TABLE OF CONTENTS

Chapter 1. Overview... 1

Chapter 2. General Description... 2
 2.1. Programming Model... 2
 2.2. Convolution Formulas... 3
 2.3. Notation.. 4
 2.4. Tensor Descriptor.. 5
 2.4.1. WXYZ Tensor Descriptor.. 6
 2.4.2. 4-D Tensor Descriptor.. 6
 2.4.3. 5-D Tensor Description... 6
 2.4.4. Fully-packed tensors.. 6
 2.4.5. Partially-packed tensors.. 6
 2.4.6. Spatially packed tensors... 7
 2.4.7. Overlapping tensors.. 7
 2.5. Data Layout Formats.. 7
 2.5.1. Example... 7
 2.5.2. NCHW Memory Layout.. 8
 2.5.3. NHWC Memory Layout... 9
 2.5.4. NC/32HW32 Memory Layout.. 10
 2.6. Thread Safety... 12
 2.7. Reproducibility (determinism)... 12
 2.8. Scaling Parameters... 12
 2.9. Tensor Core Operations.. 14
 2.9.1. Basics... 14
 2.9.2. Convolution Functions... 15
 2.9.2.1. Prerequisite.. 15
 2.9.2.2. Supported Algorithms... 15
 2.9.2.3. Data and Filter Formats... 15
 2.9.3. RNN Functions.. 16
 2.9.3.1. Prerequisite.. 16
 2.9.3.2. Supported Algorithms... 16
 2.9.3.3. Data and Filter Formats... 16
 2.9.4. Tensor Transformations.. 17
 2.9.4.1. FP16 Data... 17
 2.9.4.2. FP32-to-FP16 Conversion... 17
 2.9.4.3. Padding.. 18
 2.9.4.4. Folding.. 19
 2.9.4.5. Conversion Between NCHW and NHWC... 19
 2.9.5. Guidelines for a Deep Learning Compiler.. 19
 2.10. GPU and driver requirements.. 19
 2.11. Backward compatibility and deprecation policy.. 20
2.12. Grouped Convolutions ...20
2.13. API Logging ..22
2.14. Features of RNN Functions ... 23
2.15. Mixed Precision Numerical Accuracy .. 26

Chapter 3. cuDNN Datatypes Reference ... 27
3.1. cudnnAttnDescriptor_t ..27
3.2. cudnnAttnQueryMap_t .. 27
3.3. cudnnActivationDescriptor_t ...27
3.4. cudnnActivationMode_t ...27
3.5. cudnnBatchNormMode_t ..28
3.6. cudnnBatchNormOps_t ..29
3.7. cudnnCTCLossAlgo_t ...29
3.8. cudnnCTCLossDescriptor_t ... 30
3.9. cudnnConvolutionBwdDataAlgoPerf_t ..30
3.10. cudnnConvolutionBwdDataAlgo_t ..31
3.11. cudnnConvolutionBwdDataPreference_t ..32
3.12. cudnnConvolutionBwdFilterAlgoPerf_t ..32
3.13. cudnnConvolutionBwdFilterAlgo_t ..33
3.14. cudnnConvolutionBwdFilterPreference_t ..34
3.15. cudnnConvolutionDescriptor_t ...34
3.16. cudnnConvolutionFwdAlgoPerf_t ..34
3.17. cudnnConvolutionFwdAlgo_t ...35
3.18. cudnnConvolutionFwdPreference_t ...36
3.19. cudnnConvolutionMode_t ...36
3.20. cudnnDataType_t ...37
3.21. cudnnDeterminism_t ...38
3.22. cudnnDirectionMode_t ...38
3.23. cudnnDivNormMode_t ..38
3.24. cudnnDropoutDescriptor_t ..39
3.25. cudnnErrQueryMode_t ...39
3.26. cudnnFilterDescriptor_t ...39
3.27. cudnnFoldingDirection_t ...39
3.28. cudnnHandle_t ..40
3.29. cudnnIndicesType_t ..40
3.30. cudnnLRNMode_t ...40
3.31. cudnnMathType_t ..40
3.32. cudnnMultiHeadAttnWeightKind_t ..41
3.33. cudnnNanPropagation_t ..41
3.34. cudnnOpTensorDescriptor_t ..41
3.35. cudnnOpTensorOp_t ...42
3.36. cudnnPersistentRNNPlan_t ...42
3.37. cudnnPoolingDescriptor_t ..42
3.38. cudnnPoolingMode_t ..42
4.21. cudnnCreateConvolutionDescriptor... 102
4.22. cudnnCreateDropoutDescriptor... 102
4.23. cudnnCreateFilterDescriptor... 103
4.24. cudnnCreateLRNDescriptor.. 103
4.25. cudnnCreateOpTensorDescriptor... 103
4.26. cudnnCreatePersistentRNNPlan... 104
4.27. cudnnCreatePoolingDescriptor.. 104
4.28. cudnnCreateRNNDescriptor... 105
4.29. cudnnCreateRNNDataDescriptor... 105
4.30. cudnnCreateReduceTensorDescriptor... 105
4.31. cudnnCreateSeqDataDescriptor... 106
4.32. cudnnCreateSpatialTransformerDescriptor... 106
4.33. cudnnCreateTensorDescriptor.. 107
4.34. cudnnCreateTensorTransformDescriptor.. 107
4.35. cudnnCreateBNTensorDescriptor... 108
4.36. cudnnDestroy... 109
4.37. cudnnDestroyActivationDescriptor.. 109
4.38. cudnnDestroyAlgorithmDescriptor... 109
4.39. cudnnDestroyAlgorithmPerformance... 110
4.40. cudnnDestroyAttnDescriptor.. 110
4.41. cudnnDestroyCTCLossDescriptor... 110
4.42. cudnnDestroyConvolutionDescriptor.. 111
4.43. cudnnDestroyDropoutDescriptor.. 111
4.44. cudnnDestroyFilterDescriptor.. 111
4.45. cudnnDestroyLRNDescriptor.. 111
4.46. cudnnDestroyOpTensorDescriptor.. 112
4.47. cudnnDestroyPersistentRNNPlan.. 112
4.48. cudnnDestroyPoolingDescriptor... 112
4.49. cudnnDestroyRNNDescriptor.. 112
4.50. cudnnDestroyRNNDataDescriptor... 113
4.51. cudnnDestroyReduceTensorDescriptor... 113
4.52. cudnnDestroySeqDataDescriptor.. 113
4.53. cudnnDestroySpatialTransformerDescriptor.. 114
4.54. cudnnDestroyTensorDescriptor.. 114
4.55. cudnnDestroyTensorTransformDescriptor... 114
4.56. cudnnDivisiveNormalizationBackward.. 115
4.57. cudnnDivisiveNormalizationForward.. 116
4.58. cudnnDropoutBackward.. 118
4.59. cudnnDropoutForward... 120
4.60. cudnnDropoutGetReserveSpaceSize.. 121
4.61. cudnnDropoutGetStatesSize.. 122
4.62. cudnnFindConvolutionBackwardDataAlgorithm.. 122
4.63. cudnnFindConvolutionBackwardDataAlgorithmEx.. 124
4.64. cudnnFindConvolutionBackwardFilterAlgorithm... 126
4.65. cudnnFindConvolutionBackwardFilterAlgorithmEx... 127
4.66. cudnnFindConvolutionForwardAlgorithm.. 129
4.67. cudnnFindConvolutionForwardAlgorithmEx... 131
4.68. cudnnFindRNNBackwardDataAlgorithmEx... 133
4.69. cudnnFindRNNBackwardWeightsAlgorithmEx... 138
4.70. cudnnFindRNNForwardInferenceAlgorithmEx.. 142
4.71. cudnnFindRNNForwardTrainingAlgorithmEx... 146
4.72. cudnnGetActivationDescriptor.. 151
4.73. cudnnGetAlgorithmDescriptor.. 151
4.74. cudnnGetAlgorithmPerformance.. 152
4.75. cudnnGetAlgorithmSpaceSize.. 152
4.76. cudnnGetAttnDescriptor... 153
4.77. cudnnBatchNormalizationBackwardExWorkspaceSize... 154
4.78. cudnnBatchNormalizationForwardTrainingExWorkspaceSize................................ 156
4.79. cudnnGetBatchNormalizationTrainingExReserveSpaceSize.................................. 157
4.80. cudnnGetCTCLossDescriptor.. 158
4.81. cudnnGetCTCLossWorkspaceSize... 159
4.82. cudnnGetCallback.. 160
4.83. cudnnGetConvolution2dDescriptor... 160
4.84. cudnnGetConvolution2dForwardOutputDim... 161
4.85. cudnnGetConvolutionBackwardDataAlgorithm... 163
4.86. cudnnGetConvolutionBackwardDataAlgorithmMaxCount...................................... 164
4.87. cudnnGetConvolutionBackwardDataAlgorithm_v7... 164
4.88. cudnnGetConvolutionBackwardDataWorkspaceSize... 165
4.89. cudnnGetConvolutionBackwardFilterAlgorithm.. 167
4.90. cudnnGetConvolutionBackwardFilterAlgorithmMaxCount................................... 168
4.91. cudnnGetConvolutionBackwardFilterAlgorithm_v7... 168
4.92. cudnnGetConvolutionBackwardFilterWorkspaceSize... 169
4.93. cudnnGetConvolutionForwardAlgorithm.. 171
4.94. cudnnGetConvolutionForwardAlgorithmMaxCount... 172
4.95. cudnnGetConvolutionForwardAlgorithm_v7.. 172
4.96. cudnnGetConvolutionForwardWorkspaceSize... 174
4.97. cudnnGetConvolutionGroupCount.. 175
4.98. cudnnGetConvolutionMathType.. 175
4.99. cudnnGetConvolutionNdDescriptor... 175
4.100. cudnnGetConvolutionNdForwardOutputDim... 176
4.101. cudnnGetCudartVersion.. 178
4.102. cudnnGetDropoutDescriptor... 178
4.103. cudnnGetErrorString.. 179
4.104. cudnnGetFilter4dDescriptor.. 179
4.105. cudnnGetFilterNdDescriptor.. 180
4.106. cudnnGetLRNDescriptor.. 181
4.150. cudnnRNNForwardInference
4.151. cudnnRNNForwardInferenceEx
4.152. cudnnRNNForwardTraining
4.153. cudnnRNNForwardTrainingEx
4.154. cudnnRNNGetClip
4.155. cudnnRNNSetClip
4.156. cudnnReduceTensor
4.157. cudnnRestoreAlgorithm
4.158. cudnnRestoreDropoutDescriptor
4.159. cudnnSaveAlgorithm
4.160. cudnnScaleTensor
4.161. cudnnSetActivationDescriptor
4.162. cudnnSetAlgorithmDescriptor
4.163. cudnnSetAlgorithmPerformance
4.164. cudnnSetAttnDescriptor
4.165. cudnnSetCTCLossDescriptor
4.166. cudnnSetCallback
4.167. cudnnSetConvolution2dDescriptor
4.168. cudnnSetConvolutionGroupCount
4.169. cudnnSetConvolutionMathType
4.170. cudnnSetConvolutionNdDescriptor
4.171. cudnnSetDropoutDescriptor
4.172. cudnnSetFilter4dDescriptor
4.173. cudnnSetFilterNdDescriptor
4.174. cudnnSetLRNDescriptor
4.175. cudnnSetOpTensorDescriptor
4.176. cudnnSetPersistentRNNPlan
4.177. cudnnSetPooling2dDescriptor
4.178. cudnnSetPoolingNdDescriptor
4.179. cudnnSetRNNBiasMode
4.180. cudnnSetRNNDataDescriptor
4.181. cudnnSetRNNDescriptor
4.182. cudnnSetRNNDescriptor_v5
4.183. cudnnSetRNNDescriptor_v6
4.184. cudnnSetRNMatrixMathType
4.185. cudnnSetRNNPaddingMode
4.186. cudnnSetRNNProjectionLayers
4.187. cudnnSetReduceTensorDescriptor
4.188. cudnnSetSeqDataDescriptor
4.189. cudnnSetSpatialTransformerNdDescriptor
4.190. cudnnSetStream
4.191. cudnnSetTensor
4.192. cudnnSetTensor4dDescriptor
4.193. cudnnSetTensor4dDescriptorEx ... 290
4.194. cudnnSetTensorNdDescriptor ... 292
4.195. cudnnSetTensorNdDescriptorEx .. 293
4.196. cudnnSetTensorTransformDescriptor ... 294
4.197. cudnnSoftmaxBackward ... 295
4.198. cudnnSoftmaxForward ... 296
4.199. cudnnSpatialTfGridGeneratorBackward .. 298
4.200. cudnnSpatialTfGridGeneratorForward .. 299
4.201. cudnnSpatialTfSamplerBackward .. 300
4.202. cudnnSpatialTfSamplerForward ... 301
4.203. cudnnTransformTensor .. 303
4.204. cudnnTransformTensorEx .. 304

Chapter 5. Acknowledgments .. 306
5.1. University of Tennessee .. 306
5.2. University of California, Berkeley ... 306
5.3. Facebook AI Research, New York ... 307
NVIDIA® cuDNN is a GPU-accelerated library of primitives for deep neural networks. It provides highly tuned implementations of routines arising frequently in DNN applications:

- Convolution forward and backward, including cross-correlation
- Pooling forward and backward
- Softmax forward and backward
- Neuron activations forward and backward:
 - Rectified linear (ReLU)
 - Sigmoid
 - Hyperbolic tangent (TANH)
- Tensor transformation functions
- LRN, LCN and batch normalization forward and backward

cuDNN’s convolution routines aim for a performance that is competitive with the fastest GEMM (matrix multiply)-based implementations of such routines, while using significantly less memory.

cuDNN features include customizable data layouts, supporting flexible dimension ordering, striding, and subregions for the 4D tensors used as inputs and outputs to all of its routines. This flexibility allows easy integration into any neural network implementation, and avoids the input/output transposition steps sometimes necessary with GEMM-based convolutions.

cuDNN offers a context-based API that allows for easy multithreading and (optional) interoperability with CUDA streams.
Chapter 2.
GENERAL DESCRIPTION

Basic concepts are described in this section.

2.1. Programming Model

The cuDNN Library exposes a Host API but assumes that for operations using the GPU, the necessary data is directly accessible from the device.

An application using cuDNN must initialize a handle to the library context by calling \texttt{cudnnCreate()}. This handle is explicitly passed to every subsequent library function that operates on GPU data. Once the application finishes using cuDNN, it can release the resources associated with the library handle using \texttt{cudnnDestroy()}. This approach allows the user to explicitly control the library’s functioning when using multiple host threads, GPUs and CUDA Streams.

For example, an application can use \texttt{cudaSetDevice()} to associate different devices with different host threads, and in each of those host threads, use a unique cuDNN handle that directs the library calls to the device associated with it. Thus the cuDNN library calls made with different handles will automatically run on different devices.

The device associated with a particular cuDNN context is assumed to remain unchanged between the corresponding \texttt{cudnnCreate()} and \texttt{cudnnDestroy()} calls. In order for the cuDNN library to use a different device within the same host thread, the application must set the new device to be used by calling \texttt{cudaSetDevice()} and then create another cuDNN context, which will be associated with the new device, by calling \texttt{cudnnCreate()}.

\textbf{cuDNN API Compatibility}

Beginning in cuDNN 7, the binary compatibility of patch and minor releases is maintained as follows:

- Any patch release x.y.z is forward- or backward-compatible with applications built against another cuDNN patch release x.y.w (i.e., of the same major and minor version number, but having w!=z)
cuDNN minor releases beginning with cuDNN 7 are binary backward-compatible with applications built against the same or earlier patch release (i.e., an app built against cuDNN 7.x is binary compatible with cuDNN library 7.y, where y\geq x).

Applications compiled with a cuDNN version 7.y are not guaranteed to work with 7.x release when y > x.

2.2. Convolution Formulas

This section describes the various convolution formulas implemented in cuDNN convolution functions.

The convolution terms described in the table below apply to all the convolution formulas that follow.

TABLE OF CONVOLUTION TERMS

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Input (image) Tensor</td>
</tr>
<tr>
<td>w</td>
<td>Weight Tensor</td>
</tr>
<tr>
<td>y</td>
<td>Output Tensor</td>
</tr>
<tr>
<td>n</td>
<td>Current Batch Size</td>
</tr>
<tr>
<td>c</td>
<td>Current Input Channel</td>
</tr>
<tr>
<td>C</td>
<td>Total Input Channels</td>
</tr>
<tr>
<td>H</td>
<td>Input Image Height</td>
</tr>
<tr>
<td>W</td>
<td>Input Image Width</td>
</tr>
<tr>
<td>k</td>
<td>Current Output Channel</td>
</tr>
<tr>
<td>K</td>
<td>Total Output Channels</td>
</tr>
<tr>
<td>p</td>
<td>Current Output Height Position</td>
</tr>
<tr>
<td>q</td>
<td>Current Output Width Position</td>
</tr>
<tr>
<td>G</td>
<td>Group Count</td>
</tr>
<tr>
<td>pad</td>
<td>Padding Value</td>
</tr>
<tr>
<td>u</td>
<td>Vertical Subsample Stride (along Height)</td>
</tr>
<tr>
<td>v</td>
<td>Horizontal Subsample Stride (along Width)</td>
</tr>
<tr>
<td>dh_h</td>
<td>Vertical Dilation (along Height)</td>
</tr>
<tr>
<td>dh_w</td>
<td>Horizontal Dilation (along Width)</td>
</tr>
<tr>
<td>r</td>
<td>Current Filter Height</td>
</tr>
<tr>
<td>R</td>
<td>Total Filter Height</td>
</tr>
<tr>
<td>s</td>
<td>Current Filter Width</td>
</tr>
<tr>
<td>S</td>
<td>Total Filter Width</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>C_g</td>
<td>$\frac{C}{G}$</td>
</tr>
<tr>
<td>K_g</td>
<td>$\frac{K}{G}$</td>
</tr>
</tbody>
</table>

Normal Convolution (using cross-correlation mode)

$$
\begin{align*}
 y_{n,k,p,q} &= \sum_c \sum_r \sum_s x_{n,c,p+r,q+s} \times w_{k,c,r,s}
\end{align*}
$$

Convolution with Padding

$$
\begin{align*}
 x_{\leq 0} &= 0 \\
 x_{\geq W} &= 0 \\
 y_{n,k,p,q} &= \sum_c \sum_r \sum_s x_{n,c,p+r-pad, q+s-pad} \times w_{k,c,r,s}
\end{align*}
$$

Convolution with Subsample-Striding

$$
\begin{align*}
 y_{n,k,p,q} &= \sum_c \sum_r \sum_s x_{n,c,(p-r)\times r, (q-s)\times s} \times w_{k,c,r,s}
\end{align*}
$$

Convolution with Dilation

$$
\begin{align*}
 y_{n,k,p,q} &= \sum_c \sum_r \sum_s x_{n,c,p+(r\times dh), q+(s\times dw)} \times w_{k,c,r,s}
\end{align*}
$$

Convolution using Convolution Mode

$$
\begin{align*}
 y_{n,k,p,q} &= \sum_c \sum_r \sum_s x_{n,c,p+r, q+s} \times w_{k,c,R-r-1, S-s-1}
\end{align*}
$$

Convolution using Grouped Convolution

$$
\begin{align*}
 C_g &= \frac{C}{G} \\
 K_g &= \frac{K}{G} \\
 y_{n,k,p,q} &= \sum_c \sum_r \sum_s x_{n,c,\lfloor k/Kg\rfloor+p+r, q+s} \times w_{k,c,r,s}
\end{align*}
$$

2.3. Notation
As of CUDNN v4 we have adopted a mathematically-inspired notation for layer inputs and outputs using x, y, dx, dy, b, w for common layer parameters. This was done to improve the readability and ease of understanding of the meaning of the parameters. All layers now follow a uniform convention as below:

During Inference:

\[y = \text{layerFunction}(x, \text{otherParams}). \]

During backpropagation:

\[(dx, d\text{otherParams}) = \text{layerFunctionGradient}(x, y, dy, \text{otherParams})\]

For convolution the notation is

\[y = x*w+b \]

where w is the matrix of filter weights, x is the previous layer’s data (during inference), y is the next layer’s data, b is the bias and $*$ is the convolution operator.

In backpropagation routines the parameters keep their meanings.

The parameters dx, dy, dw, db always refer to the gradient of the final network error function with respect to a given parameter. So dy in all backpropagation routines always refers to error gradient backpropagated through the network computation graph so far. Similarly other parameters in more specialized layers, such as, for instance, $d\text{Means}$ or $d\text{BnBias}$ refer to gradients of the loss function wrt those parameters.

2.4. Tensor Descriptor

The cuDNN Library describes data holding images, videos and any other data with contents with a generic n-D tensor defined with the following parameters:

- a dimension nbDims from 3 to 8
- a data type (32-bit floating point, 64 bit-floating point, 16 bit floating point...)
- dimA integer array defining the size of each dimension
- strideA integer array defining the stride of each dimension (e.g the number of elements to add to reach the next element from the same dimension)

The first dimension of the tensor defines the batch size n, and the second dimension defines the number of features maps c. This tensor definition allows for example to have some dimensions overlapping each others within the same tensor by having the stride of one dimension smaller than the product of the dimension and the stride of the next dimension. In cuDNN, unless specified otherwise, all routines will support tensors with overlapping dimensions for forward pass input tensors, however, dimensions of the
output tensors cannot overlap. Even though this tensor format supports negative strides (which can be useful for data mirroring), cuDNN routines do not support tensors with negative strides unless specified otherwise.

2.4.1. WXYZ Tensor Descriptor

Tensor descriptor formats are identified using acronyms, with each letter referencing a corresponding dimension. In this document, the usage of this terminology implies:

- all the strides are strictly positive
- the dimensions referenced by the letters are sorted in decreasing order of their respective strides

2.4.2. 4-D Tensor Descriptor

A 4-D Tensor descriptor is used to define the format for batches of 2D images with 4 letters: N,C,H,W for respectively the batch size, the number of feature maps, the height and the width. The letters are sorted in decreasing order of the strides. The commonly used 4-D tensor formats are:

- NCHW
- NHWC
- CHWN

2.4.3. 5-D Tensor Description

A 5-D Tensor descriptor is used to define the format of batch of 3D images with 5 letters: N,C,D,H,W for respectively the batch size, the number of feature maps, the depth, the height and the width. The letters are sorted in decreasing order of the strides. The commonly used 5-D tensor formats are called:

- NCDHW
- NDHWC
- CDHWN

2.4.4. Fully-packed tensors

A tensor is defined as **XYZ-fully-packed** if and only if:

- the number of tensor dimensions is equal to the number of letters preceding the **fully-packed** suffix.
- the stride of the i-th dimension is equal to the product of the (i+1)-th dimension by the (i+1)-th stride.
- the stride of the last dimension is 1.

2.4.5. Partially-packed tensors
The partially 'XYZ-packed' terminology only applies in a context of a tensor format described with a superset of the letters used to define a partially-packed tensor. A WXYZ tensor is defined as \textbf{XYZ-packed} if and only if:

- the strides of all dimensions NOT referenced in the -packed suffix are greater or equal to the product of the next dimension by the next stride.
- the stride of each dimension referenced in the -packed suffix in position i is equal to the product of the (i+1)-st dimension by the (i+1)-st stride.
- if last tensor's dimension is present in the -packed suffix, its stride is 1.

For example a NHWC tensor WC-packed means that the c_stride is equal to 1 and w_stride is equal to c_dim x c_stride. In practice, the -packed suffix is usually with slowest changing dimensions of a tensor but it is also possible to refer to a NCHW tensor that is only N-packed.

2.4.6. Spatially packed tensors

Spatially-packed tensors are defined as partially-packed in spatial dimensions. For example a spatially-packed 4D tensor would mean that the tensor is either NCHW HW-packed or CNHW HW-packed.

2.4.7. Overlapping tensors

A tensor is defined to be overlapping if a iterating over a full range of dimensions produces the same address more than once. In practice an overlapped tensor will have stride[i-1] < stride[i]*dim[i] for some of the i from [1,nbDims] interval.

2.5. Data Layout Formats

This section describes how cuDNN Tensors are arranged in memory. See \texttt{cudnnTensorFormat_t} for enumerated Tensor format types.

2.5.1. Example

Consider a batch of images in 4D with the following dimensions:

- N, the batch size, is 1
- C, the number of feature maps (i.e., number of channels), is 64
- H, the image height, is 5, and
- W, the image width, is 4

To keep the example simple, the image pixel elements are expressed as a sequence of integers, 0, 1, 2, 3, and so on. See Figure 1.
2.5.2. NCHW Memory Layout

The above 4D Tensor is laid out in the memory in the NCHW format as below:

1. Beginning with the first channel (c=0), the elements are arranged contiguously in row-major order.
2. Continue with second and subsequent channels until the elements of all the channels are laid out.

 See Figure 2.
3. Proceed to the next batch (if N is > 1).
2.5.3. NHWC Memory Layout

For the NHWC memory layout, the corresponding elements in all the C channels are laid out first, as below:

1. Begin with the first element of channel 0, then proceed to the first element of channel 1, and so on, until the first elements of all the C channels are laid out.
2. Next, select the second element of channel 0, then proceed to the second element of channel 1, and so on, until the second element of all the channels are laid out.
3. Follow the row-major order in channel 0 and complete all the elements. See Figure 3.
4. Proceed to the next batch (if N is > 1).
The NC/32HW32 is similar to NHWC, with a key difference. For the NC/32HW32 memory layout, the 64 channels are grouped into two groups of 32 channels each—first group consisting of channels c0 through c31, and the second group consisting of channels c32 through c63. Then each group is laid out using the NHWC format. See Figure 4.

Figure 3 NHWC Memory Layout

2.5.4. NC/32HW32 Memory Layout
For the generalized NC/xHWx layout format, the following observations apply:

- Only the channel dimension, C, is grouped into x channels each.
- When x = 1, each group has only one channel. Hence, the elements of one channel (i.e., one group) are arranged contiguously (in the row-major order), before proceeding to the next group (i.e., next channel). This is the same as NCHW format.
- When x = C, then NC/xHWx is identical to NHWC, i.e., the entire channel depth C is considered as a single group. The case x = C can be thought of as vectorizing entire C dimension as one big vector, laying out all the Cs, followed by the remaining dimensions, just like NHWC.
- The tensor format `CUDNN_TENSOR_NCHW_VECT_C` can also be interpreted in the following way: The NCHW INT8x32 format is really N x (C/32) x H x W x 32 (32...
Cs for every W), just as the NCHW INT8x4 format is N x (C/4) x H x W x 4 (4 Cs for every W). Hence the "VECT_C" name - each W is a vector (4 or 32) of Cs.

2.6. Thread Safety

The library is thread safe and its functions can be called from multiple host threads, as long as threads to do not share the same cuDNN handle simultaneously.

2.7. Reproducibility (determinism)

By design, most of cuDNN’s routines from a given version generate the same bit-wise results across runs when executed on GPUs with the same architecture and the same number of SMs. However, bit-wise reproducibility is not guaranteed across versions, as the implementation of a given routine may change. With the current release, the following routines do not guarantee reproducibility because they use atomic operations:

- `cudnnConvolutionBackwardFilter` when `CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0` or `CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3` is used
- `cudnnConvolutionBackwardData` when `CUDNN_CONVOLUTION_BWD_DATA_ALGO_0` is used
- `cudnnPoolingBackward` when `CUDNN_POOLING_MAX` is used
- `cudnnSpatialTfSamplerBackward`

2.8. Scaling Parameters

Many cuDNN routines like `cudnnConvolutionForward` accept pointers in host memory to scaling factors `alpha` and `beta`. These scaling factors are used to blend the computed values with the prior values in the destination tensor as follows (see Figure 5):

\[
dstValue = alpha*computedValue + beta*priorDstValue.
\]

The `dstValue` is written to after being read.
Figure 5 Scaling Parameters for Convolution

When \(\text{beta} \) is zero, the output is not read and may contain uninitialized data (including NaN).

These parameters are passed using a host memory pointer. The storage data types for \(\text{alpha} \) and \(\text{beta} \) are:

- **float** for HALF and FLOAT tensors, and
- **double** for DOUBLE tensors.

For improved performance use \(\text{beta} = 0.0 \). Use a non-zero value for beta only when you need to blend the current output tensor values with the prior values of the output tensor.

Type Conversion

When the data input \(\mathbf{x} \), the filter input \(\mathbf{w} \) and the output \(\mathbf{y} \) are all in INT8 data type, the function `cudnnConvolutionBiasActivationForward()` will perform the type conversion as shown in Figure 6:

Accumulators are 32-bit integers which wrap on overflow.
2.9. Tensor Core Operations

The cuDNN v7 library introduced the acceleration of compute-intensive routines using Tensor Core hardware on supported GPU SM versions. Tensor core operations are supported on the Volta and Turing GPU families.

2.9.1. Basics

Tensor core operations perform parallel floating point accumulation of multiple floating point product terms. Setting the math mode to CUDNN_TENSOR_OP_MATH via the cudnnMathType_t enumerator indicates that the library will use Tensor Core operations. This enumerator specifies the available options to enable the Tensor Core, and should be applied on a per-routine basis.

The default math mode is CUDNN_DEFAULT_MATH, which indicates that the Tensor Core operations will be avoided by the library. Because the CUDNN_TENSOR_OP_MATH mode uses the Tensor Cores, it is possible that these two modes generate slightly different numerical results due to different sequencing of the floating point operations.

For example, the result of multiplying two matrices using Tensor Core operations is very close to, but not always identical, the result achieved using a sequence of scalar floating point operations. For this reason, the cuDNN library requires an explicit user opt-in before enabling the use of Tensor Core operations.

However, experiments with training common deep learning models show negligible differences between using Tensor Core operations and scalar floating point paths, as
measured by both the final network accuracy and the iteration count to convergence. Consequently, the cuDNN library treats both modes of operation as functionally indistinguishable, and allows for the scalar paths to serve as legitimate fallbacks for cases in which the use of Tensor Core operations is unsuitable.

Kernels using Tensor Core operations are available for both convolutions and RNNs. See also Training with Mixed Precision.

2.9.2. Convolution Functions

2.9.2.1. Prerequisite

For the supported GPUs, the Tensor Core operations will be triggered for convolution functions only when `cudnnSetConvolutionMathType` is called on the appropriate convolution descriptor by setting the `mathType` to CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION.

2.9.2.2. Supported Algorithms

When the prerequisite is met, the below convolution functions can be run as Tensor Core operations:

- `cudnnConvolutionForward`
- `cudnnConvolutionBackwardData`
- `cudnnConvolutionBackwardFilter`

See the table below for supported algorithms:

<table>
<thead>
<tr>
<th>Supported Convolution Function</th>
<th>Supported Algos</th>
</tr>
</thead>
<tbody>
<tr>
<td>cudnnConvolutionForward</td>
<td>-CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM,</td>
</tr>
<tr>
<td></td>
<td>-CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED</td>
</tr>
<tr>
<td>cudnnConvolutionBackwardData</td>
<td>-CUDNN_CONVOLUTION_BWD_DATA_ALGO_1,</td>
</tr>
<tr>
<td></td>
<td>-CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED</td>
</tr>
<tr>
<td>cudnnConvolutionBackwardFilter</td>
<td>-CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1,</td>
</tr>
<tr>
<td></td>
<td>-CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED</td>
</tr>
</tbody>
</table>

2.9.2.3. Data and Filter Formats

The cuDNN library may use padding, folding, and NCHW-to-NHWC transformations to call the Tensor Core operations. See Tensor Transformations.

For algorithms other than *-_ALGO_WINOGRAD_NONFUSED, when the following requirements are met, the cuDNN library will trigger the Tensor Core operations:

- Input, filter, and output descriptors (`xDesc`, `yDesc`, `wDesc`, `dxDesc`, `dyDesc` and `dwDesc` as applicable) are of the `dataType` = CUDNN_DATA_HALF (i.e., FP16). For FP32 `dataType` see FP32-to-FP16 Conversion.
The number of input and output feature maps (i.e., channel dimension C) is a multiple of 8. When the channel dimension is not a multiple of 8, see Padding.

- The filter is of type CUDNN_TENSOR_NCHW or CUDNN_TENSOR_NHWC.
- If using a filter of type CUDNN_TENSOR_NHWC, then: the input, filter, and output data pointers (X, Y, W, dX, dY, dW as applicable) are aligned to 128-bit boundaries.

2.9.3. RNN Functions

2.9.3.1. Prerequisite

Tensor core operations will be triggered for these RNN functions only when `cudnnSetRNNMatrixMathType` is called on the appropriate RNN descriptor setting `mathType` to CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION.

2.9.3.2. Supported Algorithms

When the above prerequisite is met, the RNN functions below can be run as Tensor Core operations:

- `cudnnRNNForwardInference`
- `cudnnRNNForwardTraining`
- `cudnnRNNBackwardData`
- `cudnnRNNBackwardWeights`
- `cudnnRNNForwardInferenceEx`
- `cudnnRNNForwardTrainingEx`
- `cudnnRNNBackwardDataEx`
- `cudnnRNNBackwardWeightsEx`

See the table below for the supported algorithms:

<table>
<thead>
<tr>
<th>RNN Function</th>
<th>Support Algos</th>
</tr>
</thead>
</table>
| All RNN functions that support Tensor Core operations | - CUDNN_RNN_ALGO_STANDARD
- CUDNN_RNN_ALGO_PERSIST_STATIC (new for cuDNN 7.1) |

2.9.3.3. Data and Filter Formats

When the following requirements are met, then the cuDNN library will trigger the Tensor Core operations:

- For algo = CUDNN_RNN_ALGO_STANDARD:
 - The hidden state size, input size and the batch size is a multiple of 8.
 - All user-provided tensors, workspace, and reserve space are aligned to 128 bit boundaries.
 - For FP16 input/output, the CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.
 - For FP32 input/output, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.
For algo = CUDNN_RNN_ALGO_PERSIST_STATIC:

- The hidden state size and the input size is a multiple of 32.
- The batch size is a multiple of 8.
- If the batch size exceeds 96 (for forward training or inference) or 32 (for backward data), then the batch sizes constraints may be stricter, and large power-of-two batch sizes may be needed. (new for 7.1).
- All user-provided tensors, workspace, and reserve space are aligned to 128 bit boundaries.
- For FP16 input/output, CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.
- For FP32 input/output, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.

See also Features of RNN Functions.

2.9.4. Tensor Transformations

A few functions in the cuDNN library will perform transformations such as folding, padding, and NCHW-to-NHWC conversion while performing the actual function operation. See below.

2.9.4.1. FP16 Data

Tensor Cores operate on FP16 input data with FP32 accumulation. The FP16 multiply leads to a full-precision result that is accumulated in FP32 operations with the other products in a given dot product for a matrix with $m \times n \times k$ dimensions. See Figure 7.

![Figure 7 Tensor Operation with FP16 Inputs](image)

2.9.4.2. FP32-to-FP16 Conversion
The cuDNN API for allows the user to specify that FP32 input data may be copied and converted to FP16 data internally to use Tensor Core Operations for potentially improved performance. This can be achieved by selecting CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum for cudnnMathType_t. In this mode, the FP32 Tensors are internally down-converted to FP16, the Tensor Op math is performed, and finally up-converted to FP32 as outputs. See Figure 8.

Figure 8 Tensor Operation with FP32 Inputs

For Convolutions:

For convolutions, the FP32-to-FP16 conversion can be achieved by passing the CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum value to the cudnnSetConvolutionMathType() call. See the below code snippet:

```c
// Set the math type to allow cuDNN to use Tensor Cores:
checkCudnnErr(cudnnSetConvolutionMathType(cudnnConvDesc,
    CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION));
```

For RNNs:

For RNNs, the FP32-to-FP16 conversion can be achieved by passing the CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum value to the cudnnSetRNNMatrixMathType() call to allow FP32 data to be converted for use in RNNs. See the below code snippet example:

```c
// Set the math type to allow cuDNN to use Tensor Cores:
checkCudnnErr(cudnnSetRNNMatrixMathType(cudnnRnnDesc,
    CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION));
```

2.9.4.3. Padding

For packed NCHW data, when the channel dimension is not a multiple of 8, then the cuDNN library will pad the tensors as needed to enable Tensor Core operations. This padding is automatic for packed NCHW data in both the CUDNN_TENSOR_OP_MATH and the CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION cases.
The padding occurs with a negligible loss of performance. Hence, the NCHW Tensor dimensions such as below are allowed:

```c
// Set NCHW Tensor dimensions, not necessarily as multiples of eight (only the input tensor is shown here):
int dimA[] = {1, 7, 32, 32};
int strideA[] = {7168, 1024, 32, 1};
```

2.9.4.4. Folding

In the folding operation the cuDNN library implicitly performs the formatting of input tensors and saves the input tensors in an internal workspace. This can lead to an acceleration of the call to Tensor Cores.

Folding enables the input Tensors to be transformed to a format that the Tensor Cores support (i.e., no strides).

2.9.4.5. Conversion Between NCHW and NHWC

Tensor Cores require that the Tensors be in NHWC data layout. Conversion between NCHW and NHWC is performed when the user requests Tensor Op math. However, as stated in Basics, a request to use Tensor Cores is just that, a request, and Tensor Cores may not be used in some cases. The cuDNN library converts between NCHW and NHWC if and only if Tensor Cores are requested and are actually used.

If your input (and output) are NCHW, then expect a layout change. See also for packed NCHW data.

Non-Tensor Op convolutions will not perform conversions between NCHW and NHWC.

In very rare, and difficult-to-qualify, cases that are a complex function of padding and filter sizes, it is possible that Tensor Ops are not enabled. In such cases, users should pre-pad.

2.9.5. Guidelines for a Deep Learning Compiler

For a deep learning compiler, the following are the key guidelines:

- Make sure that the convolution operation is eligible for Tensor Cores by avoiding any combinations of large padding and large filters.
- Transform the inputs and filters to NHWC, pre-pad channel and batch size to be a multiple of 8.
- Make sure that all user-provided tensors, workspace and reserve space are aligned to 128 bit boundaries.

2.10. GPU and driver requirements

cuDNN v7.0 supports NVIDIA GPUs of compute capability 3.0 and higher. For x86_64 platform, cuDNN v7.0 comes with two deliverables: one requires a NVIDIA Driver
compatible with CUDA Toolkit 8.0, the other requires a NVIDIA Driver compatible with CUDA Toolkit 9.0.

If you are using cuDNN with a Volta GPU, version 7 or later is required.

2.11. Backward compatibility and deprecation policy

When changing the API of an existing cuDNN function "foo" (usually to support some new functionality), first, a new routine "foo_v<n>" is created where n represents the cuDNN version where the new API is first introduced, leaving "foo" untouched. This ensures backward compatibility with the version n-1 of cuDNN. At this point, "foo" is considered deprecated, and should be treated as such by users of cuDNN. We gradually eliminate deprecated and suffixed API entries over the course of a few releases of the library per the following policy:

- In release n+1, the legacy API entry "foo" is remapped to a new API "foo_v<f>" where f is some cuDNN version anterior to n.
- Also in release n+1, the unsuffixed API entry "foo" is modified to have the same signature as "foo_<n>". "foo_<n>" is retained as-is.
- The deprecated former API entry with an anterior suffix _v<f> and new API entry with suffix _v<n> are maintained in this release.
- In release n+2, both suffixed entries of a given entry are removed.

As a rule of thumb, when a routine appears in two forms, one with a suffix and one with no suffix, the non-suffixed entry is to be treated as deprecated. In this case, it is strongly advised that users migrate to the new suffixed API entry to guarantee backwards compatibility in the following cuDNN release. When a routine appears with multiple suffixes, the unsuffixed API entry is mapped to the higher numbered suffix. In that case it is strongly advised to use the non-suffixed API entry to guarantee backward compatibility with the following cuDNN release.

2.12. Grouped Convolutions

cuDNN supports grouped convolutions by setting groupCount > 1 for the convolution descriptor convDesc, using cudnnSetConvolutionGroupCount().

By default the convolution descriptor convDesc is set to groupCount of 1.

Basic Idea

Conceptually, in grouped convolutions the input channels and the filter channels are split into groupCount number of independent groups, with each group having a reduced number of channels. Convolution operation is then performed separately on these input and filter groups.
For example, consider the following: if the number of input channels is 4, and the number of filter channels of 12. For a normal, ungrouped convolution, the number of computation operations performed are 12*4.

If the groupCount is set to 2, then there are now two input channel groups of two input channels each, and two filter channel groups of six filter channels each.

As a result, each grouped convolution will now perform 2*6 computation operations, and two such grouped convolutions are performed. Hence the computation savings are 2x: (12*4)/(2*(2*6))

cuDNN Grouped Convolution

- When using `groupCount` for grouped convolutions, you must still define all tensor descriptors so that they describe the size of the entire convolution, instead of specifying the sizes per group.
- Grouped convolutions are supported for all formats that are currently supported by the functions `cudNNConvolutionForward()`, `cudnnConvolutionBackwardData()` and `cudnnConvolutionBackwardFilter()`.
- The tensor stridings that are set for `groupCount` of 1 are also valid for any group count.
- By default the convolution descriptor `convDesc` is set to `groupCount` of 1.

See [Convolution Formulas](#) for the math behind the cuDNN Grouped Convolution.

Example

Below is an example showing the dimensions and strides for grouped convolutions for NCHW format, for 2D convolution.

Note that the symbols "*" and "/" are used to indicate multiplication and division.

xDesc or dxDesc:
- Dimensions: [batch_size, input_channel, x_height, x_width]
- Strides: [input_channels*x_height*x_width, x_height*x_width, x_width, 1]

wDesc or dwDesc:
- Dimensions: [output_channels, input_channels/groupCount, w_height, w_width]
- Format: NCHW

convDesc:
- Group Count: `groupCount`

yDesc or dyDesc:
2.13. API Logging

cuDNN API logging is a tool that records all input parameters passed into every cuDNN API function call. This functionality is disabled by default, and can be enabled through methods described in this section.

