
NVIDIA COLLECTIVE
COMMUNICATION LIBRARY (NCCL)

DU-08527-205_v01 | May 2018

Developer Guide

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | ii

TABLE OF CONTENTS

Chapter 1. Overview.. 1
Chapter 2. Collective Communication Primitives... 3

2.1. Creating a Communicator... 3
2.2. Operations... 4
2.3. Data Pointers.. 7
2.4. CUDA Stream Semantics... 7
2.5. Group Calls.. 8
2.6. Thread Safety... 8
2.7. In-place Operations...8

Chapter 3. Examples... 10
3.1. Communicator Creation and Destruction Examples... 10

3.1.1. Example 1: Single Process, Single Thread, Multiple Devices................................10
3.1.2. Example 2: One Device per Process or Thread... 12
3.1.3. Example 3: Multiple Devices per Thread...15

3.2. Communication Examples.. 18
3.2.1. Example 1: One Device per Process or Thread... 18
3.2.2. Example 2: Multiple Devices per Thread...18

Chapter 4. NCCL and MPI... 20
4.1. API... 20
4.2. Using NCCL within an MPI Program.. 21

4.2.1. MPI Progress...21
4.2.2. Inter-GPU Communication with CUDA-aware MPI...22

Chapter 5. Troubleshooting...23
5.1. Known Issues... 23
5.2. NCCL Knobs...24
5.3. Support..27

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 1

Chapter 1.
OVERVIEW

The NVIDIA® Collective Communications Library (NCCL™, pronounced “Nickel”) is a
library of multi-GPU collective communication primitives that are topology-aware and
can be easily integrated into applications.

Collective communication algorithms employ many processors working in concert to
aggregate data. NCCL is not a full-blown parallel programming framework; rather, it
is a library focused on accelerating collective communication primitives. The following
collective operations are currently supported:

‣ AllReduce
‣ Broadcast
‣ Reduce
‣ AllGather
‣ ReduceScatter

Tight synchronization between communicating processors is a key aspect of collective
communication. CUDA® based collectives would traditionally be realized through a
combination of CUDA memory copy operations and CUDA kernels for local reductions.
NCCL, on the other hand, implements each collective in a single kernel handling both
communication and computation operations. This allows for fast synchronization and
minimizes the resources needed to reach peak bandwidth.

NCCL conveniently removes the need for developers to optimize their applications
for specific machines. NCCL provides fast collectives over multiple GPUs both within
and across nodes. It supports a variety of interconnect technologies including PCIe,
NVLink™, InfiniBand Verbs, and IP sockets. NCCL also automatically patterns its
communication strategy to match the system’s underlying GPU interconnect topology.

Next to performance, ease of programming was the primary consideration in the design
of NCCL. NCCL uses a simple C API, which can be easily accessed from a variety of
programming languages. NCCL closely follows the popular collectives API defined by
MPI (Message Passing Interface). Anyone familiar with MPI will thus find NCCL’s API
very natural to use. In a minor departure from MPI, NCCL collectives take a “stream”
argument which provides direct integration with the CUDA programming model.
Finally, NCCL is compatible with virtually any multi-GPU parallelization model, for
example:

Overview

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 2

‣ single-threaded
‣ multi-threaded, for example, using one thread per GPU
‣ multi-process, for example, MPI combined with multi-threaded operation on GPUs

NCCL has found great application in Deep Learning Frameworks, where the
AllReduce collective is heavily used for neural network training. Efficient scaling of
neural network training is possible with the multi-GPU and multi node communication
provided by NCCL.

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 3

Chapter 2.
COLLECTIVE COMMUNICATION PRIMITIVES

Collective communication primitives are common patterns of data transfer among a group
of CUDA devices. A communication algorithm involves many processors that are
communicating together.

Each NCCL processor (GPU) is identified within the communication group by zero-
based index or rank . Each rank uses a communicator object to refer to the collection of
GPUs that are intended to work together for some task.

The creation of a communicator is the first step needed before launching any
communication operation.

2.1. Creating a Communicator
When creating a communicator, a unique rank between 0 and n-1 has to be assigned to
each of the n CUDA devices which are part of the communicator.

Given a static mapping of ranks to CUDA devices, the ncclCommInitRank and
ncclCommInitAll functions will create communicator objects, each communicator
object being associated to a fixed rank. Those objects will then be used to launch
communication operations.

Before calling ncclCommInitRank, you need to first create a unique object which
will be used by all processes and threads to synchronize and understand they are part
of the same communicator. This is done by calling the ncclGetUniqueId function.

The ncclGetUniqueId function returns an ID which has to be broadcast to
all participating threads and processes using any CPU communication system, for
example, passing the ID pointer to multiple threads, or broadcasting it to other
processes using MPI or another parallel environment using, for example, sockets.

You can also call the ncclCommInitAll function to create n communicator objects
at once within a single process. As it is limited to a single process, this function does
not permit inter-node communication. ncclCommInitAll is equivalent to calling a
combination of ncclGetUniqueId and ncclCommInitRank.

