TABLE OF CONTENTS

Chapter 1. Overview
Chapter 1. Overview.. 1

Chapter 2. General Description
2.1. Programming Model... 2
2.2. Convolution Formulas... 3
2.3. Notation.. 4
2.4. Tensor Descriptor.. 5
 2.4.1. WXYZ Tensor Descriptor ... 6
 2.4.2. 4-D Tensor Descriptor... 6
 2.4.3. 5-D Tensor Description ... 6
 2.4.4. Fully-packed tensors.. 6
 2.4.5. Partially-packed tensors... 6
 2.4.6. Spatially packed tensors... 7
 2.4.7. Overlapping tensors.. 7
2.5. Thread Safety... 7
2.6. Reproducibility (determinism).. 7
2.7. Scaling Parameters... 8
2.8. Tensor Core Operations.. 9
 2.8.1. Tensor Core Operations Notes .. 11
 2.8.2. Tensor Operations Speedup Tips .. 11
2.9. GPU and driver requirements.. 12
2.10. Backward compatibility and deprecation policy....................................... 12
2.11. Grouped Convolutions.. 13
2.12. API Logging.. 14
2.13. Features of RNN Functions.. 16
2.14. Mixed Precision Numerical Accuracy... 18

Chapter 3. cuDNN Datatypes Reference
3.1. cudnnActivationDescriptor_t.. 19
3.2. cudnnActivationMode_t.. 19
3.3. cudnnBatchNormMode_t... 20
3.4. cudnnBatchNormOps_t... 21
3.5. cudnnCTCLossAlgo_t... 21
3.6. cudnnCTCLossDescriptor_t.. 21
3.7. cudnnConvolutionBwdDataAlgoPerf_t... 22
3.8. cudnnConvolutionBwdDataAlgo_t... 22
3.9. cudnnConvolutionBwdDataPreference_t... 23
3.10. cudnnConvolutionBwdFilterAlgoPerf_t... 24
3.11. cudnnConvolutionBwdFilterAlgo_t... 24
3.12. cudnnConvolutionBwdFilterPreference_t.. 25
3.13. cudnnConvolutionDescriptor_t... 26
3.14. cudnnConvolutionFwdAlgoPerf_t... 26
3.15. cudnnConvolutionFwdAlgo_t
3.16. cudnnConvolutionFwdPreference_t
3.17. cudnnConvolutionMode_t
3.18. cudnnDataType_t
3.19. cudnnDeterminism_t
3.20. cudnnDirectionMode_t
3.21. cudnnDivNormMode_t
3.22. cudnnDropoutDescriptor_t
3.23. cudnnErrQueryMode_t
3.24. cudnnFilterDescriptor_t
3.25. cudnnHandle_t
3.26. cudnnIndicesType_t
3.27. cudnnLRNMode_t
3.28. cudnnMathType_t
3.29. cudnnNanPropagation_t
3.30. cudnnOpTensorDescriptor_t
3.31. cudnnOpTensorOp_t
3.32. cudnnPersistentRNNPlan_t
3.33. cudnnPoolingDescriptor_t
3.34. cudnnPoolingMode_t
3.35. cudnnRNNAlgo_t
3.36. cudnnRNNClipMode_t
3.37. cudnnRNNDescriptor_t
3.38. cudnnRNNDataDescriptor_t
3.39. cudnnRNNInputMode_t
3.40. cudnnRNNMode_t
3.41. cudnnRNNPaddingMode_t
3.42. cudnnReduceTensorDescriptor_t
3.43. cudnnReduceTensorIndices_t
3.44. cudnnReduceTensorOp_t
3.45. cudnnSamplerType_t
3.46. cudnnSoftmaxAlgorithm_t
3.47. cudnnSoftmaxMode_t
3.48. cudnnSpatialTransformerDescriptor_t
3.49. cudnnStatus_t
3.50. cudnnTensorDescriptor_t
3.51. cudnnTensorFormat_t

Chapter 4. cuDNN API Reference

4.1. cudnnActivationBackward
4.2. cudnnActivationForward
4.3. cudnnAddTensor
4.4. cudnnBatchNormalizationBackward
4.5. cudnnBatchNormalizationBackwardEx
4.6. cudnnBatchNormalizationForwardInference ... 53
4.7. cudnnBatchNormalizationForwardTraining .. 55
4.8. cudnnBatchNormalizationForwardTrainingEx .. 58
4.9. cudnnCTCLoss ... 62
4.10. cudnnConvolutionBackwardBias .. 63
4.11. cudnnConvolutionBackwardData .. 64
4.12. cudnnConvolutionBackwardFilter .. 71
4.13. cudnnConvolutionBiasActivationForward .. 77
4.14. cudnnConvolutionForward ... 80
4.15. cudnnCreate .. 87
4.16. cudnnCreateActivationDescriptor ... 88
4.17. cudnnCreateAlgorithmDescriptor .. 88
4.18. cudnnCreateAlgorithmPerformance ... 89
4.19. cudnnCreateCTCLossDescriptor .. 89
4.20. cudnnCreateConvolutionDescriptor .. 89
4.21. cudnnCreateDropoutDescriptor ... 90
4.22. cudnnCreateFilterDescriptor ... 90
4.23. cudnnCreateLRNDescriptor .. 90
4.24. cudnnCreateOpTensorDescriptor ... 91
4.25. cudnnCreatePersistentRNNPlan .. 91
4.26. cudnnCreatePoolingDescriptor ... 92
4.27. cudnnCreateRNNDescriptor ... 92
4.28. cudnnCreateRNNDataDescriptor ... 92
4.29. cudnnCreateReduceTensorDescriptor .. 93
4.30. cudnnCreateSpatialTransformerDescriptor ... 93
4.31. cudnnCreateTensorDescriptor .. 93
4.32. cudnnDeriveBNTensorDescriptor ... 94
4.33. cudnnDestroy .. 95
4.34. cudnnDestroyActivationDescriptor ... 96
4.35. cudnnDestroyAlgorithmDescriptor .. 96
4.36. cudnnDestroyAlgorithmPerformance .. 96
4.37. cudnnDestroyCTCLossDescriptor ... 96
4.38. cudnnDestroyConvolutionDescriptor ... 97
4.39. cudnnDestroyDropoutDescriptor .. 97
4.40. cudnnDestroyFilterDescriptor .. 97
4.41. cudnnDestroyLRNDescriptor .. 97
4.42. cudnnDestroyOpTensorDescriptor .. 98
4.43. cudnnDestroyPersistentRNNPlan .. 98
4.44. cudnnDestroyPoolingDescriptor .. 98
4.45. cudnnDestroyRNNDescriptor .. 98
4.46. cudnnDestroyRNNDataDescriptor .. 99
4.47. cudnnDestroyReduceTensorDescriptor .. 99
4.48. cudnnDestroySpatialTransformerDescriptor ... 99
4.49. cudnnDestroyTensorDescriptor ... 100
4.50. cudnnDivisiveNormalizationBackward .. 100
4.51. cudnnDivisiveNormalizationForward ... 102
4.52. cudnnDropoutBackward ... 104
4.53. cudnnDropoutForward .. 105
4.54. cudnnDropoutGetReserveSpaceSize ... 107
4.55. cudnnDropoutGetStatesSize .. 107
4.56. cudnnFindConvolutionBackwardDataAlgorithm .. 108
4.57. cudnnFindConvolutionBackwardDataAlgorithmEx 109
4.58. cudnnFindConvolutionBackwardFilterAlgorithm .. 111
4.59. cudnnFindConvolutionBackwardFilterAlgorithmEx 113
4.60. cudnnFindConvolutionForwardAlgorithm .. 115
4.61. cudnnFindConvolutionForwardAlgorithmEx ... 116
4.62. cudnnFindRNNBackwardDataAlgorithmEx .. 118
4.63. cudnnFindRNNBackwardWeightsAlgorithmEx .. 124
4.64. cudnnFindRNNForwardInferenceAlgorithmEx .. 127
4.65. cudnnFindRNNForwardTrainingAlgorithmEx ... 132
4.66. cudnnGetActivationDescriptor ... 136
4.67. cudnnGetAlgorithmDescriptor ... 137
4.68. cudnnGetAlgorithmPerformance ... 137
4.69. cudnnGetAlgorithmSpaceSize ... 138
4.70. cudnnBatchNormalizationBackwardExWorkspaceSize 139
4.71. cudnnBatchNormalizationForwardTrainingExWorkspaceSize 140
4.72. cudnnGetBatchNormalizationTrainingExReserveSpaceSize 141
4.73. cudnnGetCTCLossDescriptor ... 142
4.74. cudnnGetCTCLossWorkspaceSize ... 143
4.75. cudnnGetCallback .. 144
4.76. cudnnGetConvolution2dDescriptor ... 145
4.77. cudnnGetConvolution2dForwardOutputDim .. 146
4.78. cudnnGetConvolution2dForwardOutputDim .. 146
4.79. cudnnGetConvolution2dForwardOutputDim .. 146
4.80. cudnnGetConvolutionBackwardDataAlgorithm .. 147
4.81. cudnnGetConvolutionBackwardDataAlgorithmMaxCount 148
4.82. cudnnGetConvolutionBackwardDataWorkspaceSize 148
4.83. cudnnGetConvolutionBackwardFilterAlgorithm 150
4.84. cudnnGetConvolutionBackwardFilterAlgorithmMaxCount 150
4.85. cudnnGetConvolutionBackwardFilterWorkspaceSize 150
4.86. cudnnGetConvolutionForwardAlgorithm ... 152
4.87. cudnnGetConvolutionForwardAlgorithmMaxCount 152
4.88. cudnnGetConvolutionForwardAlgorithm_v7 .. 152
4.89. cudnnGetConvolutionForwardWorkspaceSize .. 152
4.90. cudnnGetConvolutionGroupCount ... 159
4.91. cudnnGetConvolutionMathType ... 159
4.92. cudnnGetConvolutionNdDescriptor ... 160
4.93. cudnnGetConvolutionNdForwardOutputDim ... 161
4.94. cudnnGetCudartVersion ... 162
4.95. cudnnGetDropoutDescriptor .. 162
4.96. cudnnGetErrorString ... 163
4.97. cudnnGetFilter4dDescriptor ... 163
4.98. cudnnGetFilterNdDescriptor .. 164
4.99. cudnnGetLRNDescriptor .. 165
4.100. cudnnGetOpTensorDescriptor .. 165
4.101. cudnnGetPooling2dDescriptor ... 166
4.102. cudnnGetPooling2dForwardOutputDim ... 167
4.103. cudnnGetPoolingNdDescriptor ... 168
4.104. cudnnGetPoolingNdForwardOutputDim ... 169
4.105. cudnnGetProperty ... 170
4.106. cudnnGetRNNDataDescriptor ... 170
4.107. cudnnGetRNNDescriptor ... 172
4.108. cudnnGetRNNSize .. 173
4.109. cudnnGetRNNSize .. 175
4.110. cudnnGetRNNParamsSize ... 177
4.111. cudnnGetRNNPaddingMode .. 178
4.112. cudnnGetRNNProjectionLayers .. 179
4.113. cudnnGetRNNTrainingReserveSize ... 179
4.114. cudnnGetRNNWorkspaceSize ... 180
4.115. cudnnGetReduceTensorDescriptor ... 181
4.116. cudnnGetReductionIndicesSize ... 182
4.117. cudnnGetReductionWorkspaceSize ... 183
4.118. cudnnGetStream .. 183
4.119. cudnnGetTensor4dDescriptor ... 184
4.120. cudnnGetTensorNdDescriptor ... 185
4.121. cudnnGetTensorSizeInBytes ... 186
4.122. cudnnGetVersion ... 186
4.123. cudnnIm2Col ... 187
4.124. cudnnLRNCrossChannelBackward ... 188
4.125. cudnnLRNCrossChannelForward .. 189
4.126. cudnnOpTensor ... 190
4.127. cudnnPoolingBackward ... 192
4.128. cudnnPoolingForward ... 194
4.129. cudnnQueryRuntimeError .. 195
4.130. cudnnRNNBackwardData ... 197
4.131. cudnnRNNBackwardDataEx ... 202
4.132. cudnnRNNBackwardWeights .. 206
4.133. cudnnRNNBackwardWeightsEx .. 209
4.134. cudnnRNNForwardInference .. 211
4.135. cudnnRNNForwardInferenceEx ... 215
4.136. cudnnRNNForwardTraining ... 219
4.137. cudnnRNNForwardTrainingEx .. 222
4.138. cudnnRNNGetClip .. 227
4.139. cudnnRNNSetClip .. 227
4.140. cudnnReduceTensor .. 228
4.141. cudnnRestoreAlgorithm .. 230
4.142. cudnnRestoreDropoutDescriptor ... 231
4.143. cudnnSaveAlgorithm ... 232
4.144. cudnnScaleTensor ... 233
4.145. cudnnSetActivationDescriptor .. 233
4.146. cudnnSetAlgorithmDescriptor ... 234
4.147. cudnnSetAlgorithmPerformance .. 234
4.148. cudnnSetCTCLossDescriptor .. 235
4.149. cudnnSetCallback ... 236
4.150. cudnnSetConvolution2dDescriptor ... 237
4.151. cudnnSetConvolutionGroupCount ... 238
4.152. cudnnSetConvolutionMathType .. 238
4.153. cudnnSetConvolutionNdDescriptor ... 239
4.154. cudnnSetDropoutDescriptor .. 240
4.155. cudnnSetFilter4dDescriptor .. 241
4.156. cudnnSetFilterNdDescriptor .. 242
4.157. cudnnSetLRNDescriptor .. 243
4.158. cudnnSetOpTensorDescriptor ... 244
4.159. cudnnSetPersistentRNNPlan ... 245
4.160. cudnnSetPooling2dDescriptor ... 245
4.161. cudnnSetPoolingNdDescriptor ... 246
4.162. cudnnSetRNNDataDescriptor ... 247
4.163. cudnnSetRNNDescriptor .. 249
4.164. cudnnSetRNNDescriptor_v5 ... 250
4.165. cudnnSetRNNDescriptor_v6 ... 251
4.166. cudnnSetRNNMatrixMathType ... 252
4.167. cudnnSetRNNPaddingMode ... 253
4.168. cudnnSetRNNProjectionLayers ... 253
4.169. cudnnSetReduceTensorDescriptor .. 255
4.170. cudnnSetSpatialTransformerNdDescriptor ... 256
4.171. cudnnSetStream .. 256
4.172. cudnnSetTensor .. 257
4.173. cudnnSetTensor4dDescriptor ... 258
4.174. cudnnSetTensor4dDescriptorEx .. 259
4.175. cudnnSetTensorNdDescriptor .. 260
4.176. cudnnSetTensorNdDescriptorEx .. 261
4.177. cudnnSoftmaxBackward ... 262
4.178. cudnnSoftmaxForward... 264
4.179. cudnnSpatialTfGridGeneratorBackward.................................... 265
4.180. cudnnSpatialTfGridGeneratorForward....................................... 266
4.181. cudnnSpatialTfSamplerBackward.. 267
4.182. cudnnSpatialTfSamplerForward... 269
4.183. cudnnTransformTensor.. 270

Chapter 5. Acknowledgments.. 272

5.1. University of Tennessee... 272
5.2. University of California, Berkeley.. 272
5.3. Facebook AI Research, New York... 273
Chapter 1. OVERVIEW

NVIDIA® cuDNN is a GPU-accelerated library of primitives for deep neural networks. It provides highly tuned implementations of routines arising frequently in DNN applications:

- Convolution forward and backward, including cross-correlation
- Pooling forward and backward
- Softmax forward and backward
- Neuron activations forward and backward:
 - Rectified linear (ReLU)
 - Sigmoid
 - Hyperbolic tangent (TANH)
- Tensor transformation functions
- LRN, LCN and batch normalization forward and backward

cuDNN’s convolution routines aim for a performance that is competitive with the fastest GEMM (matrix multiply)-based implementations of such routines, while using significantly less memory.

cuDNN features include customizable data layouts, supporting flexible dimension ordering, striding, and subregions for the 4D tensors used as inputs and outputs to all of its routines. This flexibility allows easy integration into any neural network implementation, and avoids the input/output transposition steps sometimes necessary with GEMM-based convolutions.

cuDNN offers a context-based API that allows for easy multithreading and (optional) interoperability with CUDA streams.
Chapter 2.
GENERAL DESCRIPTION

Basic concepts are described in this section.

2.1. Programming Model

The cuDNN Library exposes a Host API but assumes that for operations using the GPU, the necessary data is directly accessible from the device.

An application using cuDNN must initialize a handle to the library context by calling `cudnnCreate()`. This handle is explicitly passed to every subsequent library function that operates on GPU data. Once the application finishes using cuDNN, it can release the resources associated with the library handle using `cudnnDestroy()`. This approach allows the user to explicitly control the library’s functioning when using multiple host threads, GPUs and CUDA Streams.

For example, an application can use `cudaSetDevice()` to associate different devices with different host threads, and in each of those host threads, use a unique cuDNN handle that directs the library calls to the device associated with it. Thus the cuDNN library calls made with different handles will automatically run on different devices.

The device associated with a particular cuDNN context is assumed to remain unchanged between the corresponding `cudnnCreate()` and `cudnnDestroy()` calls. In order for the cuDNN library to use a different device within the same host thread, the application must set the new device to be used by calling `cudaSetDevice()` and then create another cuDNN context, which will be associated with the new device, by calling `cudnnCreate()`.

cuDNN API Compatibility

Beginning in cuDNN 7, the binary compatibility of patch and minor releases is maintained as follows:

- Any patch release x.y.z is forward- or backward-compatible with applications built against another cuDNN patch release x.y.w (i.e., of the same major and minor version number, but having w!=z)
cuDNN minor releases beginning with cuDNN 7 are binary backward-compatible with applications built against the same or earlier patch release (i.e., an app built against cuDNN 7.x is binary compatible with cuDNN library 7.y, where y>=x)

Applications compiled with a cuDNN version 7.y are not guaranteed to work with 7.x release when y > x.

2.2. Convolution Formulas

This section describes the various convolution formulas implemented in cuDNN convolution functions.

The convolution terms described in the table below apply to all the convolution formulas that follow.

<table>
<thead>
<tr>
<th>TABLE OF CONVOLUTION TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>w</td>
</tr>
<tr>
<td>y</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>k</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>p</td>
</tr>
<tr>
<td>q</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>pad</td>
</tr>
<tr>
<td>u</td>
</tr>
<tr>
<td>v</td>
</tr>
<tr>
<td>dH_h</td>
</tr>
<tr>
<td>dH_w</td>
</tr>
<tr>
<td>r</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>C_g</td>
</tr>
<tr>
<td>K_g</td>
</tr>
</tbody>
</table>

Normal Convolution (using cross-correlation mode)

$$y_{n, k, p, q} = \sum_c \sum_r \sum_s x_{n, c, p+r, q+s} \times w_{k, c, r, s}$$

Convolution with Padding

$$x_{<p, q} = 0$$

$$x_{>N, W} = 0$$

$$y_{n, k, p, q} = \sum_c \sum_r \sum_s x_{n, c, p+\text{pad}, q+\text{pad}} \times w_{k, c, r, s}$$

Convolution with Subsample-Striding

$$y_{n, k, p, q} = \sum_c \sum_r \sum_s x_{n, c, (p\ast u) + r, (q\ast v) + s} \times w_{k, c, r, s}$$

Convolution with Dilation

$$y_{n, k, p, q} = \sum_c \sum_r \sum_s x_{n, c, p + (r\ast d_{h}), q + (s\ast d_{w})} \times w_{k, c, r, s}$$

Convolution using Convolution Mode

$$y_{n, k, p, q} = \sum_c \sum_r \sum_s x_{n, c, p + r, q + s} \times w_{k, c, r-1, s-1}$$

Convolution using Grouped Convolution

$$C_g = \frac{C}{G}$$

$$K_g = \frac{K}{G}$$

$$y_{n, k, p, q} = \sum_c \sum_r \sum_s x_{n, c, \text{floor}(k/K_g) + r, p + s} \times w_{k, c, r, s}$$

2.3. Notation
As of CUDNN v4 we have adopted a mathematically-inspired notation for layer inputs and outputs using x, y, dx, dy, b, w for common layer parameters. This was done to improve the readability and ease of understanding of the meaning of the parameters. All layers now follow a uniform convention as below:

During Inference:

$$y = \text{layerFunction}(x, \text{otherParams}).$$

During backpropagation:

$$(dx, d\text{OtherParams}) = \text{layerFunctionGradient}(x, y, dy, \text{otherParams})$$

For convolution the notation is

$$y = x*w+b$$

where w is the matrix of filter weights, x is the previous layer’s data (during inference), y is the next layer’s data, b is the bias and $*$ is the convolution operator.

In backpropagation routines the parameters keep their meanings.

The parameters dx, dy, dw, db always refer to the gradient of the final network error function with respect to a given parameter. So dy in all backpropagation routines always refers to error gradient backpropagated through the network computation graph so far. Similarly other parameters in more specialized layers, such as, for instance, $d\text{Means}$ or $d\text{BnBias}$ refer to gradients of the loss function wrt those parameters.

2.4. Tensor Descriptor

The cuDNN Library describes data holding images, videos and any other data with contents with a generic n-D tensor defined with the following parameters:

- a dimension nbDims from 3 to 8
- a data type (32-bit floating point, 64 bit-floating point, 16 bit floating point...)
- dimA integer array defining the size of each dimension
- strideA integer array defining the stride of each dimension (e.g the number of elements to add to reach the next element from the same dimension)

The first dimension of the tensor defines the batch size n, and the second dimension defines the number of features maps c. This tensor definition allows for example to have some dimensions overlapping each others within the same tensor by having the stride of one dimension smaller than the product of the dimension and the stride of the next dimension. In cuDNN, unless specified otherwise, all routines will support tensors with overlapping dimensions for forward pass input tensors, however, dimensions of the...
output tensors cannot overlap. Even though this tensor format supports negative strides
(which can be useful for data mirroring), cuDNN routines do not support tensors with
negative strides unless specified otherwise.

2.4.1. WXYZ Tensor Descriptor

Tensor descriptor formats are identified using acronyms, with each letter referencing a
corresponding dimension. In this document, the usage of this terminology implies:

‣ all the strides are strictly positive
‣ the dimensions referenced by the letters are sorted in decreasing order of their
 respective strides

2.4.2. 4-D Tensor Descriptor

A 4-D Tensor descriptor is used to define the format for batches of 2D images with 4
letters: N,C,H,W for respectively the batch size, the number of feature maps, the height
and the width. The letters are sorted in decreasing order of the strides. The commonly
used 4-D tensor formats are:

‣ NCHW
‣ NHWC
‣ CHWN

2.4.3. 5-D Tensor Description

A 5-D Tensor descriptor is used to define the format of batch of 3D images with 5 letters:
N,C,D,H,W for respectively the batch size, the number of feature maps, the depth, the
height and the width. The letters are sorted in decreasing order of the strides. The
commonly used 5-D tensor formats are called:

‣ NCDHW
‣ NDHWC
‣ CDHWN

2.4.4. Fully-packed tensors

A tensor is defined as **XYZ-fully-packed** if and only if:

‣ the number of tensor dimensions is equal to the number of letters preceding the
 fully-packed suffix.
‣ the stride of the i-th dimension is equal to the product of the (i+1)-th dimension by
 the (i+1)-th stride.
‣ the stride of the last dimension is 1.

2.4.5. Partially-packed tensors
The partially 'XYZ-packed' terminology only applies in a context of a tensor format described with a superset of the letters used to define a partially-packed tensor. A WXYZ tensor is defined as **XYZ-packed** if and only if:

- the strides of all dimensions NOT referenced in the -packed suffix are greater or equal to the product of the next dimension by the next stride.
- the stride of each dimension referenced in the -packed suffix in position i is equal to the product of the (i+1)-st dimension by the (i+1)-st stride.
- if last tensor’s dimension is present in the -packed suffix, its stride is 1.

For example a NHWC tensor WC-packed means that the c_stride is equal to 1 and w_stride is equal to c_dim x c_stride. In practice, the -packed suffix is usually with slowest changing dimensions of a tensor but it is also possible to refer to a NCHW tensor that is only N-packed.

2.4.6. Spatially packed tensors

Spatially-packed tensors are defined as partially-packed in spatial dimensions.

For example a spatially-packed 4D tensor would mean that the tensor is either NCHW HW-packed or CNHW HW-packed.

2.4.7. Overlapping tensors

A tensor is defined to be overlapping if a iterating over a full range of dimensions produces the same address more than once.

In practice an overlapped tensor will have stride[i-1] < stride[i]*dim[i] for some of the i from [1,nbDims] interval.

2.5. Thread Safety

The library is thread safe and its functions can be called from multiple host threads, as long as threads to do not share the same cuDNN handle simultaneously.

2.6. Reproducibility (determinism)

By design, most of cuDNN’s routines from a given version generate the same bit-wise results across runs when executed on GPUs with the same architecture and the same number of SMs. However, bit-wise reproducibility is not guaranteed across versions, as the implementation of a given routine may change. With the current release, the following routines do not guarantee reproducibility because they use atomic operations:

- **cudnnConvolutionBackwardFilter** when
 - **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0** or
 - **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3** is used
- **cudnnConvolutionBackwardData** when
 - **CUDNN_CONVOLUTION_BWD_DATA_ALGO_0** is used
2.7. Scaling Parameters

Many cuDNN routines like `cudnnConvolutionForward` accept pointers in host memory to scaling factors `alpha` and `beta`. These scaling factors are used to blend the computed values with the prior values in the destination tensor as follows (see Figure 1):

\[
dstValue = alpha \times \text{computedValue} + beta \times \text{priorDstValue}.
\]

The `dstValue` is written to after being read.

![Scaling Parameters Diagram](image)

Figure 1 Scaling Parameters for Convolution

When `beta` is zero, the output is not read and may contain uninitialized data (including NaN).

These parameters are passed using a host memory pointer. The storage data types for `alpha` and `beta` are:

- `float` for HALF and FLOAT tensors, and
- `double` for DOUBLE tensors.

For improved performance use `beta = 0.0`. Use a non-zero value for beta only when you need to blend the current output tensor values with the prior values of the output tensor.
Type Conversion

When the data input x, the filter input w and the output y are all in INT8 data type, the function `cudnnConvolutionBiasActivationForward()` will perform the type conversion as shown in Figure 2:

Accumulators are 32-bit integers which wrap on overflow.

Figure 2 INT8 for `cudnnConvolutionBiasActivationForward`

2.8. Tensor Core Operations

cuDNN v7 introduced the acceleration of compute intensive routines using Tensor Core hardware on supported GPU SM versions. Tensor Core acceleration (using Tensor Core Operations) can be exploited by the library user via the `cudnnMathType_t` enumerator. This enumerator specifies the available options for Tensor Core enablement and is expected to be applied on a per-routine basis.

Kernels using Tensor Core Operations for are available for both Convolutions and RNNs.

Tensor Core Operations for Convolution Functions

The below Convolution functions can be run as Tensor Core operations:

- `cudnnConvolutionForward`
- `cudnnConvolutionBackwardData`
Tensor Core Operations kernels will be triggered in these paths only when:

- `cudnnSetConvolutionMathType` is called on the appropriate convolution descriptor setting `mathType` to CUDNN_TENSOR_OP_MATH.
- `cudnnConvolutionForward` is called using algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM or CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED
- `cudnnConvolutionBackwardData` using algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 or CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED, and
- `cudnnConvolutionBackwardFilter` using algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 or CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED

For algorithms other than *-_ALGO_WINOGRAD_NONFUSED, the following are a few requirements to run Tensor Core operations:

- Input, Filter and Output descriptors (`xDesc`, `yDesc`, `wDesc`, `dxDesc`, `dyDesc` and `dwDesc` as applicable) have `dataType` = CUDNN_DATA_HALF.
- The number of Input and Output feature maps is a multiple of 8.
- The Filter is of type CUDNN_TENSOR_NCHW or CUDNN_TENSOR_NHWC. When using a filter of type CUDNN_TENSOR_NHWC, Input, Filter and Output data pointers (`X`, `Y`, `W`, `dX`, `dY`, and `dW` as applicable) need to be aligned to 128 bit boundaries.

Tensor Core Operations for RNN Functions

The RNN functions are:

- `cudnnRNNForwardInference`
- `cudnnRNNForwardTraining`
- `cudnnRNNBackwardData`
- `cudnnRNNBackwardWeights`
- `cudnnRNNForwardInferenceEx`
- `cudnnRNNForwardTrainingEx`
- `cudnnRNNBackwardDataEx`
- `cudnnRNNBackwardWeightsEx`

Tensor Core Operations kernels will be triggered in these paths only when:

- `cudnnSetRNNMatrixMathType` is called on the appropriate RNN descriptor setting `mathType` to CUDNN_TENSOR_OP_MATH.
- All routines are called using algo = CUDNN_RNN_ALGO_STANDARD or CUDNN_RNN_ALGO_PERSIST_STATIC. (new for 7.1)
For algo = CUDNN_RNN_ALGO_STANDARD, Hidden State size, Input size and Batch size are all multiples of 8. (new for 7.1)

For algo = CUDNN_RNN_ALGO_PERSIST_STATIC, Hidden State size and Input size are multiples of 32, Batch size is a multiple of 8. If Batch size exceeds 96 (forward training or inference) or 32 (backward data), Batch sizes constraints may be stricter and large power-of-two Batch sizes may be needed. (new for 7.1)

See also Features of RNN Functions.

2.8.1. Tensor Core Operations Notes

Some notes on Tensor Core Operations use in cuDNN v7 on sm_70:

Tensor Core operations are supported on the Volta GPU family, those operations perform parallel floating point accumulation of multiple floating point products. Setting the math mode to CUDNN_TENSOR_OP_MATH indicates that the library will use Tensor Core operations as mentioned previously. The default is CUDNN_DEFAULT_MATH, this default indicates that the Tensor Core operations will be avoided by the library. The default mode is a serialized operation, the Tensor Core operations are parallelized operation, thus the two might result in slight different numerical results due to the different sequencing of operations. Note: The library falls back to the default math mode when Tensor Core operations are not supported or not permitted.

The result of multiplying two matrices using Tensor Core Operations is very close, but not always identical, to the product achieved using some sequence of legacy scalar floating point operations. So cuDNN requires explicit user opt-in before enabling the use of Tensor Core Operations. However, experiments training common Deep Learning models show negligible difference between using Tensor Core Operations and legacy floating point paths as measured by both final network accuracy and iteration count to convergence. Consequently, the library treats both modes of operation as functionally indistinguishable, and allows for the legacy paths to serve as legitimate fallbacks for cases in which the use of Tensor Core Operations is unsuitable.

2.8.2. Tensor Operations Speedup Tips

Some tips on Reducing Computation Time for Tensor Core Operations:

- The computation time for FP32 tensors can be reduced by selecting CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum value for cudnnMathType_t. In this mode the FP32 tensors are internally down-converted to FP16, the tensor op math is performed, and finally up-converted to FP32 as outputs.
When the input channel size c is a multiple of 32, you can use the new data type
CUDNN_DATA_INT8x32 to accelerate your convolution computation. If you are
already using INT8, which is INT8x4, then to use the new INT8x32, ensure that your
data is such that the input channel size c is a multiple of 32, instead of a multiple
of 4, as you would have had it for INT8x4. The new CUDNN_DATA_INT8x32 data
type defines the data as 32-element vectors, each element being 8-bit signed integer.

This data type is only supported with the tensor format
CUDNN_TENSOR_NCHW_VECT_C. See the description for cudnnDataType_t.

This new data type can only be used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM. See
cudnnConvolutionFwdAlgo_t.

Note that this CUDNN_DATA_INT8x32 is only supported by sm_72.

2.9. GPU and driver requirements

cuDNN v7.0 supports NVIDIA GPUs of compute capability 3.0 and higher. For x86_64
platform, cuDNN v7.0 comes with two deliverables: one requires a NVIDIA Driver
compatible with CUDA Toolkit 8.0, the other requires a NVIDIA Driver compatible with
CUDA Toolkit 9.0.

If you are using cuDNN with a Volta GPU, version 7 or later is required.

2.10. Backward compatibility and deprecation policy

When changing the API of an existing cuDNN function "foo" (usually to support some
new functionality), first, a new routine "foo_v<n>" is created where n represents the
cuDNN version where the new API is first introduced, leaving "foo" untouched. This
ensures backward compatibility with the version $n-1$ of cuDNN. At this point, "foo" is
considered deprecated, and should be treated as such by users of cuDNN. We gradually
eliminate deprecated and suffixed API entries over the course of a few releases of the
library per the following policy:

‣ In release $n+1$, the legacy API entry "foo" is remapped to a new API "foo_v<f>"
where f is some cuDNN version anterior to n.
‣ Also in release $n+1$, the unsuffixed API entry "foo" is modified to have the same
signature as "foo_<n>". "foo_<n>" is retained as-is.
‣ The deprecated former API entry with an anterior suffix _v<f> and new API entry
with suffix _v<n> are maintained in this release.
‣ In release $n+2$, both suffixed entries of a given entry are removed.
As a rule of thumb, when a routine appears in two forms, one with a suffix and one with no suffix, the non-suffixed entry is to be treated as deprecated. In this case, it is strongly advised that users migrate to the new suffixed API entry to guarantee backwards compatibility in the following cuDNN release. When a routine appears with multiple suffixes, the unsuffixed API entry is mapped to the higher numbered suffix. In that case it is strongly advised to use the non-suffixed API entry to guarantee backward compatibility with the following cuDNN release.

2.11. Grouped Convolutions

cuDNN supports grouped convolutions by setting groupCount > 1 for the convolution descriptor convDesc, using cudnnSetConvolutionGroupCount().

By default the convolution descriptor convDesc is set to groupCount of 1.

Basic Idea

Conceptually, in grouped convolutions the input channels and the filter channels are split into groupCount number of independent groups, with each group having a reduced number of channels. Convolution operation is then performed separately on these input and filter groups.

For example, consider the following: if the number of input channels is 4, and the number of filter channels of 12. For a normal, ungrouped convolution, the number of computation operations performed are 12*4.

If the groupCount is set to 2, then there are now two input channel groups of two input channels each, and two filter channel groups of six filter channels each.

As a result, each grouped convolution will now perform 2*6 computation operations, and two such grouped convolutions are performed. Hence the computation savings are 2x: \(\frac{12\times4}{2\times(2\times6)} \)

cuDNN Grouped Convolution

- When using groupCount for grouped convolutions, you must still define all tensor descriptors so that they describe the size of the entire convolution, instead of specifying the sizes per group.
- Grouped convolutions are supported for all formats that are currently supported by the functions cudNNConvolutionForward(), cudnnConvolutionBackwardData() and cudnnConvolutionBackwardFilter().
- The tensor stridings that are set for groupCount of 1 are also valid for any group count.
- By default the convolution descriptor convDesc is set to groupCount of 1.

See Convolution Formulas for the math behind the cuDNN Grouped Convolution.
Example

Below is an example showing the dimensions and strides for grouped convolutions for NCHW format, for 2D convolution.

Note that the symbols “*” and “/” are used to indicate multiplication and division.

xDesc or dxDesc:
- **Dimensions:** \([\text{batch_size}, \text{input_channel}, \text{x_height}, \text{x_width}]\)
- **Strides:** \([\text{input_channels}\times\text{x_height}\times\text{x_width}, \text{x_height}\times\text{x_width}, \text{x_width}, 1]\)

wDesc or dwDesc:
- **Dimensions:** \([\text{output_channels}, \text{input_channels}/\text{groupCount}, \text{w_height}, \text{w_width}]\)
- **Format:** NCHW

convDesc:
- **Group Count:** groupCount

yDesc or dyDesc:
- **Dimensions:** \([\text{batch_size}, \text{output_channels}, \text{y_height}, \text{y_width}]\)
- **Strides:** \([\text{output_channels}\times\text{y_height}\times\text{y_width}, \text{y_height}\times\text{y_width}, \text{y_width}, 1]\)

2.12. API Logging

cuDNN API logging is a tool that records all input parameters passed into every cuDNN API function call. This functionality is disabled by default, and can be enabled through methods described in this section.

The log output contains variable names, data types, parameter values, device pointers, process ID, thread ID, cuDNN handle, cuda stream ID, and metadata such as time of the function call in microseconds.

When logging is enabled, the log output will be handled by the built-in default callback function. The user may also write their own callback function, and use the `cudnnSetCallback` to pass in the function pointer of their own callback function. The following is a sample output of the API log.

```
Function cudnnSetActivationDescriptor() called:
mode: type=cudnnActivationMode_t; val=CUDNN_ACTIVATION_RELU (1);
reluNanOpt: type=cudnnNanPropagation_t; val=CUDNN_NOT_PROPAGATE_NAN (0);
coef: type=double; val=1000.000000;
Time: 2017-11-21T14:14:21.366171 (0d+0h+1m+5s since start)
Process: 21264, Thread: 21264, cudnn_handle: NULL, cudnn_stream: NULL.
```

There are two methods to enable API logging.
Method 1: Using Environment Variables

To enable API logging using environment variables, follow these steps:

- Set the environment variable `CUDNN_LOGINFO_DBG` to “1”, and
- Set the environment variable `CUDNN_LOGDEST_DBG` to one of the following:
 - `stdout`, `stderr`, or a user-desired file path, for example, `/home/userName1/log.txt`.
- Include the conversion specifiers in the file name. For example:
 - To include date and time in the file name, use the date and time conversion specifiers: `log_%Y_%m_%d_%H_%M_%S.txt`. The conversion specifiers will be automatically replaced with the date and time when the program is initiated, resulting in `log_2017_11_21_09_41_00.txt`.
 - To include the process id in the file name, use the `%i` conversion specifier: `log_%Y_%m_%d_%H_%M_%S_%i.txt` for the result: `log_2017_11_21_09_41_00_21264.txt` when the process id is `21264`. When you have several processes running, using the process id conversion specifier will prevent these processes writing to the same file at the same time.

The supported conversion specifiers are similar to the `strftime` function.

If the file already exists, the log will overwrite the existing file.

These environmental variables are only checked once at the initialization. Any subsequent changes in these environmental variables will not be effective in the current run. Also note that these environment settings can be overridden by the Method 2 below.

See also Table 1 for the impact on performance of API logging using environment variables.

Table 1 API Logging Using Environment Variables

<table>
<thead>
<tr>
<th>Environment variables</th>
<th>CUDNN_LOGINFO_DBG=0</th>
<th>CUDNN_LOGINFO_DBG=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_LOGDEST_DBG not set</td>
<td>- No logging output</td>
<td>- No logging output</td>
</tr>
<tr>
<td></td>
<td>- No performance loss</td>
<td>- No performance loss</td>
</tr>
<tr>
<td>CUDNN_LOGDEST_DBG=NULL</td>
<td>- No logging output</td>
<td>- No logging output</td>
</tr>
<tr>
<td></td>
<td>- No performance loss</td>
<td>- No performance loss</td>
</tr>
<tr>
<td>CUDNN_LOGDEST_DBG=stdout</td>
<td>- No logging output</td>
<td>- Logging to stdout or stderr</td>
</tr>
<tr>
<td>or stderr</td>
<td>- No performance loss</td>
<td>- Some performance loss</td>
</tr>
</tbody>
</table>
2.13. Features of RNN Functions

The RNN functions are:

- cudnnRNNForwardInference
- cudnnRNNForwardTraining
- cudnnRNNBackwardData
- cudnnRNNBackwardWeights
- cudnnRNNForwardInferenceEx
- cudnnRNNForwardTrainingEx
- cudnnRNNBackwardDataEx
- cudnnRNNBackwardWeightsEx

See the table below for a list of features supported by each RNN function:

<table>
<thead>
<tr>
<th>Functions</th>
<th>Input output layout supported</th>
<th>Supports variable sequence length in batch</th>
<th>Commonly supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>cudnnRNNForwardInference</td>
<td>Only Sequence major, packed (non-padded)</td>
<td>Only with _ALGO_STANDARD</td>
<td>Mode (cell type) supported: CUDNN_RNN_RELU, CUDNN_RNN_TANH, CUDNN_LSTM, CUDNN_GRU</td>
</tr>
<tr>
<td>cudnnRNNForwardTraining</td>
<td></td>
<td>Require input sequences descending sorted according to length</td>
<td>Algo supported* (see the table below for an elaboration on these algorithms): _ALGO_STANDARD, _ALGO_PERSIST_STATIC, _ALGO_PERSIST_DYNAMIC</td>
</tr>
<tr>
<td>cudnnRNNBackwardData</td>
<td></td>
<td></td>
<td>Math mode supported:</td>
</tr>
<tr>
<td>cudnnRNNBackwardWeights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cudnnRNNForwardInferenceEx</td>
<td>Sequence major unpacked, Batch major unpacked**,</td>
<td>Only with _ALGO_STANDARD</td>
<td></td>
</tr>
<tr>
<td>cudnnRNNForwardTrainingEx</td>
<td></td>
<td>For unpacked layout**, no input sorting required.</td>
<td></td>
</tr>
<tr>
<td>cudnnRNNBackwardDataEx</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each of these terms, the short-form versions shown in the parenthesis are used in the tables below for brevity: CUDNN_RNN_ALGO_STANDARD (_ALGO_STANDARD), CUDNN_RNN_ALGO_PERSIST_STATIC (_ALGO_PERSIST_STATIC), CUDNN_RNN_ALGO_PERSIST_DYNAMIC (_ALGO_PERSIST_DYNAMIC), and CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION (_ALLOW_CONVERSION).

Method 2

Method 2: To use API function calls to enable API logging, refer to the API description of cudnnSetCallback() and cudnnGetCallback().
cudnnRNNBackwardWeightsEx

Sequence major packed**

For packed layout, require input sequences descending sorted according to length

- **CUDNN_DEFAULT_MATH,**
- **CUDNN_TENSOR_OP_MATH** (will automatically fall back if run on pre-Volta, or if algo doesn’t support HMMA acceleration)
- **ALLOW_CONVERSION** (may do down conversion to utilize HMMA acceleration)

Direction mode supported:
- **CUDNN_UNIDIRECTIONAL,**
- **CUDNN_BIDIRECTIONAL**

RNN input mode:
- **CUDNN_LINEAR_INPUT,**
- **CUDNN_SKIP_INPUT**

* Do not mix different algos for different steps of training. It’s also not recommended to mix non-extended and extended API for different steps of training.

** To use unpacked layout, user need to set CUDNN_RNN_PADDED_IO_ENABLED through cudnnSetRNNPaddingMode.

The following table provides the features supported by the algorithms referred in the above table: **CUDNN_RNN_ALGO_STANDARD,** **CUDNN_RNN_ALGO_PERSIST_STATIC,** and **CUDNN_RNN_ALGO_PERSIST_DYNAMIC.**

<table>
<thead>
<tr>
<th>Features</th>
<th>_ALGO_STANDARD</th>
<th>_ALGO_PERSIST_STATIC</th>
<th>_ALGO_PERSIST_DYNAMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half input</td>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single accumulation</td>
<td>Half intermediate storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half output</td>
<td>Single accumulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single input</td>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single accumulation</td>
<td>If running on Volta, with CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION, will down-convert and use half intermediate storage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single output</td>
<td>Otherwise: Single intermediate storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single accumulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double input</td>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double accumulation</td>
<td>Double intermediate storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double output</td>
<td>Double accumulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double intermediate storage</td>
<td>Not Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double accumulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double output</td>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSTM recurrent projection</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>LSTM cell clipping</td>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable sequence length in batch</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>HMMA acceleration on Volta/Xavier</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td>For half input/output, acceleration requires setting</td>
<td>CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION</td>
<td>Acceleration requires inputSize and hiddenSize to be multiple of 8</td>
</tr>
<tr>
<td></td>
<td>For single input/output, acceleration requires setting</td>
<td>CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION</td>
<td>Acceleration requires inputSize and hiddenSize to be multiple of 8</td>
</tr>
<tr>
<td>Other limitations</td>
<td>Max problem size is limited by GPU specifications.</td>
<td>Requires real time compilation through NVRTC</td>
<td></td>
</tr>
</tbody>
</table>

!CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION can be set through cudnnSetRNNMatrixMathType.

2.14. Mixed Precision Numerical Accuracy

When the computation precision and the output precision are not the same, it is possible that the numerical accuracy will vary from one algorithm to the other.

For example, when the computation is performed in FP32 and the output is in FP16, the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 ("ALGO_0") has lower accuracy compared to the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 ("ALGO_1"). This is because ALGO_0 does not use extra workspace, and is forced to accumulate the intermediate results in FP16, i.e., half precision float, and this reduces the accuracy. The ALGO_1, on the other hand, uses additional workspace to accumulate the intermediate values in FP32, i.e., full precision float.
This chapter describes all the types and enums of the cuDNN library API.

3.1. cudnnActivationDescriptor_t

cudnnActivationDescriptor_t is a pointer to an opaque structure holding the description of a activation operation. cudnnCreateActivationDescriptor() is used to create one instance, and cudnnSetActivationDescriptor() must be used to initialize this instance.

3.2. cudnnActivationMode_t

cudnnActivationMode_t is an enumerated type used to select the neuron activation function used in cudnnActivationForward(), cudnnActivationBackward() and cudnnConvolutionBiasActivationForward().

Values

CUDNN_ACTIVATION_SIGMOID
 Selects the sigmoid function.

CUDNN_ACTIVATION_RELU
 Selects the rectified linear function.

CUDNN_ACTIVATION_TANH
 Selects the hyperbolic tangent function.

CUDNN_ACTIVATION_CLIPPED_RELU
 Selects the clipped rectified linear function.

CUDNN_ACTIVATION_ELU
 Selects the exponential linear function.
CUDNN_ACTIVATION_IDENTITY (new for 7.1)

Selects the identity function, intended for bypassing the activation step in cudnnConvolutionBiasActivationForward(). (The cudnnConvolutionBiasActivationForward() function must use CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.) Does not work with cudnnActivationForward() or cudnnActivationBackward().

3.3. cudnnBatchNormMode_t

cudnnBatchNormMode_t is an enumerated type used to specify the mode of operation in cudnnBatchNormalizationForwardInference(), cudnnBatchNormalizationForwardTraining(), cudnnBatchNormalizationBackward() and cudnnDeriveBNTensorDescriptor() routines.

Values

CUDNN_BATCHNORM_PER_ACTIVATION

Normalization is performed per-activation. This mode is intended to be used after non-convolutional network layers. In this mode the tensor dimensions of bnBias and bnScale, the parameters used in the cudnnBatchNormalization* functions, are 1xCxHxW.

CUDNN_BATCHNORM_SPATIAL

Normalization is performed over N+spatial dimensions. This mode is intended for use after convolutional layers (where spatial invariance is desired). In this mode the bnBias, bnScale tensor dimensions are 1xCx1x1.

CUDNN_BATCHNORM_SPATIAL_PERSISTENT

This mode is similar to CUDNN_BATCHNORM_SPATIAL but it can be faster for some tasks.

An optimized path may be selected for CUDNN_DATA_FLOAT and CUDNN_DATA_HALF types, compute capability 6.0 or higher for the following two batch normalization API calls: cudnnBatchNormalizationForwardTraining(), and cudnnBatchNormalizationBackward(). In the case of cudnnBatchNormalizationBackward(), the savedMean and savedInvVariance arguments should not be NULL.

The rest of this section applies for NCHW mode only:

This mode may use a scaled atomic integer reduction that is deterministic but imposes more restrictions on the input data range. When a numerical overflow occurs the algorithm may produce NaN-s or Inf-s (infinity) in output buffers.

When Inf-s/NaN-s are present in the input data, the output in this mode is the same as from a pure floating-point implementation.

For finite but very large input values, the algorithm may encounter overflows more frequently due to a lower dynamic range and emit Inf-s/NaN-s while
CUDNN_BATCHNORM_SPATIAL will produce finite results. The user can invoke `cudnnQueryRuntimeError()` to check if a numerical overflow occurred in this mode.

3.4. cudnnBatchNormOps_t

`cudnnBatchNormOps_t` is an enumerated type used to specify the mode of operation in `cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()`, `cudnnBatchNormalizationForwardTrainingEx()`, `cudnnGetBatchNormalizationBackwardExWorkspaceSize()`, `cudnnBatchNormalizationBackwardEx()`, and `cudnnGetBatchNormalizationTrainingExReserveSpaceSize()` functions.