The log output contains variable names, data types, parameter values, device pointers, process ID, thread ID, cuDNN handle, cuda stream ID, and metadata such as time of the function call in microseconds.

When logging is enabled, the log output will be handled by the built-in default callback function. The user may also write their own callback function, and use the cudnnSetCallback to pass in the function pointer of their own callback function. The following is a sample output of the API log.

```
Function cudnnSetActivationDescriptor() called:
  mode: type=cudnnActivationMode_t; val=CUDNN_ACTIVATION_RELU (1);
  reluNanOpt: type=cudnnNanPropagation_t; val=CUDNN_NOT_PROPAGATE_NAN (0);
  coef: type=double; val=1000.000000;
  Time: 2017-11-21T14:14:21.366171 (0d+0h+1m+5s since start)
  Process: 21264, Thread: 21264, cudnn_handle: NULL, cudnn_stream: NULL.
```

There are two methods to enable API logging.

Method 1: Using Environment Variables

To enable API logging using environment variables, follow these steps:

- Set the environment variable `CUDNN_LOGINFO_DBG` to “1”, and
- Set the environment variable `CUDNN_LOGDEST_DBG` to one of the following:
 - `stdout`, `stderr`, or a user-desired file path, for example, `/home/userName1/log.txt`.
 - Include the conversion specifiers in the file name. For example:
 - To include date and time in the file name, use the date and time conversion specifiers: `log_%Y_%m_%d_%H_%M_%S.txt`. The conversion specifiers will be automatically replaced with the date and time when the program is initiated, resulting in `log_2017_11_21_09_41_00.txt`.
 - To include the process id in the file name, use the `%i` conversion specifier: `log_%Y_%m_%d_%H_%M_%S_%i.txt` for the result: `log_2017_11_21_09_41_00_21264.txt` when the process id is 21264. When
you have several processes running, using the process id conversion specifier will prevent these processes writing to the same file at the same time.

The supported conversion specifiers are similar to the `strftime` function.

If the file already exists, the log will overwrite the existing file.

These environmental variables are only checked once at the initialization. Any subsequent changes in these environmental variables will not be effective in the current run. Also note that these environment settings can be overridden by the Method 2 below.

See also Table 1 for the impact on performance of API logging using environment variables.

Table 1 API Logging Using Environment Variables

<table>
<thead>
<tr>
<th>Environment variables</th>
<th>CUDNN_LOGINFO_DBG=0</th>
<th>CUDNN_LOGINFO_DBG=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_LOGDEST_DBG not set</td>
<td>- No logging output</td>
<td>- No logging output</td>
</tr>
<tr>
<td></td>
<td>- No performance loss</td>
<td>- No performance loss</td>
</tr>
<tr>
<td>CUDNN_LOGDEST_DBG=NULL</td>
<td>- No logging output</td>
<td>- No logging output</td>
</tr>
<tr>
<td></td>
<td>- No performance loss</td>
<td>- No performance loss</td>
</tr>
<tr>
<td>CUDNN_LOGDEST_DBG=stdout or stderr</td>
<td>- No logging output</td>
<td>- Logging to stdout or stderr</td>
</tr>
<tr>
<td></td>
<td>- No performance loss</td>
<td>- Some performance loss</td>
</tr>
<tr>
<td>CUDNN_LOGDEST_DBG=filename.txt</td>
<td>- No logging output</td>
<td>- Logging to filename.txt</td>
</tr>
<tr>
<td></td>
<td>- No performance loss</td>
<td>- Some performance loss</td>
</tr>
</tbody>
</table>

Method 2

Method 2: To use API function calls to enable API logging, refer to the API description of `cudnnSetCallback()` and `cudnnGetCallback()`.

2.14. Features of RNN Functions

The RNN functions are:

- `cudnnRNNForwardInference`
- `cudnnRNNForwardTraining`
- `cudnnRNNBackwardData`
See the table below for a list of features supported by each RNN function:

<table>
<thead>
<tr>
<th>Functions</th>
<th>Input output layout supported</th>
<th>Supports variable sequence length in batch</th>
<th>Commonly supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>cudnnRNNForwardInference</td>
<td>Only Sequence major, packed (non-padded)</td>
<td>Only with _ALGO_STANDARD</td>
<td>Mode (cell type) supported: CUDNN_RNN_RELU, CUDNN_RNN_TANH, CUDNN_LSTM, CUDNN_GRU, Algo supported* (see the table below for an elaboration on these algorithms): _ALGO_STANDARD, _ALGO_PERSIST_STATIC, _ALGO_PERSIST_DYNAMIC</td>
</tr>
<tr>
<td>cudnnRNNForwardTraining</td>
<td></td>
<td>Require input sequences descending sorted according to length</td>
<td>Math mode supported: CUDNN_DEFAULT_MATH, CUDNN_TENSOR_OP_MATH (will automatically fall back if run on pre-Volta or if algo doesn’t support Tensor Cores) _ALLOW_CONVERSION (may do down conversion to utilize Tensor Cores)</td>
</tr>
<tr>
<td>cudnnRNNBackwardData</td>
<td></td>
<td></td>
<td>Direction mode supported: CUDNN_UNIDIRECTIONAL, CUDNN_BIDIRECTIONAL</td>
</tr>
<tr>
<td>cudnnRNNBackwardWeights</td>
<td></td>
<td></td>
<td>RNN input mode: CUDNN_LINEAR_INPUT, CUDNN_SKIP_INPUT</td>
</tr>
<tr>
<td>cudnnRNNForwardInferenceEx</td>
<td>Sequence major unpacked, Batch major unpacked**, Sequence major packed**</td>
<td>Only with _ALGO_STANDARD</td>
<td></td>
</tr>
<tr>
<td>cudnnRNNForwardTrainingEx</td>
<td></td>
<td>For unpacked layout**, no input sorting required. For packed layout, require input sequences descending sorted according to length</td>
<td></td>
</tr>
<tr>
<td>cudnnRNNBackwardDataEx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cudnnRNNBackwardWeightsEx</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each of these terms, the short-form versions shown in the paranthesis are used in the tables below for brevity: CUDNN_RNN_ALGO_STANDARD (_ALGO_STANDARD), CUDNN_RNN_ALGO_PERSIST_STATIC (_ALGO_PERSIST_STATIC), CUDNN_RNN_ALGO_PERSIST_DYNAMIC (_ALGO_PERSIST_DYNAMIC), and CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION (_ALLOW_CONVERSION).
* Do not mix different algos for different steps of training. It's also not recommended to mix non-extended and extended API for different steps of training.

** To use unpacked layout, user need to set CUDNN_RNN_PADDED_IO_ENABLED through cudnnSetRNNPaddingMode.

The following table provides the features supported by the algorithms referred in the above table: CUDNN_RNN_ALGO_STANDARD, CUDNN_RNN_ALGO_PERSIST_STATIC, and CUDNN_RNN_ALGO_PERSIST_DYNAMIC.

<table>
<thead>
<tr>
<th>Features</th>
<th>_ALGO_STANDARD</th>
<th>_ALGO_PERSIST_STATIC</th>
<th>_ALGO_PERSIST_DYNAMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half input</td>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single accumulation</td>
<td>Half intermediate storage</td>
<td>Single accumulation</td>
<td></td>
</tr>
<tr>
<td>Half output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single input</td>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single accumulation</td>
<td>If running on Volta, with CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION, will down-convert and use half intermediate storage.</td>
<td>Otherwise: Single intermediate storage</td>
<td></td>
</tr>
<tr>
<td>Single output</td>
<td>Single accumulation</td>
<td>orphic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single accumulation</td>
<td></td>
</tr>
<tr>
<td>Double input</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Double accumulation</td>
<td>Double intermediate storage</td>
<td></td>
<td>Double intermediate storage</td>
</tr>
<tr>
<td>Double output</td>
<td>Double accumulation</td>
<td>Not Supported</td>
<td>Double accumulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSTM recurrent projection</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSTM cell clipping</td>
<td>SUPPORTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable sequence length</td>
<td>SUPPORTED</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>in batch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensor Cores</td>
<td>SUPPORTED</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>on Volta/Xavier</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not Supported, will execute normally ignoring CUDNN_TENSOR_OP_MATH or _ALLOW_CONVERSION.
General Description

<table>
<thead>
<tr>
<th>Other limitations</th>
<th>Max problem size is limited by GPU specifications.</th>
<th>Requires real time compilation through NVRTC</th>
</tr>
</thead>
</table>

'CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION can be set through cudnnSetRNNMatrixMathType.

2.15. Mixed Precision Numerical Accuracy

When the computation precision and the output precision are not the same, it is possible that the numerical accuracy will vary from one algorithm to the other.

For example, when the computation is performed in FP32 and the output is in FP16, the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 ("ALGO_0") has lower accuracy compared to the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 ("ALGO_1"). This is because ALGO_0 does not use extra workspace, and is forced to accumulate the intermediate results in FP16, i.e., half precision float, and this reduces the accuracy. The ALGO_1, on the other hand, uses additional workspace to accumulate the intermediate values in FP32, i.e., full precision float.
Chapter 3.
CUDNN DATATYPES REFERENCE

This chapter describes all the types and enums of the cuDNN library API.

3.1. cudnnAttnDescriptor_t

cudnnAttnDescriptor_t is a pointer to an opaque structure holding the description of attention. Use the function cudnnCreateAttnDescriptor to create one instance, and cudnnDestroyAttnDescriptor to destroy a previously created descriptor.

3.2. cudnnAttnQueryMap_t

cudnnAttnQueryMap_t is an enumerated type to select the query mapping type.

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_ATTN_QUERYMAP_ALL_TO_ONE = 0</td>
<td>When beam width > 1, multiple query sequences are mapped to the same key and value sequences.</td>
</tr>
<tr>
<td>CUDNN_ATTN_QUERYMAP_ONE_TO_ONE = 1</td>
<td>When beam width > 1, multiple query sequences are mapped to corresponding key and value sequences.</td>
</tr>
</tbody>
</table>

3.3. cudnnActivationDescriptor_t

cudnnActivationDescriptor_t is a pointer to an opaque structure holding the description of a activation operation. cudnnCreateActivationDescriptor() is used to create one instance, and cudnnSetActivationDescriptor() must be used to initialize this instance.

3.4. cudnnActivationMode_t
cudnnActivationMode_t is an enumerated type used to select the neuron activation function used in cudnnActivationForward(), cudnnActivationBackward() and cudnnConvolutionBiasActivationForward().

Values

CUDNN_ACTIVATION_SIGMOID

Selects the sigmoid function.

CUDNN_ACTIVATION_RELU

Selects the rectified linear function.

CUDNN_ACTIVATION_TANH

Selects the hyperbolic tangent function.

CUDNN_ACTIVATION_CLIPPED_RELU

Selects the clipped rectified linear function.

CUDNN_ACTIVATION_ELU

Selects the exponential linear function.

CUDNN_ACTIVATION_IDENTITY (new for 7.1)

Selects the identity function, intended for bypassing the activation step in cudnnConvolutionBiasActivationForward(). (The cudnnConvolutionBiasActivationForward() function must use CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.) Does not work with cudnnActivationForward() or cudnnActivationBackward().

3.5. cudnnBatchNormMode_t

cudnnBatchNormMode_t is an enumerated type used to specify the mode of operation in cudnnBatchNormalizationForwardInference(), cudnnBatchNormalizationForwardTraining(), cudnnBatchNormalizationBackward() and cudnnDeriveBNTensorDescriptor() routines.

Values

CUDNN_BATCHNORM_PER_ACTIVATION

Normalization is performed per-activation. This mode is intended to be used after non-convolutional network layers. In this mode the tensor dimensions of bnBias and bnScale, the parameters used in the cudnnBatchNormalization* functions, are 1xCxHxW.

CUDNN_BATCHNORM_SPATIAL

Normalization is performed over N+spatial dimensions. This mode is intended for use after convolutional layers (where spatial invariance is desired). In this mode the bnBias, bnScale tensor dimensions are 1xCx1x1.
CUDNN_BATCHNORM_SPATIAL_PERSISTENT

This mode is similar to CUDNN_BATCHNORM_SPATIAL but it can be faster for some tasks.

An optimized path may be selected for CUDNN_DATA_FLOAT and CUDNN_DATA_HALF types, compute capability 6.0 or higher for the following two batch normalization API calls: `cudnnBatchNormalizationForwardTraining()`, and `cudnnBatchNormalizationBackward()`. In the case of `cudnnBatchNormalizationBackward()`, the `savedMean` and `savedInvVariance` arguments should not be NULL.

The rest of this section applies for NCHW mode only:

This mode may use a scaled atomic integer reduction that is deterministic but imposes more restrictions on the input data range. When a numerical overflow occurs the algorithm may produce NaN-s or Inf-s (infinity) in output buffers.

When Inf-s/NaN-s are present in the input data, the output in this mode is the same as from a pure floating-point implementation.

For finite but very large input values, the algorithm may encounter overflows more frequently due to a lower dynamic range and emit Inf-s/NaN-s while CUDNN_BATCHNORM_SPATIAL will produce finite results. The user can invoke `cudnnQueryRuntimeError()` to check if a numerical overflow occurred in this mode.

3.6. cudnnBatchNormOps_t

cudnnBatchNormOps_t is an enumerated type used to specify the mode of operation in `cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()`, `cudnnBatchNormalizationForwardTrainingEx()`, `cudnnGetBatchNormalizationBackwardExWorkspaceSize()`, `cudnnBatchNormalizationBackwardEx()`, and `cudnnGetBatchNormalizationTrainingExReserveSpaceSize()` functions.

Values

CUDNN_BATCHNORM_OPS_BN

Only batch normalization is performed, per-activation.

CUDNN_BATCHNORM_OPS_BN_ACTIVATION

First the batch normalization is performed, and then the activation is performed.

CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION

Performs the batch normalization, then element-wise addition, followed by the activation operation.

3.7. cudnnCTCLossAlgo_t
cudnnCTCLossAlgo_t is an enumerated type that exposes the different algorithms available to execute the CTC loss operation.

Values

- **CUDNN_CTC_LOSS_ALGO_DETERMINISTIC**

 Results are guaranteed to be reproducible

- **CUDNN_CTC_LOSS_ALGO_NON_DETERMINISTIC**

 Results are not guaranteed to be reproducible

3.8. cudnnCTCLossDescriptor_t

cudnnCTCLossDescriptor_t is a pointer to an opaque structure holding the description of a CTC loss operation. cudnnCreateCTCLossDescriptor() is used to create one instance, cudnnSetCTCLossDescriptor() is be used to initialize this instance, cudnnDestroyCTCLossDescriptor() is be used to destroy this instance.

3.9. cudnnConvolutionBwdDataAlgoPerf_t

cudnnConvolutionBwdDataAlgoPerf_t is a structure containing performance results returned by cudnnFindConvolutionBackwardDataAlgorithm() or heuristic results returned by cudnnGetConvolutionBackwardDataAlgorithm_v7().

Data Members

cudnnConvolutionBwdDataAlgo_t algo

The algorithm run to obtain the associated performance metrics.

cudnnStatus_t status

If any error occurs during the workspace allocation or timing of cudnnConvolutionBackwardData(), this status will represent that error. Otherwise, this status will be the return status of cudnnConvolutionBackwardData().

- **CUDNN_STATUS_ALLOC_FAILED** if any error occurred during workspace allocation or if provided workspace is insufficient.
- **CUDNN_STATUS_INTERNAL_ERROR** if any error occurred during timing calculations or workspace deallocation.
- Otherwise, this will be the return status of cudnnConvolutionBackwardData().

float time

The execution time of cudnnConvolutionBackwardData() (in milliseconds).

size_t memory

The workspace size (in bytes).
cudnnDeterminism_t determinism
The determinism of the algorithm.

cudnnMathType_t mathType
The math type provided to the algorithm.

int reserved[3]
Reserved space for future properties.

3.10. cudnnConvolutionBwdDataAlgo_t

cudnnConvolutionBwdDataAlgo_t is an enumerated type that exposes the different algorithms available to execute the backward data convolution operation.

Values

CUDNN_CONVOLUTION_BWD_DATA_ALGO_0
This algorithm expresses the convolution as a sum of matrix product without actually explicitly form the matrix that holds the input tensor data. The sum is done using atomic adds operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_1
This algorithm expresses the convolution as a matrix product without actually explicitly form the matrix that holds the input tensor data. The results are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT
This algorithm uses a Fast-Fourier Transform approach to compute the convolution. A significant memory workspace is needed to store intermediate results. The results are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING
This algorithm uses the Fast-Fourier Transform approach but splits the inputs into tiles. A significant memory workspace is needed to store intermediate results but less than CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT for large size images. The results are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD
This algorithm uses the Winograd Transform approach to compute the convolution. A reasonably sized workspace is needed to store intermediate results. The results are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED
This algorithm uses the Winograd Transform approach to compute the convolution. Significant workspace may be needed to store intermediate results. The results are deterministic.
3.11. cudnnConvolutionBwdDataPreference_t

cudnnConvolutionBwdDataPreference_t is an enumerated type used by cudnnGetConvolutionBackwardDataAlgorithm() to help the choice of the algorithm used for the backward data convolution.

Values

CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE

In this configuration, the routine cudnnGetConvolutionBackwardDataAlgorithm() is guaranteed to return an algorithm that does not require any extra workspace to be provided by the user.

CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST

In this configuration, the routine cudnnGetConvolutionBackwardDataAlgorithm() will return the fastest algorithm regardless how much workspace is needed to execute it.

CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT

In this configuration, the routine cudnnGetConvolutionBackwardDataAlgorithm() will return the fastest algorithm that fits within the memory limit that the user provided.

3.12. cudnnConvolutionBwdFilterAlgoPerf_t

cudnnConvolutionBwdFilterAlgoPerf_t is a structure containing performance results returned by cudnnFindConvolutionBackwardFilterAlgorithm() or heuristic results returned by cudnnGetConvolutionBackwardFilterAlgorithm_v7().

Data Members

cudnnConvolutionBwdFilterAlgo_t algo

The algorithm run to obtain the associated performance metrics.

cudnnStatus_t status

If any error occurs during the workspace allocation or timing of cudnnConvolutionBackwardFilter(), this status will represent that error. Otherwise, this status will be the return status of cudnnConvolutionBackwardFilter().

- **CUDNN_STATUS_ALLOC_FAILED** if any error occurred during workspace allocation or if provided workspace is insufficient.
- **CUDNN_STATUS_INTERNAL_ERROR** if any error occurred during timing calculations or workspace deallocation.
- Otherwise, this will be the return status of cudnnConvolutionBackwardFilter().
The execution time of `cudnnConvolutionBackwardFilter()` (in milliseconds).

The workspace size (in bytes).

The determinism of the algorithm.

The math type provided to the algorithm.

Reserved space for future properties.

3.13. `cudnnConvolutionBwdFilterAlgo_t`

`cudnnConvolutionBwdFilterAlgo_t` is an enumerated type that exposes the different algorithms available to execute the backward filter convolution operation.

Values

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

This algorithm expresses the convolution as a sum of matrix product without actually explicitly form the matrix that holds the input tensor data. The sum is done using atomic adds operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

This algorithm expresses the convolution as a matrix product without actually explicitly form the matrix that holds the input tensor data. The results are deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT

This algorithm uses the Fast-Fourier Transform approach to compute the convolution. Significant workspace is needed to store intermediate results. The results are deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3

This algorithm is similar to `CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0` but uses some small workspace to precomputes some indices. The results are also non-deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_WINOGRAD_NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution. Significant workspace may be needed to store intermediate results. The results are deterministic.
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING

This algorithm uses the Fast-Fourier Transform approach to compute the convolution but splits the input tensor into tiles. Significant workspace may be needed to store intermediate results. The results are deterministic.

3.14. cudnnConvolutionBwdFilterPreference_t

cudnnConvolutionBwdFilterPreference_t is an enumerated type used by cudnnGetConvolutionBackwardFilterAlgorithm() to help the choice of the algorithm used for the backward filter convolution.

Values

CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE

In this configuration, the routine cudnnGetConvolutionBackwardFilterAlgorithm() is guaranteed to return an algorithm that does not require any extra workspace to be provided by the user.

CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST

In this configuration, the routine cudnnGetConvolutionBackwardFilterAlgorithm() will return the fastest algorithm regardless how much workspace is needed to execute it.

CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT

In this configuration, the routine cudnnGetConvolutionBackwardFilterAlgorithm() will return the fastest algorithm that fits within the memory limit that the user provided.

3.15. cudnnConvolutionDescriptor_t

cudnnConvolutionDescriptor_t is a pointer to an opaque structure holding the description of a convolution operation. cudnnCreateConvolutionDescriptor() is used to create one instance, and cudnnSetConvolutionNdDescriptor() or cudnnSetConvolution2dDescriptor() must be used to initialize this instance.

3.16. cudnnConvolutionFwdAlgoPerf_t

cudnnConvolutionFwdAlgoPerf_t is a structure containing performance results returned by cudnnFindConvolutionForwardAlgorithm() or heuristic results returned by cudnnGetConvolutionForwardAlgorithm_v7().

Data Members

- cudnnConvolutionFwdAlgo_t algo

 The algorithm run to obtain the associated performance metrics.
cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionForward(), this status will represent that error. Otherwise, this
status will be the return status of cudnnConvolutionForward().

- CUDNN_STATUS_ALLOC_FAILED if any error occurred during workspace allocation
 or if provided workspace is insufficient.
- CUDNN_STATUS_INTERNAL_ERROR if any error occurred during timing
calculations or workspace deallocation.
- Otherwise, this will be the return status of cudnnConvolutionForward().

float time

The execution time of cudnnConvolutionForward() (in milliseconds).

size_t memory

The workspace size (in bytes).

cudnnDeterminism_t determinism

The determinism of the algorithm.

cudnnMathType_t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

3.17. cudnnConvolutionFwdAlgo_t

cudnnConvolutionFwdAlgo_t is an enumerated type that exposes the different
algorithms available to execute the forward convolution operation.

Values

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

This algorithm expresses the convolution as a matrix product without actually
explicitly form the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

This algorithm expresses the convolution as a matrix product without actually
explicitly form the matrix that holds the input tensor data, but still needs some
memory workspace to precompute some indices in order to facilitate the implicit
construction of the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_GEMM

This algorithm expresses the convolution as an explicit matrix product. A significant
memory workspace is needed to store the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_DIRECT

This algorithm expresses the convolution as a direct convolution (e.g. without
implicitly or explicitly doing a matrix multiplication).
CUDNN_CONVOLUTION_FWD_ALGO_FFT

This algorithm uses the Fast-Fourier Transform approach to compute the convolution. A significant memory workspace is needed to store intermediate results.

CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING

This algorithm uses the Fast-Fourier Transform approach but splits the inputs into tiles. A significant memory workspace is needed to store intermediate results but less than CUDNN_CONVOLUTION_FWD_ALGO_FFT for large size images.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD

This algorithm uses the Winograd Transform approach to compute the convolution. A reasonably sized workspace is needed to store intermediate results.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution. Significant workspace may be needed to store intermediate results.

3.18. cudnnConvolutionFwdPreference_t

cudnnConvolutionFwdPreference_t is an enumerated type used by cudnnGetConvolutionForwardAlgorithm() to help the choice of the algorithm used for the forward convolution.

Values

CUDNN_CONVOLUTION_FWD_NO_WORKSPACE

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm() is guaranteed to return an algorithm that does not require any extra workspace to be provided by the user.

CUDNN_CONVOLUTION_FWD_PREFER_FASTEST

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm() will return the fastest algorithm regardless how much workspace is needed to execute it.

CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm() will return the fastest algorithm that fits within the memory limit that the user provided.

3.19. cudnnConvolutionMode_t

cudnnConvolutionMode_t is an enumerated type used by cudnnSetConvolutionDescriptor() to configure a convolution descriptor. The filter used for the convolution can be applied in two different ways, corresponding mathematically to a convolution or to a cross-correlation. (A cross-correlation is equivalent to a convolution with its filter rotated by 180 degrees.)

Values
CUDNN_CONVOLUTION

In this mode, a convolution operation will be done when applying the filter to the images.

CUDNN_CROSS_CORRELATION

In this mode, a cross-correlation operation will be done when applying the filter to the images.

3.20. cudnnDataType_t

cudnnDataType_t is an enumerated type indicating the data type to which a tensor descriptor or filter descriptor refers.

Values

CUDNN_DATA_FLOAT

The data is 32-bit single-precision floating point (float).

CUDNN_DATA_DOUBLE

The data is 64-bit double-precision floating point (double).

CUDNN_DATA_HALF

The data is 16-bit floating point.

CUDNN_DATA_INT8

The data is 8-bit signed integer.

CUDNN_DATA_UINT8 (new for 7.1)

The data is 8-bit unsigned integer.

CUDNN_DATA_INT32

The data is 32-bit signed integer.

CUDNN_DATA_INT8x4

The data is 32-bit elements each composed of 4 8-bit signed integer. This data type is only supported with tensor format CUDNN_TENSOR_NCHW_VECT_C.

CUDNN_DATA_INT8x32

The data is 32-element vectors, each element being 8-bit signed integer. This data type is only supported with the tensor format CUDNN_TENSOR_NCHW_VECT_C. Moreover, this data type can only be used with “algo 1,” i.e., CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM. See cudnnConvolutionFwdAlgo_t.

CUDNN_DATA_UINT8x4 (new for 7.1)

The data is 32-bit elements each composed of 4 8-bit unsigned integer. This data type is only supported with tensor format CUDNN_TENSOR_NCHW_VECT_C.
3.21. cudnnDeterminism_t

cudnnDeterminism_t is an enumerated type used to indicate if the computed results are deterministic (reproducible). See section 2.5 (Reproducibility) for more details on determinism.

Values

CUDNN_NON_DETERMINISTIC
Results are not guaranteed to be reproducible

CUDNN_DETERMINISTIC
Results are guaranteed to be reproducible

3.22. cudnnDirectionMode_t

cudnnDirectionMode_t is an enumerated type used to specify the recurrence pattern in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Values

CUDNN_UNIDIRECTIONAL
The network iterates recurrently from the first input to the last.

CUDNN_BIDIRECTIONAL
Each layer of the network iterates recurrently from the first input to the last and separately from the last input to the first. The outputs of the two are concatenated at each iteration giving the output of the layer.

3.23. cudnnDivNormMode_t

cudnnDivNormMode_t is an enumerated type used to specify the mode of operation in cudnnDivisiveNormalizationForward() and cudnnDivisiveNormalizationBackward().

Values

CUDNN_DIVNORM_PRECOMPUTED_MEANS
The means tensor data pointer is expected to contain means or other kernel convolution values precomputed by the user. The means pointer can also be NULL, in that case it's considered to be filled with zeroes. This is equivalent to spatial LRN. Note that in the backward pass the means are treated as independent inputs and the gradient over means is computed independently. In this mode to yield a net gradient over the entire LCN computational graph the destDiffMeans result should be backpropagated through the user's means layer (which can be
implemented using average pooling) and added to the destDiffData tensor produced by cudnnDivisiveNormalizationBackward.

3.24. cudnnDropoutDescriptor_t

cudnnDropoutDescriptor_t is a pointer to an opaque structure holding the description of a dropout operation. cudnnCreateDropoutDescriptor() is used to create one instance, cudnnSetDropoutDescriptor() is used to initialize this instance, cudnnDestroyDropoutDescriptor() is used to destroy this instance, cudnnGetDropoutDescriptor() is used to query fields of a previously initialized instance, cudnnRestoreDropoutDescriptor() is used to restore an instance to a previously saved off state.

3.25. cudnnErrQueryMode_t

cudnnErrQueryMode_t is an enumerated type passed to cudnnQueryRuntimeError() to select the remote kernel error query mode.

Values

CUDNN_ERRQUERY_RAWCODE
Read the error storage location regardless of the kernel completion status.

CUDNN_ERRQUERY_NONBLOCKING
Report if all tasks in the user stream of the cuDNN handle were completed. If that is the case, report the remote kernel error code.

CUDNN_ERRQUERY_BLOCKING
Wait for all tasks to complete in the user stream before reporting the remote kernel error code.

3.26. cudnnFilterDescriptor_t

cudnnFilterDescriptor_t is a pointer to an opaque structure holding the description of a filter dataset. cudnnCreateFilterDescriptor() is used to create one instance, and cudnnSetFilter4dDescriptor() or cudnnSetFilterNdDescriptor() must be used to initialize this instance.

3.27. cudnnFoldingDirection_t

cudnnFoldingDirection_t is an enumerated type used to select the folding direction. See also cudnnTensorTransformDescriptor_t.

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_TRANSFORM_FOLD = 0U</td>
<td>Selects folding.</td>
</tr>
<tr>
<td>CUDNN_TRANSFORM_UNFOLD = 1U</td>
<td>Selects unfolding.</td>
</tr>
</tbody>
</table>

www.nvidia.com
CUDA 7.5.1
3.28. cudnnHandle_t

cudnnHandle_t is a pointer to an opaque structure holding the cuDNN library context. The cuDNN library context must be created using cudnnCreate() and the returned handle must be passed to all subsequent library function calls. The context should be destroyed at the end using cudnnDestroy(). The context is associated with only one GPU device, the current device at the time of the call to cudnnCreate(). However multiple contexts can be created on the same GPU device.

3.29. cudnnIndicesType_t

cudnnIndicesType_t is an enumerated type used to indicate the data type for the indices to be computed by the cudnnReduceTensor() routine. This enumerated type is used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values

- CUDNN_32BIT_INDICES
 - Compute unsigned int indices
- CUDNN_64BIT_INDICES
 - Compute unsigned long long indices
- CUDNN_16BIT_INDICES
 - Compute unsigned short indices
- CUDNN_8BIT_INDICES
 - Compute unsigned char indices

3.30. cudnnLRNMode_t

cudnnLRNMode_t is an enumerated type used to specify the mode of operation in cudnnLRNCrossChannelForward() and cudnnLRNCrossChannelBackward().

Values

- CUDNN_LRN_CROSS_CHANNEL_DIM1
 - LRN computation is performed across tensor’s dimension dimA[1].

3.31. cudnnMathType_t

cudnnMathType_t is an enumerated type used to indicate if the use of Tensor Core Operations is permitted a given library routine.

Values
CUDNN_DEFAULT_MATH
Tensor Core Operations are not used.

CUDNN_TENSOR_OP_MATH
The use of Tensor Core Operations is permitted.

CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION
Enables the use of FP32 tensors for both input and output.

3.32. cudnnMultiHeadAttnWeightKind_t

cudnnMultiHeadAttnWeightKind_t is an enumerated type to specify the multi-head weight group.

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_ATTN_Q_WEIGHTS = 0</td>
<td>Selects the multi-head query weight group.</td>
</tr>
<tr>
<td>CUDNN_ATTN_K_WEIGHTS = 1</td>
<td>Selects the multi-head key weight group.</td>
</tr>
<tr>
<td>CUDNN_ATTN_V_WEIGHTS = 2</td>
<td>Selects the multi-head value weight group.</td>
</tr>
<tr>
<td>CUDNN_ATTN_O_WEIGHTS = 3</td>
<td>Selects the multi-head output weight group.</td>
</tr>
</tbody>
</table>

3.33. cudnnNanPropagation_t

cudnnNanPropagation_t is an enumerated type used to indicate if a given routine should propagate Nan numbers. This enumerated type is used as a field for the cudnnActivationDescriptor_t descriptor and cudnnPoolingDescriptor_t descriptor.

Values
CUDNN_NOT_PROPAGATE_NAN
Nan numbers are not propagated
CUDNN_PROPAGATE_NAN
Nan numbers are propagated

3.34. cudnnOpTensorDescriptor_t

cudnnOpTensorDescriptor_t is a pointer to an opaque structure holding the description of a Tensor Core Operation, used as a parameter to cudnnOpTensor().
cudnnCreateOpTensorDescriptor() is used to create one instance, and cudnnSetOpTensorDescriptor() must be used to initialize this instance.
3.35. cudnnOpTensorOp_t

`cudnnOpTensorOp_t` is an enumerated type used to indicate the Tensor Core Operation to be used by the `cudnnOpTensor()` routine. This enumerated type is used as a field for the `cudnnOpTensorDescriptor_t` descriptor.

Values

- **CUDNN_OP_TENSOR_ADD**

 The operation to be performed is addition

- **CUDNN_OP_TENSOR_MUL**

 The operation to be performed is multiplication

- **CUDNN_OP_TENSOR_MIN**

 The operation to be performed is a minimum comparison

- **CUDNN_OP_TENSOR_MAX**

 The operation to be performed is a maximum comparison

- **CUDNN_OP_TENSOR_SQRT**

 The operation to be performed is square root, performed on only the A tensor

- **CUDNN_OP_TENSOR_NOT**

 The operation to be performed is negation, performed on only the A tensor

3.36. cudnnPersistentRNNPlan_t

`cudnnPersistentRNNPlan_t` is a pointer to an opaque structure holding a plan to execute a dynamic persistent RNN. `cudnnCreatePersistentRNNPlan()` is used to create and initialize one instance.

3.37. cudnnPoolingDescriptor_t

`cudnnPoolingDescriptor_t` is a pointer to an opaque structure holding the description of a pooling operation. `cudnnCreatePoolingDescriptor()` is used to create one instance, and `cudnnSetPoolingNdDescriptor()` or `cudnnSetPooling2dDescriptor()` must be used to initialize this instance.

3.38. cudnnPoolingMode_t

`cudnnPoolingMode_t` is an enumerated type passed to `cudnnSetPoolingDescriptor()` to select the pooling method to be used by `cudnnPoolingForward()` and `cudnnPoolingBackward()`.
Values

CUDNN_POOLING_MAX

The maximum value inside the pooling window is used.

CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING

Values inside the pooling window are averaged. The number of elements used to calculate the average includes spatial locations falling in the padding region.

CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING

Values inside the pooling window are averaged. The number of elements used to calculate the average excludes spatial locations falling in the padding region.

CUDNN_POOLING_MAX_DETERMINISTIC

The maximum value inside the pooling window is used. The algorithm used is deterministic.

3.39. cudnnRNNAlgo_t

cudnnRNNAlgo_t is an enumerated type used to specify the algorithm used in the `cudnnRNNForwardInference()`, `cudnnRNNForwardTraining()`, `cudnnRNNBackwardData()` and `cudnnRNNBackwardWeights()` routines.

Values

CUDNN_RNN_ALGO_STANDARD

Each RNN layer is executed as a sequence of operations. This algorithm is expected to have robust performance across a wide range of network parameters.

CUDNN_RNN_ALGO_PERSIST_STATIC

The recurrent parts of the network are executed using a *persistent kernel* approach. This method is expected to be fast when the first dimension of the input tensor is small (i.e. a small minibatch).

CUDNN_RNN_ALGO_PERSIST_STATIC is only supported on devices with compute capability >= 6.0.

CUDNN_RNN_ALGO_PERSIST_DYNAMIC

The recurrent parts of the network are executed using a *persistent kernel* approach. This method is expected to be fast when the first dimension of the input tensor is small (i.e. a small minibatch). When using **CUDNN_RNN_ALGO_PERSIST_DYNAMIC** persistent kernels are prepared at runtime and are able to optimized using the specific parameters of the network and active GPU. As such, when using **CUDNN_RNN_ALGO_PERSIST_DYNAMIC** a one-time plan preparation stage must be executed. These plans can then be reused in repeated calls with the same model parameters.

The limits on the maximum number of hidden units supported when using **CUDNN_RNN_ALGO_PERSIST_DYNAMIC** are significantly higher than the limits when using **CUDNN_RNN_ALGO_PERSIST_STATIC**, however throughput is likely to significantly reduce when exceeding the maximums supported by...
In this regime this method will still outperform
\texttt{CUDNN_RNN_ALGO_STANDARD} for some cases.

\texttt{CUDNN_RNN_ALGO_PERSIST_DYNAMIC} is only supported on devices with compute
capability ≥ 6.0 on Linux machines.

\section*{3.40. cudnnRNNBiasMode_t}

cudnnRNNBiasMode_t is an enumerated type used to specify the number of bias
vectors for RNN functions. See the description of the cudnnRNNMode_t enumerated
type for the equations for each cell type based on the bias mode.

Values

- \texttt{CUDNN_RNN_NO_BIAS}
 - Applies RNN cell formulas that do not use biases.

- \texttt{CUDNN_RNN_SINGLE_INP_BIAS}
 - Applies RNN cell formulas that use one input bias vector in the input GEMM.

- \texttt{CUDNN_RNN_DOUBLE_BIAS}
 - Applies RNN cell formulas that use two bias vectors.

- \texttt{CUDNN_RNN_SINGLE_REC_BIAS}
 - Applies RNN cell formulas that use one recurrent bias vector in the recurrent GEMM.

\section*{3.41. cudnnRNNClipMode_t}

cudnnRNNClipMode_t is an enumerated type used to select the LSTM cell clipping
mode. It is used with cudnnRNNSetClip(), cudnnRNNGetClip() functions, and
internally within LSTM cells.

Values

- \texttt{CUDNN_RNN_CLIP_NONE}
 - Disables LSTM cell clipping.

- \texttt{CUDNN_RNN_CLIP_MINMAX}
 - Enables LSTM cell clipping.

\section*{3.42. cudnnRNNDescriptor_t}

cudnnRNNDescriptor_t is a pointer to an opaque structure holding the description of
an RNN operation. cudnnCreateRNNDescriptor() is used to create one instance, and
cudnnSetRNNDescriptor() must be used to initialize this instance.
3.43. cudnnRNNDataDescriptor_t

cudnnRNNDataDescriptor_t is a pointer to an opaque structure holding the description of a RNN data set. The function cudnnCreateRNNDataDescriptor() is used to create one instance, and cudnnSetRNNDataDescriptor() must be used to initialize this instance.

3.44. cudnnRNNInputMode_t

cudnnRNNInputMode_t is an enumerated type used to specify the behavior of the first layer in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Values

CUDNN_LINEAR_INPUT
A biased matrix multiplication is performed at the input of the first recurrent layer.

CUDNN_SKIP_INPUT
No operation is performed at the input of the first recurrent layer. If cudnnRNNInputMode_t is used the leading dimension of the input tensor must be equal to the hidden state size of the network.

3.45. cudnnRNNMode_t

cudnnRNNMode_t is an enumerated type used to specify the type of network used in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Values

CUDNN_RNN_RELU
A single-gate recurrent neural network with a ReLU activation function.

In the forward pass, the output h_t for a given iteration can be computed from the recurrent input h_{t-1} and the previous layer input x_t given the matrices W, R and the bias vectors, where $ReLU(x) = \max(x, 0)$.

If cudnnRNNBiasMode_t in rnnDesc is CUDNN_RNN_DOUBLE_BIAS (default mode), then the following equation with biases b_W and b_R applies:

$$ h_t = ReLU(W_i x_t + R_i h_{t-1} + b_W + b_R) $$

If cudnnRNNBiasMode_t in rnnDesc is CUDNN_RNN_SINGLE_INP_BIAS or CUDNN_RNN_SINGLE_REC_BIAS, then the following equation with bias b applies:

$$ h_t = ReLU(W_i x_t + R_i h_{t-1} + b) $$
If `cudnnRNNBiasMode_t biasMode in rnnDesc` is `CUDNN_RNN_NO_BIAS`, then the following equation applies:

\[h_t = \text{ReLU}(W_i x_t + R_i h_{t-1}) \]

CUDNN_RNN_TANH

A single-gate recurrent neural network with a \text{tanh} activation function.

In the forward pass, the output \(h_c \) for a given iteration can be computed from the recurrent input \(h_{t-1} \) and the previous layer input \(x_t \), given the matrices \(W, R \) and the bias vectors, and where \text{tanh} is the hyperbolic tangent function.

If `cudnnRNNBiasMode_t biasMode in rnnDesc` is `CUDNN_RNN_DOUBLE_BIAS` (default mode), then the following equation with biases \(b_W \) and \(b_R \) applies:

\[h_t = \tanh(W_i x_t + R_i h_{t-1} + b_W + b_R) \]

If `cudnnRNNBiasMode_t biasMode in rnnDesc` is `CUDNN_RNN_SINGLE_INP_BIAS` or `CUDNN_RNN_SINGLE_REC_BIAS`, then the following equation with bias \(b \) applies:

\[h_t = \tanh(W_i x_t + R_i h_{t-1} + b) \]

If `cudnnRNNBiasMode_t biasMode in rnnDesc` is `CUDNN_RNN_NO_BIAS`, then the following equation applies:

\[h_t = \tanh(W_i x_t + R_i h_{t-1}) \]

CUDNN_LSTM

A four-gate Long Short-Term Memory network with no peephole connections.

In the forward pass, the output \(h_c \) and cell output \(c_t \) for a given iteration can be computed from the recurrent input \(h_{t-1} \), the cell input \(c_{t-1} \) and the previous layer input \(x_t \), given the matrices \(W, R \) and the bias vectors.

In addition, the following applies:

- \(\sigma \) is the sigmoid operator such that: \(\sigma(x) = 1 / (1 + e^{-x}) \),
- \(\circ \) represents a point-wise multiplication,
- \text{tanh} is the hyperbolic tangent function, and
- \(i_t, f_t, o_t, c'_t \) represent the input, forget, output and new gates respectively.