Collective Communication Primitives

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 4

The following sample code is a simplified implementation of ncclCommInitAll:

ncclResult_t ncclCommInitAll(ncclComm_t* comm, int ndev, const
 int* devlist) {
 ncclUniqueId Id;
 ncclGetUniqueId(&Id);
 ncclGroupStart();
 for (int i=0; i<ndev; i++) {
 cudaSetDevice(devlist[i]);
 ncclCommInitRank(comm+i, ndev, Id, i);
 }
 ncclGroupEnd();
}

2.2. Operations
Like MPI collective operations, NCCL collective operations have to be called for each
rank (hence CUDA device) to form a complete collective operation. Failure to do so will
result in other ranks waiting indefinitely.

2.2.1. AllReduce
The AllReduce operation is performing reductions on data, for example, sum and max,
across devices and writing the result in the receive buffers of every rank.

The AllReduce operation is rank-agnostic. Any reordering of the ranks will not affect
the outcome of the operations.

AllReduce starts with independent arrays Vk of N values on each of K ranks and ends
with identical arrays S of N values, where S[i] = V0 [i]+V1 [i]+…+Vk-1 [i], for
each rank k .

Collective Communication Primitives

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 5

Figure 1 AllReduce operation: each rank receives the reduction of input
values across ranks.

2.2.2. Broadcast
The Broadcast operation copies an N-element buffer on the root rank to all other ranks.

Figure 2 Broadcast operation: all ranks receive data from a root rank.

Important The root argument is one of the ranks, not a device number, and is
therefore impacted by a different rank to device mapping.

2.2.3. Reduce
The Reduce operation is performing the same operation as AllReduce, but writes the
result only in the receive buffers of a specified root rank.

Collective Communication Primitives

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 6

Figure 3 Reduce operation: one rank receives the reduction of input
values across ranks.

Important The root argument is one of the ranks, not a device number, and is
therefore impacted by a different rank to device mapping.

A Reduce, followed by a Broadcast, is equivalent to the AllReduce operation.

2.2.4. AllGather
In the AllGather operation, each of the K processors aggregates N values from every
processor into an output of dimension K*N. The output is ordered by rank index.

Figure 4 AllGather operation: each rank receives the aggregation of
data from all ranks in the order of the ranks.

The AllGather operation is impacted by a different rank or device mapping since the
ranks determine the data layout.

Executing ReduceScatter, followed by AllGather, is equivalent to the AllReduce
operation.

2.2.5. ReduceScatter

Collective Communication Primitives

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 7

The ReduceScatter operation performs the same operation as the Reduce operation,
except the result is scattered in equal blocks among ranks, each rank getting a chunk of
data based on its rank index.

Figure 5 ReduceScatter operation: input values are reduced across
ranks, with each rank receiving a sub-part of the result.

The ReduceScatter operation is impacted by a different rank or device mapping since
the ranks determine the data layout.

2.3. Data Pointers
In general NCCL will accept any CUDA pointers that are accessible from the CUDA
device associated to the communicator object. This includes:

‣ device memory local to the CUDA device
‣ host memory registered using CUDA SDK APIs cudaHostRegister or

cudaGetDevicePointer
‣ managed and unified memory

The only exception is device memory located on another device but accessible from
the current device using peer access. NCCL will return an error in that case to avoid
programming errors.

2.4. CUDA Stream Semantics
NCCL calls are associated to a stream and are passed as the last argument of the
collective communication function. The NCCL call returns when the operation has been

Collective Communication Primitives

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 8

effectively enqueued to the given stream, or returns an error. The collective operation is
then executed asynchronously on the CUDA device. The operation status can be queried
using standard CUDA semantics, for example, calling cudaStreamSynchronize or
using CUDA events.

2.5. Group Calls
When a single thread is managing multiple devices, group semantics must be used. This
is because every NCCL call may have to block, waiting for other threads or ranks to
arrive, before effectively posting the NCCL operation on the given stream.

Hence, a simple loop on multiple devices like shown below could block on the first call
waiting for the other ones:

 for (int i=0; i<nLocalDevs; i++) {
 ncclAllReduce(..., comm[i], stream[i];
 }

To define that these calls are part of the same collective operation, use the
ncclGroupStart and ncclGroupEnd functions. For example:

 ncclGroupStart();
 for (int i=0; i<nLocalDevs; i++) {
 ncclAllReduce(..., comm[i], stream[i];
 }
 ncclGroupEnd();

This will tell NCCL to treat all calls between ncclGroupStart and ncclGroupEnd as
a single call to many devices.

Caution When called inside a group, ncclAllReduce can return without
having enqueued the operation on the stream. Stream operations like
cudaStreamSynchronize can therefore be called only after ncclGroupEnd
returns.

Contrary to NCCL 1.x, there is no need to set the CUDA device before every
NCCL communication call within a group, but it is still needed when calling
ncclCommInitRank within a group.

