
INFERENCE SERVER BETA RELEASE

DU-08994-001 _v0.5 | October 2018

User Guide

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | ii

TABLE OF CONTENTS

Chapter 1. Overview Of The Inference Server.. 1
1.1. Contents Of The Inference Server Container.. 1

Chapter 2. Pulling The Inference Server Container.. 2
Chapter 3. Running The Inference Server Container...3
Chapter 4. Verifying The Inference Server...5
Chapter 5. Health Endpoints...6
Chapter 6. Model Store... 7

6.1. Model Versions.. 8
6.2. Model Definition Files..8
6.3. Model Configuration Schema..9

6.3.1. TensorFlow GraphDef Models...10
6.3.2. TensorFlow SavedModel Models..11
6.3.3. TensorRT PLAN Models.. 11
6.3.4. Caffe2 NetDef Models... 12
6.3.5. ONNX Models..12

Chapter 7. Inference Server HTTP API...13
7.1. Health... 13
7.2. Server Status... 14
7.3. Infer... 14

Chapter 8. Inference Server gRPC API... 16
Chapter 9. Support... 17

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 1

Chapter 1.
OVERVIEW OF THE INFERENCE SERVER

The NVIDIA® TensorRT™ Inference Server provides a cloud inferencing solution
optimized for NVIDIA GPUs. The server provides an inference service via an HTTP
or gRPC endpoint, allowing remote clients to request inferencing for any model being
managed by the server. The Inference Server provides the following features:
Multiple model support

The server can manage any number and mix of models (limited by system disk
and memory resources). Supports TensorRT, TensorFlow GraphDef, TensorFlow
SavedModel and Caffe2 NetDef model formats. Also supports TensorFlow-TensorRT
integrated models.

Multi-GPU support
The server can distribute inferencing across all system GPUs.

Multi-tenancy support
Multiple models (or multiple instances of the same model) can run simultaneously on
the same GPU.

Batching support
Readiness and liveness health endpoints suitable for Kubernetes-style orchestration
Prometheus metric support

The Inference Server itself is provided as a pre-built container. External to the server,
API schemas, C++ and Python client libraries and examples, and related documentation
are provided in source at: GitHub Inference Server.

1.1. Contents Of The Inference Server Container
This image contains the inference server in /opt/inference_server. The executable is
/opt/inference_server/bin/inference_server.

https://github.com/NVIDIA/dl-inference-server

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 2

Chapter 2.
PULLING THE INFERENCE SERVER
CONTAINER

You can pull (download) an NVIDIA container that is already built, tested, tuned, and
ready to run. Each NVIDIA deep learning container includes the code required to build
the framework so that you can make changes to the internals. The containers do not
contain sample data-sets or sample model definitions unless they are included with the
source for the framework.

Currently, you can access NVIDIA GPU accelerated containers in one of two ways
depending upon where you doing your training. If you own a DGX-1™ or a DGX
Station™ , then you should use the NVIDIA® DGX™ container registry located at https://
compute.nvidia.com. You can pull the containers from there and you can also push
containers there into your own account on the nvidia-docker repository, nvcr.io.

If you are accessing the NVIDIA containers from a Cloud Server Provider such as
Amazon Web Services (AWS), then you should first create an account at the NGC
located at https://ngc.nvidia.com. After you create an account, the commands to use
containers are the same for the DGX-1 and the DGX Station. However, currently, you
cannot save any containers to the NVIDIA® GPU Cloud™ (NGC) container registry,
nvcr.io if you are using NVIDIA® GPU Cloud™ (NGC). Instead you have to save the
containers to your own Docker repository.

The containers are exactly the same, whether you pull them from the NVIDIA DGX
container registry or the NGC container registry.

Before you can pull a container you must have Docker and nvidia-docker installed as
explained in Preparing to use NVIDIA Containers Getting Started Guide. You must also
have access and logged into the NGC container registry as explained in NGC Getting
Started Guide.

