.4.. 10
Chapter 6. cuDNN Release Notes v7.0.3.. 12
Chapter 7. cuDNN Release Notes v7.0.2.. 14
Chapter 8. cuDNN Release Notes v7.0.1.. 16

www.nvidia.com
cuDNN RN-08667-001_v07 | 1

Chapter 1.
CUDNN OVERVIEW

NVIDIA cuDNN is a GPU-accelerated library of primitives for deep neural networks.
It provides highly tuned implementations of routines arising frequently in DNN
applications:

‣ Convolution forward and backward, including cross-correlation
‣ Pooling forward and backward
‣ Softmax forward and backward
‣ Neuron activations forward and backward:

‣ Rectified linear (ReLU)
‣ Sigmoid
‣ Hyperbolic tangent (TANH)

‣ Tensor transformation functions
‣ LRN, LCN and batch normalization forward and backward

cuDNN's convolution routines aim for performance competitive with the fastest GEMM
(matrix multiply) based implementations of such routines while using significantly less
memory.

cuDNN features customizable data layouts, supporting flexible dimension ordering,
striding, and subregions for the 4D tensors used as inputs and outputs to all of its
routines. This flexibility allows easy integration into any neural network implementation
and avoids the input/output transposition steps sometimes necessary with GEMM-based
convolutions.

cuDNN offers a context-based API that allows for easy multi-threading and (optional)
interoperability with CUDA streams.

www.nvidia.com
cuDNN RN-08667-001_v07 | 2

Chapter 2.
CUDNN RELEASE NOTES V7.1.2

Key Features and Enhancements

The following enhancements have been added to this release:

‣ RNN search API extended to support all RNN algorithms.
‣ Newly added projection Layer supported for inference bidirectional RNN cells and

for backward data and gradient.
‣ Support IDENTITY Activation for all

cudnnConvolutionBiasActivationForward data types for
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.

‣ Added documentation to clarify RNN/LSTM weight formats.

Known Issues

Following are known issues in this release:

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on Volta when
inputs are FP16 and it is possible to do so.

‣ There may be a small performance regression on multi-layer RNNs using the
STANDARD algorithm with Tensor Core math in this release compared to v7.0.5.

‣ LSTM projection dgrad half precision may fail in rare cases with misaligned
memory access on Pascal and Maxwell.

‣ Dgrad for bidirectional LSTM with projection should not be used, may produce
inaccurate results, or CUDNN_STATUS_UNSUPPORTED.

‣ The cudnnConvolutionBackwardFilter() function may output incorrect results
for CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution
mode is CUDNN_CONVOLUTION and the product "n*k" (n - batch size, k - number
of output feature maps) is large, i.e., several thousand or more. It appears that the
CUDNN_CROSS_CORRELATION mode is not affected by this.

cuDNN Release Notes v7.1.2

www.nvidia.com
cuDNN RN-08667-001_v07 | 3

‣ Persistent LSTM backward pass with a hidden state size in the range 257 to 512 on
GPUs with number of SMs between 22 and 31 might hang. This issue also exists in
7.1.1 and will be fixed in 7.1.3.

‣ Persistent GRU backward pass with a hidden state size in the range 513 to 720 on
GPUs with exactly 30 SMs would hang. This issue also exists in 7.1.1 and will be
fixed in 7.1.3.

‣ Algo 1 for forward convolution and dgrad may produce erroneous results when the
filter size is greater than the input size.

Fixed Issues

The following issues have been fixed in this release:

‣ The uint8 input for convolution is restricted to Volta and later. We added support for
older architectures, for algo: CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.

‣ In some cases when algorithm CUDNN_CONVOLUTION_BWD_FILTER_ALGO1
was selected, the routine cudnnConvolutionBackwardFilter could fail
at runtime and return CUDNN_STATUS_EXECUTION_FAILED. It now returns
CUDNN_STATUS_NOT_SUPPORTED.