If `cudnnRNNBiasMode_t biasMode in rnnDesc` is `CUDNN_RNN_DOUBLE_BIAS` (default mode), then the following equations with biases \(b_W \) and \(b_R \) apply:

\[
\begin{align*}
i_t &= \sigma(W_i x_t + R_i h_{t-1} + b_W + b_R) \\
f_t &= \sigma(W_i x_t + R_i h_{t-1} + b_W + b_R) \\
o_t &= \sigma(W_i x_t + R_i h_{t-1} + b_W + b_R) \\
c_t &= f_t \circ c_{t-1} + i_t \circ c'_t \\
h_t &= o_t \circ \tanh(c_t)
\end{align*}
\]

If `cudnnRNNBiasMode_t biasMode in rnnDesc` is `CUDNN_RNN_SINGLE_INP_BIAS` or `CUDNN_RNN_SINGLE_REC_BIAS`, then the following equations with bias \(b \) apply:

\[
\begin{align*}
i_t &= \sigma(W_i x_t + R_i h_{t-1} + b) \\
f_t &= \sigma(W_i x_t + R_i h_{t-1} + b) \\
o_t &= \sigma(W_i x_t + R_i h_{t-1} + b) \\
c_t &= f_t \circ c_{t-1} + i_t \circ c'_t \\
h_t &= o_t \circ \tanh(c_t)
\end{align*}
\]
If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN_NO_BIAS, then the following equations apply:

\[\begin{align*}
 i_t &= \sigma(W_i x_t + R_i h_{t-1}) \\
 f_t &= \sigma(W_f x_t + R_f h_{t-1}) \\
 o_t &= \sigma(W_o x_t + R_o h_{t-1}) \\
 c'_t &= \tanh(W_c x_t + R_c h_{t-1}) \\
 c_t &= f_t \odot c_{t-1} + i_t \odot c'_t \\
 h_t &= o_t \odot \tanh(c_t)
\end{align*}\]

CUDNN_GRU

A three-gate network consisting of Gated Recurrent Units.

In the forward pass, the output \(h_t\) for a given iteration can be computed from the recurrent input \(h_{t-1}\) and the previous layer input \(x_t\) given matrices \(W, R\) and the bias vectors.

In addition, \(\sigma\) is the sigmoid operator: \(\sigma(x) = 1 / (1 + e^{-x})\), \(\odot\) represents a point-wise multiplication and \(\tanh\) is the hyperbolic tangent function. \(i_t, f_t, h'\) represent the input, reset, new gates respectively.

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN_DOUBLE_BIAS (default mode), then the following equations with biases \(b_W\) and \(b_R\) apply:

\[\begin{align*}
 i_t &= \sigma(W_i x_t + R_i h_{t-1} + b_{W_i}) \\
 r_t &= \sigma(W_r x_t + R_r h_{t-1} + b_{W_r}) \\
 h'_t &= \tanh(W_h x_t + r_t \odot (R_h h_{t-1} + b_{R_h}) + b_{W_h}) \\
 h_t &= (1 - i_t) \odot h'_t + i_t \odot h_{t-1}
\end{align*}\]

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN_SINGLE_INP_BIAS, then the following equations with bias \(b\) apply:

\[\begin{align*}
 i_t &= \sigma(W_i x_t + R_i h_{t-1} + b_i) \\
 r_t &= \sigma(W_r x_t + R_r h_{t-1} + b_r) \\
 h'_t &= \tanh(W_h x_t + r_t \odot (R_h h_{t-1} + b_{R_h}) + b_{W_h}) \\
 h_t &= (1 - i_t) \odot h'_t + i_t \odot h_{t-1}
\end{align*}\]

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN_SINGLE_REC_BIAS, then the following equations with bias \(b\) apply:

\[\begin{align*}
 i_t &= \sigma(W_i x_t + R_i h_{t-1} + b_i) \\
 r_t &= \sigma(W_r x_t + R_r h_{t-1} + b_r) \\
 h'_t &= \tanh(W_h x_t + r_t \odot (R_h h_{t-1} + b_{R_h})) \\
 h_t &= (1 - i_t) \odot h'_t + i_t \odot h_{t-1}
\end{align*}\]

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN_NO_BIAS, then the following equations apply:

\[\begin{align*}
 i_t &= \sigma(W_i x_t + R_i h_{t-1}) \\
 r_t &= \sigma(W_r x_t + R_r h_{t-1}) \\
 h'_t &= \tanh(W_h x_t + r_t \odot (R_h h_{t-1})) \\
 h_t &= (1 - i_t) \odot h'_t + i_t \odot h_{t-1}
\end{align*}\]
cudnnRNNPaddingMode_t is an enumerated type used to enable or disable the padded input/output.

Values

- CUDNN_RNN_PADDeded_IO_DISABLED
 Enables the padded input/output.
- CUDNN_RNN_PADDeded_IO_ENABLED
 Enables the padded input/output.

3.47. cudnnReduceTensorDescriptor_t

cudnnReduceTensorDescriptor_t is a pointer to an opaque structure holding the description of a tensor reduction operation, used as a parameter to cudnnReduceTensor(). cudnnCreateReduceTensorDescriptor() is used to create one instance, and cudnnSetReduceTensorDescriptor() must be used to initialize this instance.

3.48. cudnnReduceTensorIndices_t

cudnnReduceTensorIndices_t is an enumerated type used to indicate whether indices are to be computed by the cudnnReduceTensor() routine. This enumerated type is used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values

- CUDNN_REDUCE_TENSOR_NO_INDICES
 Do not compute indices
- CUDNN_REDUCE_TENSOR_FLATTENED_INDICES
 Compute indices. The resulting indices are relative, and flattened.

3.49. cudnnReduceTensorOp_t

cudnnReduceTensorOp_t is an enumerated type used to indicate the Tensor Core Operation to be used by the cudnnReduceTensor() routine. This enumerated type is used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values

- CUDNN_REDUCE_TENSOR_ADD
 The operation to be performed is addition
- CUDNN_REDUCE_TENSOR_MUL
 The operation to be performed is multiplication
- CUDNN_REDUCE_TENSOR_MIN
 The operation to be performed is a minimum comparison
3.50. cudnnSamplerType_t

cudnnSamplerType_t is an enumerated type passed to cudnnSetSpatialTransformerNdDescriptor() to select the sampler type to be used by cudnnSpatialTfSamplerForward() and cudnnSpatialTfSamplerBackward().

Values

CUDNN_SAMPLER_BILINEAR
 Selects the bilinear sampler.

3.51. cudnnSeqDataAxis_t

cudnnSeqDataAxis_t is an enumerated type to specify each supported sequence data axis.

For continued API compatibility, the user is recommended to use these enumerated labels when fetching and storing axes-arrays such as dimA, and axes.

User should:

1. Specify the dimension of sequence data buffer as follows:
   ```c
   int dimA[CUDNN_SEQDATA_DIM_COUNT];
   dimA[CUDNN_SEQDATA_TIME_DIM] = n_timesteps;
   dimA[CUDNN_SEQDATA_BATCH_DIM] = n_batch;
   dimA[CUDNN_SEQDATA_BEAM_DIM] = beam_size;
   dimA[CUDNN_SEQDATA_VECT_DIM] = hidden_size;
   ```

2. Specify the axes order as follows:
   ```c
   cudnnSeqDataAxis_t axes[CUDNN_SEQDATA_DIM_COUNT] =
   { CUDNN_SEQDATA_TIME_DIM,
     CUDNN_SEQDATA_BATCH_DIM,
     CUDNN_SEQDATA_BEAM_DIM,
     CUDNN_SEQDATA_VECT_DIM};
   ```
The CUDNN_SEQDATA_DIM_COUNT defines the number of supported dimensions or axes for sequential data. This value is currently set to 4.

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_SEQDATA_TIME_DIM = 0</td>
<td>Time step index.</td>
</tr>
<tr>
<td>CUDNN_SEQDATA_BATCH_DIM = 1</td>
<td>Batch index.</td>
</tr>
<tr>
<td>CUDNN_SEQDATA_BEAM_DIM = 2</td>
<td>Beam index.</td>
</tr>
<tr>
<td>CUDNN_SEQDATA_VECT_DIM = 3</td>
<td>Hidden vector index.</td>
</tr>
</tbody>
</table>

The user is advised against using the equivalent integer values for the enumerated labels.

3.52. cudnnSeqDataDescriptor_t

cudnnSeqDataDescriptor_t is a pointer to an opaque structure holding the description of sequence data. Use the function cudnnCreateSeqDataDescriptor to create one instance, and cudnnDestroySeqDataDescriptor to destroy a previously created descriptor.

3.53. cudnnSoftmaxAlgorithm_t

cudnnSoftmaxAlgorithm_t is used to select an implementation of the softmax function used in cudnnSoftmaxForward() and cudnnSoftmaxBackward().

Values

CUDNN_SOFTMAX_FAST

This implementation applies the straightforward softmax operation.

CUDNN_SOFTMAX_ACCURATE

This implementation scales each point of the softmax input domain by its maximum value to avoid potential floating point overflows in the softmax evaluation.

CUDNN_SOFTMAX_LOG

This entry performs the Log softmax operation, avoiding overflows by scaling each point in the input domain as in CUDNN_SOFTMAX_ACCURATE

3.54. cudnnSoftmaxMode_t

cudnnSoftmaxMode_t is used to select over which data the cudnnSoftmaxForward() and cudnnSoftmaxBackward() are computing their results.

Values
CUDNN_SOFTMAX_MODE_INSTANCE
The softmax operation is computed per image (N) across the dimensions C,H,W.

CUDNN_SOFTMAX_MODE_CHANNEL
The softmax operation is computed per spatial location (H,W) per image (N) across the dimension C.

3.55. cudnnSpatialTransformerDescriptor_t

cudnnSpatialTransformerDescriptor_t is a pointer to an opaque structure holding the description of a spatial transformation operation.
cudnnCreateSpatialTransformerDescriptor() is used to create one instance,
cudnnSetSpatialTransformerNdDescriptor() is used to initialize this instance,
cudnnDestroySpatialTransformerDescriptor() is used to destroy this instance.

3.56. cudnnStatus_t

cudnnStatus_t is an enumerated type used for function status returns. All cuDNN library functions return their status, which can be one of the following values:

Values
CUDNN_STATUS_SUCCESS
The operation completed successfully.

CUDNN_STATUS_NOT_INITIALIZED
The cuDNN library was not initialized properly. This error is usually returned when a call to cudnnCreate() fails or when cudnnCreate() has not been called prior to calling another cuDNN routine. In the former case, it is usually due to an error in the CUDA Runtime API called by cudnnCreate() or by an error in the hardware setup.

CUDNN_STATUS_ALLOC_FAILED
Resource allocation failed inside the cuDNN library. This is usually caused by an internal cudaMalloc() failure.
To correct: prior to the function call, deallocate previously allocated memory as much as possible.

CUDNN_STATUS_BAD_PARAM
An incorrect value or parameter was passed to the function.
To correct: ensure that all the parameters being passed have valid values.

CUDNN_STATUS_ARCH_MISMATCH
The function requires a feature absent from the current GPU device. Note that cuDNN only supports devices with compute capabilities greater than or equal to 3.0.
To correct: compile and run the application on a device with appropriate compute capability.
CUDNN_STATUS_MAPPING_ERROR

An access to GPU memory space failed, which is usually caused by a failure to bind a texture.

To correct: prior to the function call, unbind any previously bound textures.

Otherwise, this may indicate an internal error/bug in the library.

CUDNN_STATUS_EXECUTION_FAILED

The GPU program failed to execute. This is usually caused by a failure to launch some cuDNN kernel on the GPU, which can occur for multiple reasons.

To correct: check that the hardware, an appropriate version of the driver, and the cuDNN library are correctly installed.

Otherwise, this may indicate a internal error/bug in the library.

CUDNN_STATUS_INTERNAL_ERROR

An internal cuDNN operation failed.

CUDNN_STATUS_NOT_SUPPORTED

The functionality requested is not presently supported by cuDNN.

CUDNN_STATUS_LICENSE_ERROR

The functionality requested requires some license and an error was detected when trying to check the current licensing. This error can happen if the license is not present or is expired or if the environment variable NVIDIA_LICENSE_FILE is not set properly.

CUDNN_STATUS_Runtime_PREREQUISITE_MISSING

Runtime library required by RNN calls (libcudal.so or nvcuda.dll) cannot be found in predefined search paths.

CUDNN_STATUS_Runtime_IN_PROGRESS

Some tasks in the user stream are not completed.

CUDNN_STATUS_Runtime_FP_OVERFLOW

Numerical overflow occurred during the GPU kernel execution.

3.57. cudnnTensorDescriptor_t

cudnnCreateTensorDescriptor_t is a pointer to an opaque structure holding the description of a generic n-D dataset. cudnnCreateTensorDescriptor() is used to create one instance, and one of the routines cudnnSetTensorNdDescriptor(), cudnnSetTensor4dDescriptor() or cudnnSetTensor4dDescriptorEx() must be used to initialize this instance.

3.58. cudnnTensorFormat_t
cudnnTensorFormat_t is an enumerated type used by cudnnSetTensor4dDescriptor() to create a tensor with a pre-defined layout. For a detailed explanation of how these Tensors are arranged in memory, see Data Layout Formats.

Values

CUDNN_TENSOR_NCHW

This tensor format specifies that the data is laid out in the following order: batch size, feature maps, rows, columns. The strides are implicitly defined in such a way that the data are contiguous in memory with no padding between images, feature maps, rows, and columns; the columns are the inner dimension and the images are the outermost dimension.

CUDNN_TENSOR_NHWC

This tensor format specifies that the data is laid out in the following order: batch size, rows, columns, feature maps. The strides are implicitly defined in such a way that the data are contiguous in memory with no padding between images, rows, columns, and feature maps; the feature maps are the inner dimension and the images are the outermost dimension.

CUDNN_TENSOR_NCHW_VECT_C

This tensor format specifies that the data is laid out in the following order: batch size, feature maps, rows, columns. However, each element of the tensor is a vector of multiple feature maps. The length of the vector is carried by the data type of the tensor. The strides are implicitly defined in such a way that the data are contiguous in memory with no padding between images, feature maps, rows, and columns; the columns are the inner dimension and the images are the outermost dimension. This format is only supported with tensor data types CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32, and CUDNN_DATA_UINT8x4.

The CUDNN_TENSOR_NCHW_VECT_C can also be interpreted in the following way: The NCHW INT8x32 format is really N x (C/32) x H x W x 32 (32 Cs for every W), just as the NCHW INT8x4 format is N x (C/4) x H x W x 4 (4 Cs for every W). Hence the "VECT_C" name - each W is a vector (4 or 32) of Cs.

3.59. cudnnTensorTransformDescriptor_t

cudnnTensorTransformDescriptor_t is an opaque structure containing the description of the Tensor transform. Use the cudnnCreateTensorTransformDescriptor function to create an instance of this descriptor, and cudnnDestroyTensorTransformDescriptor function to destroy a previously created instance.

3.60. cudnnWgradMode_t

cudnnWgradMode_t is an enumerated type to select how the weight gradient output buffers should be updated with the partial gradients.
<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_WGRAD_MODE_ADD = 0</td>
<td>Adds the partial gradients to the weight gradient output buffers (i.e., weight gradient output buffers = weight gradient output buffers + partial gradients).</td>
</tr>
<tr>
<td>CUDNN_WGRAD_MODE_ADD = 1</td>
<td>Replaces the weight gradient output buffer values with the partial gradients (i.e., weight gradient output buffers = partial gradients).</td>
</tr>
</tbody>
</table>
This chapter describes the API of all the routines of the cuDNN library.

4.1. cudnnActivationBackward

This routine computes the gradient of a neuron activation function.

In-place operation is allowed for this routine; i.e. \(\text{dy} \) and \(\text{dx} \) pointers may be equal. However, this requires the corresponding tensor descriptors to be identical (particularly, the strides of the input and output must match for in-place operation to be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance is obtained when the strides of \(\text{yDesc} \) and \(\text{xDesc} \) are equal and \text{HW-packed}. For more than 5 dimensions the tensors must have their spatial dimensions packed.

Parameters

handle

Input. Handle to a previously created cuDNN context. See \cudnnHandle_t\.

activationDesc

Input. Activation descriptor. See \cudnnActivationDescriptor_t\.

```c
#include <cudnn.h>

// Function declaration
int cudnnActivationBackward(
    cudnnHandle_t handle,
    cudnnActivationDescriptor_t activationDesc,
    const void *alpha,
    const cudnnTensorDescriptor_t yDesc,
    const void *y,
    const cudnnTensorDescriptor_t dyDesc,
    const void *dy,
    const cudnnTensorDescriptor_t xDesc,
    const void *x,
    const void *beta,
    const cudnnTensorDescriptor_t dxDesc,
    void *dx)
```
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Refer to this section for additional details.

yDesc

Input. Handle to the previously initialized input tensor descriptor. See cudnnTensorDescriptor_t.

y

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.

xDesc

Input. Handle to the previously initialized output tensor descriptor.

x

Input. Data pointer to GPU memory associated with the output tensor descriptor xDesc.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.

dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The strides nStride, cStride, hStride, wStride of the input differential tensor and output differential tensors differ and in-place operation is used.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The dimensions n, c, h, w of the input tensor and output tensors differ.
- The datatype of the input tensor and output tensors differs.
The strides \texttt{nStride}, \texttt{cStride}, \texttt{hStride}, \texttt{wStride} of the input tensor and the input differential tensor differ.

The strides \texttt{nStride}, \texttt{cStride}, \texttt{hStride}, \texttt{wStride} of the output tensor and the output differential tensor differ.

\textbf{CUDNN_STATUS_EXECUTION_FAILED}

The function failed to launch on the GPU.

\section*{4.2. \texttt{cudnnActivationForward}}

\begin{verbatim}
cudnnStatus_t cudnnActivationForward(
 cudnnHandle_t handle,
 cudnnActivationDescriptor_t activationDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)
\end{verbatim}

This routine applies a specified neuron activation function element-wise over each input value.

- **In-place operation is allowed for this routine; i.e.,** \texttt{xData} and \texttt{yData} pointers may be equal. However, this requires \texttt{xDesc} and \texttt{yDesc} descriptors to be identical (particularly, the strides of the input and output must match for in-place operation to be allowed).

- **All tensor formats are supported for 4 and 5 dimensions, however best performance is obtained when the strides of \texttt{xDesc} and \texttt{yDesc} are equal andHW-packed. For more than 5 dimensions the tensors must have their spatial dimensions packed.**

Parameters

handle

\textit{Input.} Handle to a previously created cuDNN context. See \texttt{cudnnHandle_t}.

activationDesc

\textit{Input.} Activation descriptor. See \texttt{cudnnActivationDescriptor_t}.

alpha, beta

\textit{Input.} Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

\textit{Input.} Handle to the previously initialized input tensor descriptor. See \texttt{cudnnTensorDescriptor_t}.

x

\textit{Input.} Data pointer to GPU memory associated with the tensor descriptor \texttt{xDesc}.
yDesc

Input. Handle to the previously initialized output tensor descriptor.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The parameter *mode* has an invalid enumerant value.
- The dimensions *n, c, h, w* of the input tensor and output tensors differ.
- The *datatype* of the input tensor and output tensors differs.
- The strides *nStride, cStride, hStride, wStride* of the input tensor and output tensors differ and in-place operation is used (i.e., *x* and *y* pointers are equal).

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.3. cudnnAddTensor

```c

cudnnStatus_t cudnnAddTensor(
    cudnnHandle_t                     handle,
    const void                       *alpha,
    const cudnnTensorDescriptor_t     aDesc,
    const void                       *A,
    const void                       *beta,
    const cudnnTensorDescriptor_t     cDesc,
    void                             *C)
```

This function adds the scaled values of a bias tensor to another tensor. Each dimension of the bias tensor *A* must match the corresponding dimension of the destination tensor *C* or must be equal to 1. In the latter case, the same value from the bias tensor for those dimensions will be used to blend into the *C* tensor.

Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this routine is not supported

Parameters
handle

Input. Handle to a previously created cuDNN context. See `cudnnHandle_t`.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue + beta[0]*priorDstValue. Refer to this section for additional details.

aDesc

Input. Handle to a previously initialized tensor descriptor. See `cudnnTensorDescriptor_t`.

A

Input. Pointer to data of the tensor described by the `aDesc` descriptor.

cDesc

Input. Handle to a previously initialized tensor descriptor.

C

Input/Output. Pointer to data of the tensor described by the `cDesc` descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

`CUDNN_STATUS_SUCCESS`

The function executed successfully.

`CUDNN_STATUS_NOT_SUPPORTED`

The function does not support the provided configuration.

`CUDNN_STATUS_BAD_PARAM`

The dimensions of the bias tensor refer to an amount of data that is incompatible the output tensor dimensions or the `dataType` of the two tensor descriptors are different.

`CUDNN_STATUS_EXECUTION_FAILED`

The function failed to launch on the GPU.

4.4. cudnnBatchNormalizationBackward

cudnnStatus_t cudnnBatchNormalizationBackward(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 const void *alphaDataDiff,
 const void *betaDataDiff,
 const void *alphaParamDiff,
 const void *betaParamDiff,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx,
 const cudnnTensorDescriptor_t bnScaleBiasDiffDesc,
 const void *bnScale,
This function performs the backward batch normalization layer computation. This layer is based on the paper *Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift*, S. Ioffe, C. Szegedy, 2015.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.

*alphaDataDiff, *betaDataDiff*

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output \(dx \) with a prior value in the destination tensor as follows:

\[
\text{dstValue} = \alpha_{\text{DataDiff}}[0]*\text{resultValue} + \beta_{\text{DataDiff}}[0]*\text{priorDstValue}.
\]

Refer to this section for additional details.

*alphaParamDiff, *betaParamDiff*

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs \(\text{resultBnScaleDiff} \) and \(\text{resultBnBiasDiff} \) with prior values in the destination tensor as follows:

\[
\text{dstValue} = \alpha_{\text{ParamDiff}}[0]*\text{resultValue} + \beta_{\text{ParamDiff}}[0]*\text{priorDstValue}.
\]

Refer to this section for additional details.

xDesc, dxDesc, dyDesc

Inputs. Handles to the previously initialized tensor descriptors.

x

Input. Data pointer to GPU memory associated with the tensor descriptor \(xDesc \), for the layer’s \(x \) data.

Only 4D and 5D tensors are supported.

The \(\epsilon \) value has to be the same during training, backpropagation and inference.

Higher performance can be obtained when HW-packed tensors are used for all of \(x, dy, dx \).
*dy

Inputs. Data pointer to GPU memory associated with the tensor descriptor dyDesc, for the backpropagated differential dy input.

*dx

Inputs. Data pointer to GPU memory associated with the tensor descriptor dxDesc, for the resulting differential output with respect to x.

bnScaleBiasDiffDesc

Input. Shared tensor descriptor for the following five tensors: bnScale, resultBnScaleDiff, resultBnBiasDiff, savedMean, savedInvVariance. The dimensions for this tensor descriptor are dependent on normalization mode. See cudnnDeriveBNTensorDescriptor.

The data type of this tensor descriptor must be ‘float’ for FP16 and FP32 input tensors, and ‘double’ for FP64 input tensors.

*bnScale

Input. Pointer in the device memory for the batch normalization scale parameter (in original paper the quantity scale is referred to as gamma).

The bnBias parameter is not needed for this layer’s computation.

resultBnScaleDiff, resultBnBiasDiff

Outputs. Pointers in device memory for the resulting scale and bias differentials computed by this routine. Note that these scale and bias gradients are weight gradients specific to this batch normalization operation, and by definition are not backpropagated.

epsilon

Input. Epsilon value used in batch normalization formula. Its value should be equal to or greater than the value defined for CUDNN_BN_MIN_EPSILON in cudnn.h. Same epsilon value should be used in forward and backward functions.

*savedMean, *savedInvVariance

Inputs. Optional cache parameters containing saved intermediate results that were computed during the forward pass. For this to work correctly, the layer’s x and bnScale data has to remain unchanged until this backward function is called.

Both these parameters can be NULL but only at the same time. It is recommended to use this cache since the memory overhead is relatively small.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDDN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- Any of the pointers alpha, beta, x, dy, dx, bnScale, resultBnScaleDiff, resultBnBiasDiff is NULL.
- Number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- bnScaleBiasDiffDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- Exactly one of savedMean, savedInvVariance pointers is NULL.
- epsilon value is less than CUDNN_BN_MIN_EPSILON.
- Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.5. cudnnBatchNormalizationBackwardEx

cudnnStatus_t cudnnBatchNormalizationBackwardEx (
cudnnHandle_t handle,
cudnnBatchNormMode_t mode,
cudnnBatchNormOp_t bnOps,
const void *alphaDataDiff,
const void *betaDataDiff,
const void *alphaParamDiff,
const void *betaParamDiff,
const cudnnTensorDescriptor_t xDesc,
const void *xData,
const cudnnTensorDescriptor_t yDesc,
const void *yData,
const cudnnTensorDescriptor_t dyDesc,
const void *dyData,
const cudnnTensorDescriptor_t dzDesc,
const void *dzData,
const cudnnTensorDescriptor_t dxDesc,
const void *dxData,
const cudnnTensorDescriptor_t d_bnScaleBiasDesc,
const void *bnScaleData,
const void *bnBiasData,
void *d_bnScaleData,
void *d_bnBiasData,
double epsilon,
const void *savedMean,
const void *savedInvVariance,
const cudnnActivationDescriptor_t activationDesc,
const void *workspace,
size_t workSpaceSizeInBytes
void *reserveSpace,
size_t reserveSpaceSizeInBytes);

This function is an extension of the cudnnBatchNormalizationBackward() for performing the backward batch normalization layer computation with a fast NHWC semi-persistent kernel. This API will trigger the new semi-persistent NHWC kernel when the below conditions are true:

- All tensors, namely, x, y, dz, dy, dx must be NHWC-fully packed, and must be of the type CUDNN_DATA_HALF.
- The tensor C dimension should be a multiple of 4.
The input parameter `mode` must be set to `CUDNN_BATCHNORM_SPATIAL_PERSISTENT`.

- `workspace` is not NULL.
- `workSpaceSizeInBytes` is equal or larger than the amount required by `cudnnGetBatchNormalizationBackwardExWorkspaceSize()`.
- `reserveSpaceSizeInBytes` is equal or larger than the amount required by `cudnnGetBatchNormalizationTrainingExReserveSpaceSize()`.
- The content in `reserveSpace` stored by `cudnnBatchNormalizationForwardTrainingEx()` must be preserved.

If `workspace` is NULL and `workSpaceSizeInBytes` of zero is passed in, this API will function exactly like the non-extended function `cudnnBatchNormalizationBackward`. This workspace is not required to be clean. Moreover, the workspace does not have to remain unchanged between the forward and backward pass, as it is not used for passing any information.

This extended function can accept a `*workspace` pointer to the GPU workspace, and `workSpaceSizeInBytes`, the size of the workspace, from the user.

The `bnOps` input can be used to set this function to perform either only the batch normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

Only 4D and 5D tensors are supported. The `epsilon` value has to be the same during the training, the backpropagation and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed tensors are used for `x`, `dy`, `dx`.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. See `cudnnHandle_t`.

mode

Input. Mode of operation (spatial or per-activation). See `cudnnBatchNormMode_t`.

bnOps

Input. Mode of operation for the fast NHWC kernel. See `cudnnBatchNormOps_t`.

This input can be used to set this function to perform either only the batch normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

`*alphaDataDiff, *betaDataDiff`

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output `dx` with a prior value in the destination tensor as follows:

\[
\text{dstValue} = \alpha[0] \times \text{resultValue} + \beta[0] \times \text{priorDstValue}.\]

Refer to this section for additional details.
alphaParamDiff, betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs dBnScaleData and dBnBiasData with prior values in the destination tensor as follows:

\[
dstValue = alpha[0] \times resultValue + beta[0] \times priorDstValue.\]

Refer to this section for additional details.

dBnScaleData, dBnBiasData

Inputs. Pointers in the device memory for the gradients of bnScaleData and bnBiasData, respectively.

xDesc, x,yDesc, yData, dyDesc, dyData, dzDesc, dzData, dxDesc, dx/dt

Inputs. Tensor descriptors and pointers in the device memory for the layer's x data, back propagated differential dy (inputs), the optional y input data, the optional dz output, and the dx output, which is the resulting differential with respect to x. See cudnnTensorDescriptor_t.

dBnScaleBiasDesc

Input. Shared tensor descriptor for the following six tensors: bnScaleData, bnBiasData, dBnScaleData, dBnBiasData, savedMean, and savedInvVariance. See cudnnDeriveBNTensorDescriptor.

The dimensions for this tensor descriptor are dependent on normalization mode.

Note: The data type of this tensor descriptor must be 'float' for FP16 and FP32 input tensors, and 'double' for FP64 input tensors.

See cudnnTensorDescriptor_t.

bnScaleData

Input. Pointer in the device memory for the batch normalization scale parameter (in the original paper the quantity scale is referred to as gamma).

bnBiasData

Input. Pointers in the device memory for the batch normalization bias parameter (in the original paper bias is referred to as beta). This parameter is used only when activation should be performed.

dBnScaleData, dBnBiasData

Inputs. Pointers in the device memory for the gradients of bnScaleData and bnBiasData, respectively.

epsilon

Input. Epsilon value used in batch normalization formula. Its value should be equal to or greater than the value defined for CUDNN_BN_MIN_EPSILON in cudnn.h. Same epsilon value should be used in forward and backward functions.

savedMean, savedInvVariance

Inputs. Optional cache parameters containing saved intermediate results computed during the forward pass. For this to work correctly, the layer's x and bnScaleData, bnBiasData data has to remain unchanged until this backward function is called. Note that both these parameters can be NULL but only at the same time. It is recommended to use this cache since the memory overhead is relatively small.

activationDesc

Input. Tensor descriptor for the activation operation.
workspace

Input. Pointer to the GPU workspace. If `workspace` is NULL and `workSpaceSizeInBytes` of zero is passed in, then this API will function exactly like the non-extended function `cudnnBatchNormalizationBackward()`.

workSpaceSizeInBytes

Input. The size of the workspace. Must be large enough to trigger the fast NHWC semi-persistent kernel by this function.

`*reserveSpace`

Input. Pointer to the GPU workspace for the `reserveSpace`.

reserveSpaceSizeInBytes

Input. The size of the `reserveSpace`. Must be equal or larger than the amount required by `cudnnGetBatchNormalizationTrainingExReserveSpaceSize()`.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- Any of the pointers `alphaDataDiff`, `betaDataDiff`, `alphaParamDiff`, `betaParamDiff`, `x`, `dy`, `dx`, `bnScale`, `resultBnScaleDiff`, `resultBnBiasDiff` is NULL.
- Number of `xDesc` or `yDesc` or `dxDesc` tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- `dBnScaleBiasDesc` dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode..
- Exactly one of `savedMean`, `savedInvVariance` pointers is NULL.
- `epsilon` value is less than CUDNN_BN_MIN_EPSILON.
- Dimensions or data types mismatch for any pair of `xDesc`, `dyDesc`, `dxDesc`.

4.6. `cudnnBatchNormalizationForwardInference`

```c
        cudnnStatus_t cudnnBatchNormalizationForwardInference(
            cudnnHandle_t                      handle,
            cudnnBatchNormMode_t               mode,
            const void                        *alpha,
            const void                        *beta,
            const cudnnTensorDescriptor_t     xDesc,
            const void                        *x,
            const cudnnTensorDescriptor_t     yDesc,
            const void                        *y,
            const cudnnTensorDescriptor_t     bnScaleBiasMeanVarDesc,
            const void                        *bnScale,
            const void                        *bnBias,
            const void                        *estimatedMean,
            const void                        *estimatedVariance,
            double                            epsilon)
```
This function performs the forward batch normalization layer computation for the inference phase. This layer is based on the paper *Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift*, S. Ioffe, C. Szegedy, 2015.

See `cudnnDeriveBNTensorDescriptor` for the secondary tensor descriptor generation for the parameters using in this function.

Only 4D and 5D tensors are supported.

The input transformation performed by this function is defined as:

\[
y = \beta y + \alpha \left[\text{bnBias} + \frac{\text{bnScale} \times (x-\text{estimatedMean})}{\sqrt{\epsilon + \text{estimatedVariance}}} \right]
\]

The \(\epsilon\) value has to be the same during training, backpropagation and inference.

For training phase use `cudnnBatchNormalizationForwardTraining`.

Higher performance can be obtained when HW-packed tensors are used for all of \(x\) and \(dx\).

Parameters

- **handle**

 Input. Handle to a previously created cuDNN library descriptor. See `cudnnHandle_t`.

- **mode**

 Input. Mode of operation (spatial or per-activation). See `cudnnBatchNormMode_t`.

- **alpha, beta**

 Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows:

 \[
 \text{dstValue} = \alpha[0] \times \text{resultValue} + \beta[0] \times \text{priorDstValue}.
 \]

 Refer to this section for additional details.

- **xDesc, yDesc**

 Input. Handles to the previously initialized tensor descriptors.

- **\(x\)**

 Input. Data pointer to GPU memory associated with the tensor descriptor `xDesc`, for the layer’s \(x\) input data.
y

Input. Data pointer to GPU memory associated with the tensor descriptor `yDesc`, for the output of the batch normalization layer.

bnScaleBiasMeanVarDesc, bnScale, bnBias

Inputs. Tensor descriptor and pointers in device memory for the batch normalization scale and bias parameters (in the original paper bias is referred to as beta and scale as gamma).

estimatedMean, estimatedVariance

Inputs. Mean and variance tensors (these have the same descriptor as the bias and scale). The `resultRunningMean` and `resultRunningVariance`, accumulated during the training phase from the `cudnnBatchNormalizationForwardTraining()` call, should be passed as inputs here.

epsilon

Input. Epsilon value used in the batch normalization formula. Its value should be equal to or greater than the value defined for CUDNN_BN_MIN_EPSILON in `cudnn.h`.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the pointers `alpha, beta, x, y, bnScale, bnBias, estimatedMean, estimatedInvVariance` is NULL.
- Number of `xDesc` or `yDesc` tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- `bnScaleBiasMeanVarDesc` dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- `epsilon` value is less than CUDNN_BN_MIN_EPSILON.
- Dimensions or data types mismatch for `xDesc, yDesc`.

4.7. cudnnBatchNormalizationForwardTraining

```c
void cudnnBatchNormalizationForwardTraining(
    cudnnHandle_t handle,  // Input handle.
    cudnnBatchNormMode_t mode,  // Batch normalization mode.
    const void *alpha,  // Scale factor.
    const void *beta,  // Bias factor.
    const cudnnTensorDescriptor_t xDesc,  // Input tensor descriptor.
    const void *x,  // Input tensor pointer.
    const cudnnTensorDescriptor_t yDesc,  // Output tensor descriptor.
    const void *y)  // Output tensor pointer.
```

The function `cudnnBatchNormalizationForwardTraining()` performs the forward pass of the batch normalization operation.
This function performs the forward batch normalization layer computation for the training phase. This layer is based on the paper *Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift*, S. Ioffe, C. Szegedy, 2015.

See `cudnnDeriveBNTensorDescriptor` for the secondary tensor descriptor generation for the parameters using in this function.

Only 4D and 5D tensors are supported.

The `epsilon` value has to be the same during training, backpropagation and inference.

For inference phase use `cudnnBatchNormalizationForwardInference`.

Higher performance can be obtained when HW-packed tensors are used for both `x` and `y`.

Parameters

handle

Handle to a previously created cuDNN library descriptor. See `cudnnHandle_t`.

mode

Mode of operation (spatial or per-activation). See `cudnnBatchNormMode_t`.

alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows:

\[
\text{dstValue} = \alpha[0] \times \text{resultValue} + \beta[0] \times \text{priorDstValue}.
\]

Refer to this section for additional details.

xDesc, yDesc

Tensor descriptors and pointers in device memory for the layer’s `x` and `y` data. See `cudnnTensorDescriptor_t`.
Input. Data pointer to GPU memory associated with the tensor descriptor \texttt{xDesc}, for the layer’s \texttt{x} input data.

*y

Input. Data pointer to GPU memory associated with the tensor descriptor \texttt{yDesc}, for the \texttt{y} output of the batch normalization layer.

\texttt{bnScaleBiasMeanVarDesc}

Shared tensor descriptor desc for the secondary tensor that was derived by \texttt{cudnnDeriveBNTensorDescriptor}. The dimensions for this tensor descriptor are dependent on the normalization mode.

\texttt{bnScale}, \texttt{bnBias}

Inputs. Pointers in device memory for the batch normalization scale and bias parameters (in the original paper bias is referred to as beta and scale as gamma). Note that \texttt{bnBias} parameter can replace the previous layer’s bias parameter for improved efficiency.

\texttt{exponentialAverageFactor}

Input. Factor used in the moving average computation as follows:

\[
\text{runningMean} = \text{runningMean} \cdot (1 - \text{factor}) + \text{newMean} \cdot \text{factor}
\]

Use a \texttt{factor=1/(1+n)} at \text{N-th} call to the function to get Cumulative Moving Average (CMA) behavior such that:

\[
\text{CMA}[n] = \frac{(x[1]+...+x[n])}{n}. \text{This is proved below:}
\]

Writing \[
\text{CMA}[n+1] = \frac{(n*\text{CMA}[n]+x[n+1])}{(n+1)}
\]

\[
= \frac{(n+1)*\text{CMA}[n] - \text{CMA}[n]}{(n+1)} + \frac{x[n+1]}{(n+1)}
\]

\[
= \text{CMA}[n] \cdot (1-1/(n+1)) + x[n+1] \cdot 1/(n+1)
\]

\[
= \text{CMA}[n] \cdot (1 - \text{factor}) + x[n+1] \cdot \text{factor}.
\]

\texttt{resultRunningMean}, \texttt{resultRunningVariance}

Inputs/Outputs. Running mean and variance tensors (these have the same descriptor as the bias and scale). Both of these pointers can be NULL but only at the same time. The value stored in \texttt{resultRunningVariance} (or passed as an input in inference mode) is the sample variance, and is the moving average of variance[x] where variance is computed either over batch or spatial+batch dimensions depending on the mode. If these pointers are not NULL, the tensors should be initialized to some reasonable values or to 0.

\texttt{epsilon}

Input. Epsilon value used in the batch normalization formula. Its value should be equal to or greater than the value defined for CUDNN_BN_MIN_EPSILON in \texttt{cudnn.h}. Same \texttt{epsilon} value should be used in forward and backward functions.

\texttt{resultSaveMean}, \texttt{resultSaveInvVariance}

Outputs. Optional cache to save intermediate results computed during the forward pass. These buffers can be used to speed up the backward pass when supplied to the
cudnnBatchNormalizationBackward() function. The intermediate results stored in `resultSaveMean` and `resultSaveInvVariance` buffers should not be used directly by the user. Depending on the batch normalization mode, the results stored in `resultSaveInvVariance` may vary. For the cache to work correctly, the input layer data must remain unchanged until the backward function is called. Note that both parameters can be NULL but only at the same time. In such a case intermediate statistics will not be saved, and `cudnnBatchNormalizationBackward()` will have to re-compute them. It is recommended to use this cache as the memory overhead is relatively small because these tensors have a much lower product of dimensions than the data tensors.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the pointers `alpha`, `beta`, `x`, `y`, `bnScale`, `bnBias` is NULL.
- Number of `xDesc` or `yDesc` tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- `bnScaleBiasMeanVarDesc` dimensions are not 1x1x1 for 4D and 1x1x1x1 for 5D for spatial, and are not 1xHxW for 4D and 1xDxHxW for 5D for per-activation mode.
- Exactly one of `resultSaveMean`, `resultSaveInvVariance` pointers is NULL.
- Exactly one of `resultRunningMean`, `resultRunningInvVariance` pointers is NULL.
- `epsilon` value is less than CUDNN_BN_MIN_EPSILON.
- Dimensions or data types mismatch for `xDesc`, `yDesc`.

4.8. cudnnBatchNormalizationForwardTrainingEx

```c

cudnnStatus_t cudnnBatchNormalizationForwardTrainingEx(
    cudnnHandle_t handle,
    cudnnBatchNormMode_t mode,
    cudnnBatchNormOps_t bnOps,
    const void *alpha,
    const void *beta,
    const cudnnTensorDescriptor_t xDesc,
    const void *xData,
    const cudnnTensorDescriptor_t zDesc,
    const void *zData,
    const cudnnTensorDescriptor_t yDesc,
    const void *yData,
    const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
    const void *bnScaleData,
    const void *bnBiasData,
    double exponentialAverageFactor,
    void *resultRunningMeanData,
)
```
This function is an extension of the `cudnnBatchNormalizationForwardTraining()` for performing the forward batch normalization layer computation.

This API will trigger the new semi-persistent NHWC kernel when the below conditions are true:

- All tensors, namely, x, y, dz, dy, dx must be NHWC-fully packed, and must be of the type CUDNN_DATA_HALF.
- The tensor C dimension should be a multiple of 4.
- The input parameter `mode` must be set to CUDNN_BATCHNORM_SPATIAL_PERSISTENT.
- `workspace` is not NULL.
- `workSpaceSizeInBytes` is equal or larger than the amount required by `cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()`.
- `reserveSpaceSizeInBytes` is equal or larger than the amount required by `cudnnGetBatchNormalizationTrainingExReserveSpaceSize()`.
- The content in `reserveSpace` stored by `cudnnBatchNormalizationForwardTrainingEx()` must be preserved.

If `workspace` is NULL and `workSpaceSizeInBytes` of zero is passed in, this API will function exactly like the non-extended function `cudnnBatchNormalizationForwardTraining()`.

This workspace is not required to be clean. Moreover, the workspace does not have to remain unchanged between the forward and backward pass, as it is not used for passing any information.

This extended function can accept a *`workspace`* pointer to the GPU workspace, and `workSpaceSizeInBytes`, the size of the workspace, from the user.