For step-by-step instructions, see Container User Guide.

https://compute.nvidia.com
https://compute.nvidia.com
https://ngc.nvidia.com
http://docs.nvidia.com/deeplearning/dgx/preparing-containers/index.html
http://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html
http://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html
http://docs.nvidia.com/deeplearning/dgx/user-guide/index.html#keyconcepts

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 3

Chapter 3.
RUNNING THE INFERENCE SERVER
CONTAINER

Before running the Inference Server, you must first set up a model store containing the
models that the server will make available for inferencing. The Model Store, describes
how to create a model store. For this example, assume the model store is created on the
host system directory /path/to/model/store. The following command will launch
the inference server using that model store.

$ nvidia-docker run --rm --shm-size=1g --ulimit memlock=-1 --ulimit
stack=67108864 -p8000:8000 -p8001:8001 -p8002:8002 -v/path/to/model/store:/tmp/
models
inferenceserver:18.xx-py<x> /opt/inference_server/bin/inference_server
--model-store=/tmp/models

Where inferenceserver:18.xx-py<x> is the container that was pulled from the
NVIDIA DGX or NGC container registry as described in Pulling The Inference Server
Container.

The nvidia-docker -v option maps /path/to/model/store on the host into the
container at /tmp/models, and the --model-store option to the Inference Server is
used to point to /tmp/models as the model store.

The Inference Server:

‣ Listens for HTTP requests on port 8000
‣ Listens for gRPC requests on port 8001
‣ Provides Prometheus metrics on port 8002

and the above command uses the -p flag to map container ports 8000, 8001, 8002 to host
ports 8000, 8001, 8002. A different host port can be used by modifying the -p flag, for
example -p9000:8000 will cause the Inference Server HTTP endpoint to be available on
host port 9000.

Running The Inference Server Container

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 4

The --shm-size and --ulimit flags are recommended to improve Inference Server
performance. For --shm-size the minimum recommended size is 1g but larger sizes
may be necessary depending on the number and size of models being served.

After starting, the Inference Server will log initialization information to the console.
Initialization is complete and the server is ready to accept requests after the console
shows the following:

Starting server 'inference:0' listening on
 localhost:8000 for HTTP requests
 localhost:8001 for gRPC requests

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 5

Chapter 4.
VERIFYING THE INFERENCE SERVER

The simplest way to verify that the Inference Server is running correctly is to use the
Server Status API to query the server’s status. For more information about the Inference
Server API, see Inference Server HTTP API. From the host system use curl to the HTTP
endpoint to request server status. The response is protobuf text showing the status for
the server and for each model being served, for example:

$ curl localhost:8000/api/status
id: "inference:0"
version: "1.1.0"
uptime_ns: 23322988571
model_status {
 key: "resnet50_netdef"
 value {
 config {
 name: "resnet50_netdef"
 platform: "caffe2_netdef"
 }
 ...
 version_status {
 key: 1
 value {
 ready_state: MODEL_READY
 }
 }
 }
}
ready_state: SERVER_READY

This status shows configuration information as well as indicating that version 1 of the
resnet50_netdef model is MODEL_READY, indicating the Inference Server is ready to
accept inferencing requests for version 1 of that model. A model version ready_state
will show up as MODEL_UNAVAILABLE if the model failed to load for some reason or if it
was unloaded due to the model version policy discussed here.

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 6

Chapter 5.
HEALTH ENDPOINTS

The Inference Server provides readiness and liveness HTTP endpoints that are useful for
determining the general state of the service. These endpoints are useful for orchestration
frameworks like Kubernetes. For more information on the health endpoints, see
Inference Server HTTP API section.

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 7

Chapter 6.
MODEL STORE

The Inference Server accesses models from a locally accessible file path. This path is
specified when the server is started using the --model-store option. The model store
must be organized as follows:

<model-store path>/
 model_0/
 config.pbtxt
 output0_labels.txt
 1/
 model.plan
 2/
 model.plan
 model_1/
 config.pbtxt
 output0_labels.txt
 output1_labels.txt
 0/
 model.graphdef
 7/
 model.graphdef
 model_2/
 …
 model_n/

Any number of models may be specified, however, after the Inference Server is started,
models cannot be added to or removed from the model store. To add or remove a model:

 1. Stop the Inference Server.
 2. Update the model store.
 3. Start the Inference Server.

The name of the model directory (for example, model_0, model_1) must match the
name of the model specified in the required configuration file, config.pbtxt. This
model name is used in the client and server APIs to identify the model. Each model
directory must have at least one numeric subdirectory (for example, model_0/1).
Each of these subdirectories holds a version of the model with the version number
corresponding to the directory name. Version subdirectories can be added and removed
from the model store while the Inference Server is running.