Values

- **CUDNN_BATCHNORM_OPS_BN**
 - Only batch normalization is performed, per-activation.

- **CUDNN_BATCHNORM_OPS_BN_ACTIVATION**
 - First the batch normalization is performed, and then the activation is performed.

- **CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION**
 - Performs the batch normalization, then element-wise addition, followed by the activation operation.

3.5. cudnnCTCLossAlgo_t

`cudnnCTCLossAlgo_t` is an enumerated type that exposes the different algorithms available to execute the CTC loss operation.

Values

- **CUDNN_CTC_LOSS_ALGO_DETERMINISTIC**
 - Results are guaranteed to be reproducible

- **CUDNN_CTC_LOSS_ALGO_NON_DETERMINISTIC**
 - Results are not guaranteed to be reproducible

3.6. cudnnCTCLossDescriptor_t

`cudnnCTCLossDescriptor_t` is a pointer to an opaque structure holding the description of a CTC loss operation. `cudnnCreateCTCLossDescriptor()` is used to create one instance, `cudnnSetCTCLossDescriptor()` is be used to initialize this instance, `cudnnDestroyCTCLossDescriptor()` is be used to destroy this instance.
3.7. cudnnConvolutionBwdDataAlgoPerf_t

cudnnConvolutionBwdDataAlgoPerf_t is a structure containing performance results returned by cudnnFindConvolutionBackwardDataAlgorithm() or heuristic results returned by cudnnGetConvolutionBackwardDataAlgorithm_v7().

Data Members

cudnnConvolutionBwdDataAlgo_t algo

The algorithm run to obtain the associated performance metrics.

cudnnStatus_t status

If any error occurs during the workspace allocation or timing of cudnnConvolutionBackwardData(), this status will represent that error. Otherwise, this status will be the return status of cudnnConvolutionBackwardData().

- CUDNN_STATUS_ALLOC_FAILED if any error occurred during workspace allocation or if provided workspace is insufficient.
- CUDNN_STATUS_INTERNAL_ERROR if any error occurred during timing calculations or workspace deallocation.
- Otherwise, this will be the return status of cudnnConvolutionBackwardData().

float time

The execution time of cudnnConvolutionBackwardData() (in milliseconds).

size_t memory

The workspace size (in bytes).

cudnnDeterminism_t determinism

The determinism of the algorithm.

cudnnMathType_t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

3.8. cudnnConvolutionBwdDataAlgo_t

cudnnConvolutionBwdDataAlgo_t is an enumerated type that exposes the different algorithms available to execute the backward data convolution operation.

Values
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0

This algorithm expresses the convolution as a sum of matrix product without actually explicitly form the matrix that holds the input tensor data. The sum is done using atomic adds operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

This algorithm expresses the convolution as a matrix product without actually explicitly form the matrix that holds the input tensor data. The results are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT

This algorithm uses a Fast-Fourier Transform approach to compute the convolution. A significant memory workspace is needed to store intermediate results. The results are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING

This algorithm uses the Fast-Fourier Transform approach but splits the inputs into tiles. A significant memory workspace is needed to store intermediate results but less than CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT for large size images. The results are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD

This algorithm uses the Winograd Transform approach to compute the convolution. A reasonably sized workspace is needed to store intermediate results. The results are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution. Significant workspace may be needed to store intermediate results. The results are deterministic.

3.9. cudnnConvolutionBwdDataPreference_t

cudnnConvolutionBwdDataPreference_t is an enumerated type used by *cudnnGetConvolutionBackwardDataAlgorithm()* to help the choice of the algorithm used for the backward data convolution.

Values

CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE

In this configuration, the routine *cudnnGetConvolutionBackwardDataAlgorithm()* is guaranteed to return an algorithm that does not require any extra workspace to be provided by the user.

CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST

In this configuration, the routine *cudnnGetConvolutionBackwardDataAlgorithm()* will return the fastest algorithm regardless how much workspace is needed to execute it.
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT

In this configuration, the routine `cudnnGetConvolutionBackwardDataAlgorithm()` will return the fastest algorithm that fits within the memory limit that the user provided.

3.10. cudnnConvolutionBwdFilterAlgoPerf_t

cudnnConvolutionBwdFilterAlgoPerf_t is a structure containing performance results returned by `cudnnFindConvolutionBackwardFilterAlgorithm()` or heuristic results returned by `cudnnGetConvolutionBackwardFilterAlgorithm_v7()`.

Data Members

cudnnConvolutionBwdFilterAlgoPerf_t algo

The algorithm run to obtain the associated performance metrics.

cudnnStatus_t status

If any error occurs during the workspace allocation or timing of `cudnnConvolutionBackwardFilter()`, this status will represent that error. Otherwise, this status will be the return status of `cudnnConvolutionBackwardFilter()`.

- **CUDNN_STATUS_ALLOC_FAILED** if any error occurred during workspace allocation or if provided workspace is insufficient.
- **CUDNN_STATUS_INTERNAL_ERROR** if any error occurred during timing calculations or workspace deallocation.
- Otherwise, this will be the return status of `cudnnConvolutionBackwardFilter()`.

float time

The execution time of `cudnnConvolutionBackwardFilter()` (in milliseconds).

size_t memory

The workspace size (in bytes).

cudnnDeterminism_t determinism

The determinism of the algorithm.

cudnnMathType_t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

3.11. cudnnConvolutionBwdFilterAlgo_t
cudnnConvolutionBwdFilterAlgo_t is an enumerated type that exposes the different algorithms available to execute the backward filter convolution operation.

Values

- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0**

 This algorithm expresses the convolution as a sum of matrix product without actually explicitly form the matrix that holds the input tensor data. The sum is done using atomic adds operation, thus the results are non-deterministic.

- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1**

 This algorithm expresses the convolution as a matrix product without actually explicitly form the matrix that holds the input tensor data. The results are deterministic.

- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT**

 This algorithm uses the Fast-Fourier Transform approach to compute the convolution. Significant workspace is needed to store intermediate results. The results are deterministic.

- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3**

 This algorithm is similar to **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0** but uses some small workspace to precomputes some indices. The results are also non-deterministic.

- **CUDNN_CONVOLUTION_BWD_FILTER_WINOGRAD_NONFUSED**

 This algorithm uses the Winograd Transform approach to compute the convolution. Significant workspace may be needed to store intermediate results. The results are deterministic.

- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING**

 This algorithm uses the Fast-Fourier Transform approach to compute the convolution but splits the input tensor into tiles. Significant workspace may be needed to store intermediate results. The results are deterministic.

3.12. cudnnConvolutionBwdFilterPreference_t

cudnnConvolutionBwdFilterPreference_t is an enumerated type used by **cudnnGetConvolutionBackwardFilterAlgorithm()** to help the choice of the algorithm used for the backward filter convolution.

Values

- **CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE**

 In this configuration, the routine **cudnnGetConvolutionBackwardFilterAlgorithm()** is guaranteed to return an algorithm that does not require any extra workspace to be provided by the user.
CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST

In this configuration, the routine
cudnnGetConvolutionBackwardFilterAlgorithm() will return the fastest algorithm regardless how much workspace is needed to execute it.

CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT

In this configuration, the routine
cudnnGetConvolutionBackwardFilterAlgorithm() will return the fastest algorithm that fits within the memory limit that the user provided.

3.13. cudnnConvolutionDescriptor_t

cudnnConvolutionDescriptor_t is a pointer to an opaque structure holding the description of a convolution operation. cudnnCreateConvolutionDescriptor() is used to create one instance, and cudnnSetConvolutionNdDescriptor() or cudnnSetConvolution2dDescriptor() must be used to initialize this instance.

3.14. cudnnConvolutionFwdAlgoPerf_t

cudnnConvolutionFwdAlgoPerf_t is a structure containing performance results returned by cudnnFindConvolutionForwardAlgorithm() or heuristic results returned by cudnnGetConvolutionForwardAlgorithm_v7().

Data Members

cudnnConvolutionFwdAlgo_t algo

The algorithm run to obtain the associated performance metrics.

cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionForward(), this status will represent that error. Otherwise, this status will be the return status of cudnnConvolutionForward().

- CUDNN_STATUS_ALLOC_FAILED if any error occured during workspace allocation or if provided workspace is insufficient.
- CUDNN_STATUS_INTERNAL_ERROR if any error occured during timing calculations or workspace deallocation.
- Otherwise, this will be the return status of cudnnConvolutionForward().

float time

The execution time of cudnnConvolutionForward() (in milliseconds).

size_t memory

The workspace size (in bytes).

cudnnDeterminism_t determinism

The determinism of the algorithm.
cudnnMathType_t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

3.15. cudnnConvolutionFwdAlgo_t

cudnnConvolutionFwdAlgo_t is an enumerated type that exposes the different algorithms available to execute the forward convolution operation.

Values

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

This algorithm expresses the convolution as a matrix product without actually explicitly form the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

This algorithm expresses the convolution as a matrix product without actually explicitly form the matrix that holds the input tensor data, but still needs some memory workspace to precompute some indices in order to facilitate the implicit construction of the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_GEMM

This algorithm expresses the convolution as an explicit matrix product. A significant memory workspace is needed to store the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_DIRECT

This algorithm expresses the convolution as a direct convolution (e.g. without implicitly or explicitly doing a matrix multiplication).

CUDNN_CONVOLUTION_FWD_ALGO_FFT

This algorithm uses the Fast-Fourier Transform approach to compute the convolution. A significant memory workspace is needed to store intermediate results.

CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING

This algorithm uses the Fast-Fourier Transform approach but splits the inputs into tiles. A significant memory workspace is needed to store intermediate results but less than CUDNN_CONVOLUTION_FWD_ALGO_FFT for large size images.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD

This algorithm uses the Winograd Transform approach to compute the convolution. A reasonably sized workspace is needed to store intermediate results.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution. Significant workspace may be needed to store intermediate results.
3.16. cudnnConvolutionFwdPreference_t

cudnnConvolutionFwdPreference_t is an enumerated type used by cudnnGetConvolutionForwardAlgorithm() to help the choice of the algorithm used for the forward convolution.

Values

CUDNN_CONVOLUTION_FWD_NO_WORKSPACE

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm() is guaranteed to return an algorithm that does not require any extra workspace to be provided by the user.

CUDNN_CONVOLUTION_FWD_PREFER_FASTEST

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm() will return the fastest algorithm regardless how much workspace is needed to execute it.

CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm() will return the fastest algorithm that fits within the memory limit that the user provided.

3.17. cudnnConvolutionMode_t

cudnnConvolutionMode_t is an enumerated type used by cudnnSetConvolutionDescriptor() to configure a convolution descriptor. The filter used for the convolution can be applied in two different ways, corresponding mathematically to a convolution or to a cross-correlation. (A cross-correlation is equivalent to a convolution with its filter rotated by 180 degrees.)

Values

CUDNN_CONVOLUTION

In this mode, a convolution operation will be done when applying the filter to the images.

CUDNN_CROSS_CORRELATION

In this mode, a cross-correlation operation will be done when applying the filter to the images.

3.18. cudnnDataType_t

cudnnDataType_t is an enumerated type indicating the data type to which a tensor descriptor or filter descriptor refers.

Values
CUDNN_DATA_FLOAT
The data is 32-bit single-precision floating point (float).

CUDNN_DATA_DOUBLE
The data is 64-bit double-precision floating point (double).

CUDNN_DATA_HALF
The data is 16-bit floating point.

CUDNN_DATA_INT8
The data is 8-bit signed integer.

CUDNN_DATA_UINT8 (new for 7.1)
The data is 8-bit unsigned integer.

CUDNN_DATA_INT32
The data is 32-bit signed integer.

CUDNN_DATA_INT8x4
The data is 32-bit elements each composed of 4 8-bit signed integer. This data type is only supported with tensor format CUDNN_TENSOR_NCHW_VECT_C.

CUDNN_DATA_INT8x32
The data is 32-element vectors, each element being 8-bit signed integer. This data type is only supported with the tensor format CUDNN_TENSOR_NCHW_VECT_C. Moreover, this data type can only be used with “algo 1,” i.e., CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM. See cudnnConvolutionFwdAlgo_t.

CUDNN_DATA_UINT8x4 (new for 7.1)
The data is 32-bit elements each composed of 4 8-bit unsigned integer. This data type is only supported with tensor format CUDNN_TENSOR_NCHW_VECT_C.

3.19. cudnnDeterminism_t

cudnnDeterminism_t is an enumerated type used to indicate if the computed results are deterministic (reproducible). See section 2.5 (Reproducibility) for more details on determinism.

Values

CUDNN_NON_DETERMINISTIC
Results are not guaranteed to be reproducible

CUDNN_DETERMINISTIC
Results are guaranteed to be reproducible

3.20. cudnnDirectionMode_t
cudnnDirectionMode_t is an enumerated type used to specify the recurrence pattern in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Values

CUDNN_UNIDIRECTIONAL
The network iterates recurrently from the first input to the last.

CUDNN_BIDIRECTIONAL
Each layer of the network iterates recurrently from the first input to the last and separately from the last input to the first. The outputs of the two are concatenated at each iteration giving the output of the layer.

3.21. cudnnDivNormMode_t

cudnnDivNormMode_t is an enumerated type used to specify the mode of operation in cudnnDivisiveNormalizationForward() and cudnnDivisiveNormalizationBackward().

Values

CUDNN_DIVNORM_PRECOMPUTED_MEANS
The means tensor data pointer is expected to contain means or other kernel convolution values precomputed by the user. The means pointer can also be NULL in that case it's considered to be filled with zeroes. This is equivalent to spatial LRN. Note that in the backward pass the means are treated as independent inputs and the gradient over means is computed independently. In this mode to yield a net gradient over the entire LCN computational graph the destDiffMeans result should be backpropagated through the user's means layer (which can be implemented using average pooling) and added to the destDiffData tensor produced by cudnnDivisiveNormalizationBackward.

3.22. cudnnDropoutDescriptor_t

cudnnDropoutDescriptor_t is a pointer to an opaque structure holding the description of a dropout operation. cudnnCreateDropoutDescriptor() is used to create one instance, cudnnSetDropoutDescriptor() is used to initialize this instance, cudnnDestroyDropoutDescriptor() is used to destroy this instance, cudnnGetDropoutDescriptor() is used to query fields of a previously initialized instance, cudnnRestoreDropoutDescriptor() is used to restore an instance to a previously saved off state.

3.23. cudnnErrQueryMode_t

cudnnErrQueryMode_t is an enumerated type passed to cudnnQueryRuntimeError() to select the remote kernel error query mode.
Values

CUDNN_ERRQUERY_RAWCODE
Read the error storage location regardless of the kernel completion status.

CUDNN_ERRQUERY_NONBLOCKING
Report if all tasks in the user stream of the cuDNN handle were completed. If that is the case, report the remote kernel error code.

CUDNN_ERRQUERY_BLOCKING
Wait for all tasks to complete in the user stream before reporting the remote kernel error code.

3.24. **cudnnFilterDescriptor_t**

cudnnFilterDescriptor_t is a pointer to an opaque structure holding the description of a filter dataset. cudnnCreateFilterDescriptor() is used to create one instance, and cudnnSetFilter4dDescriptor() or cudnnSetFilterNdDescriptor() must be used to initialize this instance.

3.25. **cudnnHandle_t**

cudnnHandle_t is a pointer to an opaque structure holding the cuDNN library context. The cuDNN library context must be created using cudnnCreate() and the returned handle must be passed to all subsequent library function calls. The context should be destroyed at the end using cudnnDestroy(). The context is associated with only one GPU device, the current device at the time of the call to cudnnCreate(). However multiple contexts can be created on the same GPU device.

3.26. **cudnnIndicesType_t**

cudnnIndicesType_t is an enumerated type used to indicate the data type for the indices to be computed by the cudnnReduceTensor() routine. This enumerated type is used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values

CUDNN_32BIT_INDICES
Compute unsigned int indices

CUDNN_64BIT_INDICES
Compute unsigned long long indices

CUDNN_16BIT_INDICES
Compute unsigned short indices

CUDNN_8BIT_INDICES
Compute unsigned char indices
3.27. cudnnLRNMode_t

cudnnLRNMode_t is an enumerated type used to specify the mode of operation in cudnnLRNCrossChannelForward() and cudnnLRNCrossChannelBackward().

Values

CUDNN_LRN_CROSS_CHANNEL_DIM1

LRN computation is performed across tensor's dimension dimA[1].

3.28. cudnnMathType_t

cudnnMathType_t is an enumerated type used to indicate if the use of Tensor Core Operations is permitted a given library routine.

Values

CUDNN_DEFAULT_MATH

Tensor Core Operations are not used.

CUDNN_TENSOR_OP_MATH

The use of Tensor Core Operations is permitted.

CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION

Enables the use of FP32 tensors for both input and output.

3.29. cudnnNanPropagation_t

cudnnNanPropagation_t is an enumerated type used to indicate if a given routine should propagate Nan numbers. This enumerated type is used as a field for the cudnnActivationDescriptor_t descriptor and cudnnPoolingDescriptor_t descriptor.

Values

CUDNN_NOT_PROPAGATE_NAN

Nan numbers are not propagated

CUDNN_PROPAGATE_NAN

Nan numbers are propagated

3.30. cudnnOpTensorDescriptor_t

cudnnOpTensorDescriptor_t is a pointer to an opaque structure holding the description of a Tensor Ccore Operation, used as a parameter to cudnnOpTensor().
cudnnCreateOpTensorDescriptor() is used to create one instance, and cudnnSetOpTensorDescriptor() must be used to initialize this instance.

3.31. cudnnOpTensorOp_t

cudnnOpTensorOp_t is an enumerated type used to indicate the Tensor Core Operation to be used by the cudnnOpTensor() routine. This enumerated type is used as a field for the cudnnOpTensorDescriptor_t descriptor.

Values

CUDNN_OP_TENSOR_ADD
The operation to be performed is addition

CUDNN_OP_TENSOR_MUL
The operation to be performed is multiplication

CUDNN_OP_TENSOR_MIN
The operation to be performed is a minimum comparison

CUDNN_OP_TENSOR_MAX
The operation to be performed is a maximum comparison

CUDNN_OP_TENSOR_SQRT
The operation to be performed is square root, performed on only the A tensor

CUDNN_OP_TENSOR_NOT
The operation to be performed is negation, performed on only the A tensor

3.32. cudnnPersistentRNNPlan_t

cudnnPersistentRNNPlan_t is a pointer to an opaque structure holding a plan to execute a dynamic persistent RNN. cudnnCreatePersistentRNNPlan() is used to create and initialize one instance.

3.33. cudnnPoolingDescriptor_t

cudnnPoolingDescriptor_t is a pointer to an opaque structure holding the description of a pooling operation. cudnnCreatePoolingDescriptor() is used to create one instance, and cudnnSetPoolingNdDescriptor() or cudnnSetPooling2dDescriptor() must be used to initialize this instance.

3.34. cudnnPoolingMode_t
cudnnPoolingMode_t is an enumerated type passed to **cudnnSetPoolingDescriptor()** to select the pooling method to be used by **cudnnPoolingForward()** and **cudnnPoolingBackward()**.

Values

CUDNN_POOLING_MAX

The maximum value inside the pooling window is used.

CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING

Values inside the pooling window are averaged. The number of elements used to calculate the average includes spatial locations falling in the padding region.

CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING

Values inside the pooling window are averaged. The number of elements used to calculate the average excludes spatial locations falling in the padding region.

CUDNN_POOLING_MAX_DETERMINISTIC

The maximum value inside the pooling window is used. The algorithm used is deterministic.

3.35. **cudnnRNNAlgo_t**

cudnnRNNAlgo_t is an enumerated type used to specify the algorithm used in the **cudnnRNNForwardInference()**, **cudnnRNNForwardTraining()**, **cudnnRNNBackwardData()** and **cudnnRNNBackwardWeights()** routines.

Values

CUDNN_RNN_ALGO_STANDARD

Each RNN layer is executed as a sequence of operations. This algorithm is expected to have robust performance across a wide range of network parameters.

CUDNN_RNN_ALGO_PERSIST_STATIC

The recurrent parts of the network are executed using a *persistent kernel* approach. This method is expected to be fast when the first dimension of the input tensor is small (ie. a small minibatch).

CUDNN_RNN_ALGO_PERSIST_STATIC is only supported on devices with compute capability ≥ 6.0.

CUDNN_RNN_ALGO_PERSIST_DYNAMIC

The recurrent parts of the network are executed using a *persistent kernel* approach. This method is expected to be fast when the first dimension of the input tensor is small (ie. a small minibatch). When using **CUDNN_RNN_ALGO_PERSIST_DYNAMIC** persistent kernels are prepared at runtime and are able to optimized using the specific parameters of the network and active GPU. As such, when using **CUDNN_RNN_ALGO_PERSIST_DYNAMIC** a one-time plan preparation stage must be executed. These plans can then be reused in repeated calls with the same model parameters.
The limits on the maximum number of hidden units supported when using `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` are significantly higher than the limits when using `CUDNN_RNN_ALGO_PERSIST_STATIC`, however throughput is likely to significantly reduce when exceeding the maximums supported by `CUDNN_RNN_ALGO_PERSIST_STATIC`. In this regime this method will still outperform `CUDNN_RNN_ALGO_STANDARD` for some cases.

`CUDNN_RNN_ALGO_PERSIST_DYNAMIC` is only supported on devices with compute capability >= 6.0 on Linux machines.

3.36. cudnnRNNClipMode_t

cudnnRNNClipMode_t is an enumerated type used to select the LSTM cell clipping mode. It is used with `cudnnRNNSetClip()`, `cudnnRNNGetClip()` functions, and internally within LSTM cells.

Values

- **CUDNN_RNN_CLIP_NONE**
 - Disables LSTM cell clipping.
- **CUDNN_RNN_CLIP_MINMAX**
 - Enables LSTM cell clipping.

3.37. cudnnRNNDescriptor_t

cudnnRNNDescriptor_t is a pointer to an opaque structure holding the description of an RNN operation. `cudnnCreateRNNDescriptor()` is used to create one instance, and `cudnnSetRNNDescriptor()` must be used to initialize this instance.

3.38. cudnnRNNDataDescriptor_t

cudnnRNNDataDescriptor_t is a pointer to an opaque structure holding the description of a RNN data set. The function `cudnnCreateRNNDataDescriptor()` is used to create one instance, and `cudnnSetRNNDataDescriptor()` must be used to initialize this instance.

3.39. cudnnRNNInputMode_t

cudnnRNNInputMode_t is an enumerated type used to specify the behavior of the first layer in the `cudnnRNNForwardInference()`, `cudnnRNNForwardTraining()`, `cudnnRNNBackwardData()` and `cudnnRNNBackwardWeights()` routines.

Values
CUDNN_LINEAR_INPUT
A biased matrix multiplication is performed at the input of the first recurrent layer.

CUDNN_SKIP_INPUT
No operation is performed at the input of the first recurrent layer. If CUDNN_SKIP_INPUT is used the leading dimension of the input tensor must be equal to the hidden state size of the network.

3.40. cudnnRNNMode_t

cudnnRNNMode_t is an enumerated type used to specify the type of network used in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Values

CUDNN_RNN_RELU
A single-gate recurrent neural network with a ReLU activation function.

In the forward pass the output h_t for a given iteration can be computed from the recurrent input h_{t-1} and the previous layer input x_t given matrices W, R and biases b_W, b_R from the following equation:

$$h_t = \text{ReLU}(W_i x_t + R_i h_{t-1} + b_{Wi} + b_{Ri})$$

Where $\text{ReLU}(x) = \max(x, 0)$.

CUDNN_RNN_TANH
A single-gate recurrent neural network with a tanh activation function.

In the forward pass the output h_t for a given iteration can be computed from the recurrent input h_{t-1} and the previous layer input x_t given matrices W, R and biases b_W, b_R from the following equation:

$$h_t = \tanh(W_i x_t + R_i h_{t-1} + b_{Wi} + b_{Ri})$$

Where \tanh is the hyperbolic tangent function.

CUDNN_LSTM
A four-gate Long Short-Term Memory network with no peephole connections.

In the forward pass the output h_t and cell output c_t for a given iteration can be computed from the recurrent input h_{t-1}, the cell input c_{t-1} and the previous layer input x_t given matrices W, R and biases b_W, b_R from the following equations:

$$
\begin{align*}
i_t &= \sigma(W_i x_t + R_i h_{t-1} + b_{Wi} + b_{Ri}) \\
f_t &= \sigma(W_f x_t + R_f h_{t-1} + b_{Wf} + b_{Rf}) \\
o_t &= \sigma(W_o x_t + R_o h_{t-1} + b_{Wo} + b_{Ro}) \\
c'_t &= \tanh(W_c x_t + R_c h_{t-1} + b_{Wc} + b_{ Rc}) \\
c_t &= f_t \cdot c_{t-1} + i_t \cdot c'_t \\
h_t &= o_t \cdot \tanh(c_t)
\end{align*}
$$
Where σ is the sigmoid operator: $\sigma(x) = 1 / (1 + e^{-x})$, \circ represents a point-wise multiplication and \tanh is the hyperbolic tangent function. i_t, f_t, o_t, c'_t represent the input, forget, output and new gates respectively.

CUDNN_GRU

A three-gate network consisting of Gated Recurrent Units.

In the forward pass the output h_t for a given iteration can be computed from the recurrent input h_{t-1} and the previous layer input x_t given matrices W, R and biases b_W, b_R from the following equations:

$$i_t = \sigma(W_i x_t + R_i h_{t-1} + b_{W_i} + b_{R_i})$$

$$r_t = \sigma(W_r x_t + R_r h_{t-1} + b_{W_r} + b_{R_r})$$

$$h'_t = \tanh(W_h x_t + r_t \circ (R_h h_{t-1} + b_{R_h}) + b_{W_h})$$

$$h_t = (1 - i_t) \circ h'_t + i_t \circ h_{t-1}$$

Where σ is the sigmoid operator: $\sigma(x) = 1 / (1 + e^{-x})$, \circ represents a point-wise multiplication and \tanh is the hyperbolic tangent function. i_t, r_t, h'_t represent the input, reset, new gates respectively.

3.41. cudnnRNNPaddingMode_t

cudnnRNNPaddingMode_t is an enumerated type used to enable or disable the padded input/output.

Values

- **CUDNN_RNN_PADDED_IO_DISABLED**: Disables the padded input/output.
- **CUDNN_RNN_PADDED_IO_ENABLED**: Enables the padded input/output.

3.42. cudnnReduceTensorDescriptor_t

cudnnReduceTensorDescriptor_t is a pointer to an opaque structure holding the description of a tensor reduction operation, used as a parameter to cudnnReduceTensor(). cudnnCreateReduceTensorDescriptor() is used to create one instance, and cudnnSetReduceTensorDescriptor() must be used to initialize this instance.

3.43. cudnnReduceTensorIndices_t

cudnnReduceTensorIndices_t is an enumerated type used to indicate whether indices are to be computed by the cudnnReduceTensor() routine. This enumerated type is used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_REDUCE_TENSOR_NO_INDICES
 Do not compute indices
CUDNN_REDUCE_TENSOR_FLATTENED_INDICES
 Compute indices. The resulting indices are relative, and flattened.

3.44. cudnnReduceTensorOp_t

cudnnReduceTensorOp_t is an enumerated type used to indicate the Tensor Core
Operation to be used by the cudnnReduceTensor() routine. This enumerated type is
used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_REDUCE_TENSOR_ADD
 The operation to be performed is addition
CUDNN_REDUCE_TENSOR_MUL
 The operation to be performed is multiplication
CUDNN_REDUCE_TENSOR_MIN
 The operation to be performed is a minimum comparison
CUDNN_REDUCE_TENSOR_MAX
 The operation to be performed is a maximum comparison
CUDNN_REDUCE_TENSOR_AMAX
 The operation to be performed is a maximum comparison of absolute values
CUDNN_REDUCE_TENSOR_AVG
 The operation to be performed is averaging
CUDNN_REDUCE_TENSOR_NORM1
 The operation to be performed is addition of absolute values
CUDNN_REDUCE_TENSOR_NORM2
 The operation to be performed is a square root of sum of squares
CUDNN_REDUCE_TENSOR_MUL_NO_ZEROS
 The operation to be performed is multiplication, not including elements of value zero

3.45. cudnnSamplerType_t

cudnnSamplerType_t is an enumerated type passed to
cudnnSetSpatialTransformerNdDescriptor() to select the sampler type to be used
by cudnnSpatialTfSamplerForward() and cudnnSpatialTfSamplerBackward().

Values
3.46. cudnnSoftmaxAlgorithm_t

cudnnSoftmaxAlgorithm_t is used to select an implementation of the softmax function used in cudnnSoftmaxForward() and cudnnSoftmaxBackward().

Values

CUDNN_SOFTMAX_FAST
This implementation applies the straightforward softmax operation.

CUDNN_SOFTMAX_ACCURATE
This implementation scales each point of the softmax input domain by its maximum value to avoid potential floating point overflows in the softmax evaluation.

CUDNN_SOFTMAX_LOG
This entry performs the Log softmax operation, avoiding overflows by scaling each point in the input domain as in CUDNN_SOFTMAX_ACCURATE.

3.47. cudnnSoftmaxMode_t

cudnnSoftmaxMode_t is used to select over which data the cudnnSoftmaxForward() and cudnnSoftmaxBackward() are computing their results.

Values

CUDNN_SOFTMAX_MODE_INSTANCE
The softmax operation is computed per image (N) across the dimensions C,H,W.

CUDNN_SOFTMAX_MODE_CHANNEL
The softmax operation is computed per spatial location (H,W) per image (N) across the dimension C.

3.48. cudnnSpatialTransformerDescriptor_t

cudnnSpatialTransformerDescriptor_t is a pointer to an opaque structure holding the description of a spatial transformation operation.
cudnnCreateSpatialTransformerDescriptor() is used to create one instance,
cudnnSetSpatialTransformerNdDescriptor() is used to initialize this instance,
cudnnDestroySpatialTransformerDescriptor() is used to destroy this instance.

3.49. cudnnStatus_t
cudnnStatus_t is an enumerated type used for function status returns. All cuDNN library functions return their status, which can be one of the following values:

Values

CUDNN_STATUS_SUCCESS

The operation completed successfully.

CUDNN_STATUS_NOT_INITIALIZED

The cuDNN library was not initialized properly. This error is usually returned when a call to `cudnnCreate()` fails or when `cudnnCreate()` has not been called prior to calling another cuDNN routine. In the former case, it is usually due to an error in the CUDA Runtime API called by `cudnnCreate()` or by an error in the hardware setup.

CUDNN_STATUS_ALLOC_FAILED

Resource allocation failed inside the cuDNN library. This is usually caused by an internal `cudaMalloc()` failure.

To correct: prior to the function call, deallocate previously allocated memory as much as possible.

CUDNN_STATUS_BAD_PARAM

An incorrect value or parameter was passed to the function.

To correct: ensure that all the parameters being passed have valid values.

CUDNN_STATUS_ARCH_MISMATCH

The function requires a feature absent from the current GPU device. Note that cuDNN only supports devices with compute capabilities greater than or equal to 3.0.

To correct: compile and run the application on a device with appropriate compute capability.

CUDNN_STATUS_MAPPING_ERROR

An access to GPU memory space failed, which is usually caused by a failure to bind a texture.

To correct: prior to the function call, unbind any previously bound textures.

Otherwise, this may indicate an internal error/bug in the library.

CUDNN_STATUS_EXECUTION_FAILED

The GPU program failed to execute. This is usually caused by a failure to launch some cuDNN kernel on the GPU, which can occur for multiple reasons.

To correct: check that the hardware, an appropriate version of the driver, and the cuDNN library are correctly installed.

Otherwise, this may indicate a internal error/bug in the library.

CUDNN_STATUS_INTERNAL_ERROR

An internal cuDNN operation failed.

CUDNN_STATUS_NOT_SUPPORTED

The functionality requested is not presently supported by cuDNN.
CUDNN_STATUS_LICENSE_ERROR

The functionality requested requires some license and an error was detected when trying to check the current licensing. This error can happen if the license is not present or is expired or if the environment variable NVIDIA_LICENSE_FILE is not set properly.

CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING

Runtime library required by RNN calls (libcuda.so or nvcuda.dll) cannot be found in predefined search paths.

CUDNN_STATUS_RUNTIME_IN_PROGRESS

Some tasks in the user stream are not completed.

CUDNN_STATUS_RUNTIME_FP_OVERFLOW

Numerical overflow occurred during the GPU kernel execution.

3.50. cudnnTensorDescriptor_t

cudnnCreateTensorDescriptor_t is a pointer to an opaque structure holding the description of a generic n-D dataset. cudnnCreateTensorDescriptor() is used to create one instance, and one of the routines cudnnSetTensorNdDescriptor(), cudnnSetTensor4dDescriptor() or cudnnSetTensor4dDescriptorEx() must be used to initialize this instance.

3.51. cudnnTensorFormat_t

cudnnTensorFormat_t is an enumerated type used by cudnnSetTensor4dDescriptor() to create a tensor with a pre-defined layout.

Values

CUDNN_TENSOR_NCHW

This tensor format specifies that the data is laid out in the following order: batch size, feature maps, rows, columns. The strides are implicitly defined in such a way that the data are contiguous in memory with no padding between images, feature maps, rows, and columns; the columns are the inner dimension and the images are the outermost dimension.

CUDNN_TENSOR_NHWC

This tensor format specifies that the data is laid out in the following order: batch size, rows, columns, feature maps. The strides are implicitly defined in such a way that the data are contiguous in memory with no padding between images, rows, columns, and feature maps; the feature maps are the inner dimension and the images are the outermost dimension.
CUDNN_TENSOR_NCHW_VECT_C

This tensor format specifies that the data is laid out in the following order: batch size, feature maps, rows, columns. However, each element of the tensor is a vector of multiple feature maps. The length of the vector is carried by the data type of the tensor. The strides are implicitly defined in such a way that the data are contiguous in memory with no padding between images, feature maps, rows, and columns; the columns are the inner dimension and the images are the outermost dimension. This format is only supported with tensor data types CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32, and CUDNN_DATA_UINT8x4.
This chapter describes the API of all the routines of the cuDNN library.

4.1. cudnnActivationBackward

This routine computes the gradient of a neuron activation function.

```c
size_t cudnnStatus_t cudnnActivationBackward(
    cudnnHandle_t handle,
    cudnnActivationDescriptor_t activationDesc,
    const void *alpha,
    const cudnnTensorDescriptor_t yDesc,
    const void *y,
    const cudnnTensorDescriptor_t dyDesc,
    const void *dy,
    const cudnnTensorDescriptor_t xDesc,
    const void *x,
    const void *beta,
    const cudnnTensorDescriptor_t dxDesc,
    void *dx)
```

In-place operation is allowed for this routine; i.e. dy and dx pointers may be equal. However, this requires the corresponding tensor descriptors to be identical (particularly, the strides of the input and output must match for in-place operation to be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance is obtained when the strides of yDesc and xDesc are equal and HW-packed. For more than 5 dimensions the tensors must have their spatial dimensions packed.

Parameters

handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.

activationDesc

Input. Activation descriptor. See cudnnActivationDescriptor_t.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Refer to this section for additional details.

yDesc

Input. Handle to the previously initialized input tensor descriptor. See `cudnnTensorDescriptor_t`.

y

Input. Data pointer to GPU memory associated with the tensor descriptor `yDesc`.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

dy

Input. Data pointer to GPU memory associated with the tensor descriptor `dyDesc`.

xDesc

Input. Handle to the previously initialized output tensor descriptor.

x

Input. Data pointer to GPU memory associated with the output tensor descriptor `xDesc`.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.

dx

Output. Data pointer to GPU memory associated with the output tensor descriptor `dxDesc`.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The strides `nStride`, `cStride`, `hStride`, `wStride` of the input differential tensor and output differential tensors differ and in-place operation is used.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The dimensions `n`, `c`, `h`, `w` of the input tensor and output tensors differ.
- The `datatype` of the input tensor and output tensors differs.
The strides \texttt{nStride}, \texttt{cStride}, \texttt{hStride}, \texttt{wStride} of the input tensor and the input differential tensor differ.

The strides \texttt{nStride}, \texttt{cStride}, \texttt{hStride}, \texttt{wStride} of the output tensor and the output differential tensor differ.

\textbf{CUDNN_STATUS_EXECUTION_FAILED}

The function failed to launch on the GPU.

4.2. cudnnActivationForward

\begin{verbatim}
cudnnStatus_t cudnnActivationForward(
 cudnnHandle_t handle,
 cudnnActivationDescriptor_t activationDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)
\end{verbatim}

This routine applies a specified neuron activation function element-wise over each input value.

In-place operation is allowed for this routine; i.e., \texttt{xData} and \texttt{yData} pointers may be equal. However, this requires \texttt{xDesc} and \texttt{yDesc} descriptors to be identical (particularly, the strides of the input and output must match for in-place operation to be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance is obtained when the strides of \texttt{xDesc} and \texttt{yDesc} are equal and HW-packed. For more than 5 dimensions the tensors must have their spatial dimensions packed.

\textbf{Parameters}

\textbf{handle}

\textit{Input}. Handle to a previously created cuDNN context. See \texttt{cudnnHandle_t}.

\textbf{activationDesc}

\textit{Input}. Activation descriptor. See \texttt{cudnnActivationDescriptor_t}.

\textbf{alpha, beta}

\textit{Input}. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: \texttt{dstValue} = alpha[0]*result + beta[0]*priorDstValue. Please refer to this section for additional details.

\textbf{xDesc}

\textit{Input}. Handle to the previously initialized input tensor descriptor. See \texttt{cudnnTensorDescriptor_t}.

\textbf{x}

\textit{Input}. Data pointer to GPU memory associated with the tensor descriptor \texttt{xDesc}.
yDesc

Input. Handle to the previously initialized output tensor descriptor.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The parameter mode has an invalid enumerant value.
- The dimensions n,c,h,w of the input tensor and output tensors differ.
- The datatype of the input tensor and output tensors differs.
- The strides nStride,cStride,hStride,wStride of the input tensor and output tensors differ and in-place operation is used (i.e., x and y pointers are equal).

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.3. cudnnAddTensor

cudnnStatus_t cudnnAddTensor(
 cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t aDesc,
 const void *A,
 const void *beta,
 const cudnnTensorDescriptor_t cDesc,
 void *C)

This function adds the scaled values of a bias tensor to another tensor. Each dimension of the bias tensor A must match the corresponding dimension of the destination tensor C or must be equal to 1. In the latter case, the same value from the bias tensor for those dimensions will be used to blend into the C tensor.

> **Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this routine is not supported**

Parameters
handle

Input. Handle to a previously created cuDNN context. See `cudnnHandle_t`.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as follows: \(\text{dstValue} = \text{alpha}[0] \times \text{srcValue} + \text{beta}[0] \times \text{priorDstValue} \). Refer to this section for additional details.

aDesc

Input. Handle to a previously initialized tensor descriptor. See `cudnnTensorDescriptor_t`.

A

Input. Pointer to data of the tensor described by the `aDesc` descriptor.

cDesc

Input. Handle to a previously initialized tensor descriptor.

C

Input/Output. Pointer to data of the tensor described by the `cDesc` descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function executed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

The dimensions of the bias tensor refer to an amount of data that is incompatible the output tensor dimensions or the `dataType` of the two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.4. `cudnnBatchNormalizationBackward`

```c
typedef cudnnStatus_t (*cudnnBatchNormalizationBackward)(
    cudnnHandle_t                    handle,
    cudnnBatchNormMode_t             mode,
    const void                      *alphaDataDiff,
    const void                      *betaDataDiff,
    const void                      *alphaParamDiff,
    const void                      *betaParamDiff,
    const cudnnTensorDescriptor_t    xDesc,
    const void                      *x,
    const cudnnTensorDescriptor_t    dyDesc,
    const void                      *dy,
    const cudnnTensorDescriptor_t    dxDesc,
    const void                      *dx,
    const cudnnTensorDescriptor_t    bnScaleBiasDiffDesc,
    const void                      *bnScale,
);```
void                            *resultBnScaleDiff,
void                            *resultBnBiasDiff,
double                           epsilon,
const void                      *savedMean,
const void                      *savedInvVariance)

This function performs the backward batch normalization layer computation. This layer
is based on the paper Batch Normalization: Accelerating Deep Network Training by Reducing

See cudnnDeriveBNTensorDescriptor for the secondary tensor descriptor
generation for the parameters using in this function.

Only 4D and 5D tensors are supported.

The epsilon value has to be the same during training, backpropagation and
inference.

Higher performance can be obtained when HW-packed tensors are used for all of x, dy, dx.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.

*alphaDataDiff, *betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output
dx with a prior value in the destination tensor as follows:

\[ \text{dstValue} = \alpha_{\text{DataDiff}}[0] \times \text{resultValue} + \beta_{\text{DataDiff}}[0] \times \text{priorDstValue}. \]

Refer to this section for additional details.

*alphaParamDiff, *betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs
resultBnScaleDiff and resultBnBiasDiff with prior values in the destination
tensor as follows:

\[ \text{dstValue} = \alpha_{\text{ParamDiff}}[0] \times \text{resultValue} + \beta_{\text{ParamDiff}}[0] \times \text{priorDstValue}. \]

Refer to this section for additional details.

xDesc, dxDesc, dyDesc

Inputs. Handles to the previously initialized tensor descriptors.

*x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for
the layer’s x data.
*dy

* Inputs. Data pointer to GPU memory associated with the tensor descriptor dyDesc, for the backpropagated differential dy input.

*dx

* Inputs. Data pointer to GPU memory associated with the tensor descriptor dxDesc, for the resulting differential output with respect to x.

bnScaleBiasDiffDesc

* Input. Shared tensor descriptor for the following five tensors: bnScale, resultBnScaleDiff, resultBnBiasDiff, savedMean, savedInvVariance. The dimensions for this tensor descriptor are dependent on normalization mode. See cudnnDeriveBNTensorDescriptor.

The data type of this tensor descriptor must be 'float' for FP16 and FP32 input tensors, and 'double' for FP64 input tensors.

*bnScale

* Input. Pointer in the device memory for the batch normalization scale parameter (in original paper the quantity scale is referred to as gamma).

The bnBias parameter is not needed for this layer's computation.

resultBnScaleDiff, resultBnBiasDiff

* Outputs. Pointers in device memory for the resulting scale and bias differentials computed by this routine. Note that these scale and bias gradients are weight gradients specific to this batch normalization operation, and by definition are not backpropagated.

epsilon

* Input. Epsilon value used in batch normalization formula. The value should be more than the value that is defined for CUDNN_BN_MIN_EPSILON in the header file cudnn.h. Same epsilon value should be used in forward and backward functions.

*savedMean, *savedInvVariance

* Inputs. Optional cache parameters containing saved intermediate results that were computed during the forward pass. For this to work correctly, the layer's x and bnScale data has to remain unchanged until this backward function is called.

Both these parameters can be NULL but only at the same time. It is recommended to use this cache since the memory overhead is relatively small.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- Any of the pointers alpha, beta, x, dy, dx, bnScale, resultBnScaleDiff, resultBnBiasDiff is NULL.
- Number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- bnScaleBiasDiffDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- Exactly one of savedMean, savedInvVariance pointers is NULL.
- epsilon value is less than CUDNN_BN_MIN_EPSILON.
- Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.5. cudnnBatchNormalizationBackwardEx

cudnnStatus_t cudnnBatchNormalizationBackwardEx (  
    cudnnHandle_t handle,  
    cudnnBatchNormMode_t mode,  
    cudnnBatchNormOp_t bnOps,  
    const void *alphaDataDiff,  
    const void *betaDataDiff,  
    const void *alphaParamDiff,  
    const void *betaParamDiff,  
    const cudnnTensorDescriptor_t xDesc,  
    const void *xData,  
    const cudnnTensorDescriptor_t yDesc,  
    const void *yData,  
    const cudnnTensorDescriptor_t dyDesc,  
    const void *dyData,  
    const cudnnTensorDescriptor_t dzDesc,  
    void *dzData,  
    const cudnnTensorDescriptor_t dxDesc,  
    void *dxData,  
    const cudnnTensorDescriptor_t dBNScaleBiasDesc,  
    const void *dBNScaleData,  
    const void *dBiasData,  
    void *dBNBiasData,  
    double epsilon,  
    const void *savedMean,  
    const void *savedInvVariance,  
    const cudnnActivationDescriptor_t activationDesc,  
    void *workspace,  
    size_t workSpaceSizeInBytes  
    void *reserveSpace  
    size_t reserveSpaceSizeInBytes);  

This function is an extension of the cudnnBatchNormalizationBackward() for performing the backward batch normalization layer computation with a fast NHWC semi-persistent kernel. This API will trigger the new semi-persistent NHWC kernel when the below conditions are true:

- All tensors, namely, x, y, dz, dy, dx must be NHWC-fully packed, and must be of the type CUDNN_DATA_HALF.
- The tensor C dimension should be a multiple of 4.
The input parameter **mode** must be set to
CUDNN_BATCHNORM_SPATIAL_PERSISTENT.

**workspace** is not NULL.

**workSpaceSizeInBytes** is equal or larger than the amount required by
cudnnGetBatchNormalizationBackwardExWorkspaceSize().

**reserveSpaceSizeInBytes** is equal or larger than the amount required by
cudnnGetBatchNormalizationTrainingExReserveSpaceSize().

The content in **reserveSpace** stored by
cudnnBatchNormalizationForwardTrainingEx() must be preserved.

If **workspace** is NULL and **workSpaceSizeInBytes** of zero is passed in, this API will
function exactly like the non-extended function cudnnBatchNormalizationBackward.

This workspace is not required to be clean. Moreover, the workspace does not have to
remain unchanged between the forward and backward pass, as it is not used for passing
any information.

This extended function can accept a *workspace pointer to the GPU workspace, and
workSpaceSizeInBytes, the size of the workspace, from the user.

The **bnOps** input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization
followed by element-wise addition and then activation.

Only 4D and 5D tensors are supported. The **epsilon** value has to be the same during
the training, the backpropagation and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed tensors are used for **x, dy, dx**.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.

**mode**

*Input.* Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.

**bnOps**

*Input.* Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t..

This input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization
followed by element-wise addition and then activation.

***alphaDataDiff, *betaDataDiff**

*Inputs.* Pointers to scaling factors (in host memory) used to blend the gradient output
dx with a prior value in the destination tensor as follows:

\[
dstValue = alpha[0] * resultValue + beta[0] * priorDstValue.\]

Refer to this section for additional details.
*alphaParamDiff, *betaParamDiff

*Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs dBnScaleData and dBnBiasData with prior values in the destination tensor as follows:

dstValue = alpha[0]*resultValue + beta[0]*priorDstValue. Refer to this section for additional details.

xDesc, *x,yDesc, *yData, dyDesc, *dyData, dzDesc, *dzData, dxDesc, *dx/dt

*Inputs. Tensor descriptors and pointers in the device memory for the layer’s x data, back propagated differential dy (inputs), the optional y input data, the optional dz output, and the dx output, which is the resulting differential with respect to x. See cudnnTensorDescriptor_t.

dBnScaleBiasDesc

*Input. Shared tensor descriptor for the following six tensors: bnScaleData, bnBiasData, dBnScaleData, dBnBiasData, savedMean, and savedInvVariance. See cudnnDeriveBNTensorDescriptor.

The dimensions for this tensor descriptor are dependent on normalization mode.

Note: The data type of this tensor descriptor must be ‘float’ for FP16 and FP32 input tensors, and ‘double’ for FP64 input tensors.

See cudnnTensorDescriptor_t.

*bnScaleData

*Input. Pointer in the device memory for the batch normalization scale parameter (in the original paper the quantity scale is referred to as gamma).

*bnBiasData

*Input. Pointers in the device memory for the batch normalization bias parameter (in the original paper bias is referred to as beta). This parameter is used only when activation should be performed.

*dBnScaleData, dBnBiasData

*Inputs. Pointers in the device memory for the gradients of bnScaleData and bnBiasData, respectively.

epsilon

*Input. Epsilon value used in batch normalization formula. Minimum allowed value is CUDNN_BN_MIN_EPSILON defined in cudnn.h. Same epsilon value should be used in forward and backward functions.

*savedMean, *savedInvVariance

*Inputs. Optional cache parameters containing saved intermediate results computed during the forward pass. For this to work correctly, the layer’s x and bnScaleData, bnBiasData data has to remain unchanged until this backward function is called. Note that both these parameters can be NULL but only at the same time. It is recommended to use this cache since the memory overhead is relatively small.

activationDesc

*Input. Tensor descriptor for the activation operation.
workspace

Input. Pointer to the GPU workspace. If workspace is NULL and workSpaceSizeInBytes of zero is passed in, then this API will function exactly like the non-extended function cudnnBatchNormalizationBackward().

workSpaceSizeInBytes

Input. The size of the workspace. Must be large enough to trigger the fast NHWC semi-persistent kernel by this function.

*reserveSpace

Input. Pointer to the GPU workspace for the reserveSpace.

reserveSpaceSizeInBytes

Input. The size of the reserveSpace. Must be equal or larger than the amount required by cudnnGetBatchNormalizationTrainingExReserveSpaceSize().

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- Any of the pointers alphaDataDiff, betaDataDiff, alphaParamDiff, betaParamDiff, x, dy, dx, bnScale, resultBnScaleDiff, resultBnBiasDiff is NULL.
- Number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- dBnScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- Exactly one of savedMean, savedInvVariance pointers is NULL.
- epsilon value is less than CUDNN_BN_MIN_EPSILON.
- Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.6. cudnnBatchNormalizationForwardInference

