
CUDNN

RN-08667-001_v07 | August 2019

Release Notes

www.nvidia.com
cuDNN RN-08667-001_v07 | ii

TABLE OF CONTENTS

Chapter 1. cuDNN Overview... 1
Chapter 2. cuDNN Release Notes v7.6.3.. 2
Chapter 3. cuDNN Release Notes v7.6.2.. 4
Chapter 4. cuDNN Release Notes v7.6.1.. 6
Chapter 5. cuDNN Release Notes v7.6.0.. 10
Chapter 6. cuDNN Release Notes v7.5.1.. 13
Chapter 7. cuDNN Release Notes v7.5.0.. 15
Chapter 8. cuDNN Release Notes v7.4.2.. 20
Chapter 9. cuDNN Release Notes v7.4.1.. 22
Chapter 10. cuDNN Release Notes v7.3.1...24
Chapter 11. cuDNN Release Notes v7.3.0...26
Chapter 12. cuDNN Release Notes v7.2.1...29
Chapter 13. cuDNN Release Notes v7.1.4...33
Chapter 14. cuDNN Release Notes v7.1.3...35
Chapter 15. cuDNN Release Notes v7.1.2...37
Chapter 16. cuDNN Release Notes v7.1.1...39
Chapter 17. cuDNN Release Notes v7.0.5...43
Chapter 18. cuDNN Release Notes v7.0.4...45
Chapter 19. cuDNN Release Notes v7.0.3...47
Chapter 20. cuDNN Release Notes v7.0.2...49
Chapter 21. cuDNN Release Notes v7.0.1...51

www.nvidia.com
cuDNN RN-08667-001_v07 | 1

Chapter 1.
CUDNN OVERVIEW

NVIDIA cuDNN is a GPU-accelerated library of primitives for deep neural networks.
It provides highly tuned implementations of routines applied frequently in DNN
applications:

‣ Convolution forward and backward, including cross-correlation
‣ Pooling forward and backward
‣ Softmax forward and backward
‣ Neuron activations forward and backward:

‣ Rectified linear (ReLU)
‣ Sigmoid
‣ Hyperbolic tangent (TANH)

‣ Tensor transformation functions
‣ LRN, LCN and batch normalization forward and backward

cuDNN's convolution routines aim for performance that is competitive with the
fastest GEMM (matrix multiply)-based implementations of such routines while using
significantly less memory.

cuDNN features customizable data layouts supporting flexible dimension ordering,
striding, and subregions for the 4D tensors used as inputs and outputs in all
of its routines. This flexibility allows easy integration into any neural network
implementation, and avoids the input/output transposition steps sometimes necessary
with GEMM-based convolutions.

cuDNN offers a context-based API that allows for easy multi-threading and (optional)
interoperability with CUDA streams.

www.nvidia.com
cuDNN RN-08667-001_v07 | 2

Chapter 2.
CUDNN RELEASE NOTES V7.6.3

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ The cuDNN 7.6.3 library now supports auto-padding for NHWC layout. The
functional behavior, and the benefits of auto-padding as follows:

‣ For use cases where C and K dimensions of input and filter Tensors are not
multiples of 8, the auto-padding feature increases the Tensor size so that the
Tensor dimensions are multiples of 8.

‣ With auto-padding the cuDNN library invokes faster kernels, thereby
improving the performance.

‣ With auto-padding, the performance with NHWC data layout is now
comparable to that of the NCHW layout.

‣ Added support for dataType=CUDNN_DATA_HALF and
computePrec=CUDNN_DATA_HALF in multi-head attention
forward (cudnnMultiHeadAttnForward) and backward (gradient)
(cudnnMultiHeadAttnBackwardData and cudnnMultiHeadAttnBackwardWeights)
API functions.

‣ Multi-head attention API now supports bias after the projections on Q, K, V, and
O in the cudnnMultiHeadAttnForward() call (backward bias gradient is not yet
supported).

The new feature required a small API change in cudnnSetAttnDescriptor():
the cudnnAttnQueryMap_t queryMap argument is replaced with unsigned
attnMode to pass various on and off options. This change is backward compatible
with earlier API versions.

‣ Significantly improved the performance in typical multi-head attention use cases in
forward inference and training, especially when the vector length of each head is a
multiple of 32 up to 128.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetAttnDescriptor

cuDNN Release Notes v7.6.3

www.nvidia.com
cuDNN RN-08667-001_v07 | 3

‣ Tensor Core support is added for true half and single precision use cases
in multi-head attention. Users may utilize it by setting the mathType
argument in cudnnSetAttnDescriptor() to CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION.

‣ The multiHeadAttention sample code is added. The sample code includes a compact
NumPy/Autograd reference model of the multi-head attention block that computes
the forward response and all first-order derivatives. The test code demonstrates how
to use the multi-head attention API, access attention weights, and sequence data.

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed an issue where cudnnMultiHeadAttnBackwardData was producing incorrect
results when K sequence length is longer than 32.

‣ Fixed a race condition in cudnnMultiHeadAttnBackwardData that was producing
intermittent incorrect results.

‣ The function cudnnCTCLoss() produced incorrect gradient result for label whose
length is smaller than the maximal sequence length in the batch. This is fixed in
cuDNN 7.6.3.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnCTCLoss

www.nvidia.com
cuDNN RN-08667-001_v07 | 4

Chapter 3.
CUDNN RELEASE NOTES V7.6.2

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Enhanced the performance of 3D deconvolution using
cudnnConvolutionBackwardData(), for the following configuration:

‣ 2x2x2 filter and 2x2x2 convolution stride.
‣ For FP16 for data input and output, and for accumulation.
‣ For FP32 for data input and output, and for accumulation.

‣ Enhanced the performance of 3D convolution using cudnnConvolutionForward(),
for the following configuration:

‣ Tensor Core for FP16 for data input and output and FP32 accumulation when
CUDNN_TENSOR_OP_MATH is set.

‣ Tensor Core for FP32 for data input and output and FP32 accumulation when
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is set.

‣ Enhanced the functionality of the data type cudnnFusedOps_t by adding the below
three enums:

‣ CUDNN_FUSED_CONV_SCALE_BIAS_ADD_ACTIVATION
‣ CUDNN_FUSED_SCALE_BIAS_ADD_ACTIVATION_GEN_BITMASK, and
‣ CUDNN_FUSED_DACTIVATION_FORK_DBATCHNORM

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.6.1, on Volta architecture only, there may be a performance degradation
when the function cudnnConvolutionBackwardFilter() is used for 3D convolutions
with CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1. This is fixed in cuDNN
7.6.2.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFusedOps_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBwdFilterAlgo_t

cuDNN Release Notes v7.6.2

www.nvidia.com
cuDNN RN-08667-001_v07 | 5

‣ In cuDNN 7.6.1, on Turing and Pascal architectures, performance may be degraded
for cudnnConvolutionBackwardData(), when used with the following conditions:

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 for 3D convolutions
‣ wDesc, dyDesc and dxDesc are all in NCDHW
‣ Data type configuration is FLOAT_CONFIG (i.e., single precision data and

compute)

This is fixed in cuDNN 7.6.2.
‣ In cuDNN 7.6.1, in some cases the function cudnnConvolutionBackwardData()

may fail with “disallowed mismatches” error on Turing (T4) and Volta(V100)
architectures, when used with the configuration below:

‣ Algorithm is CUDNN_CONVOLUTION_BWD_DATA_ALGO_1
‣ Math type is CUDNN_TENSOR_OP_MATH or

CUDNN_TENSOROP_MATH_ALLOW_CONVERSION
‣ Tensor format for filter is NCHW
‣ Input and outputs are in FP16 and computation is in FP32

This is fixed in cuDNN 7.6.2.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBwdDataAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBwdDataAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnTensorFormat_t

www.nvidia.com
cuDNN RN-08667-001_v07 | 6

Chapter 4.
CUDNN RELEASE NOTES V7.6.1

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Performance is enhanced for 3D convolutions using TensorCore for FP16
input and output data types, whenever they are supported. Moreover,
for single-precision (FP32) input/output, cuDNN 7.6.1 will use these
enhanced kernels whenever possible, and only when cudnnMathType_t
is set to CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION. See
cudnnConvolutionForward() and cudnnConvolutionBackwardData() and
cudnnConvolutionBackwardFilter().

‣ On Maxwell and Pascal architectures only, the performance of
3D convolutions with the kernel size of 128^3, when used with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, is enhanced.

‣ API logging is fully implemented for the experimental multihead attention API,
namely, for the following functions:

‣ cudnnCreateAttnDescriptor
‣ cudnnDestroyAttnDescriptor
‣ cudnnSetAttnDescriptor
‣ cudnnGetAttnDescriptor
‣ cudnnGetMultiHeadAttnBuffers
‣ cudnnGetMultiHeadAttnWeights
‣ cudnnMultiHeadAttnForward
‣ cudnnMultiHeadAttnBackwardData
‣ cudnnMultiHeadAttnBackwardWeights
‣ cudnnSetSeqDataDescriptor
‣ cudnnGetSeqDataDescriptor
‣ cudnnCreateSeqDataDescriptor
‣ cudnnDestroySeqDataDescriptor

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#api-logging
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnCreateAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnDestroyAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetMultiHeadAttnBuffers
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetMultiHeadAttnWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnCreateSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnDestroySeqDataDescriptor

cuDNN Release Notes v7.6.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 7

‣ Performance of the experimental multihead attention forward API is enhanced. See
cudnnMultiHeadAttnForward().

‣ Performance is enhanced for the fused convolution and fused wgrad fallback path.
See cudnnFusedOps_t.

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.6.0, the function cudnnGetConvolutionBackwardDataWorkspaceSize()
returns a value for which cudnnConvolutionBackwardData(), when
used with CUDNN_CONVOLUTION_BWD_DATA_ALGO_0, returns
CUDNN_STATUS_NOT_SUPPORTED. This is fixed in cuDNN 7.6.1 so that now
cudnnGetConvolutionBackwardDataWorkspaceSize() returns a proper value
for cudnnConvolutionBackwardData().