The `bnOps` input can be used to set this function to perform either only the batch normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

Only 4D and 5D tensors are supported. The `epsilon` value has to be the same during the training, the backpropagation and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed tensors are used for x, dy, dx.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.
mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.

bnOps

Input. Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t.
This input can be used to set this function to perform either only the batch normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

*alpha, *beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows:

dstValue = alpha[0]*resultValue + beta[0]*priorDstValue. Refer to this section for additional details.

xDesc, *xData, zDesc, *zData, yDesc, *yData

Tensor descriptors and pointers in device memory for the layer’s x and y data, and for the optional z tensor input for residual addition to the result of the batch normalization operation, prior to the activation. The optional tensor input z should be exact the same size as x and the final output y. This z input is element-wise added to the output of batch normalization. This addition optionally happens after batch normalization and before the activation. See cudnnTensorDescriptor_t.

bnScaleBiasMeanVarDesc

Shared tensor descriptor desc for the secondary tensor that was derived by cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are dependent on the normalization mode.

*bnScaleData, *bnBiasData

Inputs. Pointers in the device memory for the for the batch normalization scale and bias data. In the original paper bias is referred to as beta and scale as gamma. Note that bnBiasData parameter can replace the previous operation’s bias parameter for improved efficiency.

exponentialAverageFactor

Input. Factor used in the moving average computation as follows:

runningMean = runningMean*(1-factor) + newMean*factor

Use a factor=1/(1+n) at N-th call to the function to get Cumulative Moving Average (CMA) behavior such that:

CMA[n] = (x[1]+...+x[n])/n. This is proved below:

Writing CMA[n+1] = (n*CMA[n]+x[n+1])/(n+1)

= ((n+1)*CMA[n]-CMA[n])/(n+1) + x[n+1]/(n+1)

= CMA[n]*(1-1/(n+1))+x[n+1]*1/(n+1)

= CMA[n]*(1-factor) + x(n+1)*factor.
*resultRunningMeanData, *resultRunningVarianceData

Inputs/Outputs. Pointers to the running mean and running variance data. Both these pointers can be NULL but only at the same time. The value stored in *resultRunningVarianceData (or passed as an input in inference mode) is the sample variance, and is the moving average of variance[x] where variance is computed either over batch or spatial+batch dimensions depending on the mode. If these pointers are not NULL, the tensors should be initialized to some reasonable values or to 0.

epsilon

Input. Epsilon value used in the batch normalization formula. Its value should be equal to or greater than the value defined for CUDNN_BN_MIN_EPSILON in cudnn.h. Same epsilon value should be used in forward and backward functions.

*saveMean, *saveInvVariance

Outputs. Optional cache parameters containing saved intermediate results computed during the forward pass. For this to work correctly, the layer’s x and bnScaleData, bnBiasData data has to remain unchanged until this backward function is called. Note that both these parameters can be NULL but only at the same time. It is recommended to use this cache since the memory overhead is relatively small.

activationDesc

Input. Tensor descriptor for the activation operation. When the bnOps input is set to either CUDNN_BACTHNNORM_OPS_BN_ACTIVATION or CUDNN_BACTHNNORM_OPS_BN_ADD_ACTIVATION then this activation is used.

*workspace, workSpaceSizeInBytes

Inputs. *workspace is a pointer to the GPU workspace, and workSpaceSizeInBytes is the size of the workspace. When the *workspace is not NULL and *workSpaceSizeInBytes is large enough, and the tensor layout is NHWC and the data type configuration is supported, then this function will trigger a new semi-persistent NHWC kernel for batch normalization. The workspace is not required to be clean. Also, the workspace does not need to remain unchanged between the forward and backward passes.

*reserveSpace

Input. Pointer to the GPU workspace for the reserveSpace.

reserveSpaceSizeInBytes

Input. The size of the reserveSpace. Must be equal or larger than the amount required by cudnnGetBatchNormalizationTrainingExReserveSpaceSize().

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the pointers alpha, beta, x, y, bnScaleData, bnBiasData is NULL.
- Number of `xDesc` or `yDesc` tensor descriptor dimensions is not within the [4,5] range (only 4D and 5D tensors are supported.).
- `bnScaleBiasMeanVarDesc` dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- Exactly one of `saveMean`, `saveInvVariance` pointers is NULL.
- Exactly one of `resultRunningMeanData`, `resultRunningInvVarianceData` pointers is NULL.
- `epsilon` value is less than CUDNN_BN_MIN_EPSILON.
- Dimensions or data types mismatch for `xDesc`, `yDesc`

4.9. cudnnCTCLoss

cudnnStatus_t cudnnCTCLoss(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t probsDesc,
 const void *probs,
 const int *labels,
 const int *labelLengths,
 const int *inputLengths,
 void *costs,
 const cudnnTensorDescriptor_t gradientsDesc,
 const void *gradients,
 cudnnCTCLossAlgo_t algo,
 const cudnnCTCLossDescriptor_t ctcLossDesc,
 void *workspace,
 size_t *workSpaceSizeInBytes)

This function returns the ctc costs and gradients, given the probabilities and labels.

This function has an inconsistent interface, i.e., the `probs` input is probability normalized by softmax, but the `gradients` output is with respect to the unnormalized activation.

Parameters

handle

Input. Handle to a previously created cuDNN context. See `cudnnHandle_t`.

probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor. See `cudnnTensorDescriptor_t`.

probs

Input. Pointer to a previously initialized probabilities tensor. These input probabilities are normalized by softmax.

labels

Input. Pointer to a previously initialized labels list.

labelLengths

Input. Pointer to a previously initialized lengths list, to walk the above labels list.
inputLengths

Input. Pointer to a previously initialized list of the lengths of the timing steps in each batch.

costs

Output. Pointer to the computed costs of CTC.

gradientsDesc

Input. Handle to a previously initialized gradients tensor descriptor.

gradients

Output. Pointer to the computed gradients of CTC. These computed gradient outputs are with respect to the unnormalized activation.

algo

Input. Enumerant that specifies the chosen CTC loss algorithm. See cudnnCTCLossAlgo_t.

ctcLossDesc

Input. Handle to the previously initialized CTC loss descriptor. See cudnnCTCLossDescriptor_t.

workspace

Input. Pointer to GPU memory of a workspace needed to able to execute the specified algorithm.

sizeInBytes

Input. Amount of GPU memory needed as workspace to be able to execute the CTC loss computation with the specified *algo*.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The dimensions of probsDesc do not match the dimensions of gradientsDesc.
- The inputLengths do not agree with the first dimension of probsDesc.
- The workSpaceSizeInBytes is not sufficient.
- The labelLengths is greater than 256.

CUDNN_STATUS_NOT_SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm type was chosen.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.
4.10. cudnnConvolutionBackwardBias

```c
typedef cudnnStatus_t cudnnConvolutionBackwardBias(
    cudnnHandle_t                   handle,  // Input. Handle to a previously created cuDNN context. See cudnnHandle_t.
    const void                      *alpha,   // Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Refer to this section for additional details.
    const cudnnTensorDescriptor_t    dyDesc,  // Input. Handle to the previously initialized input tensor descriptor. See cudnnTensorDescriptor_t.
    const void                      *dy,      // Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
    const void                      *beta,    // Input. Handle to the previously initialized output tensor descriptor.
    const cudnnTensorDescriptor_t    dbDesc,  // Input. Handle to the previously initialized output tensor descriptor.
    void                            *db)     // Output. Data pointer to GPU memory associated with the output tensor descriptor dbDesc.
```

This function computes the convolution function gradient with respect to the bias, which is the sum of every element belonging to the same feature map across all of the images of the input tensor. Therefore, the number of elements produced is equal to the number of features maps of the input tensor.

Parameters

handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Refer to this section for additional details.

dyDesc

Input. Handle to the previously initialized input tensor descriptor. See cudnnTensorDescriptor_t.

dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.

dbDesc

Input. Handle to the previously initialized output tensor descriptor.

db

Output. Data pointer to GPU memory associated with the output tensor descriptor dbDesc.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The operation was launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:
- One of the parameters \(n, \text{height}, \text{width}\) of the output tensor is not 1.
- The numbers of feature maps of the input tensor and output tensor differ.
- The \text{dataType} of the two tensor descriptors are different.

4.11. cudnnConvolutionBackwardData

```c
void cudnnConvolutionBackwardData(
    cudnnHandle_t                      handle,
    const void                         *alpha,
    const cudnnFilterDescriptor_t       wDesc,
    const void                         *w,
    const cudnnTensorDescriptor_t       dyDesc,
    const void                         *dy,
    const cudnnConvolutionDescriptor_t  convDesc,
    cudnnConvolutionBwdDataAlgo_t       algo,
    void                               *workSpace,
    size_t                              workSpaceSizeInBytes,
    const void                         *beta,
    const cudnnTensorDescriptor_t       dxDesc,
    void                               *dx)
```

This function computes the convolution data gradient of the tensor \(dy\), where \(y\) is the output of the forward convolution in \text{cudnnConvolutionForward}(). It uses the specified \text{algo}, and returns the results in the output tensor \(dx\). Scaling factors \(alpha\) and \(beta\) can be used to scale the computed result or accumulate with the current \(dx\).

Parameters

handle

Input. Handle to a previously created cuDNN context. See \text{cudnnHandle_t}.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: \(dst\text{Value} = alpha[0] \times result + beta[0] \times priorDst\text{Value}\). Refer to this section for additional details.

wDesc

Input. Handle to a previously initialized filter descriptor. See \text{cudnnFilterDescriptor_t}.

w

Input. Data pointer to GPU memory associated with the filter descriptor \text{wDesc}.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor. See \text{cudnnTensorDescriptor_t}.

dy

Input. Data pointer to GPU memory associated with the input differential tensor descriptor \text{dyDesc}.

convDesc

Input. Previously initialized convolution descriptor. See \text{cudnnConvolutionDescriptor_t}.

www.nvidia.com

\text{cuDNN 7.5.1}
algo

Input. Enumerant that specifies which backward data convolution algorithm should be used to compute the results. See cudnnConvolutionBwdDataAlgo_t.

workSpace

Input. Data pointer to GPU memory to a workspace needed to able to execute the specified algorithm. If no workspace is needed for a particular algorithm, that pointer can be nil.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace.

dxDesc

Input. Handle to the previously initialized output tensor descriptor.

dx

Input/Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc that carries the result.

TABLE OF THE SUPPORTED CONFIGURATIONS

This function supports the following combinations of data types for wDesc, dyDesc, convDesc, and dxDesc. See the following table for a list of the supported configurations.

<table>
<thead>
<tr>
<th>Data Type Configurations</th>
<th>wDesc's, dyDesc's and dxDesc's Data Type</th>
<th>convDesc's Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE_HALF_CONFIG (only supported on architectures with true fp16 support, i.e., compute capability 5.3 and later).</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_HALF</td>
</tr>
<tr>
<td>PSEUDO_HALF_CONFIG</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>FLOAT_CONFIG</td>
<td>CUDNN_DATA_FLOAT</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>DOUBLE_CONFIG</td>
<td>CUDNN_DATA_DOUBLE</td>
<td>CUDNN_DATA_DOUBLE</td>
</tr>
</tbody>
</table>

Specifying a separate algorithm can cause changes in performance, support and computation determinism. See the following for a list of algorithm options, and their respective supported parameters and deterministic behavior.

TABLE OF THE SUPPORTED ALGORITHMS

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the paranthesis are used in the table below, for brevity:

- CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 (_ALGO_0)
- CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 (_ALGO_1)
- CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT (_FFT)
FOR 2D CONVOLUTIONS.

Filter descriptor wDesc: _NHWC. See cudnnTensorFormat_t.					
Algo Name	**Deterministic**	**Tensor Formats Supported for dyDesc**	**Tensor Formats Supported for dxDesc**	**Data Type Configurations Supported**	**Important**
_ALGO_1	No	NHWC HWC-packed	NHWC HWC-packed	TRUE_HALF_CONFIG, PSEUDO_HALF_CONFIG, and FLOAT_CONFIG	

Filter descriptor wDesc: _NCHW.					
Algo Name	**Deterministic**	**Tensor Formats Supported for dyDesc**	**Tensor Formats Supported for dxDesc**	**Data Type Configurations Supported**	**Important**
_ALGO_0	No	NCHW CHW-packed	All except _NCHW_VECT	TRUE_HALF_CONFIG, PSEUDO_HALF_CONFIG, FLOAT_CONFIG, and DOUBLE_CONFIG	- Dilation: greater than 0 for all dimensions
- convDesc Group Count Support: Greater than 0. |
| _ALGO_1 | Yes | NCHW CHW-packed | _All except _NCHW_VECT | TRUE_HALF_CONFIG, PSEUDO_HALF_CONFIG, FLOAT_CONFIG, and DOUBLE_CONFIG | - Dilation: 1 for all dimensions
- convDesc Group Count Support: Greater than 0. |
| _FFT | Yes | NCHW CHW-packed | NCHW HW-packed | PSEUDO_HALF_CONFIG and FLOAT_CONFIG | - Dilation: 1 for all dimensions
- convDesc Group Count Support: Greater than 0.
- dxDesc's feature map height + 2 * convDesc's zero-padding height |
dxDesc's feature map width + 2 * convDesc's zero-padding width must equal 256 or less
- convDesc's vertical and horizontal filter stride must equal 1
- wDesc's filter height must be greater than convDesc's zero-padding height
- wDesc's filter width must be greater than convDesc's zero-padding width

<p>| _FFT_TILING | Yes | NCHW CHW-packed | NCHW HW-packed | - PSEUDO_HALF_CONFIG and - FLOAT_CONFIG | - DOUBLE_CONFIG is also supported when the task can be handled by 1D FFT, ie, one of the filter dimension, width or height is 1. | - Dilation: 1 for all dimensions | - convDesc Group Count Support: Greater than 0. | - When neither of wDesc's filter dimension is 1, the filter width and height must not be larger than 32 | - When either of wDesc's filter dimension is 1, the largest filter dimension should not exceed 256 | - convDesc's vertical and horizontal filter stride must equal 1 when either the filter width or filter height is 1, otherwise the stride can be 1 or 2 | - wDesc's filter height must be greater than convDesc's zero-padding height | - wDesc's filter width must be |</p>
<table>
<thead>
<tr>
<th>Filter descriptor wDesc: _NCHW</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| _ALGO_0 | Yes | NCDHW CDHW-packed | All except _NCDHW_VEC and PSEUDO_HALF_CONFIG, and FLOAT_CONFIG, and DOUBLE_CONFIG. | - Dilation: greater than 0 for all dimensions - convDesc Group Count Support: Greater than 0.
- convDesc's vertical and horizontal filter stride must equal 1 - wDesc's filter height must be 3 - wDesc's filter width must be 3 |

FOR 3D CONVOLUTIONS.

<table>
<thead>
<tr>
<th>Filter descriptor wDesc: _NCHW</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_WINOGRAD</td>
<td>Yes</td>
<td>NCHW CHW-packed</td>
<td>All except _NCHW_VEC and PSEUDO_HALF_CONFIG, and FLOAT_CONFIG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filter descriptor wDesc: _WINOGRAD_NONFUSED</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NCHW CHW-packed</td>
<td>All except _NCHW_VEC and PSEUDO_HALF_CONFIG, and FLOAT_CONFIG</td>
<td>- Dilation: 1 for all dimensions - convDesc Group Count Support: Greater than 0. - convDesc's vertical and horizontal filter stride must equal 1 - wDesc's filter height must be 3 - wDesc's filter width must be 3</td>
<td></td>
</tr>
</tbody>
</table>

- If wDesc's filter (height, width) is (3,3) or (5,5) then the data type config TRUE_HALF_CONFIG is not supported
<table>
<thead>
<tr>
<th>_ALGO_1</th>
<th>Yes</th>
<th>NCDHW-fully-packed</th>
<th>NCDHW-fully-packed</th>
<th>- TRUE_HALF_CONFIG, - PSEUDO_HALF_CONFIG, - FLOAT_CONFIG, and - DOUBLE_CONFIG.</th>
<th>- Dilation: 1 for all dimensions - convDesc Group Count Support: Greater than 0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>_FFT_TILING</td>
<td>Yes</td>
<td>NCDHW-CDHW-packed</td>
<td>NCDHW-CDHW-packed</td>
<td>- PSEUDO_HALF_CONFIG, - FLOAT_CONFIG, and - DOUBLE_CONFIG.</td>
<td>- Dilation: 1 for all dimensions - convDesc Group Count Support: Greater than 0. - wDesc's filter height must equal 16 or less - wDesc's filter width must equal 16 or less - wDesc's filter depth must equal 16 or less - convDesc's must have all filter strides equal to 1 - wDesc's filter height must be greater than convDesc's zero-padding height - wDesc's filter width must be greater than convDesc's zero-padding width - wDesc's filter depth must be greater than convDesc's zero-padding width</td>
</tr>
</tbody>
</table>

Returns

CUDNN_STATUS_SUCCESS

The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- At least one of the following is NULL: `handle`, `dyDesc`, `wDesc`, `convDesc`, `dxDesc`, `dy`, `w`, `dx`, `alpha`, `beta`
- `wDesc` and `dyDesc` have a non-matching number of dimensions
wDesc and dxDesc have a non-matching number of dimensions
wDesc has fewer than three number of dimensions
wDesc, dxDesc and dyDesc have a non-matching data type.
wDesc and dxDesc have a non-matching number of input feature maps per image (or group in case of Grouped Convolutions).
dyDesc's spatial sizes do not match with the expected size as determined by cudnnGetConvolutionNdForwardOutputDim

CUDNN_STATUS_NOT_SUPPORTED
At least one of the following conditions are met:
• dyDesc or dxDesc have negative tensor striding
• dyDesc, wDesc or dxDesc has a number of dimensions that is not 4 or 5
• The chosen algo does not support the parameters provided; see above for exhaustive list of parameter support for each algo
• dyDesc or wDesc indicate an output channel count that isn't a multiple of group count (if group count has been set in convDesc).

CUDNN_STATUS_MAPPING_ERROR
An error occurs during the texture binding of the filter data or the input differential tensor data

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.12. cudnnConvolutionBackwardFilter

cudnnStatus_t cudnnConvolutionBackwardFilter(
 cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnConvolutionDescriptor_t convDesc,
 cudnnConvolutionBwdFilterAlgo_t algo,
 void *workSpace,
 size_t workSpaceSizeInBytes,
 const void *beta,
 const cudnnFilterDescriptor_t dwDesc,
 void *dw)

This function computes the convolution weight (filter) gradient of the tensor dy, where y is the output of the forward convolution in cudnnConvolutionForward(). It uses the specified algo, and returns the results in the output tensor dw. Scaling factors alpha and beta can be used to scale the computed result or accumulate with the current dw.

Parameters
handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Refer to this section for additional details.

xDesc

Input. Handle to a previously initialized tensor descriptor. See cudnnTensorDescriptor_t.

x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

dy

Input. Data pointer to GPU memory associated with the backpropagation gradient tensor descriptor dyDesc.

convDesc

Input. Previously initialized convolution descriptor. See cudnnConvolutionDescriptor_t.

algo

Input. Enumerant that specifies which convolution algorithm should be used to compute the results. See cudnnConvolutionBwdFilterAlgo_t.

workSpace

Input. Data pointer to GPU memory to a workspace needed to able to execute the specified algorithm. If no workspace is needed for a particular algorithm, that pointer can be nil.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace.

dwDesc

Input. Handle to a previously initialized filter gradient descriptor. See cudnnFilterDescriptor_t.

dw

Input/Output. Data pointer to GPU memory associated with the filter gradient descriptor dwDesc that carries the result.

TABLE OF THE SUPPORTED CONFIGURATIONS

This function supports the following combinations of data types for xDesc, dyDesc, convDesc, and dwDesc. See the following table for a list of the supported configurations.
TABLE OF THE SUPPORTED ALGORITHMS

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the parenthesis are used in the table below, for brevity:

- CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 (_ALGO_0)
- CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 (_ALGO_1)
- CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3 (_ALGO_3)
- CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT (_FFT)
- CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING (_FFT_TILING)
- CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED (_WINOGRAD_NONFUSED)
- CUDNN_TENSOR_NCHW (_NCHW)
- CUDNN_TENSOR_NHWC (_NHWC)
- CUDNN_TENSOR_NCHW_VECT_C (_NCHW_VECT_C)

FOR 2D CONVOLUTIONS.

<table>
<thead>
<tr>
<th>Filter descriptor dwDesc: _NHWC. See cudnnTensorFormat_t.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algo Name (see below for 3D Convolutions)</td>
</tr>
<tr>
<td>_ALGO_0, and _ALGO_1</td>
</tr>
</tbody>
</table>

For 2D convolutions:

- TRUE_HALF_CONFIG (only supported on architectures with true fp16 support, i.e., compute capability 5.3 and later).
- PSEUDO_HALF_CONFIG
- FLOAT_CONFIG
- DOUBLE_CONFIG

Data Type Configurations

<table>
<thead>
<tr>
<th>xDesc's, dyDesc's and dwDesc's Data Type</th>
<th>convDesc's Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_HALF</td>
</tr>
<tr>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>CUDNN_DATA_FLOAT</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>CUDNN_DATA_DOUBLE</td>
<td>CUDNN_DATA_DOUBLE</td>
</tr>
</tbody>
</table>

Specifying a separate algorithm can cause changes in performance, support and computation determinism. See the following for an exhaustive list of algorithm options and their respective supported parameters and deterministic behavior.
<table>
<thead>
<tr>
<th>Algo Name</th>
<th>Deterministic (Yes or No)</th>
<th>Tensor Formats Supported for xDesc</th>
<th>Tensor Formats Supported for dyDesc</th>
<th>Data Type Configurations Supported</th>
<th>Important</th>
</tr>
</thead>
</table>
| _ALGO_0 | No | All except _NCHW_VEC | NCHW CHW- packed | - PSEUDO_HALF_CONFIG | Dilation: greater than 0 for all dimensions
| | | | | - FLOAT_CONFIG, and | convDesc Group Count Support: Greater than 0.
| | | | | - DOUBLE_CONFIG | This algo is not supported if output is of type CUDNN_DATA_HALF and the number of elements in `dw` is odd. |
| _ALGO_1 | Yes | _NCHW or _NHWC | NCHW CHW- packed | - TRUE_HALF_CONFIG | Dilation: 1 for all dimensions
| | | | | - PSEUDO_HALF_CONFIG | convDesc Group Config Support: Greater than 0.
| | | | | - FLOAT_CONFIG, and | |
| | | | | - DOUBLE_CONFIG | |
| _FFT | Yes | NCHW CHW- packed | NCHW CHW- packed | - PSEUDO_HALF_CONFIG | Dilation: 1 for all dimensions
| | | | | and | convDesc Group Count Support: Greater than 0.
| | | | | - FLOAT_CONFIG | xDesc's feature map height + 2 * convDesc's zero-padding height must equal 256 or less
| | | | | | xDesc's feature map width + 2 * convDesc's zero-padding width must equal 256 or less
| | | | | | convDesc's vertical and horizontal filter stride must equal 1
| | | | | | dwDesc's filter height must be greater than convDesc's zero-padding height

<table>
<thead>
<tr>
<th>ALGORITHM</th>
<th>REQUIREMENTS</th>
<th>SUPPORTED DATA TYPES</th>
<th>DILATION</th>
<th>GROUP COUNT SUPPORT</th>
<th>FILTER STRIDE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ALGO_3</td>
<td>Yes</td>
<td>All except NCHW_VEC</td>
<td>NCHW CHW-packed</td>
<td>- PSEUDO_HALF_CONFIG</td>
<td>- FLOAT_CONFIG, and - DOUBLE_CONFIG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- dwDesc's filter width must be greater than convDesc's zero-padding width</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Dilation: 1 for all dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- convDesc Group Count Support: Greater than 0.</td>
</tr>
<tr>
<td>WINOGRAD_NONFUSED</td>
<td>Yes</td>
<td>All except NCHW_VEC</td>
<td>NCHW CHW-packed</td>
<td>- TRUE_HALF_CONFIG</td>
<td>- PSEUDO_HALF_CONFIG and - FLOAT_CONFIG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Dilation: 1 for all dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- convDesc Group Count Support: Greater than 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- convDesc's vertical and horizontal filter stride must equal 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- wDesc's filter (height, width) must be (3,3) or (5,5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- If wDesc's filter (height, width) is (5,5), then the data type config TRUE_HALF_CONFIG is not supported.</td>
</tr>
<tr>
<td>FFT_TILING</td>
<td>Yes</td>
<td>NCHW CHW-packed</td>
<td>NCHW CHW-packed</td>
<td>- PSEUDO_HALF_CONFIG</td>
<td>- FLOAT_CONFIG, and - DOUBLE_CONFIG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Dilation: 1 for all dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- convDesc Group Count Support: Greater than 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- xDesc's width or height must equal 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- dyDesc's width or height must equal 1 (the same dimension as in xDesc.) The other dimension must be less than or equal to 256, i.e., the largest 1D tile size currently supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- convDesc's vertical and</td>
</tr>
</tbody>
</table>
FOR 3D CONVOLUTIONS.

Filter descriptor wDesc: _NCHW

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>Deterministic (Yes or No)</th>
<th>Tensor Formats Supported for xDesc</th>
<th>Tensor Formats Supported for dyDesc</th>
<th>Data Type Configurations Support</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ALGO_0</td>
<td>No</td>
<td>All except _NCDHW_VEC</td>
<td>NCDHW-fully-packed</td>
<td>PSEUDO_HALF_CONFIG, FLOAT_CONFIG, DOUBLE_CONFIG</td>
<td>Dilation: greater than 0 for all dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>convDesc Group Count Support: Greater than 0.</td>
</tr>
<tr>
<td>_ALGO_3</td>
<td>No</td>
<td>NCDHW-fully-packed</td>
<td>NCDHW-fully-packed</td>
<td>PSEUDO_HALF_CONFIG, FLOAT_CONFIG, DOUBLE_CONFIG</td>
<td>Dilation: 1 for all dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>convDesc Group Count Support: Greater than 0.</td>
</tr>
</tbody>
</table>

Returns

CUDNN_STATUS_SUCCESS

The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- At least one of the following is NULL: handle, xDesc, dyDesc, convDesc, dwDesc, xData, dyData, dwData, alpha, beta
- xDesc and dyDesc have a non-matching number of dimensions
- xDesc and dwDesc have a non-matching number of dimensions
- xDesc has fewer than three number of dimensions
- xDesc, dyDesc and dwDesc have a non-matching data type.
xDesc and dwDesc have a non-matching number of input feature maps per image (or group in case of Grouped Convolutions).

yDesc or wDesc indicate an output channel count that isn't a multiple of group count (if group count has been set in convDesc).

CUDNN_STATUS_NOT_SUPPORTED

At least one of the following conditions are met:

- xDesc or dyDesc have negative tensor striding
- xDesc, dyDesc or dwDesc has a number of dimensions that is not 4 or 5
- The chosen algo does not support the parameters provided; see above for exhaustive list of parameter support for each algo

CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture binding of the filter data.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.13. cudnnConvolutionBiasActivationForward

```c
cudnnStatus_t cudnnConvolutionBiasActivationForward(
    cudnnHandle_t                                     handle,
    const void *alpha1,
    const cudnnTensorDescriptor_t                    xDesc,
    const void *x,
    const cudnnFilterDescriptor_t                    wDesc,
    const void *w,
    const cudnnConvolutionDescriptor_t               convDesc,
    cudnnConvolutionFwdAlgo_t                        algo,
    void *workSpace,
    size_t workSpaceSizeInBytes,
    const void *alpha2,
    const cudnnTensorDescriptor_t                    zDesc,
    const void *z,
    const cudnnTensorDescriptor_t                    biasDesc,
    const void *bias,
    const cudnnActivationDescriptor_t               activationDesc,
    const cudnnTensorDescriptor_t                    yDesc,
    void *y)
```

This function applies a bias and then an activation to the convolutions or cross-correlations of cudnnConvolutionForward(), returning results in y. The full computation follows the equation $y = \text{act} \ (\alpha_1 \ * \ \text{conv}(x) + \alpha_2 \ * \ z + \text{bias})$.

The routine cudnnGetConvolution2dForwardOutputDim or cudnnGetConvolutionNdForwardOutputDim can be used to determine the proper dimensions of the output tensor descriptor yDesc with respect to xDesc, convDesc and wDesc.

Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is enabled with CUDNN_ACTIVATION_IDENTITY. In other words, in the cudnnActivationDescriptor_t structure of the input activationDesc,
if the mode of the `cudnnActivationMode_t` field is set to the enum value `CUDNN_ACTIVATION_IDENTITY`, then the input `cudnnConvolutionFwdAlgo_t` of this function `cudnnConvolutionBiasActivationForward()` must be set to the enum value `CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM`. See also the documentation for the function `cudnnSetActivationDescriptor()`.

Parameters

handle

Input. Handle to a previously created cuDNN context. See `cudnnHandle_t`.

alpha1, alpha2

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as described by the above equation. *Please refer to this section for additional details.*

xDesc

Input. Handle to a previously initialized tensor descriptor. See `cudnnTensorDescriptor_t`.

x

Input. Data pointer to GPU memory associated with the tensor descriptor `xDesc`.

wDesc

Input. Handle to a previously initialized filter descriptor. See `cudnnFilterDescriptor_t`.

w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.

convDesc

Input. Previously initialized convolution descriptor. See `cudnnConvolutionDescriptor_t`.

algo

Input. Enumerant that specifies which convolution algorithm should be used to compute the results. See `cudnnConvolutionFwdAlgo_t`.

workSpace

Input. Data pointer to GPU memory to a workspace needed to able to execute the specified algorithm. If no workspace is needed for a particular algorithm, that pointer can be nil.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided `workSpace`.

zDesc

Input. Handle to a previously initialized tensor descriptor.

z

Input. Data pointer to GPU memory associated with the tensor descriptor `zDesc`.

biasDesc

Input. Handle to a previously initialized tensor descriptor.
bias

Input. Data pointer to GPU memory associated with the tensor descriptor biasDesc.

activationDesc

Input. Handle to a previously initialized activation descriptor. See cudnnActivationDescriptor_t.

yDesc

Input. Handle to a previously initialized tensor descriptor.

y

Input/Output. Data pointer to GPU memory associated with the tensor descriptor yDesc that carries the result of the convolution.

For the convolution step, this function supports the specific combinations of data types for xDesc, wDesc, convDesc and yDesc as listed in the documentation of cudnnConvolutionForward(). The following table specifies the supported combinations of data types for x, y, z, bias, and alpha1/alpha2.

Table Key: X = CUDNN_DATA

<table>
<thead>
<tr>
<th>x</th>
<th>w</th>
<th>y and z</th>
<th>bias</th>
<th>alpha1/alpha2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_DOUBLE</td>
<td>X_DOUBLE</td>
<td>X_DOUBLE</td>
<td>X_DOUBLE</td>
<td>X_DOUBLE</td>
</tr>
<tr>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_HALF</td>
<td>X_HALF</td>
<td>X_HALF</td>
<td>X_HALF</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_INT8</td>
<td>X_INT8</td>
<td>X_INT8</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_INT8</td>
<td>X_INT8</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_INT8x4</td>
<td>X_INT8x4</td>
<td>X_INT8x4</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_INT8x4</td>
<td>X_INT8x4</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_UINT8</td>
<td>X_INT8</td>
<td>X_INT8</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_UINT8</td>
<td>X_INT8</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_UINT8x4</td>
<td>X_INT8x4</td>
<td>X_INT8x4</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
<tr>
<td>X_UINT8x4</td>
<td>X_INT8x4</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
<td>X_FLOAT</td>
</tr>
</tbody>
</table>

In addition to the error values listed by the documentation of cudnnConvolutionForward(), the possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- At least one of the following is NULL: zDesc, zData, biasDesc, bias, activationDesc.
The second dimension of biasDesc and the first dimension of filterDesc are not equal.

zDesc and destDesc do not match.

CUDNN_STATUS_NOT_SUPPORTED
The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The mode of activationDesc is neither CUDNN_ACTIVATION_RELU or CUDNN_ACTIVATION_IDENTITY.
- The reluNanOpt of activationDesc is not CUDNN_NOT_PROPAGATE_NAN.
- The second stride of biasDesc is not equal to one.
- The data type of biasDesc does not correspond to the data type of yDesc as listed in the above data types table.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.14. cudnnConvolutionForward

This function executes convolutions or cross-correlations over \(x \) using filters specified with \(w \), returning results in \(y \). Scaling factors alpha and beta can be used to scale the input tensor and the output tensor respectively.

Parameters
handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: \(\text{dstValue} = \alpha[0] \times \text{result} + \beta[0] \times \text{priorDstValue} \). Refer to this section for additional details.
xDesc

Input. Handle to a previously initialized tensor descriptor. See `cudnnTensorDescriptor_t`.

x

Input. Data pointer to GPU memory associated with the tensor descriptor `xDesc`.

wDesc

Input. Handle to a previously initialized filter descriptor. See `cudnnFilterDescriptor_t`.

w

Input. Data pointer to GPU memory associated with the filter descriptor `wDesc`.

convDesc

Input. Previously initialized convolution descriptor. See `cudnnConvolutionDescriptor_t`.

algo

Input. Enumerant that specifies which convolution algorithm should be used to compute the results. See `cudnnConvolutionFwdAlgo_t`.

workSpace

Input. Data pointer to GPU memory to a workspace needed to able to execute the specified algorithm. If no workspace is needed for a particular algorithm, that pointer can be nil.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided `workSpace`.

yDesc

Input. Handle to a previously initialized tensor descriptor.

y

Input/Output. Data pointer to GPU memory associated with the tensor descriptor `yDesc` that carries the result of the convolution.

TABLE OF THE SUPPORTED CONFIGURATIONS

This function supports the following combinations of data types for `xDesc`, `wDesc`, `convDesc`, and `yDesc`. See the following table for a list of the supported configurations.

<table>
<thead>
<tr>
<th>Data Type Configurations</th>
<th>xDesc and wDesc</th>
<th>convDesc</th>
<th>yDesc</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE_HALF_CONFIG (only supported on architectures with true fp16 support, i.e., compute capability 5.3 and later).</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_HALF</td>
</tr>
<tr>
<td>PSEUDO_HALF_CONFIG</td>
<td>CUDNN_DATA_HALF</td>
<td>CUDNN_DATA_FLOAT</td>
<td>CUDNN_DATA_HALF</td>
</tr>
<tr>
<td>FLOAT_CONFIG</td>
<td>CUDNN_DATA_FLOAT</td>
<td>CUDNN_DATA_FLOAT</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
</tbody>
</table>
Data Type Configurations

<table>
<thead>
<tr>
<th>Data Type Configurations</th>
<th>xDesc and wDesc</th>
<th>convDesc</th>
<th>yDesc</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOUBLE_CONFIG</td>
<td>CUDNN_DATA_DOUBLE</td>
<td>CUDNN_DATA_DOUBLE</td>
<td>CUDNN_DATA_DOUBLE</td>
</tr>
<tr>
<td>INT8_CONFIG</td>
<td>CUDNN_DATA_INT8</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_INT8</td>
</tr>
<tr>
<td>INT8_EXT_CONFIG</td>
<td>CUDNN_DATA_INT8</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>INT8x4_CONFIG</td>
<td>CUDNN_DATA_INT8x4</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_INT8x4</td>
</tr>
<tr>
<td>INT8x4_EXT_CONFIG</td>
<td>CUDNN_DATA_INT8x4</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
<tr>
<td>UINT8x4_CONFIG</td>
<td>CUDNN_DATA_UINT8x4</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_UINT8x4</td>
</tr>
<tr>
<td>UINT8x4_EXT_CONFIG</td>
<td>CUDNN_DATA_UINT8x4</td>
<td>CUDNN_DATA_INT32</td>
<td>CUDNN_DATA_FLOAT</td>
</tr>
</tbody>
</table>

For this function, all algorithms perform deterministic computations. Specifying a separate algorithm can cause changes in performance and support.

TABLE OF THE SUPPORTED ALGORITHMS

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the paranthesis are used in the table below, for brevity:
- CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM
 (_IMPLICIT_GEMM)
- CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
 (_IMPLICIT_PRECOMP_GEMM)
- CUDNN_CONVOLUTION_FWD_ALGO_GEMM
 (_GEMM)
- CUDNN_CONVOLUTION_FWD_ALGO_DIRECT
 (_DIRECT)
- CUDNN_CONVOLUTION_FWD_ALGO_FFT
 (_FFT)
- CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING
 (_FFT_TILING)
- CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD
 (_WINOGRAD)
- CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED
 (_WINOGRAD_NONFUSED)
- CUDNN_TENSOR_NCHW
 (_NCHW)
- CUDNN_TENSOR_NHWC
 (_NHWC)
- CUDNN_TENSOR_NCHW_VECT_C
 (_NCHW_VECT_C)

FOR 2D CONVOLUTIONS.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Tensor Formats Supported for xDesc</th>
<th>Tensor Formats Supported for yDesc</th>
<th>Data Type Configurations Supported</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>_IMPLICIT_GEMM</td>
<td>All except _NCHW_VECT_C, _NCHW_VECT_C.</td>
<td>- PSEUDO_HALF_CONFIG, - FLOAT_CONFIG, and - DOUBLE_CONFIG</td>
<td>Dilation: Greater than 0 for all dimensions.</td>
<td></td>
</tr>
<tr>
<td>_IMPLICIT_PRECOMP_GEMM</td>
<td>- TRUE_HALF_CONFIG, - PSEUDO_HALF_CONFIG, - FLOAT_CONFIG, and - DOUBLE_CONFIG</td>
<td>Dilation: 1 for all dimensions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_GEMM</td>
<td>- PSEUDO_HALF_CONFIG, - FLOAT_CONFIG, and - DOUBLE_CONFIG</td>
<td>Dilation: 1 for all dimensions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_FFT</td>
<td>NCHW HW-packed</td>
<td>NCHW HW-packed</td>
<td>- PSEUDO_HALF_CONFIG, and - FLOAT_CONFIG</td>
<td>Dilation: 1 for all dimensions. - xDesc's feature map height + 2 * convDesc's zero-padding height must equal 256 or less</td>
</tr>
</tbody>
</table>

Filter descriptor wDesc: _NCHW. See cudnnTensorFormat_t.
convDesc Group count support: Greater than 0, for all algos.
<table>
<thead>
<tr>
<th>Mode</th>
<th>Constraints</th>
</tr>
</thead>
</table>
| _FFT_TILING | - \(xDesc \)'s feature map width + \(Z \times \text{convDesc}'s \) zero-padding width must equal 256 or less
| | - \(\text{convDesc}'s \) vertical and horizontal filter stride must equal 1
| | - \(wDesc \)'s filter height must be greater than \(\text{convDesc}'s \) zero-padding height
| | - \(wDesc \)'s filter width must be greater than \(\text{convDesc}'s \) zero-padding width
| | Dilation: 1 for all dimensions.
| | - When neither of \(wDesc \)'s filter dimension is 1, the filter width and height must not be larger than 32
| | - When either of \(wDesc \)'s filter dimension is 1, the largest filter dimension should not exceed 256
| | - \(\text{convDesc}'s \) vertical and horizontal filter stride must equal 1 when either the filter width or filter height is 1, otherwise the stride can be 1 or 2
| | - \(wDesc \)'s filter height must be greater than \(\text{convDesc}'s \) zero-padding height
| | - \(wDesc \)'s filter width must be greater than \(\text{convDesc}'s \) zero-padding width
| | All except: PSEUDO_HALF_CONFIG and FLOAT_CONFIG
| | DOUBLE_CONFIG is also supported when the task can be handled by 1D FFT, i.e., one of the filter dimension, width or height is 1.
| _WINOGRAD | Dilation: 1 for all dimensions.
| | - \(\text{convDesc}'s \) vertical and horizontal filter stride must equal 1
| | - \(wDesc \)'s filter height must be 3
| | All except: _NCHW_VECT_C, _NCHW_VECT_C, PSEUDO_HALF_CONFIG and FLOAT_CONFIG

Notes:
- \(\text{convDesc} \) and \(wDesc \) represent the convolution and weight description, respectively.
Filter descriptor wDesc: `_NHWC`

convDesc Group count support: Greater than 0.

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>xDesc</th>
<th>yDesc</th>
<th>Data Type Configurations Support</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>_IMPLICIT_GEMM</code></td>
<td>NCHWC HWC-packed</td>
<td>NCHWC HWC-packed</td>
<td>- PSEUDO_HALFCONFIG and FLOAT_CONFIG</td>
<td>Dilation: Greater than 0 for all dimensions.</td>
</tr>
</tbody>
</table>

Filter descriptor wDesc: `_NCHW`

convDesc Group count support: Greater than 0.

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>xDesc</th>
<th>yDesc</th>
<th>Data Type Configurations Support</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>_IMPLICIT_PRECOMP_GEMM_NHWC</code></td>
<td>NHWC</td>
<td></td>
<td>- INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG, INT8x4_EXT_CONFIG, UINT8x4_CONFIG, and UINT8x4_EXT_CONFIG</td>
<td>Dilation: 1 for all dimensions. Input and output features maps must be multiple of 4.</td>
</tr>
</tbody>
</table>

FOR 3D CONVOLUTIONS.

Filter descriptor wDesc: `_NCHW`
convDesc Group count support: Greater than 0, for all algos.

<table>
<thead>
<tr>
<th>Algo Name</th>
<th>xDesc</th>
<th>yDesc</th>
<th>Data Type Configurations Support</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>_IMPLICIT_GEMM</td>
<td>All except NCHW_VECT_C</td>
<td>All except NCHW_VECT_C</td>
<td>- PSEUDO_HALF_CONFIG
- FLOAT_CONFIG, and
- DOUBLE_CONFIG.</td>
<td>Dilation: Greater than 0 for all dimensions.</td>
</tr>
<tr>
<td>_IMPLICIT_PRECOMP_GEMM</td>
<td></td>
<td></td>
<td>- PSEUDO_HALF_CONFIG
- FLOAT_CONFIG, and
- DOUBLE_CONFIG.</td>
<td>Dilation: 1 for all dimensions.</td>
</tr>
<tr>
<td>_FFT_TILING</td>
<td>NCDHW DHW-packed</td>
<td>NCDHW DHW-packed</td>
<td>- PSEUDO_HALF_CONFIG
- FLOAT_CONFIG, and
- DOUBLE_CONFIG.</td>
<td></td>
</tr>
</tbody>
</table>

Tensors can be converted to, and from, CUDNN_TENSOR_NCHW_VECT_C with cudnnTransformTensor().