```c
#include <nvidia/cudnn.h>

typedef enum {
 CUDNN_BN_TENSOR_FORMAT_NHWC,
 CUDNN_BN_TENSOR_FORMAT_NCHW,
 CUDNN_BN_TENSOR_FORMAT_NHWC3,
 CUDNN_BN_TENSOR_FORMAT_NCHW3,
} cudnnTensorFormat_t;

cudnnStatus_t cudnnBatchNormalizationForwardInference(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 const void *alpha,
 const void *beta,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
 const void *bnScale,
 const void *bnBias,
 const void *estimatedMean,
 const void *estimatedVariance,
 double epsilon)
```
This function performs the forward batch normalization layer computation for the inference phase. This layer is based on the paper *Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift*, S. Ioffe, C. Szegedy, 2015.

See `cudnnDeriveBNTensorDescriptor` for the secondary tensor descriptor generation for the parameters using in this function.

Only 4D and 5D tensors are supported.

The input transformation performed by this function is defined as:

$$ y = \beta y + \alpha [\text{bnBias} + (\text{bnScale} \times (x - \text{estimatedMean}) / \sqrt{\text{epsilon} + \text{estimatedVariance}})] $$

The epsilon value has to be the same during training, backpropagation and inference.

For training phase use `cudnnBatchNormalizationForwardTraining`.

Higher performance can be obtained when HW-packed tensors are used for all of $x$ and $dx$.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN library descriptor. See `cudnnHandle_t`.

**mode**

*Input.* Mode of operation (spatial or per-activation). See `cudnnBatchNormMode_t`.

**alpha, beta**

*Inputs.* Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows:

$$ \text{dstValue} = \text{alpha}[0] \times \text{resultValue} + \text{beta}[0] \times \text{priorDstValue}. $$

Refer to this section for additional details.

**xDesc, yDesc**

*Input.* Handles to the previously initialized tensor descriptors.

**x**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `xDesc`, for the layer's $x$ input data.
*y

*Input.* Data pointer to GPU memory associated with the tensor descriptor yDesc, for
the output of the batch normalization layer.

bnScaleBiasMeanVarDesc, bnScale, bnBias

*Inputs.* Tensor descriptor and pointers in device memory for the batch normalization
scale and bias parameters (in the original paper bias is referred to as beta and scale as
gamma).

estimatedMean, estimatedVariance

*Inputs.* Mean and variance tensors (these have the same
descriptor as the bias and scale). The resultRunningMean and
resultRunningVariance, accumulated during the training phase from the
cudnnBatchNormalizationForwardTraining() call, should be passed as inputs here.

epsilon

*Input.* Epsilon value used in the batch normalization formula. The value should be
more than the value defined for CUDNN_BN_MIN_EPSILON in the cudnn.h header file.

**Returns**

**CUDNN_STATUS_SUCCESS**

The computation was performed successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- One of the pointers alpha, beta, x, y, bnScale, bnBias,
estimatedMean, estimatedInvVariance is NULL.
- Number of xDesc or yDesc tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- bnScaleBiasMeanVarDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- epsilon value is less than CUDNN_BN_MIN_EPSILON.
- Dimensions or data types mismatch for xDesc, yDesc.

### 4.7. cudnnBatchNormalizationForwardTraining

```c
cudnnStatus_t cudnnBatchNormalizationForwardTraining(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 const void *alpha,
 const void *beta,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
```
This function performs the forward batch normalization layer computation for the training phase. This layer is based on the paper *Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift*, S. Ioffe, C. Szegedy, 2015.

See [cudnnDeriveBNTensorDescriptor](#) for the secondary tensor descriptor generation for the parameters using in this function.

Only 4D and 5D tensors are supported.

The epsilon value has to be the same during training, backpropagation and inference.

For inference phase use [cudnnBatchNormalizationForwardInference](#).

Higher performance can be obtained when HW-packed tensors are used for both \( x \) and \( y \).

**Parameters**

**handle**

Handle to a previously created cuDNN library descriptor. See [cudnnHandle_t](#).

**mode**

Mode of operation (spatial or per-activation). See [cudnnBatchNormMode_t](#).

**alpha, beta**

*Inputs.* Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows:

\[
\text{dstValue} = \alpha[0] \cdot \text{resultValue} + \beta[0] \cdot \text{priorDstValue}.
\]

Refer to this section for additional details.

**xDesc, yDesc**

Tensor descriptors and pointers in device memory for the layer’s \( x \) and \( y \) data. See [cudnnTensorDescriptor_t](#).
*x

*Input.* Data pointer to GPU memory associated with the tensor descriptor xDesc, for the layer's x input data.

*y

*Input.* Data pointer to GPU memory associated with the tensor descriptor yDesc, for the y output of the batch normalization layer.

bnScaleBiasMeanVarDesc

Shared tensor descriptor desc for the secondary tensor that was derived by cudnnDeriveBNTensorDescriptor. The dimensions for this tensor descriptor are dependent on the normalization mode.

bnScale, bnBias

*Inputs.* Pointers in device memory for the batch normalization scale and bias parameters (in the original paper bias is referred to as beta and scale as gamma). Note that bnBias parameter can replace the previous layer's bias parameter for improved efficiency.

exponentialAverageFactor

*Input.* Factor used in the moving average computation as follows:

\[
\text{runningMean} = \text{runningMean} \cdot (1 \text{-} \text{factor}) + \text{newMean} \cdot \text{factor}
\]

Use a factor=1/(1+n) at N-th call to the function to get Cumulative Moving Average (CMA) behavior such that:

\[
\text{CMA}[n] = \frac{(x[1]+\ldots+x[n])}{n}. \text{This is proved below:}
\]

Writing \[
\text{CMA}[n+1] = \frac{(n \cdot \text{CMA}[n] + x[n+1])}{(n+1)}
\]

\[
= \frac{(n+1) \cdot \text{CMA}[n] - \text{CMA}[n]}{(n+1)} + \frac{x[n+1]}{(n+1)}
\]

\[
= \text{CMA}[n] \cdot \frac{(1-1/(n+1)) + x[n+1] \cdot 1}{(n+1)}
\]

\[
= \text{CMA}[n] \cdot (1 \text{-} \text{factor}) + x(n+1) \cdot \text{factor}.
\]

resultRunningMean, resultRunningVariance

*Inputs/Outputs.* Running mean and variance tensors (these have the same descriptor as the bias and scale). Both of these pointers can be NULL but only at the same time. The value stored in resultRunningVariance (or passed as an input in inference mode) is the sample variance, and is the moving average of variance[x] where variance is computed either over batch or spatial+batch dimensions depending on the mode. If these pointers are not NULL, the tensors should be initialized to some reasonable values or to 0.

epsilon

*Input.* Epsilon value used in the batch normalization formula. The value should be more than the value defined for CUDNN_BN_MIN_EPSILON in the cudnn.h header file. Same epsilon value should be used in forward and backward functions.

resultSaveMean, resultSaveInvVariance

*Outputs.* Optional cache to save intermediate results computed during the forward pass. These buffers can be used to speed up the backward pass when supplied to the
The intermediate results stored in `resultSaveMean` and `resultSaveInvVariance` buffers should not be used directly by the user. Depending on the batch normalization mode, the results stored in `resultSaveInvVariance` may vary. For the cache to work correctly, the input layer data must remain unchanged until the backward function is called. Note that both parameters can be NULL but only at the same time. In such a case intermediate statistics will not be saved, and `cudnnBatchNormalizationBackward()` will have to re-compute them. It is recommended to use this cache as the memory overhead is relatively small because these tensors have a much lower product of dimensions than the data tensors.

**Returns**

**CUDNN_STATUS_SUCCESS**

The computation was performed successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- One of the pointers `alpha`, `beta`, `x`, `y`, `bnScale`, `bnBias` is NULL.
- Number of `xDesc` or `yDesc` tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- `bnScaleBiasMeanVarDesc` dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- Exactly one of `resultSaveMean`, `resultSaveInvVariance` pointers is NULL.
- Exactly one of `resultRunningMean`, `resultRunningInvVariance` pointers is NULL.
- `epsilon` value is less than CUDNN_BN_MIN_EPSILON.
- Dimensions or data types mismatch for `xDesc`, `yDesc`

### 4.8. cudnnBatchNormalizationForwardTrainingEx

```c
 cudnnStatus_t cudnnBatchNormalizationForwardTrainingEx(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 cudnnBatchNormOps_t bnOps,
 const void *alpha,
 const void *beta,
 const cudnnTensorDescriptor_t xDesc,
 const void *xData,
 const cudnnTensorDescriptor_t zDesc,
 const void *zData,
 const cudnnTensorDescriptor_t yDesc,
 void *yData,
 const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
 const void *bnScaleData,
 const void *bnBiasData,
 double exponentialAverageFactor,
 void *resultRunningMeanData,
)
```
This function is an extension of the `cudnnBatchNormalizationForwardTraining()` for performing the forward batch normalization layer computation.

This API will trigger the new semi-persistent NHWC kernel when the below conditions are true:

- All tensors, namely, \( x, y, dz, dy, dx \) must be NHWC-fully packed, and must be of the type CUDNN_DATA_HALF.
- The tensor C dimension should be a multiple of 4.
- The input parameter `mode` must be set to CUDNN_BATCHNORM_SPATIAL_PERSISTENT.
- workspace is not NULL.
- `workSpaceSizeInBytes` is equal or larger than the amount required by `cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()`.
- `reserveSpaceSizeInBytes` is equal or larger than the amount required by `cudnnGetBatchNormalizationTrainingExReserveSpaceSize()`.
- The content in reserveSpace stored by `cudnnBatchNormalizationForwardTrainingEx()` must be preserved.

If workspace is NULL and `workSpaceSizeInBytes` of zero is passed in, this API will function exactly like the non-extended function `cudnnBatchNormalizationForwardTraining()`.

This workspace is not required to be clean. Moreover, the workspace does not have to remain unchanged between the forward and backward pass, as it is not used for passing any information.

This extended function can accept a `workspace` pointer to the GPU workspace, and `workSpaceSizeInBytes`, the size of the workspace, from the user.

The `bnOps` input can be used to set this function to perform either only the batch normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

Only 4D and 5D tensors are supported. The `epsilon` value has to be the same during the training, the backpropagation and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed tensors are used for \( x, dy, dx \).

### Parameters

- `handle`

  *Input.* Handle to a previously created cuDNN library descriptor. See `cudnnHandle_t`. 

```c
void cudnnBatchNormalizationForwardTrainingEx(
 void **resultRunningVarianceData,
 double epsilon,
 void *saveMean,
 void *saveInvVariance,
 const cudnnActivationDescriptor_t activationDesc,
 void *workspace,
 size_t workSpaceSizeInBytes,
 void *workSpace,
 size_t reserveSpaceSizeInBytes,
 void *reserveSpace,
 size_t reserveSpaceSizeInBytes);
```
mode

*Input.* Mode of operation (spatial or per-activation). See `cudnnBatchNormMode_t`.

bnOps

*Input.* Mode of operation for the fast NHWC kernel. See `cudnnBatchNormOps_t`.

This input can be used to set this function to perform either only the batch normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

*alpha, *beta

*Inputs.* Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows:

\[
dstValue = alpha[0] \times resultValue + beta[0] \times priorDstValue.
\]

Refer to this section for additional details.

xDesc, *xData, zDesc, *zData, yDesc, *yData

Tensor descriptors and pointers in device memory for the layer’s \( x \) and \( y \) data, and for the optional \( z \) tensor input for residual addition to the result of the batch normalization operation, prior to the activation. The optional tensor input \( z \) should be exact the same size as \( x \) and the final output \( y \). This \( z \) input is element-wise added to the output of batch normalization. This addition optionally happens after batch normalization and before the activation. See `cudnnTensorDescriptor_t`.

bnScaleBiasMeanVarDesc

Shared tensor descriptor desc for the secondary tensor that was derived by `cudnnDeriveBNTensorDescriptor()`. The dimensions for this tensor descriptor are dependent on the normalization mode.

*bnScaleData, *bnBiasData

*Inputs.* Pointers in the device memory for the for the batch normalization scale and bias data. In the original paper bias is referred to as beta and scale as gamma. Note that `bnBiasData` parameter can replace the previous operation’s bias parameter for improved efficiency.

exponentialAverageFactor

*Input.* Factor used in the moving average computation as follows:

\[
runningMean = runningMean \times (1 - factor) + newMean \times factor
\]

Use a `factor=1/(1+n)` at N-th call to the function to get Cumulative Moving Average (CMA) behavior such that:

\[
CMA[n] = (x[1]+...+x[n])/n.
\]

This is proved below:

Writing \( CMA[n+1] = (n \times CMA[n] + x[n+1])/(n+1) \)

\[
= (n+1) \times CMA[n] - CMA[n])/(n+1) + x[n+1]/(n+1)
\]

\[
= CMA[n] \times (1 - 1/(n+1)) + x[n+1] \times 1/(n+1)
\]

\[
= CMA[n] \times (1 - factor) + x[n+1] \times factor.
\]
**resultRunningMeanData, resultRunningVarianceData**

*Inputs/Outputs.* Pointers to the running mean and running variance data. Both these pointers can be NULL but only at the same time. The value stored in `resultRunningVarianceData` (or passed as an input in inference mode) is the sample variance, and is the moving average of variance[x] where variance is computed either over batch or spatial+batch dimensions depending on the mode. If these pointers are not NULL, the tensors should be initialized to some reasonable values or to 0.

**epsilon**

*Input.* Epsilon value used in the batch normalization formula. Minimum allowed value is CUDNN_BN_MIN_EPSILON defined in cudnn.h. Same `epsilon` value should be used in forward and backward functions.

**saveMean, saveInvVariance**

*Inputs.* Optional cache parameters containing saved intermediate results computed during the forward pass. For this to work correctly, the layer’s x and `bnScaleData`, `bnBiasData` data has to remain unchanged until this backward function is called. Note that both these parameters can be NULL but only at the same time. It is recommended to use this cache since the memory overhead is relatively small.

**activationDesc**

*Input.* Tensor descriptor for the activation operation. When the `bnOps` input is set to either CUDNN_BATCHNORM_OPS_BN_ACTIVATION or CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION then this activation is used.

**workspace, workspaceSizeInBytes**

*Inputs.* `workspace` is a pointer to the GPU workspace, and `workspaceSizeInBytes` is the size of the workspace. When the `workspace` is not NULL and `workspaceSizeInBytes` is large enough, and the tensor layout is NHWC and the data type configuration is supported, then this function will trigger a new semi-persistent NHWC kernel for batch normalization. The workspace is not required to be clean. Also, the workspace does not need to remain unchanged between the forward and backward passes.

**reserveSpace**

*Input.* Pointer to the GPU workspace for the `reserveSpace`.

**reserveSpaceSizeInBytes**

*Input.* The size of the `reserveSpace`. Must be equal or larger than the amount required by `cudnnGetBatchNormalizationTrainingExReserveSpaceSize()`.

**Returns**

CUDNN_STATUS_SUCCESS

- The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

- The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

- At least one of the following conditions are met:
  - One of the pointers `alpha`, `beta`, `x`, `y`, `bnScaleData`, `bnBiasData` is NULL.
- Number of xDesc or yDesc tensor descriptor dimensions is not within the [4,5] range (only 4D and 5D tensors are supported.).
- bnScaleBiasMeanVarDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- Exactly one of saveMean, saveInvVariance pointers is NULL.
- Exactly one of resultRunningMeanData, resultRunningInvVarianceData pointers is NULL.
- epsilon value is less than CUDNN_BN_MIN_EPSILON.
- Dimensions or data types mismatch for xDesc, yDesc

### 4.9. cudnnCTCLoss

```c
extern "C" {
cudnnStatus_t cudnnCTCLoss(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t probsDesc,
 const void *probs,
 const int *labels,
 const int *labelLengths,
 const int *inputLengths,
 void *costs,
 const cudnnTensorDescriptor_t gradientsDesc,
 const void *gradients,
 cudnnCTCLossAlgo_t algo,
 const cudnnCTCLossDescriptor_t ctcLossDesc,
 void *workspace,
 size_t *workSpaceSizeInBytes)
}
```

This function returns the ctc costs and gradients, given the probabilities and labels.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context. See cudnnHandle_t.

**probsDesc**

*Input.* Handle to the previously initialized probabilities tensor descriptor. See cudnnTensorDescriptor_t.

**probs**

*Input.* Pointer to a previously initialized probabilities tensor.

**labels**

*Input.* Pointer to a previously initialized labels list.

**labelLengths**

*Input.* Pointer to a previously initialized lengths list, to walk the above labels list.

**inputLengths**

*Input.* Pointer to a previously initialized list of the lengths of the timing steps in each batch.

**costs**

*Output.* Pointer to the computed costs of CTC.
gradientsDesc

*Input.* Handle to a previously initialized gradients tensor descriptor.

gradients

*Output.* Pointer to the computed gradients of CTC.

algo

*Input.* Enumerant that specifies the chosen CTC loss algorithm. See cudnnCTCLossAlgo_t.

tcLossDesc

*Input.* Handle to the previously initialized CTC loss descriptor. See cudnnCTCLossDescriptor_t.

workspace

*Input.* Pointer to GPU memory of a workspace needed to able to execute the specified algorithm.

sizeInBytes

*Input.* Amount of GPU memory needed as workspace to be able to execute the CTC loss computation with the specified algo.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The dimensions of_probsDesc do not match the dimensions of_gradientsDesc.
- The inputLengths do not agree with the first dimension of_probsDesc.
- The workSpaceSizeInBytes is not sufficient.
- The labelLengths is greater than 256.

**CUDNN_STATUS_NOT_SUPPORTED**

A compute or data type other than FLOAT was chosen, or an unknown algorithm type was chosen.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU

### 4.10. cudnnConvolutionBackwardBias

cudnnStatus_t cudnnConvolutionBackwardBias(
    cudnnHandle_t        handle,
    const void           *alpha,
    const cudnnTensorDescriptor_t dyDesc,
    const void           *dy,
    const void           *beta,
)
This function computes the convolution function gradient with respect to the bias, which is the sum of every element belonging to the same feature map across all of the images of the input tensor. Therefore, the number of elements produced is equal to the number of features maps of the input tensor.

**Parameters**

**handle**

*Input*. Handle to a previously created cuDNN context. See `cudnnHandle_t`.

**alpha, beta**

*Input*. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: \( \text{dstValue} = \alpha[0] \times \text{result} + \beta[0] \times \text{priorDstValue} \). Refer to this section for additional details.

**dyDesc**

*Input*. Handle to the previously initialized input tensor descriptor. See `cudnnTensorDescriptor_t`.

**dy**

*Input*. Data pointer to GPU memory associated with the tensor descriptor `dyDesc`.

**dbDesc**

*Input*. Handle to the previously initialized output tensor descriptor.

**db**

*Output*. Data pointer to GPU memory associated with the output tensor descriptor `dbDesc`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The operation was launched successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- One of the parameters `n, height, width` of the output tensor is not 1.
- The numbers of feature maps of the input tensor and output tensor differ.
- The `dataType` of the two tensor descriptors are different.

### 4.11. `cudnnConvolutionBackwardData`

cudnnStatus_t cudnnConvolutionBackwardData(
    cudnnHandle_t handle,
    const cudnnTensorDescriptor_t    dbDesc,
    void                            *db)
This function computes the convolution data gradient of the tensor \( dy \), where \( y \) is the output of the forward convolution in `cudnnConvolutionForward()`. It uses the specified \(\text{algo} \), and returns the results in the output tensor \( dx \). Scaling factors \(\text{alpha} \) and \(\text{beta} \) can be used to scale the computed result or accumulate with the current \( dx \).

**Parameters**

**handle**

\textit{Input}. Handle to a previously created cuDNN context. See `cudnnHandle_t`.

**alpha, beta**

\textit{Input}. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: \( \text{dstValue} = \text{alpha}[0]\cdot \text{result} + \text{beta}[0]\cdot \text{priorDstValue} \). Refer to this section for additional details.

**wDesc**

\textit{Input}. Handle to a previously initialized filter descriptor. See `cudnnFilterDescriptor_t`.

**w**

\textit{Input}. Data pointer to GPU memory associated with the filter descriptor \( wDesc \).

**dyDesc**

\textit{Input}. Handle to the previously initialized input differential tensor descriptor. See `cudnnTensorDescriptor_t`.

**dy**

\textit{Input}. Data pointer to GPU memory associated with the input differential tensor descriptor \( dyDesc \).

**convDesc**

\textit{Input}. Previously initialized convolution descriptor. See `cudnnConvolutionDescriptor_t`.

**algo**

\textit{Input}. Enumerant that specifies which backward data convolution algorithm should be used to compute the results. See `cudnnConvolutionBwdDataAlgo_t`.

**workSpace**

\textit{Input}. Data pointer to GPU memory to a workspace needed to able to execute the specified algorithm. If no workspace is needed for a particular algorithm, that pointer can be nil.
**workSpaceSizeInBytes**

*Input.* Specifies the size in bytes of the provided `workSpace`.

**dxDesc**

*Input.* Handle to the previously initialized output tensor descriptor.

**dx**

*Input/Output.* Data pointer to GPU memory associated with the output tensor descriptor `dxDesc` that carries the result.

### TABLE OF THE SUPPORTED CONFIGURATIONS

This function supports the following combinations of data types for `wDesc`, `dyDesc`, `convDesc`, and `dxDesc`. See the following table for a list of the supported configurations.

<table>
<thead>
<tr>
<th>Data Type Configurations</th>
<th>wDesc's, dyDesc's and dxDesc's Data Type</th>
<th>convDesc's Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE_HALF_CONFIG (only supported on architectures with true fp16 support, i.e., compute capability 5.3 and later)</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_HALF</td>
</tr>
<tr>
<td>PSEUDO_HALF_CONFIG</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>FLOAT_CONFIG</td>
<td>CUDNN_DATA_FLOAT</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>DOUBLE_CONFIG</td>
<td>CUDNN_DATA_DOUBLE</td>
<td>CUDNN_DATA_DOUBLE</td>
</tr>
</tbody>
</table>

Specifying a separate algorithm can cause changes in performance, support and computation determinism. See the following for a list of algorithm options, and their respective supported parameters and deterministic behavior.

### TABLE OF THE SUPPORTED ALGORITHMS

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the paranthesis are used in the table below, for brevity:

- `CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 (_ALGO_0)`
- `CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 (_ALGO_1)`
- `CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT (_FFT)`
- `CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING (_FFT_TILING)`
- `CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD (_WINOGRAD)`
- `CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED (_WINOGRAD_NONFUSED)`
- `CUDNN_TENSOR_NCHW (_NCHW)`
- `CUDNN_TENSOR_NHWC (_NHWC)`
- `CUDNN_TENSOR_NCHW_VECT_C (_NCHW_VECT_C)`
For 2D Convolutions.

Filter descriptor \texttt{wDesc: _NHWC}. See \texttt{cudnnTensorFormat_t}.

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>Deterministic (Yes or No)</th>
<th>Tensor Formats Supported for dyDesc</th>
<th>Tensor Formats Supported for dxDesc</th>
<th>Data Type Configurations Supported</th>
<th>Important</th>
</tr>
</thead>
</table>
| _ALGO_0                       | No                        | NCHW CHW-packed                      | All except \_NCHW\_VECT            | - PSEUDO\_HALF\_CONFIG,           | - Dilation: greater than 0 for all dimensions 
|                               |                           |                                     |                                     | - FLOAT\_CONFIG, and               | - convDesc Group Count Support: Greater than 0. |
| _ALGO_1                       | Yes                       | NCHW CHW-packed                      | _All except \_NCHW\_VECT           | - TRUE\_HALF\_CONFIG,             | - Dilation: 1 for all dimensions 
|                               |                           |                                     |                                     | - PSEUDO\_HALF\_CONFIG,           | - convDesc Group Count Support: Greater than 0. |
|                               |                           |                                     |                                     | - FLOAT\_CONFIG, and               |                                     |
|                               |                           |                                     |                                     | - DOUBLE\_CONFIG                  |                                     |
| _FFT                          | Yes                       | NCHW CHW-packed                      | NCHW HW-packed                      | - PSEUDO\_HALF\_CONFIG,           | - Dilation: 1 for all dimensions 
|                               |                           |                                     |                                     | and FLOAT\_CONFIG                  | - convDesc Group Count Support: Greater than 0. |
|                               |                           |                                     |                                     |                                     | - dxDesc's feature map height + 2 * |
|                               |                           |                                     |                                     |                                     | convDesc's zero-paddind height     |
|                               |                           |                                     |                                     |                                     | must equal 256 or less             |
|                               |                           |                                     |                                     |                                     | - dxDesc's feature map width + 2 * 
|                               |                           |                                     |                                     |                                     | convDesc's zero-paddind width must |
|                               |                           |                                     |                                     |                                     | equal 256 or less                  |

www.nvidia.com
cuDNN 7.4.2
<table>
<thead>
<tr>
<th>convolution Type</th>
<th>Yes</th>
<th>NCHW CHW-packed</th>
<th>NCHW HW-packed</th>
<th>ConvDesc's vertical and horizontal filter stride must equal 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>wDesc's filter height must be greater than ConvDesc's zero-padding height</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>wDesc's filter width must be greater than ConvDesc's zero-padding width</td>
</tr>
</tbody>
</table>

- **FFT TILING**
  - ConvDesc's Group Count Support: Greater than 0.
  - When neither of wDesc's filter dimension is 1, the filter width and height must not be larger than 32.
  - When either of wDesc's filter dimension is 1, the largest filter dimension should not exceed 256.
  - ConvDesc's vertical and horizontal filter stride must equal 1 when either the filter width or filter height is 1, otherwise the stride can be 1 or 2.
  - wDesc's filter height must be greater than ConvDesc's zero-padding height.
  - wDesc's filter width must be greater than ConvDesc's zero-padding width.

- **WINOGRAD**
  - Dilation: 1 for all dimensions
  - ConvDesc's Group Count Support: Greater than 0.
  - When neither of wDesc's filter dimension is 1, the filter width and height must not be larger than 32.
  - When either of wDesc's filter dimension is 1, the largest filter dimension should not exceed 256.
  - ConvDesc's vertical and horizontal filter stride must equal 1 when either the filter width or filter height is 1, otherwise the stride can be 1 or 2.
  - wDesc's filter height must be greater than ConvDesc's zero-padding height.
  - wDesc's filter width must be greater than ConvDesc's zero-padding width.
### Filter descriptor \texttt{wDesc: _NCHW}

<table>
<thead>
<tr>
<th>Algo Name (3D Convolutions)</th>
<th>Deterministic (Yes or No)</th>
<th>Tensor Formats Supported for dyDesc</th>
<th>Tensor Formats Supported for dxDesc</th>
<th>Data Type Configurations Support</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ALGO_0</td>
<td>Yes</td>
<td>NCHW CDHW-packed</td>
<td>All except _NCHW_VECT, _NCHW_VECT_PACKED</td>
<td>_TRUE_HALF_CONFIG, _PSEUDO_HALF_CONFIG, _FLOAT_CONFIG</td>
<td>- Dilation: greater than 0 for all dimensions - convDesc Group Count Support: Greater than 0.</td>
</tr>
<tr>
<td>_ALGO_1</td>
<td>Yes</td>
<td>NCHW-fully-packed</td>
<td>NCHW-fully-packed</td>
<td>_TRUE_HALF_CONFIG, _PSEUDO_HALF_CONFIG, _FLOAT_CONFIG</td>
<td>- Dilation: 1 for all dimensions - convDesc Group Count Support: Greater than 0.</td>
</tr>
</tbody>
</table>
### Returns

**CUDNN\_STATUS\_SUCCESS**

The operation was launched successfully.

**CUDNN\_STATUS\_BAD\_PARAM**

At least one of the following conditions are met:

- At least one of the following is NULL: `handle, dyDesc, wDesc, convDesc, dxDesc, dy, w, dx, alpha, beta`
- `wDesc` and `dyDesc` have a non-matching number of dimensions
- `wDesc` and `dxDesc` have a non-matching number of dimensions
- `wDesc` has fewer than three number of dimensions
- `wDesc, dxDesc` and `dyDesc` have a non-matching data type.
- `wDesc` and `dxDesc` have a non-matching number of input feature maps per image (or group in case of Grouped Convolutions).
The chosen algo does not support the parameters provided; see above for exhaustive list of parameter support for each algo.

**dyDesc or wDesc** indicate an output channel count that isn't a multiple of group count (if group count has been set in convDesc).

### CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture binding of the filter data or the input differential tensor data.

### CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

## 4.12. cudnnConvolutionBackwardFilter

```c

cudnnStatus_t cudnnConvolutionBackwardFilter(
 cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnConvolutionDescriptor_t convDesc,
 cudnnConvolutionBwdFilterAlgo_t algo,
 void *workSpace,
 size_t workSpaceSizeInBytes,
 const void *beta,
 const cudnnFilterDescriptor_t dwDesc,
 void *dw)
```

This function computes the convolution weight (filter) gradient of the tensor \(dy\), where \(y\) is the output of the forward convolution in `cudnnConvolutionForward()`. It uses the specified `algo`, and returns the results in the output tensor `dw`. Scaling factors `alpha` and `beta` can be used to scale the computed result or accumulate with the current `dw`.

### Parameters

**handle**

*Input.* Handle to a previously created cuDNN context. See `cudnnHandle_t`.

**alpha, beta**

*Input.* Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: \(dstValue = alpha[0] \times result + beta[0] \times priorDstValue\). Refer to this section for additional details.
Input. Handle to a previously initialized tensor descriptor. See cudnnTensorDescriptor_t.

x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

dy

Input. Data pointer to GPU memory associated with the backpropagation gradient tensor descriptor dyDesc.

convDesc

Input. Previously initialized convolution descriptor. See cudnnConvolutionDescriptor_t.

algo

Input. Enumerant that specifies which convolution algorithm should be used to compute the results. See cudnnConvolutionBwdFilterAlgo_t.

workSpace

Input. Data pointer to GPU memory to a workspace needed to able to execute the specified algorithm. If no workspace is needed for a particular algorithm, that pointer can be nil.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace.

dwDesc

Input. Handle to a previously initialized filter gradient descriptor. See cudnnFilterDescriptor_t.

dw

Input/Output. Data pointer to GPU memory associated with the filter gradient descriptor dwDesc that carries the result.

**TABLE OF THE SUPPORTED CONFIGURATIONS**

This function supports the following combinations of data types for xDesc, dyDesc, convDesc, and dwDesc. See the following table for a list of the supported configurations.

<table>
<thead>
<tr>
<th>Data Type Configurations</th>
<th>xDesc’s, dyDesc’s and dwDesc’s Data Type</th>
<th>convDesc’s Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE_HALF_CONFIG (only supported on architectures with true fp16 support, i.e., compute capability 5.3 and later).</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_HALF</td>
</tr>
<tr>
<td>PSEUDO_HALF_CONFIG</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
</tbody>
</table>
### Data Type Configurations

<table>
<thead>
<tr>
<th>Data Type Configurations</th>
<th>(x)Desc's, dyDesc's and dwDesc's Data Type</th>
<th>convDesc's Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOAT_CONFIG</td>
<td>CUDNN_DATA_FLOAT</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>DOUBLE_CONFIG</td>
<td>CUDNN_DATA_DOUBLE</td>
<td>CUDNN_DATA_DOUBLE</td>
</tr>
</tbody>
</table>

Specifying a separate algorithm can cause changes in performance, support and computation determinism. See the following for an exhaustive list of algorithm options and their respective supported parameters and deterministic behavior.

### TABLE OF THE SUPPORTED ALGORITHMS

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the paranthesis are used in the table below, for brevity:

- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 (_ALGO_0)**
- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 (_ALGO_1)**
- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3 (_ALGO_3)**
- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT (_FFT)**
- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING (_FFT_TILING)**
- **CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED (_WINOGRAD_NONFUSED)**
- **CUDNN_TENSOR_NCHW (_NCHW)**
- **CUDNN_TENSOR_NHWC (_NHWC)**
- **CUDNN_TENSOR_NCHW_VECT_C (_NCHW_VECT_C)**

#### FOR 2D CONVOLUTIONS.

**Filter descriptor dwDesc: _NHWC.** See cudnnTensorFormat_t.

<table>
<thead>
<tr>
<th>Algo Name (see below for 3D Convolutions)</th>
<th>Deterministic (Yes or No)</th>
<th>Tensor Formats Supported for (x)Desc</th>
<th>Tensor Formats Supported for dyDesc</th>
<th>Data Type Configurations Supported</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ALGO_0, and _ALGO_1</td>
<td></td>
<td>NHWC HWC-packed</td>
<td>NHWC HWC-packed</td>
<td>- PSEUDO_HALF_CONFIG, and</td>
<td>FLOAT_CONFIG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>_ALGO_0</td>
<td></td>
</tr>
</tbody>
</table>

**Filter descriptor wDesc: _NCHW.**

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>Deterministic (Yes or No)</th>
<th>Tensor Formats Supported for (x)Desc</th>
<th>Tensor Formats Supported for dyDesc</th>
<th>Data Type Configurations Supported</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ALGO_0</td>
<td>No</td>
<td>All except _NCHW_VECT</td>
<td>NCHW HWC-packed</td>
<td>- PSEUDO_HALF_CONFIG, and</td>
<td>Dilation: greater</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>_ALGO_0</td>
<td></td>
</tr>
<tr>
<td>ALGO</td>
<td>Yes</td>
<td>_NCHW or _NHWC</td>
<td>NCHW CHW-packed</td>
<td>- FLOAT_CONFIG, and - DOUBLE_CONFIG</td>
<td>- convDesc Group Count Support: Greater than 0. - This algo is not supported if output is of type CUDNN_DATA_HALF and the number of elements in ( dw ) is odd.</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------------------------</td>
<td>--------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>_ALGO_1</td>
<td>Yes</td>
<td>_NCHW or _NHWC</td>
<td>NCHW CHW-packed</td>
<td>- TRUE_HALF_CONFIG, and - PSEUDO_HALF_CONFIG, and - FLOAT_CONFIG, and - DOUBLE_CONFIG</td>
<td>- Dilation: 1 for all dimensions - convDesc Group Count Support: Greater than 0.</td>
</tr>
<tr>
<td>_FFT</td>
<td>Yes</td>
<td>NCHW CHW-packed</td>
<td>NCHW CHW-packed</td>
<td>- PSEUDO_HALF_CONFIG, and - FLOAT_CONFIG</td>
<td>- Dilation: 1 for all dimensions - convDesc Group Count Support: Greater than 0. - ( xDesc )'s feature map height + 2 * ( convDesc )'s zero-padding height must equal 256 or less - ( xDesc )'s feature map width + 2 * ( convDesc )'s zero-padding width must equal 256 or less - ( convDesc )'s vertical and horizontal filter stride must equal 1 - ( dwDesc )'s filter height must be greater than ( convDesc )'s zero-padding height - ( dwDesc )'s filter width must be greater than ( convDesc )'s zero-padding width</td>
</tr>
<tr>
<td>_ALGO_3</td>
<td>Yes</td>
<td>All except _NCHW_VEC</td>
<td>NCHW CHW-packed</td>
<td>- PSEUDO_HALF_CONFIG</td>
<td>- Dilation: 1 for all dimensions</td>
</tr>
<tr>
<td>_WINOGRAD_NONFUSED</td>
<td>All except _NCHW_VEC</td>
<td>NCHW CHW-packed</td>
<td>- FLOAT_CONFIG, and - DOUBLE_CONFIG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- convDesc Group Count Support: Greater than 0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Dilation: 1 for all dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- convDesc Group Count Support: Greater than 0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- convDesc's vertical and horizontal filter stride must equal 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- wDesc's filter (height, width) must be (3,3) or (5,5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- If wDesc's filter (height, width) is (5,5), then the data type config TRUE_HALF_CONFIG is not supported.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>_FFT_TILING</th>
<th>Yes</th>
<th>NCHW CHW-packed</th>
<th>NCHW CHW-packed</th>
<th>- PSEUDO_HALF_CONFIG, and - FLOAT_CONFIG, and - DOUBLE_CONFIG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- convDesc Group Count Support: Greater than 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- xDesc's width or height must equal 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- dyDesc's width or height must equal 1 (the same dimension as in xDesc.) The other dimension must be less than or equal to 256, i.e., the largest 1D tile size currently supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- convDesc's vertical and horizontal filter stride must equal 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- dwDesc's filter height must be greater than convDesc's zero-padding height.</td>
</tr>
</tbody>
</table>
FOR 3D CONVOLUTIONS.

Filter descriptor wDesc: _NCHW

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>Deterministic (Yes or No)</th>
<th>Tensor Formats Supported for xDesc</th>
<th>Tensor Formats Supported for dyDesc</th>
<th>Data Type Configurations Support</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ALGO_0</td>
<td>No</td>
<td>All except <em>NCDHW</em> vector</td>
<td>NCDHW</td>
<td>PSEUDO_HALF_CONFIG</td>
<td>Dilation: greater than 0 for all dimensions, convDesc Group Count Support: Greater than 0.</td>
</tr>
<tr>
<td>_ALGO_3</td>
<td>No</td>
<td>NCDHW-fully-packed</td>
<td>NCDHW-fully-packed</td>
<td>PSEUDO_HALF_CONFIG</td>
<td>Dilation: 1 for all dimensions, convDesc Group Count Support: Greater than 0.</td>
</tr>
</tbody>
</table>

Returns

CUDNN_STATUS_SUCCESS
The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:

- At least one of the following is NULL: handle, xDesc, dyDesc, convDesc, dwDesc, xData, dyData, dwData, alpha, beta
- xDesc and dyDesc have a non-matching number of dimensions
- xDesc and dwDesc have a non-matching number of dimensions
- xDesc has fewer than three number of dimensions
- xDesc, dyDesc and dwDesc have a non-matching data type.
- xDesc and dwDesc have a non-matching number of input feature maps per image (or group in case of Grouped Convolutions).
- yDesc or wDesc indicate an output channel count that isn’t a multiple of group count (if group count has been set in convDesc).

CUDNN_STATUS_NOT_SUPPORTED
At least one of the following conditions are met:

- xDesc or dyDesc have negative tensor striding
- `xDesc`, `dyDesc` or `dwDesc` has a number of dimensions that is not 4 or 5
- The chosen algo does not support the parameters provided; see above for exhaustive list of parameter support for each algo

**CUDNN_STATUS_MAPPING_ERROR**

An error occurs during the texture binding of the filter data.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

### 4.13. `cudnnConvolutionBiasActivationForward`