‣ In cuDNN 7.6.0 and earlier versions, when all the following conditions are true,

‣ RNN model is bi-directional,
‣ Cell type is LSTM,
‣ cudnnRNNAlgo_t= CUDNN_RNN_ALGO_STANDARD, and
‣ Dropout probability was greater than zero,

then the cudnnRNNBackwardWeights() function produces inaccurate and
occasionally non-deterministic results.

This is fixed in cuDNN 7.6.1.

An underlying issue, where the same buffer was used for left-to-right and right-to-
left directions when re-computing forward dropout results passed from one RNN
layer to the next, was the cause of the bug.

‣ A bug in cuDNN 7.6.0 and earlier versions, in the cudnnRNNForwardTraining()
function, related to dropout, is fixed in cuDNN 7.6.1.

When all the following conditions are true:

‣ cudnnRNNAlgo_t=CUDNN_RNN_ALGO_PERSIST_STATIC,
‣ cudnnMathType_t is CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION,

and
‣ input data type is CUDNN_DATA_FLOAT,

then the FP32-to-FP16 conversion might be applied as a performance optimization.

When this downconversion is scheduled, a GPU kernel invoked by
cudnnDropoutForward() would crash due to incorrect parameters being passed. In
this case CUDA runtime reports the "misaligned address" error when reading the
data from global memory.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFusedOps_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetConvolutionBackwardDataWorkspaceSize
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnRNNAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnRNNBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnRNNForwardTraining
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnRNNAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnDropoutForward

cuDNN Release Notes v7.6.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 8

‣ In cuDNN 7.6.0, on RHEL7 only, the /usr/src/cudnn_samples_v7/
samples_common.mk file is missing. This requires a workaround to compile the
cuDNN samples. This is fixed in cuDNN 7.6.1 and the workaround is not needed for
cuDNN 7.6.1 .

‣ In cuDNN 7.6.0, on pre-Volta hardware only, the function
cudnnGetConvolutionBackwardFilterWorkspaceSize can erroneously return
CUDNN_STATUS_SUCCESS for cudnnConvolutionBackwardFilter for 3D
convolutions, using CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 with
NDHWC layout. When this occurs, the cudnnConvolutionBackwardFilter
function will process the data using a kernel that expects the data in
NCDHW layout (the only format supported by wDesc in this case),
leading to incorrect results. In cuDNN 7.6.1, this is fixed so that
cudnnGetConvolutionBackwardFilterWorkspaceSize will now return
CUDNN_STATUS_NOT_SUPPORTED.

‣ In cuDNN 7.5.x and 7.6.0 for Jetson platform, in some cases the
function cudnnConvolutionBackwardData , when used with
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD, might return
incorrect results. This is fixed in cuDNN 7.6.1.

‣ When the data type configuration is FLOAT_CONFIG, then
cudnnGetConvolution*Algorithm(), for a few convolution sizes, incorrectly
returns a slow algorithm for the Pascal architecture. This is fixed in cuDNN 7.5.0
and later versions.

‣ When using the fusedOps API with the enum
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS or
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD, and when input tensor
is in NCHW format or is not fully-packed, then incorrect results may be produced.
This is now fixed in cuDNN 7.6.1.

Known Issues

The following issues and limitations exist in this release:

‣ Algorithms returned by cudnnGetConvolution*Algorithm() may, in some
limited use cases, fail to execute when they are actually run. This is a cuDNN
library-wide issue and applies for convolution forward, convolution backward data,
and convolution backward filter operations. This issue is also present in versions
prior to cuDNN 7.6.1.

‣ When the input and output tensors are in NHWC and the filter is 1x1 and NCHW,
the performance of the function cudnnConvolutionBackwardData() might be
degraded.

‣ In cuDNN 7.6.1, when using the experimental multi-head attention API, it is
possible that the forward and backward paths produce different results for the BERT
model, when the batch size is greater than one and/or the number of heads is greater
than one.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetConvolutionBackwardFilterWorkspaceSize
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData

cuDNN Release Notes v7.6.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 9

‣ In cuDNN 7.6.1, on Volta architecture only, there may be a performance degradation
when the function cudnnConvolutionBackwardFilter() is used for 3D convolutions
with CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1.

‣ In cuDNN 7.6.1, on Turing and Pascal architectures, performance may be degraded
for cudnnConvolutionBackwardData(), when used with the following conditions:

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 for 3D convolutions
‣ wDesc, dyDesc and dxDesc are all in NCDHW
‣ Data type configuration is FLOAT_CONFIG (i.e., single precision data and

compute)

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData

www.nvidia.com
cuDNN RN-08667-001_v07 | 10

Chapter 5.
CUDNN RELEASE NOTES V7.6.0

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ A new API is introduced for fused ops, which can accelerate many use cases in
ResNet-like networks. With this new API it is now possible to execute various fused
operations such as apply per channel scale and bias, perform activation, compute
convolution, and generate batchnorm statistics. Below is a list of supported datatype
and functions in this API:

Datatypes:

 1. cudnnFusedOpsVariantParamPack_t
 2. cudnnFusedOpsConstParamPack_t
 3. cudnnFusedOpsPlan_t
 4. cudnnFusedOps_t
 5. cudnnFusedOpsConstParamLabel_t
 6. cudnnFusedOpsPointerPlaceHolder_t
 7. cudnnFusedOpsVariantParamLabel_t

Functions:

 1. cudnnCreateFusedOpsConstParamPack
 2. cudnnDestroyFusedOpsConstParamPack
 3. cudnnSetFusedOpsConstParamPackAttribute
 4. cudnnGetFusedOpsConstParamPackAttribute
 5. cudnnCreateFusedOpsVariantParamPack
 6. cudnnDestroyFusedOpsVariantParamPack
 7. cudnnSetFusedOpsVariantParamPackAttribute
 8. cudnnGetFusedOpsVariantParamPackAttribute
 9. cudnnCreateFusedOpsPlan

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFusedOpsVariantParamPack_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFusedOpsConstParamPack_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFusedOpsPlan_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFusedOps_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFusedOpsConstParamLabel_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFusedOpsPointerPlaceHolder_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFusedOpsVariantParamLabel_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnCreateFusedOpsConstParamPack
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnDestroyFusedOpsConstParamPack
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetFusedOpsConstParamPackAttribute
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetFusedOpsConstParamPackAttribute
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnCreateFusedOpsVariantParamPack
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnDestroyFusedOpsVariantParamPack
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetFusedOpsVariantParamPackAttribute
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetFusedOpsVariantParamPackAttribute
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnCreateFusedOpsPlan

cuDNN Release Notes v7.6.0

www.nvidia.com
cuDNN RN-08667-001_v07 | 11

 10. cudnnDestroyFusedOpsPlan
 11. cudnnMakeFusedOpsPlan
 12. cudnnFusedOpsExecute

‣ Improved the performance of grouped convolution layers in ResNeXt-50, for
cudnnConvolutionBackwardData() in the configuration below:

‣ On NVIDIA Volta (compute capability 7.0)
‣ Algorithm is CUDNN_CONVOLUTION_BWD_DATA_ALGO_1
‣ Stride of 1
‣ Math type is CUDNN_TENSOR_OP_MATH or

CUDNN_TENSOROP_MATH_ALLOW_CONVERSION
‣ Tensor format for filter is NHWC
‣ Input and outputs are in FP16 and computation is in FP32

‣ A new API is introduced to enhance the inference time. With this new API it is now
possible to separate the filter layout transformation that was applied on every call,
which in turn leads to inference time enhancement. Below is a list of supported
datatype and functions in this API.

 1. cudnnReorderType_t
 2. cudnnReorderFilterAndBias
 3. cudnnSetConvolutionReorderType
 4. cudnnGetConvolutionReorderType

‣ Performance is enhanced (by selecting a faster kernel) on NVIDIA T4 cards for
INT8x4 and INT8x32.

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.5.0 and cuDNN 7.5.1, a bug in the cudnnRNNBackwardData() function
affected the thread synchronization. This effect is limited to only the first iteration
of the loop, and only in some paths. This occurs when using the function with the
CUDNN_RNN_ALGO_PERSIST_STATIC method. This is fixed in cuDNN 7.6.0.

Known Issues

The following issues and limitations exist in this release:

‣ The cudnnConvolutionBackwardData() function for
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 fails with
CUDNN_STATUS_NOT_SUPPORTED when the input size is large.

‣ A general known issue for cuDNN library: the Tensor pointers and the filter pointers
require at a minimum 4-byte alignment, including for FP16 or INT8 data.

‣ On RHEL7 only, the /usr/src/cudnn_samples_v7/samples_common.mk file
is missing. This will prevent compiling the cuDNN samples. The workaround

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnDestroyFusedOpsPlan
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMakeFusedOpsPlan
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFusedOpsExecute
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnReorderType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnReorderFilterAndBias
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetConvolutionReorderType
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetConvolutionReorderType
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnRNNBackwardData

cuDNN Release Notes v7.6.0

www.nvidia.com
cuDNN RN-08667-001_v07 | 12

is to copy the below contents into “samples_common.mk” text file and place
this file in the “/usr/src/cudnn_samples_v7/” directory, so that the /usr/src/
cudnn_samples_v7/samples_common.mk file exists.
Setting SMS for all samples
architecture

ifneq ($(TARGET_ARCH), ppc64le)
CUDA_VERSION := $(shell cat $(CUDA_PATH)/include/cuda.h |grep "define
 CUDA_VERSION" |awk '{print $$3}')
else
CUDA_VERSION := $(shell cat $(CUDA_PATH)/targets/ppc64le-linux/include/
cuda.h |grep "define CUDA_VERSION" |awk '{print $$3}')
endif

#Link against cublasLt for CUDA 10.1 and up.
CUBLASLT:=false
ifeq ($(shell test $(CUDA_VERSION) -ge 10010; echo $$?),0)
CUBLASLT:=true
endif
$(info Linking agains cublasLt = $(CUBLASLT))

ifeq ($(CUDA_VERSION),8000)
SMS_VOLTA =
else
ifneq ($(TARGET_ARCH), ppc64le)
ifeq ($(CUDA_VERSION), $(filter $(CUDA_VERSION), 9000 9010 9020))
SMS_VOLTA ?= 70
else
ifeq ($(TARGET_OS), darwin)
SMS_VOLTA ?= 70
else
SMS_VOLTA ?= 70 72 75
endif #ifneq ($(TARGET_OS), darwin)
endif #ifeq ($(CUDA_VERSION), $(filter $(CUDA_VERSION), 9000 9010 9020))
else
SMS_VOLTA ?= 70
endif #ifneq ($(TARGET_ARCH), ppc64le)
endif #ifeq ($(CUDA_VERSION),8000)
SMS ?= 30 35 50 53 60 61 62 $(SMS_VOLTA)

www.nvidia.com
cuDNN RN-08667-001_v07 | 13

Chapter 6.
CUDNN RELEASE NOTES V7.5.1

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ The function cudnnMultiHeadAttnForward() is now enabled to sweep
through all the time-steps in a single API call. This is indicated by a
negative value of the currIdx argument in the inference mode, i.e., when
reserveSpace=NULL so that either cudnnMultiHeadAttnBackwardData() or
cudnnMultiHeadAttnBackwardWeights() will not be invoked. This sweep mode can
be used to implement self-attention on the encoder side of the transformer model.