‣ cudnnSetRNNDescriptor no longer needs valid Dropout Descriptor in inference
mode, user can pass NULL for Dropout Descriptor in inference mode.

www.nvidia.com
cuDNN RN-08667-001_v07 | 4

Chapter 3.
CUDNN RELEASE NOTES V7.1.1

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Added new API cudnnSetRNNProjectionLayers and
cudnnGetRNNProjectionLayers to support Projection Layer for the RNN LSTM
cell. In this release only the inference use case will be supported. The bi-directional
and the training forward and backward for training is not supported in 7.1.1 but
will be supported in the upcoming 7.1.2 release without API changes. For all
the unsupported cases in this release, CUDNN_NOT_SUPPORTED is returned when
projection layer is set and the RNN is called.

‣ The cudnnGetRNNLinLayerMatrixParams() function was enhanced and a bug
was fixed without modifying its prototype. Specifically:

‣ The cudnnGetRNNLinLayerMatrixParams() function was updated to support
the RNN projection feature. An extra linLayerID value of 8 can be used to
retrieve the address and the size of the “recurrent” projection weight matrix
when "mode" in cudnnSetRNNDescriptor() is configured to CUDNN_LSTM and
the recurrent projection is enabled via cudnnSetRNNProjectionLayers().

‣ Instead of reporting the total number of elements in each
weight matrix in the “linLayerMatDesc” filter descriptor, the
cudnnGetRNNLinLayerMatrixParams() function returns the matrix size as
two dimensions: rows and columns. This allows the user to easily print and
initialize RNN weight matrices. Elements in each weight matrix are arranged
in the row-major order. Due to historical reasons, the minimum number of
dimensions in the filter descriptor is three. In previous versions of the cuDNN
library, cudnnGetRNNLinLayerMatrixParams() returned the total number
of weights as follows: filterDimA[0]=total_size, filterDimA[1]=1,
filterDimA[2]=1. In v7.1.1, the format was changed to: filterDimA[0]=1,
filterDimA[1]=rows, filterDimA[2]=columns. In both cases, the

cuDNN Release Notes v7.1.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 5

"format" field of the filter descriptor should be ignored when retrieved by
cudnnGetFilterNdDescriptor().

‣ A bug in cudnnGetRNNLinLayerMatrixParams() was fixed to return
a zeroed filter descriptor when the corresponding weight matrix does
not exist. This occurs, for example, for linLayerID values of 0-3 when
the first RNN layer is configured to exclude matrix multiplications
applied to RNN input data (inputMode=CUDNN_SKIP_INPUT in
cudnnSetRNNDescriptor() specifies implicit, fixed identity weight
matrices for RNN input). Such cases in previous versions of the cuDNN
library caused cudnnGetRNNLinLayerMatrixParams() to return
corrupted filter descriptors with some entries from the previous call. A
workaround was to create a new filter descriptor for every invocation of
cudnnGetRNNLinLayerMatrixParams().

‣ The cudnnGetRNNLinLayerBiasParams() function was updated to
report the bias column vectors in "linLayerBiasDesc" in the same format as
cudnnGetRNNLinLayerMatrixParams(). In previous versions of the cuDNN
library, cudnnGetRNNLinLayerBiasParams() returned the total number
of adjustable bias parameters as follows: filterDimA[0]=total_size,
filterDimA[1]=1, filterDimA[2]=1. In v7.1.1, the format was changed to:
filterDimA[0]=1, filterDimA[1]=rows, filterDimA[2]=1 (number of
columns). In both cases, the "format" field of the filter descriptor should be ignored
when retrieved by cudnnGetFilterNdDescriptor(). The recurrent projection
GEMM does not have a bias so the range of valid inputs for the "linLayerID"
argument remains the same.

‣ Added support for use of Tensor Core for the CUDNN_RNN_ALGO_PERSIST_STATIC.
This required cuda cuDNN v7.1 build with CUDA 9.1 and 387 or higher driver. It
will not work with CUDA 9.0 and 384 driver.

‣ Added RNN search API that allows the application to provide an
RNN descriptor and get a list of possible algorithm choices with
performance and memory usage, to allow applications to choose
between different implementations. For more information, refer to the
documentation of: cudnnFindRNNForwardInferenceAlgorithmEx,
cudnnFindRNNForwardTrainingAlgorithmEx,
cudnnFindRNNBackwardDataAlgorithmEx, and
cudnnFindRNNBackwardWeightsAlgorithmEx. In this release, the search will
operate on STANDARD algorithm and will not support PERSISTENT algorithms of
RNN.