```c
 cudnnStatus_t cudnnConvolutionBiasActivationForward(
 cudnnHandle_t handle,
 const void* alpha1,
 const cudnnTensorDescriptor_t xDesc,
 const void* x,
 const cudnnFilterDescriptor_t wDesc,
 const void* w,
 const cudnnConvolutionDescriptor_t convDesc,
 cudnnConvolutionFwdAlgo_t algo,
 void* workSpace,
 size_t workSpaceSizeInBytes,
 const void* alpha2,
 const cudnnTensorDescriptor_t zDesc,
 const void* z,
 const cudnnTensorDescriptor_t biasDesc,
 const void* bias,
 const cudnnActivationDescriptor_t activationDesc,
 const cudnnTensorDescriptor_t yDesc,
 void* y)
```

This function applies a bias and then an activation to the convolutions or cross-correlations of `cudnnConvolutionForward()`, returning results in `y`. The full computation follows the equation

\[ y = \text{act} ( \alpha_1 \cdot \text{conv}(x) + \alpha_2 \cdot z + \text{bias} ) \]

The routine `cudnnGetConvolution2dForwardOutputDim` or `cudnnGetConvolutionNdForwardOutputDim` can be used to determine the proper dimensions of the output tensor descriptor `yDesc` with respect to `xDesc`, `convDesc` and `wDesc`.

Only the `CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM` algo is enabled with `CUDNN_ACTIVATION_IDENTITY`. In other words, in the `cudnnActivationDescriptor_t` structure of the input `activationDesc`, if the mode of the `cudnnActivationMode_t` field is set to the enum value `CUDNN_ACTIVATION_IDENTITY`, then the input `cudnnConvolutionFwdAlgo_t` of this function `cudnnConvolutionBiasActivationForward()` must be set to the enum value `CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM`. See also the documentation for the function `cudnnSetActivationDescriptor()`.

**Parameters**
handle

*Input*. Handle to a previously created cuDNN context. See `cudnnHandle_t`.

alpha1, alpha2

*Input*. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as described by the above equation. Please refer to this section for additional details.

xDesc

*Input*. Handle to a previously initialized tensor descriptor. See `cudnnTensorDescriptor_t`.

x

*Input*. Data pointer to GPU memory associated with the tensor descriptor xDesc.

wDesc

*Input*. Handle to a previously initialized filter descriptor. See `cudnnFilterDescriptor_t`.

w

*Input*. Data pointer to GPU memory associated with the filter descriptor wDesc.

convDesc

*Input*. Previously initialized convolution descriptor. See `cudnnConvolutionDescriptor_t`.

algo

*Input*. Enumerant that specifies which convolution algorithm should be used to compute the results. See `cudnnConvolutionFwdAlgo_t`.

workSpace

*Input*. Data pointer to GPU memory to a workspace needed to able to execute the specified algorithm. If no workspace is needed for a particular algorithm, that pointer can be nil.

workSpaceSizeInBytes

*Input*. Specifies the size in bytes of the provided workSpace.

zDesc

*Input*. Handle to a previously initialized tensor descriptor.

z

*Input*. Data pointer to GPU memory associated with the tensor descriptor zDesc.

biasDesc

*Input*. Handle to a previously initialized tensor descriptor.

bias

*Input*. Data pointer to GPU memory associated with the tensor descriptor biasDesc.

activationDesc

*Input*. Handle to a previously initialized activation descriptor. See `cudnnActivationDescriptor_t`.
yDesc

**Input.** Handle to a previously initialized tensor descriptor.

y

**Input/Output.** Data pointer to GPU memory associated with the tensor descriptor yDesc that carries the result of the convolution.

For the convolution step, this function supports the specific combinations of data types for xDesc, wDesc, convDesc and yDesc as listed in the documentation of cudnnConvolutionForward(). The following table specifies the supported combinations of data types for x, y, z, bias, and alpha1/alpha2.

Table Key: X = CUDNN_DATA

<table>
<thead>
<tr>
<th>x</th>
<th>w</th>
<th>y and z</th>
<th>bias</th>
<th>alpha1/alpha2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_DOUBLE</td>
<td>X_DOUBLE</td>
<td>X_DOUBLE</td>
<td>X_DOUBLE</td>
<td>X_DOUBLE</td>
</tr>
<tr>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_HALF</td>
<td>X_HALF</td>
<td>X_HALF</td>
<td>X_HALF</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_INT8</td>
<td>X_INT8</td>
<td>X_INT8</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_INT8</td>
<td>X_INT8</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_INT8x4</td>
<td>X_INT8x4</td>
<td>X_INT8x4</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_INT8x4</td>
<td>X_INT8x4</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_UINT8</td>
<td>X_INT8</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_UINT8</td>
<td>X_INT8</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_UINT8x4</td>
<td>X_INT8x4</td>
<td>X_INT8x4</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_UINT8x4</td>
<td>X_INT8x4</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
</tbody>
</table>

In addition to the error values listed by the documentation of cudnnConvolutionForward(), the possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The operation was launched successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- At least one of the following is NULL: zDesc, zData, biasDesc, bias, activationDesc.
- The second dimension of biasDesc and the first dimension of filterDesc are not equal.
- zDesc and destDesc do not match.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration. See the following for some examples of non-supported configurations:
The mode of activationDesc is neither CUDNN_ACTIVATION_RELU or CUDNN_ACTIVATION_IDENTITY.

The reluNanOpt of activationDesc is not CUDNN_NOT_PROPAGATE_NAN.

The second stride of biasDesc is not equal to one.

The data type of biasDesc does not correspond to the data type of yDesc as listed in the above data types table.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.14. cudnnConvolutionForward

cudnnStatus_t cudnnConvolutionForward(
    cudnnHandle_t                       handle,
    const void                         *alpha,
    const cudnnTensorDescriptor_t       xDesc,
    const void                         *x,
    const cudnnFilterDescriptor_t       wDesc,
    const void                         *w,
    const cudnnConvolutionDescriptor_t  convDesc,
    cudnnConvolutionFwdAlgo_t           algo,
    void                               *workSpace,
    size_t                              workSpaceSizeInBytes,
    const void                         *beta,
    const cudnnTensorDescriptor_t       yDesc,
    void                               *y)

This function executes convolutions or cross-correlations over x using filters specified with w, returning results in y. Scaling factors alpha and beta can be used to scale the input tensor and the output tensor respectively.

The routine cudnnGetConvolution2dForwardOutputDim or cudnnGetConvolutionNdForwardOutputDim can be used to determine the proper dimensions of the output tensor descriptor yDesc with respect to xDesc, convDesc and wDesc.

Parameters

handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Refer to this section for additional details.

xDesc

Input. Handle to a previously initialized tensor descriptor. See cudnnTensorDescriptor_t.

x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
wDesc

*Input.* Handle to a previously initialized filter descriptor. See `cudnnFilterDescriptor_t`.

w

*Input.* Data pointer to GPU memory associated with the filter descriptor `wDesc`.

cnvDesc

*Input.* Previously initialized convolution descriptor. See `cudnnConvolutionDescriptor_t`.

algo

*Input.* Enumerant that specifies which convolution algorithm should be used to compute the results. See `cudnnConvolutionFwdAlgo_t`.

workSpace

*Input.* Data pointer to GPU memory to a workspace needed to able to execute the specified algorithm. If no workspace is needed for a particular algorithm, that pointer can be nil.

workSpaceSizeInBytes

*Input.* Specifies the size in bytes of the provided `workSpace`.

yDesc

*Input.* Handle to a previously initialized tensor descriptor.

y

*Input/Output.* Data pointer to GPU memory associated with the tensor descriptor `yDesc` that carries the result of the convolution.

### TABLE OF THE SUPPORTED CONFIGURATIONS

This function supports the following combinations of data types for `xDesc`, `wDesc`, `cnvDesc`, and `yDesc`. See the following table for a list of the supported configurations.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Configurations</th>
<th><code>xDesc and wDesc</code></th>
<th><code>cnvDesc</code></th>
<th><code>yDesc</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE_HALF_CONFIG</td>
<td>(only supported on architectures with true fp16 support, i.e., compute capability 5.3 and later).</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_HALF</td>
</tr>
<tr>
<td>PSEUDO_HALF_CONFIG</td>
<td></td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_FLOAT</td>
<td>CUDNN_DATA_HALF</td>
</tr>
<tr>
<td>FLOAT_CONFIG</td>
<td></td>
<td>CUDNN_DATA_FLOAT</td>
<td>CUDNN_DATA_FLOAT</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>DOUBLE_CONFIG</td>
<td></td>
<td>CUDNN_DATA_DOUBLE</td>
<td>CUDNN_DATA_DOUBLE</td>
<td>CUDNN_DATA_DOUBLE</td>
</tr>
<tr>
<td>INT8_CONFIG</td>
<td>(only supported on architectures with DP4A support, i.e.,)</td>
<td>CUDNN_DATA_INT8</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_INT8</td>
</tr>
</tbody>
</table>
### Data Type Configurations

<table>
<thead>
<tr>
<th></th>
<th>xDesc and wDesc</th>
<th>convDesc</th>
<th>yDesc</th>
</tr>
</thead>
<tbody>
<tr>
<td>compute capability 6.1 and later.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT8_EXT_CONFIG (only supported on architectures with DP4A support, i.e., compute capability 6.1 and later).</td>
<td>CUDNN_DATA_INT8</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>INT8x4_CONFIG (only supported on architectures with DP4A support, i.e., compute capability 6.1 and later).</td>
<td>CUDNN_DATA_INT8x4</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_INT8x4</td>
</tr>
<tr>
<td>INT8x4_EXT_CONFIG (only supported on architectures with DP4A support, i.e., compute capability 6.1 and later).</td>
<td>CUDNN_DATA_INT8x4</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>UINT8x4_CONFIG (new for 7.1) (only supported on architectures with DP4A support, i.e., compute capability 6.1 and later).</td>
<td>CUDNN_DATA_UINT8x4</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_UINT8x4</td>
</tr>
<tr>
<td>UINT8x4_EXT_CONFIG (new for 7.1) (only supported on architectures with DP4A support, i.e., compute capability 6.1 and later).</td>
<td>CUDNN_DATA_UINT8x4</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
</tbody>
</table>

For this function, all algorithms perform deterministic computations. Specifying a separate algorithm can cause changes in performance and support.

### TABLE OF THE SUPPORTED ALGORITHMS

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the paranthesis are used in the table below, for brevity:

- `CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM (_IMPLICIT_GEMM)`
- `CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM (_IMPLICIT_PRECOMP_GEMM)`
- `CUDNN_CONVOLUTION_FWD_ALGO_GEMM (_GEMM)`
- CUDNN_CONVOLUTION_FWD_ALGO_DIRECT (_DIRECT)
- CUDNN_CONVOLUTION_FWD_ALGO_FFT (_FFT)
- CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING (_FFT_TILING)
- CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD (_WINOGRAD)
- CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED (_WINOGRAD_NONFUSED)
- CUDNN_TENSOR_NCHW (_NCHW)
- CUDNN_TENSOR_NHWC (_NHWC)
- CUDNN_TENSOR_NCHW_VECT_C (_NCHW_VECT_C)

FOR 2D CONVOLUTIONS.

Filter descriptor wDesc: _NCHW. See cudnnTensorFormat_t.
convDesc Group count support: Greater than 0, for all algos.

<table>
<thead>
<tr>
<th>Algo Name (see below for 3D Convolutions)</th>
<th>Tensor Formats Supported for xDesc</th>
<th>Tensor Formats Supported for yDesc</th>
<th>Data Type Configurations Supported</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>_IMPLICIT_GEMM</td>
<td>All except _NCHW_VECT_C</td>
<td>All except _NCHW_VECT_C</td>
<td>- PSEUDO_HALF_CONFIG,</td>
<td>Dilation: Greater than 0 for all dimensions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- FLOAT_CONFIG, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- DOUBLE_CONFIG</td>
<td></td>
</tr>
<tr>
<td>_IMPLICIT_PRECOMP_GEMM</td>
<td></td>
<td></td>
<td>- TRUE_HALF_CONFIG,</td>
<td>Dilation: 1 for all dimensions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- PSEUDO_HALF_CONFIG,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- FLOAT_CONFIG, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- DOUBLE_CONFIG</td>
<td></td>
</tr>
<tr>
<td>_GEMM</td>
<td></td>
<td></td>
<td>- PSEUDO_HALF_CONFIG,</td>
<td>Dilation: 1 for all dimensions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- FLOAT_CONFIG, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- DOUBLE_CONFIG</td>
<td></td>
</tr>
<tr>
<td>_FFT</td>
<td>NCHW HW-packed</td>
<td>NCHW HW-packed</td>
<td>- PSEUDO_HALF_CONFIG,</td>
<td>Dilation: 1 for all dimensions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- FLOAT_CONFIG, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- xDesc's feature map height + 2 * convDesc's zero-padding height must equal 256 or less
- xDesc's feature map width + 2 * convDesc's zero-padding width must equal 256 or less
### _FFT_TILING_

- convDesc's vertical and horizontal filter stride must equal 1
- wDesc's filter height must be greater than convDesc's zero-padding height
- wDesc's filter width must be greater than convDesc's zero-padding width

<table>
<thead>
<tr>
<th>Dilation: 1 for all dimensions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- When neither of wDesc's filter dimension is 1, the filter width and height must not be larger than 32</td>
</tr>
<tr>
<td>- When either of wDesc's filter dimension is 1, the largest filter dimension should not exceed 256</td>
</tr>
<tr>
<td>- When neither of wDesc's filter dimension is 1, the filter width and height must not be larger than 32</td>
</tr>
<tr>
<td>- When either of wDesc's filter dimension is 1, the largest filter dimension should not exceed 256</td>
</tr>
</tbody>
</table>

### _WINOGRAD_

- PSEUDO_HALF_CONFIG and FLOAT_CONFIG
- DOUBLE_CONFIG is also supported when the task can be handled by 1D FFT, i.e., one of the filter dimension, width or height is 1.

<table>
<thead>
<tr>
<th>Dilation: 1 for all dimensions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- convDesc's vertical and horizontal filter stride must equal 1 when either the filter width or filter height is 1, otherwise the stride can be 1 or 2</td>
</tr>
<tr>
<td>- wDesc's filter height must be greater than convDesc's zero-padding height</td>
</tr>
<tr>
<td>- wDesc's filter width must be greater than convDesc's zero-padding width</td>
</tr>
</tbody>
</table>

### _WINOGRAD_NONFUSED_

- PSEUDO_HALF_CONFIG and FLOAT_CONFIG

<table>
<thead>
<tr>
<th>Dilation: 1 for all dimensions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- convDesc's vertical and horizontal filter stride must equal 1</td>
</tr>
<tr>
<td>- wDesc's filter height must be 3</td>
</tr>
<tr>
<td>- wDesc's filter width must be 3</td>
</tr>
</tbody>
</table>

- TRUE_HALF_CONFIG

<table>
<thead>
<tr>
<th>Dilation: 1 for all dimensions.</th>
</tr>
</thead>
</table>
### cuDNN API Reference

- **PSEUDO_HALF_CONFIG** and **FLOAT_CONFIG**
- convDesc's vertical and horizontal filter stride must equal 1
- wDesc's filter (height, width) must be (3,3) or (5,5)
- If wDesc's filter (height, width) is (5,5), then data type config **TRUE_HALF_CONFIG** is not supported

---

**FILTER DESCRIPTOR**

**wDesc**: `_NHWC`

**convDesc** Group count support: Greater than 0.

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>xDesc</th>
<th>yDesc</th>
<th>Data Type Configurations Support</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>DIRECT</em></td>
<td><em>NHWC</em></td>
<td><em>NHWC</em></td>
<td>Currently not implemented in cuDNN.</td>
<td></td>
</tr>
</tbody>
</table>

**Filter descriptor**

**wDesc**: `_NHWC`

**convDesc** Group count support: Greater than 0.

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>xDesc</th>
<th>yDesc</th>
<th>Data Type Configurations Support</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>IMPLICIT_GEMM</em></td>
<td>NCHWC HWC-packed</td>
<td>NCHWC HWC-packed</td>
<td><strong>PSEUDO_HALF_CONFIG</strong> and <strong>FLOAT_CONFIG</strong></td>
<td>Dilation: Greater than 0 for all dimensions.</td>
</tr>
</tbody>
</table>

**Filter descriptor**

**wDesc**: `_NHWC`

**convDesc** Group count support: Greater than 0.

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>xDesc</th>
<th>yDesc</th>
<th>Data Type Configurations Support</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>IMPLICIT_PRECOMP_GEMM</em></td>
<td>NHWC</td>
<td>NHWC</td>
<td><strong>INT8_CONFIG</strong>, <strong>INT8_EXT_CONFIG</strong>, <strong>INT8x4_CONFIG</strong>, <strong>INT8x4_EXT_CONFIG</strong>, <strong>UINT8x4_CONFIG</strong>, <strong>UINT8x4_EXT_CONFIG</strong></td>
<td>Dilation: 1 for all dimensions. Input and output features maps must be multiple of 4.</td>
</tr>
</tbody>
</table>

---

**FOR 3D CONVOLUTIONS.**

**Filter descriptor**

**wDesc**: `_NCHW`

**convDesc** Group count support: Greater than 0, for all algos.

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>xDesc</th>
<th>yDesc</th>
<th>Data Type Configurations Support</th>
<th>Important</th>
</tr>
</thead>
</table>

---

[www.nvidia.com](http://www.nvidia.com)
cuDNN 7.4.2
<table>
<thead>
<tr>
<th>_IMPLICIT_GEMM</th>
<th>All except _NCHW_VECT_C</th>
<th>All except _NCHW_VECT_C</th>
<th>Dilation: Greater than 0 for all dimensions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>_IMPLICIT_PRECOMP_GEMM</td>
<td></td>
<td></td>
<td>Dilation: 1 for all dimensions.</td>
</tr>
<tr>
<td>_FFT_TILING</td>
<td>NCDHW DHW-packed</td>
<td>NCDHW DHW-packed</td>
<td>Dilation: 1 for all dimensions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- PSEUDO_HALF_CONFIG,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- FLOAT_CONFIG,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- DOUBLE_CONFIG.</td>
</tr>
</tbody>
</table>

Dilation: 1 for all dimensions.
- PSEUDO_HALF_CONFIG,
- FLOAT_CONFIG,
- DOUBLE_CONFIG.

Tensors can be converted to, and from, CUDNN_TENSOR_NCHW_VECT_C with cudnnTransformTensor().

Returns

CUDNN_STATUS_SUCCESS

The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- At least one of the following is NULL: handle, xDesc, wDesc, convDesc, yDesc, xData, w, yData, alpha, beta
- xDesc and yDesc have a non-matching number of dimensions
- xDesc and wDesc have a non-matching number of dimensions
- xDesc has fewer than three number of dimensions
- xDesc’s number of dimensions is not equal to convDesc’s array length + 2
- xDesc and wDesc have a non-matching number of input feature maps per image (or group in case of Grouped Convolutions)
- yDesc or wDesc indicate an output channel count that isn’t a multiple of group count (if group count has been set in convDesc).
- xDesc, wDesc and yDesc have a non-matching data type
- For some spatial dimension, wDesc has a spatial size that is larger than the input spatial size (including zero-padding size)

**CUDNN_STATUS_NOT_SUPPORTED**
At least one of the following conditions are met:
- xDesc or yDesc have negative tensor striding
- xDesc, wDesc or yDesc has a number of dimensions that is not 4 or 5
- yDesc's spatial sizes do not match with the expected size as determined by cudnnGetConvolutionNdForwardOutputDim
- The chosen algo does not support the parameters provided; see above for exhaustive list of parameter support for each algo

**CUDNN_STATUS_MAPPING_ERROR**
An error occurred during the texture binding of the filter data.

**CUDNN_STATUS_EXECUTION_FAILED**
The function failed to launch on the GPU.

### 4.15. cudnnCreate

```c

cudnnStatus_t cudnnCreate(cudnnHandle_t *handle)
```

This function initializes the cuDNN library and creates a handle to an opaque structure holding the cuDNN library context. It allocates hardware resources on the host and device and must be called prior to making any other cuDNN library calls.

The cuDNN library handle is tied to the current CUDA device (context). To use the library on multiple devices, one cuDNN handle needs to be created for each device.

For a given device, multiple cuDNN handles with different configurations (e.g., different current CUDA streams) may be created. Because cudnnCreate allocates some internal resources, the release of those resources by calling cudnnDestroy will implicitly call cudaDeviceSynchronize; therefore, the recommended best practice is to call cudnnCreate/cudnnDestroy outside of performance-critical code paths.

For multithreaded applications that use the same device from different threads, the recommended programming model is to create one (or a few, as is convenient) cuDNN handle(s) per thread and use that cuDNN handle for the entire life of the thread.

**Parameters**

- **handle**
  - Output. Pointer to pointer where to store the address to the allocated cuDNN handle. See cudnnHandle_t.

**Returns**
CUDNN_STATUS_BAD_PARAM
Invalid (NULL) input pointer supplied.

CUDNN_STATUS_NOT_INITIALIZED
No compatible GPU found, CUDA driver not installed or disabled, CUDA runtime API initialization failed.

CUDNN_STATUS_ARCH_MISMATCH
NVIDIA GPU architecture is too old.

CUDNN_STATUS_ALLOC_FAILED
Host memory allocation failed.

CUDNN_STATUS_INTERNAL_ERROR
CUDA resource allocation failed.

CUDNN_STATUS_LICENSE_ERROR
cuDNN license validation failed (only when the feature is enabled).

CUDNN_STATUS_SUCCESS
cuDNN handle was created successfully.

4.16. cudnnCreateActivationDescriptor

cudnnStatus_t cudnnCreateActivationDescriptor(
    cudnnActivationDescriptor_t *activationDesc)

This function creates a activation descriptor object by allocating the memory needed to hold its opaque structure. See cudnnActivationDescriptor_t.

Returns

CUDNN_STATUS_SUCCESS
The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.17. cudnnCreateAlgorithmDescriptor

cudnnStatus_t cudnnCreateAlgorithmDescriptor(
    cudnnAlgorithmDescriptor_t *algoDesc)

(New for 7.1)
This function creates an algorithm descriptor object by allocating the memory needed to hold its opaque structure.

Returns

CUDNN_STATUS_SUCCESS
The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.18. cudnnCreateAlgorithmPerformance

cudnnStatus_t cudnnCreateAlgorithmPerformance(
cudnnAlgorithmPerformance_t *algoPerf,
int numberToCreate)

(New for 7.1)
This function creates multiple algorithm performance objects by allocating the memory
needed to hold their opaque structures.

Returns
CUDNN_STATUS_SUCCESS
The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.19. cudnnCreateCTCLossDescriptor

cudnnStatus_t cudnnCreateCTCLossDescriptor(
cudnnCTCLossDescriptor_t* ctcLossDesc)

This function creates a CTC loss function descriptor.

Parameters
ctcLossDesc
Output. CTC loss descriptor to be set. See cudnnCTCLossDescriptor_t.

Returns
CUDNN_STATUS_SUCCESS
The function returned successfully.
CUDNN_STATUS_BAD_PARAM
CTC loss descriptor passed to the function is invalid.
CUDNN_STATUS_ALLOC_FAILED
Memory allocation for this CTC loss descriptor failed.

4.20. cudnnCreateConvolutionDescriptor

cudnnStatus_t cudnnCreateConvolutionDescriptor(
cudnnConvolutionDescriptor_t *convDesc)
This function creates a convolution descriptor object by allocating the memory needed to hold its opaque structure. See cudnnConvolutionDescriptor_t.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was created successfully.

**CUDNN_STATUS_ALLOC_FAILED**

The resources could not be allocated.

---

### 4.21. cudnnCreateDropoutDescriptor

```c
void cudnnCreateDropoutDescriptor(
 cudnnDropoutDescriptor_t *dropoutDesc);
```

This function creates a generic dropout descriptor object by allocating the memory needed to hold its opaque structure. See cudnnDropoutDescriptor_t.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was created successfully.

**CUDNN_STATUS_ALLOC_FAILED**

The resources could not be allocated.

---

### 4.22. cudnnCreateFilterDescriptor

```c
void cudnnCreateFilterDescriptor(
 cudnnFilterDescriptor_t *filterDesc);
```

This function creates a filter descriptor object by allocating the memory needed to hold its opaque structure. See cudnnFilterDescriptor_t.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was created successfully.

**CUDNN_STATUS_ALLOC_FAILED**

The resources could not be allocated.

---

### 4.23. cudnnCreateLRNDescriptor

```c
void cudnnCreateLRNDescriptor(
 cudnnLRNDescriptor_t *poolingDesc);
```

This function allocates the memory needed to hold the data needed for LRN and DivisiveNormalization layers operation and returns a descriptor used with subsequent layer forward and backward calls.
Returns

**CUDNN_STATUS_SUCCESS**

The object was created successfully.

**CUDNN_STATUS_ALLOC_FAILED**

The resources could not be allocated.

### 4.24. cudnnCreateOpTensorDescriptor

```c
void cudnnCreateOpTensorDescriptor(cudnnOpTensorDescriptor_t* opTensorDesc);
```

This function creates a Tensor Pointwise math descriptor. See `cudnnOpTensorDescriptor_t`.

**Parameters**

**opTensorDesc**

*Output.* Pointer to the structure holding the description of the Tensor Pointwise math such as Add, Multiply, and more.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function returned successfully.

**CUDNN_STATUS_BAD_PARAM**

Tensor Pointwise math descriptor passed to the function is invalid.

**CUDNN_STATUS_ALLOC_FAILED**

Memory allocation for this Tensor Pointwise math descriptor failed.

### 4.25. cudnnCreatePersistentRNNPlan

```c
void cudnnCreatePersistentRNNPlan(cudnnRNNDescriptor_t rnnDesc,
 const int minibatch,
 const cudnnDataType_t dataType,
 cudnnPersistentRNNPlan_t *plan);
```

This function creates a plan to execute persistent RNNs when using the `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` algo. This plan is tailored to the current GPU and problem hyperparameters. This function call is expected to be expensive in terms of runtime, and should be used infrequently. See `cudnnRNNDescriptor_t`, `cudnnDataType_t`, and `cudnnPersistentRNNPlan_t`.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING
A prerequisite runtime library cannot be found.

CUDNN_STATUS_NOT_SUPPORTED
The current hyperparameters are invalid.

4.26. cudnnCreatePoolingDescriptor

```
cudnnStatus_t cudnnCreatePoolingDescriptor(
 cudnnPoolingDescriptor_t *poolingDesc)
```

This function creates a pooling descriptor object by allocating the memory needed to hold its opaque structure.

Returns

CUDNN_STATUS_SUCCESS
The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.27. cudnnCreateRNNDescriptor

```
cudnnStatus_t cudnnCreateRNNDescriptor(
 cudnnRNNDescriptor_t *rnnDesc)
```

This function creates a generic RNN descriptor object by allocating the memory needed to hold its opaque structure.

Returns

CUDNN_STATUS_SUCCESS
The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.28. cudnnCreateRNNDataDescriptor

```
cudnnStatus_t cudnnCreateRNNDataDescriptor(
 cudnnRNNDataDescriptor_t *RNNDataDesc)
```

This function creates a RNN data descriptor object by allocating the memory needed to hold its opaque structure.

Returns
CUDNN_STATUS_SUCCESS
The RNN data descriptor object was created successfully.

CUDNN_STATUS_BAD_PARAM
RNNDataDesc is NULL.

CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.29. cudnnCreateReduceTensorDescriptor

    cudnnStatus_t cudnnCreateReduceTensorDescriptor(
        cudnnReduceTensorDescriptor_t *reduceTensorDesc)

This function creates a reduce tensor descriptor object by allocating the memory needed to hold its opaque structure.

Parameters
None.

Returns
CUDNN_STATUS_SUCCESS
The object was created successfully.

CUDNN_STATUS_BAD_PARAM
reduceTensorDesc is a NULL pointer.

CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.30. cudnnCreateSpatialTransformerDescriptor

    cudnnStatus_t cudnnCreateSpatialTransformerDescriptor(
        cudnnSpatialTransformerDescriptor_t *stDesc)

This function creates a generic spatial transformer descriptor object by allocating the memory needed to hold its opaque structure.

Returns
CUDNN_STATUS_SUCCESS
The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.31. cudnnCreateTensorDescriptor

    cudnnStatus_t cudnnCreateTensorDescriptor(

cudnnTensorDescriptor_t *tensorDesc)

This function creates a generic tensor descriptor object by allocating the memory needed to hold its opaque structure. The data is initialized to be all zero.

Parameters
tensorDesc

Input. Pointer to pointer where the address to the allocated tensor descriptor object should be stored.

Returns
CUDNN_STATUS_BAD_PARAM
Invalid input argument.
CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.
CUDNN_STATUS_SUCCESS
The object was created successfully.

4.32. cudnnDeriveBNTensorDescriptor

cudnnStatus_t cudnnDeriveBNTensorDescriptor(
    cudnnTensorDescriptor_t         derivedBnDesc,
    const cudnnTensorDescriptor_t   xDesc,
    cudnnBatchNormMode_t            mode)

This function derives a secondary tensor descriptor for the batch normalization scale, invVariance, bnBias, bnScale subtensors from the layer’s x data descriptor.

Use the tensor descriptor produced by this function as the bnScaleBiasMeanVarDesc parameter for the cudnnBatchNormalizationForwardInference and cudnnBatchNormalizationForwardTraining functions, and as the bnScaleBiasDiffDesc parameter in the cudnnBatchNormalizationBackward function.

The resulting dimensions will be 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for BATCHNORM_MODE_SPATIAL, and 1xCxHxW for 4D and 1xCxDxHxW for 5D for BATCHNORM_MODE_PER_ACTIVATION mode.
For HALF input data type the resulting tensor descriptor will have a FLOAT type. For other data types it will have the same type as the input data.

- Only 4D and 5D tensors are supported.
- The `derivedBnDesc` should be first created using `cudnnCreateTensorDescriptor`.
- `xDesc` is the descriptor for the layer’s `x` data and has to be setup with proper dimensions prior to calling this function.

### Parameters

- **derivedBnDesc**
  - *Output*. Handle to a previously created tensor descriptor.
- **xDesc**
  - *Input*. Handle to a previously created and initialized layer’s `x` data descriptor.
- **mode**
  - *Input*. Batch normalization layer mode of operation.

### Returns

- **CUDNN_STATUS_SUCCESS**
  - The computation was performed successfully.
- **CUDNN_STATUS_BAD_PARAM**
  - Invalid Batch Normalization mode.

### 4.33. `cudnnDestroy`

`cudnnStatus_t cudnnDestroy(cudnnHandle_t handle)`

This function releases resources used by the cuDNN handle. This function is usually the last call with a particular handle to the cuDNN handle. Because `cudnnCreate` allocates some internal resources, the release of those resources by calling `cudnnDestroy` will implicitly call `cudaDeviceSynchronize`; therefore, the recommended best practice is to call `cudnnCreate/cudnnDestroy` outside of performance-critical code paths.

### Parameters

- **handle**
  - *Input*. Pointer to the cuDNN handle to be destroyed.

### Returns

- **CUDNN_STATUS_SUCCESS**
  - The cuDNN context destruction was successful.
CUDNN_STATUS_BAD_PARAM
Invalid (NULL) pointer supplied.

4.34. cudnnDestroyActivationDescriptor

cudnnStatus_t cudnnDestroyActivationDescriptor(
  cudnnActivationDescriptor_t activationDesc)

This function destroys a previously created activation descriptor object.

Returns
CUDNN_STATUS_SUCCESS
The object was destroyed successfully.

4.35. cudnnDestroyAlgorithmDescriptor

cudnnStatus_t cudnnDestroyAlgorithmDescriptor(
  cudnnActivationDescriptor_t algorithmDesc)

(New for 7.1)
This function destroys a previously created algorithm descriptor object.

Returns
CUDNN_STATUS_SUCCESS
The object was destroyed successfully.

4.36. cudnnDestroyAlgorithmPerformance

cudnnStatus_t cudnnDestroyAlgorithmPerformance(
  cudnnAlgorithmPerformance_t algoPerf)

(New for 7.1)
This function destroys a previously created algorithm descriptor object.

Returns
CUDNN_STATUS_SUCCESS
The object was destroyed successfully.

4.37. cudnnDestroyCTCLossDescriptor

cudnnStatus_t cudnnDestroyCTCLossDescriptor(
  cudnnCTCLossDescriptor_t ctcLossDesc)

This function destroys a CTC loss function descriptor object.

Parameters
ctcLossDesc

Input. CTC loss function descriptor to be destroyed.

Returns
CUDNN_STATUS_SUCCESS
The function returned successfully.

4.38. cudnnDestroyConvolutionDescriptor

cudnnStatus_t cudnnDestroyConvolutionDescriptor(
    cudnnConvolutionDescriptor_t convDesc)

This function destroys a previously created convolution descriptor object.

Returns
CUDNN_STATUS_SUCCESS
The object was destroyed successfully.

4.39. cudnnDestroyDropoutDescriptor

cudnnStatus_t cudnnDestroyDropoutDescriptor(
    cudnnDropoutDescriptor_t dropoutDesc)

This function destroys a previously created dropout descriptor object.

Returns
CUDNN_STATUS_SUCCESS
The object was destroyed successfully.

4.40. cudnnDestroyFilterDescriptor

cudnnStatus_t cudnnDestroyFilterDescriptor(
    cudnnFilterDescriptor_t filterDesc)

This function destroys a previously created Tensor4D descriptor object.

Returns
CUDNN_STATUS_SUCCESS
The object was destroyed successfully.

4.41. cudnnDestroyLRNDescriptor

cudnnStatus_t cudnnDestroyLRNDescriptor(
    cudnnLRNDescriptor_t lrnDesc)

This function destroys a previously created LRN descriptor object.
Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.42. cudnnDestroyOpTensorDescriptor

cudnnStatus_t cudnnDestroyOpTensorDescriptor(
    cudnnOpTensorDescriptor_t   opTensorDesc)

This function deletes a Tensor Pointwise math descriptor object.

Parameters

opTensorDesc

Input. Pointer to the structure holding the description of the Tensor Pointwise math to be deleted.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

4.43. cudnnDestroyPersistentRNNPlan

cudnnStatus_t cudnnDestroyPersistentRNNPlan(
    cudnnPersistentRNNPlan_t plan)

This function destroys a previously created persistent RNN plan object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.44. cudnnDestroyPoolingDescriptor

cudnnStatus_t cudnnDestroyPoolingDescriptor(
    cudnnPoolingDescriptor_t poolingDesc)

This function destroys a previously created pooling descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.45. cudnnDestroyRNNDescriptor

cudnnStatus_t cudnnDestroyRNNDescriptor(
    cudnnRNNDescriptor_t rnnDesc)
This function destroys a previously created RNN descriptor object.

Returns

CUDNN\_STATUS\_SUCCESS
The object was destroyed successfully.

### 4.46. cudnnDestroyRNNDataDescriptor

cudnnStatus_t cudnnDestroyRNNDataDescriptor(
  cudnnRNNDataDescriptor_t RNNDataDesc)

This function destroys a previously created RNN data descriptor object.

Returns

CUDNN\_STATUS\_SUCCESS
The RNN data descriptor object was destroyed successfully.

### 4.47. cudnnDestroyReduceTensorDescriptor

cudnnStatus_t cudnnDestroyReduceTensorDescriptor(
  cudnnReduceTensorDescriptor_t tensorDesc)

This function destroys a previously created reduce tensor descriptor object. When the input pointer is NULL, this function performs no destroy operation.

Parameters
tensorDesc

*Input*. Pointer to the reduce tensor descriptor object to be destroyed.

Returns

CUDNN\_STATUS\_SUCCESS
The object was destroyed successfully.

### 4.48. cudnnDestroySpatialTransformerDescriptor

cudnnStatus_t cudnnDestroySpatialTransformerDescriptor(
  cudnnSpatialTransformerDescriptor_t stDesc)

This function destroys a previously created spatial transformer descriptor object.

Returns

CUDNN\_STATUS\_SUCCESS
The object was destroyed successfully.
4.49. cudnnDestroyTensorDescriptor

```c
void cudnnDestroyTensorDescriptor(cudnnTensorDescriptor_t tensorDesc)
```

This function destroys a previously created tensor descriptor object. When the input pointer is NULL, this function performs no destroy operation.

**Parameters**

tensorDesc

*Input.* Pointer to the tensor descriptor object to be destroyed.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was destroyed successfully.

4.50. cudnnDivisiveNormalizationBackward

```c
void cudnnDivisiveNormalizationBackward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnDivNormMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *means,
 const void *dy,
 void *temp,
 void *temp2,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx,
 void *dMeans)
```

This function performs the backward DivisiveNormalization layer computation.

- Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-overlapping non-negative strides. Only 4D and 5D tensors are supported.

**Parameters**

- **handle**

  *Input.* Handle to a previously created cuDNN library descriptor.

- **normDesc**

  *Input.* Handle to a previously initialed LRN parameter descriptor (this descriptor is used for both LRN and DivisiveNormalization layers).

- **mode**

  *Input.* DivisiveNormalization layer mode of operation. Currently only **CUDNN_DIVNORM_PRECOMPUTED_MEANS** is implemented. Normalization is
performed using the means input tensor that is expected to be precomputed by the user.

**alpha, beta**

*Input.* Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows: \( \text{dstValue} = \alpha[0] \ast \text{resultValue} + \beta[0] \ast \text{priorDstValue} \). Please refer to this section for additional details.

**xDesc, x, means**

*Input.* Tensor descriptor and pointers in device memory for the layer's x and means data. Note: the means tensor is expected to be precomputed by the user. It can also contain any valid values (not required to be actual means, and can be for instance a result of a convolution with a Gaussian kernel).

**dy**

*Input.* Tensor pointer in device memory for the layer's dy cumulative loss differential data (error backpropagation).

**temp, temp2**

*Workspace.* Temporary tensors in device memory. These are used for computing intermediate values during the backward pass. These tensors do not have to be preserved from forward to backward pass. Both use xDesc as a descriptor.

**dxDesc**

*Input.* Tensor descriptor for dx and dMeans.

**dx, dMeans**

*Output.* Tensor pointers (in device memory) for the layer's resulting cumulative gradients dx and dMeans (dLoss/dx and dLoss/dMeans). Both share the same descriptor.

Possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The computation was performed successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- One of the tensor pointers x, dx, temp, tmp2, dy is NULL.
- Number of any of the input or output tensor dimensions is not within the [4,5] range.
- Either alpha or beta pointer is NULL.
- A mismatch in dimensions between xDesc and dxDesc.
- LRN descriptor parameters are outside of their valid ranges.
- Any of the tensor strides is negative.
The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- Any of the input and output tensor strides mismatch (for the same dimension).

### 4.51. cudnnDivisiveNormalizationForward

This function performs the forward spatial DivisiveNormalization layer computation. It divides every value in a layer by the standard deviation of its spatial neighbors as described in “What is the Best Multi-Stage Architecture for Object Recognition”, Jarrett 2009, Local Contrast Normalization Layer section. Note that Divisive Normalization only implements the $x$/max(c, $\sigma_x$) portion of the computation, where $\sigma_x$ is the variance over the spatial neighborhood of $x$. The full LCN (Local Contrastive Normalization) computation can be implemented as a two-step process:

$$x_m = x - \text{mean}(x);$$
$$y = \frac{x_m}{\text{max}(c, \sigma(x_m));}$$

The "$x-\text{mean}(x)$" which is often referred to as "subtractive normalization" portion of the computation can be implemented using cuDNN average pooling layer followed by a call to addTensor.

Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-overlapping non-negative strides. Only 4D and 5D tensors are supported.

#### Parameters

**handle**

*Input.* Handle to a previously created cuDNN library descriptor.

**normDesc**

*Input.* Handle to a previously initialized LRN parameter descriptor. This descriptor is used for both LRN and DivisiveNormalization layers.
divNormMode

*Input.* DivisiveNormalization layer mode of operation. Currently only CUDNN_DIVNORM_PRECOMPUTED_MEANS is implemented. Normalization is performed using the means input tensor that is expected to be precomputed by the user.

**alpha, beta**

*Input.* Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows: \( \text{dstValue} = \alpha[0] \cdot \text{resultValue} + \beta[0] \cdot \text{priorDstValue} \). Please refer to this section for additional details.

**xDesc, yDesc**

*Input.* Tensor descriptor objects for the input and output tensors. Note that xDesc is shared between x, means, temp and temp2 tensors.

**x**

*Input.* Input tensor data pointer in device memory.

**means**

*Input.* Input means tensor data pointer in device memory. Note that this tensor can be NULL (in that case its values are assumed to be zero during the computation). This tensor also doesn't have to contain means, these can be any values, a frequently used variation is a result of convolution with a normalized positive kernel (such as Gaussian).

**temp, temp2**

*Workspace.* Temporary tensors in device memory. These are used for computing intermediate values during the forward pass. These tensors do not have to be preserved as inputs from forward to the backward pass. Both use xDesc as their descriptor.

**y**

*Output.* Pointer in device memory to a tensor for the result of the forward DivisiveNormalization computation.

Possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The computation was performed successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- One of the tensor pointers \( x, y, \text{temp}, \text{temp2} \) is NULL.
- Number of input tensor or output tensor dimensions is outside of \([4,5]\) range.
- A mismatch in dimensions between any two of the input or output tensors.
- For in-place computation when pointers \( x = y \), a mismatch in strides between the input data and output data tensors.
- Alpha or beta pointer is NULL.
- LRN descriptor parameters are outside of their valid ranges.
- Any of the tensor strides are negative.

**CUDNN_STATUS_UNSUPPORTED**

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- Any of the input and output tensor strides mismatch (for the same dimension).

### 4.52. cudnnDropoutBackward

```c
 cudnnStatus_t cudnnDropoutBackward(
 cudnnHandle_t handle,
 const cudnnDropoutDescriptor_t dropoutDesc,
 const cudnnTensorDescriptor_t dydesc,
 const void *dy,
 const cudnnTensorDescriptor_t dxdesc,
 void *dx,
 void *reserveSpace,
 size_t reserveSpaceSizeInBytes)
```

This function performs backward dropout operation over `dy` returning results in `dx`. If during forward dropout operation value from `x` was propagated to `y` then during backward operation value from `dy` will be propagated to `dx`, otherwise, `dx` value will be set to 0.

**Parameters**

**handle**

*Input*. Handle to a previously created cuDNN context.

**dropoutDesc**

*Input*. Previously created dropout descriptor object.

**dyDesc**

*Input*. Handle to a previously initialized tensor descriptor.

**dy**

*Input*. Pointer to data of the tensor described by the `dyDesc` descriptor.

**dxDesc**

*Input*. Handle to a previously initialized tensor descriptor.

**dx**

*Output*. Pointer to data of the tensor described by the `dxDesc` descriptor.
reserveSpace

*Input.* Pointer to user-allocated GPU memory used by this function. It is expected that reserveSpace was populated during a call to cudnnDropoutForward and has not been changed.

reserveSpaceSizeInBytes

*Input.* Specifies size in bytes of the provided memory for the reserve space

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The call was successful.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The number of elements of input tensor and output tensors differ.
- The datatype of the input tensor and output tensors differs.
- The strides of the input tensor and output tensors differ and in-place operation is used (i.e., x and y pointers are equal).
- The provided reserveSpaceSizeInBytes is less then the value returned by cudnnDropoutGetReserveSpaceSize
- cudnnSetDropoutDescriptor has not been called on dropoutDesc with the non-NULL states argument

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

### 4.53. cudnnDropoutForward

```c
#include <cudnn.h>

/* Function signature */
cudnnStatus_t cudnnDropoutForward(
 cudnnHandle_t handle, /* Handle to CUDNN context */
 const cudnnDropoutDescriptor_t dropoutDesc, /* Descriptor for dropout operation */
 const cudnnTensorDescriptor_t xdesc, /* Tensor descriptor for input tensor x */
 const void *x, /* Pointer to input tensor x */
 const cudnnTensorDescriptor_t ydesc, /* Tensor descriptor for output tensor y */
 void *y, /* Pointer to output tensor y */
 void *reserveSpace, /* Pointer to reserve space */
 size_t reserveSpaceSizeInBytes /* Size of reserve space in bytes */
)
```

This function performs forward dropout operation over *x* returning results in *y*. If dropout was used as a parameter to cudnnSetDropoutDescriptor, the approximately dropout fraction of *x* values will be replaced by 0, and the rest will
be scaled by \(1/(1 - \text{dropout})\) This function should not be running concurrently with another cudnnDropoutForward function using the same states.

Better performance is obtained for fully packed tensors

Should not be called during inference

Parameters

**handle**

*Input.* Handle to a previously created cuDNN context.

**dropoutDesc**

*Input.* Previously created dropout descriptor object.

**xDesc**

*Input.* Handle to a previously initialized tensor descriptor.

**x**

*Input.* Pointer to data of the tensor described by the xDesc descriptor.

**yDesc**

*Input.* Handle to a previously initialized tensor descriptor.

**y**

*Output.* Pointer to data of the tensor described by the yDesc descriptor.

**reserveSpace**

*Output.* Pointer to user-allocated GPU memory used by this function. It is expected that contents of reserveSpace do not change between cudnnDropoutForward and cudnnDropoutBackward calls.

**reserveSpaceSizeInBytes**

*Input.* Specifies size in bytes of the provided memory for the reserve space.

The possible error values returned by this function and their meanings are listed below.

Returns

**CUDNN_STATUS_SUCCESS**

The call was successful.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The number of elements of input tensor and output tensors differ.
- The datatype of the input tensor and output tensors differs.
The strides of the input tensor and output tensors differ and in-place operation is used (i.e., \(x\) and \(y\) pointers are equal).

The provided `reserveSpaceSizeInBytes` is less then the value returned by `cudnnDropoutGetReserveSpaceSize`.

`cudnnSetDropoutDescriptor` has not been called on `dropoutDesc` with the non-NULL `states` argument.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

### 4.54. cudnnDropoutGetReserveSpaceSize

This function is used to query the amount of reserve needed to run dropout with the input dimensions given by `xDesc`. The same reserve space is expected to be passed to `cudnnDropoutForward` and `cudnnDropoutBackward`, and its contents is expected to remain unchanged between `cudnnDropoutForward` and `cudnnDropoutBackward` calls.

**Parameters**

- `xDesc`
  
  *Input.* Handle to a previously initialized tensor descriptor, describing input to a dropout operation.

- `sizeInBytes`
  
  *Output.* Amount of GPU memory needed as reserve space to be able to run dropout with an input tensor descriptor specified by `xDesc`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.

### 4.55. cudnnDropoutGetStatesSize

This function is used to query the amount of space required to store the states of the random number generators used by `cudnnDropoutForward` function.

**Parameters**

- `handle`
  
  *Input.* Handle to a previously created cuDNN context.
sizeInBytes

*Output.* Amount of GPU memory needed to store random generator states.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.

### 4.56. cudnnFindConvolutionBackwardDataAlgorithm

```c
cudnnStatus_t cudnnFindConvolutionBackwardDataAlgorithm(
 cudnnHandle_t handle,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t dxDesc,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionBwdDataAlgoPerf_t *perfResults)
```

This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for `cudnnConvolutionBackwardData()`, using memory allocated via `cudaMalloc()` and outputs performance metrics to a user-allocated array of `cudnnConvolutionBwdDataAlgoPerf_t`. These metrics are written in sorted fashion where the first element has the lowest compute time. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionBackwardMaxCount()`.

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise may needlessly inhibit some algorithm options due to resource usage.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**wDesc**

*Input.* Handle to a previously initialized filter descriptor.

**dyDesc**

*Input.* Handle to the previously initialized input differential tensor descriptor.

**convDesc**

*Input.* Previously initialized convolution descriptor.
dxDesc

*Input.* Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

*Input.* The maximum number of elements to be stored in perfResults.

returnedAlgoCount

*Output.* The number of output elements stored in perfResults.

perfResults

*Output.* A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- `handle` is not allocated properly.
- `wDesc, dyDesc` or `dxDesc` is not allocated properly.
- `wDesc, dyDesc` or `dxDesc` has fewer than 1 dimension.
- Either `returnedCount` or `perfResults` is nil.
- `requestedCount` is less than 1.

**CUDNN_STATUS_ALLOC_FAILED**

This function was unable to allocate memory to store sample input, filters and output.

**CUDNN_STATUS_INTERNAL_ERROR**

At least one of the following conditions are met:

- The function was unable to allocate necessary timing objects.
- The function was unable to deallocate necessary timing objects.
- The function was unable to deallocate sample input, filters and output.

### 4.57. cudnnFindConvolutionBackwardDataAlgorithmEx

```c
void cudnnStatus_t cudnnFindConvolutionBackwardDataAlgorithmEx(
 cudnnHandle_t handle,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionBwdDataAlgoPerf_t *perfResults,
);```

www.nvidia.com

cuDNN 7.4.2
This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for `cudnnConvolutionBackwardData`, using user-allocated GPU memory, and outputs performance metrics to a user-allocated array of `cudnnConvolutionBwdDataAlgoPerf_t`. These metrics are written in sorted fashion where the first element has the lowest compute time. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionBackwardMaxCount()`.

This function is host blocking.

Parameters

handle

Input. Handle to a previously created cuDNN context.

wDesc

Input. Handle to a previously initialized filter descriptor.

w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

dy

Input. Data pointer to GPU memory associated with the filter descriptor `dyDesc`.

convDesc

Input. Previously initialized convolution descriptor.

dxDesc

Input. Handle to the previously initialized output tensor descriptor.

dxDesc

Input/Output. Data pointer to GPU memory associated with the tensor descriptor `dxDesc`. The content of this tensor will be overwritten with arbitrary values.

requestedAlgoCount

Input. The maximum number of elements to be stored in `perfResults`.

returnedAlgoCount

Output. The number of output elements stored in `perfResults`.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.
workSpace

Input. Data pointer to GPU memory that is a necessary workspace for some algorithms. The size of this workspace will determine the availability of algorithms. A nil pointer is considered a workSpace of 0 bytes.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided `workSpace`

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- `handle` is not allocated properly.
- `wDesc`, `dyDesc` or `dxDesc` is not allocated properly.
- `wDesc`, `dyDesc` or `dxDesc` has fewer than 1 dimension.
- `w`, `dy` or `dx` is nil.
- Either `returnedCount` or `perfResults` is nil.
- `requestedCount` is less than 1.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

- The function was unable to allocate necessary timing objects.
- The function was unable to deallocate necessary timing objects.
- The function was unable to deallocate sample input, filters and output.

4.58. cudnnFindConvolutionBackwardFilterAlgorithm

```c
void cudnnFindConvolutionBackwardFilterAlgorithm(
    cudnnHandle_t                          handle,
    const cudnnTensorDescriptor_t          xDesc,
    const cudnnTensorDescriptor_t          dyDesc,
    const cudnnConvolutionDescriptor_t     convDesc,
    const cudnnFilterDescriptor_t          dwDesc,
    const int                              requestedAlgoCount,
    int *                                   returnedAlgoCount,
    cudnnConvolutionBwdFilterAlgoPerf_t    *perfResults
)
```

This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for `cudnnConvolutionBackwardFilter()`, using GPU memory allocated via `cudaMalloc()`, and outputs performance metrics to a user-allocated array of `cudnnConvolutionBwdFilterAlgoPerf_t`. These metrics are written in sorted fashion where the first element has the lowest compute time.
The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionBackwardMaxCount()`.

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise may needlessly inhibit some algorithm options due to resource usage.

Parameters

handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dwDesc

Input. Handle to a previously initialized filter descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- `handle` is not allocated properly.
- `xDesc`, `dyDesc` or `dwDesc` is not allocated properly.
- `xDesc`, `dyDesc` or `dwDesc` has fewer than 1 dimension.
- Either `returnedCount` or `perfResults` is nil.
- `requestedCount` is less than 1.
CUDNN_STATUS_ALLOC_FAILED
This function was unable to allocate memory to store sample input, filters and output.

CUDNN_STATUS_INTERNAL_ERROR
At least one of the following conditions are met:
- The function was unable to allocate necessary timing objects.
- The function was unable to deallocate necessary timing objects.
- The function was unable to deallocate sample input, filters and output.

4.59. cudnnFindConvolutionBackwardFilterAlgorithmEx

cudnnStatus_t cudnnFindConvolutionBackwardFilterAlgorithmEx(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnFilterDescriptor_t dwDesc,
 void *dw,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionBwdFilterAlgoPerf_t perfResults,
 void *workSpace,
 size_t workSpaceSizeInBytes)

This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for cudnnConvolutionBackwardFilter, using user-allocated GPU memory, and outputs performance metrics to a user-allocated array of cudnnConvolutionBwdFilterAlgoPerf_t. These metrics are written in sorted fashion where the first element has the lowest compute time. The total number of resulting algorithms can be queried through the API cudnnGetConvolutionBackwardMaxCount().

This function is host blocking.

Parameters
handle
Input. Handle to a previously created cuDNN context.
xDesc
Input. Handle to the previously initialized input tensor descriptor.
x
Input. Data pointer to GPU memory associated with the filter descriptor xDesc.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor `dyDesc`.

`convDesc`

Input. Previously initialized convolution descriptor.

`dwDesc`

Input. Handle to a previously initialized filter descriptor.

`dw`

Input/Output. Data pointer to GPU memory associated with the filter descriptor `dwDesc`. The content of this tensor will be overwritten with arbitrary values.

`requestedAlgoCount`

Input. The maximum number of elements to be stored in `perfResults`.

`returnedAlgoCount`

Output. The number of output elements stored in `perfResults`.

`perfResults`

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

`workSpace`

Input. Data pointer to GPU memory that is a necessary workspace for some algorithms. The size of this workspace will determine the availability of algorithms. A nil pointer is considered a `workSpace` of 0 bytes.

`workSpaceSizeInBytes`

Input. Specifies the size in bytes of the provided `workSpace`.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- `handle` is not allocated properly.
- `xDesc`, `dyDesc` or `dwDesc` is not allocated properly.
- `xDesc`, `dyDesc` or `dwDesc` has fewer than 1 dimension.
- `x`, `dy` or `dw` is nil.
- Either `returnedCount` or `perfResults` is nil.
- `requestedCount` is less than 1.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

- The function was unable to allocate necessary timing objects.
The function was unable to deallocate necessary timing objects.

The function was unable to deallocate sample input, filters and output.

4.60. cudnnFindConvolutionForwardAlgorithm

This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for cudnnConvolutionForward(), using memory allocated via cudaMalloc(), and outputs performance metrics to a user-allocated array of cudnnConvolutionFwdAlgoPerf_t. These metrics are written in sorted fashion where the first element has the lowest compute time. The total number of resulting algorithms can be queried through the API cudnnGetConvolutionForwardMaxCount().

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise may needlessly inhibit some algorithm options due to resource usage.

Parameters

handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

wDesc

Input. Handle to a previously initialized filter descriptor.

convDesc

Input. Previously initialized convolution descriptor.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- `handle` is not allocated properly.
- `xDesc`, `wDesc` or `yDesc` is not allocated properly.
- `xDesc`, `wDesc` or `yDesc` has fewer than 1 dimension.
- Either `returnedCount` or `perfResults` is nil.
- `requestedCount` is less than 1.

CUDNN_STATUS_ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

- The function was unable to allocate neccesary timing objects.
- The function was unable to deallocate neccesary timing objects.
- The function was unable to deallocate sample input, filters and output.

4.61. cudnnFindConvolutionForwardAlgorithmEx

cudnnStatus_t cudnnFindConvolutionForwardAlgorithmEx(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionFwdAlgoPerf_t *perfResults,
 void *workSpace,
 size_t workspaceSizeInBytes);

This function attempts all available cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for `cudnnConvolutionForward`, using user-allocated GPU memory, and outputs performance metrics to a user-allocated array of `cudnnConvolutionFwdAlgoPerf_t`. These metrics are written in sorted fashion where the first element has the lowest
compute time. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionForwardMaxCount()`.

This function is host blocking.

Parameters

handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

x

Input. Data pointer to GPU memory associated with the tensor descriptor `xDesc`.

wDesc

Input. Handle to a previously initialized filter descriptor.

w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.

convDesc

Input. Previously initialized convolution descriptor.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

y

Input/Output. Data pointer to GPU memory associated with the tensor descriptor `yDesc`. The content of this tensor will be overwritten with arbitrary values.

requestedAlgoCount

Input. The maximum number of elements to be stored in `perfResults`.

returnedAlgoCount

Output. The number of output elements stored in `perfResults`.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

workSpace

Input. Data pointer to GPU memory that is a necessary workspace for some algorithms. The size of this workspace will determine the availability of algorithms. A nil pointer is considered a `workSpace` of 0 bytes.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided `workSpace`.