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.5.0, using the static link for cudnnConvolutionBiasActivationForward()
function may result in CUDNN_STATUS_NOT_SUPPORTED error message. The
workaround is to perform a whole-archive link. This issue is fixed in cuDNN 7.5.1.

‣ In cuDNN 7.5.0 and 7.4.x, in some cases of input images with
large dimensions, the 3D forward convolution operations with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM will cause
a crash with “illegal memory access” error. This is fixed in cuDNN 7.5.1.

‣ In cuDNN 7.5.0, setting attnDropoutDesc=NULL in cudnnSetAttnDescriptor()
triggered a segmentation fault in cudnnMultiHeadAttnForward(), even though
the user is required to set it to NULL in the inference mode. This is fixed in cuDNN
7.5.1.

Known Issues

The following issues and limitations exist in this release:

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetAttnDescriptor

cuDNN Release Notes v7.5.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 14

‣ In cuDNN7.5 and cudnn7.5.1, image size smaller than filter size is unsupported,
even with sufficient padding.

www.nvidia.com
cuDNN RN-08667-001_v07 | 15

Chapter 7.
CUDNN RELEASE NOTES V7.5.0

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ In cudnnConvolutionForward() for 2D convolutions, for wDesc NCHW, the
IMPLICIT_GEMM algorithm (algo 0) now supports the Data Type Configuration of
INT8x4_CONFIG, and INT8x4_EXT_CONFIG also.

‣ A new set of APIs are added to provide support for Multi-Head Attention
computation. The following is a list of the new functions and data types:

Datatypes:

‣ cudnnSeqDataAxis_t
‣ cudnnMultiHeadAttnWeightKind_t
‣ cudnnSeqDataDescriptor_t
‣ cudnnWgradMode_t
‣ cudnnAttnQueryMap_t
‣ cudnnAttnDescriptor_t

Functions:

‣ cudnnCreateAttnDescriptor
‣ cudnnDestroyAttnDescriptor
‣ cudnnSetAttnDescriptor
‣ cudnnGetAttnDescriptor
‣ cudnnGetMultiHeadAttnBuffers
‣ cudnnGetMultiHeadAttnWeights
‣ cudnnMultiHeadAttnForward
‣ cudnnMultiHeadAttnBackwardData
‣ cudnnMultiHeadAttnBackwardWeights
‣ cudnnSetSeqDataDescriptor

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSeqDataAxis_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnWeightKind_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSeqDataDescriptor_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnWgradMode_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnAttnQueryMap_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnAttnDescriptor_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnCreateAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnDestroyAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetMultiHeadAttnBuffers
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetMultiHeadAttnWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnMultiHeadAttnBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetSeqDataDescriptor

cuDNN Release Notes v7.5.0

www.nvidia.com
cuDNN RN-08667-001_v07 | 16

‣ cudnnGetSeqDataDescriptor
‣ cudnnCreateSeqDataDescriptor
‣ cudnnDestroySeqDataDescriptor

‣ A new set of APIs for general tensor folding is introduced. The following is a list of
the new functions and data types:

Datatypes:

‣ cudnnTensorTransformDescriptor_t
‣ cudnnFoldingDirection_t

Functions:

‣ cudnnTransformTensorEx
‣ cudnnCreateTensorTransformDescriptor
‣ cudnnDestroyTensorTransformDescriptor
‣ cudnnInitTransformDest
‣ cudnnSetTensorTransformDescriptor
‣ cudnnGetTensorTransformDescriptor

‣ A new set of APIs, and enhancements for the existing APIs, are introduced for
RNNs. The following is the list of the new and enhanced functions and data types:

Datatypes:

‣ cudnnRNNBiasMode_t (new)
‣ cudnnRNNMode_t (enhanced)

Functions:

‣ cudnnSetRNNBiasMode (new)
‣ cudnnGetRNNBiasMode (new)
‣ cudnnGetRNNLinLayerBiasParams (enhanced)

‣ All cudnnRNNForward/Backward* functions are enhanced to support FP16
math precision mode when both input and output are in FP16. To switch to FP16
math precision, set the mathPrec parameter in cudnnSetRNNDescriptor to
CUDNN_DATA_HALF. To switch to FP32 math precision, set the mathPrec
parameter in cudnnSetRNNDescriptor to CUDNN_DATA_FLOAT. This feature is
only available for CUDNN_ALGO_STANDARD and for the compute capability 5.3
or higher.

‣ Added support for INT8x4 and INT8x32 data type for cudnnPoolingForward. Using
these will provide improved performance over scalar data type.

Fixed Issues

The following issues have been fixed in this release:

‣ When the following is true for the cudnnConvolutionBackwardData() function:

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnCreateSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnDestroySeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnTensorTransformDescriptor_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnFoldingDirection_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnTransformTensorEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnCreateTensorTransformDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnDestroyTensorTransformDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnInitTransformDest
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetTensorTransformDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetTensorTransformDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnRNNBiasMode_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnRNNMode_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetRNNBiasMode
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetRNNBiasMode
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetRNNLinLayerBiasParams
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnRNNAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnPoolingForward

cuDNN Release Notes v7.5.0

www.nvidia.com
cuDNN RN-08667-001_v07 | 17

‣ used with CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, and
‣ convDesc's vertical stride is exactly 2, and
‣ the vertical padding is a multiple of 2, and
‣ the filter height is a multiple of 2

OR

‣ used with CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, and
‣ convDesc's horizontal stride is exactly 2, and
‣ the horizontal padding is a multiple of 2, and
‣ the filter width is a multiple of 2

then the resulting output is incorrect. This issue was present in cuDNN 7.3.1 and
later. This is fixed in cuDNN 7.5.0.

‣ The mathPrec parameter in cudnnSetRNNDescriptor is reserved for controlling
math precision in RNN, but was not checked or enforced. This parameter is now
strictly enforced. As a result, the following applies:

‣ For the input/output in FP16, the parameter mathPrec can be
CUDNN_DATA_HALF or CUDNN_DATA_FLOAT.

‣ For the input/output in FP32, the parameter mathPrec can only be
CUDNN_DATA_FLOAT, and

‣ For the input/output in FP64, double type, the parameter mathPrec can only be
CUDNN_DATA_DOUBLE.

‣ Users upgrading to cuDNN 7.4 may see insufficiently small values returned from
the function cudnnGetConvolutionBackwardFilterWorkspaceSize () for dimensions
5 and greater, resulting in a CUDNN_STATUS_EXECUTION_FAILED error
message. In cuDNN 7.4, the workaround for this issue is to calculate the workspace
by using the formula below:
Let M be the product of output tensor (gradDesc) dimensions starting at 1.
Let N be the output tensor dimension 0.
Let Mp = (M+31)/32
Let Np = (N+31)/32
W = 2 * M * N * sizeof(int) is the workspace that should be used.

This is fixed.
‣ In earlier cuDNN versions, when all the conditions below are true:

‣ 3-D convolution
‣ Batch size > 1
‣ Algorithm is "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1"
‣ convDesc's dataType is CUDNN_DATA_HALF,

then, calls to cudnnConvolutionBackwardFilter() may produce incorrect
(and non-deterministic) results. This is fixed in cuDNN 7.5.0.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetConvolutionBackwardFilterWorkspaceSize

cuDNN Release Notes v7.5.0

www.nvidia.com
cuDNN RN-08667-001_v07 | 18

‣ In cuDNN 7.4.2, for some cases the 3D convolution resulted in a reduced
performance on Turing GPUs, compared to the previous cuDNN releases. This is
fixed.

‣ For int8x32 datatype, the function cudnnSetTensor4dDescriptorEx erroneously
returns CUDNN_STATUS_BAD_PARAM. Now it is fixed in cuDNN 7.5 so it no
longer returns bad param.

‣ In cuDNN 7.4.1 and 7.4.2, when cudnnBatchNormMode_t is set to
CUDNN_BATCHNORM_SPATIAL_PERSISTENT and the input/output tensors are
in NHWC format and of CUDNN_DATA_HALF datatype, then, on Windows only,
the cudnnBatchNormalization*Ex functions are supported only with the device
in TCC mode. See Tesla Compute Cluster Mode for Windows .

Starting with cuDNN 7.5.0, the following checks are added for the driver mode on
Windows. If on Windows and not in TCC mode:

‣ The functions will fallback to a slower implementation if bnOps
in the cudnnBatchNormalization*Ex function is set to
CUDNN_BATCHNORM_OPS_BN.

‣ If bnOps is set to CUDNN_BATCHNORM_OPS_BN_ACTIVATION,
or CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION, the
CUDNN_STATUS_NOT_SUPPORTED is returned.