Model Store

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 8

For more information about how the model versions are handled by the server, see
Model Versions. Within each version subdirectory, there is one or more model definition
files. For more information about the model definition files contained in each version
subdirectory, see Model Definition Files.

The configuration file, config.pbtxt, for each model must be protobuf text adhering
to the ModelConfig schema defined and explained below. The *_labels.txt files are
optional and are used to provide labels for outputs that represent classifications.

6.1. Model Versions
Each model can have one or more versions available in the model store. Each version is
stored in its own, numerically named, subdirectory where the name of the subdirectory
corresponds to the version number of the model. Version subdirectories can be
added and removed while the Inference Server is running to add and remove the
corresponding model versions. Each model specifies a version policy that controls which
of the versions in the model store are made available by the Inference Server at any
given time. The ModelVersionPolicy portion, as described in Model Configuration
Schema specifies one of the following policies.
All

All versions of the model that are specified in the model store are available for
inferencing.

Latest
Only the latest n versions of the model specified in the model store are available for
inferencing. The latest versions of the model are the numerically greatest version
numbers.

Specific
The specifically listed versions of the model are available for inferencing.

If no version policy is specified, then Latest (with num_version = 1) is used as the
default, indicating that only the most recent version of the model is made available
by the Inference Server. In all cases, the addition or removal of version subdirectories
from the model store can change which model version is used on subsequent inference
requests.

6.2. Model Definition Files
Each model version subdirectory must contain at least one model definition file. By
default, the name of this file must be:

‣ model.plan for TensorRT models
‣ model.graphdef for TensorFlow GraphDef models
‣ model.savedmodel for TensorFlow SavedModel models
‣ model.netdef / init_model.netdef for Caffe2 Netdef models

The default can be overridden using the default_model_filename property in Model
Configuration Schema.

Model Store

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 9

Optionally, a model can provide multiple model definition files, each targeted at a
GPU with a different Compute Capability. Most commonly, this feature is needed for
TensorRT and TensorFlow to TensorRT integrated models where the model definition
is valid for only a single compute capability. See the trt_mnist configuration in Model
Configuration Schema for an example.

An example model store is available at Deep Learning Inference Server Clients.

6.3. Model Configuration Schema
Each model in the model store must include a file called config.pbtxt that contains
the configuration information for the model. The model configuration must be specified
as protobuf text using the ModelConfig schema described at GitHub: Inference Server
model_config.proto.

The following example configuration file is for a TensorRT MNIST model that accepts
a single “data” input tensor of shape [1,28,28] and produces a single “prob” output
vector. The output vector is a classification and the labels associated with each class are
in mnist_labels.txt. The Inference Server will run two instances of this model on
GPU 0 so that two trt_mnist inference requests can be handled simultaneously. Batch
sizes up to 8 will be accepted by the server. Two model definition files are provided for
each version of this model, one for compute capability 6.1 called model6_1.plan and
another for compute capability 7.0 called model7_0.plan.

name: "trt_mnist"
platform: "tensorrt_plan"
max_batch_size: 8
input [
 {
 name: "data"
 data_type: TYPE_FP32
 format: FORMAT_NCHW
 dims: [1, 28, 28]
 }
]
output [
 {
 name: "prob"
 data_type: TYPE_FP32
 dims: [10, 1, 1]
 label_filename: "mnist_labels.txt"
 }
]
cc_model_filenames [
 {
 key: "6.1"
 value: "model6_1.plan"
 },
 {
 key: "7.0"
 value: "model7_0.plan"
 }
]
instance_group [
 {
 count: 2
 gpus: [0]

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://github.com/NVIDIA/dl-inference-server
Each model in the model store must include a file called config.pbtxt that contains the configuration information for the model. The model configuration must be specified as protobuf text using the ModelConfig schema described here https://github.com/NVIDIA/dl-inference-server/blob/master/src/core/model_config.proto
Each model in the model store must include a file called config.pbtxt that contains the configuration information for the model. The model configuration must be specified as protobuf text using the ModelConfig schema described here https://github.com/NVIDIA/dl-inference-server/blob/master/src/core/model_config.proto