‣ Added uint8 for support for the input data for
cudnnConvolutionBiasActivationForward and cudnnConvolutionForward.
Currently the support is on Volta (sm 70) and later architectures. Support for older
architectures will be gradually added in the upcoming releases.

cuDNN Release Notes v7.1.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 6

‣ Suport for CUDNN_ACTIVATION_IDENTITY is added to
cudnnConvolutionBiasActivationForward. This allows users to perform
Convolution and Bias without Activation.

‣ All API functions now support logging. User can trigger logging by
setting environment variable “CUDNN_LOGINFO_DBG=1” and
“CUDNN_LOGDEST_DBG= <option>” where <option> (i.e., the output destination
of the log) can be chosen from “stdout”, “stderr”, or a file path. User may also use
the new Set/GetCallBack functions to install their customized callback function. Log
files can be added to the reported bugs or shared with us for analysis and future
optimizations through partners.nvidia.com.

‣ Improved performance of 3D convolution on Volta architecture.
‣ The following algo-related functions have been added for this

release: cudnnGetAlgorithmSpaceSize, cudnnSaveAlgorithm,
cudnnRestoreAlgorithm, cudnnCreateAlgorithmDescriptor,
cudnnSetAlgorithmDescriptor, cudnnGetAlgorithmDescriptor,
cudnnDestroyAlgorithmDescriptor, cudnnCreateAlgorithmPerformance,
cudnnSetAlgorithmPerformance, cudnnGetAlgorithmPerformance,
cudnnDestroyAlgorithmPerformance.

‣ All algorithms for convolutions now support groupCount > 1. This includes
cudnConvolutionForward(), cudnnConvolutionBackwardData(), and
cudnnConvolutionBackwardFilter().

Known Issues

Following are known issues in this release:

‣ RNN search Algorithm is restricted to STANDARD algorithm.
‣ Newly added projection Layer supported for inference and one directional RNN

cells.
‣ uint8 input for convolution is restricted to Volta and later.
‣ cudnnGet picks a slow algorithm that doesn't use Tensor Cores on Volta when

inputs are FP16 and it is possible to do so.
‣ There may be a small performance regression on multi-layer RNNs using the

STANDARD algorithm with Tensor Core math in this release compared to 7.0.5.

Fixed Issues

The following issues have been fixed in this release:

‣ 3D convolution performance improvements for Volta.
‣ Added support for Algorithm 0 data gradients to cover cases previously not

supported.
‣ Removed the requirement for dropout Descriptor in RNN inference. Before

application had to set a non point for the dropout Descriptor which was not used.

cuDNN Release Notes v7.1.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 7

‣ Use of CUDNN_TENSOR_NCHW_VECT_C with non-zero padding resulted in a
return status of CUDNN_STATUS_INTERNAL_ERROR. This issue is now fixed.

www.nvidia.com
cuDNN RN-08667-001_v07 | 8

Chapter 4.
CUDNN RELEASE NOTES V7.0.5

Key Features and Enhancements

The following enhancements have been added to this release:

‣ None.

Known Issues

Following are known issues in this release:

‣ cuDNN library may trigger a CPU floating point exception when FP exceptions are
enabled by user. This issue exists for all 7.0.x releases.

‣ There are heavy use cases of RNN layers that might hit a memory allocation issue
in the CUDA driver when using cuDNN v7 with CUDA 8.0 and R375 driver on pre-
Pascal architectures (Kepler and Maxwell). In these cases, subsequent CUDA kernels
may fail to launch with an Error Code 30. To resolve the issue, it is recommended
to use the latest R384 driver (from NVIDIA driver downloads) or to ensure that the
persistence daemon is started. This behavior is observed on all 7.0.x releases.

‣ When using TENSOR_OP_MATH mode with
cudnnConvolutionBiasActivationForward, the pointer to the bias must be
aligned to 16 bytes and the size of allocated memory must be multiples of 256
elements. This behavior exists for all 7.0.x releases.