2.6. Thread Safety
NCCL primitives are generally not thread-safe, however, they are reentrant. Multiple
threads should use separate communicator objects.

2.7. In-place Operations

Collective Communication Primitives

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 9

Contrary to MPI, NCCL does not define a special "in-place" value to replace pointers.
Instead, NCCL optimizes the case where the provided pointers are effectively "in place".

For ncclReduce and ncclAllreduce functions, this means that passing sendBuff
== recvBuff will perform in place operations, storing final results at the same place as
initial data was read from.

For ncclReduceScatter and ncclAllGather, in place operations are done when the
per-rank pointer is located at the rank offset of the global buffer. More precisely, these
calls are considered in place:

ncclReduceScatter(data, data+rank*recvcount, recvcount, datatype,
 op, comm, stream);
ncclAllGather(data+rank*sendcount, data, sendcount, datatype, op,
 comm, stream);

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 10

Chapter 3.
EXAMPLES

The examples in this section provide an overall view of how to use NCCL in various
environments, combining one or multiple techniques:

‣ using multiple GPUs per thread/process
‣ using multiple threads
‣ using multiple processes - the examples with multiple processes use MPI as

parallel runtime environment, but any multi-process system should be able to work
similarly.

Ensure that you always check the return codes from the NCCL functions. For clarity, the
following examples do not contain error checking.

3.1. Communicator Creation and Destruction
Examples
The following examples demonstrate common use cases for NCCL initialization.

3.1.1. Example 1: Single Process, Single Thread,
Multiple Devices
In the specific case of a single process, ncclCommInitAll can be used. Here is an
example creating a communicator for 4 devices, therefore, there are 4 communicator
objects:

ncclComm_t comms[4];
int devs[4] = { 0, 1, 2, 3 };
ncclCommInitAll(comms, 4, devs);

Next, you can call NCCL collective operations using a single thread, and group calls, or
multiple threads, each provided with a comm object.

At the end of the program, all of the communicator objects are destroyed:

Examples

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 11

for (int i=0; i<4; i++)
 ncclCommDestroy(comms[i]);

The following code depicts a complete working example with a single process that
manages multiple devices:

#include <stdio.h>
#include "cuda_runtime.h"
#include "nccl.h"

#define CUDACHECK(cmd) do { \
 cudaError_t e = cmd; \
 if(e != cudaSuccess) { \
 printf("Failed: Cuda error %s:%d '%s'\n", \
 __FILE__,__LINE__,cudaGetErrorString(e)); \
 exit(EXIT_FAILURE); \
 } \
} while(0)

#define NCCLCHECK(cmd) do { \
 ncclResult_t r = cmd; \
 if (r!= ncclSuccess) { \
 printf("Failed, NCCL error %s:%d '%s'\n", \
 __FILE__,__LINE__,ncclGetErrorString(r)); \
 exit(EXIT_FAILURE); \
 } \
} while(0)

int main(int argc, char* argv[])
{
 ncclComm_t comms[4];

 //managing 4 devices
 int nDev = 4;
 int size = 32*1024*1024;
 int devs[4] = { 0, 1, 2, 3 };

 //allocating and initializing device buffers
 float** sendbuff = (float**)malloc(nDev * sizeof(float*));
 float** recvbuff = (float**)malloc(nDev * sizeof(float*));
 cudaStream_t* s =
 (cudaStream_t*)malloc(sizeof(cudaStream_t)*nDev);

 for (int i = 0; i < nDev; ++i) {
 CUDACHECK(cudaSetDevice(i));
 CUDACHECK(cudaMalloc(sendbuff + i, size * sizeof(float)));
 CUDACHECK(cudaMalloc(recvbuff + i, size * sizeof(float)));
 CUDACHECK(cudaMemset(sendbuff[i], 1, size * sizeof(float)));
 CUDACHECK(cudaMemset(recvbuff[i], 0, size * sizeof(float)));
 CUDACHECK(cudaStreamCreate(s+i));
 }

 //initializing NCCL
 NCCLCHECK(ncclCommInitAll(comms, nDev, devs));

 //calling NCCL communication API. Group API is required when
 using
 //multiple devices per thread
 NCCLCHECK(ncclGroupStart());

Examples

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 12

 for (int i = 0; i < nDev; ++i)
 NCCLCHECK(ncclAllReduce((const void*)sendbuff[i],
 (void*)recvbuff[i], size, ncclFloat, ncclSum,
 comms[i], s[i]));
 NCCLCHECK(ncclGroupEnd());

 //synchronizing on CUDA streams to wait for completion of NCCL
 operation
 for (int i = 0; i < nDev; ++i) {
 CUDACHECK(cudaSetDevice(i));
 CUDACHECK(cudaStreamSynchronize(s[i]));
 }

 //free device buffers
 for (int i = 0; i < nDev; ++i) {
 CUDACHECK(cudaSetDevice(i));
 CUDACHECK(cudaFree(sendbuff[i]));
 CUDACHECK(cudaFree(recvbuff[i]));
 }

 //finalizing NCCL
 for(int i = 0; i < nDev; ++i)
 ncclCommDestroy(comms[i]);

 printf("Success \n");
 return 0;
}

3.1.2. Example 2: One Device per Process or Thread
When one thread or process is affected to each thread, ncclCommInitRank can be used
as a collective call to create a communicator. Each thread or process will get its own
object.