‣ In cuDNN 7.4.2, in some cases the cudnnConvolutionBackwardData() function,
when used with NHWC tensor format, resulted in the “disallowed mismatches”
error. This is fixed.

‣ In some cases, using cudnnConvolutionBiasActivationForward() with
GroupCount() > 1 and xDesc's data type is CUDNN_DATA_HALF will produce
incorrect results for all groups except the first. This is fixed.

‣ When using cuDNN 7.3.1 on Quadro P4000, when
calling the cudnnConvolutionForward() function with
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm,
there was a small chance of seeing intermittent inaccurate results. This is fixed.

‣ When cudnnConvolutionForward() is called with these settings: Datatype is
CUDNN_DATA_INT8x4, Convolution is 2D, architecture is sm_61, filter size is
larger than 8x8, then incorrect result and potential illegal memory access error
occurs. This is fixed.

‣ For sm_72 and sm_75, the function cudnnConvolutionBiasActivationForward(),
when used with INT8x32, failed to run. This is fixed.

‣ In the function cudnnSetRNNDataDescriptor , if API logging is turned on, the
seqLengthArray field in the log may not display the correct number of array
elements. This is fixed.

‣ For the batchNorm functions cudnnBatchNormalization{Backward|
BackwardEx|ForwardInference|ForwardTraining|ForwardTrainingEx}, the
value of epsilon is required to be greater or equal to CUDNN_BN_MIN_EPSILON

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnSetTensor4dDescriptorEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnBatchNormMode_t
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#tesla-compute-cluster-mode-for-windows
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBiasActivationForward

cuDNN Release Notes v7.5.0

www.nvidia.com
cuDNN RN-08667-001_v07 | 19

which was defined in the cudnn.h file to the value 1e-5. This threshold value is now
lowered to 0.0 to allow a wider range of epsilon value. However, users should still
choose the epsilon value carefully, since a too small a value of epsilon may cause
batchNormalization to overflow when the input data's standard deviation is close to
0.

‣ Some Grouped Convolutions (particularly those used in Depthwise-Separable
convolutions) may return INTERNAL_ERROR if they have all inputs/outputs as
NHWC-packed and do not match one of the following criteria:

‣ filter_height = 1, filter_width = 1, vertical_conv_stride = 1,
horizontal_conv_stride = 1

‣ filter_height = 3, filter_width = 3, vertical_conv_stride = 1,
horizontal_conv_stride = 1

‣ filter_height = 3, filter_width = 3, vertical_conv_stride = 2,
horizontal_conv_stride = 2

Known Issues

The following issues and limitations exist in this release:

‣ The RNN persist-static algorithm returns incorrect results for GRU problems
in backwards mode, when the hidden size is greater than 1024. Due to this,
RNN persist-static algorithm is disabled in cuDNN 7.5.0. Users with such GRU
problems are advised to use the standard or persist-dynamic RNN algorithms. See
cudnnRNNAlgo_t(). This note applies to all previous cuDNN 7 releases.

‣ The function cudnnConvolutionBackwardFilter(), when used with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, returns the error
"Uninitialized __global__ memory read of size 4".

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnRNNAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardFilter

www.nvidia.com
cuDNN RN-08667-001_v07 | 20

Chapter 8.
CUDNN RELEASE NOTES V7.4.2

Fixed Issues

The following issues have been fixed in this release:

‣ In some cases when the data is in CUDNN_DATA_HALF and NHWC, illegal
memory access may occur for cudnnBatchNormalization* functions in the
cuDNN 7.4.1 library. This is now fixed.

‣ When the data is in CUDNN_DATA_HALF and NHWC, for
cudnnBatchNormalization* functions when (N*H*W) is large and odd number,
the output may contain wrong results. This is fixed.

‣ When calling the cudnnConvolutionBiasActivationForward() function with
the algo parameter set to CUDNN_CONVOLUTION_FWD_ALGO_FFT and the
activationDesc parameter set to CUDNN_ACTIVATION_RELU and sufficiently
large inputs, the ReLU operation is not applied and negative values are passed
through to the output. This issue is now fixed. This issue was present in all previous
cuDNN versions.

‣ Performance regression was introduced in cuDNN 7.4.1 for
cudnnConvolutionBwdFilterAlgo_t() function with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 algorithm. This is fixed.

Known Issues

The following issues and limitations exist in this release:

‣ When cudnnBatchNormMode_t is set to
CUDNN_BATCHNORM_SPATIAL_PERSISTENT and the input/output tensors
are in NHWC format and of CUDNN_DATA_HALF datatype, then, on Windows
only, the cudnnBatchNormalization*Ex functions are supported only with the
device in TCC mode. See Tesla Compute Cluster Mode for Windows. This issue is
not present on Linux systems. This issue is present in cuDNN 7.4.1 and this current
version.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#tesla-compute-cluster-mode-for-windows

cuDNN Release Notes v7.4.2

www.nvidia.com
cuDNN RN-08667-001_v07 | 21

‣ In some cases the 3D convolution will have a reduced performance on Turing GPUs,
compared to the previous cuDNN releases.

‣ The functions cudnnGetConvolutionForwardAlgorithm_v7()
and cudnnGetConvolutionForwardWorkspaceSize() will return
CUDNN_STATUS_SUCCESS, but the execution of the convolution returns
CUDNN_STATUS_NOT_SUPPORTED. This issue is present in cuDNN 7.2.2 library
and later versions.

www.nvidia.com
cuDNN RN-08667-001_v07 | 22

Chapter 9.
CUDNN RELEASE NOTES V7.4.1

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Added a new family of fast NHWC batch normalization functions. See the following
five new functions and one new type descriptor:

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(),
‣ cudnnBatchNormalizationForwardTrainingEx,
‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize(),
‣ cudnnBatchNormalizationBackwardEx(),
‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize() functions, and
‣ cudnnBatchNormOps_t type descriptor

‣ For API Logging, a conversion specifier for the process id is added. With this, the
process id can be included in the log file name. See API Logging.

‣ Performance of cudnnPoolingBackward() is enhanced for the
average pooling when using NHWC data format--for both the
CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING and
CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING cases of
cudnnPoolingMode_t.

‣ Performance of the strided convolution in cudnnConvolutionBackwardData()
is enhanced when the filter is in NHWC format and the data type is
TRUE_HALF_CONFIG or PSEUDO_HALF_CONFIG or FLOAT_CONFIG. For
strides u,v < r,s the performance is further enhanced.

‣ Significantly improved the performance of cudnnConvolutionForward(),
cudnnConvolutionBackwardData() & cudnnConvolutionBackwardFilter() functions
on RCNN models such as Fast RCNN, Faster RCNN, & Mask RCNN.

Fixed Issues

The following issues have been fixed in this release:

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnBatchNormOps_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#api-logging
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnPoolingBackward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnPoolingMode_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardFilter

cuDNN Release Notes v7.4.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 23

‣ The following set up was giving “Misaligned Address” error in cuDNN 7.3.x.
This is fixed in cuDNN 7.4.1: For the cudnnConvolutionForward() function with
the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
algorithm, in the data type configuration of PSEUDO_HALF_CONFIG, when the
input and output tensors are in in NHWC and the filter is 1x1 and NCHW, and
Tensor Op is enabled.

‣ For a few convolution sizes for ALGO_0 and ALGO_1, the performance of the
function cudnnConvolutionBackwardFilter() was degraded in cuDNN 7.3.1. This is
now fixed.

‣ Fixed. In cuDNN 7.3.1 the function cudnnAddTensor was computing incorrect
results when run on GPUs with the compute capability < 6.0 (prior to Pascal).

Known Issues

The following issues and limitations exist in this release:

‣ When calling the cudnnConvolutionBiasActivationForward() function with
the algo parameter set to CUDNN_CONVOLUTION_FWD_ALGO_FFT and the
activationDesc parameter set to CUDNN_ACTIVATION_RELU and sufficiently
large inputs, the ReLU operation is not applied and negative values are passed
through to the output. This issue is present in all previous cuDNN versions.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnAddTensor

www.nvidia.com
cuDNN RN-08667-001_v07 | 24

Chapter 10.
CUDNN RELEASE NOTES V7.3.1

Key Features and Enhancements

The following enhancements have been added to this release:

‣ The FFT tiling algorithms for convolution have been enhanced
to support strided convolution. In specific, for the algorithms
CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING and
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, the convDesc's
vertical and horizontal filter stride can be 2 when neither the filter width nor the
filter height is 1.

‣ The CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD algorithm for
cudnnConvolutionForward() and cudnnConvolutionBackwardData() now
give superior performance for Volta architecture. In addition, the mobile version of
this algorithm in the same functions gives superior performance for Maxwell and
Pascal architectures.

‣ Dilated convolutions now give superior performance for
cudnnConvolutionForward(), cudnnConvolutionBackwardData(), and
cudnnConvolutionBackwardFilter() on Volta architecture, in some cases.

Known Issues and Limitations

The following issues and limitations exist in this release:

‣ For the cudnnConvolutionForward(), when using a 1x1 filter with input and
output tensors of NHWC format and of CUDNN_DATA_HALF (half precision) type,
and the filter format is NCHW, with compute type of float, cuDNN will generate
incorrect results.

‣ On Quadro P4000, when calling cudnnConvolutionForward() function with
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm,
there may be a small chance of seeing intermittent inaccurate results.

cuDNN Release Notes v7.3.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 25

‣ When using cudnnConvolutionBackwardFilter() with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 in mixed precision
computation, with input/output in CUDNN_DATA_HALF (half precision) and
compute type of float, when the number of batches (N) is larger than 1 the results
might include INF due to an intermediate down-convert to half float. In other
words, with an accumulation of float for all intermediate values (such as in
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) the result will be a finite half
precision float. This limitation also exists in all previous cuDNN versions.

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed a pointer arithmetic integer overflow issue in RNN forward and backward
functions, when sequence length and mini-batch size are sufficiently large.

‣ When tensor cores are enabled in cuDNN 7.3.0, the
cudnnConvolutionBackwardFilter() calculations were performing an illegal
memory access when K and C values are both non-integral multiples of 8. This issue
is fixed.