Fixed Issues

The following issues have been fixed in this release:

‣ Corrected the algorithm fallback behavior in RNN when user set to use
CUDNN_TENSOR_OP_MATH when using compute card without HMMA. Instead of
returning CUDNN_STATUS_NOT_SUPPORTED, the RNN algorithm will now continue
to run using CUDNN_DEFAULT_MATH. The correct behavior is to fall back to using
default math when Tensor Core is not supported. Fixed to the expected behavior.

cuDNN Release Notes v7.0.5

www.nvidia.com
cuDNN RN-08667-001_v07 | 9

‣ On Volta hardware, BWD_FILTER_ALGO_1 and BWD_DATA_ALGO_1
convolutions using a number of filter elements greater than 512 were causing
CUDA_ERROR_ILLEGAL_ADDRESS and CUDNN_STATUS_INTERNAL_ERROR errors.
Logic was added to fall back to a generic kernel for these filter sizes.

‣ cuDNN v7 with CUDA 8.0 produced erroneous results on Volta for some common
cases of Algo 1. Logic was added to fall back to a generic kernel when cudnn v7 with
CUDA 8.0 is used on Volta.

www.nvidia.com
cuDNN RN-08667-001_v07 | 10

Chapter 5.
CUDNN RELEASE NOTES V7.0.4

Key Features and Enhancements

Performance improvements for grouped convolutions when input channels and output
channels per group are 1, 2, or 4 for the following algorithms:

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO0

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

Known Issues

Following are known issues in this release:

‣ The CUDA 8.0 build of cuDNN may produce incorrect computations when run on
Volta.

‣ cuDNN library triggers CPU floating point exception when FP exceptions are
enabled by user. This issue exists for all 7.0.x releases.

‣ There are heavy use cases of RNN layers that might hit a memory allocation issue
in the CUDA driver when using cuDNN v7 with CUDA 8.0 and R375 driver on pre-
Pascal architectures (Kepler and Maxwell). In these cases, subsequent CUDA kernels
may fail to launch with an Error Code 30. To resolve the issue, it is recommended
to use the latest R384 driver (from NVIDIA driver downloads) or to ensure that the
persistence daemon is started. This behavior is observed on all 7.0.x releases.

‣ When using TENSOR_OP_MATH mode with
cudnnConvolutionBiasActivationForward, the pointer to the bias must be
aligned to 16 bytes and the size of allocated memory must be multiples of 256
elements. This behavior exists for all 7.0.x releases.

cuDNN Release Notes v7.0.4

www.nvidia.com
cuDNN RN-08667-001_v07 | 11

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed out-of-band global memory accesses in the 256-point 1D FFT kernel. The
problem affected convolutions with 1x1 filters and tall but narrow images, e.g.,
1x500 (WxH). In those cases, the workspace size for the FFT_TILING algo was
computed incorrectly. There was no error in the FFT kernel.

‣ Eliminated a source of floating point exceptions in the
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm. The host
code to generate a negative infinity floating point value was substituted with
a different logic. By default, FP exceptions are disabled. However, a user
program enabled them by invoking feenableexcept(). There are at least
two other sources of FP exceptions in the cuDNN library, affecting for example
BATCHNORM_SPATIAL_PERSISTENT. Those sources of FP exceptions will be
eliminated in future releases of the cuDNN library.

www.nvidia.com
cuDNN RN-08667-001_v07 | 12

Chapter 6.
CUDNN RELEASE NOTES V7.0.3

Key Features and Enhancements

Performance improvements for various cases:

‣ Forward Grouped Convolutions where input channel per groups is 1, 2 or 4 and
hardware is Volta or Pascal.

‣ cudnnTransformTensor() where input and output tensor is packed.

This is an improved fallback, improvements will not be seen in all cases.

Known Issues

The following are known issues in this release:

‣ CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING may cause
CUDA_ERROR_ILLEGAL_ADDRESS. This issue affects input images of just one 1 pixel
in width and certain n, c, k, h combinations.

Fixed Issues

The following issues have been fixed in this release:

‣ AddTensor and TensorOp produce incorrect results for half and INT8 inputs for
various use cases.

‣ cudnnPoolingBackward() can produce incorrect values for rare cases of non-
deterministic MAX pooling with window_width > 256. These rare cases are when
the maximum element in a window is duplicated horizontally (along width) by a
stride of 256*k for some k. The behavior is now fixed to accumulate derivatives for
the duplicate that is left-most.