Returns

CUDNN_STATUS_SUCCESS

The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- At least one of the following is NULL: handle, xDesc, wDesc, convDesc, yDesc, xData, w, yData, alpha, beta
- xDesc and yDesc have a non-matching number of dimensions
- xDesc and wDesc have a non-matching number of dimensions
- xDesc has fewer than three number of dimensions
- `xDesc`’s number of dimensions is not equal to `convDesc`’s array length + 2
- `xDesc` and `wDesc` have a non-matching number of input feature maps per image (or group in case of Grouped Convolutions)
- `yDesc` or `wDesc` indicate an output channel count that isn’t a multiple of group count (if group count has been set in `convDesc`).
- `xDesc`, `wDesc` and `yDesc` have a non-matching data type
- For some spatial dimension, `wDesc` has a spatial size that is larger than the input spatial size (including zero-padding size)

CUDNN_STATUS_NOT_SUPPORTED

At least one of the following conditions are met:

- `xDesc` or `yDesc` have negative tensor striding
- `xDesc`, `wDesc` or `yDesc` has a number of dimensions that is not 4 or 5
- `yDesc`’s spatial sizes do not match with the expected size as determined by `cudnnGetConvolutionNdForwardOutputDim`
- The chosen algo does not support the parameters provided; see above for exhaustive list of parameter support for each algo

CUDNN_STATUS_MAPPING_ERROR

An error occurred during the texture binding of the filter data.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.15. cudnnCreate

cudnnStatu_t cudnnCreate(cudnnHandle_t *handle)

This function initializes the cuDNN library and creates a handle to an opaque structure holding the cuDNN library context. It allocates hardware resources on the host and device and must be called prior to making any other cuDNN library calls.

The cuDNN library handle is tied to the current CUDA device (context). To use the library on multiple devices, one cuDNN handle needs to be created for each device.

For a given device, multiple cuDNN handles with different configurations (e.g., different current CUDA streams) may be created. Because `cudnnCreate` allocates some internal resources, the release of those resources by calling `cudnnDestroy` will implicitly call `cudaDeviceSynchronize`; therefore, the recommended best practice is to call `cudnnCreate/cudnnDestroy` outside of performance-critical code paths.

For multithreaded applications that use the same device from different threads, the recommended programming model is to create one (or a few, as is convenient) cuDNN handle(s) per thread and use that cuDNN handle for the entire life of the thread.

Parameters

`handle`

Output. Pointer to pointer where to store the address to the allocated cuDNN handle. See cudnnHandle_t.
Returns

CUDNN_STATUS_BAD_PARAM
Invalid (NULL) input pointer supplied.

CUDNN_STATUS_NOT_INITIALIZED
No compatible GPU found, CUDA driver not installed or disabled, CUDA runtime API initialization failed.

CUDNN_STATUS_ARCH_MISMATCH
NVIDIA GPU architecture is too old.

CUDNN_STATUS_ALLOC_FAILED
Host memory allocation failed.

CUDNN_STATUS_INTERNAL_ERROR
CUDA resource allocation failed.

CUDNN_STATUS_LICENSE_ERROR
cuDNN license validation failed (only when the feature is enabled).

CUDNN_STATUS_SUCCESS
cuDNN handle was created successfully.

4.16. cudnnCreateActivationDescriptor

cudnnStatus_t cudnnCreateActivationDescriptor(
 cudnnActivationDescriptor_t *activationDesc)

This function creates a activation descriptor object by allocating the memory needed to hold its opaque structure. See cudnnActivationDescriptor_t.

Returns

CUDNN_STATUS_SUCCESS
The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.17. cudnnCreateAlgorithmDescriptor

cudnnStatus_t cudnnCreateAlgorithmDescriptor(
 cudnnAlgorithmDescriptor_t *algoDesc)

(New for 7.1)

This function creates an algorithm descriptor object by allocating the memory needed to hold its opaque structure.

Returns
4.18. cudnnCreateAlgorithmPerformance

```
cudnnStatus_t cudnnCreateAlgorithmPerformance(
    cudnnAlgorithmPerformance_t *algoPerf,
    int numberToCreate)
```

(New for 7.1)

This function creates multiple algorithm performance objects by allocating the memory needed to hold their opaque structures.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.19. cudnnCreateAttnDescriptor

```
cudnnStatus_t cudnnCreateAttnDescriptor(cudnnAttnDescriptor_t *attnDesc);
```

This function creates an attention descriptor object by allocating the memory needed to hold its structure. Use the `cudnnSetAttnDescriptor` function to initialize the descriptor, and the `cudnnDestroyAttnDescriptor` function to destroy the descriptor.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>attnDesc</td>
<td>Output</td>
<td>An uninitialized attention descriptor.</td>
</tr>
</tbody>
</table>

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The descriptor object is created successfully.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>The <code>attnDesc</code> is NULL.</td>
</tr>
<tr>
<td>CUDNN_STATUS_ALLOC_FAILED</td>
<td>The memory allocation failed.</td>
</tr>
</tbody>
</table>

4.20. cudnnCreateCTCLossDescriptor

```
cudnnStatus_t cudnnCreateCTCLossDescriptor(
    cudnnCTCLossDescriptor_t* ctcLossDesc)
```

This function creates an CTCLoss descriptor by allocating the memory needed to hold its structure. Use the `cudnnSetCTCLossDescriptor` function to initialize the descriptor, and the `cudnnDestroyCTCLossDescriptor` function to destroy the descriptor.
This function creates a CTC loss function descriptor.

Parameters

ctcLossDesc

Output. CTC loss descriptor to be set. See *cudnnCTCLossDescriptor_t.*

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD_PARAM

CTC loss descriptor passed to the function is invalid.

CUDNN_STATUS_ALLOC_FAILED

Memory allocation for this CTC loss descriptor failed.

4.21. cudnnCreateConvolutionDescriptor

```c
  cudnnStatus_t cudnnCreateConvolutionDescriptor(
    cudnnConvolutionDescriptor_t *convDesc)
```

This function creates a convolution descriptor object by allocating the memory needed to hold its opaque structure. See *cudnnConvolutionDescriptor_t.*

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.22. cudnnCreateDropoutDescriptor

```c
  cudnnStatus_t cudnnCreateDropoutDescriptor(
    cudnnDropoutDescriptor_t    *dropoutDesc)
```

This function creates a generic dropout descriptor object by allocating the memory needed to hold its opaque structure. See *cudnnDropoutDescriptor_t.*

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.
4.23. cudnnCreateFilterDescriptor

cudnnStatus_t cudnnCreateFilterDescriptor(
 cudnnFilterDescriptor_t *filterDesc)

This function creates a filter descriptor object by allocating the memory needed to hold its opaque structure. See cudnnFilterDescriptor_t.

Returns
CUDNN_STATUS_SUCCESS
The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.24. cudnnCreateLRNDescriptor

cudnnStatus_t cudnnCreateLRNDescriptor(
 cudnnLRNDescriptor_t *poolingDesc)

This function allocates the memory needed to hold the data needed for LRN and DivisiveNormalization layers operation and returns a descriptor used with subsequent layer forward and backward calls.

Returns
CUDNN_STATUS_SUCCESS
The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

4.25. cudnnCreateOpTensorDescriptor

cudnnStatus_t cudnnCreateOpTensorDescriptor(
 cudnnOpTensorDescriptor_t* opTensorDesc)

This function creates a Tensor Pointwise math descriptor. See cudnnOpTensorDescriptor_t.

Parameters
opTensorDesc
Output. Pointer to the structure holding the description of the Tensor Pointwise math such as Add, Multiply, and more.

Returns
CUDNN_STATUS_SUCCESS
The function returned successfully.
CUDNN_STATUS_BAD_PARAM

Tensor Pointwise math descriptor passed to the function is invalid.

CUDNN_STATUS_ALLOC_FAILED

Memory allocation for this Tensor Pointwise math descriptor failed.

4.26. cudnnCreatePersistentRNNPlan

```c

cudnnStatus_t cudnnCreatePersistentRNNPlan(
    cudnnRNNDescriptor_t        rnnDesc,
    const int                   minibatch,
    const cudnnDataType_t       dataType,
    cudnnPersistentRNNPlan_t   *plan)
```

This function creates a plan to execute persistent RNNs when using the `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` algo. This plan is tailored to the current GPU and problem hyperparemeters. This function call is expected to be expensive in terms of runtime, and should be used infrequently. See `cudnnRNNDescriptor_t`, `cudnnDataType_t`, and `cudnnPersistentRNNPlan_t`.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING

A prerequisite runtime library cannot be found.

CUDNN_STATUS_NOT_SUPPORTED

The current hyperparameters are invalid.

4.27. cudnnCreatePoolingDescriptor

```c

cudnnStatus_t cudnnCreatePoolingDescriptor(
    cudnnPoolingDescriptor_t *poolingDesc)
```

This function creates a pooling descriptor object by allocating the memory needed to hold its opaque structure.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.
4.28. cudnnCreateRNNDescr iptor

cudnnStatus_t cudnnCreateRNNDescr iptor(
 cudnnRNNDescr iptor_t *rnnDesc)

This function creates a generic RNN descriptor object by allocating the memory needed to
hold its opaque structure.

Returns

CUDNN_STATUS_SUCCESS
 The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED
 The resources could not be allocated.

4.29. cudnnCreateRNNDat aDescriptor

cudnnStatus_t cudnnCreateRNNDat aDescriptor(
 cudnnRNNDat aDescriptor_t *RNNDataDesc)

This function creates a RNN data descriptor object by allocating the memory needed to
hold its opaque structure.

Returns

CUDNN_STATUS_SUCCESS
 The RNN data descriptor object was created successfully.

CUDNN_STATUS_BAD_PARAM
 RNNDataDesc is NULL.

CUDNN_STATUS_ALLOC_FAILED
 The resources could not be allocated.

4.30. cudnnCreateReduceTensorDescriptor

cudnnStatus_t cudnnCreateReduceTensorDescriptor(
 cudnnReduceTensorDescriptor_t* reduceTensorDesc)

This function creates a reduce tensor descriptor object by allocating the memory needed to
hold its opaque structure.

Parameters

None.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_BAD_PARAM

reduceTensorDesc is a NULL pointer.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.31. cudnnCreateSeqDataDescriptor

cudnnStatus_t cudnnCreateSeqDataDescriptor(cudnnSeqDataDescriptor_t *seqDataDesc);

This function creates a sequence data descriptor object by allocating the memory needed to hold its opaque structure. The sequence data is initialized to be all zero. Use the cudnnSetSeqDataDescriptor function to initialize the descriptor created by this function.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seqDataDesc</td>
<td>Output</td>
<td>A sequence data descriptor whose sequence data is initialized to be all zero.</td>
</tr>
</tbody>
</table>

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The descriptor object was created successfully.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>The seqDataDesc is NULL.</td>
</tr>
<tr>
<td>CUDNN_STATUS_ALLOC_FAILED</td>
<td>The memory allocation failed.</td>
</tr>
</tbody>
</table>

4.32. cudnnCreateSpatialTransformerDescriptor

cudnnStatus_t cudnnCreateSpatialTransformerDescriptor(
 cudnnSpatialTransformerDescriptor_t *stDesc)

This function creates a generic spatial transformer descriptor object by allocating the memory needed to hold its opaque structure.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.
4.33. cudnnCreateTensorDescriptor

cudnnStatus_t cudnnCreateTensorDescriptor(
 cudnnTensorDescriptor_t *tensorDesc)

This function creates a generic tensor descriptor object by allocating the memory needed to hold its opaque structure. The data is initialized to be all zero.

Parameters

tensorDesc

Input. Pointer to pointer where the address to the allocated tensor descriptor object should be stored.

Returns

CUDNN_STATUS_BAD_PARAM
Invalid input argument.

CUDNN_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUDNN_STATUS_SUCCESS
The object was created successfully.

4.34. cudnnCreateTensorTransformDescriptor

cudnnStatus_t cudnnCreateTensorTransformDescriptor(
 cudnnTensorTransformDescriptor_t *transformDesc);

This function creates a Tensor transform descriptor object by allocating the memory needed to hold its opaque structure. The Tensor data is initialized to be all zero. Use the cudnnSetTensorTransformDescriptor function to initialize the descriptor created by this function.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transformDesc</td>
<td>Output</td>
<td>A pointer to an uninitialized Tensor transform descriptor.</td>
</tr>
</tbody>
</table>

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The descriptor object was created successfully.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>The transformDesc is NULL.</td>
</tr>
<tr>
<td>CUDNN_STATUS_ALLOC_FAILED</td>
<td>The memory allocation failed.</td>
</tr>
</tbody>
</table>
4.35. cudnnDeriveBNTensorDescriptor

cudnnStatus_t cudnnDeriveBNTensorDescriptor(
 cudnnTensorDescriptor_t derivedBnDesc,
 const cudnnTensorDescriptor_t xDesc,
 cudnnBatchNormMode_t mode)

This function derives a secondary tensor descriptor for the batch normalization scale,
invVariance, bnBias, bnScale subtensors from the layer's x data descriptor.

Use the tensor descriptor produced by this function as the bnScaleBiasMeanVarDesc
parameter for the cudnnBatchNormalizationForwardInference and
cudnnBatchNormalizationForwardTraining functions, and as the
bnScaleBiasDiffDesc parameter in the cudnnBatchNormalizationBackward
function.

The resulting dimensions will be 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
BATCHNORM_MODE_SPATIAL, and 1xCxHxW for 4D and 1xCxDxHxW for 5D for
BATCHNORM_MODE_PER_ACTIVATION mode.

For HALF input data type the resulting tensor descriptor will have a FLOAT type. For
other data types it will have the same type as the input data.

- Only 4D and 5D tensors are supported.
- The derivedBnDesc should be first created using cudnnCreateTensorDescriptor.
- xDesc is the descriptor for the layer's x data and has to be setup with proper
dimensions prior to calling this function.

Parameters

- **derivedBnDesc**
 - *Output*. Handle to a previously created tensor descriptor.

- **xDesc**
 - *Input*. Handle to a previously created and initialized layer's x data descriptor.

- **mode**
 - *Input*. Batch normalization layer mode of operation.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The computation was performed successfully.
- **CUDNN_STATUS_BAD_PARAM**
 - Invalid Batch Normalization mode.
4.36. cudnnDestroy

`cudnnStatus_t cudnnDestroy(cudnnHandle_t handle)`

This function releases resources used by the cuDNN handle. This function is usually the last call with a particular handle to the cuDNN handle. Because `cudnnCreate` allocates some internal resources, the release of those resources by calling `cudnnDestroy` will implicitly call `cudaDeviceSynchronize`; therefore, the recommended best practice is to call `cudnnCreate/cudnnDestroy` outside of performance-critical code paths.

Parameters
handle

input. Pointer to the cuDNN handle to be destroyed.

Returns
CUDNN_STATUS_SUCCESS

The cuDNN context destruction was successful.

CUDNN_STATUS_BAD_PARAM

Invalid (NULL) pointer supplied.

4.37. cudnnDestroyActivationDescriptor

`cudnnStatus_t cudnnDestroyActivationDescriptor(
cudnnActivationDescriptor_t activationDesc)`

This function destroys a previously created activation descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.38. cudnnDestroyAlgorithmDescriptor

`cudnnStatus_t cudnnDestroyAlgorithmDescriptor(
cudnnAlgorithmDescriptor_t algorithmDesc)`

(New for 7.1)

This function destroys a previously created algorithm descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.
4.39. cudnnDestroyAlgorithmPerformance

cudnnStatus_t cudnnDestroyAlgorithmPerformance(
 cudnnAlgorithmPerformance_t algoPerf)

(New for 7.1)
This function destroys a previously created algorithm descriptor object.

Returns
CUDNN_STATUS_SUCCESS
The object was destroyed successfully.

4.40. cudnnDestroyAttnDescriptor

cudnnStatus_t cudnnDestroyAttnDescriptor(
 cudnnAttnDescriptor_t attnDesc);

This function destroys a previously created attention descriptor.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>attnDesc</td>
<td>Input</td>
<td>The attention descriptor to be destroyed.</td>
</tr>
</tbody>
</table>

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The descriptor was destroyed successfully.</td>
</tr>
</tbody>
</table>

4.41. cudnnDestroyCTCLossDescriptor

cudnnStatus_t cudnnDestroyCTCLossDescriptor(
 cudnnCTCLossDescriptor_t ctcLossDesc)

This function destroys a CTC loss function descriptor object.

Parameters
ctcLossDesc
 Input. CTC loss function descriptor to be destroyed.

Returns
CUDNN_STATUS_SUCCESS
The function returned successfully.
4.42. cudnnDestroyConvolutionDescriptor

cudnnStatus_t cudnnDestroyConvolutionDescriptor(
 cudnnConvolutionDescriptor_t convDesc)

This function destroys a previously created convolution descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.43. cudnnDestroyDropoutDescriptor

cudnnStatus_t cudnnDestroyDropoutDescriptor(
 cudnnDropoutDescriptor_t dropoutDesc)

This function destroys a previously created dropout descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.44. cudnnDestroyFilterDescriptor

cudnnStatus_t cudnnDestroyFilterDescriptor(
 cudnnFilterDescriptor_t filterDesc)

This function destroys a previously created Tensor4D descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.45. cudnnDestroyLRNDescriptor

cudnnStatus_t cudnnDestroyLRNDescriptor(
 cudnnLRNDescriptor_t lrnDesc)

This function destroys a previously created LRN descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.
4.46. `cudnnDestroyOpTensorDescriptor`

```c
void cudnnDestroyOpTensorDescriptor(cudnnOpTensorDescriptor_t opTensorDesc);
```

This function deletes a Tensor Pointwise math descriptor object.

Parameters

- `opTensorDesc`: Pointer to the structure holding the description of the Tensor Pointwise math to be deleted.

Returns

- `CUDNN_STATUS_SUCCESS`:
 The function returned successfully.

4.47. `cudnnDestroyPersistentRNNPlan`

```c
void cudnnDestroyPersistentRNNPlan(cudnnPersistentRNNPlan_t plan);
```

This function destroys a previously created persistent RNN plan object.

Returns

- `CUDNN_STATUS_SUCCESS`:
 The object was destroyed successfully.

4.48. `cudnnDestroyPoolingDescriptor`

```c
void cudnnDestroyPoolingDescriptor(cudnnPoolingDescriptor_t poolingDesc);
```

This function destroys a previously created pooling descriptor object.

Returns

- `CUDNN_STATUS_SUCCESS`:
 The object was destroyed successfully.

4.49. `cudnnDestroyRNNDescriptor`

```c
void cudnnDestroyRNNDescriptor(cudnnRNNDescriptor_t rnnDesc);
```

This function destroys a previously created RNN descriptor object.

Returns

- `CUDNN_STATUS_SUCCESS`:
 The object was destroyed successfully.
CUDNN_STATUS_SUCCESS
The object was destroyed successfully.

4.50. cudnnDestroyRNNDataDescriptor

cudnnStatus_t cudnnDestroyRNNDataDescriptor(
 cudnnRNNDATADescriptor_t RNNDataDesc)

This function destroys a previously created RNN data descriptor object.

Returns
CUDNN_STATUS_SUCCESS
The RNN data descriptor object was destroyed successfully.

4.51. cudnnDestroyReduceTensorDescriptor

cudnnStatus_t cudnnDestroyReduceTensorDescriptor(
 cudnnReducedTensorDescriptor_t tensorDesc)

This function destroys a previously created reduce tensor descriptor object. When the input pointer is NULL, this function performs no destroy operation.

Parameters
tensorDesc
Input. Pointer to the reduce tensor descriptor object to be destroyed.

Returns
CUDNN_STATUS_SUCCESS
The object was destroyed successfully.

4.52. cudnnDestroySeqDataDescriptor

cudnnStatus_t cudnnDestroySeqDataDescriptor(cudnnSeqDataDescriptor_t seqDataDesc);

Destroys a previously created sequence data descriptor.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seqDataDesc</td>
<td>Input</td>
<td>The sequence data descriptor to be destroyed.</td>
</tr>
</tbody>
</table>

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The descriptor was destroyed successfully.</td>
</tr>
</tbody>
</table>
4.53. cudnnDestroySpatialTransformerDescriptor

```c
void cudnnDestroySpatialTransformerDescriptor(cudnnSpatialTransformerDescriptor_t stDesc);
```

This function destroys a previously created spatial transformer descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.54. cudnnDestroyTensorDescriptor

```c
void cudnnDestroyTensorDescriptor(cudnnTensorDescriptor_t tensorDesc);
```

This function destroys a previously created tensor descriptor object. When the input pointer is NULL, this function performs no destroy operation.

Parameters

- `tensorDesc`: *Input*. Pointer to the tensor descriptor object to be destroyed.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.55. cudnnDestroyTensorTransformDescriptor

```c
void cudnnDestroyTensorTransformDescriptor(cudnnTensorTransformDescriptor_t transformDesc);
```

Destroys a previously created Tensor transform descriptor.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transformDesc</td>
<td>Input</td>
<td>The Tensor transform descriptor to be destroyed.</td>
</tr>
</tbody>
</table>

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The descriptor was destroyed successfully.</td>
</tr>
</tbody>
</table>
4.56. cudnnDivisiveNormalizationBackward

```c

cudnnStatus_t cudnnDivisiveNormalizationBackward(
    cudnnHandle_t                    handle,
    cudnnLRNDescriptor_t             normDesc,
    cudnnDivNormMode_t               mode,
    const void                      *alpha,
    const cudnnTensorDescriptor_t    xDesc,
    const void                      *x,
    const void                      *means,
    const void                      *dy,
    void                            *temp,
    void                            *temp2,
    const void                      *beta,
    const cudnnTensorDescriptor_t    dxDesc,
    void                            *dx,
    void                            *dMeans)
```

This function performs the backward DivisiveNormalization layer computation.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

normDesc

Input. Handle to a previously initialized LRN parameter descriptor (this descriptor is used for both LRN and DivisiveNormalization layers).

mode

Input. DivisiveNormalization layer mode of operation. Currently only CUDNN_DIVNORM_PRECOMPUTED_MEANS is implemented. Normalization is performed using the means input tensor that is expected to be precomputed by the user.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows: $dstValue = alpha[0]*resultValue + beta[0]*priorDstValue$. Please refer to this section for additional details.

xDesc, x, means

Input. Tensor descriptor and pointers in device memory for the layer’s x and means data. Note: the means tensor is expected to be precomputed by the user. It can also contain any valid values (not required to be actual means, and can be for instance a result of a convolution with a Gaussian kernel).
dy

Input. Tensor pointer in device memory for the layer's dy cumulative loss differential data (error backpropagation).

temp, temp2

Workspace. Temporary tensors in device memory. These are used for computing intermediate values during the backward pass. These tensors do not have to be preserved from forward to backward pass. Both use xDesc as a descriptor.

dxDesc

Input. Tensor descriptor for dx and dMeans.

dx, dMeans

Output. Tensor pointers (in device memory) for the layer's resulting cumulative gradients dx and dMeans (dLoss/dx and dLoss/dMeans). Both share the same descriptor.

Possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the tensor pointers x, dx, temp, temp2, dy is NULL.
- Number of any of the input or output tensor dimensions is not within the [4,5] range.
- Either alpha or beta pointer is NULL.
- A mismatch in dimensions between xDesc and dxDesc.
- LRN descriptor parameters are outside of their valid ranges.
- Any of the tensor strides is negative.

CUDNN_STATUS_UNSUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- Any of the input and output tensor strides mismatch (for the same dimension).

4.57. cudnnDivisiveNormalizationForward

cudnnStatus_t cudnnDivisiveNormalizationForward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnDivNormMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *means,
This function performs the forward spatial DivisiveNormalization layer computation. It divides every value in a layer by the standard deviation of its spatial neighbors as described in "What is the Best Multi-Stage Architecture for Object Recognition", Jarrett 2009, Local Contrast Normalization Layer section. Note that Divisive Normalization only implements the \(x/\max(c, \sigma_x)\) portion of the computation, where \(\sigma_x\) is the variance over the spatial neighborhood of \(x\). The full LCN (Local Contrastive Normalization) computation can be implemented as a two-step process:

\[
x_m = x - \text{mean}(x);
y = x_m/\max(c, \sigma(x_m));
\]

The "\(x - \text{mean}(x)\)" which is often referred to as "subtractive normalization" portion of the computation can be implemented using cuDNN average pooling layer followed by a call to addTensor.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

normDesc

Input. Handle to a previously initialized LRN parameter descriptor. This descriptor is used for both LRN and DivisiveNormalization layers.

divNormMode

Input. DivisiveNormalization layer mode of operation. Currently only CUDNN_DIVNORM_PRECOMPUTED_MEANS is implemented. Normalization is performed using the means input tensor that is expected to be precomputed by the user.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows: \(\text{dstValue} = \text{alpha[0]}\times\text{resultValue} + \text{beta[0]}\times\text{priorDstValue}.\) Please refer to this section for additional details.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors. Note that xDesc is shared between x, means, temp and temp2 tensors.

x

Input. Input tensor data pointer in device memory.
means

Input. Input means tensor data pointer in device memory. Note that this tensor can be NULL (in that case its values are assumed to be zero during the computation). This tensor also doesn't have to contain means, these can be any values, a frequently used variation is a result of convolution with a normalized positive kernel (such as Gaussian).

temp, temp2

Workspace. Temporary tensors in device memory. These are used for computing intermediate values during the forward pass. These tensors do not have to be preserved as inputs from forward to the backward pass. Both use xDesc as their descriptor.

\(y\)

Output. Pointer in device memory to a tensor for the result of the forward DivisiveNormalization computation.

Possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the tensor pointers \(x, y, \text{temp}, \text{temp2}\) is NULL.
- Number of input tensor or output tensor dimensions is outside of [4,5] range.
- A mismatch in dimensions between any two of the input or output tensors.
- For in-place computation when pointers \(x == y\), a mismatch in strides between the input data and output data tensors.
- Alpha or beta pointer is NULL.
- LRN descriptor parameters are outside of their valid ranges.
- Any of the tensor strides are negative.

CUDNN_STATUS_UNSUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- Any of the input and output tensor strides mismatch (for the same dimension).

4.58. cudnnDropoutBackward

cudnnStatus_t cudnnDropoutBackward(
 cudnnHandle_t handle,
 const cudnnDropoutDescriptor_t dropoutDesc,
 const cudnnTensorDescriptor_t dydesc,
 const void *dy,
 const cudnnTensorDescriptor_t dxdesc,
 void *dx,
This function performs backward dropout operation over `dy` returning results in `dx`. If during forward dropout operation value from `x` was propagated to `y` then during backward operation value from `dy` will be propagated to `dx`, otherwise, `dx` value will be set to 0.

Better performance is obtained for fully packed tensors

Parameters

handle

Input. Handle to a previously created cuDNN context.

dropoutDesc

Input. Previously created dropout descriptor object.

dyDesc

Input. Handle to a previously initialized tensor descriptor.

dy

Input. Pointer to data of the tensor described by the `dyDesc` descriptor.

dxDesc

Input. Handle to a previously initialized tensor descriptor.

dx

Output. Pointer to data of the tensor described by the `dxDesc` descriptor.

reserveSpace

Input. Pointer to user-allocated GPU memory used by this function. It is expected that `reserveSpace` was populated during a call to `cudnnDropoutForward` and has not been changed.

reserveSpaceSizeInBytes

Input. Specifies size in bytes of the provided memory for the reserve space

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The number of elements of input tensor and output tensors differ.
- The `datatype` of the input tensor and output tensors differs.
The strides of the input tensor and output tensors differ and in-place operation is used (i.e., x and y pointers are equal).

The provided reserveSpaceSizeInBytes is less than the value returned by cudnnDropoutGetReserveSpaceSize.

cudnnSetDropoutDescriptor has not been called on dropoutDesc with the non-NULL states argument.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.59. cudnnDropoutForward

This function performs forward dropout operation over x returning results in y. If dropout was used as a parameter to cudnnSetDropoutDescriptor, the approximately dropout fraction of x values will be replaced by 0, and the rest will be scaled by $1/(1\text{-dropout})$. This function should not be running concurrently with another cudnnDropoutForward function using the same states.

- **Better performance is obtained for fully packed tensors**
- **Should not be called during inference**

Parameters

handle

Input. Handle to a previously created cuDNN context.

dropoutDesc

Input. Previously created dropout descriptor object.

xDesc

Input. Handle to a previously initialized tensor descriptor.

x

Input. Pointer to data of the tensor described by the xDesc descriptor.

yDesc

Input. Handle to a previously initialized tensor descriptor.
y

Output. Pointer to data of the tensor described by the *yDesc* descriptor.

reserveSpace

Output. Pointer to user-allocated GPU memory used by this function. It is expected that contents of *reserveSpace* do not change between *cudnnDropoutForward* and *cudnnDropoutBackward* calls.

reserveSpaceSizeInBytes

Input. Specifies size in bytes of the provided memory for the reserve space.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The number of elements of input tensor and output tensors differ.
- The *datatype* of the input tensor and output tensors differs.
- The strides of the input tensor and output tensors differ and in-place operation is used (i.e., *x* and *y* pointers are equal).
- The provided *reserveSpaceSizeInBytes* is less then the value returned by *cudnnDropoutGetReserveSpaceSize*.
- *cudnnSetDropoutDescriptor* has not been called on *dropoutDesc* with the non-NULL *states* argument.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to execute on the GPU.

4.60. cudnnDropoutGetReserveSpaceSize

```c

cudnnStatus_t cudnnDropoutGetReserveSpaceSize(
    cudnnTensorDescriptor_t     xDesc,
    size_t                     *sizeInBytes)
```

This function is used to query the amount of reserve needed to run dropout with the input dimensions given by *xDesc*. The same reserve space is expected to be passed to *cudnnDropoutForward* and *cudnnDropoutBackward*, and its contents is expected to remain unchanged between *cudnnDropoutForward* and *cudnnDropoutBackward* calls.

Parameters
xDesc

Input. Handle to a previously initialized tensor descriptor, describing input to a dropout operation.

`sizeInBytes`

Output. Amount of GPU memory needed as reserve space to be able to run dropout with an input tensor descriptor specified by xDesc.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

4.61. cudnnDropoutGetStatesSize

```c
int cudnnStatus_t cudnnDropoutGetStatesSize(
    cudnnHandle_t       handle,
    size_t             *sizeInBytes)
```

This function is used to query the amount of space required to store the states of the random number generators used by `cudnnDropoutForward` function.

Parameters

`handle`

Input. Handle to a previously created cuDNN context.

`sizeInBytes`

Output. Amount of GPU memory needed to store random generator states.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

4.62. cudnnFindConvolutionBackwardDataAlgorithm

```c
int cudnnStatus_t cudnnFindConvolutionBackwardDataAlgorithm(
    cudnnHandle_t       handle,
    const cudnnFilterDescriptor_t    wDesc,
    const cudnnTensorDescriptor_t    dyDesc,
    const cudnnConvolutionDescriptor_t convDesc,
    const cudnnTensorDescriptor_t    dxDesc,
    const int              requestedAlgoCount,
    int                    *returnedAlgoCount,
    cudnnConvolutionBwdDataAlgoPerf_t *perfResults)
```

This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available)
for `cudnnConvolutionBackwardData()`, using memory allocated via `cudaMalloc()` and outputs performance metrics to a user-allocated array of `cudnnConvolutionBwdDataAlgoPerf_t`. These metrics are written in sorted fashion where the first element has the lowest compute time. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionBackwardMaxCount()`.

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise may needlessly inhibit some algorithm options due to resource usage.

Parameters

`handle`

Input. Handle to a previously created cuDNN context.

`wDesc`

Input. Handle to a previously initialized filter descriptor.

`dyDesc`

Input. Handle to the previously initialized input differential tensor descriptor.

`convDesc`

Input. Previously initialized convolution descriptor.

`dxDesc`

Input. Handle to the previously initialized output tensor descriptor.

`requestedAlgoCount`

Input. The maximum number of elements to be stored in `perfResults`.

`returnedAlgoCount`

Output. The number of output elements stored in `perfResults`.

`perfResults`

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- `handle` is not allocated properly.
- `wDesc`, `dyDesc` or `dxDesc` is not allocated properly.

- wDesc, dyDesc or dxDesc has fewer than 1 dimension.
- Either returnedCount or perfResults is nil.
- requestedCount is less than 1.

CUDNN_STATUS_ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

- The function was unable to allocate neccesary timing objects.
- The function was unable to deallocate neccesary timing objects.
- The function was unable to deallocate sample input, filters and output.

4.63. cudnnFindConvolutionBackwardDataAlgorithmEx

```c

cudnnStatus_t cudnnFindConvolutionBackwardDataAlgorithmEx(
    cudnnHandle_t                          handle,
    const cudnnFilterDescriptor_t          wDesc,
    const void                            *w,
    const cudnnTensorDescriptor_t          dyDesc,
    const void                            *dy,
    const cudnnConvolutionDescriptor_t     convDesc,
    const cudnnTensorDescriptor_t          dxDesc,
    void                                  *dx,
    const int                              requestedAlgoCount,
    int                                   *returnedAlgoCount,
    cudnnConvolutionBwdDataAlgoPerf_t     *perfResults,
    void                                  *workSpace,
    size_t                                 workSpaceSizeInBytes)
```

This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for `cudnnConvolutionBackwardData`, using user-allocated GPU memory, and outputs performance metrics to a user-allocated array of `cudnnConvolutionBwdDataAlgoPerf_t`. These metrics are written in sorted fashion where the first element has the lowest compute time. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionBackwardMaxCount()`.

Note: This function is host blocking.

Parameters

- **handle**

 Input. Handle to a previously created cuDNN context.

- **wDesc**

 Input. Handle to a previously initialized filter descriptor.
Input. Data pointer to GPU memory associated with the filter descriptor \texttt{wDesc}.

\texttt{dyDesc}

Input. Handle to the previously initialized input differential tensor descriptor.

\texttt{dy}

Input. Data pointer to GPU memory associated with the filter descriptor \texttt{dyDesc}.

\texttt{convDesc}

Input. Previously initialized convolution descriptor.

\texttt{dxDesc}

Input. Handle to the previously initialized output tensor descriptor.

\texttt{dxDesc}

\texttt{Input/Output. Data pointer to GPU memory associated with the tensor descriptor \texttt{dxDesc}. The content of this tensor will be overwritten with arbitrary values.}

\texttt{requestedAlgoCount}

Input. The maximum number of elements to be stored in \texttt{perfResults}.

\texttt{returnedAlgoCount}

Output. The number of output elements stored in \texttt{perfResults}.

\texttt{perfResults}

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

\texttt{workSpace}

Input. Data pointer to GPU memory that is a necessary workspace for some algorithms. The size of this workspace will determine the availability of algorithms. A nil pointer is considered a \texttt{workSpace} of 0 bytes.

\texttt{workSpaceSizeInBytes}

Input. Specifies the size in bytes of the provided \texttt{workSpace}

The possible error values returned by this function and their meanings are listed below.

\textbf{Returns}

\textbf{CUDNN_STATUS_SUCCESS}

The query was successful.

\textbf{CUDNN_STATUS_BAD_PARAM}

At least one of the following conditions are met:

\begin{itemize}
 \item \texttt{handle} is not allocated properly.
 \item \texttt{wDesc}, \texttt{dyDesc} or \texttt{dxDesc} is not allocated properly.
 \item \texttt{wDesc}, \texttt{dyDesc} or \texttt{dxDesc} has fewer than 1 dimension.
 \item \texttt{w}, \texttt{dy} or \texttt{dx} is nil.
 \item Either \texttt{returnedCount} or \texttt{perfResults} is nil.
\end{itemize}
• requestedCount is less than 1.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:
• The function was unable to allocate neccessary timing objects.
• The function was unable to deallocate neccessary timing objects.
• The function was unable to deallocate sample input, filters and output.

4.64. cudnnFindConvolutionBackwardFilterAlgorithm

cudnnStatus_t cudnnFindConvolutionBackwardFilterAlgorithm(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnFilterDescriptor_t dwDesc,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnConvolutionBwdFilterAlgoPerf_t *perfResults)

This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for cudnnConvolutionBackwardFilter(), using GPU memory allocated via cudaMalloc(), and outputs performance metrics to a user-allocated array of cudnnConvolutionBwdFilterAlgoPerf_t. These metrics are written in sorted fashion where the first element has the lowest compute time. The total number of resulting algorithms can be queried through the API cudnnGetConvolutionBackwardMaxCount().

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise may needlessly inhibit some algorithm options due to resource usage.

Parameters

handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- handle is not allocated properly.
- xDesc, dyDesc or dwDesc is not allocated properly.
- xDesc, dyDesc or dwDesc has fewer than 1 dimension.
- Either returnedCount or perfResults is nil.
- requestedCount is less than 1.

CUDNN_STATUS_ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

- The function was unable to allocate necesary timing objects.
- The function was unable to deallocate necesary timing objects.
- The function was unable to deallocate sample input, filters and output.