Model Store

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 10

 }]

The next example configuration file is for a TensorFlow ResNet-50 GraphDef model
that accepts a single input tensor named “input” in HWC format with shape [224,224,3]
and produces a single output vector named “output”. The Inference Server will run two
instances of this model, one on GPU 0 and one on GPU 1. Batch sizes up to 128 will be
accepted by the server.

name: "resnet50"
platform: "tensorflow_graphdef"
max_batch_size: 128
input [
 {
 name: "input"
 data_type: TYPE_FP32
 format: FORMAT_NHWC
 dims: [224, 224, 3]
 }
]
output [
 {
 name: "output"
 data_type: TYPE_FP32
 dims: [1000]
 }
]
instance_group [
 {
 gpus: [0]
 },
 {
 gpus: [1]
 }
]

6.3.1. TensorFlow GraphDef Models
The configuration platform value for TensorFlow GraphDef models must
be tensorflow_graphdef and the model definition file must be named
model.graphdef (unless the default_model_filename property is set in the model
configuration).

TensorFlow 1.7 and later integrates TensorRT to enable TensorFlow models to benefit
from the inference optimizations provided by TensorRT. Because the Inference Server
supports GraphDef models that have been optimized with TensorRT, it can serve those
models just like any other TensorFlow model. The Inference Server's TensorRT version
(available in the Inference Server Container Release Notes must match the TensorRT
version that was used when the GraphDef model was created.

The following example configuration file is for a TensorFlow ResNet-50 GraphDef
model that accepts a single input tensor named input in HWC format with shape
[224,224,3] and produces a single output vector named output. The Inference Server
will run two instances of this model, one on GPU 0 and one on GPU 1. Batch sizes up to
128 will be accepted by the server.

name: "resnet50"
platform: "tensorflow_graphdef"
max_batch_size: 128

https://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html

Model Store

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 11

input [
 {
 name: "input"
 data_type: TYPE_FP32
 format: FORMAT_NHWC
 dims: [224, 224, 3]
 }
]
output [
 {
 name: "output"
 data_type: TYPE_FP32
 dims: [1000]
 }
]
instance_group [
 {
 count: 1
 gpus: [0, 1]
 }
]

6.3.2. TensorFlow SavedModel Models
The configuration platform value for TensorFlow SavedModel models must
be tensorflow_savedmodel and the saved-model directory must be named
model.savedmodel (unless the default_model_filename property is set in the
model configuration).

TensorFlow 1.7 and later integrates TensorRT to enable TensorFlow models to benefit
from the inference optimizations provided by TensorRT. Because the Inference
Server supports SavedModel models that have been optimized with TensorRT, it
can serve those models just like any other TensorFlow model. The Inference Server’s
TensorRT version (available in the Inference Server Container Release Notes (https://
docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html) must match the
TensorRT version that was used when the SavedModel model was created.

6.3.3. TensorRT PLAN Models
The configuration platform value for TensorRT PLAN models must be
tensorrt_plan and the model definition file must be named model.plan (unless the
default_model_filename property is set in the model configuration).

The following example configuration file is for a TensorRT MNIST model that accepts
a single data input tensor of shape [1,28,28] and produces a single prob output
vector. The output vector is a classification and the labels associated with each class are
in mnist_labels.txt. The Inference Server will run two instances of this model on
GPU 0 so that two trt_mnist inference requests can be handled simultaneously. Batch
sizes up to 8 will be accepted by the server. Two model definition files are provided for
each version of this model, one for compute capability 6.1 called model6_1.plan and
another for compute capability 7.0 called model7_0.plan.

name: "trt_mnist"
platform: "tensorrt_plan"
max_batch_size: 8
input [

https://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html

Model Store

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 12

 {
 name: "data"
 data_type: TYPE_FP32
 format: FORMAT_NCHW
 dims: [1, 28, 28]
 }
]
output [
 {
 name: "prob"
 data_type: TYPE_FP32
 dims: [10, 1, 1]
 label_filename: "mnist_labels.txt"
 }
]
cc_model_filenames [
 {
 key: "6.1"
 value: "model6_1.plan"
 },
 {
 key: "7.0"
 value: "model7_0.plan"
 }
]
instance_group [
 {
 count: 2
 gpus: [0]
 }]

The model store for this model would look like:

model_store/
 trt_mnist/
 config.pbtxt
 mnist_labels.txt
 1/
 model6_1.plan
 model7_0.plan

6.3.4. Caffe2 NetDef Models
The configuration platform value for Caffe2 NetDef models must be caffe2_netdef.
NetDef model definition is split across two files: the initialization network and the
predict network. These files must be named init_model.netdef and model.netdef
(unless the default_model_filename property is set in the model configuration).