The possible error values returned by this function and their meanings are listed below.
Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- `handle` is not allocated properly.
- `xDesc`, `wDesc` or `yDesc` is not allocated properly.
- `xDesc`, `wDesc` or `yDesc` has fewer than 1 dimension.
- `x`, `w` or `y` is nil.
- Either `returnedCount` or `perfResults` is nil.
- `requestedCount` is less than 1.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

- The function was unable to allocate necessary timing objects.
- The function was unable to deallocate necessary timing objects.
- The function was unable to deallocate sample input, filters and output.

4.62. cudnnFindRNNBackwardDataAlgorithmEx

```c
#include <cudnn.h>

typedef cudnnStatus_t (*cudnnFindRNNBackwardDataAlgorithmEx_t)(
    cudnnHandle_t                    handle,
    const cudnnRNNDescriptor_t       rnnDesc,
    const int                        seqLength,
    const cudnnTensorDescriptor_t    *yDesc,
    const void                       *y,
    const cudnnTensorDescriptor_t    *dyDesc,
    const void                       *dy,
    const cudnnTensorDescriptor_t    dhyDesc,
    const void                       *dhy,
    const cudnnTensorDescriptor_t    dcyDesc,
    const void                       *dcy,
    const cudnnFilterDescriptor_t    wDesc,
    const void                       *w,
    const cudnnTensorDescriptor_t    hxDesc,
    const void                       *hx,
    const cudnnTensorDescriptor_t    cxDesc,
    const void                       *cx,
    const cudnnTensorDescriptor_t    *dxDesc,
    void                             *dx,
    const cudnnTensorDescriptor_t    dhxDesc,
    void                             *dhx,
    const cudnnTensorDescriptor_t    dcxDesc,
    void                             *dcx,
    const float                      findIntensity,
    const int                        requestedAlgoCount,
    int                              *returnedAlgoCount,
    cudnnAlgorithmPerformance_t     *perfResults,
    void                             *workspace,
    size_t                           workSpaceSizeInBytes,
    const void                       *reserveSpace,
    size_t                           reserveSpaceSizeInBytes)

cudnnFindRNNBackwardDataAlgorithmEx = cudnnFindRNNBackwardDataAlgorithmEx_t;
```
(New for 7.1)

This function attempts all available cuDNN algorithms for cudnnRNNBackwardData, using user-allocated GPU memory. It outputs the parameters that influence the performance of the algorithm to a user-allocated array of cudnnAlgorithmPerformance_t. These parameter metrics are written in sorted fashion where the first element has the lowest compute time.

Parameters
handle
 Input. Handle to a previously created cuDNN context.
rnnDesc
 Input. A previously initialized RNN descriptor.
seqLength
 Input. Number of iterations to unroll over. The value of this seqLength must not exceed the value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace size required to execute the RNN.
yDesc
 Input. An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the direction argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:
 ▶ If direction is CUDNN_UNIDIRECTIONAL the second dimension should match the hiddenSize argument passed to cudnnSetRNNDescriptor.
 ▶ If direction is CUDNN_BIDIRECTIONAL the second dimension should match double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in dyDesc.
y
 Input. Data pointer to GPU memory associated with the output tensor descriptor yDesc.
dyDesc
 Input. An array of fully packed tensor descriptors describing the gradient at the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the direction argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:
 ▶ If direction is CUDNN_UNIDIRECTIONAL the second dimension should match the hiddenSize argument passed to cudnnSetRNNDescriptor.
 ▶ If direction is CUDNN_BIDIRECTIONAL the second dimension should match double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the second dimension of the tensor n in dxDesc.
dy

Input. Data pointer to GPU memory associated with the tensor descriptors in the array dyDesc.

dhyDesc

Input. A fully packed tensor descriptor describing the gradients at the final hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

dhy

Input. Data pointer to GPU memory associated with the tensor descriptor `dhyDesc`. If a NULL pointer is passed, the gradients at the final hidden state of the network will be initialized to zero.

dcyDesc

Input. A fully packed tensor descriptor describing the gradients at the final cell state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

dcy

Input. Data pointer to GPU memory associated with the tensor descriptor `dcyDesc`. If a NULL pointer is passed, the gradients at the final cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.
hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the *direction* argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the *direction* argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

cx

Input. Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

dxDesc

Input. An array of fully packed tensor descriptors describing the gradient at the input of each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element `n` to element `n+1` but may not increase. Each tensor descriptor must have the same second dimension (vector length).

dx

Output. Data pointer to GPU memory associated with the tensor descriptors in the array `dxDesc`.
dhxDesc

Input. A fully packed tensor descriptor describing the gradient at the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

dhx

Output. Data pointer to GPU memory associated with the tensor descriptor `dhxDesc`. If a NULL pointer is passed, the gradient at the hidden input of the network will not be set.

dcxDesc

Input. A fully packed tensor descriptor describing the gradient at the initial cell state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

dcx

Output. Data pointer to GPU memory associated with the tensor descriptor `dcxDesc`. If a NULL pointer is passed, the gradient at the cell input of the network will not be set.

findIntensity

Input. This input was previously unused in versions prior to 7.2.0. It is used in cuDNN 7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by selecting the percentage of a large Cartesian product space to be searched.

- Setting `findIntensity` within the range (0,1.] will set a percentage of the entire RNN search space to search. When `findIntensity` is set to 1.0, a full search is performed over all RNN parameters.
- When `findIntensity` is set to 0.0f, a quick, minimal search is performed. This setting has the best runtime. However, in this case the parameters returned by this function will not correspond to the best performance of the algorithm;
a longer search might discover better parameters. This option will execute up to three instances of the configured RNN problem. Runtime will vary proportionally to RNN problem size, as it will in the other cases, hence no guarantee of an explicit time bound can be given.

- Setting **findIntensity** within the range [-1..0) sets a percentage of a reduced Cartesian product space to be searched. This reduced searched space has been heuristically selected to have good performance. The setting of -1.0 represents a full search over this reduced search space.
- Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as per the above.
- Setting **findIntensity** to 1.0 in cuDNN 7.2 and later versions is equivalent to the behavior of this function in versions prior to cuDNN 7.2.0.
- This function times the single RNN executions over large parameter spaces--one execution per parameter combination. The times returned by this function are latencies.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reserveSpace.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor **rnnDesc** is invalid.
At least one of the descriptors \(\text{dhxDesc}, \text{wDesc}, \text{hxDesc}, \text{cxDesc}, \text{dcxDesc}, \text{dhyDesc}, \text{dcyDesc} \) or one of the descriptors in \(\text{yDesc}, \text{dxDesc}, \text{dyDesc} \) has incorrect strides or dimensions.

The descriptors in one of \(\text{yDesc}, \text{dxDesc}, \text{dyDesc}, \text{dhxDesc}, \text{wDesc}, \text{hxDesc}, \text{cxDesc}, \text{dcxDesc}, \text{dhyDesc}, \text{dcyDesc} \) has incorrect strides or dimensions.

\(\text{workSpaceSizeInBytes} \) is too small.

\(\text{reserveSpaceSizeInBytes} \) is too small.

CUDDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

CUDDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.63. cudnnFindRNNBackwardWeightsAlgorithmEx

```c
int cudnnFindRNNBackwardWeightsAlgorithmEx(
    cudnnHandle_t handle,
    const cudnnRNNDescriptor_t rnnDesc,
    const int seqLength,
    const cudnnTensorDescriptor_t *xDesc, const void *x,
    const cudnnTensorDescriptor_t hxDesc, const void *hx,
    const cudnnTensorDescriptor_t *yDesc, const void *y,
    const float findIntensity,
    const int requestedAlgoCount,
    cudnnAlgorithmPerformance_t *perfResults,
    const cudnnAlgorithmPerformance_t *workspace,
    size_t workSpaceSizeInBytes,
    const cudnnFilterDescriptor_t *dwDesc, void *dw,
    const void *reserveSpace,
    size_t reserveSpaceSizeInBytes)
```

(New for 7.1)

This function attempts all available cuDNN algorithms for \text{cudnnRNNBackwardWeights}, using user-allocated GPU memory. It outputs the parameters that influence the performance of the algorithm to a user-allocated array of \text{cudnnAlgorithmPerformance_t}. These parameter metrics are written in sorted fashion where the first element has the lowest compute time.

Parameters

- **handle**
 - *Input*. Handle to a previously created cuDNN context.

- **rnnDesc**
 - *Input*. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over. The value of this `seqLength` must not exceed the value that was used in `cudnnGetRNNWorkspaceSize()` function for querying the workspace size required to execute the RNN.

xDesc

Input. An array of fully packed tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element n to element n+1 but may not increase. Each tensor descriptor must have the same second dimension (vector length).

x

Input. Data pointer to GPU memory associated with the tensor descriptors in the array `xDesc`.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor `n` must match the first dimension of the tensor `n` in `dyDesc`.
\(y \)

Input. Data pointer to GPU memory associated with the output tensor descriptor \(y_{\text{Desc}} \).

findIntensity

Input. This input was previously unused in versions prior to 7.2.0. It is used in cuDNN 7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by selecting the percentage of a large Cartesian product space to be searched.

- Setting **findIntensity** within the range (0,1.] will set a percentage of the entire RNN search space to search. When **findIntensity** is set to 1.0, a full search is performed over all RNN parameters.
- When **findIntensity** is set to 0.0f, a quick, minimal search is performed. This setting has the best runtime. However, in this case the parameters returned by this function will not correspond to the best performance of the algorithm; a longer search might discover better parameters. This option will execute up to three instances of the configured RNN problem. Runtime will vary proportionally to RNN problem size, as it will in the other cases, hence no guarantee of an explicit time bound can be given.
- Setting **findIntensity** within the range [-1.,0) sets a percentage of a reduced Cartesian product space to be searched. This reduced searched space has been heuristically selected to have good performance. The setting of -1.0 represents a full search over this reduced search space.
- Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as per the above.
- Setting **findIntensity** to 1.0 in cuDNN 7.2 and later versions is equivalent to the behavior of this function in versions prior to cuDNN 7.2.0.
- This function times the single RNN executions over large parameter spaces—one execution per parameter combination. The times returned by this function are latencies.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

dwDesc

Input. Handle to a previously initialized filter descriptor describing the gradients of the weights for the RNN.
Input/Output. Data pointer to GPU memory associated with the filter descriptor dwDesc.

reserveSpace

Input. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reserveSpace

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor rnnDesc is invalid.
- At least one of the descriptors hxDesc, dwDesc or one of the descriptors in xDesc, yDesc is invalid.
- The descriptors in one of xDesc, hxDesc, yDesc, dwDesc has incorrect strides or dimensions.
- workspaceSizeInBytes is too small.
- reserveSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.64. cudnnFindRNNForwardInferenceAlgorithmEx

cudnnStatus_t cudnnFindRNNForwardInferenceAlgorithmEx(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 const void *x,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void *cx,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
const cudnnTensorDescriptor_t hyDesc,
void *hy,
const cudnnTensorDescriptor_t cyDesc,
void *cy,
const float findIntensity,
const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnAlgorithmPerformance_t *perfResults,
void *workspace,
size_t workSpaceSizeInBytes)

(New for 7.1)

This function attempts all available cuDNN algorithms for
cudnnRNNForwardInference, using user-allocated GPU memory. It outputs the
parameters that influence the performance of the algorithm to a user-allocated array
of cudnnAlgorithmPerformance_t. These parameter metrics are written in sorted
fashion where the first element has the lowest compute time.

Parameters

handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not
exceed the value that was used in cudnnGetRNNWorkspaceSize() function for
querying the workspace size required to execute the RNN.

xDesc

Input. An array of fully packed tensor descriptors describing the input to each
recurrent iteration (one descriptor per iteration). The first dimension (batch size) of
the tensors may decrease from element \(n\) to element \(n+1\) but may not increase. Each
tensor descriptor must have the same second dimension (vector length).

x

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array xDesc. The data are expected to be packed contiguously with the first element
of iteration \(n+1\) following directly from the last element of iteration \(n\).

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

- If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
 numLayers argument passed to cudnnSetRNNDescriptor.
- If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the
 numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize \texttt{rnnDesc}. The tensor must be fully packed.

\textbf{hx}

\textit{Input}. Data pointer to GPU memory associated with the tensor descriptor \texttt{hxDesc}. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

\textbf{cxDesc}

\textit{Input}. A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the \texttt{direction} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \texttt{rnnDesc}:

\begin{itemize}
 \item If \texttt{direction} is \texttt{CUDNN_UNIDIRECTIONAL} the first dimension should match the \texttt{numLayers} argument passed to \texttt{cudnnSetRNNDescriptor}.
 \item If \texttt{direction} is \texttt{CUDNN_BIDIRECTIONAL} the first dimension should match double the \texttt{numLayers} argument passed to \texttt{cudnnSetRNNDescriptor}.
\end{itemize}

The second dimension must match the first dimension of the tensors described in \texttt{xDesc}. The third dimension must match the \texttt{hiddenSize} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \texttt{rnnDesc}. The tensor must be fully packed.

\textbf{cx}

\textit{Input}. Data pointer to GPU memory associated with the tensor descriptor \texttt{cxDesc}. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

\textbf{wDesc}

\textit{Input}. Handle to a previously initialized filter descriptor describing the weights for the RNN.

\textbf{w}

\textit{Input}. Data pointer to GPU memory associated with the filter descriptor \texttt{wDesc}.

\textbf{yDesc}

\textit{Input}. An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the \texttt{direction} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \texttt{rnnDesc}:

\begin{itemize}
 \item If \texttt{direction} is \texttt{CUDNN_UNIDIRECTIONAL} the second dimension should match the \texttt{hiddenSize} argument passed to \texttt{cudnnSetRNNDescriptor}.
 \item If \texttt{direction} is \texttt{CUDNN_BIDIRECTIONAL} the second dimension should match double the \texttt{hiddenSize} argument passed to \texttt{cudnnSetRNNDescriptor}.
\end{itemize}

The first dimension of the tensor \texttt{n} must match the first dimension of the tensor \texttt{n} in \texttt{xDesc}.

\textbf{y}

\textit{Output}. Data pointer to GPU memory associated with the output tensor descriptor \texttt{yDesc}. The data are expected to be packed contiguously with the first element of iteration \(n+1\) following directly from the last element of iteration \(n\).
hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The first dimension of the tensor depends on the *direction* argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If *direction* is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If *direction* is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

Output. Data pointer to GPU memory associated with the tensor descriptor `hyDesc`. If a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks. The first dimension of the tensor depends on the *direction* argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If *direction* is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If *direction* is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

Output. Data pointer to GPU memory associated with the tensor descriptor `cyDesc`. If a NULL pointer is passed, the final cell state of the network will be not be saved.

findIntensity

Input. This input was previously unused in versions prior to 7.2.0. It is used in cuDNN 7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by selecting the percentage of a large Cartesian product space to be searched.

- Setting *findIntensity* within the range (0,1.] will set a percentage of the entire RNN search space to search. When *findIntensity* is set to 1.0, a full search is performed over all RNN parameters.
- When *findIntensity* is set to 0.0f, a quick, minimal search is performed. This setting has the best runtime. However, in this case the parameters returned by this function will not correspond to the best performance of the algorithm; a longer search might discover better parameters. This option will execute up to three instances of the configured RNN problem. Runtime will vary
proportionally to RNN problem size, as it will in the other cases, hence no guarantee of an explicit time bound can be given.

- Setting `findIntensity` within the range [-1.,0) sets a percentage of a reduced Cartesian product space to be searched. This reduced searched space has been heuristically selected to have good performance. The setting of -1.0 represents a full search over this reduced search space.
- Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as per the above.
- Setting `findIntensity` to 1.0 in cuDNN 7.2 and later versions is equivalent to the behavior of this function in versions prior to cuDNN 7.2.0.
- This function times the single RNN executions over large parameter spaces—one execution per parameter combination. The times returned by this function are latencies.

`requestedAlgoCount`

Input. The maximum number of elements to be stored in `perfResults`.

`returnedAlgoCount`

Output. The number of output elements stored in `perfResults`.

`perfResults`

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

`workspace`

Input. Data pointer to GPU memory to be used as a workspace for this call.

`workSpaceSizeInBytes`

Input. Specifies the size in bytes of the provided `workspace`.

Returns

`CUDNN_STATUS_SUCCESS`

The function launched successfully.

`CUDNN_STATUS_NOT_SUPPORTED`

The function does not support the provided configuration.

`CUDNN_STATUS_BAD_PARAM`

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `hxDesc`, `cxDesc`, `wDesc`, `hyDesc`, `cyDesc` or one of the descriptors in `xDesc`, `yDesc` is invalid.
- The descriptors in one of `xDesc`, `hxDesc`, `cxDesc`, `wDesc`, `yDesc`, `hyDesc`, `cyDesc` have incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.

`CUDNN_STATUS_EXECUTION_FAILED`

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.65. cudnnFindRNNForwardTrainingAlgorithmEx

cudnnStatus_t cudnnFindRNNForwardTrainingAlgorithmEx(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t.rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 const void *x,
 const cudnnTensorDescriptor_t *hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t *cxDesc,
 const void *cx,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t *yDesc,
 void *y,
 const cudnnTensorDescriptor_t *hyDesc,
 void *hy,
 const cudnnTensorDescriptor_t *cyDesc,
 void *cy,
 const float findIntensity,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnAlgorithmPerformance_t *perfResults,
 void *workspace,
 size_t workSpaceSizeInBytes,
 void *reserveSpace,
 size_t reserveSpaceSizeInBytes)

(New for 7.1)

This function attempts all available cuDNN algorithms for cudnnRNNForwardTraining, using user-allocated GPU memory. It outputs the parameters that influence the performance of the algorithm to a user-allocated array of cudnnAlgorithmPerformance_t. These parameter metrics are written in sorted fashion where the first element has the lowest compute time.

Parameters

handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

xDesc

Input. An array of fully packed tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element n to element n+1 but may not increase. Each tensor descriptor must have the same second dimension (vector length).
seqLength

Input. Number of iterations to unroll over. The value of this `seqLength` must not exceed the value that was used in `cudnnGetRNNWorkspaceSize()` function for querying the workspace size required to execute the RNN.

x

Input. Data pointer to GPU memory associated with the tensor descriptors in the array `xDesc`.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

cx

Input. Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.
w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor `n` must match the first dimension of the tensor `n` in `xDesc`.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor `yDesc`.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor `hyDesc`. If a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully packed.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If a NULL pointer is passed, the final cell state of the network will be not be saved.

findIntensity

Input. This input was previously unused in versions prior to 7.2.0. It is used in cuDNN 7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by selecting the percentage of a large Cartesian product space to be searched.

- Setting findIntensity within the range (0,1] will set a percentage of the entire RNN search space to search. When findIntensity is set to 1.0, a full search is performed over all RNN parameters.
- When findIntensity is set to 0.0f, a quick, minimal search is performed. This setting has the best runtime. However, in this case the parameters returned by this function will not correspond to the best performance of the algorithm; a longer search might discover better parameters. This option will execute up to three instances of the configured RNN problem. Runtime will vary proportionally to RNN problem size, as it will in the other cases, hence no guarantee of an explicit time bound can be given.
- Setting findIntensity within the range [-1,0) sets a percentage of a reduced Cartesian product space to be searched. This reduced searched space has been heuristically selected to have good performance. The setting of -1.0 represents a full search over this reduced search space.
- Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as per the above.
- Setting findIntensity to 1.0 in cuDNN 7.2 and later versions is equivalent to the behavior of this function in versions prior to cuDNN 7.2.0.
- This function times the single RNN executions over large parameter spaces—one execution per parameter combination. The times returned by this function are latencies.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.
reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided `reserveSpace`

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `hxDesc`, `cxDesc`, `wDesc`, `hyDesc`, `cyDesc` or one of the descriptors in `xDesc`, `yDesc` is invalid.
- The descriptors in one of `xDesc`, `hxDesc`, `cxDesc`, `wDesc`, `yDesc`, `hyDesc`, `cyDesc` have incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.
- `reserveSpaceSizeInBytes` is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.66. cudnnGetActivationDescriptor

```c
void cudnnGetActivationDescriptor(
    const cudnnActivationDescriptor_t   activationDesc,
    cudnnActivationMode_t              *mode,
    cudnnNanPropagation_t              *reluNanOpt,
    double                             *coef)
```

This function queries a previously initialized generic activation descriptor object.

Parameters

- **activationDesc**

 Input. Handle to a previously created activation descriptor.

- **mode**

 Output. Enumerant to specify the activation mode.

- **reluNanOpt**

 Output. Enumerant to specify the *Nan* propagation mode.
coef

Output. Floating point number to specify the clipping threshold when the activation mode is set to CUDNN_ACTIVATION_CLIPPED_RELU or to specify the alpha coefficient when the activation mode is set to CUDNN_ACTIVATION_ELU.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was queried successfully.

4.67. cudnnGetAlgorithmDescriptor

cudnnStatus_t cudnnGetAlgorithmDescriptor(
 const cudnnAlgorithmDescriptor_t algoDesc,
 cudnnAlgorithm_t *algorithm)

(New for 7.1)

This function queries a previously initialized generic algorithm descriptor object.

Parameters

algorithmDesc

Input. Handle to a previously created algorithm descriptor.

algorithm

Input. Struct to specify the algorithm.

Returns

CUDNN_STATUS_SUCCESS

The object was queried successfully.

4.68. cudnnGetAlgorithmPerformance

cudnnStatus_t cudnnGetAlgorithmPerformance(
 const cudnnAlgorithmPerformance_t algoPerf,
 cudnnAlgorithmDescriptor_t* algoDesc,
 cudnnStatus_t* status,
 float* time,
 size_t* memory)

(New for 7.1)

This function queries a previously initialized generic algorithm performance object.

Parameters

algoPerf

Input/Output. Handle to a previously created algorithm performance object.
algoDesc

Output. The algorithm descriptor which the performance results describe.

status

Output. The cudnn status returned from running the algoDesc algorithm.

timecoef

Output. The GPU time spent running the algoDesc algorithm.

memory

Output. The GPU memory needed to run the algoDesc algorithm.

Returns

CUDNN_STATUS_SUCCESS

The object was queried successfully.

4.69. cudnnGetAlgorithmSpaceSize

```c
#include <cudnn.h>

// cuDNN API

cudnnStatus_t cudnnGetAlgorithmSpaceSize(
    cudnnHandle_t               handle,
    cudnnAlgorithmDescriptor_t  algoDesc,
    size_t*                     algoSpaceSizeInBytes)
```

(New for 7.1)

This function queries for the amount of host memory needed to call `cudnnSaveAlgorithm`, much like the “get workspace size” functions query for the amount of device memory needed.

Parameters

handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.

algoSpaceSizeInBytes

Output. Amount of host memory needed as workspace to be able to save the metadata from the specified `algoDesc`.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the arguments is null.
4.70. cudnnBatchNormalizationBackwardExWorkspaceSize

This function returns the amount of GPU memory workspace the user should allocate to be able to call `cudnnGetBatchNormalizationBackwardEx()` function for the specified `bnOps` input setting. The workspace allocated will then be passed to the function `cudnnGetBatchNormalizationBackwardEx()`.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. See `cudnnHandle_t`.

mode

Input. Mode of operation (spatial or per-activation). See `cudnnBatchNormMode_t`.

bnOps

Input. Mode of operation for the fast NHWC kernel. See `cudnnBatchNormOps_t`. This input can be used to set this function to perform either only the batch normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

xDesc, yDesc, dyDesc, dzDesc, dxDesc

Tensor descriptors and pointers in the device memory for the layer's `x` data, back propagated differential `dy` (inputs), the optional `y` input data, the optional `dz` output, and the `dx` output, which is the resulting differential with respect to `x`. See `cudnnTensorDescriptor_t`.

dBnScaleBiasDesc

Input. Shared tensor descriptor for the following six tensors: `bnScaleData`, `bnBiasData`, `dBnScaleData`, `dBnBiasData`, `savedMean`, and `savedInvVariance`. This is the shared tensor descriptor desc for the secondary tensor that was derived by `cudnnDeriveBNTensorDescriptor()`. The dimensions for this tensor descriptor are dependent on normalization mode. Note: The data type of this tensor descriptor must be 'float' for FP16 and FP32 input tensors, and 'double' for FP64 input tensors.

activationDesc

Input. Tensor descriptor for the activation operation.
*sizeInBytes

Output. Amount of GPU memory required for the workspace, as determined by this function, to be able to execute the `cudnnGetBatchNormalizationBackwardEx()` function with the specified `bnOps` input setting.

Possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- Number of `xDesc` or `yDesc` or `dxDesc` tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- `dBnScaleBiasDesc` dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- Dimensions or data types mismatch for any pair of `xDesc`, `dyDesc`, `dxDesc`.

4.71. `cudnnBatchNormalizationForwardTrainingExWorkspaceSize`

```c
void cudnnBatchNormalizationForwardTrainingExWorkspaceSize(
    cudnnHandle_t                           handle,
    cudnnBatchNormMode_t                    mode,
    cudnnBatchNormOps_t                     bnOps,
    const cudnnTensorDescriptor_t           xDesc,
    const cudnnTensorDescriptor_t           zDesc,
    const cudnnTensorDescriptor_t           yDesc,
    const cudnnTensorDescriptor_t           bnScaleBiasMeanVarDesc,
    const cudnnActivationDescriptor_t       activationDesc,
    size_t                                  *sizeInBytes);
```

This function returns the amount of GPU memory workspace the user should allocate to be able to call `cudnnGetBatchNormalizationForwardTrainingEx()` function for the specified `bnOps` input setting. The workspace allocated should then be passed by the user to the function `cudnnGetBatchNormalizationForwardTrainingEx()`.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. See `cudnnHandle_t`.

mode

Input. Mode of operation (spatial or per-activation). See `cudnnBatchNormMode_t`.

bnOps

Input. Mode of operation for the fast NHWC kernel. See `cudnnBatchNormOps_t`.

This input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

xDesc, zDesc, yDesc

Tensor descriptors and pointers in the device memory for the layer’s x data, the optional z input data, and the y output. See cudnnTensorDescriptor_t.

bnScaleBiasMeanVarDesc

Input. Shared tensor descriptor for the following six tensors: bnScaleData, bnBiasData, dBnScaleData, dBnBiasData, savedMean, and savedInvVariance. This is the shared tensor descriptor desc for the secondary tensor that was derived by cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are dependent on normalization mode. Note: The data type of this tensor descriptor must be 'float' for FP16 and FP32 input tensors, and 'double' for FP64 input tensors.

activationDesc

Input. Tensor descriptor for the activation operation. When the bnOps input is set to either CUDNN_BATCHNORM_OPS_BN_ACTIVATION or CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION then this activation is used.

sizeInBytes

Output. Amount of GPU memory required for the workspace, as determined by this function, to be able to execute the cudnnGetBatchNormalizationForwardTrainingEx() function with the specified bnOps input setting.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- Number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- dBnScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- Dimensions or data types mismatch for xDesc, yDesc.

4.72. cudnnGetBatchNormalizationTrainingEx ReserveSpaceSize

cudnnStatus_t cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 cudnnBatchNormOps_t bnOps,
 const cudnnActivationDescriptor_t activationDesc,
 const cudnnActivationDescriptor_t xDesc,
);
size_t *sizeInBytes);

This function returns the amount of reserve GPU memory workspace the user should allocate for the batch normalization operation, for the specified bnOps input setting. In contrast to the workspace, the reserved space should be preserved between the forward and backward calls, and the data should not be altered.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.

bnOps

Input. Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t.

This input can be used to set this function to perform either only the batch normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

xDesc

Tensor descriptors and pointers in device memory for the layer's x data. See cudnnTensorDescriptor_t.

activationDesc

Input. Tensor descriptor for the activation operation.

sizeInBytes

Output. Amount of GPU memory reserved.

Possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The xDesc tensor descriptor dimension is not within the [4,5] range (only 4D and 5D tensors are supported.)

4.73. cudnnGetCTCLossDescriptor

cudnnStatus_t cudnnGetCTCLossDescriptor(
 cudnnCTCLossDescriptor_t ctcLossDesc,
 cudnnDataType_t* compType)

This function returns configuration of the passed CTC loss function descriptor.

Parameters
ctcLossDesc

Input. CTC loss function descriptor passed, from which to retrieve the configuration.

compType

Output. Compute type associated with this CTC loss function descriptor.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD_PARAM

Input OpTensor descriptor passed is invalid.

4.74. cudnnGetCTCLossWorkspaceSize

```c
cudnnStatus_t cudnnGetCTCLossWorkspaceSize(
    cudnnHandle_t                        handle,
    const   cudnnTensorDescriptor_t      probsDesc,
    const   cudnnTensorDescriptor_t      gradientsDesc,
    const   int                         *labels,
    const   int                         *labelLengths,
    const   int                         *inputLengths,
    cudnnCTCLossAlgo_t                   algo,
    const   cudnnCTCLossDescriptor_t     ctcLossDesc,
    size_t                              *sizeInBytes)
```

This function returns the amount of GPU memory workspace the user needs to allocate to be able to call `cudnnCTCLoss` with the specified algorithm. The workspace allocated will then be passed to the routine `cudnnCTCLoss`.

Parameters

handle

Input. Handle to a previously created cuDNN context.

probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor.

gradientsDesc

Input. Handle to a previously initialized gradients tensor descriptor.

labels

Input. Pointer to a previously initialized labels list.

labelLengths

Input. Pointer to a previously initialized lengths list, to walk the above labels list.

inputLengths

Input. Pointer to a previously initialized list of the lengths of the timing steps in each batch.

algo

Input. Enumerator that specifies the chosen CTC loss algorithm
ctcLossDesc

Input. Handle to the previously initialized CTC loss descriptor.

gsizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute the CTC loss computation with the specified *algo*.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The dimensions of probsDesc do not match the dimensions of gradientsDesc.
- The inputLengths do not agree with the first dimension of probsDesc.
- The workSpaceSizeInBytes is not sufficient.
- The labelLengths is greater than 256.

CUDNN_STATUS_NOT_SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm type was chosen.

4.75. cudnnGetCallback

```c

<span style="background-color: #f0f0f0">cudnnStatus_t cudnnGetCallback(
  unsigned            mask,
  void                **udata,
  cudnnCallback_t     fptr)
</span>
```

(New for 7.1)

This function queries the internal states of cuDNN error reporting functionality.

Parameters

mask

Output. Pointer to the address where the current internal error reporting message bit mask will be outputted.

udata

Output. Pointer to the address where the current internally stored udata address will be stored.

fptr

Output. Pointer to the address where the current internally stored callback function pointer will be stored. When the built-in default callback function is used, NULL will be outputted.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

If any of the input parameters are NULL.

4.76. cudnnGetConvolution2dDescriptor

cudnnStatus_t cudnnGetConvolution2dDescriptor(
 const cudnnConvolutionDescriptor_t convDesc,
 int *pad_h,
 int *pad_w,
 int *u,
 int *v,
 int *dilation_h,
 int *dilation_w,
 cudnnConvolutionMode_t *mode,
 cudnnDataType_t *computeType)

This function queries a previously initialized 2D convolution descriptor object.

Parameters

convDesc

Input/Output. Handle to a previously created convolution descriptor.

pad_h

Output. zero-padding height: number of rows of zeros implicitly concatenated onto the top and onto the bottom of input images.

pad_w

Output. zero-padding width: number of columns of zeros implicitly concatenated onto the left and onto the right of input images.

u

Output. Vertical filter stride.

v

Output. Horizontal filter stride.

dilation_h

Output. Filter height dilation.

dilation_w

Output. Filter width dilation.

mode

Output. Convolution mode.

computeType

Output. Compute precision.

The possible error values returned by this function and their meanings are listed below.
Returns

CUDNN_STATUS_SUCCESS

The operation was successful.

CUDNN_STATUS_BAD_PARAM

The parameter `convDesc` is nil.

4.77. cudnnGetConvolution2dForwardOutputDim

```c
void cudnnGetConvolution2dForwardOutputDim(
    const cudnnConvolutionDescriptor_t  convDesc,
    const cudnnTensorDescriptor_t       inputTensorDesc,
    const cudnnFilterDescriptor_t       filterDesc,
    int                                *n,
    int                                *c,
    int                                *h,
    int                                *w)
```

This function returns the dimensions of the resulting 4D tensor of a 2D convolution, given the convolution descriptor, the input tensor descriptor and the filter descriptor. This function can help to setup the output tensor and allocate the proper amount of memory prior to launch the actual convolution.

Each dimension `h` and `w` of the output images is computed as followed:

```
outputDim = 1 + ( inputDim + 2*pad - (((filterDim-1)*dilation)+1) )/
            convolutionStride;
```

The dimensions provided by this routine must be strictly respected when calling `cudnnConvolutionForward()` or `cudnnConvolutionBackwardBias()`. Providing a smaller or larger output tensor is not supported by the convolution routines.

Parameters

- **convDesc**

 Input. Handle to a previously created convolution descriptor.

- **inputTensorDesc**

 Input. Handle to a previously initialized tensor descriptor.

- **filterDesc**

 Input. Handle to a previously initialized filter descriptor.

- **n**

 Output. Number of output images.

- **c**

 Output. Number of output feature maps per image.

- **h**

 Output. Height of each output feature map.
Output. Width of each output feature map.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_BAD_PARAM

One or more of the descriptors has not been created correctly or there is a mismatch between the feature maps of inputTensorDesc and filterDesc.

CUDNN_STATUS_SUCCESS

The object was set successfully.

4.78. cudnnGetConvolutionBackwardDataAlgorithm

cudnnStatus_t cudnnGetConvolutionBackwardDataAlgorithm(
 cudnnHandle_t handle,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t dxDesc,
 cudnnConvolutionBwdDataPreference_t preference,
 size_t memoryLimitInBytes,
 cudnnConvolutionBwdDataAlgo_t *algo)

This function serves as a heuristic for obtaining the best suited algorithm for cudnnConvolutionBackwardData for the given layer specifications. Based on the input preference, this function will either return the fastest algorithm or the fastest algorithm within a given memory limit. For an exhaustive search for the fastest algorithm, please use cudnnFindConvolutionBackwardDataAlgorithm.

Parameters

handle

Input. Handle to a previously created cuDNN context.

wDesc

Input. Handle to a previously initialized filter descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dxDesc

Input. Handle to the previously initialized output tensor descriptor.

preference

Input. Enumerator to express the preference criteria in terms of memory requirement and speed.
memoryLimitInBytes

Input. It is to specify the maximum amount of GPU memory the user is willing to use as a workspace. This is currently a placeholder and is not used.

algo

Output. Enumerant that specifies which convolution algorithm should be used to compute the results according to the specified preference.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The numbers of feature maps of the input tensor and output tensor differ.
- The dataType of the two tensor descriptors or the filter are different.

4.79. cudnnGetConvolutionBackwardDataAlgorithmMaxCount

cudnnStatus_t cudnnGetConvolutionBackwardDataAlgorithmMaxCount(
 cudnnHandle_t handle,
 int *count)

This function returns the maximum number of algorithms which can be returned from cudnnFindConvolutionBackwardDataAlgorithm() and cudnnGetConvolutionForwardAlgorithm_v7(). This is the sum of all algorithms plus the sum of all algorithms with Tensor Core operations supported for the current device.

Parameters

handle

Input. Handle to a previously created cuDNN context.

count

Output. The resulting maximum number of algorithms.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

The provided handle is not allocated properly.

4.80. cudnnGetConvolutionBackwardDataAlgorithm_v7

cudnnStatus_t cudnnGetConvolutionBackwardDataAlgorithm_v7(
 cudnnHandle_t handle,
This function serves as a heuristic for obtaining the best suited algorithm for `cudnnConvolutionBackwardData` for the given layer specifications. This function will return all algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) sorted by expected (based on internal heuristic) relative performance with fastest being index 0 of perfResults. For an exhaustive search for the fastest algorithm, please use `cudnnFindConvolutionBackwardDataAlgorithm`. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionBackwardMaxCount()`.

Parameters

handle

Input. Handle to a previously created cuDNN context.

wDesc

Input. Handle to a previously initialized filter descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dxDesc

Input. Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:
One of the parameters handle, wDesc, dyDesc, convDesc, dxDesc, perfResults, returnedAlgoCount is NULL.

The numbers of feature maps of the input tensor and output tensor differ.

The dataType of the two tensor descriptors or the filter are different.

requestedAlgoCount is less than or equal to 0.

4.81. cudnnGetConvolutionBackwardDataWorkspaceSize

This function returns the amount of GPU memory workspace the user needs to allocate to be able to call cudnnConvolutionBackwardData with the specified algorithm. The workspace allocated will then be passed to the routine cudnnConvolutionBackwardData. The specified algorithm can be the result of the call to cudnnGetConvolutionBackwardDataAlgorithm or can be chosen arbitrarily by the user. Note that not every algorithm is available for every configuration of the input tensor and/or every configuration of the convolution descriptor.

Parameters

handle

Input. Handle to a previously created cuDNN context.

wDesc

Input. Handle to a previously initialized filter descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dxDesc

Input. Handle to the previously initialized output tensor descriptor.

algo

Input. Enumerator that specifies the chosen convolution algorithm

sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a forward convolution with the specified algo

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The numbers of feature maps of the input tensor and output tensor differ.
- The `dataType` of the two tensor descriptors or the filter are different.

CUDNN_STATUS_NOT_SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.

4.82. cudnnGetConvolutionBackwardFilterAlgorithm

This function serves as a heuristic for obtaining the best suited algorithm for `cudnnConvolutionBackwardFilter` for the given layer specifications. Based on the input preference, this function will either return the fastest algorithm or the fastest algorithm within a given memory limit. For an exhaustive search for the fastest algorithm, please use `cudnnFindConvolutionBackwardFilterAlgorithm`.

Parameters

- **handle**
 - Input. Handle to a previously created cuDNN context.

- **xDesc**
 - Input. Handle to the previously initialized input tensor descriptor.

- **dyDesc**
 - Input. Handle to the previously initialized input differential tensor descriptor.

- **convDesc**
 - Input. Previously initialized convolution descriptor.

- **dwDesc**
 - Input. Handle to a previously initialized filter descriptor.

- **preference**
 - Input. Enumerator to express the preference criteria in terms of memory requirement and speed.
memoryLimitInBytes

Input. It is to specify the maximum amount of GPU memory the user is willing to use as a workspace. This is currently a placeholder and is not used.

algo

Output. Enumerant that specifies which convolution algorithm should be used to compute the results according to the specified preference.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The numbers of feature maps of the input tensor and output tensor differ.
- The `dataType` of the two tensor descriptors or the filter are different.

4.83. cudnnGetConvolutionBackwardFilterAlgorithmMaxCount

```c
void cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(  
    cudnnHandle_t     handle,  
    int                *count)  
```

This function returns the maximum number of algorithms which can be returned from `cudnnFindConvolutionBackwardFilterAlgorithm()` and `cudnnGetConvolutionForwardAlgorithm_v7()`. This is the sum of all algorithms plus the sum of all algorithms with Tensor Core operations supported for the current device.

Parameters

handle

Input. Handle to a previously created cuDNN context.

count

Output. The resulting maximum count of algorithms.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

The provided handle is not allocated properly.

4.84. cudnnGetConvolutionBackwardFilterAlgorithm_v7

```c
void cudnnGetConvolutionBackwardFilterAlgorithm_v7(  
    cudnnHandle_t     handle,  
    `algo_t`          algo,  
    `status_t`        status)  
```
This function serves as a heuristic for obtaining the best suited algorithm for \texttt{cudnnConvolutionBackwardFilter} for the given layer specifications. This function will return all algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) sorted by expected (based on internal heuristic) relative performance with fastest being index 0 of \texttt{perfResults}. For an exhaustive search for the fastest algorithm, please use \texttt{cudnnFindConvolutionBackwardFilterAlgorithm}. The total number of resulting algorithms can be queried through the API \texttt{cudnnGetConvolutionBackwardMaxCount()}.

Parameters

handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dwDesc

Input. Handle to a previously initialized filter descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in \texttt{perfResults}.

returnedAlgoCount

Output. The number of output elements stored in \texttt{perfResults}.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:
One of the parameters handle, xDesc, dyDesc, convDesc, dwDesc, perfResults, returnedAlgoCount is NULL.

The numbers of feature maps of the input tensor and output tensor differ.

The `dataType` of the two tensor descriptors or the filter are different.

requestedAlgoCount is less than or equal to 0.

4.85. `cudnnGetConvolutionBackwardFilterWorkspaceSize`

```c
#include <cudnn.h>

void cudnnGetConvolutionBackwardFilterWorkspaceSize(
    cudnnHandle_t handle,
    const cudnnTensorDescriptor_t xDesc,
    const cudnnTensorDescriptor_t dyDesc,
    const cudnnConvolutionDescriptor_t convDesc,
    const cudnnFilterDescriptor_t dwDesc,
    cudnnConvolutionBwdFilterAlgo_t algo,
    size_t *sizeInBytes)
```

This function returns the amount of GPU memory workspace the user needs to allocate to be able to call `cudnnConvolutionBackwardFilter` with the specified algorithm. The workspace allocated will then be passed to the routine `cudnnConvolutionBackwardFilter`. The specified algorithm can be the result of the call to `cudnnGetConvolutionBackwardFilterAlgorithm` or can be chosen arbitrarily by the user. Note that not every algorithm is available for every configuration of the input tensor and/or every configuration of the convolution descriptor.

Parameters

handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dwDesc

Input. Handle to a previously initialized filter descriptor.

algo

Input. Enumerant that specifies the chosen convolution algorithm.

sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a forward convolution with the specified algo.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The numbers of feature maps of the input tensor and output tensor differ.
- The dataType of the two tensor descriptors or the filter are different.

CUDNN_STATUS_NOT_SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.

4.86. cudnnGetConvolutionForwardAlgorithm

cudnnStatus_t cudnnGetConvolutionForwardAlgorithm(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t yDesc,
 cudnnConvolutionFwdPreference_t preference,
 size_t memoryLimitInBytes,
 cudnnConvolutionFwdAlgo_t *algo)

This function serves as a heuristic for obtaining the best suited algorithm for cudnnConvolutionForward for the given layer specifications. Based on the input preference, this function will either return the fastest algorithm or the fastest algorithm within a given memory limit. For an exhaustive search for the fastest algorithm, please use cudnnFindConvolutionForwardAlgorithm.

Parameters

handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

wDesc

Input. Handle to a previously initialized convolution filter descriptor.

convDesc

Input. Previously initialized convolution descriptor.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

preference

Input. Enumerator to express the preference criteria in terms of memory requirement and speed.
memoryLimitInBytes

Input. It is used when enumerant preference is set to CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT to specify the maximum amount of GPU memory the user is willing to use as a workspace

algo

Output. Enumerant that specifies which convolution algorithm should be used to compute the results according to the specified preference

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the parameters handle, xDesc, wDesc, convDesc, yDesc is NULL.
- Either yDesc or wDesc have different dimensions from xDesc.
- The data types of tensors xDesc, yDesc or wDesc are not all the same.
- The number of feature maps in xDesc and wDesc differs.
- The tensor xDesc has a dimension smaller than 3.

4.87. cudnnGetConvolutionForwardAlgorithmMaxCount

cudnnStatus_t cudnnGetConvolutionForwardAlgorithmMaxCount(
 cudnnHandle_t handle,
 int *count)

This function returns the maximum number of algorithms which can be returned from cudnnFindConvolutionForwardAlgorithm() and cudnnGetConvolutionForwardAlgorithm_v7(). This is the sum of all algorithms plus the sum of all algorithms with Tensor Core operations supported for the current device.

Parameters

handle

Input. Handle to a previously created cuDNN context.

count

Output. The resulting maximum number of algorithms.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

The provided handle is not allocated properly.
4.88. cudnnGetConvolutionForwardAlgorithm_v7

cudnnStatus_t cudnnGetConvolutionForwardAlgorithm_v7(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t yDesc,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionFwdAlgoPerf_t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm
for cudnnConvolutionForward for the given layer specifications. This
function will return all algorithms (including CUDNN_TENSOR_OP_MATH
and CUDNN_DEFAULT_MATH versions of algorithms where
CUDNN_TENSOR_OP_MATH may be available) sorted by expected (based
on internal heuristic) relative performance with fastest being index 0 of
perfResults. For an exhaustive search for the fastest algorithm, please use
cudnnFindConvolutionForwardAlgorithm. The total number of resulting algorithms
can be queried through the API cudnnGetConvolutionForwardMaxCount().

Parameters

handle

 Input. Handle to a previously created cuDNN context.

xDesc

 Input. Handle to the previously initialized input tensor descriptor.

wDesc

 Input. Handle to a previously initialized convolution filter descriptor.

convDesc

 Input. Previously initialized convolution descriptor.

yDesc

 Input. Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

 Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

 Output. The number of output elements stored in perfResults.

perfResults

 Output. A user-allocated array to store performance metrics sorted ascending by
 compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the parameters handle, xDesc, wDesc, convDesc, yDesc, perfResults, returnedAlgoCount is NULL.
- Either yDesc or wDesc have different dimensions from xDesc.
- The data types of tensors xDesc, yDesc or wDesc are not all the same.
- The number of feature maps in xDesc and wDesc differs.
- The tensor xDesc has a dimension smaller than 3.
- requestedAlgoCount is less than or equal to 0.

4.89. cudnnGetConvolutionForwardWorkspaceSize

cudnnStatus_t cudnnGetConvolutionForwardWorkspaceSize(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t yDesc,
 cudnnConvolutionFwdAlgo_t algo,
 size_t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate to be able to call cudnnConvolutionForward with the specified algorithm. The workspace allocated will then be passed to the routine cudnnConvolutionForward. The specified algorithm can be the result of the call to cudnnGetConvolutionForwardAlgorithm or can be chosen arbitrarily by the user. Note that not every algorithm is available for every configuration of the input tensor and/or every configuration of the convolution descriptor.

Parameters

handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized x tensor descriptor.

wDesc

Input. Handle to a previously initialized filter descriptor.

convDesc

Input. Previously initialized convolution descriptor.

yDesc

Input. Handle to the previously initialized y tensor descriptor.

algo

Input. Enumerator that specifies the chosen convolution algorithm
sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a forward convolution with the specified *algo*

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the parameters handle, xDesc, wDesc, convDesc, yDesc is NULL.
- The tensor yDesc or wDesc are not of the same dimension as xDesc.
- The tensor xDesc, yDesc or wDesc are not of the same data type.
- The numbers of feature maps of the tensor xDesc and wDesc differ.
- The tensor xDesc has a dimension smaller than 3.

CUDNN_STATUS_NOT_SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.

4.90. cudnnGetConvolutionGroupCount

```c
cudnnStatus_t cudnnGetConvolutionGroupCount(
    cudnnConvolutionDescriptor_t    convDesc,
    int                            *groupCount)
```

This function returns the group count specified in the given convolution descriptor.

Returns

CUDNN_STATUS_SUCCESS

The group count was returned successfully.

CUDNN_STATUS_BAD_PARAM

An invalid convolution descriptor was provided.

4.91. cudnnGetConvolutionMathType

```c
cudnnStatus_t cudnnGetConvolutionMathType(
    cudnnConvolutionDescriptor_t    convDesc,
    cudnnMathType_t                *mathType)
```

This function returns the math type specified in a given convolution descriptor.

Returns

CUDNN_STATUS_SUCCESS

The math type was returned successfully.
CUDNN_STATUS_BAD_PARAM

An invalid convolution descriptor was provided.

4.92. cudnnGetConvolutionNdDescriptor

```c
const cudnnConvolutionDescriptor_t  convDesc,
int                                 arrayLengthRequested,
int                                 *arrayLength,
int                                 padA[],
int                                 filterStrideA[],
int                                 dilationA[],
cudnnConvolutionMode_t             *mode,
cudnnDataType_t                    *dataType)
```

This function queries a previously initialized convolution descriptor object.