‣ For the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 algorithm in
cudnnConvolutionBackwardFilter(), on Volta, the tensor operations were
occasionally failing when the filter spatial size (filter h * filter w) was greater than 64.
This issue is fixed.

‣ While running cuDNN 7.3.0 on Turing with CUDA 10.0, r400 driver, the functions
cudnnRNNForwardTraining(Ex) and cudnnRNNForwardInference(Ex) errored
out returning CUDNN_STATUS_NOT_SUPPORTED. This issue is fixed.

‣ In cuDNN 7.3.0, when using CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1
with tensor data or filter data in NHWC format, the function might have resulted in a
silent failure. This is now fixed.

www.nvidia.com
cuDNN RN-08667-001_v07 | 26

Chapter 11.
CUDNN RELEASE NOTES V7.3.0

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Support is added to the following for the dilated convolution, for NCHW and NHWC
filter formats:

‣ cudnnConvolutionForward() for 2D,
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM,

‣ cudnnConvolutionBackwardData() for 2D,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1, and

‣ cudnnConvolutionBackwardFilter() for 2D,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

For these supported cases, the dilated convolution is expected to offer superior
speed, compared to the existing dilated convolution with algo 0.

‣ Grouped convolutions for depth-wise separable convolutions are optimized for the
following NHWC formats: HHH (input: Half, compute: Half, output: Half), HSH,
and SSS.

‣ While using CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION, with the tensor cores, the
c and k dimensions of the tensors are now padded to multiples of 8 (as needed), to
allow a tensor core kernel to run.

‣ The CUDNN_BATCHNORM_SPATIAL_PERSISTENT algo is
enhanced in cudnnBatchNormalizationForwardTraining() and
cudnnBatchNormalizationBackward() to propagate NaN-s or Inf-s as
in a pure floating point implementation (the "persistent" flavor of the batch
normalization is optimized for speed and it uses integer atomics for inter
thread-block reductions). In earlier versions of cuDNN we recommended
invoking cudnnQueryRuntimeError() to ensure no overflow was encountered.
When it happened, the best practice was to discard the results, and use

cuDNN Release Notes v7.3.0

www.nvidia.com
cuDNN RN-08667-001_v07 | 27

CUDNN_BATCHNORM_SPATIAL instead, as some results generated by
CUDNN_BATCHNORM_SPATIAL_PERSISTENT could be finite but invalid.
This behavior is now corrected: NaN-s and/or Inf-s are consistently output when
intermediate results are out of range. The refined implementation simulates math
operations on special floating point values, for example, +Inf-Inf=NaN.

Known Issues and Limitations

Following issues and limitations exist in this release:

‣ When tensor cores are enabled in cuDNN 7.3.0, the wgrad calculations will perform
an illegal memory access when K and C values are both non-integral multiples of
8. This will not likely produce incorrect results, but may corrupt other memory
depending on the user buffer locations. This issue is present on Volta & Turing
architectures.

‣ Using cudnnGetConvolution*_v7 routines
with cudnnConvolutionDescriptor_t set to
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION leads
to incorrect outputs. These incorrect outputs will consist only of
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION cases, instead
of also returning the performance results for both DEFAULT_MATH and
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION cases.

Fixed Issues

The following issues have been fixed in this release:

‣ Using cudnnConvolutionBackwardData() with
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD algorithm produced
incorrect results due to an incorrect filter transform. This issue was present in
cuDNN 7.2.1.

‣ For INT8 type, with xDesc and yDesc of NHWC format, the
cudnnGetConvolutionForwardAlgorithm_v7 function was incorrectly returning
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM as a valid algorithm.
This is fixed.

‣ cudnnConvolutionForward() using
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD intermittently produced
incorrect results in cuDNN 7.2, due to a race condition. This issue is fixed.

‣ When running cudnnConvolutionBackwardFilter() with NHWC filter format,
when n, c, and k are all multiple of 8, and when the workSpace input is exactly as
indicated by cudnnGetConvolutionBackwardFilterWorkspaceSize(), leads to
error in cuDNN 7.2. This is fixed.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with FP32
input/output on sm_70 or sm_72, with RNN descriptor's algo field set to
CUDNN_RNN_ALGO_PERSIST_STATIC, and cudnnMathType_t type set to

cuDNN Release Notes v7.3.0

www.nvidia.com
cuDNN RN-08667-001_v07 | 28

CUDNN_TENSOR_OP_MATH via cudnnSetRNNMatrixMathType, then the results
were incorrect. This is fixed.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with
FP32 input/output on sm_70 or sm_72, with RNN descriptor's algo field
set to CUDNN_RNN_ALGO_PERSIST_STATIC, and cudnnMathType_t
type set to CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION via
cudnnSetRNNMatrixMathType, then the resulting performance was suboptimal.
This is fixed.

‣ Convolution routines with filter format as NHWC require both input and output
formats to be NHWC. However, in cuDNN 7.2 and earlier, this condition was not
being checked for, as a result of which silent failures may have occurred. This is
fixed in 7.3.0 to correctly return CUDNN_STATUS_NOT_SUPPORTED.

www.nvidia.com
cuDNN RN-08667-001_v07 | 29

Chapter 12.
CUDNN RELEASE NOTES V7.2.1

Key Features and Enhancements

The following enhancements have been added to this release:

‣ The following new functions are added to provide support for the padding mask for
the cudnnRNN* family of functions:

‣ cudnnSetRNNPaddingMode(): Enables/disables the padded RNN input/output.
‣ cudnnGetRNNPaddingMode(): Reads the padding mode status.
‣ cudnnCreateRNNDataDescriptor() and

cudnnDestroyRNNDataDescriptor(): Creates and destroys, respectively,
cudnnRNNDataDescriptor_t, an RNN data descriptor.

‣ cudnnSetRNNDataDescriptor() and cudnnGetRNNDataDescriptor():
Initializes and reads, respectively, the RNN data descriptor.

‣ cudnnRNNForwardTrainingEx(): An extended version of the
cudnnRNNForwardTraining() to allow for the padded (unpacked) layout for
the input/output.

‣ cudnnRNNForwardInferenceEx(): An extended version of the
cudnnRNNForwardInference() to allow for the padded (unpacked) layout for
the input/output.

‣ cudnnRNNBackwardDataEx(): An extended version of the
cudnnRNNBackwardData() to allow for the padded (unpacked) layout for the
input/output.

‣ cudnnRNNBackwardWeightsEx(): An extended version of the
cudnnRNNBackwardWeights() to allow for the padded (unpacked) layout for
the input/output.

‣ Added support for cell clipping in cuDNN LSTM. The following new functions are
added:

‣ cudnnRNNSetClip() and cudnnRNNGetClip(): Sets and retrieves,
respectively, the LSTM cell clipping mode.

cuDNN Release Notes v7.2.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 30

‣ Accelerate your convolution computation with this new feature: When
the input channel size c is a multiple of 32, you can use the new data type
CUDNN_DATA_INT8x32 to accelerate your convolution computation.

This new data type CUDNN_DATA_INT8x32 is only supported by sm_72.

‣ Enhanced the family of cudnnFindRNN* functions. The findIntensity input
to these functions now enable the user to control the overall runtime of the RNN
find algorithms, by selecting a percentage of a large Cartesian product space to be
searched.

‣ A new mode CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is added
to cudnnMathType_t. The computation time for FP32 tensors can be reduced by
selecting this mode.

‣ The functions cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData(), and cudnnRNNBackwardWeights()
will now perform down conversion of FP32 input/output only when
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is set.

‣ Improved the heuristics for cudnnGet*Algorithm() functions.

Known Issues and Limitations

Following issues and limitations exist in this release:

‣ For FP16 inputs, the functions cudnnGetConvolutionForwardAlgorithm(),
cudnnGetConvolutionBackwardDataAlgorithm(), and
cudnnGetConvolutionBackwardFilterAlgorithm() will obtain a slower
algorithm.

‣ For cases where beta is not equal to zero, and when the input channel size is greater
than 65535, then the below cudnnConvolutionBackwardFilter() algorithms
may return EXECUTION_FAILED error:

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0,
‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, and
‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3

‣ This is a rare occurrence: When beta is not equal to zero, the function
cudnnFindConvolutionBackwardFilterAlgorithm() may not return the fastest
algorithm available for cudnnConvolutionBackwardFilter().

‣ Grouped convolutions are not supported in the TRUE_HALF_CONFIG (convDesc
is CUDNN_DATA_HALF) data type configuration. As a workaround, the
PSEUDO_HALF_CONFIG (convDesc is CUDNN_DATA_FLOAT) data type
configuration can be used without losing any precision.

‣ For the cudnnConvolutionBiasActivationForward() function, if the input
cudnnActivationMode_t is set to enum value CUDNN_ACTIVATION_IDENTITY,

cuDNN Release Notes v7.2.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 31

then the input cudnnConvolutionFwdAlgo_t must be set to the enum value
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with
FP32 input/output, on sm_70 or sm_72, with RNN descriptor's algo
field set to CUDNN_RNN_ALGO_PERSIST_STATIC, and math type set to
CUDNN_TENSOR_OP_MATH via cudnnSetRNNMatrixMathType(), then the results
are incorrect.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward*
with FP32 input/output, on sm_70 or sm_72, with RNN descriptor's
algo field set to CUDNN_RNN_ALGO_PERSIST_STATIC, and math
type set to CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION via
cudnnSetRNNMatrixMathType(), then the resulting performance is suboptimal.

Fixed Issues

The following issues have been fixed in this release:

‣ The cudnnConvolutionBackwardData() function produced incorrect result under
these conditions:

‣ The algo input is set to CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 in
cudnnConvolutionBwdDataAlgo_t, and

‣ CUDNN_TENSOR_OP_MATH is selected.

Under above conditions, the dgrad computation was giving incorrect results
when the data is not packed and the data format is NCHW. This is fixed.