The following code is an example of a communicator creation in the context of MPI,
using one device per MPI rank.

First, we retrieve MPI information about processes:

int myRank, nRanks;
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
MPI_Comm_size(MPI_COMM_WORLD, &nRanks);

Next, a single rank will create a unique ID and send it to all other ranks to make sure
everyone has it:

ncclUniqueId id;
if (myRank == 0) ncclGetUniqueId(&id);
MPI_Bcast(id, sizeof(id), MPI_BYTE, 0, 0, MPI_COMM_WORLD);

Finally, we create the communicator:

ncclComm_t comm;
ncclCommInitRank(&comm, nRanks, id, myRank);

We can now call the NCCL collective operations using the communicator.

Finally, we destroy the communicator object:

Examples

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 13

ncclCommDestroy(comm);

The following code depicts a complete working example with multiple MPI processes
and one device per process:

#include <stdio.h>
#include "cuda_runtime.h"
#include "nccl.h"
#include "mpi.h"
#include <unistd.h>
#include <stdint.h>

#define MPICHECK(cmd) do { \
 int e = cmd; \
 if(e != MPI_SUCCESS) { \
 printf("Failed: MPI error %s:%d '%d'\n", \
 __FILE__,__LINE__, e); \
 exit(EXIT_FAILURE); \
 } \
} while(0)

#define CUDACHECK(cmd) do { \
 cudaError_t e = cmd; \
 if(e != cudaSuccess) { \
 printf("Failed: Cuda error %s:%d '%s'\n", \
 __FILE__,__LINE__,cudaGetErrorString(e)); \
 exit(EXIT_FAILURE); \
 } \
} while(0)

#define NCCLCHECK(cmd) do { \
 ncclResult_t r = cmd; \
 if (r!= ncclSuccess) { \
 printf("Failed, NCCL error %s:%d '%s'\n", \
 __FILE__,__LINE__,ncclGetErrorString(r)); \
 exit(EXIT_FAILURE); \
 } \
} while(0)

static uint64_t getHostHash(const char* string) {
 // Based on DJB2, result = result * 33 + char
 uint64_t result = 5381;
 for (int c = 0; string[c] != '\0'; c++){
 result = ((result << 5) + result) + string[c];
 }
 return result;
}

static void getHostName(char* hostname, int maxlen) {
 gethostname(hostname, maxlen);
 for (int i=0; i< maxlen; i++) {
 if (hostname[i] == '.') {
 hostname[i] = '\0';
 return;
 }
 }
}

int main(int argc, char* argv[])

Examples

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 14

{
 int size = 32*1024*1024;

 int myRank, nRanks, localRank = 0;

 //initializing MPI
 MPICHECK(MPI_Init(&argc, &argv));
 MPICHECK(MPI_Comm_rank(MPI_COMM_WORLD, &myRank));
 MPICHECK(MPI_Comm_size(MPI_COMM_WORLD, &nRanks));

 //calculating localRank based on hostname which is used in
 selecting a GPU
 uint64_t hostHashs[nRanks];
 char hostname[1024];
 getHostName(hostname, 1024);
 hostHashs[myRank] = getHostHash(hostname);
 MPICHECK(MPI_Allgather(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL,
 hostHashs, sizeof(uint64_t), MPI_BYTE, MPI_COMM_WORLD));
 for (int p=0; p<nRanks; p++) {
 if (p == myRank) break;
 if (hostHashs[p] == hostHashs[myRank]) localRank++;
 }

 ncclUniqueId id;
 ncclComm_t comm;
 float *sendbuff, *recvbuff;
 cudaStream_t s;

 //get NCCL unique ID at rank 0 and broadcast it to all others
 if (myRank == 0) ncclGetUniqueId(&id);
 MPICHECK(MPI_Bcast((void *)&id, sizeof(id), MPI_BYTE, 0,
 MPI_COMM_WORLD));

 //picking a GPU based on localRank, allocate device buffers
 CUDACHECK(cudaSetDevice(localRank));
 CUDACHECK(cudaMalloc(&sendbuff, size * sizeof(float)));
 CUDACHECK(cudaMalloc(&recvbuff, size * sizeof(float)));
 CUDACHECK(cudaStreamCreate(&s));

 //initializing NCCL
 NCCLCHECK(ncclCommInitRank(&comm, nRanks, id, myRank));

 //communicating using NCCL
 NCCLCHECK(ncclAllReduce((const void*)sendbuff, (void*)recvbuff,
 size, ncclFloat, ncclSum,
 comm, s));

 //completing NCCL operation by synchronizing on the CUDA stream
 CUDACHECK(cudaStreamSynchronize(s));

 //free device buffers
 CUDACHECK(cudaFree(sendbuff));
 CUDACHECK(cudaFree(recvbuff));

 //finalizing NCCL
 ncclCommDestroy(comm);

 //finalizing MPI
 MPICHECK(MPI_Finalize());

Examples

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 15

 printf("[MPI Rank %d] Success \n", myRank);
 return 0;
}

3.1.3. Example 3: Multiple Devices per Thread
You can combine both multiple process or threads and multiple device per process or
thread. In this case, we need to use group semantics.