Parameters

convDesc

Input/Output. Handle to a previously created convolution descriptor.

arrayLengthRequested

Input. Dimension of the expected convolution descriptor. It is also the minimum size of the arrays `padA`, `filterStrideA` and `dilationA` in order to be able to hold the results.

arrayLength

Output. Actual dimension of the convolution descriptor.

padA

Output. Array of dimension of at least `arrayLengthRequested` that will be filled with the padding parameters from the provided convolution descriptor.

filterStrideA

Output. Array of dimension of at least `arrayLengthRequested` that will be filled with the filter stride from the provided convolution descriptor.

dilationA

Output. Array of dimension of at least `arrayLengthRequested` that will be filled with the dilation parameters from the provided convolution descriptor.

mode

Output. Convolution mode of the provided descriptor.

datatype

Output. Datatype of the provided descriptor.

Returns

CUDNN_STATUS_SUCCESS

The query was successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `convDesc` is nil.
- The `arrayLengthRequest` is negative.

CUDNN_STATUS_NOT_SUPPORTED

The `arrayLengthRequested` is greater than CUDNN_DIM_MAX-2.

4.93. cudnnGetConvolutionNdForwardOutputDim

cudnnStatus_t cudnnGetConvolutionNdForwardOutputDim(
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t inputTensorDesc,
 const cudnnFilterDescriptor_t filterDesc,
 int nbDims,
 int tensorOutputDimA[])

This function returns the dimensions of the resulting n-D tensor of a \(\text{nbDims} - 2\)-D convolution, given the convolution descriptor, the input tensor descriptor and the filter descriptor. This function can help to setup the output tensor and allocate the proper amount of memory prior to launch the actual convolution.

Each dimension of the \(\text{nbDims} - 2\) -D images of the output tensor is computed as followed:

\[
\text{outputDim} = 1 + (\text{inputDim} + 2*\text{pad} - (((\text{filterDim}-1)*\text{dilation})+1)) / \text{convolutionStride};
\]

The dimensions provided by this routine must be strictly respected when calling `cudnnConvolutionForward()` or `cudnnConvolutionBackwardBias()`. Providing a smaller or larger output tensor is not supported by the convolution routines.

Parameters

convDesc

Input. Handle to a previously created convolution descriptor.

inputTensorDesc

Input. Handle to a previously initialized tensor descriptor.

filterDesc

Input. Handle to a previously initialized filter descriptor.

nbDims

Input. Dimension of the output tensor

tensorOutputDimA

Output. Array of dimensions `nbDims` that contains on exit of this routine the sizes of the output tensor
The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the parameters `convDesc`, `inputTensorDesc`, and `filterDesc`, is nil
- The dimension of the filter descriptor `filterDesc` is different from the dimension of input tensor descriptor `inputTensorDesc`.
- The dimension of the convolution descriptor is different from the dimension of input tensor descriptor `inputTensorDesc` -2.
- The features map of the filter descriptor `filterDesc` is different from the one of input tensor descriptor `inputTensorDesc`.
- The size of the dilated filter `filterDesc` is larger than the padded sizes of the input tensor.
- The dimension `nbDims` of the output array is negative or greater than the dimension of input tensor descriptor `inputTensorDesc`.

CUDNN_STATUS_SUCCESS

The routine exits successfully.

4.94. cudnnGetCudartVersion

```c
size_t cudnnGetCudartVersion()
```

The same version of a given cuDNN library can be compiled against different CUDA Toolkit versions. This routine returns the CUDA Toolkit version that the currently used cuDNN library has been compiled against.

4.95. cudnnGetDropoutDescriptor

```c
cudnnStatus_t cudnnGetDropoutDescriptor(
    cudnnDropoutDescriptor_t dropoutDesc,
    cudnnHandle_t handle,
    float *dropout,
    void **states,
    unsigned long long *seed
)
```

This function queries the fields of a previously initialized dropout descriptor.

Parameters

dropoutDesc

Input. Previously initialized dropout descriptor.

handle

Input. Handle to a previously created cuDNN context.
dropout

Output. The probability with which the value from input is set to 0 during the dropout layer.

states

Output. Pointer to user-allocated GPU memory that holds random number generator states.

seed

Output. Seed used to initialize random number generator states.

The possible error values returned by this function and their meanings are listed below.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The call was successful.
- **CUDNN_STATUS_BAD_PARAM**
 - One or more of the arguments was an invalid pointer.

4.96. cudnnGetErrorString

```c
const char * cudnnGetErrorString(cudnnStatus_t status)
```

This function converts the cuDNN status code to a NUL terminated (ASCII) static string. For example, when the input argument is CUDNN_STATUS_SUCCESS, the returned string is "CUDNN_STATUS_SUCCESS". When an invalid status value is passed to the function, the returned string is "CUDNN_UNKNOWN_STATUS".

Parameters

- **status**
 - *Input.* cuDNN enumerated status code.

Returns

Pointer to a static, NUL terminated string with the status name.

4.97. cudnnGetFilter4dDescriptor

```c
cudnnStatus_t cudnnGetFilter4dDescriptor(
const cudnnFilterDescriptor_t filterDesc,
cudnnDataType_t *dataType,
cudnnTensorFormat_t *format,
int *k,
int *c,
int *h,
int *w)
```

This function queries the parameters of the previously initialized filter descriptor object.

Parameters
filterDesc

Input Handle to a previously created filter descriptor.

datatype

Output Data type.

format

Output Type of format.

k

Output Number of output feature maps.

c

Output Number of input feature maps.

h

Output Height of each filter.

w

Output Width of each filter.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

4.98. cudnnGetFilterNdDescriptor

```c
void cudnnGetFilterNdDescriptor(
    const cudnnFilterDescriptor_t wDesc,
    int nbDimsRequested,
    cudnnDataType_t *dataType,
    cudnnTensorFormat_t *format,
    int *nbDims,
    int filterDimA[])
```

This function queries a previously initialized filter descriptor object.

Parameters

wDesc

Input Handle to a previously initialized filter descriptor.

nbDimsRequested

Input Dimension of the expected filter descriptor. It is also the minimum size of the arrays *filterDimA* in order to be able to hold the results.

datatype

Output Data type.

format

Output Type of format.
nbDims

Output. Actual dimension of the filter.

filterDimA

Output. Array of dimension of at least *nbDimsRequested* that will be filled with the filter parameters from the provided filter descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

The parameter *nbDimsRequested* is negative.

4.99. cudnnGetLRNDescriptor

cudnnStatus_t cudnnGetLRNDescriptor(
 cudnnLRNDescriptor_t normDesc,
 unsigned *lrnN,
 double *lrnAlpha,
 double *lrnBeta,
 double *lrnK)

This function retrieves values stored in the previously initialized LRN descriptor object.

Parameters

normDesc

Output. Handle to a previously created LRN descriptor.

lrnN, lrnAlpha, lrnBeta, lrnK

Output. Pointers to receive values of parameters stored in the descriptor object. See cudnnSetLRNDescriptor for more details. Any of these pointers can be NULL (no value is returned for the corresponding parameter).

Possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

Function completed successfully.

4.100. cudnnGetOpTensorDescriptor

cudnnStatus_t cudnnGetOpTensorDescriptor(
 const cudnnOpTensorDescriptor_t opTensorDesc,
 cudnnOpTensorOp_t *opTensorOp,
 cudnnDataType_t *opTensorCompType,
 cudnnNanPropagation_t *opTensorNanOpt)

This function returns configuration of the passed Tensor Pointwise math descriptor.
Parameters

opTensorDesc

Input. Tensor Pointwise math descriptor passed, to get the configuration from.

opTensorOp

Output. Pointer to the Tensor Pointwise math operation type, associated with this Tensor Pointwise math descriptor.

opTensorCompType

Output. Pointer to the cuDNN data-type associated with this Tensor Pointwise math descriptor.

opTensorNanOpt

Output. Pointer to the NAN propagation option associated with this Tensor Pointwise math descriptor.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD_PARAM

Input Tensor Pointwise math descriptor passed is invalid.

4.101. cudnnGetPooling2dDescriptor

```c
const cudnnPoolingDescriptor_t poolingDesc, 
cudnnPoolingMode_t *mode, 
cudnnNanPropagation_t *maxpoolingNanOpt, 
int windowHeight, 
int windowWidth, 
int *verticalPadding, 
int *horizontalPadding, 
int *verticalStride, 
int *horizontalStride)
```

This function queries a previously created 2D pooling descriptor object.

Parameters

poolingDesc

Input. Handle to a previously created pooling descriptor.

mode

Output. Enumerant to specify the pooling mode.

maxpoolingNanOpt

Output. Enumerant to specify the Nan propagation mode.

windowHeight

Output. Height of the pooling window.
windowWidth

Output. Width of the pooling window.

verticalPadding

Output. Size of vertical padding.

horizontalPadding

Output. Size of horizontal padding.

verticalStride

Output. Pooling vertical stride.

horizontalStride

Output. Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

4.102. cudnnGetPooling2dForwardOutputDim

cudnnStatus_t cudnnGetPooling2dForwardOutputDim(
 const cudnnPoolingDescriptor_t poolingDesc,
 const cudnnTensorDescriptor_t inputDesc,
 int *outN,
 int *outC,
 int *outH,
 int *outW)

This function provides the output dimensions of a tensor after 2d pooling has been applied.

Each dimension `h` and `w` of the output images is computed as followed:

\[
\text{outputDim} = 1 + (\text{inputDim} + 2\times\text{padding} - \text{windowDim})/\text{poolingStride};
\]

Parameters

poolingDesc

Input. Handle to a previously initialized pooling descriptor.

inputDesc

Input. Handle to the previously initialized input tensor descriptor.

N

Output. Number of images in the output.

C

Output. Number of channels in the output.
H

Output. Height of images in the output.

W

Output. Width of images in the output.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- poolingDesc has not been initialized.
- poolingDesc or inputDesc has an invalid number of dimensions (2 and 4 respectively are required).

4.103. cudnnGetPoolingNdDescriptor

```c
const cudnnPoolingDescriptor_t poolingDesc,
int nbDimsRequested,
cudnnPoolingMode_t *mode,
cudnnNanPropagation_t *maxpoolingNanOpt,
int *nbDims,
int windowDimA[],
int paddingA[],
int strideA[])
```

This function queries a previously initialized generic pooling descriptor object.

Parameters

poolingDesc

Input. Handle to a previously created pooling descriptor.

nbDimsRequested

Input. Dimension of the expected pooling descriptor. It is also the minimum size of the arrays **windowDimA**, **paddingA** and **strideA** in order to be able to hold the results.

mode

Output. Enumerant to specify the pooling mode.

maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.

nbDims

Output. Actual dimension of the pooling descriptor.
windowDimA

Output. Array of dimension of at least `nbDimsRequested` that will be filled with the window parameters from the provided pooling descriptor.

paddingA

Output. Array of dimension of at least `nbDimsRequested` that will be filled with the padding parameters from the provided pooling descriptor.

strideA

Output. Array of dimension at least `nbDimsRequested` that will be filled with the stride parameters from the provided pooling descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was queried successfully.

CUDNN_STATUS_NOT_SUPPORTED

The parameter `nbDimsRequested` is greater than CUDNN_DIM_MAX.

4.104. cudnnGetPoolingNdForwardOutputDim

cudnnStatus_t cudnnGetPoolingNdForwardOutputDim(
 const cudnnPoolingDescriptor_t poolingDesc,
 const cudnnTensorDescriptor_t inputDesc,
 int nbDims,
 int outDimA[])

This function provides the output dimensions of a tensor after Nd pooling has been applied.

Each dimension of the `(nbDims - 2)`-D images of the output tensor is computed as followed:

\[
\text{outputDim} = 1 + (\text{inputDim} + 2 \times \text{padding} - \text{windowDim})/\text{poolingStride};
\]

Parameters

poolingDesc

Input. Handle to a previously initialized pooling descriptor.

inputDesc

Input. Handle to the previously initialized input tensor descriptor.

nbDims

Input. Number of dimensions in which pooling is to be applied.

outDimA

Output. Array of `nbDims` output dimensions.

The possible error values returned by this function and their meanings are listed below.
Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- `poolingDesc` has not been initialized.
- The value of `nbDims` is inconsistent with the dimensionality of `poolingDesc` and `inputDesc`.

4.105. cudnnGetProperty

```c
#include <cudnn.h>

typedef enum libraryPropertyType {
    CUDNN_LIBRARY_VERSION_MAJOR, CUDNN_LIBRARY_VERSION_MINOR, CUDNN_LIBRARY_VERSION_PATCH
} libraryPropertyType;

cudnnStatus_t cudnnGetProperty(
    libraryPropertyType type,
    int *value)
```

This function writes a specific part of the cuDNN library version number into the provided host storage.

Parameters

- `type`

 Input. Enumerated type that instructs the function to report the numerical value of the cuDNN major version, minor version, or the patch level.

- `value`

 Output. Host pointer where the version information should be written.

Returns

- **CUDNN_STATUS_INVALID_VALUE**

 Invalid value of the `type` argument.

- **CUDNN_STATUS_SUCCESS**

 Version information was stored successfully at the provided address.

4.106. cudnnGetRNNDataDescriptor

```c
#include <cudnn.h>

typedef enum cudnnRNNDataLayout {
    CUDNN_RNN_DATA_LAYOUT_DEFAULT,
    CUDNN_RNN_DATA_LAYOUT_UNILATERAL,
    CUDNN_RNN_DATA_LAYOUT_BILATERAL
} cudnnRNNDataLayout;

cudnnStatus_t cudnnGetRNNDataDescriptor(
    cudnnRNNDataDescriptor_t RNNDataDesc,
    cudnnDataType_t *dataType,
    cudnnRNNDataLayout_t *layout,
    int *maxSeqLength,
    int *batchSize,
    int *vectorSize,
    int arrayLengthRequested,
    int seqLengthArray[],
    void *paddingFill);
```

This function retrieves a previously created RNN data descriptor object.
Parameters

RNNDataDesc

Input. A previously created and initialized RNN descriptor.

dataType

Output. Pointer to the host memory location to store the datatype of the RNN data tensor.

layout

Output. Pointer to the host memory location to store the memory layout of the RNN data tensor.

maxSeqLength

Output. The maximum sequence length within this RNN data tensor, including the padding vectors.

batchSize

Output. The number of sequences within the mini-batch.

vectorSize

Output. The vector length (i.e. embedding size) of the input or output tensor at each timestep.

arrayLengthRequested

Input. The number of elements that the user requested for `seqLengthArray`.

seqLengthArray

Output. Pointer to the host memory location to store the integer array describing the length (i.e. number of timesteps) of each sequence. This is allowed to be a NULL pointer if `arrayLengthRequested` is zero.

paddingFill

Output. Pointer to the host memory location to store the user defined symbol. The symbol should be interpreted as the same data type as the RNN data tensor.

Returns

CUDNN_STATUS_SUCCESS

The parameters are fetched successfully.

CUDNN_STATUS_BAD_PARAM

Any one of these have occurred:

- Any of `RNNDataDesc`, `dataType`, `layout`, `maxSeqLength`, `batchSize`, `vectorSize`, `paddingFill` is NULL.
- `seqLengthArray` is NULL while `arrayLengthRequested` is greater than zero.
- `arrayLengthRequested` is less than zero.
4.107. cudnnGetRNNDescriptor

```
cudnnStatus_t cudnnGetRNNDescriptor(
    cudnnHandle_t               handle,
    cudnnRNNDescriptor_t        rnnDesc,
    int *                       hiddenSize,
    int *                       numLayers,
    cudnnDropoutDescriptor_t *  dropoutDesc,
    cudnnRNNInputMode_t *       inputMode,
    cudnnDirectionMode_t *      direction,
    cudnnRNNMode_t *            mode,
    cudnnRNNAlgo_t *            algo,
    cudnnDataType_t *           dataType)
```

This function retrieves RNN network parameters that were configured by `cudnnSetRNNDescriptor()`. All pointers passed to the function should be not-NULL or CUDNN_STATUS_BAD_PARAM is reported. The function does not check the validity of retrieved network parameters. The parameters are verified when they are written to the RNN descriptor.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input. A previously created and initialized RNN descriptor.

hiddenSize

Output. Pointer where the size of the hidden state should be stored (the same value is used in every layer).

numLayers

Output. Pointer where the number of RNN layers should be stored.

dropoutDesc

Output. Pointer where the handle to a previously configured dropout descriptor should be stored.

inputMode

Output. Pointer where the mode of the first RNN layer should be saved.

direction

Output. Pointer where RNN uni-directional/bi-directional mode should be saved.

mode

Output. Pointer where RNN cell type should be saved.

algo

Output. Pointer where RNN algorithm type should be stored.

dataType

Output. Pointer where the data type of RNN weights/biases should be stored.
Returns

CUDNN_STATUS_SUCCESS

RNN parameters were successfully retrieved from the RNN descriptor.

CUDNN_STATUS_BAD_PARAM

At least one pointer passed to the `cudnnGetRNNDescriptor()` function is NULL.

4.108. `cudnnGetRNNLinLayerBiasParams`

```c
void cudnnGetRNNLinLayerBiasParams(
    cudnnHandle_t                   handle,
    const cudnnRNNDescriptor_t      rnnDesc,
    const int                       pseudoLayer,
    const cudnnTensorDescriptor_t   xDesc,
    const cudnnFilterDescriptor_t   wDesc,
    const void                     *w,
    const int                       linLayerID,
    cudnnFilterDescriptor_t         linLayerBiasDesc,
    void                           **linLayerBias)
```

This function is used to obtain a pointer and a descriptor of every RNN bias column vector in each pseudo-layer within the recurrent network defined by `rnnDesc` and its input width specified in `xDesc`.

The `cudnnGetRNNLinLayerBiasParams()` function was changed in cuDNN version 7.1.1 to match the behavior of `cudnnGetRNNLinLayerMatrixParams()`.

The `cudnnGetRNNLinLayerBiasParams()` function returns the RNN bias vector size in two dimensions: rows and columns. Due to historical reasons, the minimum number of dimensions in the filter descriptor is three. In previous versions of the cuDNN library, the function returned the total number of vector elements in `linLayerBiasDesc` as follows: `filterDimA[0]=total_size, filterDimA[1]=1, filterDimA[2]=1` (see the description of the `cudnnGetFilterNdDescriptor()` function). In v7.1.1, the format was changed to: `filterDimA[0]=1, filterDimA[1]=rows, filterDimA[2]=1` (number of columns). In both cases, the "format" field of the filter descriptor should be ignored when retrieved by `cudnnGetFilterNdDescriptor()`.

Note that the RNN implementation in cuDNN uses two bias vectors before the cell non-linear function (see equations in Chapter 3 describing the `cudnnRNNMode_t` enumerated type).

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input. A previously initialized RNN descriptor.

pseudoLayer

Input. The pseudo-layer to query. In uni-directional RNN-s, a pseudo-layer is the same as a "physical" layer (pseudoLayer=0 is the RNN input layer, pseudoLayer=1 is the first hidden layer). In bi-directional RNN-s there are twice as many pseudo-layers...

in comparison to "physical" layers (pseudoLayer=0 and pseudoLayer=1 are both input layers; pseudoLayer=0 refers to the forward part and pseudoLayer=1 refers to the backward part of the "physical" input layer; pseudoLayer=2 is the forward part of the first hidden layer, and so on).

xDesc

Input. A fully packed tensor descriptor describing the input to one recurrent iteration (to retrieve the RNN input width).

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor **wDesc**.

linLayerID

Input. The linear layer to obtain information about:

- If **mode** in **rnnDesc** was set to **CUDNN_RNN_RELU** or **CUDNN_RNN_TANH** a value of 0 references the bias applied to the input from the previous layer, a value of 1 references the bias applied to the recurrent input.
- If **mode** in **rnnDesc** was set to **CUDNN_LSTM** values of 0, 1, 2 and 3 reference bias applied to the input from the previous layer, value of 4, 5, 6 and 7 reference bias applied to the recurrent input.
 - Values 0 and 4 reference the input gate.
 - Values 1 and 5 reference the forget gate.
 - Values 2 and 6 reference the new memory gate.
 - Values 3 and 7 reference the output gate.
- If **mode** in **rnnDesc** was set to **CUDNN_GRU** values of 0, 1 and 2 reference bias applied to the input from the previous layer, value of 3, 4 and 5 reference bias applied to the recurrent input.
 - Values 0 and 3 reference the reset gate.
 - Values 1 and 4 reference the update gate.
 - Values 2 and 5 reference the new memory gate.

Please refer to Chapter 3 for additional details on modes.

linLayerBiasDesc

Output. Handle to a previously created filter descriptor.

linLayerBias

Output. Data pointer to GPU memory associated with the filter descriptor **linLayerBiasDesc**.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the following arguments is NULL: handle, rnnDesc, xDesc, wDesc, linLayerBiasDesc, linLayerBias.
- A data type mismatch was detected between rnnDesc and other descriptors.
- Minimum requirement for the 'w' pointer alignment is not satisfied.
- The value of pseudoLayer or linLayerID is out of range.

CUDNN_STATUS_INVALID_VALUE

Some elements of the linLayerBias vector are be outside the 'w' buffer boundaries as specified by the wDesc descriptor.

4.109. cudnnGetRNNLinLayerMatrixParams

cudnnStatus_t cudnnGetRNNLinLayerMatrixParams(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int pseudoLayer,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const int linLayerID,
 cudnnFilterDescriptor_t linLayerMatDesc,
 void **linLayerMat)

This function is used to obtain a pointer and a descriptor of every RNN weight matrix in each pseudo-layer within the recurrent network defined by rnnDesc and its input width specified in xDesc.

The cudnnGetRNNLinLayerMatrixParams() function was enhanced in cuDNN version 7.1.1 without changing its prototype. Instead of reporting the total number of elements in each weight matrix in the “linLayerMatDesc” filter descriptor, the function returns the matrix size as two dimensions: rows and columns. Moreover, when a weight matrix does not exist, e.g. due to CUDNN_SKIP_INPUT mode, the function returns NULL in linLayerMat and all fields of linLayerMatDesc are zero.

The cudnnGetRNNLinLayerMatrixParams() function returns the RNN matrix size in two dimensions: rows and columns. This allows the user to easily print and initialize RNN weight matrices. Elements in each weight matrix are arranged in the row-major order. Due to historical reasons, the minimum number of dimensions in the filter descriptor is three. In previous versions of the cuDNN library, the function returned the total number of weights in linLayerMatDesc as follows: filterDimA[0]=total_size, filterDimA[1]=1, filterDimA[2]=1 (see the description of the cudnnGetFilterNdDescriptor() function). In v7.1.1, the format was changed to: filterDimA[0]=1, filterDimA[1]=rows, filterDimA[2]=columns. In both cases, the "format" field of the filter descriptor should be ignored when retrieved by cudnnGetFilterNdDescriptor().
Parameters
handle
 Input. Handle to a previously created cuDNN library descriptor.

rnnDesc
 Input. A previously initialized RNN descriptor.

pseudoLayer
 Input. The pseudo-layer to query. In uni-directional RNN-s, a pseudo-layer is the same as a "physical" layer (pseudoLayer=0 is the RNN input layer, pseudoLayer=1 is the first hidden layer). In bi-directional RNN-s there are twice as many pseudo-layers in comparison to "physical" layers (pseudoLayer=0 and pseudoLayer=1 are both input layers; pseudoLayer=0 refers to the forward part and pseudoLayer=1 refers to the backward part of the "physical" input layer; pseudoLayer=2 is the forward part of the first hidden layer, and so on).

xDesc
 Input. A fully packed tensor descriptor describing the input to one recurrent iteration (to retrieve the RNN input width).

wDesc
 Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

w
 Input. Data pointer to GPU memory associated with the filter descriptor wDesc.

linLayerID
 Input. The linear layer to obtain information about:
 • If mode in rnnDesc was set to CUDNN_RNN_RELU or CUDNN_RNN_TANH a value of 0 references the matrix multiplication applied to the input from the previous layer, a value of 1 references the matrix multiplication applied to the recurrent input.
 • If mode in rnnDesc was set to CUDNN_LSTM values of 0-3 reference matrix multiplications applied to the input from the previous layer, value of 4-7 reference matrix multiplications applied to the recurrent input.
 ▶ Values 0 and 4 reference the input gate.
 ▶ Values 1 and 5 reference the forget gate.
 ▶ Values 2 and 6 reference the new memory gate.
 ▶ Values 3 and 7 reference the output gate.
 ▶ Value 8 references the "recurrent" projection matrix when enabled by the cudnnSetRNNProjectionLayers() function.
 • If mode in rnnDesc was set to CUDNN_GRU values of 0-2 reference matrix multiplications applied to the input from the previous layer, value of 3-5 reference matrix multiplications applied to the recurrent input.
 ▶ Values 0 and 3 reference the reset gate.
 ▶ Values 1 and 4 reference the update gate.
 ▶ Values 2 and 5 reference the new memory gate.
Please refer to Chapter 3 for additional details on modes.

linLayerMatDesc

Output. Handle to a previously created filter descriptor. When the weight matrix does not exist, the returned filter descriptor has all fields set to zero.

linLayerMat

Output. Data pointer to GPU memory associated with the filter descriptor **linLayerMatDesc.** When the weight matrix does not exist, the returned pointer is NULL.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the following arguments is NULL: `handle`, `rnnDesc`, `xDesc`, `wDesc`, `linLayerMatDesc`, `linLayerMat`.
- A data type mismatch was detected between `rnnDesc` and other descriptors.
- Minimum requirement for the 'w' pointer alignment is not satisfied.
- The value of pseudoLayer or `linLayerID` is out of range.

CUDNN_STATUS_INVALID_VALUE

Some elements of the `linLayerMat` vector are be outside the 'w' buffer boundaries as specified by the `wDesc` descriptor.

4.110. cudnnGetRNNParamsSize

cudnnStatus_t cudnnGetRNNParamsSize(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const cudnnTensorDescriptor_t xDesc,
 size_t *sizeInBytes,
 cudnnDataType_t dataType)

This function is used to query the amount of parameter space required to execute the RNN described by `rnnDesc` with inputs dimensions defined by `xDesc`.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input. A previously initialized RNN descriptor.
xDesc

Input. A fully packed tensor descriptor describing the input to one recurrent iteration.

sizeInBytes

Output. Minimum amount of GPU memory needed as parameter space to be able to execute an RNN with the specified descriptor and input tensors.

dataType

Input. The data type of the parameters.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor *rnnDesc* is invalid.
- The descriptor *xDesc* is invalid.
- The descriptor *xDesc* is not fully packed.
- The combination of *dataType* and tensor descriptor data type is invalid.

CUDNN_STATUS_NOT_SUPPORTED

The combination of the RNN descriptor and tensor descriptors is not supported.

4.111. cudnnGetRNNPaddingMode

cudnnStatus_t cudnnGetRNNPaddingMode(
 cudnnRNNDescriptor_t rnnDesc,
 cudnnRNNPaddingMode_t *paddingMode
)

This function retrieves the RNN padding mode from the RNN descriptor.

Parameters

rnnDesc

Input/Output. A previously created RNN descriptor.

paddingMode

Input. Pointer to the host memory where the RNN padding mode is saved.

Returns

CUDNN_STATUS_SUCCESS

The RNN padding mode parameter was retrieved successfully.

CUDNN_STATUS_BAD_PARAM

Either the *rnnDesc* or *paddingMode* is NULL.
4.112. cudnnGetRNNProjectionLayers

```c
(cudnnHandle_t handle, 
cudnnRNNDescriptor_t rnnDesc, 
int *recProjSize, 
int *outProjSize)
```

(New for 7.1)

This function retrieves the current RNN “projection” parameters. By default the projection feature is disabled so invoking this function immediately after `cudnnSetRNNDescriptor()` will yield `recProjSize` equal to `hiddenSize` and `outProjSize` set to zero. The `cudnnSetRNNProjectionLayers()` method enables the RNN projection.

Parameters

- **handle**

 Input. Handle to a previously created cuDNN library descriptor.

- **rnnDesc**

 Input. A previously created and initialized RNN descriptor.

- **recProjSize**

 Output. Pointer where the “recurrent” projection size should be stored.

- **outProjSize**

 Output. Pointer where the “output” projection size should be stored.

Returns

- **CUDNN_STATUS_SUCCESS**

 RNN projection parameters were retrieved successfully.

- **CUDNN_STATUS_BAD_PARAM**

 A NULL pointer was passed to the function.

4.113. cudnnGetRNNTrainingReserveSize

```c
(cudnnHandle_t handle, 
cudnnRNNDescriptor_t rnnDesc, 
const int seqLength, 
cudnnTensorDescriptor_t xDesc, 
size_t *sizeInBytes)
```

This function is used to query the amount of reserved space required for training the RNN described by `rnnDesc` with inputs dimensions defined by `xDesc`. The same reserved space buffer must be passed to `cudnnRNNForwardTraining`, `cudnnRNNBackwardData` and `cudnnRNNBackwardWeights`. Each of these calls overwrites the contents of the reserved space, however it can safely be backed up and restored between calls if reuse of the memory is desired.
Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input. A previously initialized RNN descriptor.

seqLength

Input. Number of iterations to unroll over. The value of this `seqLength` must not exceed the value that was used in `cudnnGetRNNWorkspaceSize()` function for querying the workspace size required to execute the RNN.

xDesc

Input. An array of tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element `n` to element `n+1` but may not increase. Each tensor descriptor must have the same second dimension (vector length).

sizeInBytes

Output. Minimum amount of GPU memory needed as reserve space to be able to train an RNN with the specified descriptor and input tensors.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors in `xDesc` is invalid.
- The descriptors in `xDesc` have inconsistent second dimensions, strides or data types.
- The descriptors in `xDesc` have increasing first dimensions.
- The descriptors in `xDesc` is not fully packed.

CUDNN_STATUS_NOT_SUPPORTED

The data types in tensors described by `xDesc` is not supported.

4.114. `cudnnGetRNNWorkspaceSize`

```c

cudnnStatus_t cudnnGetRNNWorkspaceSize(
    cudnHandle_t                   handle,
    const cudnnRNNDescriptor_t      rnnDesc,
    const int                       seqLength,
    const cudnnTensorDescriptor_t  *xDesc,
    size_t                         *sizeInBytes)
```
This function is used to query the amount of work space required to execute the RNN described by `rnnDesc` with inputs dimensions defined by `xDesc`.

Parameters

- **handle**
 - *Input.* Handle to a previously created cuDNN library descriptor.

- **rnnDesc**
 - *Input.* A previously initialized RNN descriptor.

- **seqLength**
 - *Input.* Number of iterations to unroll over. Workspace that is allocated, based on the size this function provides, cannot be used for sequences longer than `seqLength`.

- **xDesc**
 - *Input.* An array of tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element `n` to element `n+1` but may not increase. For example, if you have multiple time series in a batch, they can be different lengths. This dimension is the batch size for the particular iteration of the sequence, and so it should decrease when a sequence in the batch has terminated.

 Each tensor descriptor must have the same second dimension (vector length).

- **sizeInBytes**
 - *Output.* Minimum amount of GPU memory needed as workspace to be able to execute an RNN with the specified descriptor and input tensors.

The possible error values returned by this function and their meanings are listed below.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The query was successful.

- **CUDNN_STATUS_BAD_PARAM**
 - At least one of the following conditions are met:
 - The descriptor `rnnDesc` is invalid.
 - At least one of the descriptors in `xDesc` is invalid.
 - The descriptors in `xDesc` have inconsistent second dimensions, strides or data types.
 - The descriptors in `xDesc` have increasing first dimensions.
 - The descriptors in `xDesc` is not fully packed.

- **CUDNN_STATUS_NOT_SUPPORTED**
 - The data types in tensors described by `xDesc` is not supported.

4.115. cudnnGetReduceTensorDescriptor

cudnnStatus_t cudnnGetReduceTensorDescriptor(
This function queries a previously initialized reduce tensor descriptor object.

Parameters

reduceTensorDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.

reduceTensorOp

Output. Enumerant to specify the reduce tensor operation.

reduceTensorCompType

Output. Enumerant to specify the computation datatype of the reduction.

reduceTensorNanOpt

Input. Enumerant to specify the Nan propagation mode.

reduceTensorIndices

Output. Enumerant to specify the reduce tensor indices.

reduceTensorIndicesType

Output. Enumerant to specify the reduce tensor indices type.

Returns

CUDNN_STATUS_SUCCESS

The object was queried successfully.

CUDNN_STATUS_BAD_PARAM

reduceTensorDesc is NULL.

4.116. cudnnGetReductionIndicesSize

This is a helper function to return the minimum size of the index space to be passed to the reduction given the input and output tensors.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

reduceDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.
4.117. cudnnGetReductionWorkspaceSize

```c
void cudnnGetReductionWorkspaceSize(
    cudnnHandle_t handle,
    const cudnnReduceTensorDescriptor_t reduceDesc,
    const cudnnTensorDescriptor_t aDesc,
    const cudnnTensorDescriptor_t cDesc,
    size_t *sizeInBytes)
```

This is a helper function to return the minimum size of the workspace to be passed to the reduction given the input and output tensors.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

reduceDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.

aDesc

Input. Pointer to the input tensor descriptor.

cDesc

Input. Pointer to the output tensor descriptor.

sizeInBytes

Output. Minimum size of the index space to be passed to the reduction.

Returns

CUDNN_STATUS_SUCCESS

The index space size is returned successfully.

4.118. cudnnGetStream

```c
void cudnnGetStream(
    cudnnHandle_t handle,
    cudaStream_t *streamId)
```
This function retrieves the user CUDA stream programmed in the cuDNN handle. When the user's CUDA stream was not set in the cuDNN handle, this function reports the null-stream.

Parameters

handle

Input. Pointer to the cuDNN handle.

streamID

Output. Pointer where the current CUDA stream from the cuDNN handle should be stored.

Returns

CUDNN_STATUS_BAD_PARAM

Invalid (NULL) handle.

CUDNN_STATUS_SUCCESS

The stream identifier was retrieved successfully.

4.119. cudnnGetTensor4dDescriptor

```c

cudnnStatus_t cudnnGetTensor4dDescriptor(
    const cudnnTensorDescriptor_t tensorDesc,
    cudnnDataType_t *dataType,
    int *n,
    int *c,
    int *h,
    int *w,
    int *nStride,
    int *cStride,
    int *hStride,
    int *wStride)
```

This function queries the parameters of the previously initialized Tensor4D descriptor object.

Parameters

tensorDesc

Input. Handle to a previously initialized tensor descriptor.

datatype

Output. Data type.

n

Output. Number of images.

c

Output. Number of feature maps per image.

h

Output. Height of each feature map.
Output. Width of each feature map.

nStride
Output. Stride between two consecutive images.

cStride
Output. Stride between two consecutive feature maps.

hStride
Output. Stride between two consecutive rows.

wStride
Output. Stride between two consecutive columns.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS
The operation succeeded.

4.120. cudnnGetTensorNdDescriptor

cudnnStatus_t cudnnGetTensorNdDescriptor(
 const cudnnTensorDescriptor_t tensorDesc,
 int nbDimsRequested,
 cudnnDataType_t *dataType,
 int *nbDims,
 int dimA[],
 int strideA[])

This function retrieves values stored in a previously initialized Tensor descriptor object.

Parameters

tensorDesc
Input. Handle to a previously initialized tensor descriptor.

nbDimsRequested
Input. Number of dimensions to extract from a given tensor descriptor. It is also the minimum size of the arrays dimA and strideA. If this number is greater than the resulting nbDims[0], only nbDims[0] dimensions will be returned.

datatype
Output. Data type.

nbDims
Output. Actual number of dimensions of the tensor will be returned in nbDims[0].

dimA
Output. Array of dimension of at least nbDimsRequested that will be filled with the dimensions from the provided tensor descriptor.
strideA

Input. Array of dimension of at least `nbDimsRequested` that will be filled with the strides from the provided tensor descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

`CUDNN_STATUS_SUCCESS`
The results were returned successfully.

`CUDNN_STATUS_BAD_PARAM`
Either `tensorDesc` or `nbDims` pointer is NULL.

4.121. cudnnGetTensorSizeInBytes

```c
int cudnnGetTensorSizeInBytes(const cudnnTensorDescriptor_t tensorDesc, size_t *size)
```

This function returns the size of the tensor in memory in respect to the given descriptor. This function can be used to know the amount of GPU memory to be allocated to hold that tensor.

Parameters

`tensorDesc`
Input. Handle to a previously initialized tensor descriptor.

`size`
Output. Size in bytes needed to hold the tensor in GPU memory.

The possible error values returned by this function and their meanings are listed below.

Returns

`CUDNN_STATUS_SUCCESS`
The results were returned successfully.

4.122. cudnnGetVersion

```c
size_t cudnnGetVersion()
```

This function returns the version number of the cuDNN Library. It returns the `CUDNN_VERSION` define present in the cudnn.h header file. Starting with release R2, the routine can be used to identify dynamically the current cuDNN Library used by the application. The define `CUDNN_VERSION` can be used to have the same application linked against different cuDNN versions using conditional compilation statements.
4.123. cudnnIm2Col

```c
void cudnnIm2Col(
    cudnnHandle_t            handle,
    cudnnTensorDescriptor_t  srcDesc,
    const void               *srcData,
    cudnnFilterDescriptor_t  filterDesc,
    cudnnConvolutionDescriptor_t convDesc,
    void                      *colBuffer)
```

This function constructs the A matrix necessary to perform a forward pass of GEMM convolution. This A matrix has a height of batch_size*y_height*y_width and width of input_channels*filter_height*filter_width, where batch_size is xDesc's first dimension, y_height/y_width are computed from `cudnnGetConvolutionNdForwardOutputDim()`, input_channels is xDesc's second dimension, filter_height/filter_width are wDesc's third and fourth dimension. The A matrix is stored in format HW-fully-packed in GPU memory.

Parameters

handle

Input. Handle to a previously created cuDNN context.

srcDesc

Input. Handle to a previously initialized tensor descriptor.

srcData

Input. Data pointer to GPU memory associated with the input tensor descriptor.

filterDesc

Input. Handle to a previously initialized filter descriptor.

convDesc

Input. Handle to a previously initialized convolution descriptor.

colBuffer

Output. Data pointer to GPU memory storing the output matrix.

Returns

CUDNN_STATUS_BAD_PARAM

srcData or colBuffer is NULL.

CUDNN_STATUS_NOT_SUPPORTED

Any of srcDesc, filterDesc, convDesc has dataType of CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8, or CUDNN_DATA_INT8x4 convDesc has groupCount larger than 1.

CUDNN_STATUS_EXECUTION_FAILED

The cuda kernel execution was unsuccessful.

CUDNN_STATUS_SUCCESS

The output data array is successfully generated.
4.124. cudnnLRNCrossChannelBackward

cudnnStatus_t cudnnLRNCrossChannelBackward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnLRNMode_t lrnMode,
 const void *alpha,
 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx)

This function performs the backward LRN layer computation.

Supported formats are: positive-strided, NCHW for 4D x and y, and only NCDHW DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are supported.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

normDesc

Input. Handle to a previously initialized LRN parameter descriptor.

lrnMode

Input. LRN layer mode of operation. Currently only CUDNN_LRN_CROSS_CHANNEL_DIM1 is implemented. Normalization is performed along the tensor's dimA[1].

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows: dstValue = alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc, y

Input. Tensor descriptor and pointer in device memory for the layer's y data.

dyDesc, dy

Input. Tensor descriptor and pointer in device memory for the layer's input cumulative loss differential data dy (including error backpropagation).

xDesc, x

Input. Tensor descriptor and pointer in device memory for the layer's x data. Note that these values are not modified during backpropagation.
dxDesc, dx

Output. Tensor descriptor and pointer in device memory for the layer's resulting cumulative loss differential data dx (including error backpropagation).

Possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the tensor pointers x, y is NULL.
- Number of input tensor dimensions is 2 or less.
- LRN descriptor parameters are outside of their valid ranges.
- One of tensor parameters is 5D but is not in NCDHW DHW-packed format.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- Any of the input tensor datatypes is not the same as any of the output tensor datatype.
- Any pairwise tensor dimensions mismatch for x,y,dx,dy.
- Any tensor parameters strides are negative.

4.125. cudnnLRNCrossChannelForward

```c

cudnnStatus_t cudnnLRNCrossChannelForward(
    cudnnHandle_t                    handle,
    cudnnLRNDescriptor_t             normDesc,
    cudnnLRNMode_t                   lrnMode,
    const void                      *alpha,
    const cudnnTensorDescriptor_t    xDesc,
    const void                      *x,
    const void                      *beta,
    const cudnnTensorDescriptor_t    yDesc,
    void                            *y)
```

This function performs the forward LRN layer computation.

Supported formats are: positive-strided, NCHW for 4D x and y, and only NCDHW DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are supported.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.
normDesc

Input. Handle to a previously initialized LRN parameter descriptor.

lrnMode

Input. LRN layer mode of operation. Currently only CUDNN_LRN_CROSS_CHANNEL_DIM1 is implemented. Normalization is performed along the tensor's dimA[1].

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows: \(\text{dstValue} = \alpha[0] \times \text{resultValue} + \beta[0] \times \text{priorDstValue} \). Please refer to this section for additional details.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors.

x

Input. Input tensor data pointer in device memory.

y

Output. Output tensor data pointer in device memory.

Possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the tensor pointers *x*, *y* is NULL.
- Number of input tensor dimensions is 2 or less.
- LRN descriptor parameters are outside of their valid ranges.
- One of tensor parameters is 5D but is not in NCDHW DHW-packed format.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- Any of the input tensor datatypes is not the same as any of the output tensor datatype.
- *x* and *y* tensor dimensions mismatch.
- Any tensor parameters strides are negative.

4.126. cudnnOpTensor

```c
void cudnnOpTensor(
  cudnnHandle_t handle,
  cudnnTensorDesc_t xDesc,
  const void *x,
  cudnnTensorDesc_t yDesc,
  void *y,
  cudnnOpTensorMode_t mode);```

```c
void cudnnOpTensorNormDesc(
 cudnnHandle_t handle,
 cudnnTensorDesc_t xDesc,
 const void *x,
 cudnnTensorDesc_t yDesc,
 void *y,
 cudnnOpTensorNormDesc_t normDesc,
 cudnnOpTensorMode_t mode);```
This function implements the equation \(C = \text{op} \left(\alpha_1[0] \times A, \alpha_2[0] \times B \right) + \beta[0] \times C \), given tensors \(A, B, \) and \(C \) and scaling factors \(\alpha_1, \alpha_2, \) and \(\beta \). The \text{op} to use is indicated by the descriptor \text{opTensorDesc}. Currently-supported ops are listed by the \text{cudnnOpTensorOp_t} enum.

Each dimension of the input tensor \(A \) must match the corresponding dimension of the destination tensor \(C \), and each dimension of the input tensor \(B \) must match the corresponding dimension of the destination tensor \(C \) or must be equal to 1. In the latter case, the same value from the input tensor \(B \) for those dimensions will be used to blend into the \(C \) tensor.

The data types of the input tensors \(A \) and \(B \) must match. If the data type of the destination tensor \(C \) is double, then the data type of the input tensors also must be double.

If the data type of the destination tensor \(C \) is double, then \text{opTensorCompType} in \text{opTensorDesc} must be double. Else \text{opTensorCompType} must be float.

If the input tensor \(B \) is the same tensor as the destination tensor \(C \), then the input tensor \(A \) also must be the same tensor as the destination tensor \(C \).

Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this routine is not supported

Parameters

handle

Input. Handle to a previously created cuDNN context.

opTensorDesc

Input. Handle to a previously initialized op tensor descriptor.

alpha1, alpha2, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as indicated by the above \text{op} equation. Please refer to this section for additional details.

aDesc, bDesc, cDesc

Input. Handle to a previously initialized tensor descriptor.

A, B

Input. Pointer to data of the tensors described by the \text{aDesc} and \text{bDesc} descriptors, respectively.
C

Input/Output. Pointer to data of the tensor described by the cDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function executed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

‣ The dimensions of the bias tensor and the output tensor dimensions are above 5.
‣ opTensorCompType is not set as stated above.

CUDNN_STATUS_BAD_PARAM

The data type of the destination tensor C is unrecognized or the conditions in the above paragraphs are unmet.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.127. cudnnPoolingBackward

cudnnStatus_t cudnnPoolingBackward(
 cudnnHandle_t handle,
 const cudnnPoolingDescriptor_t poolingDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t xDesc,
 const void *xData,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx)

This function computes the gradient of a pooling operation.

As of cuDNN version 6.0, a deterministic algorithm is implemented for max backwards pooling. This algorithm can be chosen via the pooling mode enum of poolingDesc. The deterministic algorithm has been measured to be up to 50% slower than the legacy max backwards pooling algorithm, or up to 20% faster, depending upon the use case.

All tensor formats are supported, best performance is expected when using HW-packed tensors. Only 2 and 3 spatial dimensions are allowed

Parameters

handle

Input. Handle to a previously created cuDNN context.
poolingDesc

Input. Handle to the previously initialized pooling descriptor.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc

Input. Handle to the previously initialized input tensor descriptor.

y

Input. Data pointer to GPU memory associated with the tensor descriptor *yDesc*.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

dy

Input. Data pointer to GPU memory associated with the tensor descriptor *dyData*.

xDesc

Input. Handle to the previously initialized output tensor descriptor.

x

Input. Data pointer to GPU memory associated with the output tensor descriptor *xDesc*.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.

dx

Output. Data pointer to GPU memory associated with the output tensor descriptor *dxDesc*.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The dimensions *n, c, h, w* of the *yDesc* and *dyDesc* tensors differ.
- The strides *nStride, cStride, hStride, wStride* of the *yDesc* and *dyDesc* tensors differ.
- The dimensions *n, c, h, w* of the *dxDesc* and *dxDesc* tensors differ.
- The strides *nStride, cStride, hStride, wStride* of the *xDesc* and *dxDesc* tensors differ.
- The **datatype** of the four tensors differ.
CUDNN_STATUS_NOT_SUPPORTED
The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The wStride of input tensor or output tensor is not 1.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.128. cudnnPoolingForward

cudnnStatus_t cudnnPoolingForward(
 cudnnHandle_t handle,
 const cudnnPoolingDescriptor_t poolingDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)

This function computes pooling of input values (i.e., the maximum or average of several adjacent values) to produce an output with smaller height and/or width.

All tensor formats are supported, best performance is expected when using HW-packed tensors. Only 2 and 3 spatial dimensions are allowed.

The dimensions of the output tensor yDesc can be smaller or bigger than the dimensions advised by the routine cudnnGetPooling2dForwardOutputDim or cudnnGetPoolingNdForwardOutputDim.

Parameters

handle

Input. Handle to a previously created cuDNN context.

poolingDesc

Input. Handle to a previously initialized pooling descriptor.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor. Must be of type FLOAT, or DOUBLE, or HALF, or INT8. See cudnnDataType_t.

x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
yDesc

Input. Handle to the previously initialized output tensor descriptor. Must be of type FLOAT, or DOUBLE, or HALF, or INT8. See `cudnnDataType_t`.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor `yDesc`.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The dimensions `n,c` of the input tensor and output tensors differ.
- The *datatype* of the input tensor and output tensors differs.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The `wStride` of input tensor or output tensor is not 1.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.129. `cudnnQueryRuntimeError`

```c
    cudnnStatus_t cudnnQueryRuntimeError(
        cudnnHandle_t            handle,
        cudnnStatus_t           *rstatus,
        cudnnErrQueryMode_t      mode,
        cudnnRuntimeTag_t       *tag)
```

cuDNN library functions perform extensive input argument checking before launching GPU kernels. The last step is to verify that the GPU kernel actually started. When a kernel fails to start, CUDNN_STATUS_EXECUTION_FAILED is returned by the corresponding API call. Typically, after a GPU kernel starts, no runtime checks are performed by the kernel itself -- numerical results are simply written to output buffers.

When the CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode is selected in `cudnnBatchNormalizationForwardTraining` or `cudnnBatchNormalizationBackward`, the algorithm may encounter numerical overflows where CUDNN_BATCHNORM_SPATIAL performs just fine albeit at a slower speed. The user can invoke `cudnnQueryRuntimeError` to make sure numerical overflows did not occur during the kernel execution. Those issues are reported by the kernel that performs computations.
cudnnQueryRuntimeError can be used in polling and blocking software control flows. There are two polling modes (CUDNN_ERRQUERY_RAWCODE, CUDNN_ERRQUERY_NONBLOCKING) and one blocking mode CUDNN_ERRQUERY_BLOCKING.