‣ When the cudnnConvolutionFwdAlgo_t() was set to
CONVOLUTION_FWD_ALGO_FFT_TILING then the function
cudnnConvolutionForward() was leading to illegal memory access. This is now
fixed.

‣ cudnnPoolingBackward() was failing when using a large kernel size used for
'global_pooling' with NHWC I/O layout. This is fixed.

‣ The below two items are fixed: If you set RNN mathtype to
CUDNN_TENSOR_OP_MATH, and run RNN on sm6x or earlier hardware:

‣ a. You may have received CUDNN_STATUS_NOT_SUPPORTED
when algo selected is CUDNN_RNN_ALGO_STANDARD or
CUDNN_RNN_ALGO_PERSIST_STATIC.

‣ b. You may have received incorrect results when algo selected is
CUDNN_RNN_ALGO_PERSIST_DYNAMIC.

‣ If you passed in variable sequence length input tensor to
cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData(), and used CUDNN_RNN_ALGO_PERSIST_STATIC or
CUDNN_RNN_ALGO_PERSIST_DYNAMIC, then you may have received incorrect

cuDNN Release Notes v7.2.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 32

results. Now this is being checked, and CUDNN_STATUS_NOT_SUPPORTED will
be returned.

www.nvidia.com
cuDNN RN-08667-001_v07 | 33

Chapter 13.
CUDNN RELEASE NOTES V7.1.4

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Improved performance for some cases of data-gradient convolutions and
maxpooling. This is expected to improve performance of ResNet-50 like networks.

‣ The runtime of the RNN Find algorithm suite is improved in v7.1.4 resulting in
slightly improved runtime of cudnnFindRNN***AlgorithmEx.

Known Issues

Following are known issues in this release:

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on Volta when
inputs are FP16 and it is possible to do so.

‣ The cudnnConvolutionBackwardFilter() function may output incorrect results
for CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution
mode is CUDNN_CONVOLUTION. This function should not be used in this mode.

Fixed Issues

The following issues have been fixed in this release:

‣ cudnnAddTensorNd might cause a segmentation fault if called with bad arguments
(e.g. null pointer), this issue is in 7.1.3 only and fixed in 7.1.4.

‣ cudnnRNNBackwardData LSTM cell with fp16 (half) inputs might generate wrong
values (silently), this issue exists in cudnn 7.1.3 binaries compiled with cuda toolkit
9.0 and toolkit cuda 9.2, and does not exist in cudnn 7.1.3 binaries compiled with
toolkit 9.1.

‣ cudnnGetRNNLinLayerMatrixParams wrongly returns
CUDNN_STATUS_BAD_PARAM when cudnnSetRNNDescriptor is called with
dataType == CUDNN_DATA_FLOAT. This is an issue in 7.1.3 only and will be fixed

cuDNN Release Notes v7.1.4

www.nvidia.com
cuDNN RN-08667-001_v07 | 34

in 7.1.4. The dataType argument as of today supports only CUDNN_DATA_FLOAT and
we plan to support additional compute types in the future.

‣ There is a small memory leak issue when calling cudnnRNNBackwardData with
CUDNN_RNN_ALGO_STANDARD. This issue also affects previous cuDNN v7 releases.
This is fixed in 7.1.4.

‣ RNN with half precision returns CUDNN_EXECUTION_FAILED on Kepler gpu in 7.1.3.
This is fixed in 7.1.4 to use pseudo-fp16 computation

‣ The RNN Find algorithm suite mistakenly did not test
CUDNN_RNN_ALGO_PERSIST_STATIC and CUDNN_RNN_ALGO_PERSIST_DYNAMIC
kernels with tensor operations enabled when it was possible to do so. This is fixed in
v7.1.4.

www.nvidia.com
cuDNN RN-08667-001_v07 | 35

Chapter 14.
CUDNN RELEASE NOTES V7.1.3

Known Issues

Following are known issues in this release:

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on Volta when
inputs are FP16 and it is possible to do so.

‣ The cudnnConvolutionBackwardFilter() function may output incorrect results
for CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution
mode is CUDNN_CONVOLUTION and the product "n*k" (n - batch size, k -
number of output feature maps) is large, i.e., several thousand or more. It appears
that the CUDNN_CROSS_CORRELATION mode is not affected by this bug.

‣ There is a small memory leak issue when calling cudnnRNNBackwardData with
CUDNN_RNN_ALGO_STANDARD. This issue also affects previous cuDNN v7 releases.

‣ RNN with half precision will not work on Kepler GPUs and will return
CUDNN_EXECUTION_FAILED. This will be fixed in future releases to return
CUDNN_STATUS_UNSUPPORTED.

Fixed Issues

The following issues have been fixed in this release:

‣ cudnnRNNbackwardData for LSTM with recurrent projection in half precision may
fail in rare cases with misaligned memory access on Pascal and Maxwell.

‣ cudnnRNNbackwardData for bidirectional LSTM with recurrent projection may
produce inaccurate results, or CUDNN_STATUS_UNSUPPORTED.

‣ Algo 1 for forward convolution and dgrad may produce erroneous results when the
filter size is greater than the input size. This issue is fixed in 7.1.3.

‣ For very large RNN networks, the function cudnnGetRNNWorkspaceSize and
cudnnGetRNNTrainingReserveSize may internally overflow and give incorrect
results.

cuDNN Release Notes v7.1.3

www.nvidia.com
cuDNN RN-08667-001_v07 | 36

‣ The small performance regression on multi-layer RNNs using the STANDARD
algorithm and Tensor Core math in 7.1.2, as compared to 7.0.5, is fixed in this
release.

‣ Fixed an issue with Persistent LSTM backward pass with a hidden state size in the
range 257 to 512 on GPUs with number of SMs between 22 and 31 might hang. This
issue also exists in 7.1.1. This is fixed in 7.1.3.

‣ Fixed an issue Persistent GRU backward pass with a hidden state size in the range
513->720 on GPUs with exactly 30 SMs would hang. This issue also exists in 7.1.1.
This is fixed in 7.1.3.

www.nvidia.com
cuDNN RN-08667-001_v07 | 37

Chapter 15.
CUDNN RELEASE NOTES V7.1.2

Key Features and Enhancements

The following enhancements have been added to this release:

‣ RNN search API extended to support all RNN algorithms.
‣ Newly added projection Layer supported for inference bidirectional RNN cells and

for backward data and gradient.
‣ Support IDENTITY Activation for all

cudnnConvolutionBiasActivationForward data types for
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.

‣ Added documentation to clarify RNN/LSTM weight formats.

Known Issues

Following are known issues in this release:

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on Volta when
inputs are FP16 and it is possible to do so.

‣ There may be a small performance regression on multi-layer RNNs using the
STANDARD algorithm with Tensor Core math in this release compared to v7.0.5.

‣ LSTM projection dgrad half precision may fail in rare cases with misaligned
memory access on Pascal and Maxwell.

‣ Dgrad for bidirectional LSTM with projection should not be used, may produce
inaccurate results, or CUDNN_STATUS_UNSUPPORTED.

‣ The cudnnConvolutionBackwardFilter() function may output incorrect results
for CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution
mode is CUDNN_CONVOLUTION and the product "n*k" (n - batch size, k - number
of output feature maps) is large, i.e., several thousand or more. It appears that the
CUDNN_CROSS_CORRELATION mode is not affected by this.

cuDNN Release Notes v7.1.2

www.nvidia.com
cuDNN RN-08667-001_v07 | 38

‣ Persistent LSTM backward pass with a hidden state size in the range 257 to 512 on
GPUs with number of SMs between 22 and 31 might hang. This issue also exists in
7.1.1 and will be fixed in 7.1.3.

‣ Persistent GRU backward pass with a hidden state size in the range 513 to 720 on
GPUs with exactly 30 SMs would hang. This issue also exists in 7.1.1 and will be
fixed in 7.1.3.

‣ Algo 1 for forward convolution and dgrad may produce erroneous results when the
filter size is greater than the input size.

Fixed Issues

The following issues have been fixed in this release:

‣ The uint8 input for convolution is restricted to Volta and later. We added support for
older architectures, for algo: CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.

‣ In some cases when algorithm CUDNN_CONVOLUTION_BWD_FILTER_ALGO1
was selected, the routine cudnnConvolutionBackwardFilter could fail
at runtime and return CUDNN_STATUS_EXECUTION_FAILED. It now returns
CUDNN_STATUS_NOT_SUPPORTED.

‣ cudnnSetRNNDescriptor no longer needs valid Dropout Descriptor in inference
mode, user can pass NULL for Dropout Descriptor in inference mode.

www.nvidia.com
cuDNN RN-08667-001_v07 | 39

Chapter 16.
CUDNN RELEASE NOTES V7.1.1

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Added new API cudnnSetRNNProjectionLayers and
cudnnGetRNNProjectionLayers to support Projection Layer for the RNN LSTM
cell. In this release only the inference use case will be supported. The bi-directional
and the training forward and backward for training is not supported in 7.1.1 but
will be supported in the upcoming 7.1.2 release without API changes. For all
the unsupported cases in this release, CUDNN_NOT_SUPPORTED is returned when
projection layer is set and the RNN is called.

‣ The cudnnGetRNNLinLayerMatrixParams() function was enhanced and a bug
was fixed without modifying its prototype. Specifically:

‣ The cudnnGetRNNLinLayerMatrixParams() function was updated to support
the RNN projection feature. An extra linLayerID value of 8 can be used to
retrieve the address and the size of the “recurrent” projection weight matrix
when "mode" in cudnnSetRNNDescriptor() is configured to CUDNN_LSTM and
the recurrent projection is enabled via cudnnSetRNNProjectionLayers().

‣ Instead of reporting the total number of elements in each
weight matrix in the “linLayerMatDesc” filter descriptor, the
cudnnGetRNNLinLayerMatrixParams() function returns the matrix size as
two dimensions: rows and columns. This allows the user to easily print and
initialize RNN weight matrices. Elements in each weight matrix are arranged
in the row-major order. Due to historical reasons, the minimum number of
dimensions in the filter descriptor is three. In previous versions of the cuDNN
library, cudnnGetRNNLinLayerMatrixParams() returned the total number
of weights as follows: filterDimA[0]=total_size, filterDimA[1]=1,
filterDimA[2]=1. In v7.1.1, the format was changed to: filterDimA[0]=1,
filterDimA[1]=rows, filterDimA[2]=columns. In both cases, the

cuDNN Release Notes v7.1.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 40

"format" field of the filter descriptor should be ignored when retrieved by
cudnnGetFilterNdDescriptor().