The following example combines MPI and multiple devices per process (=MPI rank).

First, we retrieve MPI information about processes:

int myRank, nRanks;
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
MPI_Comm_size(MPI_COMM_WORLD, &nRanks);

Next, a single rank will create a unique ID and send it to all other ranks to make sure
everyone has it:

ncclUniqueId id;
if (myRank == 0) ncclGetUniqueId(&id);
MPI_Bcast(id, sizeof(id), MPI_BYTE, 0, 0, MPI_COMM_WORLD);

Then, we create our ngpus communicator objects, which are part of a larger group of
ngpus*nRanks:

ncclComm_t comms[ngpus];
ncclGroupStart();
for (int i=0; i<ngpus; i++) {
 cudaSetDevice(devs[i]);
 ncclCommInitRank(comms+i, ngpus*nRanks, id, myRank*ngpus+i);
}
ncclGroupEnd();

Next, we call NCCL collective operations using a single thread, and group calls, or
multiple threads, each provided with a comm object.

At the end of the program, we destroy all communicators objects:

for (int i=0; i<ngpus; i++)
 ncclCommDestroy(comms[i]);

The following code depicts a complete working example with multiple MPI processes
and multiple devices per process:

#include <stdio.h>
#include "cuda_runtime.h"
#include "nccl.h"
#include "mpi.h"
#include <unistd.h>
#include <stdint.h>

#define MPICHECK(cmd) do { \
 int e = cmd; \
 if(e != MPI_SUCCESS) { \
 printf("Failed: MPI error %s:%d '%d'\n", \
 __FILE__,__LINE__, e); \

Examples

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 16

 exit(EXIT_FAILURE); \
 } \
} while(0)

#define CUDACHECK(cmd) do { \
 cudaError_t e = cmd; \
 if(e != cudaSuccess) { \
 printf("Failed: Cuda error %s:%d '%s'\n", \
 __FILE__,__LINE__,cudaGetErrorString(e)); \
 exit(EXIT_FAILURE); \
 } \
} while(0)

#define NCCLCHECK(cmd) do { \
 ncclResult_t r = cmd; \
 if (r!= ncclSuccess) { \
 printf("Failed, NCCL error %s:%d '%s'\n", \
 __FILE__,__LINE__,ncclGetErrorString(r)); \
 exit(EXIT_FAILURE); \
 } \
} while(0)

static uint64_t getHostHash(const char* string) {
 // Based on DJB2, result = result * 33 + char
 uint64_t result = 5381;
 for (int c = 0; string[c] != '\0'; c++){
 result = ((result << 5) + result) + string[c];
 }
 return result;
}

static void getHostName(char* hostname, int maxlen) {
 gethostname(hostname, maxlen);
 for (int i=0; i< maxlen; i++) {
 if (hostname[i] == '.') {
 hostname[i] = '\0';
 return;
 }
 }
}

int main(int argc, char* argv[])
{
 int size = 32*1024*1024;

 int myRank, nRanks, localRank = 0;

 //initializing MPI
 MPICHECK(MPI_Init(&argc, &argv));
 MPICHECK(MPI_Comm_rank(MPI_COMM_WORLD, &myRank));
 MPICHECK(MPI_Comm_size(MPI_COMM_WORLD, &nRanks));

 //calculating localRank which is used in selecting a GPU
 uint64_t hostHashs[nRanks];
 char hostname[1024];
 getHostName(hostname, 1024);
 hostHashs[myRank] = getHostHash(hostname);
 MPICHECK(MPI_Allgather(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL,
 hostHashs, sizeof(uint64_t), MPI_BYTE, MPI_COMM_WORLD));

Examples

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 17

 for (int p=0; p<nRanks; p++) {
 if (p == myRank) break;
 if (hostHashs[p] == hostHashs[myRank]) localRank++;
 }

 //each process is using two GPUs
 int nDev = 2;

 float** sendbuff = (float**)malloc(nDev * sizeof(float*));
 float** recvbuff = (float**)malloc(nDev * sizeof(float*));
 cudaStream_t* s =
 (cudaStream_t*)malloc(sizeof(cudaStream_t)*nDev);

