
NVIDIA COLLECTIVE
COMMUNICATION LIBRARY (NCCL)

PR-08594-001_v | September 2018

API

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | ii

TABLE OF CONTENTS

Chapter 1. NCCL API...1
1.1. Communicator Creation And Management Functions... 1
1.2. Collective Communication Functions.. 4

1.2.5. ncclReduceScatter...7
1.3. Group Calls.. 8
1.4. Types.. 8
1.5. Constants... 10

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | 1

Chapter 1.
NCCL API

The following sections describe the collective communications methods and operations.

1.1. Communicator Creation And Management
Functions
The following functions are public APIs exposed by NVIDIA® Collective
Communications Library ™ (NCCL) to create and manage the collective communication
operations.

1.1.1. ncclGetVersion
The ncclGetVersion function returns the version number of the currently linked
NCCL library. The NCCL version number is encoded as an integer which includes the
NCCL_MAJOR, NCCL_MINOR and NCCL_PATCH levels. The version number returned will
be the same as the NCCL_VERSION_CODE defined in nccl.h. NCCL version numbers can
be compared using the supplied macro; NCCL_VERSION(MAJOR,MINOR,PATCH).

ncclResult_t ncclGetVersion(int* version);

The following table lists the arguments that are passed to the ncclGetVersion
function.

Type Argument Name Description

int* version Pointer to an integer to be
used to return the NCCL
version number.

1.1.2. ncclGetUniqueId
The ncclGetUniqueId function generates an Id to be used in the
ncclCommInitRank function.

NCCL API

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | 2

The ncclGetUniqueId function should be called once. The Id should be distributed to
all of the ranks in the communicator before calling the ncclCommInitRank function.

ncclResult_t ncclGetUniqueId(ncclUniqueId* uniqueId);

The following table lists the arguments that are passed to the ncclGetUniqueId
function.

Type Argument Name Description

ncclUniqueId* uniqueId Pointer to an already
allocated unique Id.

1.1.3. ncclCommInitRank
The ncclCommInitRank function creates a new communicator object for the current
CUDA® device. This function allows for multi-process initialization.

ncclResult_t ncclCommInitRank(ncclComm_t* comm, int nranks, ncclUniqueId
 commId, int
 rank);

The ncclCommInitRank function implicitly synchronizes with other ranks, so it
must be called by different threads and processes or use the ncclGroupStart and
ncclGroupEnd functions.

The following table lists the arguments that are passed to the ncclCommInitRank
function.

Type Argument Name Description

ncclComm_t* comm Returned communicator.

int nranks Number of ranks in the
communicator.

ncclUniqueId* uniqueId Pointer to a unique Id.

int rank The rank associated to the
current device. The rank
must be between 0 and
nranks-1 and unique
within the communicator
clique.

1.1.4. ncclCommInitAll
The ncclCommInitAll function creates a full communicator. For example, a clique of
communicator objects. The communicator only works within a single process.

ncclResult_t ncclCommInitAll(ncclComm_t* comm, int ndev, const int* devlist);

The ncclCommInitAll function returns an array of ndev newly initialized
communicators in comm. The argument name comm, should be pre-allocated with the

NCCL API

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | 3

size of at least ndev*sizeof(ncclComm_t). If devlist is NULL, the first ndev CUDA
devices are used. The order of devlist defines the user order of the devices within the
communicator.

The following table lists the arguments that are passed to the ncclCommInitAll
function.

Type Argument Name Description

ncclComm_t* comm Returned array of
communicators. The
comm argument should
be pre-allocated with
a size of at least:
ndev*sizeof(ncclComm_t).

int ndev Number of ranks or devices
in the communicator.

const int* devlist A list of CUDA devices to
associate with each rank.
Should be an array of ndev
integers.

1.1.5. ncclCommDestroy
The ncclCommDestroy function frees resources that are allocated to a communicator
object.

ncclResult_t ncclCommDestroy(ncclComm_t comm);

The following table lists the arguments that are passed to the ncclCommDestroy
function.

Type Argument Name Description

ncclComm_t comm Communicator object to
free.

1.1.6. ncclCommCount
The ncclCommCount function returns the number of ranks in a communicator.

ncclResult_t ncclCommCount(const ncclComm_t comm, int* count);

The following table lists the arguments that are passed to the ncclCommCount function.

Type Argument Name Description

ncclComm_t comm Communicator object.

int* count Number of ranks returned.

NCCL API

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | 4

1.1.7. ncclCommCuDevice
The ncclCommCuDevice function returns the CUDA device associated with a
communicator object.

ncclResult_t ncclCommCuDevice(const ncclComm_t comm, int* device);

The following table lists the arguments that are passed to the ncclCommCuDevice
function.