‣ A bug in cudnnGetRNNLinLayerMatrixParams() was fixed to return
a zeroed filter descriptor when the corresponding weight matrix does
not exist. This occurs, for example, for linLayerID values of 0-3 when
the first RNN layer is configured to exclude matrix multiplications
applied to RNN input data (inputMode=CUDNN_SKIP_INPUT in
cudnnSetRNNDescriptor() specifies implicit, fixed identity weight
matrices for RNN input). Such cases in previous versions of the cuDNN
library caused cudnnGetRNNLinLayerMatrixParams() to return
corrupted filter descriptors with some entries from the previous call. A
workaround was to create a new filter descriptor for every invocation of
cudnnGetRNNLinLayerMatrixParams().

‣ The cudnnGetRNNLinLayerBiasParams() function was updated to
report the bias column vectors in "linLayerBiasDesc" in the same format as
cudnnGetRNNLinLayerMatrixParams(). In previous versions of the cuDNN
library, cudnnGetRNNLinLayerBiasParams() returned the total number
of adjustable bias parameters as follows: filterDimA[0]=total_size,
filterDimA[1]=1, filterDimA[2]=1. In v7.1.1, the format was changed to:
filterDimA[0]=1, filterDimA[1]=rows, filterDimA[2]=1 (number of
columns). In both cases, the "format" field of the filter descriptor should be ignored
when retrieved by cudnnGetFilterNdDescriptor(). The recurrent projection
GEMM does not have a bias so the range of valid inputs for the "linLayerID"
argument remains the same.

‣ Added support for use of Tensor Core for the CUDNN_RNN_ALGO_PERSIST_STATIC.
This required cuda cuDNN v7.1 build with CUDA 9.1 and 387 or higher driver. It
will not work with CUDA 9.0 and 384 driver.

‣ Added RNN search API that allows the application to provide an
RNN descriptor and get a list of possible algorithm choices with
performance and memory usage, to allow applications to choose
between different implementations. For more information, refer to the
documentation of: cudnnFindRNNForwardInferenceAlgorithmEx,
cudnnFindRNNForwardTrainingAlgorithmEx,
cudnnFindRNNBackwardDataAlgorithmEx, and
cudnnFindRNNBackwardWeightsAlgorithmEx. In this release, the search will
operate on STANDARD algorithm and will not support PERSISTENT algorithms of
RNN.

‣ Added uint8 for support for the input data for
cudnnConvolutionBiasActivationForward and cudnnConvolutionForward.
Currently the support is on Volta (sm 70) and later architectures. Support for older
architectures will be gradually added in the upcoming releases.

cuDNN Release Notes v7.1.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 41

‣ Suport for CUDNN_ACTIVATION_IDENTITY is added to
cudnnConvolutionBiasActivationForward. This allows users to perform
Convolution and Bias without Activation.

‣ All API functions now support logging. User can trigger logging by
setting environment variable “CUDNN_LOGINFO_DBG=1” and
“CUDNN_LOGDEST_DBG= <option>” where <option> (i.e., the output destination
of the log) can be chosen from “stdout”, “stderr”, or a file path. User may also use
the new Set/GetCallBack functions to install their customized callback function. Log
files can be added to the reported bugs or shared with us for analysis and future
optimizations through partners.nvidia.com.

‣ Improved performance of 3D convolution on Volta architecture.
‣ The following algo-related functions have been added for this

release: cudnnGetAlgorithmSpaceSize, cudnnSaveAlgorithm,
cudnnRestoreAlgorithm, cudnnCreateAlgorithmDescriptor,
cudnnSetAlgorithmDescriptor, cudnnGetAlgorithmDescriptor,
cudnnDestroyAlgorithmDescriptor, cudnnCreateAlgorithmPerformance,
cudnnSetAlgorithmPerformance, cudnnGetAlgorithmPerformance,
cudnnDestroyAlgorithmPerformance.

‣ All algorithms for convolutions now support groupCount > 1. This includes
cudnConvolutionForward(), cudnnConvolutionBackwardData(), and
cudnnConvolutionBackwardFilter().

Known Issues

Following are known issues in this release:

‣ RNN search Algorithm is restricted to STANDARD algorithm.
‣ Newly added projection Layer supported for inference and one directional RNN

cells.
‣ uint8 input for convolution is restricted to Volta and later.
‣ cudnnGet picks a slow algorithm that doesn't use Tensor Cores on Volta when

inputs are FP16 and it is possible to do so.
‣ There may be a small performance regression on multi-layer RNNs using the

STANDARD algorithm with Tensor Core math in this release compared to 7.0.5.

Fixed Issues

The following issues have been fixed in this release:

‣ 3D convolution performance improvements for Volta.
‣ Added support for Algorithm 0 data gradients to cover cases previously not

supported.
‣ Removed the requirement for dropout Descriptor in RNN inference. Before

application had to set a non point for the dropout Descriptor which was not used.

cuDNN Release Notes v7.1.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 42

‣ Use of CUDNN_TENSOR_NCHW_VECT_C with non-zero padding resulted in a
return status of CUDNN_STATUS_INTERNAL_ERROR. This issue is now fixed.

www.nvidia.com
cuDNN RN-08667-001_v07 | 43

Chapter 17.
CUDNN RELEASE NOTES V7.0.5

Key Features and Enhancements

The following enhancements have been added to this release:

‣ None.

Known Issues

Following are known issues in this release:

‣ cuDNN library may trigger a CPU floating point exception when FP exceptions are
enabled by user. This issue exists for all 7.0.x releases.

‣ There are heavy use cases of RNN layers that might hit a memory allocation issue
in the CUDA driver when using cuDNN v7 with CUDA 8.0 and R375 driver on pre-
Pascal architectures (Kepler and Maxwell). In these cases, subsequent CUDA kernels
may fail to launch with an Error Code 30. To resolve the issue, it is recommended
to use the latest R384 driver (from NVIDIA driver downloads) or to ensure that the
persistence daemon is started. This behavior is observed on all 7.0.x releases.

‣ When using TENSOR_OP_MATH mode with
cudnnConvolutionBiasActivationForward, the pointer to the bias must be
aligned to 16 bytes and the size of allocated memory must be multiples of 256
elements. This behavior exists for all 7.0.x releases.

Fixed Issues

The following issues have been fixed in this release:

‣ Corrected the algorithm fallback behavior in RNN when user set to use
CUDNN_TENSOR_OP_MATH when using compute card without Tensor Cores. Instead
of returning CUDNN_STATUS_NOT_SUPPORTED, the RNN algorithm will now
continue to run using CUDNN_DEFAULT_MATH. The correct behavior is to fall back

cuDNN Release Notes v7.0.5

www.nvidia.com
cuDNN RN-08667-001_v07 | 44

to using default math when Tensor Core is not supported. Fixed to the expected
behavior.

‣ On Volta hardware, BWD_FILTER_ALGO_1 and BWD_DATA_ALGO_1
convolutions using a number of filter elements greater than 512 were causing
CUDA_ERROR_ILLEGAL_ADDRESS and CUDNN_STATUS_INTERNAL_ERROR errors.
Logic was added to fall back to a generic kernel for these filter sizes.

‣ cuDNN v7 with CUDA 8.0 produced erroneous results on Volta for some common
cases of Algo 1. Logic was added to fall back to a generic kernel when cudnn v7 with
CUDA 8.0 is used on Volta.

www.nvidia.com
cuDNN RN-08667-001_v07 | 45

Chapter 18.
CUDNN RELEASE NOTES V7.0.4

Key Features and Enhancements

Performance improvements for grouped convolutions when input channels and output
channels per group are 1, 2, or 4 for the following algorithms:

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO0

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

Known Issues

Following are known issues in this release:

‣ The CUDA 8.0 build of cuDNN may produce incorrect computations when run on
Volta.

‣ cuDNN library triggers CPU floating point exception when FP exceptions are
enabled by user. This issue exists for all 7.0.x releases.

‣ There are heavy use cases of RNN layers that might hit a memory allocation issue
in the CUDA driver when using cuDNN v7 with CUDA 8.0 and R375 driver on pre-
Pascal architectures (Kepler and Maxwell). In these cases, subsequent CUDA kernels
may fail to launch with an Error Code 30. To resolve the issue, it is recommended
to use the latest R384 driver (from NVIDIA driver downloads) or to ensure that the
persistence daemon is started. This behavior is observed on all 7.0.x releases.

‣ When using TENSOR_OP_MATH mode with
cudnnConvolutionBiasActivationForward, the pointer to the bias must be
aligned to 16 bytes and the size of allocated memory must be multiples of 256
elements. This behavior exists for all 7.0.x releases.

cuDNN Release Notes v7.0.4

www.nvidia.com
cuDNN RN-08667-001_v07 | 46

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed out-of-band global memory accesses in the 256-point 1D FFT kernel. The
problem affected convolutions with 1x1 filters and tall but narrow images, e.g.,
1x500 (WxH). In those cases, the workspace size for the FFT_TILING algo was
computed incorrectly. There was no error in the FFT kernel.

‣ Eliminated a source of floating point exceptions in the
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm. The host
code to generate a negative infinity floating point value was substituted with
a different logic. By default, FP exceptions are disabled. However, a user
program enabled them by invoking feenableexcept(). There are at least
two other sources of FP exceptions in the cuDNN library, affecting for example
BATCHNORM_SPATIAL_PERSISTENT. Those sources of FP exceptions will be
eliminated in future releases of the cuDNN library.

www.nvidia.com
cuDNN RN-08667-001_v07 | 47

Chapter 19.
CUDNN RELEASE NOTES V7.0.3

Key Features and Enhancements

Performance improvements for various cases:

‣ Forward Grouped Convolutions where input channel per groups is 1, 2 or 4 and
hardware is Volta or Pascal.