CUDNN_ERRQUERY_RAWCODE reads the error storage location regardless of the kernel completion status. The kernel might not even started and the error storage (allocated per cuDNN handle) might be used by an earlier call.

CUDNN_ERRQUERY_NONBLOCKING checks if all tasks in the user stream completed. The cudnnQueryRuntimeError function will return immediately and report CUDNN_STATUS_RUNTIME_IN_PROGRESS in 'rstatus' if some tasks in the user stream are pending. Otherwise, the function will copy the remote kernel error code to 'rstatus'.

In the blocking mode (CUDNN_ERRQUERY_BLOCKING), the function waits for all tasks to drain in the user stream before reporting the remote kernel error code. The blocking flavor can be further adjusted by calling cudaSetDeviceFlags with the cudaDeviceScheduleSpin, cudaDeviceScheduleYield, or cudaDeviceScheduleBlockingSync flag.

CUDNN_ERRQUERY_NONBLOCKING and CUDNN_ERRQUERY_BLOCKING modes should not be used when the user stream is changed in the cuDNN handle, i.e., cudnnSetStream is invoked between functions that report runtime kernel errors and the cudnnQueryRuntimeError function.

The remote error status reported in rstatus can be set to: CUDNN_STATUS_SUCCESS, CUDNN_STATUS_RUNTIME_IN_PROGRESS, or CUDNN_STATUS_RUNTIME_FP_OVERFLOW. The remote kernel error is automatically cleared by cudnnQueryRuntimeError.

Parameters

handle
Input. Handle to a previously created cuDNN context.

rstatus
Output. Pointer to the user’s error code storage.

mode
Input. Remote error query mode.

tag
Input/Output. Currently, this argument should be NULL.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDDNN_STATUS_SUCCESS
No errors detected (rstatus holds a valid value).

CUDDNN_STATUS_BAD_PARAM
Invalid input argument.

CUDDNN_STATUS_INTERNAL_ERROR
A stream blocking synchronization or a non-blocking stream query failed.

CUDDNN_STATUS_MAPPING_ERROR
Device cannot access zero-copy memory to report kernel errors.

4.130. cudnnRNNBackwardData

| cudnnStatus_t cudnnRNNBackwardData(|
| cudnnHandle_t handle, |
| const cudnnRNNDescriptor_t rnnDesc, |
| const int seqLength, |
| const cudnnTensorDescriptor_t *yDesc, |
| const void *y, |
| const cudnnTensorDescriptor_t *dyDesc, |
| const void *dy, |
| const cudnnTensorDescriptor_t dhyDesc, |
| const void *dhy, |
| const cudnnTensorDescriptor_t dcyDesc, |
| const void *dcy, |
| const cudnnFilterDescriptor_t wDesc, |
| const void *w, |
| const cudnnTensorDescriptor_t hxDesc, |
| const void *hx, |
| const cudnnTensorDescriptor_t *cxDesc, |
| const void *cx, |
| const cudnnTensorDescriptor_t *dxDesc, |
| void *dx, |
| const cudnnTensorDescriptor_t dhxDesc, |
| const void *dhx, |
| const cudnnTensorDescriptor_t dcxDesc, |
| const void *dcx, |
| size_t workSpaceSizeInBytes, |
| const void *reserveSpace, |
| size_t reserveSpaceSizeInBytes) |

This routine executes the recurrent neural network described by `rnnDesc` with output gradients `dy`, `dhy`, `dcy`, weights `w` and input gradients `dx`, `dhx`, `dcx`. `workspace` is required for intermediate storage. The data in `reserveSpace` must have previously been generated by `cudnnRNNForwardTraining`. The same `reserveSpace` data must be used for future calls to `cudnnRNNBackwardWeights` if they execute on the same input data.

Parameters

handle

Input. Handle to a previously created cuDNN context. See `cudnnHandle_t`.

rnnDesc

Input. A previously initialized RNN descriptor. See `cudnnRNNDescriptor_t`.

www.nvidia.com

cuDNN 7.4.2

DU-06702-001_v07 | 197
seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not exceed the value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace size required to execute the RNN.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). See cudnnTensorDescriptor_t. The second dimension of the tensor depends on the direction argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

- If direction is CUDNN_UNIDIRECTIONAL the second dimension should match the hiddenSize argument passed to cudnnSetRNNDescriptor.
- If direction is CUDNN_BIDIRECTIONAL the second dimension should match double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in dyDesc.

y

Input. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

dyDesc

Input. An array of fully packed tensor descriptors describing the gradient at the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the direction argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

- If direction is CUDNN_UNIDIRECTIONAL the second dimension should match the hiddenSize argument passed to cudnnSetRNNDescriptor.
- If direction is CUDNN_BIDIRECTIONAL the second dimension should match double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in dxDesc.

dy

Input. Data pointer to GPU memory associated with the tensor descriptors in the array dyDesc.

dhyDesc

Input. A fully packed tensor descriptor describing the gradients at the final hidden state of the RNN. The first dimension of the tensor depends on the direction argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

- If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the numLayers argument passed to cudnnSetRNNDescriptor.
- If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the numLayers argument passed to cudnnSetRNNDescriptor.
The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

dhy

Input. Data pointer to GPU memory associated with the tensor descriptor `dhyDesc`. If a NULL pointer is passed, the gradients at the final hidden state of the network will be initialized to zero.

dcyDesc

Input. A fully packed tensor descriptor describing the gradients at the final cell state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

dcy

Input. Data pointer to GPU memory associated with the tensor descriptor `dcyDesc`. If a NULL pointer is passed, the gradients at the final cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN. See `cudnnFilterDescriptor_t`.

w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the second dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.
hx

Input. Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the second dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

cx

Input. Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

dxDesc

Input. An array of fully packed tensor descriptors describing the gradient at the input of each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element `n` to element `n+1` but may not increase. Each tensor descriptor must have the same second dimension (vector length).

dx

Output. Data pointer to GPU memory associated with the tensor descriptors in the array `dxDesc`.

dhxDesc

Input. A fully packed tensor descriptor describing the gradient at the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.
```
dhx
Output. Data pointer to GPU memory associated with the tensor descriptor dhxDesc.
If a NULL pointer is passed, the gradient at the hidden input of the network will not
be set.

dcxDesc
Input. A fully packed tensor descriptor describing the gradient at the initial cell state
of the RNN. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

- If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the
  numLayers argument passed to cudnnSetRNNDescriptor.
- If direction is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dcx
Output. Data pointer to GPU memory associated with the tensor descriptor dcxDesc.
If a NULL pointer is passed, the gradient at the cell input of the network will not
be set.

workspace
Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes
Input. Specifies the size in bytes of the provided workspace.

reserveSpace
Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes
Input. Specifies the size in bytes of the provided reserveSpace.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS
The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED
The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:

- The descriptor rnnDesc is invalid.
```
- At least one of the descriptors `dhxDesc`, `wDesc`, `hxDesc`, `cxDesc`, `dcxDesc`, `dhyDesc`, `dcyDesc` or one of the descriptors in `yDesc`, `dxDesc`, `dyDesc` is invalid.
- The descriptors in one of `yDesc`, `dxDesc`, `dyDesc`, `dhxDesc`, `wDesc`, `hxDesc`, `cxDesc`, `dcxDesc`, `dhyDesc`, `dcyDesc` has incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.
- `reserveSpaceSizeInBytes` is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.131. cudnnRNNBackwardDataEx

```c
#include <cudnn.h>

// This routine is the extended version of the function cudnnRNNBackwardData. This function allows the user to use unpacked (padded) layout for input y and output dx.

// In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length, specified by maxSeqLength in its corresponding RNNDataDescriptor. Each fixed-length sequence, for example, the nth sequence in the mini-batch, is
```
composed of a valid segment specified by the `seqLengthArray[n]` in its corresponding `RNNDataDescriptor`; and a padding segment to make the combined sequence length equal to `maxSeqLength`.

With the unpacked layout, both sequence major (i.e. time major) and batch major are supported. For backward compatibility, the packed sequence major layout is supported. However, similar to the non-extended function `cudnnRNNBackwardData`, the sequences in the mini-batch need to be sorted in descending order according to length.

Parameters

handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

yDesc

Input. A previously initialized RNN data descriptor. Must match or be the exact same descriptor previously passed into `cudnnRNNForwardTrainingEx`.

y

Input. Data pointer to the GPU memory associated with the RNN data descriptor `yDesc`. The vectors are expected to be laid out in memory according to the layout specified by `yDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported. Must contain the exact same data previously produced by `cudnnRNNForwardTrainingEx`.

dyDesc

Input. A previously initialized RNN data descriptor. The `dataType`, `layout`, `maxSeqLength`, `batchSize`, `vectorSize` and `seqLengthArray` need to match the `yDesc` previously passed to `cudnnRNNForwardTrainingEx`.

dy

Input. Data pointer to the GPU memory associated with the RNN data descriptor `dyDesc`. The vectors are expected to be laid out in memory according to the layout specified by `dyDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

dhyDesc

Input. A fully packed tensor descriptor describing the gradients at the final hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. Moreover:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the `batchSize` parameter in `xDesc`.

www.nvidia.com

CU-06702-001_v07 | 203
The third dimension depends on whether RNN mode is CUDNN_LSTM and whether LSTM projection is enabled. Moreover:

- If RNN mode is CUDNN_LSTM and LSTM projection is enabled, the third dimension must match the recProjSize argument passed to cudnnSetRNNProjectionLayers call used to set rnnDesc.
- Otherwise, the third dimension must match the hiddenSize argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc.

\(\text{dhy} \)

Input. Data pointer to GPU memory associated with the tensor descriptor \(\text{dhyDesc} \). If a NULL pointer is passed, the gradients at the final hidden state of the network will be initialized to zero.

\(\text{dcyDesc} \)

Input. A fully packed tensor descriptor describing the gradients at the final cell state of the RNN. The first dimension of the tensor depends on the direction argument passed to the cudnnSetRNNDescriptor call used to initialize \(\text{rnnDesc} \). Moreover:

- If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the numLayers argument passed to cudnnSetRNNDescriptor.
- If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in \(\text{xDesc} \).

The third dimension must match the hiddenSize argument passed to the cudnnSetRNNDescriptor call used to initialize \(\text{rnnDesc} \). The tensor must be fully packed.

\(\text{dcy} \)

Input. Data pointer to GPU memory associated with the tensor descriptor \(\text{dcyDesc} \). If a NULL pointer is passed, the gradients at the final cell state of the network will be initialized to zero.

\(\text{wDesc} \)

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

\(\text{w} \)

Input. Data pointer to GPU memory associated with the filter descriptor \(\text{wDesc} \).

\(\text{hxDesc} \)

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. Must match or be the exact same descriptor previously passed into cudnnRNNForwardTrainingEx.

\(\text{hx} \)

Input. Data pointer to GPU memory associated with the tensor descriptor \(\text{hxDesc} \). If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero. Must contain the exact same data previously passed into
cudnnRNNForwardTrainingEx, or be NULL if NULL was previously passed to cudnnRNNForwardTrainingEx.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks. Must match or be the exact same descriptor previously passed into cudnnRNNForwardTrainingEx.

cx

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero. Must contain the exact same data previously passed into cudnnRNNForwardTrainingEx, or be NULL if NULL was previously passed to cudnnRNNForwardTrainingEx.

dxDesc

Input. A previously initialized RNN data descriptor. The dataType, layout, maxSeqLength, batchSize, vectorSize and seqLengthArray need to match that of xDesc previously passed to cudnnRNNForwardtrainingEx.

dx

Output. Data pointer to the GPU memory associated with the RNN data descriptor dxDesc. The vectors are expected to be laid out in memory according to the layout specified by dxDesc. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

dhxDesc

Input. A fully packed tensor descriptor describing the gradient at the initial hidden state of the RNN. The descriptor must be set exactly the same way as dhyDesc.

dhx

Output. Data pointer to GPU memory associated with the tensor descriptor dhxDesc. If a NULL pointer is passed, the gradient at the hidden input of the network will not be set.

dcxDesc

Input. A fully packed tensor descriptor describing the gradient at the initial cell state of the RNN. The descriptor must be set exactly the same way as dcyDesc.

dcx

Output. Data pointer to GPU memory associated with the tensor descriptor dcxDesc. If a NULL pointer is passed, the gradient at the cell input of the network will not be set.

dkDesc

Reserved. User may pass in NULL.

dkeys

Reserved. User may pass in NULL.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided *workspace.*

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided *reserveSpace.*

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

At least one of the following conditions are met:

- Variable sequence length input is passed in while `CUDNN_RNN_ALGO_PERSIST_STATIC` or `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` is used.
- `CUDNN_RNN_ALGO_PERSIST_STATIC` or `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` is used on pre-Pascal devices.
- Double input/output is used for `CUDNN_RNN_ALGO_PERSIST_STATIC`.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `yDesc`, `dxdesc`, `dydesc`, `dhxDesc`, `wDesc`, `hxDesc`, `cxDesc`, `dcxDesc`, `dhyDesc`, `dcyDesc` is invalid or has incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.
- `reserveSpaceSizeInBytes` is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.132. `cudnnRNNBackwardWeights`

```
cudnnStatus_t cudnnRNNBackwardWeights(
  cudnnHandle_t                   handle,
  const cudnnRNNDescriptor_t      rnnDesc,
  const int                       seqLength,
  const cudnnTensorDescriptor_t   *xDesc,
  const void                      *x,
  const cudnnTensorDescriptor_t   *hxDesc,
  const void                      *hx,
  const cudnnTensorDescriptor_t   *yDesc,
  const void                      *y,`
```
This routine accumulates weight gradients \(dw \) from the recurrent neural network described by \(\text{rnnDesc} \) with inputs \(x \), \(hx \), and outputs \(y \). The mode of operation in this case is additive, the weight gradients calculated will be added to those already existing in \(dw \). The \(workspace \) is required for intermediate storage. The data in \(reserveSpace \) must have previously been generated by \texttt{cudnnRNNBackwardData}.

Parameters

handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

seqLength

Input. Number of iterations to unroll over. The value of this \texttt{seqLength} must not exceed the value that was used in \texttt{cudnnGetRNNWorkspaceSize()} function for querying the workspace size required to execute the RNN.

xDesc

Input. An array of fully packed tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element \(n \) to element \(n+1 \) but may not increase. Each tensor descriptor must have the same second dimension (vector length).

x

Input. Data pointer to GPU memory associated with the tensor descriptors in the array \(xDesc \).

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the \texttt{direction} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \(\text{rnnDesc} \):

- If \texttt{direction} is \texttt{CUDNN_UNIDIRECTIONAL} the first dimension should match the \texttt{numLayers} argument passed to \texttt{cudnnSetRNNDescriptor}.
- If \texttt{direction} is \texttt{CUDNN_BIDIRECTIONAL} the first dimension should match double the \texttt{numLayers} argument passed to \texttt{cudnnSetRNNDescriptor}.

The second dimension must match the first dimension of the tensors described in \(xDesc \). The third dimension must match the \texttt{hiddenSize} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \(\text{rnnDesc} \). The tensor must be fully packed.
hx

Input. Data pointer to GPU memory associated with the tensor descriptor *hxDesc*. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize *rnnDesc*:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor *n* must match the first dimension of the tensor *n* in *dyDesc*.

y

Input. Data pointer to GPU memory associated with the output tensor descriptor *yDesc*.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided `workspace`.

dwDesc

Input. Handle to a previously initialized filter descriptor describing the gradients of the weights for the RNN.

dw

Input/Output. Data pointer to GPU memory associated with the filter descriptor *dwDesc*.

reserveSpace

Input. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided `reserveSpace`.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `hxDesc`, `dwDesc` or one of the descriptors in `xDesc`, `yDesc` is invalid.
- The descriptors in one of `xDesc`, `hxDesc`, `yDesc`, `dwDesc` has incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.
- `reserveSpaceSizeInBytes` is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.133. cudnnRNNBackwardWeightsEx

```c
int cudnnRNNBackwardWeightsEx(
    const cudnnHandle_t handle,
    const cudnnRNNDescriptor_t rnnDesc,
    const cudnnRNNDataDescriptor_t xDesc,
    const void *x,
    const cudnnTensorDescriptor_t hxDesc,
    const void *hx,
    const cudnnRNNDataDescriptor_t yDesc,
    const void *y,
    void *workSpace,
    size_t workSpaceSizeInBytes,
    const cudnnFilterDescriptor_t dwDesc,
    void *dw,
    void *reserveSpace,
    size_t reserveSpaceSizeInBytes)
```

This routine is the extended version of the function `cudnnRNNBackwardWeights`. This function `cudnnRNNBackwardWeightsEx` allows the user to use unpacked (padded) layout for input `x` and output `dw`.

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length, specified by `maxSeqLength` in its corresponding `RNNDataDescriptor`. Each fixed-length sequence, for example, the nth sequence in the mini-batch, is composed of a valid segment specified by the `seqLengthArray[n]` in its corresponding `RNNDataDescriptor`; and a padding segment to make the combined sequence length equal to `maxSeqLength`.

With the unpacked layout, both sequence major (i.e. time major) and batch major are supported. For backward compatibility, the packed sequence major layout is supported. However, similar to the non-extended function `cudnnRNNBackwardWeights`, the sequences in the mini-batch need to be sorted in descending order according to length.

Parameters
handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

xDesc

Input. A previously initialized RNN data descriptor. Must match or be the exact same descriptor previously passed into *cudnnRNNForwardTrainingEx*.

x

Input. Data pointer to GPU memory associated with the tensor descriptors in the array *xDesc*. Must contain the exact same data previously passed into *cudnnRNNForwardTrainingEx*.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. Must match or be the exact same descriptor previously passed into *cudnnRNNForwardTrainingEx*.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor *hxDesc*. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero. Must contain the exact same data previously passed into *cudnnRNNForwardTrainingEx*, or be NULL if NULL was previously passed to *cudnnRNNForwardTrainingEx*.

yDesc

Input. A previously initialized RNN data descriptor. Must match or be the exact same descriptor previously passed into *cudnnRNNForwardTrainingEx*.

y

Input. Data pointer to GPU memory associated with the output tensor descriptor *yDesc*. Must contain the exact same data previously produced by *cudnnRNNForwardTrainingEx*.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided *workspace*.

dwDesc

Input. Handle to a previously initialized filter descriptor describing the gradients of the weights for the RNN.

dw

Input/Output. Data pointer to GPU memory associated with the filter descriptor *dwDesc*.
reserveSpace

Input. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided `reserveSpace`

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `xDesc`, `yDesc`, `hxDesc`, `dwDesc` is invalid, or has incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.
- `reserveSpaceSizeInBytes` is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.134. cudnnRNNForwardInference

cudnnStatus_t cudnnRNNForwardInference(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 const void *x,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void *cx,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t hyDesc,
 const void *hy,
 const cudnnTensorDescriptor_t cyDesc,
 const void *cy,
 void *workspace,
 size_t workSpaceSizeInBytes)

This routine executes the recurrent neural network described by `rnnDesc` with inputs `x`, `hx`, `cx`, weights `w` and outputs `y`, `hy`, `cy`. `workspace` is required for
intermediate storage. This function does not store intermediate data required for training; \texttt{cudnnRNNForwardTraining} should be used for that purpose.

Parameters

handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

seqLength

Input. Number of iterations to unroll over. The value of this \texttt{seqLength} must not exceed the value that was used in \texttt{cudnnGetRNNWorkspaceSize()} function for querying the workspace size required to execute the RNN.

xDesc

Input. An array of \texttt{seqLength} fully packed tensor descriptors. Each descriptor in the array should have three dimensions that describe the input data format to one recurrent iteration (one descriptor per RNN time-step). The first dimension (batch size) of the tensors may decrease from iteration \texttt{n} to iteration \texttt{n+1} but may not increase. Each tensor descriptor must have the same second dimension (RNN input vector length, \texttt{inputSize}). The third dimension of each tensor should be 1. Input data are expected to be arranged in the column-major order so strides in \texttt{xDesc} should be set as follows: \texttt{strideA[0]=inputSize, strideA[1]=1, strideA[2]=1}.

x

Input. Data pointer to GPU memory associated with the array of tensor descriptors \texttt{xDesc}. The input vectors are expected to be packed contiguously with the first vector of iteration (time-step) \texttt{n+1} following directly from the last vector of iteration \texttt{n}. In other words, input vectors for all RNN time-steps should be packed in the contiguous block of GPU memory with no gaps between the vectors.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the \texttt{direction} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \texttt{rnnDesc}:

- If \texttt{direction} is \texttt{CUDNN_UNIDIRECTIONAL} the first dimension should match the \texttt{numLayers} argument passed to \texttt{cudnnSetRNNDescriptor}.
- If \texttt{direction} is \texttt{CUDNN_BIDIRECTIONAL} the first dimension should match double the \texttt{numLayers} argument passed to \texttt{cudnnSetRNNDescriptor}.

The second dimension must match the first dimension of the tensors described in \texttt{xDesc}. The third dimension must match the \texttt{hiddenSize} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \texttt{rnnDesc}. The tensor must be fully packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor \texttt{hxDesc}. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.
cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

`cx`

Input. Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor `n` must match the first dimension of the tensor `n` in `xDesc`.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor `yDesc`. The data are expected to be packed contiguously with the first element of iteration `n+1` following directly from the last element of iteration `n`.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

`hy`

Output. Data pointer to GPU memory associated with the tensor descriptor `hyDesc`. If a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

`cy`

Output. Data pointer to GPU memory associated with the tensor descriptor `cyDesc`. If a NULL pointer is passed, the final cell state of the network will be not be saved.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided `workspace`.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `hxDesc, cxDesc, wDesc, hyDesc, cyDesc` or one of the descriptors in `xDesc, yDesc` is invalid.
The descriptors in one of \texttt{xDesc}, \texttt{hxDesc}, \texttt{cxDesc}, \texttt{wDesc}, \texttt{yDesc}, \texttt{hyDesc}, \texttt{cyDesc} have incorrect strides or dimensions.

\texttt{workSpaceSizeInBytes} is too small.

\textbf{CUDNN_STATUS_EXECUTION_FAILED}

The function failed to launch on the GPU.

\textbf{CUDNN_STATUS_ALLOC_FAILED}

The function was unable to allocate memory.

4.135. \texttt{cudnnRNNForwardInferenceEx}

\begin{verbatim}
cudnnStatus_t cudnnRNNForwardInferenceEx(
cudnnHandle_t handle,
const cudnnRNNDescriptor_t rnnDesc,
const cudnnRNNDataDescriptor_t xDesc,
const void *x,
const cudnnTensorDescriptor_t hxDesc,
const void *hx,
const cudnnTensorDescriptor_t cxDesc,
const void *cx,
const cudnnFilterDescriptor_t wDesc,
const void *w,
const cudnnRNNDataDescriptor_t yDesc,
void *y,
const cudnnTensorDescriptor_t hyDesc,
const void *hy,
const cudnnTensorDescriptor_t cyDesc,
const void *cy,
const cudnnRNNDataDescriptor_t kDesc,
const void *keys,
const cudnnRNNDataDescriptor_t cDesc,
const void *cAttn,
const cudnnRNNDataDescriptor_t iDesc,
const void *iAttn,
const cudnnRNNDataDescriptor_t qDesc,
const void *queries,
size_t workSpace,
size_t workSpaceSizeInBytes)
\end{verbatim}

This routine is the extended version of the \texttt{cudnnRNNForwardInference} function. The \texttt{cudnnRNNForwardTrainingEx} allows the user to use unpacked (padded) layout for input \texttt{x} and output \texttt{y}. In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length, specified by \texttt{maxSeqLength} in its corresponding \texttt{RNNDataDescriptor}. Each fixed-length sequence, for example, the \texttt{n}th sequence in the mini-batch, is composed of a valid segment, specified by the \texttt{seqLengthArray[n]} in its corresponding \texttt{RNNDataDescriptor}, and a padding segment to make the combined sequence length equal to \texttt{maxSeqLength}.

With unpacked layout, both sequence major (i.e. time major) and batch major are supported. For backward compatibility, the packed sequence major layout is supported. However, similar to the non-extended function \texttt{cudnnRNNForwardInference}, the sequences in the mini-batch need to be sorted in descending order according to length.

Parameters
handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

xDesc

Input. A previously initialized RNN Data descriptor. The `dataType`, `layout`, `maxSeqLength`, `batchSize`, and `seqLengthArray` need to match that of `yDesc`.

x

Input. Data pointer to the GPU memory associated with the RNN data descriptor `xDesc`. The vectors are expected to be laid out in memory according to the layout specified by `xDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the `batchSize` parameter described in `xDesc`. The third dimension depends on whether RNN mode is `CUDNN_LSTM` and whether LSTM projection is enabled. In specific:

- If RNN mode is `CUDNN_LSTM` and LSTM projection is enabled, the third dimension must match the `recProjSize` argument passed to `cudnnSetRNNProjectionLayers` call used to set `rnnDesc`.
- Otherwise, the third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
The second dimension must match the `batchSize` parameter in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`.

cx

Input. Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.

yDesc

Input. A previously initialized RNN data descriptor. The `dataType`, `layout`, `maxSeqLength`, `batchSize`, and `seqLengthArray` must match that of `dyDesc` and `dxDesc`. The parameter `vectorSize` depends on whether RNN mode is `CUDNN_LSTM` and whether LSTM projection is enabled and whether the network is bidirectional. In specific:

- For uni-directional network, if RNN mode is `CUDNN_LSTM` and LSTM projection is enabled, the parameter `vectorSize` must match the `recProjSize` argument passed to `cudnnSetRNNProjectionLayers` call used to set `rnnDesc`. If the network is bidirectional, then multiply the value by 2.
- Otherwise, for uni-directional network, the parameter `vectorSize` must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. If the network is bidirectional, then multiply the value by 2.

y

Output. Data pointer to the GPU memory associated with the RNN data descriptor `yDesc`. The vectors are expected to be laid out in memory according to the layout specified by `yDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The descriptor must be set exactly the same way as `hxDesc`.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor `hyDesc`. If a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks. The descriptor must be set exactly the same way as `cxDesc`.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor `cyDesc`. If a NULL pointer is passed, the final cell state of the network will be not be saved.
kDesc
 Reserved. User may pass in NULL.

Keys
 Reserved. User may pass in NULL.

cDesc
 Reserved. User may pass in NULL.

cAttn
 Reserved. User may pass in NULL.

iDesc
 Reserved. User may pass in NULL.

iAttn
 Reserved. User may pass in NULL.

qDesc
 Reserved. User may pass in NULL.

Queries
 Reserved. User may pass in NULL.

workspace
 Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes
 Input. Specifies the size in bytes of the provided workspace.

Returns

CUDNN_STATUS_SUCCESS
 The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED
 At least one of the following conditions are met:
 ▶ Variable sequence length input is passed in while CUDNN_RNN_ALGO_PERSIST_STATIC or CUDNN_RNN_ALGO_PERSIST_DYNAMIC is used.
 ▶ CUDNN_RNN_ALGO_PERSIST_STATIC or CUDNN_RNN_ALGO_PERSIST_DYNAMIC is used on pre-Pascal devices.
 ▶ Double input/output is used for CUDNN_RNN_ALGO_PERSIST_STATIC.

CUDNN_STATUS_BAD_PARAM
 At least one of the following conditions are met:
 ▶ The descriptor rnnDesc is invalid.
 ▶ At least one of the descriptors in xDesc, yDesc, hxDesc, cxDesc, wDesc, hyDesc, cyDesc is invalid, or have incorrect strides or dimensions.
 ▶ reserveSpaceSizeInBytes is too small.
workSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.136. cudnnRNNEncoderForwardTraining

```c
void cudnnRNNEncoderForwardTraining( 
    cudnnHandle_t       handle, 
    const cudnnRNNDescriptor_t  rnnDesc, 
    const int           seqLength, 
    const cudnnTensorDescriptor_t  *xDesc, 
    const void          *x, 
    const cudnnTensorDescriptor_t   *hxDesc, 
    const void          *hx, 
    const cudnnTensorDescriptor_t   *cxDesc, 
    const void          *cx, 
    const cudnnFilterDescriptor_t   wDesc, 
    const void          *w, 
    const cudnnTensorDescriptor_t   *yDesc, 
    const void          *y, 
    const cudnnTensorDescriptor_t   *hyDesc, 
    const void          *hy, 
    const cudnnTensorDescriptor_t   *cyDesc, 
    const void          *cy, 
    void                 *workspace, 
    size_t               workSpaceSizeInBytes, 
    void                 *reserveSpace, 
    size_t               reserveSpaceSizeInBytes)
```

This routine executes the recurrent neural network described by `rnnDesc` with inputs `x, hx, cx`, weights `w` and outputs `y, hy, cy`. `workspace` is required for intermediate storage. `reserveSpace` stores data required for training. The same reserveSpace data must be used for future calls to `cudnnRNNEncoderBackwardData` and `cudnnRNNEncoderBackwardWeights` if these execute on the same input data.

Parameters

handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

seqLength

Input. Number of iterations to unroll over. The value of this `seqLength` must not exceed the value that was used in `cudnnGetRNNEncoderWorkspaceSize()` function for querying the workspace size required to execute the RNN.

xDesc

Input. An array of `seqLength` fully packed tensor descriptors. Each descriptor in the array should have three dimensions that describe the input data format to one recurrent iteration (one descriptor per RNN time-step). The first dimension (batch...
size) of the tensors may decrease from iteration element \(n \) to iteration element \(n+1 \) but may not increase. Each tensor descriptor must have the same second dimension (RNN input vector length, inputSize). The third dimension of each tensor should be 1. Input vectors are expected to be arranged in the column-major order so strides in \(x_{\text{Desc}} \) should be set as follows: \(\text{strideA}[0] = \text{inputSize}, \text{strideA}[1] = 1, \text{strideA}[2] = 1 \).

x

Input. Data pointer to GPU memory associated with the array of tensor descriptors \(x_{\text{Desc}} \). The input vectors are expected to be packed contiguously with the first vector of iteration (time-step) \(n+1 \) following directly the last vector of iteration \(n \). In other words, input vectors for all RNN time-steps should be packed in the contiguous block of GPU memory with no gaps between the vectors.

hx

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize \(\text{rnnDesc} \):

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in \(x_{\text{Desc}} \). The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize \(\text{rnnDesc} \). The tensor must be fully packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor \(hx_{\text{Desc}} \). If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

cx

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize \(\text{rnnDesc} \):

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in \(x_{\text{Desc}} \). The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize \(\text{rnnDesc} \). The tensor must be fully packed.

cx

Input. Data pointer to GPU memory associated with the tensor descriptor \(cx_{\text{Desc}} \). If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.
wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor `n` must match the first dimension of the tensor `n` in `xDesc`.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor `yDesc`.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor `hyDesc`. If a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

cy

`Output`. Data pointer to GPU memory associated with the tensor descriptor `cyDesc`. If a NULL pointer is passed, the final cell state of the network will be not be saved.

workspace

`Input`. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

`Input`. Specifies the size in bytes of the provided `workspace`.

reserveSpace

`Input/Output`. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

`Input`. Specifies the size in bytes of the provided `reserveSpace`.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `hxDesc, cxDesc, wDesc, hyDesc, cyDesc` or one of the descriptors in `xDesc, yDesc` is invalid.
- The descriptors in one of `xDesc, hxDesc, cxDesc, wDesc, yDesc, hyDesc, cyDesc` have incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.
- `reserveSpaceSizeInBytes` is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.137. `cudnnRNNForwardTrainingEx`

cudnnStatus_t `cudnnRNNForwardTrainingEx`
This routine is the extended version of the `cudnnRNNForwardTraining` function. The `cudnnRNNForwardTrainingEx` allows the user to use unpacked (padded) layout for input \(x \) and output \(y \).

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length, specified by `maxSeqLength` in its corresponding `RNNDataDescriptor`. Each fixed-length sequence, for example, the \(n \)th sequence in the mini-batch, is composed of a valid segment specified by the `seqLengthArray[n]` in its corresponding `RNNDataDescriptor`; and a padding segment to make the combined sequence length equal to `maxSeqLength`.

With the unpacked layout, both sequence major (i.e. time major) and batch major are supported. For backward compatibility, the packed sequence major layout is supported. However, similar to the non-extended function `cudnnRNNForwardTraining`, the sequences in the mini-batch need to be sorted in descending order according to length.

Parameters

`handle`

Input. Handle to a previously created cuDNN context.

`rnnDesc`

Input. A previously initialized RNN descriptor.

`xDesc`

Input. A previously initialized RNN Data descriptor. The `dataType`, `layout`, `maxSeqLength`, `batchSize`, and `seqLengthArray` need to match that of `yDesc`.

```c
    cudnnHandle_t              handle,
    const cudnnRNNDescriptor_t rnnDesc,
    const cudnnRNNDataDescriptor_t xDesc,
    const void                 *x,
    const cudnnTensorDescriptor_t hxDesc,
    const void                 *hx,
    const cudnnTensorDescriptor_t cxDesc,
    const void                 *cx,
    const cudnnFilterDescriptor_t wDesc,
    const void                 *w,
    const cudnnRNNDataDescriptor_t yDesc,
    void                        *y,
    const cudnnTensorDescriptor_t hyDesc,
    const void                 *hy,
    const cudnnTensorDescriptor_t cyDesc,
    const void                 *cy,
    const cudnnRNNDataDescriptor_t kDesc,
    const void                 *keys,
    const cudnnRNNDataDescriptor_t cDesc,
    void                        *cAttn,
    const cudnnRNNDataDescriptor_t iDesc,
    void                        *iAttn,
    const cudnnRNNDataDescriptor_t qDesc,
    void                        *queries,
    void                        *workSpace,
    size_t                      workSpaceSizeInBytes,
    void                        *reserveSpace,
    size_t                      reserveSpaceSizeInBytes);
```
Input. Data pointer to the GPU memory associated with the RNN data descriptor `xDesc`. The input vectors are expected to be laid out in memory according to the layout specified by `xDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize `rnnDesc`. Moreover:

- If `direction` is `CUDNN_UNIDIRECTIONAL` then the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` then the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the `batchSize` parameter in `xDesc`. The third dimension depends on whether RNN mode is `CUDNN_LSTM` and whether LSTM projection is enabled. Moreover:

- If RNN mode is `CUDNN_LSTM` and LSTM projection is enabled, the third dimension must match the `recProjSize` argument passed to `cudnnSetRNNProjectionLayers` call used to set `rnnDesc`.
- Otherwise, the third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks.

The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. Moreover:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.
cx

Input. Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.

yDesc

Input. A previously initialized RNN data descriptor. The `dataType`, `layout`, `maxSeqLength`, `batchSize`, and `seqLengthArray` need to match that of `dyDesc` and `dxDesc`. The parameter `vectorSize` depends on whether RNN mode is `CUDNN_LSTM` and whether LSTM projection is enabled and whether the network is bidirectional. In specific:

- For uni-directional network, if RNN mode is `CUDNN_LSTM` and LSTM projection is enabled, the parameter `vectorSize` must match the `recProjSize` argument passed to `cudnnSetRNNProjectionLayers` call used to set `rnnDesc`. If the network is bidirectional, then multiply the value by 2.
- Otherwise, for uni-directional network, the parameter `vectorSize` must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. If the network is bidirectional, then multiply the value by 2.

y

Output. Data pointer to GPU memory associated with the RNN data descriptor `yDesc`. The input vectors are expected to be laid out in memory according to the layout specified by `yDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The descriptor must be set exactly the same as `hxDesc`.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor `hyDesc`. If a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks. The descriptor must be set exactly the same as `cxDesc`.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor `cyDesc`. If a NULL pointer is passed, the final cell state of the network will be not be saved.

kDesc

Reserved. User may pass in NULL.
Keys
Reserved. User may pass in NULL.

#cDesc
Reserved. User may pass in NULL.

#cAttn
Reserved. User may pass in NULL.

#iDesc
Reserved. User may pass in NULL.

#iAttn
Reserved. User may pass in NULL.

#qDesc
Reserved. User may pass in NULL.

Queries
Reserved. User may pass in NULL.

workspace
Input. Data pointer to GPU memory to be used as a workspace for this call.

workspaceSizeInBytes
Input. Specifies the size in bytes of the provided `workspace`.

reserveSpace
Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes
Input. Specifies the size in bytes of the provided `reserveSpace`.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

At least one of the following conditions are met:

- Variable sequence length input is passed in while `CUDNN_RNN_ALGO_PERSIST_STATIC` or `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` is used.
- `CUDNN_RNN_ALGO_PERSIST_STATIC` or `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` is used on pre-Pascal devices.
- Double input/output is used for `CUDNN_RNN_ALGO_PERSIST_STATIC`.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
At least one of the descriptors \texttt{xDesc}, \texttt{yDesc}, \texttt{hxDesc}, \texttt{cxDesc}, \texttt{wDesc}, \texttt{hyDesc}, \texttt{cyDesc} is invalid, or have incorrect strides or dimensions.

- \texttt{workspaceSizeInBytes} is too small.
- \texttt{reserveSpaceSizeInBytes} is too small.

\textbf{CUDNN_STATUS_EXECUTION_FAILED}

The function failed to launch on the GPU.

\textbf{CUDNN_STATUS_ALLOC_FAILED}

The function was unable to allocate memory.

4.138. \texttt{cudnnRNNGetClip}

\begin{verbatim}
cudnnStatus_t cudnnRNNGetClip(
 cudnnHandle_t handle,
 cudnnRNNDescriptor_t rnnDesc,
 cudnnRNNClipMode_t *clipMode,
 cudnnNanPropagation_t *clipNanOpt,
 double *lclip,
 double *rclip);
\end{verbatim}

Retrieves the current LSTM cell clipping parameters, and stores them in the arguments provided.

Parameters

\texttt{clipMode}

Output. Pointer to the location where the retrieved \texttt{clipMode} is stored. The \texttt{clipMode} can be \texttt{CUDNN_RNN_CLIP_NONE} in which case no LSTM cell state clipping is being performed; or \texttt{CUDNN_RNN_CLIP_MINMAX}, in which case the cell state activation to other units are being clipped.

\texttt{lclip}, \texttt{rclip}

Output. Pointers to the location where the retrieved LSTM cell clipping range \([\texttt{lclip}, \texttt{rclip}]\) is stored.

\texttt{clipNanOpt}

Output. Pointer to the location where the retrieved \texttt{clipNanOpt} is stored.

Returns

\textbf{CUDNN_STATUS_SUCCESS}

The function launched successfully.

\textbf{CUDNN_STATUS_BAD_PARAM}

If any of the pointer arguments provided are NULL.

4.139. \texttt{cudnnRNNSetClip}

\begin{verbatim}
cudnnStatus_t cudnnRNNSetClip(
\end{verbatim}
Sets the LSTM cell clipping mode. The LSTM clipping is disabled by default. When enabled, clipping is applied to all layers. This `cudnnRNNSetClip()` function may be called multiple times.

Parameters

clipMode

Input. Enables or disables the LSTM cell clipping. When `clipMode` is set to `CUDNN_RNN_CLIP_NONE` no LSTM cell state clipping is performed. When `clipMode` is `CUDNN_RNN_CLIP_MINMAX` the cell state activation to other units are clipped.

lclip, rclip

Input. The range [lclip, rclip] to which the LSTM cell clipping should be set.

clipNanOpt

Input. When set to `CUDNN_PROPAGATE_NAN` (See the description for `cudnnNanPropagation_t`), NaN is propagated from the LSTM cell, or it can be set to one of the clipping range boundary values, instead of propagating.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

Returns this value if `lclip > rclip`; or if either `lclip` or `rclip` is NaN.

4.140. cudnnReduceTensor

This function reduces tensor A by implementing the equation \(C = alpha \times \text{reduce op}(A) + beta \times C \), given tensors A and C and scaling factors alpha and beta. The reduction op to use is indicated by the descriptor `reduceTensorDesc`. Currently-supported ops are listed by the `cudnnReduceTensorOp_t` enum.
Each dimension of the output tensor C must match the corresponding dimension of the input tensor A or must be equal to 1. The dimensions equal to 1 indicate the dimensions of A to be reduced.

The implementation will generate indices for the min and max ops only, as indicated by the `cudnnReduceTensorIndices_t` enum of the `reduceTensorDesc`. Requesting indices for the other reduction ops results in an error. The data type of the indices is indicated by the `cudnnIndicesType_t` enum; currently only the 32-bit (unsigned int) type is supported.

The indices returned by the implementation are not absolute indices but relative to the dimensions being reduced. The indices are also flattened, i.e. not coordinate tuples.

The data types of the tensors A and C must match if of type double. In this case, α and β and the computation enum of `reduceTensorDesc` are all assumed to be of type double.

The half and int8 data types may be mixed with the float data types. In these cases, the computation enum of `reduceTensorDesc` is required to be of type float.

Parameters

handle

Input. Handle to a previously created cuDNN context.

reduceTensorDesc

Input. Handle to a previously initialized reduce tensor descriptor.

indices

Output. Handle to a previously allocated space for writing indices.

indicesSizeInBytes

Input. Size of the above previously allocated space.

workspace

Input. Handle to a previously allocated space for the reduction implementation.

workspaceSizeInBytes

Input. Size of the above previously allocated space.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as indicated by the above op equation. Please refer to this section for additional details.

aDesc, cDesc

Input. Handle to a previously initialized tensor descriptor.

A

Input. Pointer to data of the tensor described by the `aDesc` descriptor.
Input/Output. Pointer to data of the tensor described by the cDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function executed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

• The dimensions of the input tensor and the output tensor are above 8.
• reduceTensorCompType is not set as stated above.

CUDNN_STATUS_BAD_PARAM

The corresponding dimensions of the input and output tensors all match, or the conditions in the above paragraphs are unmet.

CUDNN_INVALID_VALUE

The allocations for the indices or workspace are insufficient.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.141. cudnnRestoreAlgorithm

This function reads algorithm metadata from the host memory space provided by the user in algoSpace, allowing the user to use the results of RNN finds from previous cuDNN sessions.

Parameters

handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.

algoSpace

Input. Pointer to the host memory to be read.
algoSpaceSizeInBytes

Input. Amount of host memory needed as workspace to be able to hold the metadata from the specified `algoDesc`.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The metadata is from a different cudnn version.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions is met:

- One of the arguments is null.
- The metadata is corrupted.

4.142. cudnnRestoreDropoutDescriptor

```c
cudnnStatus_t cudnnRestoreDropoutDescriptor(
    cudnnDropoutDescriptor_t dropoutDesc,
    cudnnHandle_t            handle,
    float                    dropout,
    void                    *states,
    size_t                   stateSizeInBytes,
    unsigned long long       seed)
```

This function restores a dropout descriptor to a previously saved-off state.

Parameters

dropoutDesc

Input/Output. Previously created dropout descriptor.

handle

Input. Handle to a previously created cuDNN context.

dropout

Input. Probability with which the value from an input tensor is set to 0 when performing dropout.

states

Input. Pointer to GPU memory that holds random number generator states initialized by a prior call to `cudnnSetDropoutDescriptor`.

stateSizeInBytes

Input. Size in bytes of buffer holding random number generator states.

seed

Input. Seed used in prior call to `cudnnSetDropoutDescriptor` that initialized 'states' buffer. Using a different seed from this has no effect. A change of seed, and
subsequent update to random number generator states can be achieved by calling
`cudnnSetDropoutDescriptor`.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_INVALID_VALUE

States buffer size (as indicated in stateSizeInBytes) is too small.

4.143. cudnnSaveAlgorithm

cudnnStatus_t cudnnSaveAlgorithm(
 cudnnHandle_t handle,
 cudnnAlgorithmDescriptor_t algoDesc,
 void* algoSpace
 size_t algoSpaceSizeInBytes)

(New for 7.1)

This function writes algorithm metadata into the host memory space provided by the
user in **algoSpace**, allowing the user to preserve the results of RNN finds after cuDNN
exits.

Parameters

handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.

algoSpace

Input. Pointer to the host memory to be written.

algoSpaceSizeInBytes

Input. Amount of host memory needed as workspace to be able to save the metadata
from the specified **algoDesc**.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions is met:

- One of the arguments is null.
- **algoSpaceSizeInBytes** is too small.
4.144. cudnnScaleTensor

```c
int cudnnScaleTensor(cudnnHandle_t handle, const cudnnTensorDescriptor_t yDesc, void *y, const void *alpha);
```

This function scales all the elements of a tensor by a given factor.

Parameters

- **handle**
 - *Input*. Handle to a previously created cuDNN context.

- **yDesc**
 - *Input*. Handle to a previously initialized tensor descriptor.

- **y**
 - *Input/Output*. Pointer to data of the tensor described by the `yDesc` descriptor.

- **alpha**
 - *Input*. Pointer in Host memory to a single value that all elements of the tensor will be scaled with. Please refer to this section for additional details.

The possible error values returned by this function and their meanings are listed below.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The function launched successfully.

- **CUDNN_STATUS_NOT_SUPPORTED**
 - The function does not support the provided configuration.

- **CUDNN_STATUS_BAD_PARAM**
 - One of the provided pointers is nil.

- **CUDNN_STATUS_EXECUTION_FAILED**
 - The function failed to launch on the GPU.

4.145. cudnnSetActivationDescriptor

```c
int cudnnSetActivationDescriptor(cudnnActivationDescriptor_t activationDesc, cudnnActivationMode_t mode, cudnnNanPropagation_t reluNanOpt, double coef);
```

This function initializes a previously created generic activation descriptor object.

Parameters
activationDesc

Input/Output. Handle to a previously created pooling descriptor.

mode

Input. Enumerant to specify the activation mode.

reluNanOpt

Input. Enumerant to specify the **NaN** propagation mode.

coef

Input. Floating point number to specify the clipping threshold when the activation mode is set to `CUDNN_ACTIVATION_CLIPPED_RELU` or to specify the alpha coefficient when the activation mode is set to `CUDNN_ACTIVATION_ELU`.

The possible error values returned by this function and their meanings are listed below.

Returns

`CUDNN_STATUS_SUCCESS`

The object was set successfully.

`CUDNN_STATUS_BAD_PARAM`

`mode` or `reluNanOpt` has an invalid enumerant value.

4.146. cudnnSetAlgorithmDescriptor

cudnnStatus_t cudnnSetAlgorithmDescriptor(
 cudnnAlgorithmDescriptor_t algorithmDesc,
 cudnnAlgorithm_t algorithm)

(New for 7.1)

This function initializes a previously created generic algorithm descriptor object.

Parameters

algorithmDesc

Input/Output. Handle to a previously created algorithm descriptor.

algorithm

Input. Struct to specify the algorithm.

Returns

`CUDNN_STATUS_SUCCESS`

The object was set successfully.

4.147. cudnnSetAlgorithmPerformance

cudnnStatus_t cudnnSetAlgorithmPerformance(
 cudnnAlgorithmPerformance_t algoPerf,
 cudnnAlgorithmDescriptor_t algoDesc,
 cudnnStatus_t status,
cudnnGetAlgorithmPerformance

```c
float                    time,
size_t                   memory)
```

(New for 7.1)

This function initializes a previously created generic algorithm performance object.

Parameters

- **algoPerf**
 - Input/Output. Handle to a previously created algorithm performance object.

- **algoDesc**
 - Input. The algorithm descriptor which the performance results describe.

- **status**
 - Input. The cudnn status returned from running the algoDesc algorithm.

- **time**
 - Input. The GPU time spent running the algoDesc algorithm.

- **memory**
 - Input. The GPU memory needed to run the algoDesc algorithm.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The object was set successfully.

- **CUDNN_STATUS_BAD_PARAM**
 - `mode` or `reluNanOpt` has an invalid enumerant value.

4.148. cudnnSetCTCLossDescriptor

```c
cudnnStatus_t cudnnSetCTCLossDescriptor(
    cudnnCTCLossDescriptor_t      ctcLossDesc,
    cudnnDataType_t               compType)
```

This function sets a CTC loss function descriptor.

Parameters

- **ctcLossDesc**
 - Output. CTC loss descriptor to be set.

- **compType**
 - Input. Compute type for this CTC loss function.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The function returned successfully.

- **CUDNN_STATUS_BAD_PARAM**
 - At least one of input parameters passed is invalid.
4.149. cudnnSetCallback

This function sets the internal states of cuDNN error reporting functionality.