6.3.5. ONNX Models
The Inference Server cannot directly perform inferencing using ONNX models. An
ONNX model must be converted to either TensorRT PLAN or Caffe2 NetDef to be
served by the Inference Server. To convert your ONNX model to a TensorRT PLAN use
either the ONNX Parser included in TensorRT or the open-source TensorRT backend for
ONNX. Another option is to convert your ONNX model to Caffe2 NetDef as described
here.

http://onnx.ai/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#onnx_workflow
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt
https://github.com/pytorch/pytorch/tree/master/caffe2/python/onnx
https://github.com/pytorch/pytorch/tree/master/caffe2/python/onnx

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 13

Chapter 7.
INFERENCE SERVER HTTP API

The Inference Server can be accessed directly using two exposed HTTP endpoints:
/api/health

The server health API for determining server liveness and readiness.
/api/status

The server status API for getting information about the server and about the models
being served.

/api/infer
The inference API that accepts model inputs, runs inference and returns the
requested outputs.

The HTTP endpoints can be used directly as described in this section, but for most use-
cases, the preferred way to access the Inference Server is via the C++ and Python client
API libraries. The libraries are available at GitHub: Inference Server.

7.1. Health
Performing an HTTP GET to /api/health/ready returns a 200 status if the server is
ready to receive inference requests. Any other status code indicates that the server is still
initializing.

Once the readiness endpoint indicates that the server is ready, performing an HTTP GET
to /api/health/live returns a 200 status if the server is able to respond to inference
requests for some or all models (based on the --strict-liveness option explained
below). Any other status code indicates that the server is unable to respond to some or
all inference requests. Typically, when the liveness endpoint returns a non-200 status you
should not send any more inference requests to the server.

By default, the liveness endpoint will return 200 status only if the server is responsive
and all models loaded successfully. Thus, by default, a 200 status indicates that an
inference request for any model can be handled by the server. For some use cases, you
want the liveness endpoint to return 200 status even if all models are not available. In
this case, use the --strict-liveness=false option to cause the liveness endpoint to
report 200 status as long as the server is responsive (even if one or more models are not
available).

https://github.com/NVIDIA/dl-inference-server

Inference Server HTTP API

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 14

7.2. Server Status
Performing an HTTP GET to /api/status returns status information about the server
and all the models being served. Performing an HTTP GET to /api/status/<model
name> returns information about the server and the single model specified by <model
name>. An example is shown in Verifying The Inference Server.

The server status is returned in the HTTP response body in either text format (the
default) or in binary format if query parameter format=binary is specified (for
example, /api/status?format=binary). The status schema is defined by the
protobuf schema given in server_status.proto defined at GitHub: Inference Server
server_status.proto.

The success or failure of the server status request is indicated in the HTTP response
code and the NV-Status response header. The NV-Status response header returns a
text protobuf formatted status following the status.proto schema defined at GitHub:
Inference Server status.proto. If the request is successful the HTTP status is 200 and the
NV-Status response header will indicate no failure:

NV-Status: code: SUCCESS

If the server status request fails, the response body will be empty, a non-200 HTTP status
will be returned and the NV-Status header will indicate the failure reason, for example:

NV-Status: code: NOT_FOUND msg: "no status available for unknown model \'x\'"

7.3. Infer
Performing an HTTP POST to /api/infer/<model name> performs inference using
the latest available version of <model name> model. The latest available version is the
numerically greatest version number. Performing an HTTP POST to /api/infer/
<model name>/<model version> performs inference using a specific version of the
model.