‣ cudnnGetConvolutionForwardWorkspaceSize() produces incorrect workspace
size for algorithm FFT_TILING for 1d convolutions. This only occurs for large sized

cuDNN Release Notes v7.0.3

www.nvidia.com
cuDNN RN-08667-001_v07 | 13

convolutions where intermediate calculations produce values greater than 2^31 (2 to
the power of 31).

‣ CUDNN_STATUS_NOT_SUPPORTED returned by cudnnPooling*() functions for
small x image (channels * height * width < 4).

www.nvidia.com
cuDNN RN-08667-001_v07 | 14

Chapter 7.
CUDNN RELEASE NOTES V7.0.2

Key Features and Enhancements

This is a patch release of cuDNN 7.0 and includes bug fixes and performance
improvements mainly on Volta.
Algo 1 Convolutions Performance Improvements

Performance improvements were made to
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, and
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1. These improvements consist of new SASS
kernels and improved heuristics. The new kernels implement convolutions over
various data sizes and tile sizes. The improved heuristics take advantage of these new
kernels.

Known Issues

The following are known issues in this release:

‣ cudnnGetConvolutionForwardWorkspaceSize() returns overflowed size_t
value for certain input shape for CUDNN_CONVOLUTION_*_ALGO_FFT_TILING.

‣ cudnnPoolingBackward() fails for pooling window size > 256.

Fixed Issues

The following issues have been fixed in this release:

‣ Batch Norm CUDNN_BATCHNORM_SPATIAL_PERSISTENT might get into race
conditions in certain scenarios.

‣ cuDNN convolution layers using TENSOR_OP_MATH with fp16 inputs and outputs
and fp32 compute will use “round to nearest” mode instead of “round to zero”
mode as in 7.0.1. This rounding mode has proven to achieve better results in
training.

cuDNN Release Notes v7.0.2

www.nvidia.com
cuDNN RN-08667-001_v07 | 15

‣ Fixed synchronization logic in the CUDNN_CTC_LOSS_ALGO_DETERMINISTIC algo
for CTC. The original code would hang in rare cases.

‣ Convolution algorithms using TENSOR_OP_MATH returned a workspace size from
*GetWorkspaceSize() smaller than actually necessary.

‣ The results of int8 are inaccurate in certain cases when calling
cudnnConvolutionForward() in convolution layer.

‣ cudnnConvolutionForward() called with xDesc’s channel = yDesc’s
channel = groupCount could compute incorrect values when vertical padding >
0.

www.nvidia.com
cuDNN RN-08667-001_v07 | 16

Chapter 8.
CUDNN RELEASE NOTES V7.0.1

cuDNN v7.0.1 is the first release to support the Volta GPU architecture. In addition,
cuDNN v7.0.1 brings new layers, grouped convolutions, and improved convolution find
as error query mechanism.

Key Features and Enhancements

This cuDNN release includes the following key features and enhancements.

Tensor Cores
Version 7.0.1 of cuDNN is the first to support the Tensor Core operations in its
implementation. Tensor Cores provide highly optimized matrix multiplication
building blocks that do not have an equivalent numerical behavior in the traditional
instructions, therefore, its numerical behavior is slightly different.

cudnnSetConvolutionMathType, cudnnSetRNNMatrixMathType, and
cudnnMathType_t

The cudnnSetConvolutionMathType and cudnnSetRNNMatrixMathType
functions enable you to choose whether or not to use Tensor Core operations in
the convolution and RNN layers respectively by setting the math mode to either
CUDNN_TENSOR_OP_MATH or CUDNN_DEFAULT_MATH.

Tensor Core operations perform parallel floating point accumulation of multiple
floating point products.

Setting the math mode to CUDNN_TENSOR_OP_MATH indicates that the library will use
Tensor Core operations.

The default is CUDNN_DEFAULT_MATH. This default indicates that the Tensor Core
operations will be avoided by the library. The default mode is a serialized operation

cuDNN Release Notes v7.0.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 17

whereas, the Tensor Core is a parallelized operation, therefore, the two might result
in slightly different numerical results due to the different sequencing of operations.

The library falls back to the default math mode when Tensor Core operations are
not supported or not permitted.

cudnnSetConvolutionGroupCount
A new interface that allows applications to perform convolution groups in the
convolution layers in a single API call.

cudnnCTCLoss
cudnnCTCLoss provides a GPU implementation of the Connectionist Temporal
Classification (CTC) loss function for RNNs. The CTC loss function is used for
phoneme recognition in speech and handwriting recognition.