 //picking GPUs based on localRank
 for (int i = 0; i < nDev; ++i) {
 CUDACHECK(cudaSetDevice(localRank*nDev + i));
 CUDACHECK(cudaMalloc(sendbuff + i, size * sizeof(float)));
 CUDACHECK(cudaMalloc(recvbuff + i, size * sizeof(float)));
 CUDACHECK(cudaMemset(sendbuff[i], 1, size * sizeof(float)));
 CUDACHECK(cudaMemset(recvbuff[i], 0, size * sizeof(float)));
 CUDACHECK(cudaStreamCreate(s+i));
 }

 ncclUniqueId id;
 ncclComm_t comms[nDev];

 //generating NCCL unique ID at one process and broadcasting it
 to all
 if (myRank == 0) ncclGetUniqueId(&id);
 MPICHECK(MPI_Bcast((void *)&id, sizeof(id), MPI_BYTE, 0,
 MPI_COMM_WORLD));

 //initializing NCCL, group API is required around
 ncclCommInitRank as it is
 //called across multiple GPUs in each thread/process
 ncclGroupStart();
 for (int i=0; i<nDev; i++) {
 CUDACHECK(cudaSetDevice(localRank*nDev + i));
 NCCLCHECK(ncclCommInitRank(comms+i, nRanks*nDev, id,
 myRank*nDev + i));
 }
 ncclGroupEnd();

 //calling NCCL communication API. Group API is required when
 using
 //multiple devices per thread/process
 ncclGroupStart();
 for (int i=0; i<nDev; i++)
 NCCLCHECK(ncclAllReduce((const void*)sendbuff[i],
 (void*)recvbuff[i], size, ncclFloat, ncclSum,
 comms[i], s[i]));
 ncclGroupEnd();

 //synchrozing on CUDA stream to complete NCCL communication
 for (int i=0; i<nDev; i++)
 CUDACHECK(cudaStreamSynchronize(s[i]));

 //freeing device memory
 for (int i=0; i<nDev; i++) {

Examples

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 18

 CUDACHECK(cudaFree(sendbuff[i]));
 CUDACHECK(cudaFree(recvbuff[i]));
 }

 //finalizing NCCL
 for (int i=0; i<nDev; i++) {
 ncclCommDestroy(comms[i]);
 }

 //finalizing MPI
 MPICHECK(MPI_Finalize());

 printf("[MPI Rank %d] Success \n", myRank);
 return 0;
}

3.2. Communication Examples
The following examples demonstrate common patterns for executing NCCL collectives.

3.2.1. Example 1: One Device per Process or Thread
If you have a thread or process per device, then each thread calls the collective operation
for its device,for example, AllReduce:

ncclAllReduce(sendbuff, recvbuff, count, datatype, op, comm,
 stream);

After the call, the operation has been enqueued to the stream. Therefore, you can call
cudaStreamSynchronize if you want to wait for the operation to be complete:

cudaStreamSynchronize(stream);

For a complete working example with MPI and single device per MPI process, see
Example 2: One Device per Process or Thread.

3.2.2. Example 2: Multiple Devices per Thread
When a single thread manages multiple devices, you need to use group semantics to
launch the operation on multiple devices at once:

ncclGroupStart();
for (int i=0; i<ngpus; i++)
 ncclAllReduce(sendbuffs[i], recvbuff[i], count, datatype, op,
 comms[i], streams[i]);
ncclGroupEnd();

After ncclGroupEnd, all of the operations have been enqueued to the stream. Therefore,
you can now call cudaStreamSynchronize if you want to wait for the operation to be
complete:

for (int i=0; i<ngpus; i++)
 cudaStreamSynchronize(streams[i]);

Examples

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 19

For a complete working example with MPI and multiple devices per MPI process, see
Example 3: Multiple Devices per Thread.

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 20

Chapter 4.
NCCL AND MPI

4.1. API
The NCCL API and usage is similar to MPI but there are many minor differences. The
following list summarizes these differences:
Using multiple devices per process

Similarly to the concept of MPI endpoints, NCCL does not require ranks to be
mapped 1:1 to MPI ranks. A NCCL communicator may have many ranks associated
to a single process (hence MPI rank if used with MPI).

ReduceScatter operation
The ncclReduceScatter operation is similar to the MPI_Reduce_scatter_block
operation, not the MPI_Reduce_scatter operation. The MPI_Reduce_scatter
function is intrinsically a "vector" function, while MPI_Reduce_scatter_block
(defined later to fill the missing semantics) provides regular counts similarly to the
mirror function MPI_Allgather. This is an oddity of MPI which has not been fixed
for legitimate retro-compatibility reasons and that NCCL does not follow.

Send and Receive counts
In many collective operations, MPI allows for different send and receive
counts and types, as long as sendcount*sizeof(sendtype) ==
recvcount*sizeof(recvtype). NCCL does not allow that, defining a single count
and a single data-type.

For AllGather and ReduceScatter operations, the count is equal to the per-rank
size, which is the smallest size; the other count being equal to nranks*count. The
function prototype clearly shows which count is provided, for example:

‣ sendcount for ncclAllgather

NCCL and MPI

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 21

‣ recvcount for ncclReduceScatter

When performing or comparing AllReduce operations using a combination of
ReduceScatter and AllGather , define the sendcount and recvcount as the
total count divided by the number of ranks, with the correct count rounding-up, if
it is not a perfect multiple of the number of ranks.