In either case, the request uses the NV-InferRequest header to communicate an
InferRequestHeader protobuf message that describes the input tensors and the
requested output tensors as defined at GitHub: Inference Server api.proto. For example,
for the ResNet-50 example shown in Model Configuration Schema the following NV-
InferRequest header indicates that a batch-size 1 request is being made with input
size of 602112 bytes (3 * 224 * 224 * sizeof(FP32)), and that the result of the
“output” tensor should be returned as the top-3 classification values.

NV-InferRequest: batch_size: 1 input { name: "input" byte_size: 602112 } output
 { name: "output" byte_size: 4000 cls { count: 3 } }

The input tensor values are communicated in the body of the HTTP POST request as raw
binary in the order as the inputs are listed in the request header.

https://github.com/NVIDIA/dl-inference-server/blob/master/src/core/server_status.proto
https://github.com/NVIDIA/dl-inference-server/blob/master/src/core/server_status.proto
https://github.com/NVIDIA/dl-inference-server/blob/master/src/core/status.proto
https://github.com/NVIDIA/dl-inference-server/blob/master/src/core/status.proto
https://github.com/NVIDIA/dl-inference-server/blob/master/src/core/api.proto

Inference Server HTTP API

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 15

The inference results are returned in the body of the HTTP response to the POST
request. For outputs where full result tensors were requested, the result values are
communicated in the body of the response in the order as the outputs are listed in the
request header. After those, an InferResponseHeader message is appended to the
response body. The InferResponseHeader message is returned in either text format
(the default) or in binary format if query parameter format=binary is specified (for
example, /api/infer/foo?format=binary).

For example, assuming outputs specified in the InferRequestHeader in order are
output0, output1, …, outputn, the response body would contain:

<raw binary tensor values for output0, if raw output was requested for output0>
<raw binary tensor values for output1, if raw output was requested for output1>
...
<raw binary tensor values for outputn, if raw output was requested for outputn>
<text or binary encoded InferResponseHeader proto>

The success or failure of the inference request is indicated in the HTTP response code
and the NV-Status response header. The NV-Status response header returns a text
protobuf formatted status following the status.proto schema. If the request is
successful the HTTP status is 200 and the NV-Status response header will indicate no
failure:

NV-Status: code: SUCCESS

If the inference request fails, a non-200 HTTP status will be returned and the NV-Status
header will indicate the failure reason, for example:

NV-Status: code: NOT_FOUND msg: "no status available for unknown model \'x\'"

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 16

Chapter 8.
INFERENCE SERVER GRPC API

The Inference Server can be accessed directly using gRPC endpoints defined at
grpc_service.proto.

‣ GRPCServer.Status: The server status API for getting information about the server
and about the models being served.

‣ GRPCServer.Infer: The inference API that accepts model inputs, runs inference
and returns the requested outputs.

The gRPC endpoints can be used via the gRPC generated client (demonstrated in the
image classification example at (grpc_image_client.py or via the C++ and Python client
API libraries. Build instructions for the gRPC client libraries are available at Deep
Learning Inference Server clients.

https://github.com/NVIDIA/dl-inference-server/blob/master/src/core/grpc_service.proto
https://github.com/NVIDIA/dl-inference-server/blob/master/src/clients/python/grpc_image_client.py
https://github.com/NVIDIA/dl-inference-server
https://github.com/NVIDIA/dl-inference-server

www.nvidia.com
Inference Server Beta Release DU-08994-001 _v0.5 | 17

Chapter 9.
SUPPORT

For questions and feature requests, use the Inference Server Devtalk forum.

https://devtalk.nvidia.com/default/board/262/container-attis-inference-server/

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,

Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Overview Of The Inference Server
	1.1. Contents Of The Inference Server Container

	Pulling The Inference Server Container
	Running The Inference Server Container
	Verifying The Inference Server
	Health Endpoints
	Model Store
	6.1. Model Versions
	6.2. Model Definition Files
	6.3. Model Configuration Schema
	6.3.1. TensorFlow GraphDef Models
	6.3.2. TensorFlow SavedModel Models
	6.3.3. TensorRT PLAN Models
	6.3.4. Caffe2 NetDef Models
	6.3.5. ONNX Models

	Inference Server HTTP API
	7.1. Health
	7.2. Server Status
	7.3. Infer

	Inference Server gRPC API
	Support