‣ cudnnTransformTensor() where input and output tensor is packed.

This is an improved fallback, improvements will not be seen in all cases.

Known Issues

The following are known issues in this release:

‣ CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING may cause
CUDA_ERROR_ILLEGAL_ADDRESS. This issue affects input images of just one 1 pixel
in width and certain n, c, k, h combinations.

Fixed Issues

The following issues have been fixed in this release:

‣ AddTensor and TensorOp produce incorrect results for half and INT8 inputs for
various use cases.

‣ cudnnPoolingBackward() can produce incorrect values for rare cases of non-
deterministic MAX pooling with window_width > 256. These rare cases are when
the maximum element in a window is duplicated horizontally (along width) by a
stride of 256*k for some k. The behavior is now fixed to accumulate derivatives for
the duplicate that is left-most.

‣ cudnnGetConvolutionForwardWorkspaceSize() produces incorrect workspace
size for algorithm FFT_TILING for 1d convolutions. This only occurs for large sized

cuDNN Release Notes v7.0.3

www.nvidia.com
cuDNN RN-08667-001_v07 | 48

convolutions where intermediate calculations produce values greater than 2^31 (2 to
the power of 31).

‣ CUDNN_STATUS_NOT_SUPPORTED returned by cudnnPooling*() functions for
small x image (channels * height * width < 4).

www.nvidia.com
cuDNN RN-08667-001_v07 | 49

Chapter 20.
CUDNN RELEASE NOTES V7.0.2

Key Features and Enhancements

This is a patch release of cuDNN 7.0 and includes bug fixes and performance
improvements mainly on Volta.
Algo 1 Convolutions Performance Improvements

Performance improvements were made to
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, and
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1. These improvements consist of new SASS
kernels and improved heuristics. The new kernels implement convolutions over
various data sizes and tile sizes. The improved heuristics take advantage of these new
kernels.

Known Issues

The following are known issues in this release:

‣ cudnnGetConvolutionForwardWorkspaceSize() returns overflowed size_t
value for certain input shape for CUDNN_CONVOLUTION_*_ALGO_FFT_TILING.

‣ cudnnPoolingBackward() fails for pooling window size > 256.

Fixed Issues

The following issues have been fixed in this release:

‣ Batch Norm CUDNN_BATCHNORM_SPATIAL_PERSISTENT might get into race
conditions in certain scenarios.

‣ cuDNN convolution layers using TENSOR_OP_MATH with fp16 inputs and outputs
and fp32 compute will use “round to nearest” mode instead of “round to zero”
mode as in 7.0.1. This rounding mode has proven to achieve better results in
training.

cuDNN Release Notes v7.0.2

www.nvidia.com
cuDNN RN-08667-001_v07 | 50

‣ Fixed synchronization logic in the CUDNN_CTC_LOSS_ALGO_DETERMINISTIC algo
for CTC. The original code would hang in rare cases.

‣ Convolution algorithms using TENSOR_OP_MATH returned a workspace size from
*GetWorkspaceSize() smaller than actually necessary.

‣ The results of int8 are inaccurate in certain cases when calling
cudnnConvolutionForward() in convolution layer.

‣ cudnnConvolutionForward() called with xDesc’s channel = yDesc’s
channel = groupCount could compute incorrect values when vertical padding >
0.

www.nvidia.com
cuDNN RN-08667-001_v07 | 51

Chapter 21.
CUDNN RELEASE NOTES V7.0.1

cuDNN v7.0.1 is the first release to support the Volta GPU architecture. In addition,
cuDNN v7.0.1 brings new layers, grouped convolutions, and improved convolution find
as error query mechanism.

Key Features and Enhancements

This cuDNN release includes the following key features and enhancements.

Tensor Cores
Version 7.0.1 of cuDNN is the first to support the Tensor Core operations in its
implementation. Tensor Cores provide highly optimized matrix multiplication
building blocks that do not have an equivalent numerical behavior in the traditional
instructions, therefore, its numerical behavior is slightly different.

cudnnSetConvolutionMathType, cudnnSetRNNMatrixMathType, and
cudnnMathType_t

The cudnnSetConvolutionMathType and cudnnSetRNNMatrixMathType
functions enable you to choose whether or not to use Tensor Core operations in
the convolution and RNN layers respectively by setting the math mode to either
CUDNN_TENSOR_OP_MATH or CUDNN_DEFAULT_MATH.

Tensor Core operations perform parallel floating point accumulation of multiple
floating point products.

Setting the math mode to CUDNN_TENSOR_OP_MATH indicates that the library will use
Tensor Core operations.

The default is CUDNN_DEFAULT_MATH. This default indicates that the Tensor Core
operations will be avoided by the library. The default mode is a serialized operation

cuDNN Release Notes v7.0.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 52

whereas, the Tensor Core is a parallelized operation, therefore, the two might result
in slightly different numerical results due to the different sequencing of operations.

The library falls back to the default math mode when Tensor Core operations are
not supported or not permitted.

cudnnSetConvolutionGroupCount
A new interface that allows applications to perform convolution groups in the
convolution layers in a single API call.

cudnnCTCLoss
cudnnCTCLoss provides a GPU implementation of the Connectionist Temporal
Classification (CTC) loss function for RNNs. The CTC loss function is used for
phoneme recognition in speech and handwriting recognition.

CUDNN_BATCHNORM_SPATIAL_PERSISTENT
The CUDNN_BATCHNORM_SPATIAL_PERSISTENT function is a new batch
normalization mode for cudnnBatchNormalizationForwardTraining
and cudnnBatchNormalizationBackward. This mode is similar to
CUDNN_BATCHNORM_SPATIAL, however, it can be faster for some tasks.

cudnnQueryRuntimeError
The cudnnQueryRuntimeError function reports error codes written by GPU
kernels when executing cudnnBatchNormalizationForwardTraining
and cudnnBatchNormalizationBackward with the
CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode.

cudnnGetConvolutionForwardAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionForwardAlgorithm.

cudnnGetConvolutionBackwardDataAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionBackwardAlgorithm.

cudnnGetConvolutionBackwardFilterAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionBackwardFilterAlgorithm.

CUDNN_REDUCE_TENSOR_MUL_NO_ZEROS
The MUL_NO_ZEROS function is a multiplication reduction that ignores zeros in the
data.

cuDNN Release Notes v7.0.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 53

CUDNN_OP_TENSOR_NOT
The OP_TENSOR_NOT function is a unary operation that takes the negative of
(alpha*A).

cudnnGetDropoutDescriptor
The cudnnGetDropoutDescriptor function allows applications to get dropout
values.

Using cuDNN v7.0.1

Ensure you are familiar with the following notes when using this release.

‣ Multi-threading behavior has been modified. Multi-threading is allowed only when
using different cuDNN handles in different threads.

‣ In cudnnConvolutionBackwardFilter, dilated convolution did not support cases
where the product of all filter dimensions was odd for half precision floating point.
These are now supported by CUDNN_CONVOLUTION_BWD_FILTER_ALGO1.

‣ Fixed bug that produced a silent computation error for when a batch size was larger
than 65536 for CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.

‣ In getConvolutionForwardAlgorithm, an error was not correctly
reported in v5 when the output size was larger than expected. In v6 the
CUDNN_STATUS_NOT_SUPPORTED, error message displayed. In v7, this error is
modified to CUDNN_STATUS_BAD_PARAM.

‣ In cudnnConvolutionBackwardFilter, cuDNN now runs
some exceptional cases correctly where it previously erroneously
returned CUDNN_STATUS_NOT_SUPPORTED. This impacted the
algorithms CUDNN_CONVOLUTION_BWD_FILTER_ALGO0 and
CUDNN_CONVOLUTION_BWD_FILTER_ALGO3.

Deprecated Features

The following routines have been removed:

‣ cudnnSetConvolution2dDescriptor_v4

‣ cudnnSetConvolution2dDescriptor_v5

‣ cudnnGetConvolution2dDescriptor_v4

‣ cudnnGetConvolution2dDescriptor_v5

Only the non-suffixed versions of these routines remain.

The following routines have been created and have the same API prototype as their non-
suffixed equivalent from cuDNN v6:

cuDNN Release Notes v7.0.1

www.nvidia.com
cuDNN RN-08667-001_v07 | 54

‣ cudnnSetRNNDescriptor_v5 - The non-suffixed version of the routines in cuDNN
v7.0.1 are now mapped to their _v6 equivalent.

Attention It is strongly advised to use the non-suffixed version as the _v5 and
_v6 routines will be removed in the next cuDNN release.

‣ cudnnGetConvolutionForwardAlgorithm,
cudnnGetConvolutionBackwardDataAlgorithm, and
cudnnGetConvolutionBackwardFilterAlgorithm - A _v7 version of this
routine has been created. For more information, see the Backward compatibility and
deprecation policy chapter of the cuDNN documentation for details.

Known Issues

‣ cuDNN pooling backwards fails for pooling window size > 256.

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,

Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	cuDNN Overview
	cuDNN Release Notes v7.6.3
	cuDNN Release Notes v7.6.2
	cuDNN Release Notes v7.6.1
	cuDNN Release Notes v7.6.0
	cuDNN Release Notes v7.5.1
	cuDNN Release Notes v7.5.0
	cuDNN Release Notes v7.4.2
	cuDNN Release Notes v7.4.1
	cuDNN Release Notes v7.3.1
	cuDNN Release Notes v7.3.0
	cuDNN Release Notes v7.2.1
	cuDNN Release Notes v7.1.4
	cuDNN Release Notes v7.1.3
	cuDNN Release Notes v7.1.2
	cuDNN Release Notes v7.1.1
	cuDNN Release Notes v7.0.5
	cuDNN Release Notes v7.0.4
	cuDNN Release Notes v7.0.3
	cuDNN Release Notes v7.0.2
	cuDNN Release Notes v7.0.1