In-place operations
For more information, see In-place Operations.

4.2. Using NCCL within an MPI Program
NCCL can be easily used in conjunction with MPI. NCCL collectives are similar to MPI
collectives, therefore, creating a NCCL communicator out of an MPI communicator is
straightforward. It is therefore easy to use MPI for CPU-to-CPU communication and
NCCL for GPU-to-GPU communication.

However, some implementation details in MPI can lead to issues when using NCCL
inside an MPI program.

4.2.1. MPI Progress
MPI defines a notion of progress which means that MPI operations need the program
to call MPI functions (potentially multiple times) to make progress and eventually
complete.

In some implementations, progress on one rank may need MPI to be called on another
rank. While this is usually bad for performance, it can be argued that this is a valid MPI
implementation.

As a result, blocking in a NCCL collective operations, for example calling
cudaStreamSynchronize, may create a deadlock in some cases because not calling
MPI will not make other ranks progress, hence reach the NCCL call, hence unblock the
NCCL operation.

In that case, the cudaStreamSynchronize call should be replaced by a loop like the
following:

cudaError_t err = cudaErrorNotReady;
int flag;
while (err == cudaErrorNotReady) {
 err = cudaStreamQuery(args->streams[i]);
 MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &flag,
MPI_STATUS_IGNORE);
}

NCCL and MPI

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 22

4.2.2. Inter-GPU Communication with CUDA-aware MPI
Using NCCL to perform inter-GPU communication concurrently with CUDA-aware
MPI may create deadlocks.

NCCL creates inter-device dependencies, meaning that after it has been launched, a
NCCL kernel will wait (and potentially block the CUDA device) until all ranks in the
communicator launch their NCCL kernel. CUDA-aware MPI may also create such
dependencies between devices depending on the MPI implementation.

Using both MPI and NCCL to perform transfers between the same sets of CUDA devices
concurrently is therefore not guaranteed to be safe.

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 23

Chapter 5.
TROUBLESHOOTING

Ensure you are familiar with the following known issues and useful debugging
strategies.

5.1. Known Issues
Ensure you are familiar with the following known issues:

Sharing Data

In order to share data between ranks, NCCL may require shared system memory for
IPC and pinned (page-locked) system memory resources. The operating system’s limits
on these resources may need to be increased accordingly. Please see your system’s
documentation for details. In particular, Docker containers default to limited shared and
pinned memory resources. When using NCCL inside a container, it is recommended that
you increase these resources by issuing:

--shm-size=1g --ulimit memlock=-1

in the command line to

nvidia-docker run

Concurrency between NCCL and CUDA calls

NCCL uses CUDA kernels to perform inter-GPU communication. The NCCL kernels
synchronize with each other, therefore, each kernel requires other kernels on other
GPUs to be also executed in order to complete. The application should therefore make
sure that nothing prevents the NCCL kernels from being executed concurrently on the
different devices of a NCCL communicator.

For example, let's say you have a process managing multiple CUDA devices, and, also
features a thread which calls CUDA functions asynchronously. In this case, CUDA
calls could be executed between the enqueuing of two NCCL kernels. The CUDA call

Troubleshooting

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 24

may wait for the first NCCL kernel to complete and prevent the second one from being
launched, causing a deadlock since the first kernel will not complete until the second
one is executed. To avoid this issue, one solution is to have a lock around the NCCL
launch on multiple devices (around ncclGroupStart and ncclGroupEnd when
using a single thread, around the NCCL launch when using multiple threads, using
thread synchronization if necessary) and take this lock when calling CUDA from the
asynchronous thread.

5.2. NCCL Knobs
A knob is a type of environment variable that can you can turn on or off by setting
specific values. These environment variables should be set in the context of running
NCCL. The following table lists all of the available knobs that can be modified in NCCL.

Table 1 Knobs available for modification in NCCL

Environment Variable Description Values Accepted

NCCL_SHM_DISABLE The NCCL_SHM_DISABLE

variable disables the Shared

Memory (SHM) transports.

SHM is used between devices

when peer-to-peer cannot

happen, therefore, host memory

is used. NCCL uses network

(InfiniBand or IP sockets) to

communicate between the CPU

sockets when SHM is disabled.

Define and set to 1 to disable

SHM.

NCCL_SOCKET_IFNAME The NCCL_SOCKET_IFNAME

variable specifies which

IP interface to use for

communication.

This variable also defines a

prefix for the network interfaces

to be filtered.

Define and set to ib or eth. The

value searches for all applicable

ib* or eth* named interfaces on

the system.

Another accepted value is ^eth,

which searches for interfaces

that do not match eth.

Loopback (lo)
is not selected by
NCCL unless it is
explicitly set in

Troubleshooting

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 25

Environment Variable Description Values Accepted

the environment
variable.