4.65. cudnnFindConvolutionBackwardFilterAlgorithmEx

```c
const cudnnStatus_t cudnnFindConvolutionBackwardFilterAlgorithmEx(
    cudnnHandle_t handle,
    const cudnnTensorDescriptor_t xDesc,
    const void *x,
    const cudnnTensorDescriptor_t dyDesc,
    const void *dy,
    const cudnnConvolutionDescriptor_t convDesc,
    const cudnnFilterDescriptor_t dwDesc,
    void *dw,
    const int requestedAlgoCount,
    int *returnedAlgoCount,
    cudnnConvolutionBwdFilterAlgoPerf_t *perfResults,
);```

www.nvidia.com

cuDNN 7.5.1
This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for `cudnnConvolutionBackwardFilter`, using user-allocated GPU memory, and outputs performance metrics to a user-allocated array of `cudnnConvolutionBwdFilterAlgoPerf_t`. These metrics are written in sorted fashion where the first element has the lowest compute time. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionBackwardMaxCount()`.

Parameters

**handle**

*Input.* Handle to a previously created cuDNN context.

**xDesc**

*Input.* Handle to the previously initialized input tensor descriptor.

**x**

*Input.* Data pointer to GPU memory associated with the filter descriptor `xDesc`.

**dyDesc**

*Input.* Handle to the previously initialized input differential tensor descriptor.

**dy**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `dyDesc`.

**convDesc**

*Input.* Previously initialized convolution descriptor.

**dwDesc**

*Input.* Handle to a previously initialized filter descriptor.

**dw**

*Input/Output.* Data pointer to GPU memory associated with the filter descriptor `dwDesc`. The content of this tensor will be overwritten with arbitrary values.

**requestedAlgoCount**

*Input.* The maximum number of elements to be stored in `perfResults`.

**returnedAlgoCount**

*Output.* The number of output elements stored in `perfResults`.

**perfResults**

*Output.* A user-allocated array to store performance metrics sorted ascending by compute time.
workSpace

*Input.* Data pointer to GPU memory that is a necessary workspace for some algorithms. The size of this workspace will determine the availability of algorithms. A nil pointer is considered a workSpace of 0 bytes.

workSpaceSizeInBytes

*Input.* Specifies the size in bytes of the provided *workSpace*

The possible error values returned by this function and their meanings are listed below.

**Returns**

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- handle is not allocated properly.
- xDesc, dyDesc or dwDesc is not allocated properly.
- xDesc, dyDesc or dwDesc has fewer than 1 dimension.
- x, dy or dw is nil.
- Either returnedCount or perfResults is nil.
- requestedCount is less than 1.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

- The function was unable to allocate necessary timing objects.
- The function was unable to deallocate necessary timing objects.
- The function was unable to deallocate sample input, filters and output.

### 4.66. cudnnFindConvolutionForwardAlgorithm

```c
#include <curand.h>

const int requestedAlgoCount;

int *returnedAlgoCount, *perfResults)
```

This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for *cudnnConvolutionForward()* using memory allocated via *cudaMalloc()* and outputs performance metrics to a user-allocated array of *cudnnConvolutionFwdAlgoPerf_t*. These metrics are written in sorted fashion where the first element has the lowest compute...
time. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionForwardMaxCount()`.

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise may needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

*Input.* Handle to a previously created cuDNN context.

xDesc

*Input.* Handle to the previously initialized input tensor descriptor.

wDesc

*Input.* Handle to a previously initialized filter descriptor.

convDesc

*Input.* Previously initialized convolution descriptor.

yDesc

*Input.* Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

*Input.* The maximum number of elements to be stored in perfResults.

returnedAlgoCount

*Output.* The number of output elements stored in perfResults.

perfResults

*Output.* A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

Returns

**CUDNN_STATUS_SUCCESS**

The query was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- `handle` is not allocated properly.
- `xDesc`, `wDesc` or `yDesc` is not allocated properly.
- `xDesc`, `wDesc` or `yDesc` has fewer than 1 dimension.
- Either `returnedCount` or `perfResults` is nil.
- `requestedCount` is less than 1.
CUDNN_STATUS_ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.

CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

- The function was unable to allocate neccessary timing objects.
- The function was unable to deallocate neccessary timing objects.
- The function was unable to deallocate sample input, filters and output.

4.67. cudnnFindConvolutionForwardAlgorithmEx

cudnnStatus_t cudnnFindConvolutionForwardAlgorithmEx(
    cudnnHandle_t                      handle,
    const cudnnTensorDescriptor_t      xDesc,
    const void                        *x,
    const cudnnFilterDescriptor_t      wDesc,
    const void                        *w,
    const cudnnConvolutionDescriptor_t convDesc,
    const cudnnTensorDescriptor_t      yDesc,
    void                              *y,
    const int                         requestedAlgoCount,
    int                               *returnedAlgoCount,
    cudnnConvolutionFwdAlgoPerf_t     *perfResults,
    void                              *workSpace,
    size_t                            workSpaceSizeInBytes)

This function attempts all available cuDNN algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) for cudnnConvolutionForward, using user-allocated GPU memory, and outputs performance metrics to a user-allocated array of cudnnConvolutionFwdAlgoPerf_t. These metrics are written in sorted fashion where the first element has the lowest compute time. The total number of resulting algorithms can be queried through the API cudnnGetConvolutionForwardMaxCount().

This function is host blocking.

Parameters

handle

*Input* Handle to a previously created cuDNN context.

xDesc

*Input* Handle to the previously initialized input tensor descriptor.

x

*Input* Data pointer to GPU memory associated with the tensor descriptor xDesc.

wDesc

*Input* Handle to a previously initialized filter descriptor.
Input. Data pointer to GPU memory associated with the filter descriptor \textit{\texttt{wDesc}}.

\textit{\texttt{convDesc}}

\textit{Input.} Previously initialized convolution descriptor.

\textit{\texttt{yDesc}}

\textit{Input.} Handle to the previously initialized output tensor descriptor.

\textit{\texttt{y}}

\textit{Input/Output.} Data pointer to GPU memory associated with the tensor descriptor \textit{\texttt{yDesc}}. The content of this tensor will be overwritten with arbitrary values.

\textit{\texttt{requestedAlgoCount}}

\textit{Input.} The maximum number of elements to be stored in \textit{\texttt{perfResults}}.

\textit{\texttt{returnedAlgoCount}}

\textit{Output.} The number of output elements stored in \textit{\texttt{perfResults}}.

\textit{\texttt{perfResults}}

\textit{Output.} A user-allocated array to store performance metrics sorted ascending by compute time.

\textit{\texttt{workSpace}}

\textit{Input.} Data pointer to GPU memory that is a necessary workspace for some algorithms. The size of this workspace will determine the availability of algorithms. A nil pointer is considered a \textit{\texttt{workSpace}} of 0 bytes.

\textit{\texttt{workSpaceSizeInBytes}}

\textit{Input.} Specifies the size in bytes of the provided \textit{\texttt{workSpace}}.

The possible error values returned by this function and their meanings are listed below.

\textbf{Returns}

\textbf{CUDNN\_STATUS\_SUCCESS}

The query was successful.

\textbf{CUDNN\_STATUS\_BAD\_PARAM}

At least one of the following conditions are met:

\begin{itemize}
  \item \texttt{handle} is not allocated properly.
  \item \texttt{xDesc, wDesc} or \texttt{yDesc} is not allocated properly.
  \item \texttt{xDesc, wDesc} or \texttt{yDesc} has fewer than 1 dimension.
  \item \texttt{x, w} or \texttt{y} is nil.
  \item Either \texttt{returnedCount} or \texttt{perfResults} is nil.
  \item \texttt{requestedCount} is less than 1.
\end{itemize}

\textbf{CUDNN\_STATUS\_INTERNAL\_ERROR}

At least one of the following conditions are met:

\begin{itemize}
  \item The function was unable to allocate necessary timing objects.
The function was unable to deallocate neccessary timing objects.

The function was unable to deallocate sample input, filters and output.

4.68. cudnnFindRNNBackwardDataAlgorithmEx

```c
void cudnnFindRNNBackwardDataAlgorithmEx(
 cudnnStatus_t cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *yDesc,
 const void *y,
 const cudnnTensorDescriptor_t *dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t *dhyDesc,
 const void *dhy,
 const cudnnTensorDescriptor_t dcyDesc,
 const void *dcy,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void *cx,
 const cudnnTensorDescriptor_t *dxDesc,
 const void *dx,
 const cudnnTensorDescriptor_t dhxDesc,
 const void *dhx,
 const cudnnTensorDescriptor_t dcxDesc,
 const void *dcx,
 const float findIntensity,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnAlgorithmPerformance_t *perfResults,
 void *workspace,
 size_t workSpaceSizeInBytes,
 const void *reserveSpace,
 size_t reserveSpaceSizeInBytes)
```

(New for 7.1)

This function attempts all available cuDNN algorithms for cudnnRNNBackwardData, using user-allocated GPU memory. It outputs the parameters that influence the performance of the algorithm to a user-allocated array of cudnnAlgorithmPerformance_t. These parameter metrics are written in sorted fashion where the first element has the lowest compute time.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**rnnDesc**

*Input.* A previously initialized RNN descriptor.

**seqLength**

*Input.* Number of iterations to unroll over. The value of this seqLength must not exceed the value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace size required to execute the RNN.
yDesc

**Input.** An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor `n` must match the first dimension of the tensor `n` in `dyDesc`.

y

**Input.** Data pointer to GPU memory associated with the output tensor descriptor `yDesc`.

dyDesc

**Input.** An array of fully packed tensor descriptors describing the gradient at the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor `n` must match the second dimension of the tensor `n` in `dxDesc`.

dy

**Input.** Data pointer to GPU memory associated with the tensor descriptors in the array `dyDesc`.

dhyDesc

**Input.** A fully packed tensor descriptor describing the gradients at the final hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.
dhy

*Input.* Data pointer to GPU memory associated with the tensor descriptor `dhyDesc`. If a NULL pointer is passed, the gradients at the final hidden state of the network will be initialized to zero.

dcyDesc

*Input.* A fully packed tensor descriptor describing the gradients at the final cell state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

dcy

*Input.* Data pointer to GPU memory associated with the tensor descriptor `dcyDesc`. If a NULL pointer is passed, the gradients at the final cell state of the network will be initialized to zero.

wDesc

*Input.* Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

*Input.* Data pointer to GPU memory associated with the filter descriptor `wDesc`.

hxDesc

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

hx

*Input.* Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.
cxDesc

**Input.** A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

cx

**Input.** Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

dxDesc

**Input.** An array of fully packed tensor descriptors describing the gradient at the input of each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element `n` to element `n+1` but may not increase. Each tensor descriptor must have the same second dimension (vector length).

dx

**Output.** Data pointer to GPU memory associated with the tensor descriptors in the array `dxDesc`.

dhxDesc

**Input.** A fully packed tensor descriptor describing the gradient at the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

dhx

**Output.** Data pointer to GPU memory associated with the tensor descriptor `dhxDesc`. If a NULL pointer is passed, the gradient at the hidden input of the network will not be set.
dcxDesc

*Input.* A fully packed tensor descriptor describing the gradient at the initial cell state of the RNN. The first dimension of the tensor depends on the *direction* argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `dxDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

*dcx*

*Output.* Data pointer to GPU memory associated with the tensor descriptor `dcxDesc`. If a NULL pointer is passed, the gradient at the cell input of the network will not be set.

*findIntensity*

*Input.* This input was previously unused in versions prior to 7.2.0. It is used in cuDNN 7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by selecting the percentage of a large Cartesian product space to be searched.

- Setting `findIntensity` within the range (0,1.] will set a percentage of the entire RNN search space to search. When `findIntensity` is set to 1.0, a full search is performed over all RNN parameters.
- When `findIntensity` is set to 0.0f, a quick, minimal search is performed. This setting has the best runtime. However, in this case the parameters returned by this function will not correspond to the best performance of the algorithm; a longer search might discover better parameters. This option will execute up to three instances of the configured RNN problem. Runtime will vary proportionally to RNN problem size, as it will in the other cases, hence no guarantee of an explicit time bound can be given.
- Setting `findIntensity` within the range [-1.,0) sets a percentage of a reduced Cartesian product space to be searched. This reduced searched space has been heuristically selected to have good performance. The setting of -1.0 represents a full search over this reduced search space.
- Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as per the above.
- Setting `findIntensity` to 1.0 in cuDNN 7.2 and later versions is equivalent to the behavior of this function in versions prior to cuDNN 7.2.0.
- This function times the single RNN executions over large parameter spaces—one execution per parameter combination. The times returned by this function are latencies.

*requestedAlgoCount*

*Input.* The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reserveSpace.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor rnnDesc is invalid.
- At least one of the descriptors dhxDesc, wDesc, hxDesc, cxDesc, dcxDesc, dhyDesc, dcyDesc or one of the descriptors in yDesc, dxdesc, dydesc is invalid.
- The descriptors in one of yDesc, dxDesc, dyDesc, dhxDesc, wDesc, hxDesc, cxDesc, dcxDesc, dhyDesc, dcyDesc has incorrect strides or dimensions.
- workSpaceSizeInBytes is too small.
- reserveSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.
This function attempts all available cuDNN algorithms for \texttt{cudnnRNNBackwardWeights}, using user-allocated GPU memory. It outputs the parameters that influence the performance of the algorithm to a user-allocated array of \texttt{cudnnAlgorithmPerformance_t}. These parameter metrics are written in sorted fashion where the first element has the lowest compute time.

**Parameters**

\textbf{handle}

\textit{Input.} Handle to a previously created cuDNN context.

\textbf{rnnDesc}

\textit{Input.} A previously initialized RNN descriptor.

\textbf{seqLength}

\textit{Input.} Number of iterations to unroll over. The value of this \texttt{seqLength} must not exceed the value that was used in \texttt{cudnnGetRNNWorkspaceSize()} function for querying the workspace size required to execute the RNN.

\textbf{xDesc}

\textit{Input.} An array of fully packed tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element \texttt{n} to element \texttt{n+1} but may not increase. Each tensor descriptor must have the same second dimension (vector length).

\textbf{x}

\textit{Input.} Data pointer to GPU memory associated with the tensor descriptors in the array \texttt{xDesc}.

\textbf{hxDesc}

\textit{Input.} A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the \texttt{direction} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \texttt{rnnDesc}:
If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**hx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

**yDesc**

*Input.* An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor `n` must match the first dimension of the tensor `n` in `dyDesc`.

**y**

*Input.* Data pointer to GPU memory associated with the output tensor descriptor `yDesc`.

**findIntensity**

*Input.* This input was previously unused in versions prior to 7.2.0. It is used in cuDNN 7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by selecting the percentage of a large Cartesian product space to be searched.

- Setting `findIntensity` within the range `(0,1.]` will set a percentage of the entire RNN search space to search. When `findIntensity` is set to 1.0, a full search is performed over all RNN parameters.
- When `findIntensity` is set to 0.0, a quick, minimal search is performed. This setting has the best runtime. However, in this case the parameters returned by this function will not correspond to the best performance of the algorithm; a longer search might discover better parameters. This option will execute up to three instances of the configured RNN problem. Runtime will vary proportionally to RNN problem size, as it will in the other cases, hence no guarantee of an explicit time bound can be given.
- Setting `findIntensity` within the range `[-1.,0)` sets a percentage of a reduced Cartesian product space to be searched. This reduced searched space has been
heuristically selected to have good performance. The setting of -1.0 represents a full search over this reduced search space.

- Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as per the above.
- Setting `findIntensity` to 1.0 in cuDNN 7.2 and later versions is equivalent to the behavior of this function in versions prior to cuDNN 7.2.0.
- This function times the single RNN executions over large parameter spaces--one execution per parameter combination. The times returned by this function are latencies.

**requestedAlgoCount**

*Input.* The maximum number of elements to be stored in `perfResults`.

**returnedAlgoCount**

*Output.* The number of output elements stored in `perfResults`.

**perfResults**

*Output.* A user-allocated array to store performance metrics sorted ascending by compute time.

**workspace**

*Input.* Data pointer to GPU memory to be used as a workspace for this call.

**workSpaceSizeInBytes**

*Input.* Specifies the size in bytes of the provided `workspace`.

**dwDesc**

*Input.* Handle to a previously initialized filter descriptor describing the gradients of the weights for the RNN.

**dw**

*Input/Output.* Data pointer to GPU memory associated with the filter descriptor `dwDesc`.

**reserveSpace**

*Input.* Data pointer to GPU memory to be used as a reserve space for this call.

**reserveSpaceSizeInBytes**

*Input.* Specifies the size in bytes of the provided `reserveSpace`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

-CUDNN_STATUS_SUCCESS

The function launched successfully.

-CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

-CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:
The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `hxDesc`, `dwDesc` or one of the descriptors in `xDesc`, `yDesc` is invalid.
- The descriptors in one of `xDesc`, `hxDesc`, `yDesc`, `dwDesc` has incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.
- `reserveSpaceSizeInBytes` is too small.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

**CUDNN_STATUS_ALLOC_FAILED**

The function was unable to allocate memory.

### 4.70. `cudnnFindRNNForwardInferenceAlgorithmEx`

```c
void cudnnFindRNNForwardInferenceAlgorithmEx(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const void *x
 const cudnnTensorDescriptor_t *hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void *cx,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t *yDesc,
 const void *y,
 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t cyDesc,
 const void *cy,
 const float findIntensity,
 const int requestedAlgoCount,
 int *returnedAlgoCount,
 cudnnAlgorithmPerformance_t *perfResults,
 void *workspace,
 size_t workSpaceSizeInBytes)
```

(New for 7.1)

This function attempts all available cuDNN algorithms for `cudnnRNNForwardInference`, using user-allocated GPU memory. It outputs the parameters that influence the performance of the algorithm to a user-allocated array of `cudnnAlgorithmPerformance_t`. These parameter metrics are written in sorted fashion where the first element has the lowest compute time.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.
rnnDesc

*Input.* A previously initialized RNN descriptor.

seqLength

*Input.* Number of iterations to unroll over. The value of this `seqLength` must not exceed the value that was used in `cudnnGetRNNWorkspaceSize()` function for querying the workspace size required to execute the RNN.

xDesc

*Input.* An array of fully packed tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element n to element n+1 but may not increase. Each tensor descriptor must have the same second dimension (vector length).

x

*Input.* Data pointer to GPU memory associated with the tensor descriptors in the array `xDesc`. The data are expected to be packed contiguously with the first element of iteration n+1 following directly from the last element of iteration n.

hxDesc

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

hx

*Input.* Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc

*Input.* A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the
cudnnSetRNNDescriptor call used to initialize \texttt{rnnDesc}. The tensor must be fully packed.

cx

\textit{Input}. Data pointer to GPU memory associated with the tensor descriptor \texttt{cxDesc}. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

\textit{Input}. Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

\textit{Input}. Data pointer to GPU memory associated with the filter descriptor \texttt{wDesc}.

yDesc

\textit{Input}. An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the \texttt{direction} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \texttt{rnnDesc}:

- If \texttt{direction} is \texttt{CUDNN\_UNIDIRECTIONAL} the second dimension should match the \texttt{hiddenSize} argument passed to \texttt{cudnnSetRNNDescriptor}.
- If \texttt{direction} is \texttt{CUDNN\_BIDIRECTIONAL} the second dimension should match double the \texttt{hiddenSize} argument passed to \texttt{cudnnSetRNNDescriptor}.

The first dimension of the tensor \texttt{n} must match the first dimension of the tensor \texttt{n} in \texttt{xDesc}.

y

\textit{Output}. Data pointer to GPU memory associated with the output tensor descriptor \texttt{yDesc}. The data are expected to be packed contiguously with the first element of iteration \(n+1\) following directly from the last element of iteration \(n\).

hyDesc

\textit{Input}. A fully packed tensor descriptor describing the final hidden state of the RNN. The first dimension of the tensor depends on the \texttt{direction} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \texttt{rnnDesc}:

- If \texttt{direction} is \texttt{CUDNN\_UNIDIRECTIONAL} the first dimension should match the \texttt{numLayers} argument passed to \texttt{cudnnSetRNNDescriptor}.
- If \texttt{direction} is \texttt{CUDNN\_BIDIRECTIONAL} the first dimension should match double the \texttt{numLayers} argument passed to \texttt{cudnnSetRNNDescriptor}.

The second dimension must match the first dimension of the tensors described in \texttt{xDesc}. The third dimension must match the \texttt{hiddenSize} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \texttt{rnnDesc}. The tensor must be fully packed.

hy

\textit{Output}. Data pointer to GPU memory associated with the tensor descriptor \texttt{hyDesc}. If a NULL pointer is passed, the final hidden state of the network will not be saved.
cyDesc

*Input.* A fully packed tensor descriptor describing the final cell state for LSTM networks. The first dimension of the tensor depends on the *direction* argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If *direction* is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If *direction* is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**cy**

*Output.* Data pointer to GPU memory associated with the tensor descriptor `cyDesc`. If a NULL pointer is passed, the final cell state of the network will be not be saved.

findIntensity

*Input.* This input was previously unused in versions prior to 7.2.0. It is used in cuDNN 7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by selecting the percentage of a large Cartesian product space to be searched.

- Setting *findIntensity* within the range (0,1.] will set a percentage of the entire RNN search space to search. When *findIntensity* is set to 1.0, a full search is performed over all RNN parameters.
- When *findIntensity* is set to 0.0f, a quick, minimal search is performed. This setting has the best runtime. However, in this case the parameters returned by this function will not correspond to the best performance of the algorithm; a longer search might discover better parameters. This option will execute up to three instances of the configured RNN problem. Runtime will vary proportionally to RNN problem size, as it will in the other cases, hence no guarantee of an explicit time bound can be given.
- Setting *findIntensity* within the range [-1.,0) sets a percentage of a reduced Cartesian product space to be searched. This reduced searched space has been heuristically selected to have good performance. The setting of -1.0 represents a full search over this reduced search space.
- Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as per the above.
- Setting *findIntensity* to 1.0 in cuDNN 7.2 and later versions is equivalent to the behavior of this function in versions prior to cuDNN 7.2.0.
- This function times the single RNN executions over large parameter spaces—one execution per parameter combination. The times returned by this function are latencies.

requestedAlgoCount

*Input.* The maximum number of elements to be stored in perfResults.
returnedAlgoCount

*Output.* The number of output elements stored in perfResults.

perfResults

*Output.* A user-allocated array to store performance metrics sorted ascending by compute time.

workspace

*Input.* Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

*Input.* Specifies the size in bytes of the provided *workspace*.

Returns

**CUDNN_STATUS_SUCCESS**

The function launched successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The descriptor *rnnDesc* is invalid.
- At least one of the descriptors *hxDesc, cxDesc, wDesc, hyDesc, cyDesc* or one of the descriptors in *xDesc, yDesc* is invalid.
- The descriptors in one of *xDesc, hxDesc, cxDesc, wDesc, yDesc, hyDesc, cyDesc* have incorrect strides or dimensions.
- *workSpaceSizeInBytes* is too small.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

**CUDNN_STATUS_ALLOC_FAILED**

The function was unable to allocate memory.

### 4.71. cudnnFindRNNForwardTrainingAlgorithmEx

```c
 cudnnStatus_t cudnnFindRNNForwardTrainingAlgorithmEx(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 const void *x,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void *cx,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t hyDesc,
 size_t *returnAlgoCount,
 cudnnPerfResults_t perfResults,
 size_t workSpaceSizeInBytes)
```

```c
 cudnnWorkspace_t workspace;
 cudnnPerfResults_t perfResults;
```
```c
void *hy,
const cudnnTensorDescriptor_t cyDesc,
void *cy,
const float findIntensity,
const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnAlgorithmPerformance_t *perfResults,
void *workspace,
sizet workSpaceSizeInBytes,
void *reserveSpace,
sizet reserveSpaceSizeInBytes)
```

(New for 7.1)

This function attempts all available cuDNN algorithms for `cudnnRNNForwardTraining`, using user-allocated GPU memory. It outputs the parameters that influence the performance of the algorithm to a user-allocated array of `cudnnAlgorithmPerformance_t`. These parameter metrics are written in sorted fashion where the first element has the lowest compute time.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**rnnDesc**

*Input.* A previously initialized RNN descriptor.

**xDesc**

*Input.* An array of fully packed tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element `n` to element `n+1` but may not increase. Each tensor descriptor must have the same second dimension (vector length).

**seqLength**

*Input.* Number of iterations to unroll over. The value of this `seqLength` must not exceed the value that was used in `cudnnGetRNNWorkspaceSize()` function for querying the workspace size required to execute the RNN.

**x**

*Input.* Data pointer to GPU memory associated with the tensor descriptors in the array `xDesc`.

**hxDesc**

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the
**cudnnSetRNNDescriptor** call used to initialize **rnnDesc**. The tensor must be fully packed.

**hx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor **hxDesc**. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

**cxDesc**

*Input.* A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the **direction** argument passed to the **cudnnSetRNNDescriptor** call used to initialize **rnnDesc**:

- If **direction** is **CUDNN_UNIDIRECTIONAL** the first dimension should match the **numLayers** argument passed to **cudnnSetRNNDescriptor**.
- If **direction** is **CUDNN_BIDIRECTIONAL** the first dimension should match double the **numLayers** argument passed to **cudnnSetRNNDescriptor**.

The second dimension must match the first dimension of the tensors described in **xDesc**. The third dimension must match the **hiddenSize** argument passed to the **cudnnSetRNNDescriptor** call used to initialize **rnnDesc**. The tensor must be fully packed.

**cx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor **cxDesc**. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

**wDesc**

*Input.* Handle to a previously initialized filter descriptor describing the weights for the RNN.

**w**

*Input.* Data pointer to GPU memory associated with the filter descriptor **wDesc**.

**yDesc**

*Input.* An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the **direction** argument passed to the **cudnnSetRNNDescriptor** call used to initialize **rnnDesc**:

- If **direction** is **CUDNN_UNIDIRECTIONAL** the second dimension should match the **hiddenSize** argument passed to **cudnnSetRNNDescriptor**.
- If **direction** is **CUDNN_BIDIRECTIONAL** the second dimension should match double the **hiddenSize** argument passed to **cudnnSetRNNDescriptor**.

The first dimension of the tensor **n** must match the first dimension of the tensor **n** in **xDesc**.

**y**

*Output.* Data pointer to GPU memory associated with the output tensor descriptor **yDesc**.
**hyDesc**

*Input.* A fully packed tensor descriptor describing the final hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**hy**

*Output.* Data pointer to GPU memory associated with the tensor descriptor `hyDesc`. If a NULL pointer is passed, the final hidden state of the network will not be saved.

**cyDesc**

*Input.* A fully packed tensor descriptor describing the final cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**cy**

*Output.* Data pointer to GPU memory associated with the tensor descriptor `cyDesc`. If a NULL pointer is passed, the final cell state of the network will not be saved.

**findIntensity**

*Input.* This input was previously unused in versions prior to 7.2.0. It is used in cuDNN 7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by selecting the percentage of a large Cartesian product space to be searched.

- Setting `findIntensity` within the range `(0,1.]` will set a percentage of the entire RNN search space to search. When `findIntensity` is set to 1.0, a full search is performed over all RNN parameters.
- When `findIntensity` is set to 0.0f, a quick, minimal search is performed. This setting has the best runtime. However, in this case the parameters returned by this function will not correspond to the best performance of the algorithm; a longer search might discover better parameters. This option will execute up to three instances of the configured RNN problem. Runtime will vary...
proportionally to RNN problem size, as it will in the other cases, hence no guarantee of an explicit time bound can be given.

- Setting **findIntensity** within the range [-1.,0) sets a percentage of a reduced Cartesian product space to be searched. This reduced searched space has been heuristically selected to have good performance. The setting of -1.0 represents a full search over this reduced search space.
- Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as per the above.
- Setting **findIntensity** to 1.0 in cuDNN 7.2 and later versions is equivalent to the behavior of this function in versions prior to cuDNN 7.2.0.
- This function times the single RNN executions over large parameter spaces--one execution per parameter combination. The times returned by this function are latencies.

**requestedAlgoCount**

*Input.* The maximum number of elements to be stored in perfResults.

**returnedAlgoCount**

*Output.* The number of output elements stored in perfResults.

**perfResults**

*Output.* A user-allocated array to store performance metrics sorted ascending by compute time.

**workspace**

*Input.* Data pointer to GPU memory to be used as a workspace for this call.

**workSpaceSizeInBytes**

*Input.* Specifies the size in bytes of the provided workspace.

**reserveSpace**

*Input/Output.* Data pointer to GPU memory to be used as a reserve space for this call.

**reserveSpaceSizeInBytes**

*Input.* Specifies the size in bytes of the provided reserveSpace.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function launched successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The descriptor **rnnDesc** is invalid.
- At least one of the descriptors **hxDesc**, **cxDesc**, **wDesc**, **hyDesc**, **cyDesc** or one of the descriptors in **xDesc**, **yDesc** is invalid.
- The descriptors in one of **xDesc**, **hxDesc**, **cxDesc**, **wDesc**, **yDesc**, **hyDesc**, **cyDesc** have incorrect strides or dimensions.
workSpaceSizeInBytes is too small.
reserveSpaceSizeInBytes is too small.

**CUDNN\_STATUS\_EXECUTION\_FAILED**
The function failed to launch on the GPU.

**CUDNN\_STATUS\_ALLOC\_FAILED**
The function was unable to allocate memory.

### 4.72. cudnnGetActivationDescriptor

```c
const cudnnActivationDescriptor_t activationDesc,
cudnnActivationMode_t *mode,
cudnnNanPropagation_t *reluNanOpt,
double *coef)
```

This function queries a previously initialized generic activation descriptor object.

**Parameters**

**activationDesc**

*Input.* Handle to a previously created activation descriptor.

**mode**

*Output.* Enumerant to specify the activation mode.

**reluNanOpt**

*Output.* Enumerant to specify the Nan propagation mode.

**coef**

*Output.* Floating point number to specify the clipping threshold when the activation mode is set to `CUDNN\_ACTIVATION\_CLIPPED\_RELU` or to specify the alpha coefficient when the activation mode is set to `CUDNN\_ACTIVATION\_ELU`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN\_STATUS\_SUCCESS**
The object was queried successfully.

### 4.73. cudnnGetAlgorithmDescriptor

```c
const cudnnAlgorithmDescriptor_t algoDesc,
cudnnAlgorithm_t *algorithm)
```

*(New for 7.1)*

This function queries a previously initialized generic algorithm descriptor object.

**Parameters**
algorithmDesc

**Input.** Handle to a previously created algorithm descriptor.

algorithm

**Input.** Struct to specify the algorithm.

**Returns**

**CUDNN\_STATUS\_SUCCESS**

The object was queried successfully.

### 4.74. cudnnGetAlgorithmPerformance

```c
const cudnnAlgorithmPerformance_t algoPerf,
cudnnAlgorithmDescriptor_t* algoDesc,
cudnnStatus_t* status,
float* time,
size_t* memory)
```

(New for 7.1)

This function queries a previously initialized generic algorithm performance object.

**Parameters**

**algoPerf**

**Input/Output.** Handle to a previously created algorithm performance object.

**algoDesc**

**Output.** The algorithm descriptor which the performance results describe.

**status**

**Output.** The cudnn status returned from running the algoDesc algorithm.

**timecoef**

**Output.** The GPU time spent running the algoDesc algorithm.

**memory**

**Output.** The GPU memory needed to run the algoDesc algorithm.

**Returns**

**CUDNN\_STATUS\_SUCCESS**

The object was queried successfully.

### 4.75. cudnnGetAlgorithmSpaceSize

```c
cudnnStatus_t cudnnGetAlgorithmSpaceSize(
 cudnnHandle_t handle,
cudnnAlgorithmDescriptor_t algoDesc,
size_t* algoSpaceSizeInBytes)
```

(New for 7.1)
This function queries for the amount of host memory needed to call `cudnnSaveAlgorithm`, much like the “get workspace size” functions query for the amount of device memory needed.

**Parameters**

- **handle**
  
  *Input.* Handle to a previously created cuDNN context.

- **algoDesc**

  *Input.* A previously created algorithm descriptor.

- **algoSpaceSizeInBytes**

  *Output.* Amount of host memory needed as workspace to be able to save the metadata from the specified `algoDesc`.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  
  The function launched successfully.

- **CUDNN_STATUS_BAD_PARAM**

  At least one of the arguments is null.

### 4.76. cudnnGetAttnDescriptor

cudnnStatus_t cudnnGetAttnDescriptor(
    cudnnAttnDescriptor_t attnDesc, 
    cudnnAttnQueryMap_t *queryMap, 
    int *nHeads, 
    double *smScaler, 
    cudnnDataType_t *dataType, 
    cudnnDataType_t *computePrec, 
    cudnnMathType_t *mathType, 
    cudnnDropoutDescriptor_t *attnDropoutDesc, 
    cudnnDropoutDescriptor_t *postDropoutDesc, 
    int *qSize, 
    int *kSize, 
    int *vSize, 
    int *qProjSize, 
    int *kProjSize, 
    int *vProjSize, 
    int *oProjSize, 
    int *qMaxSeqLength, 
    int *kvMaxSeqLength, 
    int *maxBatchSize, 
    int *maxBeamSize);

This function retrieves the values from a previously initialized attention descriptor.

**Parameters:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>attnDesc</td>
<td>Input</td>
<td>Attention descriptor whose values are to be retrieved.</td>
</tr>
<tr>
<td>queryMap</td>
<td>Output</td>
<td>Query mapping mode.</td>
</tr>
</tbody>
</table>
### nHeads

**Output**

Number of attention heads.

### smScaler

**Output**

Softmax smoothing, or sharpening, coefficient.

### dataType

**Output**

Data type for Q,K,V inputs, weights, and the output.

### computePrec

**Output**

Compute data type (precision).

### mathType

**Output**

The Tensor Core Operations settings.

### attnDropoutDesc

**Output**

Dropout descriptor for the dropout at the attention layer.

### postDropoutDesc

**Output**

Dropout descriptor for the dropout at the output.

### qSize, kSize, vSize

**Output**

Hidden size of Q, K, and V input sequence data.

### qProjSize, kProjSize, vProjSize

**Output**

Hidden size of projected Q, K and V sequence data; 0 if no projection.

### oProjSize

**Output**

Output projection size.

### qoMaxSeqLength

**Output**

Largest sequence length allowed in sequence data Q and O.

### kvMaxSeqLength

**Output**

Largest sequence length allowed in sequence data K and V.

### maxBatchSize

**Output**

Largest batch size allowed in sequence data.

### maxBeamSize

**Output**

Largest beam size allowed in sequence data.

### Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>attDesc is a NULL pointer.</td>
</tr>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The attention descriptor structure values are retrieved successfully.</td>
</tr>
</tbody>
</table>

4.77. `cudnnBatchNormalizationBackwardExWorkspaceSize`

```c
 cudnnStatus_t cudnnGetBatchNormalizationBackwardExWorkspaceSize(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 cudnnBatchNormOps_t bnOps,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnTensorDescriptor_t yDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnTensorDescriptor_t dzDesc,
 const cudnnTensorDescriptor_t dxDesc,
 const cudnnTensorDescriptor_t dBnScaleBiasDesc,
 const cudnnActivationDescriptor_t activationDesc,
 size_t *sizeInBytes);
```
This function returns the amount of GPU memory workspace the user should allocate to be able to call cudnnGetBatchNormalizationBackwardEx() function for the specified bnOps input setting. The workspace allocated will then be passed to the function cudnnGetBatchNormalizationBackwardEx().

Parameters

`handle`

*Input.* Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.

`mode`

*Input.* Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.

`bnOps`

*Input.* Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t. This input can be used to set this function to perform either only the batch normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

`xDesc`, `yDesc`, `dyDesc`, `dzDesc`, `dxDesc`

Tensor descriptors and pointers in the device memory for the layer's $x$ data, back propagated differential $dy$ (inputs), the optional $y$ input data, the optional $dz$ output, and the $dx$ output, which is the resulting differential with respect to $x$. See cudnnTensorDescriptor_t.

`dBnScaleBiasDesc`

*Input.* Shared tensor descriptor for the following six tensors: $bnScaleData$, $bnBiasData$, $dBnScaleData$, $dBnBiasData$, $savedMean$, and $savedInvVariance$. This is the shared tensor descriptor desc for the secondary tensor that was derived by cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are dependent on normalization mode. Note: The data type of this tensor descriptor must be 'float' for FP16 and FP32 input tensors, and 'double' for FP64 input tensors.

`activationDesc`

*Input.* Tensor descriptor for the activation operation.

`*sizeInBytes`

*Output.* Amount of GPU memory required for the workspace, as determined by this function, to be able to execute the cudnnGetBatchNormalizationBackwardEx() function with the specified bnOps input setting.

Possible error values returned by this function and their meanings are listed below.

Returns

**CUDNN_STATUS_SUCCESS**

The computation was performed successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:
- Number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- dBnScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc

4.78. cudnnBatchNormalizationForwardTrainingExWorkspaceSize

cudnnStatus_t cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
    cudnnHandle_t                           handle,
    cudnnBatchNormMode_t                    mode,
    cudnnBatchNormOps_t                     bnOps,
    const cudnnTensorDescriptor_t           xDesc,
    const cudnnTensorDescriptor_t           zDesc,
    const cudnnTensorDescriptor_t           yDesc,
    const cudnnTensorDescriptor_t           bnScaleBiasMeanVarDesc,
    const cudnnActivationDescriptor_t       activationDesc,
    size_t                                  *sizeInBytes);

This function returns the amount of GPU memory workspace the user should allocate to be able to call cudnnGetBatchNormalizationForwardTrainingEx() function for the specified bnOps input setting. The workspace allocated should then be passed by the user to the function cudnnGetBatchNormalizationForwardTrainingEx().

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.

bnOps

Input. Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t.

This input can be used to set this function to perform either only the batch normalization, or batch normalization followed by activation, or batch normalization followed by element-wise addition and then activation.

xDesc, zDesc, yDesc

Tensor descriptors and pointers in the device memory for the layer’s x data, the optional z input data, and the y output. See cudnnTensorDescriptor_t.

bnScaleBiasMeanVarDesc

Input. Shared tensor descriptor for the following six tensors: bnScaleData, bnBiasData, dBnScaleData, dBnBiasData, savedMean, and savedInvVariance. This is the shared tensor descriptor desc for the secondary tensor that was derived by cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are dependent on normalization mode. Note: The data type of this tensor descriptor must be ‘float’ for FP16 and FP32 input tensors, and ‘double’ for FP64 input tensors.
activationDesc

*Input*. Tensor descriptor for the activation operation. When the `bnOps` input is set to either CUDNN_BATCHNORM_OPS_BN_ACTIVATION or CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION then this activation is used.

*sizeInBytes

*Output*. Amount of GPU memory required for the workspace, as determined by this function, to be able to execute the `cudnnGetBatchNormalizationForwardTrainingEx()` function with the specified `bnOps` input setting.

Returns

**CUDNN_STATUS_SUCCESS**

The computation was performed successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- Number of `xDesc` or `yDesc` or `dxDesc` tensor descriptor dimensions is not within the range of [4,5] (only 4D and 5D tensors are supported.)
- `dBnScaleBiasDesc` dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.
- Dimensions or data types mismatch for `xDesc`, `yDesc`.

### 4.79. cudnnGetBatchNormalizationTrainingExReserveSpaceSize

```c
void cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 cudnnBatchNormOps_t bnOps,
 const cudnnActivationDescriptor_t activationDesc,
 const cudnnTensorDescriptor_t xDesc,
 size_t *sizeInBytes);
```

This function returns the amount of reserve GPU memory workspace the user should allocate for the batch normalization operation, for the specified `bnOps` input setting. In contrast to the **workspace**, the reserved space should be preserved between the forward and backward calls, and the data should not be altered.

**Parameters**

**handle**

*Input*. Handle to a previously created cuDNN library descriptor. See **cudnnHandle_t**.

**mode**

*Input*. Mode of operation (spatial or per-activation). See **cudnnBatchNormMode_t**.
**bnOps**

*Input.* Mode of operation for the fast NHWC kernel. See `cudnnBatchNormOps_t`.
This input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization
followed by element-wise addition and then activation.

**xDesc**

Tensor descriptors for the layer’s x data. See `cudnnTensorDescriptor_t`.

**activationDesc**

*Input.* Tensor descriptor for the activation operation.

**sizeInBytes**

*Output.* Amount of GPU memory reserved.

Possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The computation was performed successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The `xDesc` tensor descriptor dimension is not within the [4,5] range (only 4D and
  5D tensors are supported.)

4.80. **cudnnGetCTCLossDescriptor**

cudnnStatus_t cudnnGetCTCLossDescriptor(
  cudnnCTCLossDescriptor_t         ctcLossDesc,
  cudnnDataType_t*                 compType)

This function returns configuration of the passed CTC loss function descriptor.

**Parameters**

**ctcLossDesc**

*Input.* CTC loss function descriptor passed, from which to retrieve the configuration.

**compType**

*Output.* Compute type associated with this CTC loss function descriptor.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function returned successfully.

**CUDNN_STATUS_BAD_PARAM**

Input OpTensor descriptor passed is invalid.
4.81. cudnnGetCTCLossWorkspaceSize

cudnnStatus_t cudnnGetCTCLossWorkspaceSize(
    cudnnHandle_t                        handle,
    const   cudnnTensorDescriptor_t      probsDesc,
    const   cudnnTensorDescriptor_t      gradientsDesc,
    const   int                         *labels,
    const   int                         *labelLengths,
    const   int                         *inputLengths,
    cudnnCTCLossAlgo_t                   algo,
    const   cudnnCTCLossDescriptor_t     ctcLossDesc,
    size_t                              *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate to be able to call `cudnnCTCLoss` with the specified algorithm. The workspace allocated will then be passed to the routine `cudnnCTCLoss`.

Parameters

handle

Input. Handle to a previously created cuDNN context.

probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor.

gradientsDesc

Input. Handle to a previously initialized gradients tensor descriptor.

labels

Input. Pointer to a previously initialized labels list.

labelLengths

Input. Pointer to a previously initialized lengths list, to walk the above labels list.

inputLengths

Input. Pointer to a previously initialized list of the lengths of the timing steps in each batch.

algo

Input. Enumerant that specifies the chosen CTC loss algorithm

ctcLossDesc

Input. Handle to the previously initialized CTC loss descriptor.

sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute the CTC loss computation with the specified `algo`.

The possible error values returned by this function and their meanings are listed below.

Returns

`CUDNN_STATUS_SUCCESS`

The query was successful.
4.82. cudnnGetCallback

```c
const cudnnConvolutionDescriptor_t convDesc,
int *pad_h,
cudnnStatus_t cudnnGetConvolution2dDescriptor(
 const cudnnConvolutionDescriptor_t convDesc,
 int *pad_h,
```
This function queries a previously initialized 2D convolution descriptor object.

**Parameters**

**convDesc**

*Input/Output.* Handle to a previously created convolution descriptor.

**pad_h**

*Output.* zero-padding height: number of rows of zeros implicitly concatenated onto the top and onto the bottom of input images.

**pad_w**

*Output.* zero-padding width: number of columns of zeros implicitly concatenated onto the left and onto the right of input images.

**u**

*Output.* Vertical filter stride.

**v**

*Output.* Horizontal filter stride.

**dilation_h**

*Output.* Filter height dilation.

**dilation_w**

*Output.* Filter width dilation.

**mode**

*Output.* Convolution mode.

**computeType**

*Output.* Compute precision.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The operation was successful.

**CUDNN_STATUS_BAD_PARAM**

The parameter **convDesc** is nil.

### 4.84. cudnnGetConvolution2dForwardOutputDim

```c
int *pad_w,
int *u,
int *v,
int *dilation_h,
int *dilation_w,
cudnnConvolutionMode_t *mode,
cudnnDataType_t *computeType)
```
This function returns the dimensions of the resulting 4D tensor of a 2D convolution, given the convolution descriptor, the input tensor descriptor and the filter descriptor. This function can help to setup the output tensor and allocate the proper amount of memory prior to launch the actual convolution.

Each dimension \( h \) and \( w \) of the output images is computed as followed:

\[
\text{outputDim} = 1 + \left( \frac{\text{inputDim} + 2 \times \text{pad} - ((\text{filterDim}-1) \times \text{dilation}+1)}{\text{convolutionStride}} \right)
\]

The dimensions provided by this routine must be strictly respected when calling \text{cudnnConvolutionForward()} or \text{cudnnConvolutionBackwardBias()}. Providing a smaller or larger output tensor is not supported by the convolution routines.

### Parameters

- **convDesc**
  - \textit{Input.} Handle to a previously created convolution descriptor.

- **inputTensorDesc**
  - \textit{Input.} Handle to a previously initialized tensor descriptor.

- **filterDesc**
  - \textit{Input.} Handle to a previously initialized filter descriptor.

- **n**
  - \textit{Output.} Number of output images.

- **c**
  - \textit{Output.} Number of output feature maps per image.

- **h**
  - \textit{Output.} Height of each output feature map.

- **w**
  - \textit{Output.} Width of each output feature map.

The possible error values returned by this function and their meanings are listed below.

### Returns

- **CUDNN_STATUS_BAD_PARAM**
  - One or more of the descriptors has not been created correctly or there is a mismatch between the feature maps of \text{inputTensorDesc} and \text{filterDesc}.

- **CUDNN_STATUS_SUCCESS**
  - The object was set successfully.
4.85. cudnnGetConvolutionBackwardDataAlgorithm