CUDNN_BATCHNORM_SPATIAL_PERSISTENT
The CUDNN_BATCHNORM_SPATIAL_PERSISTENT function is a new batch
normalization mode for cudnnBatchNormalizationForwardTraining
and cudnnBatchNormalizationBackward. This mode is similar to
CUDNN_BATCHNORM_SPATIAL, however, it can be faster for some tasks.

cudnnQueryRuntimeError
The cudnnQueryRuntimeError function reports error codes written by GPU
kernels when executing cudnnBatchNormalizationForwardTraining
and cudnnBatchNormalizationBackward with the
CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode.

cudnnGetConvolutionForwardAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionForwardAlgorithm.

cudnnGetConvolutionBackwardDataAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionBackwardAlgorithm.

cudnnGetConvolutionBackwardFilterAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionBackwardFilterAlgorithm.

CUDNN_REDUCE_TENSOR_MUL_NO_ZEROS
The MUL_NO_ZEROS function is a multiplication reduction that ignores zeros in the
data.

cuDNN Release Notes v7.0.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 18

CUDNN_OP_TENSOR_NOT
The OP_TENSOR_NOT function is a unary operation that takes the negative of
(alpha*A).

cudnnGetDropoutDescriptor
The cudnnGetDropoutDescriptor function allows applications to get dropout
values.

Using cuDNN v7.0.1

Ensure you are familiar with the following notes when using this release.

‣ Multi-threading behavior has been modified. Multi-threading is allowed only when
using different cuDNN handles in different threads.

‣ In cudnnConvolutionBackwardFilter, dilated convolution did not support cases
where the product of all filter dimensions was odd for half precision floating point.
These are now supported by CUDNN_CONVOLUTION_BWD_FILTER_ALGO1.

‣ Fixed bug that produced a silent computation error for when a batch size was larger
than 65536 for CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.

‣ In getConvolutionForwardAlgorithm, an error was not correctly
reported in v5 when the output size was larger than expected. In v6 the
CUDNN_STATUS_NOT_SUPPORTED, error message displayed. In v7, this error is
modified to CUDNN_STATUS_BAD_PARAM.

‣ In cudnnConvolutionBackwardFilter, cuDNN now runs
some exceptional cases correctly where it previously erroneously
returned CUDNN_STATUS_NOT_SUPPORTED. This impacted the
algorithms CUDNN_CONVOLUTION_BWD_FILTER_ALGO0 and
CUDNN_CONVOLUTION_BWD_FILTER_ALGO3.

Deprecated Features

The following routines have been removed:

‣ cudnnSetConvolution2dDescriptor_v4

‣ cudnnSetConvolution2dDescriptor_v5

‣ cudnnGetConvolution2dDescriptor_v4

‣ cudnnGetConvolution2dDescriptor_v5

Only the non-suffixed versions of these routines remain.

The following routines have been created and have the same API prototype as their non-
suffixed equivalent from cuDNN v6:

cuDNN Release Notes v7.0.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 19

‣ cudnnSetRNNDescriptor_v5 - The non-suffixed version of the routines in cuDNN
v7.0.1 are now mapped to their _v6 equivalent.

Attention It is strongly advised to use the non-suffixed version as the _v5 and
_v6 routines will be removed in the next cuDNN release.

‣ cudnnGetConvolutionForwardAlgorithm,
cudnnGetConvolutionBackwardDataAlgorithm, and
cudnnGetConvolutionBackwardFilterAlgorithm - A _v7 version of this
routine has been created. For more information, see the Backward compatibility and
deprecation policy chapter of the cuDNN documentation for details.

Known Issues

‣ cuDNN pooling backwards fails for pooling window size > 256.

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DIGITS, DGX, DGX-1, Jetson, Kepler,

NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	cuDNN Overview
	cuDNN Release Notes v7.1.2
	cuDNN Release Notes v7.1.1
	cuDNN Release Notes v7.0.5
	cuDNN Release Notes v7.0.4
	cuDNN Release Notes v7.0.3
	cuDNN Release Notes v7.0.2
	cuDNN Release Notes v7.0.1