NCCL_DEBUG The NCCL_DEBUG variable

controls the debug information

that is displayed from NCCL.

This variable is commonly used

for debugging.

VERSION

Prints the NCCL version at the

start of the program.

WARN

Prints an explicit error

message whenever any NCCL

call errors out.

NCCL_IB_DISABLE The NCCL_IB_DISABLE variable

disables the IB transport that

is to be used by NCCL. Instead,

NCCL will fallback to using IP

sockets.

Define and set to 1 to force IP

sockets usage.

NCCL_BUFFSIZE The NCCL_BUFFSIZE variable

controls the amount of buffer to

share data between two GPUs.

Use this variable if you

encounter memory constraint

issues when using NCCL or you

think that a different buffer size

would improve performance.

Default is 4194304 (4 MB).

Values are integers, in bytes. The

recommendation is to use powers

of 2. For example, 1024 will give

a 1K buffer.

NCCL_NTHREADS The NCCL_NTHREADS variable

sets the number of CUDA

threads per CUDA block. NCCL

will launch one block per

communication ring.

Use this variable if you think

your GPU clocks are low and you

want to increase the number of

threads.

You can also use this variable to

reduce the number of threads to

decrease the GPU workload.

‣ Default is 512 for Kepler.

‣ Default is 256 for Maxwell

and Pascal.

The values allowed are 128, 256

and 512.

NCCL_RINGS The NCCL_RINGS variable

overrides the rings that NCCL

forms by default. Rings are

Ranks from 0 to n-1, where n

is the number of GPUs in your

communicator.

Troubleshooting

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 26

Environment Variable Description Values Accepted

sequences of ranks. They can be

any permutations of ranks.

NCCL filters out any rings that

do not contain the number of

ranks in the NCCL communicator.

In general, the ring formation

is dependent on the hardware

topology connecting the GPUs in

your system.

The ranks can be separated

by any non-digit character, for

example, " ", "-", except "|".

Multiple rings can be specified

separated by the pipe character

"|".

For example, if you have 4 GPUs

in a communicator, you can form

communication rings as such:0 1

2 3 | 3 2 1 0.

This will form two rings, one in

each direction.

NCCL_MAX_NRINGS The NCCL_MAX_NRINGS variable

limits the number of rings

NCCL can use. Reducing the

number of rings also reduces

the number of CUDA blocks

used for communication, hence

the impact on GPU computing

resources.

Any value above or equal to 1.

NCCL_IB_TIMEOUT The NCCL_IB_TIMEOUT variable

controls the InfiniBand Verbs

Timeout. Refer to the InfiniBand

documentation for more

information.

The default value used by NCCL

is 14.

The value depends on the size of

your InfiniBand network.

NCCL_IB_CUDA_SUPPORT The NCCL_IB_CUDA_SUPPORT

variable is used to disable GPU

Direct RDMA.

By default, NCCL enables GPU

Direct RDMA, if the topology

permits it. This variable can

disable this behavior.

Define and set to 0 to disable

GPU Direct RDMA.

NCCL_NET_GDR_READ The NCCL_NET_GDR_READ

variable enables GPU Direct

RDMA when sending data. By

default, NCCL uses GPU Direct

RDMA to receive data directly

in GPU memory. However, when

sending data, the data is first

Default value is 0.

Define and set to 1 to use GPU

Direct RDMA to send data to the

NIC directly (bypassing CPU).

Troubleshooting

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) DU-08527-205_v01 | 27

Environment Variable Description Values Accepted

stored in CPU memory, then goes

to the InfiniBand card.

Reading directly
GPU memory
when sending data
is known to be
slightly slower than
reading from CPU
memory.

5.3. Support
Register for the NVIDIA developer program to report bugs, issues and make requests
for feature enhancements. For more information, see: https://developer.nvidia.com/
developer-program.

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DIGITS, DGX, DGX-1, Jetson, Kepler,

NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Overview
	Collective Communication Primitives
	2.1. Creating a Communicator
	2.2. Operations
	2.2.1. AllReduce
	2.2.2. Broadcast
	2.2.3. Reduce
	2.2.4. AllGather
	2.2.5. ReduceScatter

	2.3. Data Pointers
	2.4. CUDA Stream Semantics
	2.5. Group Calls
	2.6. Thread Safety
	2.7. In-place Operations

	Examples
	3.1. Communicator Creation and Destruction Examples
	3.1.1. Example 1: Single Process, Single Thread, Multiple Devices
	3.1.2. Example 2: One Device per Process or Thread
	3.1.3. Example 3: Multiple Devices per Thread

	3.2. Communication Examples
	3.2.1. Example 1: One Device per Process or Thread
	3.2.2. Example 2: Multiple Devices per Thread

	NCCL and MPI
	4.1. API
	4.2. Using NCCL within an MPI Program
	4.2.1. MPI Progress
	4.2.2. Inter-GPU Communication with CUDA-aware MPI

	Troubleshooting
	5.1. Known Issues
	5.2. NCCL Knobs
	5.3. Support