Parameters

mask

Input. An unsigned integer. The four least significant bits (LSBs) of this unsigned integer are used for switching on and off the different levels of error reporting messages. This applies for both the default callbacks, and for the customized callbacks. The bit position is in correspondence with the enum of `cudnnSeverity_t`. The user may utilize the predefined macros `CUDNN_SEV_ERROR_EN`, `CUDNN_SEV_WARNING_EN`, and `CUDNN_SEV_INFO_EN` to form the bit mask. When a bit is set to 1, the corresponding message channel is enabled.

For example, when bit 3 is set to 1, the API logging is enabled. Currently only the log output of level `CUDNN_SEV_INFO` is functional; the others are not yet implemented. When used for turning on and off the logging with the default callback, the user may pass NULL to `udata` and `fptr`. In addition, the environment variable `CUDNN_LOGDEST_DBG` must be set (see Section 2.11).

<table>
<thead>
<tr>
<th>Mask</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_SEV_INFO_EN</td>
<td>0b1000 (functional).</td>
</tr>
<tr>
<td>CUDNN_SEV_ERROR_EN</td>
<td>0b0010 (not yet functional).</td>
</tr>
<tr>
<td>CUDNN_SEV_WARNING_EN</td>
<td>0b0100 (not yet functional).</td>
</tr>
</tbody>
</table>

The output of `CUDNN_SEV_FATAL` is always enabled, and cannot be disabled.

udata

Input. A pointer provided by the user. This pointer will be passed to the user’s custom logging callback function. The data it points to will not be read, nor be changed by cuDNN. This pointer may be used in many ways, such as in a mutex or in a communication socket for the user’s callback function for logging. If the user is utilizing the default callback function, or doesn’t want to use this input in the customized callback function, they may pass in NULL.

fptr

Input. A pointer to a user-supplied callback function. When NULL is passed to this pointer, then cuDNN switches back to the built-in default callback function. The user-supplied callback function prototype must be similar to the following (also defined in the header file):

```c
void customizedLoggingCallback (cudnnSeverity_t sev, void *udata, const cudnnDebug_t *dbg, const char *msg);
```
The structure `cudnnDebug_t` is defined in the header file. It provides the metadata, such as time, time since start, stream ID, process and thread ID, that the user may choose to print or store in their customized callback.

The variable `msg` is the logging message generated by cuDNN. Each line of this message is terminated by “\0”, and the end of message is terminated by “\0\0”. User may select what is necessary to show in the log, and may reformat the string.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

4.150. cudnnSetConvolution2dDescriptor

```c
#include <cudnn.h>

cudnnStatus_t cudnnSetConvolution2dDescriptor(
    cudnnConvolutionDescriptor_t convDesc,
    int pad_h,
    int pad_w,
    int u,
    int v,
    int dilation_h,
    int dilation_w,
    cudnnConvolutionMode_t mode,
    cudnnDataType_t computeType)
```

This function initializes a previously created convolution descriptor object into a 2D correlation. This function assumes that the tensor and filter descriptors corresponds to the forward convolution path and checks if their settings are valid. That same convolution descriptor can be reused in the backward path provided it corresponds to the same layer.

Parameters

convDesc

Input/Output. Handle to a previously created convolution descriptor.

pad_h

Input. zero-padding height: number of rows of zeros implicitly concatenated onto the top and onto the bottom of input images.

pad_w

Input. zero-padding width: number of columns of zeros implicitly concatenated onto the left and onto the right of input images.

u

Input. Vertical filter stride.

v

Input. Horizontal filter stride.

dilation_h

Input. Filter height dilation.
dilation_w

Input. Filter width dilation.

mode

Input. Selects between **CUDNN_CONVOLUTION** and **CUDNN_CROSS_CORRELATION**.

computeType

Input. compute precision.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `convDesc` is nil.
- One of the parameters `pad_h, pad_w` is strictly negative.
- One of the parameters `u, v` is negative or zero.
- One of the parameters `dilation_h, dilation_w` is negative or zero.
- The parameter `mode` has an invalid enumerant value.

4.151. cudnnSetConvolutionGroupCount

cudnnStatus_t cudnnSetConvolutionGroupCount(
 cudnnConvolutionDescriptor_t convDesc,
 int groupCount)

This function allows the user to specify the number of groups to be used in the associated convolution.

Returns

CUDNN_STATUS_SUCCESS

The group count was set successfully.

CUDNN_STATUS_BAD_PARAM

An invalid convolution descriptor was provided

4.152. cudnnSetConvolutionMathType

cudnnStatus_t cudnnSetConvolutionMathType(
 cudnnConvolutionDescriptor_t convDesc,
 cudnnMathType_t mathType)

This function allows the user to specify whether or not the use of tensor op is permitted in library routines associated with a given convolution descriptor.

Returns
CUDNN_STATUS_SUCCESS

The math type was set successfully.

CUDNN_STATUS_BAD_PARAM

Either an invalid convolution descriptor was provided or an invalid math type was specified.

4.153. cudnnSetConvolutionNdDescriptor

cudnnStatus_t cudnnSetConvolutionNdDescriptor(
 cudnnConvolutionDescriptor_t convDesc,
 int arrayLength,
 const int padA[],
 const int filterStrideA[],
 const int dilationA[],
 cudnnConvolutionMode_t mode,
 cudnnDataType_t dataType)

This function initializes a previously created generic convolution descriptor object into a n-D correlation. That same convolution descriptor can be reused in the backward path provided it corresponds to the same layer. The convolution computation will done in the specified dataType, which can be potentially different from the input/output tensors.

Parameters

convDesc

Input/Output. Handle to a previously created convolution descriptor.

arrayLength

Input. Dimension of the convolution.

padA

Input. Array of dimension arrayLength containing the zero-padding size for each dimension. For every dimension, the padding represents the number of extra zeros implicitly concatenated at the start and at the end of every element of that dimension.

filterStrideA

Input. Array of dimension arrayLength containing the filter stride for each dimension. For every dimension, the filter stride represents the number of elements to slide to reach the next start of the filtering window of the next point.

dilationA

Input. Array of dimension arrayLength containing the dilation factor for each dimension.

mode

Input. Selects between CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION.

datatype

Input. Selects the datatype in which the computation will be done.

The possible error values returned by this function and their meanings are listed below.
Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor **convDesc** is nil.
- The arrayLengthRequest is negative.
- The enumerant **mode** has an invalid value.
- The enumerant **datatype** has an invalid value.
- One of the elements of **padA** is strictly negative.
- One of the elements of **strideA** is negative or zero.
- One of the elements of **dilationA** is negative or zero.

CUDNN_STATUS_NOT_SUPPORTED

At least one of the following conditions are met:

- The arrayLengthRequest is greater than CUDNN_DIM_MAX.

4.154. cudnnSetDropoutDescriptor

```c
int cudnnSetDropoutDescriptor(
    cudnnDropoutDescriptor_t    dropoutDesc,
    cudnnHandle_t               handle,
    float                       dropout,
    void                       *states,
    size_t                      stateSizeInBytes,
    unsigned long long          seed)
```

This function initializes a previously created dropout descriptor object. If **states** argument is equal to NULL, random number generator states won't be initialized, and only **dropout** value will be set. No other function should be writing to the memory pointed at by **states** argument while this function is running. The user is expected not to change memory pointed at by **states** for the duration of the computation.

Parameters

dropoutDesc

Input/Output. Previously created dropout descriptor object.

handle

Input. Handle to a previously created cuDNN context.

dropout

Input. The probability with which the value from input is set to zero during the dropout layer.

states

Output. Pointer to user-allocated GPU memory that will hold random number generator states.
stateSizeInBytes

Input. Specifies size in bytes of the provided memory for the states

seed

Input. Seed used to initialize random number generator states.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_INVALID_VALUE

`sizeInBytes` is less than the value returned by `cudnnDropoutGetStatesSize`.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

4.155. cudnnSetFilter4dDescriptor

```c

cudnnStatus_t cudnnSetFilter4dDescriptor(
    cudnnFilterDescriptor_t filterDesc,
    cudnnDataType_t dataType,
    cudnnTensorFormat_t format,
    int k,
    int c,
    int h,
    int w)
```

This function initializes a previously created filter descriptor object into a 4D filter. The layout of the filters must be contiguous in memory.

Tensor format CUDNN_TENSOR_NHWC has limited support in `cudnnConvolutionForward`, `cudnnConvolutionBackwardData` and `cudnnConvolutionBackwardFilter`; please refer to the documentation for each function for more information.

Parameters

filterDesc

Input/*Output.* Handle to a previously created filter descriptor.

datatype

Input. Data type.

format

Input. Type of the filter layout format. If this input is set to CUDNN_TENSOR_NCHW, which is one of the enumerated values allowed by `cudnnTensorFormat_t` descriptor, then the layout of the filter is in the form of KCRS (K represents the number of output feature maps, C the number of input feature maps, R the number of rows per filter, and S the number of columns per filter.)
If this input is set to CUDNN_TENSOR_NHWC, then the layout of the filter is in the form of KRSC. See also the description for cudnnTensorFormat_t.

k

Input. Number of output feature maps.

c

Input. Number of input feature maps.

h

Input. Height of each filter.

w

Input. Width of each filter.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the parameters \(k, c, h, w\) is negative or `dataType` or `format` has an invalid enumerant value.

4.156. cudnnSetFilterNdDescriptor

```c
    cudnnStatus_t cudnnSetFilterNdDescriptor(
        cudnnFilterDescriptor_t filterDesc,
        cudnnDataType_t         dataType,
        cudnnTensorFormat_t     format,
        int                     nbDims,
        const int               filterDimA[])
```

This function initializes a previously created filter descriptor object. The layout of the filters must be contiguous in memory.

The tensor format CUDNN_TENSOR_NHWC has limited support in `cudnnConvolutionForward`, `cudnnConvolutionBackwardData` and `cudnnConvolutionBackwardFilter`; please refer to the documentation for each function for more information.

Parameters

filterDesc

Input/Output. Handle to a previously created filter descriptor.

datatype

Input. Data type.
format

Input. Type of the filter layout format. If this input is set to CUDNN_TENSOR_NCHW, which is one of the enumerated values allowed by cudnnTensorFormat_t descriptor, then the layout of the filter is as follows:

- For N=4, i.e., for a 4D filter descriptor, the filter layout is in the form of KCRS (K represents the number of output feature maps, C the number of input feature maps, R the number of rows per filter, and S the number of columns per filter.)
- For N=3, i.e., for a 3D filter descriptor, the number S (number of columns per filter) is omitted.
- For N=5 and greater, the layout of the higher dimensions immediately follow RS.

On the other hand, if this input is set to CUDNN_TENSOR_NHWC, then the layout of the filter is as follows:

- For N=4, i.e., for a 4D filter descriptor, the filter layout is in the form of KRSC.
- For N=3, i.e., for a 3D filter descriptor, the number S (number of columns per filter) is omitted, and the layout of C immediately follows R.
- For N=5 and greater, the layout of the higher dimensions are inserted between S and C. See also the description for cudnnTensorFormat_t.

nbDims

Input. Dimension of the filter.

filterDimA

Input. Array of dimension nbDims containing the size of the filter for each dimension.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the elements of the array filterDimA is negative or dataType or format has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The parameter nbDims exceeds CUDNN_DIM_MAX.

4.157. cudnnSetLRNDescriptor

cudnnStatus_t cudnnSetLRNDescriptor(
 cudnnLRNDescriptor_t normDesc,
 unsigned lrnN,
 double lrnAlpha,
 double lrnBeta,
 double lrnK)
This function initializes a previously created LRN descriptor object.

Macros CUDNN_LRN_MIN_N, CUDNN_LRN_MAX_N, CUDNN_LRN_MIN_K, CUDNN_LRN_MIN_BETA defined in cudnn.h specify valid ranges for parameters.

Values of double parameters will be cast down to the tensor datatype during computation.

Parameters

normDesc

Output. Handle to a previously created LRN descriptor.

lrnN

Input. Normalization window width in elements. LRN layer uses a window [center-lookBehind, center+lookAhead], where lookBehind = floor((lrnN-1)/2), lookAhead = lrnN-lookBehind-1. So for n=10, the window is [k-4...k...k+5] with a total of 10 samples. For DivisiveNormalization layer the window has the same extents as above in all 'spatial' dimensions (dimA[2], dimA[3], dimA[4]). By default lrnN is set to 5 in cudnnCreateLRNDescriptor.

lrnAlpha

Input. Value of the alpha variance scaling parameter in the normalization formula. Inside the library code this value is divided by the window width for LRN and by (window width)^#spatialDimensions for DivisiveNormalization. By default this value is set to 1e-4 in cudnnCreateLRNDescriptor.

lrnBeta

Input. Value of the beta power parameter in the normalization formula. By default this value is set to 0.75 in cudnnCreateLRNDescriptor.

lrnK

Input. Value of the k parameter in normalization formula. By default this value is set to 2.0.

Possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

One of the input parameters was out of valid range as described above.

4.158. cudnnSetOpTensorDescriptor

cudnnStatus_t cudnnSetOpTensorDescriptor(cudnnOpTensorDescriptor_t opTensorDesc, cudnnOpTensorOp_t opTensorOp,

This function initializes a Tensor Pointwise math descriptor.

Parameters

- `opTensorDesc`
 - *Output*. Pointer to the structure holding the description of the Tensor Pointwise math descriptor.

- `opTensorOp`
 - *Input*. Tensor Pointwise math operation for this Tensor Pointwise math descriptor.

- `opTensorCompType`
 - *Input*. Computation datatype for this Tensor Pointwise math descriptor.

- `opTensorNanOpt`
 - *Input*. NAN propagation policy

Returns

- **CUDNN_STATUS_SUCCESS**
 - The function returned successfully.

- **CUDNN_STATUS_BAD_PARAM**
 - At least one of input parameters passed is invalid.

4.159. cudnnSetPersistentRNNPlan

cudnnStatus_t cudnnSetPersistentRNNPlan(
 cudnnRNNDescriptor_t rnnDesc,
 cudnnPersistentRNNPlan_t plan)

This function sets the persistent RNN plan to be executed when using `rnnDesc` and `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` algo.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The plan was set successfully.

- **CUDNN_STATUS_BAD_PARAM**
 - The algo selected in `rnnDesc` is not `CUDNN_RNN_ALGO_PERSIST_DYNAMIC`.

4.160. cudnnSetPooling2dDescriptor

cudnnStatus_t cudnnSetPooling2dDescriptor(
 cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t mode,
 cudnnNanPropagation_t maxpoolingNanOpt,
 int windowHeight,
 int windowWidth,
 int verticalPadding,
This function initializes a previously created generic pooling descriptor object into a 2D description.

Parameters

poolingDesc

Input/Output. Handle to a previously created pooling descriptor.

mode

Input. Enumerant to specify the pooling mode.

maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.

windowHeight

Input. Height of the pooling window.

windowWidth

Input. Width of the pooling window.

verticalPadding

Input. Size of vertical padding.

horizontalPadding

Input. Size of horizontal padding.

verticalStride

Input. Pooling vertical stride.

horizontalStride

Input. Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the parameters *windowHeight*, *windowWidth*, *verticalStride*, *horizontalStride* is negative or *mode* or *maxpoolingNanOpt* has an invalid enumerant value.

4.161. cudnnSetPoolingNdDescriptor

```c
int horizontalPadding,
int verticalStride,
int horizontalStride)
```

cudnnStatus_t cudnnSetPoolingNdDescriptor(
 cudnnPoolingDescriptor_t poolingDesc,
 const cudnnPoolingMode_t mode,
 const cudnnNanPropagation_t maxpoolingNanOpt,
 int nbDims,
```
This function initializes a previously created generic pooling descriptor object.

**Parameters**

poolingDesc

*Input/Output.* Handle to a previously created pooling descriptor.

mode

*Input.* Enumerant to specify the pooling mode.

maxpoolingNanOpt

*Input.* Enumerant to specify the Nan propagation mode.

nbDims

*Input.* Dimension of the pooling operation. Must be greater than zero.

windowDimA

*Input.* Array of dimension `nbDims` containing the window size for each dimension. The value of array elements must be greater than zero.

paddingA

*Input.* Array of dimension `nbDims` containing the padding size for each dimension. Negative padding is allowed.

strideA

*Input.* Array of dimension `nbDims` containing the striding size for each dimension. The value of array elements must be greater than zero (i.e., negative striding size is not allowed).

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was initialized successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

If (nbDims > CUDNN_DIM_MAX - 2).

**CUDNN_STATUS_BAD_PARAM**

Either nbDims, or at least one of the elements of the arrays `windowDimA`, or `strideA` is negative, or `mode` or `maxpoolingNanOpt` has an invalid enumerant value.

## 4.162. cudnnSetRNNDDataDescriptor

```
cudnnStatus_t cudnnSetRNNDDataDescriptor(
 cudnnRNNDDataDescriptor_t RNNDataDesc,
 cudnnDataType_t dataType,
 cudnnRNNDataLayout_t layout,
 int maxSeqLength,
 int batchSize,
 int vectorSize,
)
```
This function initializes a previously created RNN data descriptor object. This data structure is intended to support the unpacked (padded) layout for input and output of extended RNN inference and training functions. A packed (unpadded) layout is also supported for backward compatibility.

**Parameters**

**RNNDataDesc**

*Input/Output.* A previously created RNN descriptor. See cudnnRNNDaataDescriptor_t.

**dataType**

*Input.* The datatype of the RNN data tensor. See cudnnDataType_t.

**layout**

*Input.* The memory layout of the RNN data tensor.

**maxSeqLength**

*Input.* The maximum sequence length within this RNN data tensor. In the unpacked (padded) layout, this should include the padding vectors in each sequence. In the packed (unpadded) layout, this should be equal to the greatest element in seqLengthArray.

**batchSize**

*Input.* The number of sequences within the mini-batch.

**vectorSize**

*Input.* The vector length (i.e. embedding size) of the input or output tensor at each timestep.

**seqLengthArray**

*Input.* An integer array with batchSize number of elements. Describes the length (i.e. number of timesteps) of each sequence. Each element in seqLengthArray must be greater than 0 but less than or equal to maxSeqLength. In the packed layout, the elements should be sorted in descending order, similar to the layout required by the non-extended RNN compute functions.

**paddingFill**

*Input.* A user-defined symbol for filling the padding position in RNN output. This is only effective when the descriptor is describing the RNN output, and the unpacked layout is specified. The symbol should be in the host memory, and is interpreted as the same data type as that of the RNN data tensor. If NULL pointer is passed in, then the padding position in the output will be undefined.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was set successfully.
CUDNN_STATUS_NOT_SUPPORTED

`dataType` is not one of CUDNN_DATA_HALF, CUDNN_DATA_FLOAT, CUDNN_DATA_DOUBLE.

CUDNN_STATUS_BAD_PARAM

Any one of these have occurred:

- RNNDataDesc is NULL.
- Any one of `maxSeqLength`, `batchSize`, or `vectorSize` is less than or equal to zero.
- An element of `seqLengthArray` is less than or equal to zero or greater than `maxSeqLength`.
- Layout is not one of CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED, CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_PACKED, or CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED.

CUDNN_STATUS_ALLOC_FAILED

The allocation of internal array storage has failed.

4.163. cudnnSetRNNDescriptor

cudnnStatus_t cudnnSetRNNDescriptor(
    cudnnHandle_t               handle,
    cudnnRNNDescriptor_t        rnnDesc,
    int                         hiddenSize,
    int                         numLayers,
    cudnnDropoutDescriptor_t    dropoutDesc,
    cudnnRNNInputMode_t         inputMode,
    cudnnDirectionMode_t        direction,
    cudnnRNNSMode_t             mode,
    cudnnRNNAlo_t               algo,
    cudnnDataType_t             dataType)

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more efficient than smaller networks.

Parameters

**rnnDesc**

*Input/Output.* A previously created RNN descriptor.

**hiddenSize**

*Input.* Size of the internal hidden state for each layer.

**numLayers**

*Input.* Number of stacked layers.

**dropoutDesc**

*Input.* Handle to a previously created and initialized dropout descriptor. Dropout will be applied between layers; a single layer network will have no dropout applied.
inputMode

*Input.* Specifies the behavior at the input to the first layer.

direction

*Input.* Specifies the recurrence pattern. (e.g., bidirectional).

mode

*Input.* Specifies the type of RNN to compute.

dataType

*Input.* Math precision.

The possible error values returned by this function and their meanings are listed below.

Returns

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

Either at least one of the parameters `hiddenSize`, `numLayers` was zero or negative, one of `inputMode`, `direction`, `mode`, `dataType` has an invalid enumerant value, `dropoutDesc` is an invalid dropout descriptor or `rnnDesc` has not been created correctly.

### 4.164. cudnnSetRNNDescriptor_v5

```c
void cudnnSetRNNDescriptor_v5(
 cudnnRNNDescriptor_t rnnDesc,
 int hiddenSize,
 int numLayers,
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnRNNInputMode_t inputMode,
 cudnnDirectionMode_t direction,
 cudnnRNNMode_t mode,
 cudnnDataType_t dataType)
```

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more efficient than smaller networks.

**Parameters**

**rnnDesc**

*Input/Output.* A previously created RNN descriptor.

**hiddenSize**

*Input.* Size of the internal hidden state for each layer.

**numLayers**

*Input.* Number of stacked layers.
dropoutDesc

*Input.* Handle to a previously created and initialized dropout descriptor. Dropout will be applied between layers (e.g., a single layer network will have no dropout applied).

inputMode

*Input.* Specifies the behavior at the input to the first layer

direction

*Input.* Specifies the recurrence pattern. (e.g., bidirectional)

mode

*Input.* Specifies the type of RNN to compute.

dataType

*Input.* Compute precision.

The possible error values returned by this function and their meanings are listed below.

**Returns**

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

Either at least one of the parameters `hiddenSize`, `numLayers` was zero or negative, one of `inputMode`, `direction`, `mode`, `algo`, `dataType` has an invalid enumerant value, `dropoutDesc` is an invalid dropout descriptor or `rnnDesc` has not been created correctly.

### 4.165. cudnnSetRNNDescriptor_v6

```c
extern cudnnStatus_t cudnnSetRNNDescriptor_v6(
 cudnnHandle_t handle,
 cudnnRNNDescriptor_t rnnDesc,
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnRNNInputMode_t inputMode,
 cudnnDirectionMode_t direction,
 cudnnRNNMode_t mode,
 cudnnRNNAlgo_t algo,
 cudnnDataType_t dataType)
```

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more efficient than smaller networks.

**Parameters**

handle

*Input.* Handle to a previously created cuDNN library descriptor.

rnnDesc

*Input/Output.* A previously created RNN descriptor.
hiddenSize

Input. Size of the internal hidden state for each layer.

numLayers

Input. Number of stacked layers.

dropoutDesc

Input. Handle to a previously created and initialized dropout descriptor. Dropout will be applied between layers (e.g., a single layer network will have no dropout applied).

inputMode

Input. Specifies the behavior at the input to the first layer.

direction

Input. Specifies the recurrence pattern. (e.g., bidirectional)

mode

Input. Specifies the type of RNN to compute.

algo

Input. Specifies which RNN algorithm should be used to compute the results.

dataType

Input. Compute precision.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

Either at least one of the parameters hiddenSize, numLayers was zero or negative, one of inputMode, direction, mode, algo, dataType has an invalid enumerant value, dropoutDesc is an invalid dropout descriptor or rnnDesc has not been created correctly.

4.166. cudnnSetRNNMatrixMathType

cudnnStatus_t cudnnSetRNNMatrixMathType(
    cudnnRNNDescriptor_t    rnnDesc,
    cudnnMathType_t         mType)

This function sets the preferred option to use NVIDIA Tensor Cores accelerators on Volta GPU-s (SM 7.0 or higher). When the mType parameter is CUDNN_TENSOR_OP_MATH, inference and training RNN API-s will attempt use Tensor Cores when weights/biases are of type CUDNN_DATA_HALF or CUDNN_DATA_FLOAT. When RNN weights/biases are stored in the CUDNN_DATA_FLOAT format, the original weights and intermediate results will be down-converted to CUDNN_DATA_HALF before they are used in another recursive iteration.
Parameters

rnnDesc

*Input.* A previously created and initialized RNN descriptor.

mType

*Input.* A preferred compute option when performing RNN GEMM-s (general matrix-matrix multiplications). This option has an “advisory” status meaning that Tensor Cores may not be utilized, e.g., due to specific GEMM dimensions.

Returns

**CUDNN_STATUS_SUCCESS**

The preferred compute option for the RNN network was set successfully.

**CUDNN_STATUS_BAD_PARAM**

An invalid input parameter was detected.

4.167. cudnnSetRNNPaddingMode

cudnnStatus_t cudnnSetRNNPaddingMode(
    cudnnRNNDescriptor_t rnnDesc,
    cudnnRNNPaddingMode_t paddingMode)

This function enables or disables the padded RNN input/output for a previously created and initialized RNN descriptor. This information is required before calling the cudnnGetRNNWorkspaceSize and cudnnGetRNNTrainingReserveSize functions, to determine whether additional workspace and training reserve space is needed. By default the padded RNN input/output is not enabled.

Parameters

rnnDesc

*Input/Output.* A previously created RNN descriptor.

paddingMode

*Input.* Enables or disables the padded input/output. See the description for cudnnRNNPaddingMode_t.

Returns

**CUDNN_STATUS_SUCCESS**

The paddingMode was set successfully.

**CUDNN_STATUS_BAD_PARAM**

Either the rnnDesc is NULL, or paddingMode has an invalid enumerant value.

4.168. cudnnSetRNNProjectionLayers

cudnnStatus_t cudnnSetRNNProjectionLayers(
    cudnnHandle_t handle,
    cudnnRNNDescriptor_t rnnDesc,
(New for 7.1)

The `cudnnSetRNNProjectionLayers()` function should be called after `cudnnSetRNNDescriptor()` to enable the "recurrent" and/or "output" projection in a recursive neural network. The "recurrent" projection is an additional matrix multiplication in the LSTM cell to project hidden state vectors $h_t$ into smaller vectors $r_t = W_r h_t$, where $W_r$ is a rectangular matrix with recProjSize rows and hiddenSize columns. When the recurrent projection is enabled, the output of the LSTM cell (both to the next layer and unrolled in-time) is $r_t$ instead of $h_t$. The dimensionality of $i_t$, $f_t$, $o_t$, and $c_t$ vectors used in conjunction with non-linear functions remains the same as in the canonical LSTM cell. To make this possible, the shapes of matrices in the LSTM formulas (see the chapter describing the `cudnnRNNMode_t` type), such as $W_i$ in hidden RNN layers or $R_i$ in the entire network, become rectangular versus square in the canonical LSTM mode. Obviously, the result of "$R_i^T W_r" is a square matrix but it is rank deficient, reflecting the "compression" of LSTM output. The recurrent projection is typically employed when the number of independent (adjustable) weights in the RNN network with projection is smaller in comparison to canonical LSTM for the same hiddenSize value.

The "recurrent" projection can be enabled for LSTM cells and `CUDNN_RNN_ALGO_STANDARD` only. The recProjSize parameter should be smaller than the hiddenSize value programmed in the `cudnnSetRNNDescriptor()` call. It is legal to set recProjSize equal to hiddenSize but in that case the recurrent projection feature is disabled.

The "output" projection is currently not implemented.

For more information on the "recurrent" and "output" RNN projections see the paper by Hasim Sak, et al.: Long Short-Term Memory Based Recurrent Neural Network Architectures For Large Vocabulary Speech Recognition.

Parameters

`handle`
- *Input.* Handle to a previously created cuDNN library descriptor.

`rnnDesc`
- *Input.* A previously created and initialized RNN descriptor.

`recProjSize`
- *Input.* The size of the LSTM cell output after the “recurrent” projection. This value should not be larger than hiddenSize programmed via `cudnnSetRNNDescriptor()`.

`outProjSize`
- *Input.* This parameter should be zero.

Returns

`CUDNN_STATUS_SUCCESS`
- RNN projection parameters were set successfully.
CUDNN_STATUS_BAD_PARAM

An invalid input argument was detected (e.g., NULL handles, negative values for projection parameters).

CUDNN_STATUS_NOT_SUPPORTED

Projection applied to RNN algo other than CUDNN_RNN_ALGO_STANDARD, cell type other than CUDNN_LSTM, recProjSize larger than hiddenSize.

4.169. cudnnSetReduceTensorDescriptor

cudnnStatus_t cudnnSetReduceTensorDescriptor(
cudnnReduceTensorDescriptor_t   reduceTensorDesc,
cudnnReduceTensorOp_t           reduceTensorOp,
cudnnDataType_t                 reduceTensorCompType,
cudnnNanPropagation_t           reduceTensorNanOpt,
cudnnReduceTensorIndices_t      reduceTensorIndices,
cudnnIndicesType_t              reduceTensorIndicesType)

This function initializes a previously created reduce tensor descriptor object.

Parameters

reduceTensorDesc

Input/Output. Handle to a previously created reduce tensor descriptor.

reduceTensorOp

Input. Enumerant to specify the reduce tensor operation.

reduceTensorCompType

Input. Enumerant to specify the computation datatype of the reduction.

reduceTensorNanOpt

Input. Enumerant to specify the Nan propagation mode.

reduceTensorIndices

Input. Enumerant to specify the reduce tensor indices.

reduceTensorIndicesType

Input. Enumerant to specify the reduce tensor indices type.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

reduceTensorDesc is NULL (reduceTensorOp, reduceTensorCompType, reduceTensorNanOpt, reduceTensorIndices or reduceTensorIndicesType has an invalid enumerant value).
4.170. cudnnSetSpatialTransformerNdDescriptor

```
cudnnStatus_t cudnnSetSpatialTransformerNdDescriptor(
 cudnnsSpatialTransformerDescriptor_t stDesc,
 cudnnSamplerType_t samplerType,
 cudnnDataType_t dataType,
 const int nbDims,
 const int dimA[])
```

This function initializes a previously created generic spatial transformer descriptor object.

**Parameters**

**stDesc**

*Input/Output.* Previously created spatial transformer descriptor object.

**samplerType**

*Input.* Enumerant to specify the sampler type.

**dataType**

*Input.* Data type.

**nbDims**

*Input.* Dimension of the transformed tensor.

**dimA**

*Input.* Array of dimension `nbDims` containing the size of the transformed tensor for every dimension.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDA_STATUS_SUCCESS**

The call was successful.

**CUDA_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- Either `stDesc` or `dimA` is NULL.
- Either `dataType` or `samplerType` has an invalid enumerant value

4.171. cudnnSetStream

```
cudnnStatus_t cudnnSetStream(
 cudnnHandle_t handle,
 cudaStream_t streamId)
```

This function sets the user's CUDA stream in the cuDNN handle. The new stream will be used to launch cuDNN GPU kernels or to synchronize to this stream when cuDNN kernels are launched in the internal streams. If the cuDNN library stream is not set, all
kernels use the default (NULL) stream. Setting the user stream in the cuDNN handle guarantees the issue-order execution of cuDNN calls and other GPU kernels launched in the same stream.

**Parameters**

**handle**

*Input.* Pointer to the cuDNN handle.

**streamID**

*Input.* New CUDA stream to be written to the cuDNN handle.

**Returns**

**CUDNN_STATUS_BAD_PARAM**

Invalid (NULL) handle.

**CUDNN_STATUS_MAPPING_ERROR**

Mismatch between the user stream and the cuDNN handle context.

**CUDNN_STATUS_SUCCESS**

The new stream was set successfully.

### 4.172. cudnnSetTensor

cudnnStatus_t cudnnSetTensor(
    cudnnHandle_t                   handle,
    const cudnnTensorDescriptor_t   yDesc,
    void                           *y,
    const void                     *valuePtr)

This function sets all the elements of a tensor to a given value.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**yDesc**

*Input.* Handle to a previously initialized tensor descriptor.

**y**

*Input/Output.* Pointer to data of the tensor described by the **yDesc** descriptor.

**valuePtr**

*Input.* Pointer in Host memory to a single value. All elements of the y tensor will be set to value[0]. The data type of the element in value[0] has to match the data type of tensor y.

The possible error values returned by this function and their meanings are listed below.

**Returns**
**CUDNN_STATUS_SUCCESS**

The function launched successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

one of the provided pointers is nil

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

### 4.173. cudnnSetTensor4dDescriptor

```c
cudnnStatus_t cudnnSetTensor4dDescriptor(
 cudnnTensorDescriptor_t tensorDesc,
 cudnnTensorFormat_t format,
 cudnnDataType_t dataType,
 int n,
 int c,
 int h,
 int w)
```

This function initializes a previously created generic Tensor descriptor object into a 4D tensor. The strides of the four dimensions are inferred from the format parameter and set in such a way that the data is contiguous in memory with no padding between dimensions.

The total size of a tensor including the potential padding between dimensions is limited to 2 Giga-elements of type `datatype`.

**Parameters**

- **tensorDesc**
  
  *Input/Output*. Handle to a previously created tensor descriptor.

- **format**
  
  *Input*. Type of format.

- **datatype**
  
  *Input*. Data type.

- **n**
  
  *Input*. Number of images.

- **c**
  
  *Input*. Number of feature maps per image.

- **h**
  
  *Input*. Height of each feature map.
Input. Width of each feature map.

The possible error values returned by this function and their meanings are listed below.

Returns

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of the parameters \( n, c, h, w \) was negative or format has an invalid enumerant value or **dataType** has an invalid enumerant value.

**CUDNN_STATUS_NOT_SUPPORTED**

The total size of the tensor descriptor exceeds the maximim limit of 2 Giga-elements.

### 4.174. cudnnSetTensor4dDescriptorEx

```c
#include <cudnn.h>

__global__ void cudnnSetTensor4dDescriptorEx(
 cudnnTensorDescriptor_t tensorDesc,
 cudnnDataType_t dataType,
 int n, int c, int h, int w, int nStride, int cStride, int hStride, int wStride)
```

This function initializes a previously created generic Tensor descriptor object into a 4D tensor, similarly to **cudnnSetTensor4dDescriptor** but with the strides explicitly passed as parameters. This can be used to lay out the 4D tensor in any order or simply to define gaps between dimensions.

At present, some cuDNN routines have limited support for strides; Those routines will return CUDNN_STATUS_NOT_SUPPORTED if a Tensor4D object with an unsupported stride is used. **cudnnTransformTensor** can be used to convert the data to a supported layout.

The total size of a tensor including the potential padding between dimensions is limited to 2 Giga-elements of type **dataType**.

**Parameters**

- **tensorDesc**
  
  *Input/Output*. Handle to a previously created tensor descriptor.

- **dataType**
  
  *Input*. Data type.
n

*Input.* Number of images.

c

*Input.* Number of feature maps per image.

h

*Input.* Height of each feature map.

w

*Input.* Width of each feature map.

nStride

*Input.* Stride between two consecutive images.

cStride

*Input.* Stride between two consecutive feature maps.

hStride

*Input.* Stride between two consecutive rows.

wStride

*Input.* Stride between two consecutive columns.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of the parameters `n, c, h, w` or `nStride, cStride, hStride, wStride` is negative or `dataType` has an invalid enumerant value.

**CUDNN_STATUS_NOT_SUPPORTED**

The total size of the tensor descriptor exceeds the maximim limit of 2 Giga-elements.

### 4.175. cudnnSetTensorNdDescriptor

cudnnStatus_t cudnnSetTensorNdDescriptor(cudnnTensorDescriptor_t tensorDesc, cudnnDataType_t dataType, int nbDims,
const int dimA[],
const int strideA[])

This function initializes a previously created generic Tensor descriptor object.

*The total size of a tensor including the potential padding between dimensions is limited to 2 Giga-elements of type `dataType`. Tensors are restricted to having at least 4 dimensions, and at most CUDNN_DIM_MAX dimensions (defined in cudnn.h). When*
working with lower dimensional data, it is recommended that the user create a 4D
tensor, and set the size along unused dimensions to 1.

Parameters

tensorDesc

*Input/Output.* Handle to a previously created tensor descriptor.

datatype

*Input.* Data type.

nbDims

*Input.* Dimension of the tensor.

Do not use 2 dimensions. Due to historical reasons, the minimum
number of dimensions in the filter descriptor is three. See also the
cudnnGetRNNLinLayerBiasParams().

dimA

*Input.* Array of dimension nbDims that contain the size of the tensor for every
dimension. Size along unused dimensions should be set to 1.

strideA

*Input.* Array of dimension nbDims that contain the stride of the tensor for every
dimension.

The possible error values returned by this function and their meanings are listed below.

Returns

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of the elements of the array dimA was negative or zero, or dataType has
an invalid enumerant value.

**CUDNN_STATUS_NOT_SUPPORTED**

The parameter nbDims is outside the range [4, CUDNN_DIM_MAX], or the total size
of the tensor descriptor exceeds the maximum limit of 2 Giga-elements.

4.176. cudnnSetTensorNdDescriptorEx

cudnnStatus_t cudnnSetTensorNdDescriptorEx(
    cudnnTensorDescriptor_t tensorDesc,
    cudnnTensorFormat_t format,
    cudnnDataType_t dataType,
    int nbDims,
    const int dimA[])

This function initializes an n-D tensor descriptor.

Parameters
tensorDesc

Output. Pointer to the tensor descriptor struct to be initialized.

format

Input. Tensor format.

dataType

Input. Tensor data type.

nbDims

Input. Dimension of the tensor.

Do not use 2 dimensions. Due to historical reasons, the minimum number of dimensions in the filter descriptor is three. See also the cudnnGetRNNLinLayerBiasParams().

dimA

Input. Array containing size of each dimension.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

Tensor descriptor was not allocated properly; or input parameters are not set correctly.

CUDNN_STATUS_NOT_SUPPORTED

Dimension size requested is larger than maximum dimension size supported.

4.177. cudnnSoftmaxBackward

cudnnStatus_t cudnnSoftmaxBackward(
    cudnnHandle_t handle,
    cudnnSoftmaxAlgorithm_t algorithm,
    cudnnSoftmaxMode_t mode,
    *alpha,
    const cudnnTensorDescriptor_t yDesc,
    const void *yData,
    const cudnnTensorDescriptor_t dyDesc,
    const void *dy,
    const cudnnTensorDescriptor_t dxDesc,
    void *dx)
This routine computes the gradient of the softmax function.

In-place operation is allowed for this routine; i.e., \(dy\) and \(dx\) pointers may be equal. However, this requires \(dy\) and \(dx\) descriptors to be identical (particularly, the strides of the input and output must match for in-place operation to be allowed).

All tensor formats are supported for all modes and algorithms with 4 and 5D tensors. Performance is expected to be highest with \(NCHW\) fully-packed tensors. For more than 5 dimensions tensors must be packed in their spatial dimensions.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**algorithm**

*Input.* Enumerant to specify the softmax algorithm.

**mode**

*Input.* Enumerant to specify the softmax mode.

**alpha**, **beta**

*Input.* Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: \(dstValue = alpha[0] \times result + beta[0] \times priorDstValue\). Please refer to this section for additional details.

**yDesc**

*Input.* Handle to the previously initialized input tensor descriptor.

**y**

*Input.* Data pointer to GPU memory associated with the tensor descriptor \(y\)Desc.

**dyDesc**

*Input.* Handle to the previously initialized input differential tensor descriptor.

**dy**

*Input.* Data pointer to GPU memory associated with the tensor descriptor \(dy\)Data.

**dxDesc**

*Input.* Handle to the previously initialized output differential tensor descriptor.

**dx**

*Output.* Data pointer to GPU memory associated with the output tensor descriptor \(dx\)Desc.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED
The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:

- The dimensions $n, c, h, w$ of the $yDesc$, $dyDesc$ and $dxDesc$ tensors differ.
- The strides $nStride$, $cStride$, $hStride$, $wStride$ of the $yDesc$ and $dyDesc$ tensors differ.
- The datatype of the three tensors differs.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.178. cudnnSoftmaxForward

```c
cudnnStatus_t cudnnSoftmaxForward(
 cudnnHandle_t handle,
 cudnnSoftmaxAlgorithm_t algorithm,
 cudnnSoftmaxMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)
```

This routine computes the softmax function.

All tensor formats are supported for all modes and algorithms with 4 and 5D tensors. Performance is expected to be highest with NCHW fully-packed tensors. For more than 5 dimensions tensors must be packed in their spatial dimensions.

Parameters

- **handle**
  
  *Input*. Handle to a previously created cuDNN context.

- **algorithm**

  *Input*. Enumerator to specify the softmax algorithm.

- **mode**

  *Input*. Enumerator to specify the softmax mode.

- **alpha, beta**

  *Input*. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: $dstValue = alpha[0]*result + beta[0]*priorDstValue$. Please refer to this section for additional details.

- **xDesc**

  *Input*. Handle to the previously initialized input tensor descriptor.
Input. Data pointer to GPU memory associated with the tensor descriptor `xDesc`.

`yDesc`

Input. Handle to the previously initialized output tensor descriptor.

Output. Data pointer to GPU memory associated with the output tensor descriptor `yDesc`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function launched successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The dimensions `n,c,h,w` of the input tensor and output tensors differ.
- The `datatype` of the input tensor and output tensors differ.
- The parameters `algorithm` or `mode` have an invalid enumerant value.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

### 4.179. cudnnSpatialTfGridGeneratorBackward

```c

cudnnStatus_t cudnnSpatialTfGridGeneratorBackward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void *dgrid,
 void *dtheta)
```

This function computes the gradient of a grid generation operation.

**Only 2d transformation is supported.**

#### Parameters

**handle**

Input. Handle to a previously created cuDNN context.

**stDesc**

Input. Previously created spatial transformer descriptor object.
dgrid

*Input.* Data pointer to GPU memory contains the input differential data.

dtheta

*Output.* Data pointer to GPU memory contains the output differential data.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The call was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- `handle` is NULL.
- One of the parameters `dgrid`, `dtheta` is NULL.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The dimension of transformed tensor specified in `stDesc` > 4.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

### 4.180. cudnnSpatialTfGridGeneratorForward

cudnnStatus_t cudnnSpatialTfGridGeneratorForward(
    cudnnHandle_t                               handle,
    const cudnnSpatialTransformerDescriptor_t   stDesc,
    const void                                 *theta,
    void                                       *grid)

This function generates a grid of coordinates in the input tensor corresponding to each pixel from the output tensor.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**stDesc**

*Input.* Previously created spatial transformer descriptor object.
theta

*Input.* Affine transformation matrix. It should be of size \( n \times 2 \times 3 \) for a 2d transformation, where \( n \) is the number of images specified in \( \text{stDesc} \).

grid

*Output.* A grid of coordinates. It is of size \( n \times h \times w \times 2 \) for a 2d transformation, where \( n, h, w \) is specified in \( \text{stDesc} \). In the 4th dimension, the first coordinate is \( x \), and the second coordinate is \( y \).

The possible error values returned by this function and their meanings are listed below.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  The call was successful.

- **CUDNN_STATUS_BAD_PARAM**
  At least one of the following conditions are met:
  - `handle` is NULL.
  - One of the parameters `grid`, `theta` is NULL.

- **CUDNN_STATUS_NOT_SUPPORTED**
  The function does not support the provided configuration. See the following for some examples of non-supported configurations:
  - The dimension of transformed tensor specified in `stDesc` > 4.

- **CUDNN_STATUS_EXECUTION_FAILED**
  The function failed to launch on the GPU.

### 4.181. cudnnSpatialTfSamplerBackward

```c

cudnnStatus_t cudnnSpatialTfSamplerBackward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *dxDesc,
 const void *dx,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const void *grid,
 const void *betaDgrid,
 void *dgrid)
```

This function computes the gradient of a sampling operation.

- **Only 2d transformation is supported.**
Parameters

handle

Input. Handle to a previously created cuDNN context.

stDesc

Input. Previously created spatial transformer descriptor object.

alpha,beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.

dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

alphaDgrid,betaDgrid

Input. Pointers to scaling factors (in host memory) used to blend the gradient outputs dgrid with prior value in the destination pointer as follows: dstValue = alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to this section for additional details.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.

grid

Input. A grid of coordinates generated by cudnnSpatialTfGridGeneratorForward.

dgrid

Output. Data pointer to GPU memory contains the output differential data.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- **handle** is NULL.
- One of the parameters \( x, dx, y, dy, grid, dgrid \) is NULL.
- The dimension of \( dy \) differs from those specified in stDesc

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The dimension of transformed tensor > 4.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.182. cudnnSpatialTfSamplerForward

```c
extern "C" {
cudnnStatus_t cudnnSpatialTfSamplerForward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void *alpha,
 const void *dx,
 const void *x,
 const void *grid,
 const void *beta,
 cudnnTensorDescriptor_t yDesc,
 void *y)
}
```

This function performs a sampler operation and generates the output tensor using the grid given by the grid generator.

> Only 2d transformation is supported.

### Parameters

**handle**

*Input.* Handle to a previously created cuDNN context.

**stDesc**

*Input.* Previously created spatial transformer descriptor object.

**alpha, beta**

*Input.* Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as follows: \( \text{dstValue} = \alpha[0] \times \text{srcValue} + \beta[0] \times \text{priorDstValue} \). Please refer to this section for additional details.

**xDesc**

*Input.* Handle to the previously initialized input tensor descriptor.
x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

grid

Input. A grid of coordinates generated by cudnnSpatialTfGridGeneratorForward.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

▷ handle is NULL.
▷ One of the parameters x, y, grid is NULL.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

▷ The dimension of transformed tensor > 4.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.183. cudnnTransformTensor

cudnnStatus_t cudnnTransformTensor(
    cudnnHandle_t                  handle,
    const void                    *alpha,
    const cudnnTensorDescriptor_t  xDesc,
    const void                    *x,
    const void                    *beta,
    const cudnnTensorDescriptor_t  yDesc,
    void                          *y)

This function copies the scaled data from one tensor to another tensor with a different layout. Those descriptors need to have the same dimensions but not necessarily the same strides. The input and output tensors must not overlap in any way (i.e., tensors cannot be transformed in place). This function can be used to convert a tensor with an unsupported format to a supported one.
Parameters

handle

*Input.* Handle to a previously created cuDNN context.

alpha, beta

*Input.* Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

*Input.* Handle to a previously initialized tensor descriptor.

x

*Input.* Pointer to data of the tensor described by the xDesc descriptor.

yDesc

*Input.* Handle to a previously initialized tensor descriptor.

y

*Output.* Pointer to data of the tensor described by the yDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

The dimensions n, c, h, w or the dataType of the two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.
Some of the cuDNN library routines were derived from code developed by others and are subject to the following:

5.1. University of Tennessee

Copyright (c) 2010 The University of Tennessee.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
  * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.
  * Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5.2. University of California, Berkeley

COPYRIGHT

All contributions by the University of California:
Copyright (c) 2014, The Regents of the University of California (Regents)
Caffe uses a shared copyright model: each contributor holds copyright over their contributions to Caffe. The project versioning records all such contribution and copyright details. If a contributor wants to further mark their specific copyright on a particular contribution, they should indicate their copyright solely in the commit message of the change when it is committed.

LICENSE

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/caffe repository through pull-request, comment, or otherwise, the contributor releases their content to the license and copyright terms herein.

5.3. Facebook AI Research, New York

Copyright (c) 2014, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
Acknowledgments

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional Grant of Patent Rights

"Software" means fbconv software distributed by Facebook, Inc.

Facebook hereby grants you a perpetual, worldwide, royalty-free, non-exclusive, irrevocable (subject to the termination provision below) license under any rights in any patent claims owned by Facebook, to make, have made, use, sell, offer to sell, import, and otherwise transfer the Software. For avoidance of doubt, no license is granted under Facebook’s rights in any patent claims that are infringed by (i) modifications to the Software made by you or a third party, or (ii) the Software in combination with any software or other technology provided by you or a third party.

The license granted hereunder will terminate, automatically and without notice, for anyone that makes any claim (including by filing any lawsuit, assertion or other action) alleging (a) direct, indirect, or contributory infringement or inducement to infringe any patent: (i) by Facebook or any of its subsidiaries or affiliates, whether or not such claim is related to the Software, (ii) by any party if such claim arises in whole or in part from any software, product or service of Facebook or any of its subsidiaries or affiliates, whether or not such claim is related to the Software, or (iii) by any party relating to the Software; or (b) that any right in any patent claim of Facebook is invalid or unenforceable.
Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license, either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson, Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com