Type Argument Name Description

ncclComm_t comm Communicator object.

int* count CUDA device returned.

1.1.8. ncclCommUserRank
The ncclCommUserRank function returns the rank of a communicator object.

ncclResult_t ncclCommUserRank(const ncclComm_t comm, int* rank);

The following table lists the arguments that are passed to the ncclCommUserRank
function.

Type Argument Name Description

ncclComm_t comm Communicator object.

int* rank Rank returned.

1.2. Collective Communication Functions
The following NCCL APIs provide some commonly used collective operations.

1.2.1. ncclAllReduce
The ncclAllReduce function reduces data arrays of length count in sendbuff using
op operation and leaves identical copies of the result on each recvbuff.

ncclResult_t ncclAllReduce(const void* sendbuff, void* recvbuff, size_t
 count,
 ncclDataType_t datatype, ncclRedOp_t op, ncclComm_t comm, cudaStream_t
 stream);

The following table lists the arguments that are passed to the ncclAllReduce function.

Type Argument Name Description

const void* sendbuff Pointer to the data to read
from.

NCCL API

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | 5

Type Argument Name Description

void* recvbuff Pointer to the data to write
to.

size_t count Number of elements to
process.

ncclDataType_t datatype Type of element.

ncclRedOp_t op Operation to perform on
each element.

ncclComm_t comm Communicator object.

cudaStream_t stream CUDA stream to run the
operation on.

1.2.2. ncclBroadcast
The ncclBroadcast function copies the count values from the root rank to all ranks.

ncclResult_t ncclBroadcast(const void* sendbuff, void* recvbuff, size_t count,
 ncclDataType_t datatype, int root,
 ncclComm_t comm, cudaStream_t stream);

The ncclBcast function is a legacy in-place version of ncclBroadcast in a similar
fashion to MPI_Bcast. A call to ncclBcast (buff, count, datatype, root, comm,
stream) is equivalent to ncclBroadcast (buff, count, datatype, root, comm,
stream).

ncclResult_t ncclBcast(void* buff, size_t count, ncclDataType_t datatype, int
 root, ncclComm_t comm, cudaStream_t stream);

The following table lists the arguments that are passed to the ncclBroadcast function.

Type Argument Name Description

const void* sendbuff Pointer to the data to read
from.

void* recvbuff Pointer to the data to read
to.

size_t count Number of elements to
process.

ncclDataType_t datatype Type of element.

int root Rank of the root of the
operation.

ncclComm_t comm Communicator object.

cudaStream_t stream CUDA stream to run the
operation on.

NCCL API

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | 6

1.2.3. ncclReduce
The ncclReduce function reduces data arrays of length count in sendbuff into
recvbuff using the op operation.

ncclResult_t ncclReduce(const void* sendbuff, void* recvbuff, size_t count,
 ncclDataType_t datatype,
 ncclRedOp_t op, int root, ncclComm_t comm, cudaStream_t stream);

The following table lists the arguments that are passed to the ncclReduce function.

Type Argument Name Description

const void* sendbuff Pointer to the data to read
from.

void* recvbuff Pointer to the data to write
to.

size_t count Number of elements to
process.

ncclDataType_t datatype Type of element.

ncclRedOp_t op Operation to perform on
each element.

int root Rank of the root of the
operation.

ncclComm_t comm Communicator object.

cudaStream_t stream CUDA stream to run the
operation on.

1.2.4. ncclAllGather
The ncclAllGather function gathers sendcount values from other GPUs into
recvbuff, receiving data from rank i at offset i*sendcount.

This assumes recvcount is equal to nranks*sendcount, which means that
recvbuff should have a size of at least nranks*sendcount elements.

ncclResult_t ncclAllGather(const void* sendbuff, void* recvbuff, size_t
 sendcount,
 ncclDataType_t datatype, ncclComm_t comm, cudaStream_t stream);

The following table lists the arguments that are passed to the ncclAllGather function.

Type Argument Name Description

const void* sendbuff Pointer to the data to read
from.

NCCL API

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | 7

Type Argument Name Description

void* recvbuff Pointer to the data to write
to. This should be the size
of sendcount*nranks.

size_t sendcount Number of elements sent
per rank.

ncclDataType_t datatype Type of element.

int root Rank of the root of the
operation.

ncclComm_t comm Communicator object.

cudaStream_t stream CUDA stream to run the
operation on.

1.2.5. ncclReduceScatter
The ncclReduceScatter function reduces data in sendbuff using the op operation
and leaves the reduced result scattered over the devices so that the recvbuff on rank i
will contain the i-th block of the result.

This assumes sendcount is equal to nranks*recvcount, which means that
sendbuff should have a size of at least nranks*recvcount elements.

ncclResult_t ncclReduceScatter(const void* sendbuff, void* recvbuff,
 size_t recvcount, ncclDataType_t datatype, ncclRedOp_t op, ncclComm_t comm,
 cudaStream_t stream);

The following table lists the arguments that are passed to the ncclReduceScatter
function.

Type Argument Name Description

const void* sendbuff Pointer to the data to read
from. This should be the
size of recvcount*nranks.

void* recvbuff Pointer to the data to write
to.

size_t recvcount Number of elements to
receive by each rank.

ncclDataType_t datatype Type of element.

ncclRedOp_t op Operation to perform on
each element.

ncclComm_t comm Communicator object.

NCCL API

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | 8

Type Argument Name Description

cudaStream_t stream CUDA stream to run the
operation on.

1.3. Group Calls
Group primitives define the behavior of the current thread to avoid blocking. They can
therefore be used from multiple threads independently.

1.3.1. ncclGroupStart
The ncclGroupStart call starts a group call.

All subsequent calls to NCCL may not block due to inter-CPU synchronization.

ncclResult_t ncclGroupStart();

1.3.2. ncclGroupEnd
The ncclGroupEnd call ends a group call.

The ncclGroupEnd call returns when all operations since ncclGroupStart have been
processed. This means communication primitives have been enqueued to the provided
streams, but are not necessary complete. When used with ncclCommInitRank, it
means all communicators have been initialized and are ready to be used.

When the ncclGroupEnd call is used with the ncclCommInitRank function, the
ncclGroupEnd call waits for all communicators to be initialized.

ncclResult_t ncclGroupEnd();

1.4. Types
The following types are used by the CUDA library. These types are useful when
configuring your collective operations.

1.4.1. ncclDataType_t
NCCL defines the following integral and floating data-types.

Data-Type Description

ncclInt8, ncclChar Signed 8-bits integer.

ncclUint8 Unsigned 8-bits integer.

ncclInt32, ncclInt Signed 32-bits integer.

ncclUint32 Unsigned 32-bits integer.

NCCL API

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | 9

Data-Type Description

ncclInt64 Signed 64-bits integer.

ncclUint64 Unsigned 64-bits integer.

ncclFloat16, ncclHalf 16-bits floating point number (half
precision)

ncclFloat32, ncclFloat 32-bits floating point number (single
precision)

ncclFloat64, ncclDouble 64-bits floating point number (double
precision)

1.4.2. ncclRedOp_t
NCCL defines the following reduction operations.

Reduction Operation Description

ncclSum Perform a sum (+) operation.

ncclProd Perform a product (*) operation.

ncclMin Perform a min operation.

ncclMax Perform a max operation.

1.4.3. ncclResult_t
NCCL functions always return an error code of type ncclResult_t.

If the NCCL_DEBUG environment variable is set to WARN, whenever a function returns
an error, NCCL should print the reason.

Return Code Description

ncclSuccess The operations completed successfully.

ncclUnhandledCudaError A call to CUDA returned a fatal error for
the NCCL operation.

ncclSystemError A call to the system returned a fatal error
for the NCCL operation.

ncclInternalError NCCL experienced an internal error.

ncclInvalidArgument The user has supplied an invalid
argument.

ncclInvalidUsage The user has used NCCL in an invalid
manner.

NCCL API

www.nvidia.com
NVIDIA Collective Communication Library (NCCL) PR-08594-001_v | 10

1.5. Constants
NCCL defines two constants NCCL_MAJOR and NCCL_MINOR to help distinguish between
API changes, in particular between NCCL 1.x and NCCL 2.x.

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,

Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	NCCL API
	1.1. Communicator Creation And Management Functions
	1.1.1. ncclGetVersion
	1.1.2. ncclGetUniqueId
	1.1.3. ncclCommInitRank
	1.1.4. ncclCommInitAll
	1.1.5. ncclCommDestroy
	1.1.6. ncclCommCount
	1.1.7. ncclCommCuDevice
	1.1.8. ncclCommUserRank

	1.2. Collective Communication Functions
	1.2.1. ncclAllReduce
	1.2.2. ncclBroadcast
	1.2.3. ncclReduce
	1.2.4. ncclAllGather
	1.2.5. ncclReduceScatter

	1.3. Group Calls
	1.3.1. ncclGroupStart
	1.3.2. ncclGroupEnd

	1.4. Types
	1.4.1. ncclDataType_t
	1.4.2. ncclRedOp_t
	1.4.3. ncclResult_t

	1.5. Constants