```c
void cudnnGetConvolutionBackwardDataAlgorithm(
 cudnnHandle_t handle,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t dxDesc,
 cudnnConvolutionBwdDataPreference_t preference,
 size_t memoryLimitInBytes,
 cudnnConvolutionBwdDataAlgo_t *algo)
```

This function serves as a heuristic for obtaining the best suited algorithm for `cudnnConvolutionBackwardData` for the given layer specifications. Based on the input preference, this function will either return the fastest algorithm or the fastest algorithm within a given memory limit. For an exhaustive search for the fastest algorithm, please use `cudnnFindConvolutionBackwardDataAlgorithm`.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**wDesc**

*Input.* Handle to a previously initialized filter descriptor.

**dyDesc**

*Input.* Handle to the previously initialized input differential tensor descriptor.

**convDesc**

*Input.* Previously initialized convolution descriptor.

**dxDesc**

*Input.* Handle to the previously initialized output tensor descriptor.

**preference**

*Input.* Enumerant to express the preference criteria in terms of memory requirement and speed.

**memoryLimitInBytes**

*Input.* It is to specify the maximum amount of GPU memory the user is willing to use as a workspace. This is currently a placeholder and is not used.

**algo**

*Output.* Enumerant that specifies which convolution algorithm should be used to compute the results according to the specified preference.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The numbers of feature maps of the input tensor and output tensor differ.
- The dataType of the two tensor descriptors or the filter are different.

4.86. cudnnGetConvolutionBackwardDataAlgorithmMaxCount

cudnnStatus_t cudnnGetConvolutionBackwardDataAlgorithmMaxCount(
    cudnnHandle_t handle,
    int *count)

This function returns the maximum number of algorithms which can be
returned from cudnnFindConvolutionBackwardDataAlgorithm() and
cudnnGetConvolutionForwardAlgorithm_v7(). This is the sum of all algorithms plus the
sum of all algorithms with Tensor Core operations supported for the current device.

Parameters
handle

Input. Handle to a previously created cuDNN context.

count

Output. The resulting maximum number of algorithms.

Returns
CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

The provided handle is not allocated properly.

4.87. cudnnGetConvolutionBackwardDataAlgorithm_v7

cudnnStatus_t cudnnGetConvolutionBackwardDataAlgorithm_v7(
    cudnnHandle_t handle,
    const cudnnFilterDescriptor_t wDesc,
    const cudnnTensorDescriptor_t dyDesc,
    const cudnnConvolutionDescriptor_t convDesc,
    const cudnnTensorDescriptor_t dxDesc,
    const int requestedAlgoCount,
    int *returnedAlgoCount,
    cudnnConvolutionBwdDataAlgoPerf_t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardData for the given layer specifications. This
function will return all algorithms (including CUDNN_TENSOR_OP_MATH
and CUDNN_DEFAULT_MATH versions of algorithms where
CUDNN_TENSOR_OP_MATH may be available) sorted by expected
(based on internal heuristic) relative performance with fastest being
index 0 of perfResults. For an exhaustive search for the fastest algorithm,
please use `cudnnFindConvolutionBackwardDataAlgorithm`. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionBackwardMaxCount()`.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**wDesc**

*Input.* Handle to a previously initialized filter descriptor.

**dyDesc**

*Input.* Handle to the previously initialized input differential tensor descriptor.

**convDesc**

*Input.* Previously initialized convolution descriptor.

**dxDesc**

*Input.* Handle to the previously initialized output tensor descriptor.

**requestedAlgoCount**

*Input.* The maximum number of elements to be stored in `perfResults`.

**returnedAlgoCount**

*Output.* The number of output elements stored in `perfResults`.

**perfResults**

*Output.* A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- One of the parameters `handle`, `wDesc`, `dyDesc`, `convDesc`, `dxDesc`, `perfResults`, `returnedAlgoCount` is NULL.
- The numbers of feature maps of the input tensor and output tensor differ.
- The `dataType` of the two tensor descriptors or the filter are different.
- `requestedAlgoCount` is less than or equal to 0.

### 4.88. cudnnGetConvolutionBackwardDataWorkspaceSize

```c
int cudnnGetConvolutionBackwardDataWorkspaceSize(
 cudnnHandle_t handle,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnTensorDescriptor_t dyDesc,
 cuDNNStatus_t *workspaceSize);
```
This function returns the amount of GPU memory workspace the user needs to allocate to be able to call `cudnnConvolutionBackwardData` with the specified algorithm. The workspace allocated will then be passed to the routine `cudnnConvolutionBackwardData`. The specified algorithm can be the result of the call to `cudnnGetConvolutionBackwardDataAlgorithm` or can be chosen arbitrarily by the user. Note that not every algorithm is available for every configuration of the input tensor and/or every configuration of the convolution descriptor.

**Parameters**

**handle**

*Input*. Handle to a previously created cuDNN context.

**wDesc**

*Input*. Handle to a previously initialized filter descriptor.

**dyDesc**

*Input*. Handle to the previously initialized input differential tensor descriptor.

**convDesc**

*Input*. Previously initialized convolution descriptor.

**dxDesc**

*Input*. Handle to the previously initialized output tensor descriptor.

**algo**

*Input*. Enumerant that specifies the chosen convolution algorithm

**sizeInBytes**

*Output*. Amount of GPU memory needed as workspace to be able to execute a forward convolution with the specified algo.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The numbers of feature maps of the input tensor and output tensor differ.
- The `dataType` of the two tensor descriptors or the filter are different.

**CUDNN_STATUS_NOT_SUPPORTED**

The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.
4.89. cudnnGetConvolutionBackwardFilterAlgorithm

```c
#include <cudnn.h>

const cudnnStatus_t cudnnGetConvolutionBackwardFilterAlgorithm(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnTensorDescriptor_t dyDesc,
 const cudnnConvolutionDescriptor_t convDesc,
 const cudnnFilterDescriptor_t dwDesc,
 cudnnConvolutionBwdFilterPreference_t preference,
 size_t memoryLimitInBytes,
 cudnnConvolutionBwdFilterAlgo_t *algo)
```

This function serves as a heuristic for obtaining the best suited algorithm for `cudnnConvolutionBackwardFilter` for the given layer specifications. Based on the input preference, this function will either return the fastest algorithm or the fastest algorithm within a given memory limit. For an exhaustive search for the fastest algorithm, please use `cudnnFindConvolutionBackwardFilterAlgorithm`.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**xDesc**

*Input.* Handle to the previously initialized input tensor descriptor.

**dyDesc**

*Input.* Handle to the previously initialized input differential tensor descriptor.

**convDesc**

*Input.* Previously initialized convolution descriptor.

**dwDesc**

*Input.* Handle to a previously initialized filter descriptor.

**preference**

*Input.* Enumerant to express the preference criteria in terms of memory requirement and speed.

**memoryLimitInBytes**

*Input.* It is to specify the maximum amount of GPU memory the user is willing to use as a workspace. This is currently a placeholder and is not used.

**algo**

*Output.* Enumerant that specifies which convolution algorithm should be used to compute the results according to the specified preference.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The numbers of feature maps of the input tensor and output tensor differ.
- The \textbf{dataType} of the two tensor descriptors or the filter are different.

4.90. cudnnGetConvolutionBackwardFilterAlgorithmMaxCount

cudnnStatus_t cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
    cudnnHandle_t handle,
    int *count)

This function returns the maximum number of algorithms which can be returned from cudnnFindConvolutionBackwardFilterAlgorithm() and cudnnGetConvolutionForwardAlgorithm_v7(). This is the sum of all algorithms plus the sum of all algorithms with Tensor Core operations supported for the current device.

Parameters

\textbf{handle}

\textit{Input}. Handle to a previously created cuDNN context.

\textbf{count}

\textit{Output}. The resulting maximum count of algorithms.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

The provided handle is not allocated properly.

4.91. cudnnGetConvolutionBackwardFilterAlgorithm_v7

cudnnStatus_t cudnnGetConvolutionBackwardFilterAlgorithm_v7(
    cudnnHandle_t handle,
    const cudnnTensorDescriptor_t xDesc,
    const cudnnTensorDescriptor_t dyDesc,
    const cudnnConvolutionDescriptor_t convDesc,
    const cudnnFilterDescriptor_t dwDesc,
    const int requestedAlgoCount,
    int *returnedAlgoCount,
    cudnnConvolutionBwdFilterAlgoPerf_t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for \textbf{cudnnConvolutionBackwardFilter} for the given layer specifications. This function will return all algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) sorted by expected (based on internal heuristic) relative performance with fastest being index 0 of perfResults. For an exhaustive search for the fastest algorithm,
please use `cudnnFindConvolutionBackwardFilterAlgorithm`. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionBackwardMaxCount()`.

**Parameters**

handle

*Input.* Handle to a previously created cuDNN context.

xDesc

*Input.* Handle to the previously initialized input tensor descriptor.

dyDesc

*Input.* Handle to the previously initialized input differential tensor descriptor.

convDesc

*Input.* Previously initialized convolution descriptor.

dwDesc

*Input.* Handle to a previously initialized filter descriptor.

requestedAlgoCount

*Input.* The maximum number of elements to be stored in perfResults.

returnedAlgoCount

*Output.* The number of output elements stored in perfResults.

perfResults

*Output.* A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- One of the parameters handle, xDesc, dyDesc, convDesc, dwDesc, perfResults, returnedAlgoCount is NULL.
- The numbers of feature maps of the input tensor and output tensor differ.
- The `dataType` of the two tensor descriptors or the filter are different.
- requestedAlgoCount is less than or equal to 0.

### 4.92. cudnnGetConvolutionBackwardFilterWorkspaceSize

```c
void cudnnGetConvolutionBackwardFilterWorkspaceSize(
 cudnnStatus_t status,
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnTensorDescriptor_t dyDesc,
);```
This function returns the amount of GPU memory workspace the user needs to allocate to be able to call `cudnnConvolutionBackwardFilter` with the specified algorithm. The workspace allocated will then be passed to the routine `cudnnConvolutionBackwardFilter`. The specified algorithm can be the result of the call to `cudnnGetConvolutionBackwardFilterAlgorithm` or can be chosen arbitrarily by the user. Note that not every algorithm is available for every configuration of the input tensor and/or every configuration of the convolution descriptor.

Parameters

- **handle**
 - Input. Handle to a previously created cuDNN context.

- **xDesc**
 - Input. Handle to the previously initialized input tensor descriptor.

- **dyDesc**
 - Input. Handle to the previously initialized input differential tensor descriptor.

- **convDesc**
 - Input. Previously initialized convolution descriptor.

- **dwDesc**
 - Input. Handle to a previously initialized filter descriptor.

- **algo**
 - Input. Enumerant that specifies the chosen convolution algorithm.

- **sizeInBytes**
 - Output. Amount of GPU memory needed as workspace to be able to execute a forward convolution with the specified `algo`.

The possible error values returned by this function and their meanings are listed below.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The query was successful.

- **CUDNN_STATUS_BAD_PARAM**
 - At least one of the following conditions are met:
 - The numbers of feature maps of the input tensor and output tensor differ.
 - The `dataType` of the two tensor descriptors or the filter are different.

- **CUDNN_STATUS_NOT_SUPPORTED**
 - The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.
4.93. cudnnGetConvolutionForwardAlgorithm

```c
  cudnnStatus_t cudnnGetConvolutionForwardAlgorithm(
    cudnnHandle_t                      handle,
    const cudnnTensorDescriptor_t      xDesc,
    const cudnnFilterDescriptor_t      wDesc,
    const cudnnConvolutionDescriptor_t convDesc,
    const cudnnTensorDescriptor_t      yDesc,
    cudnnConvolutionFwdPreference_t    preference,
    size_t                             memoryLimitInBytes,
    cudnnConvolutionFwdAlgo_t         *algo)
```

This function serves as a heuristic for obtaining the best suited algorithm for `cudnnConvolutionForward` for the given layer specifications. Based on the input preference, this function will either return the fastest algorithm or the fastest algorithm within a given memory limit. For an exhaustive search for the fastest algorithm, please use `cudnnFindConvolutionForwardAlgorithm`.

Parameters

handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

wDesc

Input. Handle to a previously initialized convolution filter descriptor.

convDesc

Input. Previously initialized convolution descriptor.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

preference

Input. Enumerant to express the preference criteria in terms of memory requirement and speed.

memoryLimitInBytes

Input. It is used when enumerant `preference` is set to `CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT` to specify the maximum amount of GPU memory the user is willing to use as a workspace.

algo

Output. Enumerant that specifies which convolution algorithm should be used to compute the results according to the specified preference.

The possible error values returned by this function and their meanings are listed below.

Returns
4.94. cudnnGetConvolutionForwardAlgorithmMaxCount

```c
int cudnnGetConvolutionForwardAlgorithmMaxCount(
    cudnnHandle_t   handle,
    int             *count)
```

This function returns the maximum number of algorithms which can be returned from cudnnFindConvolutionForwardAlgorithm() and cudnnGetConvolutionForwardAlgorithm_v7(). This is the sum of all algorithms plus the sum of all algorithms with Tensor Core operations supported for the current device.

Parameters

* handle

 Input. Handle to a previously created cuDNN context.

* count

 Output. The resulting maximum number of algorithms.

Returns

* CUDNN_STATUS_SUCCESS

 The function was successful.

* CUDNN_STATUS_BAD_PARAM

 The provided handle is not allocated properly.

4.95. cudnnGetConvolutionForwardAlgorithm_v7

```c
int cudnnGetConvolutionForwardAlgorithm_v7(
    cudnnHandle_t   handle,
    const cudnnTensorDescriptor_t xDesc,
    const cudnnFilterDescriptor_t wDesc,
    const cudnnConvolutionDescriptor_t convDesc,
    const cudnnTensorDescriptor_t yDesc,
    int requestedAlgoCount,
    int *returnedAlgoCount,
    cudnnConvolutionFwdAlgoPerf_t *perfResults)
```

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the parameters handle, xDesc, wDesc, convDesc, yDesc is NULL.
- Either yDesc or wDesc have different dimensions from xDesc.
- The data types of tensors xDesc, yDesc or wDesc are not all the same.
- The number of feature maps in xDesc and wDesc differs.
- The tensor xDesc has a dimension smaller than 3.
This function serves as a heuristic for obtaining the best suited algorithm for `cudnnConvolutionForward` for the given layer specifications. This function will return all algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions of algorithms where CUDNN_TENSOR_OP_MATH may be available) sorted by expected (based on internal heuristic) relative performance with fastest being index 0 of perfResults. For an exhaustive search for the fastest algorithm, please use `cudnnFindConvolutionForwardAlgorithm`. The total number of resulting algorithms can be queried through the API `cudnnGetConvolutionForwardMaxCount()`.

Parameters

handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

wDesc

Input. Handle to a previously initialized convolution filter descriptor.

convDesc

Input. Previously initialized convolution descriptor.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the parameters handle, xDesc, wDesc, convDesc, yDesc, perfResults, returnedAlgoCount is NULL.
- Either yDesc or wDesc have different dimensions from xDesc.
- The data types of tensors xDesc, yDesc or wDesc are not all the same.
- The number of feature maps in xDesc and wDesc differs.
- The tensor xDesc has a dimension smaller than 3.
requestedAlgoCount is less than or equal to 0.

4.96. cudnnGetConvolutionForwardWorkspaceSize

```c
void cudnnGetConvolutionForwardWorkspaceSize(
  cudnnHandle_t handle,
  const cudnnTensorDescriptor_t xDesc,
  const cudnnFilterDescriptor_t wDesc,
  const cudnnConvolutionDescriptor_t convDesc,
  const cudnnTensorDescriptor_t yDesc,
  cudnnConvolutionFwdAlgo_t algo,
  size_t *sizeInBytes)
```

This function returns the amount of GPU memory workspace the user needs to allocate to be able to call `cudnnConvolutionForward` with the specified algorithm. The workspace allocated will then be passed to the routine `cudnnConvolutionForward`. The specified algorithm can be the result of the call to `cudnnGetConvolutionForwardAlgorithm` or can be chosen arbitrarily by the user. Note that not every algorithm is available for every configuration of the input tensor and/or every configuration of the convolution descriptor.

Parameters

handle

`Input`. Handle to a previously created cuDNN context.

xDesc

`Input`. Handle to the previously initialized x tensor descriptor.

wDesc

`Input`. Handle to a previously initialized filter descriptor.

convDesc

`Input`. Previously initialized convolution descriptor.

yDesc

`Input`. Handle to the previously initialized y tensor descriptor.

algo

`Input`. Enumerant that specifies the chosen convolution algorithm

sizeInBytes

`Output`. Amount of GPU memory needed as workspace to be able to execute a forward convolution with the specified `algo`

The possible error values returned by this function and their meanings are listed below.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The query was successful.
- **CUDNN_STATUS_BAD_PARAM**
 - At least one of the following conditions are met:
One of the parameters handle, xDesc, wDesc, convDesc, yDesc is NULL.
- The tensor yDesc or wDesc are not of the same dimension as xDesc.
- The tensor xDesc, yDesc or wDesc are not of the same data type.
- The numbers of feature maps of the tensor xDesc and wDesc differ.
- The tensor xDesc has a dimension smaller than 3.

CUDNN_STATUS_NOT_SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.

4.97. cudnnGetConvolutionGroupCount

```c
cudnnStatus_t cudnnGetConvolutionGroupCount(
    cudnnConvolutionDescriptor_t    convDesc,
    int                            *groupCount)
```

This function returns the group count specified in the given convolution descriptor.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The group count was returned successfully.
- **CUDNN_STATUS_BAD_PARAM**
 - An invalid convolution descriptor was provided.

4.98. cudnnGetConvolutionMathType

```c
cudnnStatus_t cudnnGetConvolutionMathType(
    cudnnConvolutionDescriptor_t    convDesc,
    cudnnMathType_t                *mathType)
```

This function returns the math type specified in a given convolution descriptor.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The math type was returned successfully.
- **CUDNN_STATUS_BAD_PARAM**
 - An invalid convolution descriptor was provided.

4.99. cudnnGetConvolutionNdDescriptor

```c
cudnnStatus_t cudnnGetConvolutionNdDescriptor(
    const cudnnConvolutionDescriptor_t  convDesc,
    int                                 arrayLengthRequested,
    int                                 *arrayLength,
    int                                 padA[],
    int                                 filterStrideA[],
    int                                 dilationA[]
)
This function queries a previously initialized convolution descriptor object.

Parameters

convDesc

*Input/Output.* Handle to a previously created convolution descriptor.

arrayLengthRequested

*Input.* Dimension of the expected convolution descriptor. It is also the minimum size of the arrays padA, filterStrideA and dilationA in order to be able to hold the results.

arrayLength

*Output.* Actual dimension of the convolution descriptor.

padA

*Output.* Array of dimension of at least arrayLengthRequested that will be filled with the padding parameters from the provided convolution descriptor.

filterStrideA

*Output.* Array of dimension of at least arrayLengthRequested that will be filled with the filter stride from the provided convolution descriptor.

dilationA

*Output.* Array of dimension of at least arrayLengthRequested that will be filled with the dilation parameters from the provided convolution descriptor.

mode

*Output.* Convolution mode of the provided descriptor.

datatype

*Output.* Datatype of the provided descriptor.

Returns

CUDNN_STATUS_SUCCESS

The query was successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor convDesc is nil.
- The arrayLengthRequested is negative.

CUDNN_STATUS_NOT_SUPPORTED

The arrayLengthRequested is greater than CUDNN_DIM_MAX-2.

4.100. cudnnGetConvolutionNdForwardOutputDim

cudnnStatus_t cudnnGetConvolutionNdForwardOutputDim(
This function returns the dimensions of the resulting n-D tensor of a \texttt{nbDims-2-D} convolution, given the convolution descriptor, the input tensor descriptor and the filter descriptor. This function can help to setup the output tensor and allocate the proper amount of memory prior to launch the actual convolution.

Each dimension of the \texttt{(nbDims-2-D)} images of the output tensor is computed as followed:

\[
\text{outputDim} = 1 + \frac{(\text{inputDim} + 2\times\text{pad} - (((\text{filterDim}-1)\times\text{dilation})+1))}{\text{convolutionStride}};
\]

The dimensions provided by this routine must be strictly respected when calling \texttt{cudnnConvolutionForward()} or \texttt{cudnnConvolutionBackwardBias()}. Providing a smaller or larger output tensor is not supported by the convolution routines.

**Parameters**

\texttt{convDesc}

\textit{Input.} Handle to a previously created convolution descriptor.

\texttt{inputTensorDesc}

\textit{Input.} Handle to a previously initialized tensor descriptor.

\texttt{filterDesc}

\textit{Input.} Handle to a previously initialized filter descriptor.

\texttt{nbDims}

\textit{Input.} Dimension of the output tensor

\texttt{tensorOuputDimA}

\textit{Output.} Array of dimensions \texttt{nbDims} that contains on exit of this routine the sizes of the output tensor

The possible error values returned by this function and their meanings are listed below.

**Returns**

\texttt{CUDNN_STATUS_BAD_PARAM}

At least one of the following conditions are met:

- One of the parameters \texttt{convDesc}, \texttt{inputTensorDesc}, and \texttt{filterDesc}, is nil
- The dimension of the filter descriptor \texttt{filterDesc} is different from the dimension of input tensor descriptor \texttt{inputTensorDesc}.
- The dimension of the convolution descriptor is different from the dimension of input tensor descriptor \texttt{inputTensorDesc} -2 .
- The features map of the filter descriptor \texttt{filterDesc} is different from the one of input tensor descriptor \texttt{inputTensorDesc}. 

The size of the dilated filter `filterDesc` is larger than the padded sizes of the input tensor.

- The dimension `nbDims` of the output array is negative or greater than the dimension of input tensor descriptor `inputTensorDesc`.

**CUDNN_STATUS_SUCCESS**

The routine exits successfully.

### 4.101. cudnnGetCudartVersion

```c
size_t cudnnGetCudartVersion()
```

The same version of a given cuDNN library can be compiled against different CUDA Toolkit versions. This routine returns the CUDA Toolkit version that the currently used cuDNN library has been compiled against.

### 4.102. cudnnGetDropoutDescriptor

```c
cudnnStatus_t cudnnGetDropoutDescriptor(
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnHandle_t handle,
 float *dropout,
 void **states,
 unsigned long long *seed)
```

This function queries the fields of a previously initialized dropout descriptor.

**Parameters**

- **dropoutDesc**
  
  *Input*. Previously initialized dropout descriptor.

- **handle**
  
  *Input*. Handle to a previously created cuDNN context.

- **dropout**
  
  *Output*. The probability with which the value from input is set to 0 during the dropout layer.

- **states**
  
  *Output*. Pointer to user-allocated GPU memory that holds random number generator states.

- **seed**
  
  *Output*. Seed used to initialize random number generator states.

The possible error values returned by this function and their meanings are listed below.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  
  The call was successful.
CUDNN_STATUS_BAD_PARAM

One or more of the arguments was an invalid pointer.

4.103. cudnnGetErrorString

`const char * cudnnGetErrorString(cudnnStatus_t status)`

This function converts the cuDNN status code to a NUL terminated (ASCII) static string. For example, when the input argument is CUDNN_STATUS_SUCCESS, the returned string is "CUDNN_STATUS_SUCCESS". When an invalid status value is passed to the function, the returned string is "CUDNN_UNKNOWN_STATUS".

Parameters
status

*Input.* cuDNN enumerated status code.

Returns
Pointer to a static, NUL terminated string with the status name.

4.104. cudnnGetFilter4dDescriptor

```
cudnnStatus_t cudnnGetFilter4dDescriptor(
 const cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t *dataType,
 cudnnTensorFormat_t *format,
 int *k,
 int *c,
 int *h,
 int *w)
```

This function queries the parameters of the previously initialized filter descriptor object.

Parameters
filterDesc

*Input.* Handle to a previously created filter descriptor.
datatype

*Output.* Data type.

format

*Output.* Type of format.
k

*Output.* Number of output feature maps.
c

*Output.* Number of input feature maps.
h

*Output.* Height of each filter.
w

**Output.** Width of each filter.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

### 4.105. cudnnGetFilterNdDescriptor

```c
void cudnnGetFilterNdDescriptor(
 const cudnnFilterDescriptor_t wDesc,
 int nbDimsRequested,
 cudnnDataType_t *dataType,
 cudnnTensorFormat_t *format,
 int *nbDims,
 int *filterDimA[])
```

This function queries a previously initialized filter descriptor object.

**Parameters**

**wDesc**

*Input.* Handle to a previously initialized filter descriptor.

**nbDimsRequested**

*Input.* Dimension of the expected filter descriptor. It is also the minimum size of the arrays `filterDimA` in order to be able to hold the results

**datatype**

*Output.* Data type.

**format**

*Output.* Type of format.

**nbDims**

*Output.* Actual dimension of the filter.

**filterDimA**

*Output.* Array of dimension of at least `nbDimsRequested` that will be filled with the filter parameters from the provided filter descriptor.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

The parameter `nbDimsRequested` is negative.
4.106. cudnnGetLRNDescriptor

```c
cudnnStatus_t cudnnGetLRNDescriptor(
 cudnnLRNDescriptor_t normDesc,
 unsigned *lrnN,
 double *lrnAlpha,
 double *lrnBeta,
 double *lrnK);
```

This function retrieves values stored in the previously initialized LRN descriptor object.

**Parameters**

**normDesc**  
*Output.* Handle to a previously created LRN descriptor.

**lrnN, lrnAlpha, lrnBeta, lrnK**  
*Output.* Pointers to receive values of parameters stored in the descriptor object. See cudnnSetLRNDescriptor for more details. Any of these pointers can be NULL (no value is returned for the corresponding parameter).

**Possible error values returned by this function and their meanings are listed below.**

**Returns**

**CUDNN_STATUS_SUCCESS**  
Function completed successfully.

4.107. cudnnGetMultiHeadAttnBuffers

```c
cudnnStatus_t cudnnGetMultiHeadAttnBuffers(
 cudnnHandle_t handle,
 const cudnnAttnDescriptor_t attnDesc,
 size_t *weightSizeInBytes,
 size_t *workSpaceSizeInBytes,
 size_t *reserveSpaceSizeInBytes);
```

This function obtains workspace and reserve space sizes for the multihead attention. When only the workspace size is requested with NULL value for **reserveSpaceSizeInBytes**, it is assumed that the user intention is to invoke cudnnMultiHeadAttnForward in the "inference" mode.

**Parameters:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handle</td>
<td>Input</td>
<td>cuDNN handle.</td>
</tr>
<tr>
<td>attnDesc</td>
<td>Input</td>
<td>Pointer to a previously initialized multi-head attention descriptor.</td>
</tr>
<tr>
<td>weightSizeInBytes</td>
<td>Output</td>
<td>Size required to store various projection weights.</td>
</tr>
<tr>
<td>workSpaceSizeInBytes</td>
<td>Output</td>
<td>Size required for workspace.</td>
</tr>
</tbody>
</table>
reserveSpaceSizeInBytes  |  Output  |  Size required for the reserve space in training mode.

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The requested spaces values are evaluated successfully.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>Either invalid values in attnDesc or workSpaceSizeInBytes is NULL.</td>
</tr>
</tbody>
</table>

4.108. cudnnGetMultiHeadAttnWeights

cudnnStatus_t cudnnGetMultiHeadAttnWeights(
    cudnnHandle_t handle,
    const cudnnAttnDescriptor_t attnDesc,
    cudnnMultiHeadAttnWeightKind_t wKind,
    size_t weightSizeInBytes,
    const void *w,
    cudnnTensorDescriptor_t wDesc,
    void **wAddr);

This function obtains the tensor descriptors and pointers to project weight of a particular kind in the weight buffer w of size weightSizeInBytes. There are four kinds of weights, enumerated in the type cudnnMultiHeadAttnWeightKind_t.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handle</td>
<td>Input</td>
<td>A cuDNN context handle.</td>
</tr>
<tr>
<td>attnDesc</td>
<td>Input</td>
<td>A previously initialized multi-head attention descriptor.</td>
</tr>
<tr>
<td>wKind</td>
<td>Input</td>
<td>The specific weight group (Q, K, V, or O) whose attention weights should be retrieved.</td>
</tr>
<tr>
<td>weightSizeInBytes</td>
<td>Input</td>
<td>Pointer to a location, in host memory, where the attention weight sizes (in bytes) are stored.</td>
</tr>
<tr>
<td>w</td>
<td>Input</td>
<td>Pointer to weight buffer in device memory.</td>
</tr>
<tr>
<td>wDesc</td>
<td>Output</td>
<td>Tensor descriptor for the attention weights.</td>
</tr>
<tr>
<td>wAddr</td>
<td>Output</td>
<td>Pointer to a location, in device memory, of the requested weight tensor. Weight tensor is three dimensional whose...</td>
</tr>
</tbody>
</table>
dimensions and layout are also returned in tensor descriptor `wDesc`.

If any of queries, keys, values, or output projection size is zero in the attention descriptor, then `wAddr` is set to NULL. Check for this before applying the weights.

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>When weight tensor descriptor and address in the device memory are successfully determined.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>Invalid or inconsistent value is found. For example when <code>wKind</code> does not have a valid value or when <code>weightSizeInBytes</code> is not equal to the weight buffer size as computed by <code>cudnnGetMultiHeadAttnBuffers</code>.</td>
</tr>
</tbody>
</table>

### 4.109. cudnnGetOpTensorDescriptor

```c
const cudnnOpTensorDescriptor_t opTensorDesc,
cudnnOpTensorOp_t *opTensorOp,
cudnnDataType_t *opTensorCompType,
cudnnNanPropagation_t *opTensorNanOpt)
```

This function returns configuration of the passed Tensor Pointwise math descriptor.

**Parameters**

`opTensorDesc`

*Input.* Tensor Pointwise math descriptor passed, to get the configuration from.

`opTensorOp`

*Output.* Pointer to the Tensor Pointwise math operation type, associated with this Tensor Pointwise math descriptor.

`opTensorCompType`

*Output.* Pointer to the cuDNN data-type associated with this Tensor Pointwise math descriptor.

`opTensorNanOpt`

*Output.* Pointer to the NAN propagation option associated with this Tensor Pointwise math descriptor.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function returned successfully.

**CUDNN_STATUS_BAD_PARAM**

Input Tensor Pointwise math descriptor passed is invalid.
4.110. `cudnnGetPooling2dDescriptor`

```c
const cudnnPoolingDescriptor_t poolingDesc,
cudnnPoolingMode_t *mode,
cudnnNanPropagation_t *maxpoolingNanOpt,
int *windowHeight,
int *windowWidth,
int *verticalPadding,
int *horizontalPadding,
int *verticalStride,
int *horizontalStride)
```

This function queries a previously created 2D pooling descriptor object.

**Parameters**

- **poolingDesc**
  - *Input*. Handle to a previously created pooling descriptor.

- **mode**
  - *Output*. Enumerant to specify the pooling mode.

- **maxpoolingNanOpt**
  - *Output*. Enumerant to specify the Nan propagation mode.

- **windowHeight**
  - *Output*. Height of the pooling window.

- **windowWidth**
  - *Output*. Width of the pooling window.

- **verticalPadding**
  - *Output*. Size of vertical padding.

- **horizontalPadding**
  - *Output*. Size of horizontal padding.

- **verticalStride**
  - *Output*. Pooling vertical stride.

- **horizontalStride**
  - *Output*. Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  - The object was set successfully.
4.111. `cudnnGetPooling2dForwardOutputDim`

This function provides the output dimensions of a tensor after 2d pooling has been applied.

Each dimension `h` and `w` of the output images is computed as followed:

```
outputDim = 1 + (inputDim + 2*padding - windowDim)/poolingStride;
```

**Parameters**

`poolingDesc`

*Input.* Handle to a previously initialized pooling descriptor.

`inputDesc`

*Input.* Handle to the previously initialized input tensor descriptor.

`N`

*Output.* Number of images in the output.

`C`

*Output.* Number of channels in the output.

`H`

*Output.* Height of images in the output.

`W`

*Output.* Width of images in the output.

The possible error values returned by this function and their meanings are listed below.

**Returns**

*CUDNN_STATUS_SUCCESS*

The function launched successfully.

*CUDNN_STATUS_BAD_PARAM*

At least one of the following conditions are met:

- `poolingDesc` has not been initialized.
- `poolingDesc` or `inputDesc` has an invalid number of dimensions (2 and 4 respectively are required).
4.112. cudnnGetPoolingNdDescriptor

```c
const cudnnPoolingDescriptor_t poolingDesc,
int nbDimRequested,
cudnnPoolingMode_t *mode,
cudnnNanPropagation_t *maxpoolingNanOpt,
int *nbDims,
int windowDimA[],
int paddingA[],
int strideA[])
```

This function queries a previously initialized generic pooling descriptor object.

**Parameters**

**poolingDesc**

*Input.* Handle to a previously created pooling descriptor.

**nbDimsRequested**

*Input.* Dimension of the expected pooling descriptor. It is also the minimum size of the arrays `windowDimA`, `paddingA` and `strideA` in order to be able to hold the results.

**mode**

*Output.* Enumerant to specify the pooling mode.

**maxpoolingNanOpt**

*Input.* Enumerant to specify the Nan propagation mode.

**nbDims**

*Output.* Actual dimension of the pooling descriptor.

**windowDimA**

*Output.* Array of dimension of at least `nbDimsRequested` that will be filled with the window parameters from the provided pooling descriptor.

**paddingA**

*Output.* Array of dimension of at least `nbDimsRequested` that will be filled with the padding parameters from the provided pooling descriptor.

**strideA**

*Output.* Array of dimension at least `nbDimsRequested` that will be filled with the stride parameters from the provided pooling descriptor.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was queried successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The parameter `nbDimsRequested` is greater than CUDNN_DIM_MAX.
4.113. cudnnGetPoolingNdForwardOutputDim

```c
#include <cudnn.h>

#define cudnnGetPoolingNdForwardOutputDim(
 const cudnnPoolingDescriptor_t poolingDesc,
 const cudnnTensorDescriptor_t inputDesc,
 int nbDims,
 int outDimA[])
```

This function provides the output dimensions of a tensor after Nd pooling has been applied.

Each dimension of the \((\text{nbDims} - 2)\)-D images of the output tensor is computed as followed:

\[
\text{outputDim} = 1 + (\text{inputDim} + 2*\text{padding} - \text{windowDim})/\text{poolingStride};
\]

**Parameters**

- **poolingDesc**
  
  *Input.* Handle to a previously initialized pooling descriptor.

- **inputDesc**
  
  *Input.* Handle to the previously initialized input tensor descriptor.

- **nbDims**
  
  *Input.* Number of dimensions in which pooling is to be applied.

- **outDimA**
  
  *Output.* Array of nbDims output dimensions.

The possible error values returned by this function and their meanings are listed below.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  
  The function launched successfully.

- **CUDNN_STATUS_BAD_PARAM**
  
  At least one of the following conditions are met:
  
  - **poolingDesc** has not been initialized.
  - The value of **nbDims** is inconsistent with the dimensionality of **poolingDesc** and **inputDesc**.

4.114. cudnnGetProperty

```c
#include <cudnn.h>

#define cudnnGetProperty(
 libraryPropertyType type,
 int *value)
```

This function writes a specific part of the cuDNN library version number into the provided host storage.
Parameters

**type**

*Input.* Enumerated type that instructs the function to report the numerical value of the cuDNN major version, minor version, or the patch level.

**value**

*Output.* Host pointer where the version information should be written.

Returns

**CUDNN_STATUS_INVALID_VALUE**

Invalid value of the **type** argument.

**CUDNN_STATUS_SUCCESS**

Version information was stored successfully at the provided address.

4.115. cudnnGetRNNBiasMode

cudnnStatus_t cudnnGetRNNBiasMode(
    cudnnRNNDescriptor_t   rnnDesc,
    cudnnRNNBiasMode_t     *biasMode)

This function retrieves the RNN bias mode that was configured by cudnnSetRNNBiasMode(). The default value of **biasMode** in **rnnDesc** after cudnnCreateRNNDescriptor() is CUDNN_RNN_DOUBLE_BIAS.

Parameters

**rnnDesc**

*Input.* A previously created RNN descriptor.

**biasMode**

*Input.* Pointer where RNN bias mode should be saved.

Returns

**CUDNN_STATUS_BAD_PARAM**

Either the **rnnDesc** or **biasMode** is NULL.

**CUDNN_STATUS_SUCCESS**

The **biasMode** parameter was retrieved set successfully.

4.116. cudnnGetRNNDataDescriptor

cudnnStatus_t cudnnGetRNNDataDescriptor(
    cudnnRNNDataDescriptor_t       RNNDesc,
    cudnnDataType_t                *dataType,
    cudnnRNNDataLayout_t           *layout,
    int                            *maxSeqLength,
    int                            *batchSize,
    int                            *vectorSize,
This function retrieves a previously created RNN data descriptor object.

**Parameters**

**RNNDataDesc**

*Input*. A previously created and initialized RNN descriptor.

**dataType**

*Output*. Pointer to the host memory location to store the datatype of the RNN data tensor.

**layout**

*Output*. Pointer to the host memory location to store the memory layout of the RNN data tensor.

**maxSeqLength**

*Output*. The maximum sequence length within this RNN data tensor, including the padding vectors.

**batchSize**

*Output*. The number of sequences within the mini-batch.

**vectorSize**

*Output*. The vector length (i.e. embedding size) of the input or output tensor at each timestep.

**arrayLengthRequested**

*Input*. The number of elements that the user requested for **seqLengthArray**.

**seqLengthArray**

*Output*. Pointer to the host memory location to store the integer array describing the length (i.e. number of timesteps) of each sequence. This is allowed to be a NULL pointer if **arrayLengthRequested** is zero.

**paddingFill**

*Output*. Pointer to the host memory location to store the user defined symbol. The symbol should be interpreted as the same data type as the RNN data tensor.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  The parameters are fetched successfully.
- **CUDNN_STATUS_BAD_PARAM**
  Any one of these have occurred:
  
  - Any of **RNNDataDesc, dataType, layout, maxSeqLength, batchSize, vectorSize, paddingFill** is NULL.
  - **seqLengthArray** is NULL while **arrayLengthRequested** is greater than zero.
  - **arrayLengthRequested** is less than zero.
4.117. cudnnGetRNNDescriptor

```c
#include <cudnn.h>
cudnnStatus_t cudnnGetRNNDescriptor(
 cudnnHandle_t handle,
 cudnnRNNDescriptor_t rnnDesc,
 int * hiddenSize,
 int * numLayers,
 cudnnDropoutDescriptor_t * dropoutDesc,
 cudnnRNNInputMode_t * inputMode,
 cudnnDirectionMode_t * direction,
 cudnnRNNMode_t * mode,
 cudnnRNNAlgo_t * algo,
 cudnnDataType_t * dataType)
```

This function retrieves RNN network parameters that were configured by `cudnnSetRNNDescriptor()`. All pointers passed to the function should be not-NULL or `CUDNN_STATUS_BAD_PARAM` is reported. The function does not check the validity of retrieved network parameters. The parameters are verified when they are written to the RNN descriptor.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN library descriptor.

**rnnDesc**

*Input.* A previously created and initialized RNN descriptor.

**hiddenSize**

*Output.* Pointer where the size of the hidden state should be stored (the same value is used in every layer).

**numLayers**

*Output.* Pointer where the number of RNN layers should be stored.

**dropoutDesc**

*Output.* Pointer where the handle to a previously configured dropout descriptor should be stored.

**inputMode**

*Output.* Pointer where the mode of the first RNN layer should be saved.

**direction**

*Output.* Pointer where RNN uni-directional/bi-directional mode should be saved.

**mode**

*Output.* Pointer where RNN cell type should be saved.

**algo**

*Output.* Pointer where RNN algorithm type should be stored.

**dataType**

*Output.* Pointer where the data type of RNN weights/biases should be stored.
Returns

**CUDNN_STATUS_SUCCESS**

RNN parameters were successfully retrieved from the RNN descriptor.

**CUDNN_STATUS_BAD_PARAM**

At least one pointer passed to the cudnnGetRNNDescriptor() function is NULL.

### 4.118. cudnnGetRNNLinLayerBiasParams

```
cudnnStatus_t cudnnGetRNNLinLayerBiasParams(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int pseudoLayer,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const int linLayerID,
 cudnnFilterDescriptor_t linLayerBiasDesc,
 void **linLayerBias)
```

This function is used to obtain a pointer and a descriptor of every RNN bias column vector in each pseudo-layer within the recurrent network defined by rnnDesc and its input width specified in `xDesc`.

The `cudnnGetRNNLinLayerBiasParams()` function was changed in cuDNN version 7.1.1 to match the behavior of `cudnnGetRNNLinLayerMatrixParams()`.

The `cudnnGetRNNLinLayerBiasParams()` function returns the RNN bias vector size in two dimensions: rows and columns.

Due to historical reasons, the minimum number of dimensions in the filter descriptor is three. In previous versions of the cuDNN library, the function returned the total number of vector elements in `linLayerBiasDesc` as follows:

```
filterDimA[0]=total_size,
filterDimA[1]=1,
```

(see the description of the `cudnnGetFilterNdDescriptor()` function).

In v7.1.1, the format was changed to:

```
filterDimA[0]=1,
filterDimA[1]=rows,
```

In both cases, the "format" field of the filter descriptor should be ignored when retrieved by `cudnnGetFilterNdDescriptor()`.

Note that the RNN implementation in cuDNN uses two bias vectors before the cell non-linear function (see equations in Chapter 3 describing the `cudnnRNNMode_t` enumerated type).

Note that the RNN implementation in cuDNN depends on the number of bias vectors before the cell non-linear function. See the equations in the `cudnnRNNMode_t` description, for the enumerated type based on the value of
cudnnRNNBiasMode_tBiasMode in rnnDesc. If nonexistent biases are referenced by linLayerID, then this function sets linLayerBiasDesc to a zeroed filter descriptor where:

\[
\begin{align*}
\text{filterDimA}[0] &= 0, \\
\text{filterDimA}[1] &= 0, \quad \text{and} \\
\text{filterDimA}[2] &= 2
\end{align*}
\]

and sets linLayerBias to NULL. See the details for function parameter linLayerID to determine the relevant values of linLayerID based on biasMode.

Parameters

handle

*Input.* Handle to a previously created cuDNN library descriptor.

rnnDesc

*Input.* A previously initialized RNN descriptor.

pseudoLayer

*Input.* The pseudo-layer to query. In uni-directional RNN-s, a pseudo-layer is the same as a "physical" layer (pseudoLayer=0 is the RNN input layer, pseudoLayer=1 is the first hidden layer). In bi-directional RNN-s there are twice as many pseudo-layers in comparison to "physical" layers (pseudoLayer=0 and pseudoLayer=1 are both input layers; pseudoLayer=0 refers to the forward part and pseudoLayer=1 refers to the backward part of the "physical" input layer; pseudoLayer=2 is the forward part of the first hidden layer, and so on).

xDesc

*Input.* A fully packed tensor descriptor describing the input to one recurrent iteration (to retrieve the RNN input width).

wDesc

*Input.* Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

*Input.* Data pointer to GPU memory associated with the filter descriptor wDesc.

linLayerID

*Input.* The linear layer to obtain information about:

- If mode in rnnDesc was set to CUDNN_RNN_RELU or CUDNN_RNN_TANH:
  - Value 0 references the bias applied to the input from the previous layer (relevant if biasMode in rnnDesc is CUDNN_RNN_SINGLE_INF_BIAS or CUDNN_RNN_DOUBLE_BIAS).
  - Value 1 references the bias applied to the recurrent input (relevant if biasMode in rnnDesc is CUDNN_RNN_DOUBLE_BIAS or CUDNN_RNN_SINGLE_REC_BIAS).
- If mode in rnnDesc was set to CUDNN_LSTM,
Values of 0, 1, 2 and 3 reference bias applied to the input from the previous layer (relevant if \texttt{biasMode} in \texttt{rnnDesc} is \texttt{CUDNN\_RNN\_SINGLE\_INF\_BIAS} or \texttt{CUDNN\_RNN\_DOUBLE\_BIAS}).

Values of 4, 5, 6 and 7 reference bias applied to the recurrent input (relevant if \texttt{biasMode} in \texttt{rnnDesc} is \texttt{CUDNN\_RNN\_DOUBLE\_BIAS} or \texttt{CUDNN\_RNN\_SINGLE\_REC\_BIAS}).

Values and their associated gates:
- Values 0 and 4 reference the input gate.
- Values 1 and 5 reference the forget gate.
- Values 2 and 6 reference the new memory gate.
- Values 3 and 7 reference the output gate.

If mode in \texttt{rnnDesc} was set to \texttt{CUDNN\_GRU},

Values of 0, 1 and 2 reference bias applied to the input from the previous layer (relevant if \texttt{biasMode} in \texttt{rnnDesc} is \texttt{CUDNN\_RNN\_SINGLE\_INF\_BIAS} or \texttt{CUDNN\_RNN\_DOUBLE\_BIAS}).

Values of 3, 4 and 5 reference bias applied to the recurrent input (relevant if \texttt{biasMode} in \texttt{rnnDesc} is \texttt{CUDNN\_RNN\_DOUBLE\_BIAS} or \texttt{CUDNN\_RNN\_SINGLE\_REC\_BIAS}).

Values and their associated gates:
- Values 0 and 3 reference the reset gate.
- Values 1 and 4 reference the update gate.
- Values 2 and 5 reference the new memory gate.

Also refer to \texttt{cudnnRNNMode\_t} for additional details on modes and bias modes.

\texttt{linLayerBiasDesc}

\textit{Output}. Handle to a previously created filter descriptor.

\texttt{linLayerBias}

\textit{Output}. Data pointer to GPU memory associated with the filter descriptor \texttt{linLayerBiasDesc}.

The possible error values returned by this function and their meanings are listed below.

\textbf{Returns}

\texttt{CUDNN\_STATUS\_SUCCESS}

The query was successful.

\texttt{CUDNN\_STATUS\_NOT\_SUPPORTED}

The function does not support the provided configuration.

\texttt{CUDNN\_STATUS\_BAD\_PARAM}

At least one of the following conditions are met:
- One of the following arguments is NULL: \texttt{handle, rnnDesc, xDesc, wDesc, linLayerBiasDesc, linLayerBias}.
- A data type mismatch was detected between \texttt{rnnDesc} and other descriptors.
Minimum requirement for the 'w' pointer alignment is not satisfied.
The value of pseudoLayer or linLayerID is out of range.

CUDNN_STATUS_INVALID_VALUE

Some elements of the linLayerBias vector are be outside the 'w' buffer boundaries as specified by the wDesc descriptor.

4.119. cudnnGetRNNLinLayerMatrixParams

cudnnStatus_t cudnnGetRNNLinLayerMatrixParams(
    cudnnHandle_t                   handle,
    const cudnnRNNDescriptor_t      rnnDesc,
    const int                       pseudoLayer,
    const cudnnTensorDescriptor_t   xDesc,
    const cudnnFilterDescriptor_t   wDesc,
    const void                     *w,
    const int                       linLayerID,
    cudnnFilterDescriptor_t         linLayerMatDesc,
    void                           **linLayerMat)

This function is used to obtain a pointer and a descriptor of every RNN weight matrix in each pseudo-layer within the recurrent network defined by rnnDesc and its input width specified in xDesc.

The cudnnGetRNNLinLayerMatrixParams() function was enhanced in cuDNN version 7.1.1 without changing its prototype. Instead of reporting the total number of elements in each weight matrix in the “linLayerMatDesc” filter descriptor, the function returns the matrix size as two dimensions: rows and columns. Moreover, when a weight matrix does not exist, e.g due to CUDNN_SKIP_INPUT mode, the function returns NULL in linLayerMat and all fields of linLayerMatDesc are zero.

The cudnnGetRNNLinLayerMatrixParams() function returns the RNN matrix size in two dimensions: rows and columns. This allows the user to easily print and initialize RNN weight matrices. Elements in each weight matrix are arranged in the row-major order. Due to historical reasons, the minimum number of dimensions in the filter descriptor is three. In previous versions of the cuDNN library, the function returned the total number of weights in linLayerMatDesc as follows: filterDimA[0]=total_size, filterDimA[1]=1, filterDimA[2]=1 (see the description of the cudnnGetFilterNdDescriptor() function). In v7.1.1, the format was changed to: filterDimA[0]=1, filterDimA[1]=rows, filterDimA[2]=columns. In both cases, the "format" field of the filter descriptor should be ignored when retrieved by cudnnGetFilterNdDescriptor().

Parameters
handle
    Input. Handle to a previously created cuDNN library descriptor.
rnnDesc
    Input. A previously initialized RNN descriptor.
pseudoLayer

*Input.* The pseudo-layer to query. In uni-directional RNN-s, a pseudo-layer is the same as a "physical" layer (pseudoLayer=0 is the RNN input layer, pseudoLayer=1 is the first hidden layer). In bi-directional RNN-s there are twice as many pseudo-layers in comparison to "physical" layers (pseudoLayer=0 and pseudoLayer=1 are both input layers; pseudoLayer=0 refers to the forward part and pseudoLayer=1 refers to the backward part of the "physical" input layer; pseudoLayer=2 is the forward part of the first hidden layer, and so on).

xDesc

*Input.* A fully packed tensor descriptor describing the input to one recurrent iteration (to retrieve the RNN input width).

wDesc

*Input.* Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

*Input.* Data pointer to GPU memory associated with the filter descriptor wDesc.

linLayerID

*Input.* The linear layer to obtain information about:

- If `mode` in `rnnDesc` was set to `CUDNN_RNN_RELU` or `CUDNN_RNN_TANH` a value of 0 references the matrix multiplication applied to the input from the previous layer, a value of 1 references the matrix multiplication applied to the recurrent input.
- If `mode` in `rnnDesc` was set to `CUDNN_LSTM` values of 0-3 reference matrix multiplications applied to the input from the previous layer, value of 4-7 reference matrix multiplications applied to the recurrent input.
  - Values 0 and 4 reference the input gate.
  - Values 1 and 5 reference the forget gate.
  - Values 2 and 6 reference the new memory gate.
  - Values 3 and 7 reference the output gate.
  - Value 8 references the "recurrent" projection matrix when enabled by the `cudnnSetRNNProjectionLayers()` function.
- If `mode` in `rnnDesc` was set to `CUDNN_GRU` values of 0-2 reference matrix multiplications applied to the input from the previous layer, value of 3-5 reference matrix multiplications applied to the recurrent input.
  - Values 0 and 3 reference the reset gate.
  - Values 1 and 4 reference the update gate.
  - Values 2 and 5 reference the new memory gate.

Please refer to Chapter 3 for additional details on modes.

linLayerMatDesc

*Output.* Handle to a previously created filter descriptor. When the weight matrix does not exist, the returned filter descriptor has all fields set to zero.
linLayerMat

*Output.* Data pointer to GPU memory associated with the filter descriptor `linLayerMatDesc`. When the weight matrix does not exist, the returned pointer is `NULL`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- One of the following arguments is `NULL`: `handle`, `rnnDesc`, `xDesc`, `wDesc`, `linLayerMatDesc`, `linLayerMat`.
- A data type mismatch was detected between `rnnDesc` and other descriptors.
- Minimum requirement for the `'w'` pointer alignment is not satisfied.
- The value of pseudoLayer or linLayerID is out of range.

**CUDNN_STATUS_INVALID_VALUE**

Some elements of the `linLayerMat` vector are be outside the `'w'` buffer boundaries as specified by the `wDesc` descriptor.

### 4.120. cudnnGetRNNParamsSize

```c
const cudnnRNNDescriptor_t rnnDesc,
const cudnnTensorDescriptor_t xDesc,
size_t *sizeInBytes,
const cudnnDataType_t dataType)
```

This function is used to query the amount of parameter space required to execute the RNN described by `rnnDesc` with inputs dimensions defined by `xDesc`.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN library descriptor.

**rnnDesc**

*Input.* A previously initialized RNN descriptor.

**xDesc**

*Input.* A fully packed tensor descriptor describing the input to one recurrent iteration.
sizeInBytes

*Output*. Minimum amount of GPU memory needed as parameter space to be able to execute an RNN with the specified descriptor and input tensors.

dataType

*Input*. The data type of the parameters.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- The descriptor `xDesc` is invalid.
- The descriptor `xDesc` is not fully packed.
- The combination of `dataType` and tensor descriptor data type is invalid.

**CUDNN_STATUS_NOT_SUPPORTED**

The combination of the RNN descriptor and tensor descriptors is not supported.

### 4.121. `cudnnGetRNNPaddingMode`

cudnnStatus_t cudnnGetRNNPaddingMode(cudnnRNNDescriptor_t        rnnDesc,
cudnnRNNPaddingMode_t       *paddingMode)

This function retrieves the RNN padding mode from the RNN descriptor.

**Parameters**

**rnnDesc**

*Input/Output*. A previously created RNN descriptor.

***paddingMode**

*Input*. Pointer to the host memory where the RNN padding mode is saved.

**Returns**

**CUDNN_STATUS_SUCCESS**

The RNN padding mode parameter was retrieved successfully.

**CUDNN_STATUS_BAD_PARAM**

Either the `rnnDesc` or `*paddingMode` is NULL.
4.122. cudnnGetRNNProjectionLayers

cudnnStatus_t cudnnGetRNNProjectionLayers(
    cudnnHandle_t           handle,
    cudnnRNNDescriptor_t    rnnDesc,
    int                     *recProjSize,
    int                     *outProjSize)

(New for 7.1)

This function retrieves the current RNN “projection” parameters. By default the projection feature is disabled so invoking this function immediately after cudnnSetRNNDescriptor() will yield recProjSize equal to hiddenSize and outProjSize set to zero. The cudnnSetRNNProjectionLayers() method enables the RNN projection.

Parameters
handle  
Input. Handle to a previously created cuDNN library descriptor.

rnnDesc 
Input. A previously created and initialized RNN descriptor.

recProjSize 
Output. Pointer where the “recurrent” projection size should be stored.

outProjSize 
Output. Pointer where the “output” projection size should be stored.

Returns
CUDNN_STATUS_SUCCESS  
RNN projection parameters were retrieved successfully.

CUDNN_STATUS_BAD_PARAM  
A NULL pointer was passed to the function.

4.123. cudnnGetRNNTrainingReserveSize

cudnnStatus_t cudnnGetRNNTrainingReserveSize(
    cudnnHandle_t       handle,
    const cudnnRNNDescriptor_t rnnDesc,
    const int           seqLength,
    const cudnnTensorDescriptor_t *xDesc,
    size_t              *sizeInBytes)

This function is used to query the amount of reserved space required for training the RNN described by rnnDesc with inputs dimensions defined by xDesc. The same reserved space buffer must be passed to cudnnRNNForwardTraining, cudnnRNNBackwardData and cudnnRNNBackwardWeights. Each of these calls overwrites the contents of the reserved space, however it can safely be backed up and restored between calls if reuse of the memory is desired.
Parameters

handle

*Input*. Handle to a previously created cuDNN library descriptor.

rnnDesc

*Input*. A previously initialized RNN descriptor.

seqLength

*Input*. Number of iterations to unroll over. The value of this `seqLength` must not exceed the value that was used in `cudnnGetRNNWorkspaceSize()` function for querying the workspace size required to execute the RNN.

xDesc

*Input*. An array of tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element `n` to element `n+1` but may not increase. Each tensor descriptor must have the same second dimension (vector length).

sizeInBytes

*Output*. Minimum amount of GPU memory needed as reserve space to be able to train an RNN with the specified descriptor and input tensors.

The possible error values returned by this function and their meanings are listed below.

Returns

**CUDNN_STATUS_SUCCESS**

The query was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors in `xDesc` is invalid.
- The descriptors in `xDesc` have inconsistent second dimensions, strides or data types.
- The descriptors in `xDesc` have increasing first dimensions.
- The descriptors in `xDesc` is not fully packed.

**CUDNN_STATUS_NOT_SUPPORTED**

The data types in tensors described by `xDesc` is not supported.

4.124. `cudnnGetRNNWorkspaceSize`

```c
#include <cuda.h>

typedef enum {
 CUDNN_STATUS_SUCCESS,
 CUDNN_STATUS_BAD_PARAM,
 CUDNN_STATUS_NOT_SUPPORTED
} cudnnStatus_t;

void cudnnGetRNNWorkspaceSize(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 size_t *sizeInBytes)
```
This function is used to query the amount of work space required to execute the RNN described by `rnnDesc` with inputs dimensions defined by `xDesc`.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN library descriptor.

**rnnDesc**

*Input.* A previously initialized RNN descriptor.

**seqLength**

*Input.* Number of iterations to unroll over. Workspace that is allocated, based on the size this function provides, cannot be used for sequences longer than `seqLength`.

**xDesc**

*Input.* An array of tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element `n` to element `n+1` but may not increase. For example, if you have multiple time series in a batch, they can be different lengths. This dimension is the batch size for the particular iteration of the sequence, and so it should decrease when a sequence in the batch has terminated.

Each tensor descriptor must have the same second dimension (vector length).

**sizeInBytes**

*Output.* Minimum amount of GPU memory needed as workspace to be able to execute an RNN with the specified descriptor and input tensors.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The query was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors in `xDesc` is invalid.
- The descriptors in `xDesc` have inconsistent second dimensions, strides or data types.
- The descriptors in `xDesc` have increasing first dimensions.
- The descriptors in `xDesc` is not fully packed.

**CUDNN_STATUS_NOT_SUPPORTED**

The data types in tensors described by `xDesc` is not supported.
This function queries a previously initialized reduce tensor descriptor object.

**Parameters**

- **reduceTensorDesc**
  
  *Input.* Pointer to a previously initialized reduce tensor descriptor object.

- **reduceTensorOp**
  
  *Output.* Enumerant to specify the reduce tensor operation.

- **reduceTensorCompType**
  
  *Output.* Enumerant to specify the computation datatype of the reduction.

- **reduceTensorNanOpt**
  
  *Input.* Enumerant to specify the Nan propagation mode.

- **reduceTensorIndices**
  
  *Output.* Enumerant to specify the reduce tensor indices.

- **reduceTensorIndicesType**
  
  *Output.* Enumerant to specify the reduce tensor indices type.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  
  The object was queried successfully.

- **CUDNN_STATUS_BAD_PARAM**
  
  reduceTensorDesc is NULL.

### 4.126. cudnnGetReductionIndicesSize

```c
const cudnnReduceTensorDescriptor_t reduceTensorDesc,
cudnnReduceTensorOp_t *reduceTensorOp,
cudnnDataType_t *reduceTensorCompType,
cudnnNanPropagation_t *reduceTensorNanOpt,
cudnnReduceTensorIndices_t *reduceTensorIndices,
cudnnIndicesType_t *reduceTensorIndicesType)
```

This is a helper function to return the minimum size of the index space to be passed to the reduction given the input and output tensors.

**Parameters**

- **handle**
  
  *Input.* Handle to a previously created cuDNN library descriptor.

- **reduceDesc**
  
  *Input.* Pointer to a previously initialized reduce tensor descriptor object.
aDesc

Input. Pointer to the input tensor descriptor.

cDesc

Input. Pointer to the output tensor descriptor.

sizeInBytes

Output. Minimum size of the index space to be passed to the reduction.

Returns

CUDNN_STATUS_SUCCESS

The index space size is returned successfully.

4.127. cudnnGetReductionWorkspaceSize

cudnnStatus_t cudnnGetReductionWorkspaceSize(
    cudnnHandle_t                       handle,
    const cudnnReduceTensorDescriptor_t reduceDesc,
    const cudnnTensorDescriptor_t       aDesc,
    const cudnnTensorDescriptor_t       cDesc,
    size_t                              *sizeInBytes)

This is a helper function to return the minimum size of the workspace to be passed to the
reduction given the input and output tensors.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

reduceDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.

aDesc

Input. Pointer to the input tensor descriptor.

cDesc

Input. Pointer to the output tensor descriptor.

sizeInBytes

Output. Minimum size of the index space to be passed to the reduction.

Returns

CUDNN_STATUS_SUCCESS

The workspace size is returned successfully.

4.128. cudnnGetSeqDataDescriptor

cudnnStatus_t cudnnGetSeqDataDescriptor(
    const cudnnSeqDataDescriptor_t seqDataDesc,
    cudnnDataType_t *dataType,
    const cudnnTensorDescriptor_t cDesc,
    size_t *sizeInBytes)
int *nbDims,
int nbDimsRequested,
int dimA[],
cudnnSeqDataAxis_t axes[],
size_t *seqLengthArraySize,
size_t seqLengthSizeRequested,
int seqLengthArray[],
void *paddingFill);

This function returns the current values stored in a previously initialized sequence data descriptor.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seqDataDesc</td>
<td>Input</td>
<td>A sequence data descriptor whose present value is requested.</td>
</tr>
<tr>
<td>dataType</td>
<td>Output</td>
<td>The data type of the sequence data.</td>
</tr>
<tr>
<td>nbDims</td>
<td>Output</td>
<td>Number of dimensions.</td>
</tr>
<tr>
<td>nbDimsRequested</td>
<td>Input</td>
<td>Number of elements of dimA (the axes array) requested. Only the first nbDimsRequested elements or nbDims elements, whichever is smaller, is reported.</td>
</tr>
<tr>
<td>dimA[]</td>
<td>Output</td>
<td>Size of the axes dimensions.</td>
</tr>
<tr>
<td>axes[]</td>
<td>Output</td>
<td>Axes, in the order of outermost to innermost dimension.</td>
</tr>
<tr>
<td>seqLengthArraySize</td>
<td>Output</td>
<td>Length of seqLengthArray.</td>
</tr>
<tr>
<td>seqLengthSizeRequested</td>
<td>Input</td>
<td>Number of elements of seqLengthArray requested. Only the first seqLengthArraySize elements or seqLengthSizeRequested elements, whichever is smaller, is reported.</td>
</tr>
<tr>
<td>seqLengthArray[]</td>
<td>Output</td>
<td>Length of each sequence.</td>
</tr>
<tr>
<td>paddingFill</td>
<td>Output</td>
<td>Value used for filling the padding elements in the buffer.</td>
</tr>
</tbody>
</table>

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The requested values were obtained successfully.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>Any of the below is true for the input arguments:</td>
</tr>
<tr>
<td></td>
<td>- seqDataDesc is NULL.</td>
</tr>
<tr>
<td></td>
<td>- nbDimsRequested is not positive.</td>
</tr>
<tr>
<td></td>
<td>- seqLengthSizeRequested is larger than seqLengthArraySize</td>
</tr>
<tr>
<td>CUDNN_STATUS_NOT_SUPPORTED</td>
<td>A value not supported is encountered. For example, the nbDimsRequested is larger</td>
</tr>
</tbody>
</table>
than CUDNN_SEQDATA_DIM_COUNT. See cudnnSeqDataAxis_t.

| CUDNN_STATUS_INTERNAL_ERROR | Encountered an invalid field value in seqDataDesc. |

4.129. cudnnGetStream

```c
 cudnnStatus_t cudnnGetStream(
 cudnnHandle_t handle,
 cudaStream_t *streamId)
```

This function retrieves the user CUDA stream programmed in the cuDNN handle. When the user's CUDA stream was not set in the cuDNN handle, this function reports the null-stream.

**Parameters**

**handle**

*Input*. Pointer to the cuDNN handle.

**streamID**

*Output*. Pointer where the current CUDA stream from the cuDNN handle should be stored.

**Returns**

**CUDNN_STATUS_BAD_PARAM**

Invalid (NULL) handle.

**CUDNN_STATUS_SUCCESS**

The stream identifier was retrieved successfully.

4.130. cudnnGetTensor4dDescriptor

```c
 cudnnStatus_t cudnnGetTensor4dDescriptor(
 const cudnnTensorDescriptor_t tensorDesc,
 cudnnDataType_t *dataType,
 int *n,
 int *c,
 int *h,
 int *w,
 int *nStride,
 int *cStride,
 int *hStride,
 int *wStride)
```

This function queries the parameters of the previously initialized Tensor4D descriptor object.

**Parameters**

**tensorDesc**

*Input*. Handle to a previously initialized tensor descriptor.
datatype
  Output. Data type.

n
  Output. Number of images.

c
  Output. Number of feature maps per image.

h
  Output. Height of each feature map.

w
  Output. Width of each feature map.

nStride
  Output. Stride between two consecutive images.

cStride
  Output. Stride between two consecutive feature maps.

hStride
  Output. Stride between two consecutive rows.

wStride
  Output. Stride between two consecutive columns.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS
  The operation succeeded.

4.131. cudnnGetTensorNdDescriptor

cudnnStatus_t cudnnGetTensorNdDescriptor(
    const cudnnTensorDescriptor_t   tensorDesc,
    int                             nbDimsRequested,
    cudnnDataType_t                *dataType,
    int                             *nbDims,
    int                             dimA[],
    int                             strideA[])

This function retrieves values stored in a previously initialized Tensor descriptor object.

Parameters
tensorDesc
  Input. Handle to a previously initialized tensor descriptor.
nbDimsRequested

*Input.* Number of dimensions to extract from a given tensor descriptor. It is also the minimum size of the arrays `dimA` and `strideA`. If this number is greater than the resulting `nbDims[0]`, only `nbDims[0]` dimensions will be returned.

datatype

*Output.* Data type.

nbDims

*Output.* Actual number of dimensions of the tensor will be returned in `nbDims[0]`.

dimA

*Output.* Array of dimension of at least `nbDimsRequested` that will be filled with the dimensions from the provided tensor descriptor.

strideA

*Input.* Array of dimension of at least `nbDimsRequested` that will be filled with the strides from the provided tensor descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

**CUDNN_STATUS_SUCCESS**

The results were returned successfully.

**CUDNN_STATUS_BAD_PARAM**

Either `tensorDesc` or `nbDims` pointer is NULL.

### 4.132. cudnnGetTensorSizeInBytes

```c
cudnnStatus_t cudnnGetTensorSizeInBytes(
 const cudnnTensorDescriptor_t tensorDesc,
 size_t *size)
```

This function returns the size of the tensor in memory in respect to the given descriptor. This function can be used to know the amount of GPU memory to be allocated to hold that tensor.

**Parameters**

tensorDesc

*Input.* Handle to a previously initialized tensor descriptor.

size

*Output.* Size in bytes needed to hold the tensor in GPU memory.

The possible error values returned by this function and their meanings are listed below.

Returns

**CUDNN_STATUS_SUCCESS**

The results were returned successfully.
4.133. cudnnGetTensorTransformDescriptor

The function returns the values stored in a previously initialized Tensor transform descriptor.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transformDesc</td>
<td>Input</td>
<td>A previously initialized Tensor transform descriptor.</td>
</tr>
<tr>
<td>nbDimsRequested</td>
<td>Input</td>
<td>The number of dimensions to consider. See also <a href="https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor">https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor</a></td>
</tr>
<tr>
<td>destFormat</td>
<td>Output</td>
<td>The transform format that will be returned.</td>
</tr>
<tr>
<td>padBeforeA[]</td>
<td>Output</td>
<td>An array filled with the amount of padding to add before each dimension. The dimension of this <code>padBeforeA[]</code> parameter equal to <code>nbDimsRequested</code>.</td>
</tr>
<tr>
<td>padAfterA[]</td>
<td>Output</td>
<td>An array filled with the amount of padding to add after each dimension. The dimension of this <code>padBeforeA[]</code> parameter is equal to <code>nbDimsRequested</code>.</td>
</tr>
<tr>
<td>foldA[]</td>
<td>Output</td>
<td>An array that was filled with the folding parameters for each spatial dimension. The dimension of this <code>foldA[]</code> array is <code>nbDimsRequested - 2</code>.</td>
</tr>
<tr>
<td>direction</td>
<td>Output</td>
<td>The setting that selects folding or unfolding. See <code>cudnnFoldingDirection_t</code>.</td>
</tr>
</tbody>
</table>

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The results were obtained successfully.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>If <code>transformDesc</code> is NULL, or if <code>nbDimsRequested</code> is less than 3 or greater than <code>CUDNN_DIM_MAX</code>.</td>
</tr>
</tbody>
</table>
4.134. cudnnGetVersion

size_t cudnnGetVersion()

This function returns the version number of the cuDNN Library. It returns the 
CUDNN_VERSION define present in the cudnn.h header file. Starting with release R2, the 
routine can be used to identify dynamically the current cuDNN Library used by the 
application. The define CUDNN_VERSION can be used to have the same application linked 
against different cuDNN versions using conditional compilation statements.

4.135. cudnnIm2Col

cudnnStatus_t cudnnIm2Col(
    cudnnHandle_t                   handle,
    cudnnTensorDescriptor_t         srcDesc,
    const void                      *srcData,
    cudnnFilterDescriptor_t         filterDesc,
    cudnnConvolutionDescriptor_t    convDesc,
    void                            *colBuffer)

This function constructs the A matrix necessary to perform a forward pass of 
GEMM convolution. This A matrix has a height of batch_size*y_height*y_width 
and width of input_channels*filter_height*filter_width, where batch_size 
is xDesc's first dimension, y_height/y_width are computed from 
cudnnGetConvolutionNdForwardOutputDim(), input_channels is xDesc's second 
dimension, filter_height/filter_width are wDesc's third and fourth dimension. The A 
matrix is stored in format HW-fully-packed in GPU memory.

Parameters

handle
    Input. Handle to a previously created cuDNN context.

srcDesc
    Input. Handle to a previously initialized tensor descriptor.

srcData
    Input. Data pointer to GPU memory associated with the input tensor descriptor.

filterDesc
    Input. Handle to a previously initialized filter descriptor.

convDesc
    Input. Handle to a previously initialized convolution descriptor.

colBuffer
    Output. Data pointer to GPU memory storing the output matrix.

Returns
CUDNN_STATUS_BAD_PARAM
srcData or colBuffer is NULL.

CUDNN_STATUS_NOT_SUPPORTED
Any of srcDesc, filterDesc, convDesc has dataType of CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8, or CUDNN_DATA_INT8x4 convDesc has groupCount larger than 1.

CUDNN_STATUS_EXECUTION_FAILED
The cuda kernel execution was unsuccessful.

CUDNN_STATUS_SUCCESS
The output data array is successfully generated.

4.136. cudnnInitTransformDest

cudnnStatus_t cudnnInitTransformDest(
    const cudnnTransformDescriptor_t transformDesc,
    const cudnnTensorDescriptor_t srcDesc,
    cudnnTensorDescriptor_t destDesc,
    size_t *destSizeInBytes);

This function initializes and returns a destination Tensor descriptor destDesc for Tensor transform operations. The initialization is done with the desired parameters described in the transform descriptor cudnnTensorDescriptor_t.

The returned Tensor descriptor will be packed.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transformDesc</td>
<td>Input</td>
<td>Handle to a previously initialized Tensor transform descriptor.</td>
</tr>
<tr>
<td>srcDesc</td>
<td>Input</td>
<td>Handle to a previously initialized Tensor descriptor.</td>
</tr>
<tr>
<td>destDesc</td>
<td>Output</td>
<td>Handle of the Tensor descriptor that will be initialized and returned.</td>
</tr>
<tr>
<td>destSizeInBytes</td>
<td>Output</td>
<td>A pointer to hold the size, in bytes, of the new Tensor.</td>
</tr>
</tbody>
</table>

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The Tensor descriptor was initialized successfully.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>If either srcDesc or destDesc is NULL, or if the Tensor descriptor's nbDims is incorrect.</td>
</tr>
<tr>
<td>CUDNN_STATUS_NOT_SUPPORTED</td>
<td>If the provided configuration is not 4D.</td>
</tr>
<tr>
<td>CUDNN_STATUS_EXECUTION_FAILED</td>
<td>Function failed to launch on the GPU.</td>
</tr>
</tbody>
</table>
4.137. cudnnLRNCrossChannelBackward

```c
void cudnnLRNCrossChannelBackward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnLRNMode_t lrnMode,
 const void * alpha,
 const cudnnTensorDescriptor_t yDesc,
 const void * *y,
 const cudnnTensorDescriptor_t dyDesc,
 const void * *dy,
 const cudnnTensorDescriptor_t xDesc,
 const void * *x,
 const void * beta,
 const cudnnTensorDescriptor_t dxDesc,
 void * *dx)
```

This function performs the backward LRN layer computation.

**Supported formats are:** positive-strided, NCHW for 4D x and y, and only NCDHW DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are supported.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN library descriptor.

**normDesc**

*Input.* Handle to a previously initialized LRN parameter descriptor.

**lrnMode**

*Input.* LRN layer mode of operation. Currently only CUDNN_LRN_CROSS_CHANNEL_DIM1 is implemented. Normalization is performed along the tensor's dimA[1].

**alpha, beta**

*Input.* Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows: dstValue = alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for additional details.

**yDesc, y**

*Input.* Tensor descriptor and pointer in device memory for the layer's y data.

**dyDesc, dy**

*Input.* Tensor descriptor and pointer in device memory for the layer's input cumulative loss differential data dy (including error backpropagation).

**xDesc, x**

*Input.* Tensor descriptor and pointer in device memory for the layer's x data. Note that these values are not modified during backpropagation.
dxDesc, dx

*Output*. Tensor descriptor and pointer in device memory for the layer's resulting cumulative loss differential data dx (including error backpropagation).

Possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The computation was performed successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- One of the tensor pointers `x`, `y` is NULL.
- Number of input tensor dimensions is 2 or less.
- LRN descriptor parameters are outside of their valid ranges.
- One of tensor parameters is 5D but is not in NCDHW DHW-packed format.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- Any of the input tensor datatypes is not the same as any of the output tensor datatype.
- Any pairwise tensor dimensions mismatch for `x`, `y`, `dx`, `dy`.
- Any tensor parameters strides are negative.

### 4.138. cudnnLRNCrossChannelForward

```c

cudnnStatus_t cudnnLRNCrossChannelForward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnLRNMode_t lrnMode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)
```

This function performs the forward LRN layer computation.

**Supported formats are**: positive-strided, NCHW for 4D `x` and `y`, and only NCDHW DHW-packed for 5D (for both `x` and `y`). Only non-overlapping 4D and 5D tensors are supported.

**Parameters**

**handle**

*Input*. Handle to a previously created cuDNN library descriptor.
normDesc

Input. Handle to a previously initialized LRN parameter descriptor.

lrnMode

Input. LRN layer mode of operation. Currently only CUDNN_LRN_CROSS_CHANNEL_DIM1 is implemented. Normalization is performed along the tensor's dimA[1].

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with prior value in the destination tensor as follows: $dstValue = alpha[0]*resultValue + beta[0]*priorDstValue$. Please refer to this section for additional details.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors.

x

Input. Input tensor data pointer in device memory.

y

Output. Output tensor data pointer in device memory.

Possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- One of the tensor pointers x, y is NULL.
- Number of input tensor dimensions is 2 or less.
- LRN descriptor parameters are outside of their valid ranges.
- One of tensor parameters is 5D but is not in NCDHW DHW-packed format.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- Any of the input tensor datatypes is not the same as any of the output tensor datatype.
- x and y tensor dimensions mismatch.
- Any tensor parameters strides are negative.

4.139. cudnnMultiHeadAttnBackwardData

cudnnStatus_t cudnnMultiHeadAttnBackwardData(
    cudnnHandle_t handle,
This function computes the data gradients with backpropagation.

### Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handle</td>
<td>Input</td>
<td>A cuDNN context handle.</td>
</tr>
<tr>
<td>attnDesc</td>
<td>Input</td>
<td>A previously initialized multi-head attention descriptor.</td>
</tr>
<tr>
<td>loWinIdx, hiWinIdx</td>
<td>Input</td>
<td>An array of lower (inclusive) and upper (exclusive) key and value time steps windows.</td>
</tr>
<tr>
<td>seqLengthArrayDQDO</td>
<td>Input</td>
<td>Sequence lengths of queries and output sequences data.</td>
</tr>
<tr>
<td>seqLengthArrayDKDV</td>
<td>Input</td>
<td>Sequence lengths of keys and values sequences data.</td>
</tr>
<tr>
<td>doDesc</td>
<td>Input</td>
<td>Descriptor for output gradient sequence data.</td>
</tr>
<tr>
<td>dout</td>
<td>Input</td>
<td>Output gradient data in device memory.</td>
</tr>
<tr>
<td>dqDesc</td>
<td>Input</td>
<td>Descriptor for queries sequence data.</td>
</tr>
<tr>
<td>dqueries</td>
<td>Output</td>
<td>Queries gradient data in device memory.</td>
</tr>
<tr>
<td>queries</td>
<td>Input</td>
<td>Queries data in device memory.</td>
</tr>
<tr>
<td>dkDesc</td>
<td>Input</td>
<td>Descriptor for the keys vectors.</td>
</tr>
<tr>
<td>dkeys</td>
<td>Output</td>
<td>Keys gradient data in device memory.</td>
</tr>
<tr>
<td>keys</td>
<td>Input</td>
<td>Keys data in device memory.</td>
</tr>
<tr>
<td>dvDesc</td>
<td>Input</td>
<td>Descriptor for the values vectors.</td>
</tr>
<tr>
<td>dvalues</td>
<td>Output</td>
<td>Values gradient data in device memory.</td>
</tr>
<tr>
<td>values</td>
<td>Input</td>
<td>Values data in device memory.</td>
</tr>
<tr>
<td>weightSizeInBytes</td>
<td>Input</td>
<td>Pointer to a location, in host memory, where the attention weight sizes (in bytes) are stored.</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>w</td>
<td>Input</td>
<td>Weight data in device memory.</td>
</tr>
<tr>
<td>workSpaceSizeInBytes</td>
<td>Input</td>
<td>Pointer to a location, in host memory, of the workspace size (in bytes). For inference and training.</td>
</tr>
<tr>
<td>workSpace</td>
<td>Input</td>
<td>Workspace data in device memory.</td>
</tr>
<tr>
<td>reserveSpaceSizeInBytes</td>
<td>Input</td>
<td>Pointer to a location, in host memory, of the reserve space size (in bytes). For training.</td>
</tr>
<tr>
<td>reserveSpace</td>
<td>Input/Output</td>
<td>Reserve space data in device memory.</td>
</tr>
</tbody>
</table>

**Returns:**

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The forward calculation is successful.</td>
</tr>
<tr>
<td>CUDNN_STATUS_EXECUTION_FAILED</td>
<td>Failed to launch the kernel, or other kernel errors.</td>
</tr>
</tbody>
</table>

4.140. **cudnnMultiHeadAttnBackwardWeights**

```c
 cudnnStatus_t cudnnMultiHeadAttnBackwardWeights(
 const cudnnHandle_t handle,
 const cudnnAttnDescriptor_t attnDesc,
 cudnnWgradMode_t addGrad,
 const cudnnSeqDataDescriptor_t qDesc,
 const void *queries,
 const cudnnSeqDataDescriptor_t kDesc,
 const void *keys,
 const cudnnSeqDataDescriptor_t vDesc,
 const void *values,
 const cudnnSeqDataDescriptor_t doDesc,
 const void *dout,
 size_t weightSizeInBytes,
 const void *w,
 void *dw,
 size_t workSpaceSizeInBytes,
 void *workSpace,
 size_t reserveSpaceSizeInBytes,
 void *reserveSpace);
```

This function computes the weight gradients with backpropagation.

**Parameters:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handle</td>
<td>Input</td>
<td>A cuDNN context handle.</td>
</tr>
<tr>
<td>attnDesc</td>
<td>Input</td>
<td>A previously initialized multi-head attention descriptor.</td>
</tr>
<tr>
<td>addGrad</td>
<td>Input</td>
<td>Weight gradient output mode. See cudnnWgradMode_t &lt;link&gt;.</td>
</tr>
<tr>
<td>qDesc</td>
<td>Input</td>
<td>Descriptor of the query sequence data.</td>
</tr>
</tbody>
</table>
queries | Input | Query data in device memory.
--- | --- | ---
kDesc | Input | Descriptor for the keys sequence data.
keys | Input | Keys data in device memory.
vDesc | Input | Descriptor for the values sequence data.
values | Input | Values data in device memory.
doDesc | Input | Descriptor for the output gradient sequence data.
dout | Input | Output gradient data in device memory.
weightSizeInBytes | Input | Pointer to a location, in host memory, where the attention weight sizes (in bytes) are stored.
w | Input | Pointer to the weight buffer address.
dw | Output | Weight gradient data in device memory.
workSpaceSizeInBytes | Input | Pointer to a location, in host memory, of the workspace size (in bytes). For inference and training.
workSpace | Input | Workspace data in device memory.
reserveSpaceSizeInBytes | Input | Pointer to a location, in host memory, of the reserve space size (in bytes). For training.
reserveSpace | Input | Reserve space data in device memory.

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The forward calculation is successful.</td>
</tr>
<tr>
<td>CUDNN_STATUS_EXECUTION_FAILED</td>
<td>Failed to launch the kernel, or other kernel errors.</td>
</tr>
</tbody>
</table>

4.141. cudnnMultiHeadAttnForward

cudnnStatus_t cudnnMultiHeadAttnForward(
    cudnnHandle_t handle,
    const cudnnAttnDescriptor_t attnDesc,
    const int *loWinIdx,
    const int *hiWinIdx,
    const int *seqLengthArrayQRO,
    const int *seqLengthArrayKV,
    const cudnnSeqDataDescriptor_t qDesc,
    const void *queries,
    const void *residuals,
    const cudnnSeqDataDescriptor_t kDesc,
    const void *keys,
    const cudnnSeqDataDescriptor_t vDesc,
    const void *values,
    const cudnnSeqDataDescriptor_t oDesc,
    void *out,
    size_t weightSizeInBytes,
    const void *w,
The function `cudnnMultiHeadAttnForward()` performs the multi-head attention response computation, as described in the paper *Attention Is All You Need*.

**Parameters:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handle</td>
<td>Input</td>
<td>A cuDNN context handle.</td>
</tr>
<tr>
<td>attnDesc</td>
<td>Input</td>
<td>A previously initialized multi-head attention descriptor.</td>
</tr>
<tr>
<td>currIdx</td>
<td>Input</td>
<td>Output timestep(s) to compute. &lt; 0 for the training mode, and &gt;=0 for the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inference mode.</td>
</tr>
<tr>
<td>loWinIdx, hiWinIdx</td>
<td>Input</td>
<td>An array of lower (inclusive) and upper (exclusive) key and value time steps</td>
</tr>
<tr>
<td>seqLengthArrayQRO</td>
<td>Input</td>
<td>Length of each sequence of the query, residual, and output data.</td>
</tr>
<tr>
<td>seqLengthArrayKV</td>
<td>Input</td>
<td>Length of each sequence of the key and value data.</td>
</tr>
<tr>
<td>qDesc</td>
<td>Input</td>
<td>Descriptor for the queries and residual sequence data.</td>
</tr>
<tr>
<td>queries</td>
<td>Input</td>
<td>Queries data in device memory.</td>
</tr>
<tr>
<td>residuals</td>
<td>Input</td>
<td>Residual data in device memory. NULL if no residual connection.</td>
</tr>
<tr>
<td>kDesc</td>
<td>Input</td>
<td>Descriptor for the keys sequence data.</td>
</tr>
<tr>
<td>keys</td>
<td>Input</td>
<td>Keys data in device memory.</td>
</tr>
<tr>
<td>vDesc</td>
<td>Input</td>
<td>Descriptor for the values sequence data.</td>
</tr>
<tr>
<td>values</td>
<td>Input</td>
<td>Values data in device memory.</td>
</tr>
<tr>
<td>oDesc</td>
<td>Input</td>
<td>Descriptor for the multi-head attention output sequence data.</td>
</tr>
<tr>
<td>out</td>
<td>Output</td>
<td>Output data in device memory.</td>
</tr>
<tr>
<td>weightSizeInBytes</td>
<td>Input</td>
<td>Pointer to a location, in host memory, where the attention weight sizes (in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bytes) are stored.</td>
</tr>
<tr>
<td>w</td>
<td>Input</td>
<td>Weight data in device memory.</td>
</tr>
<tr>
<td>workSpaceSizeInBytes</td>
<td>Input</td>
<td>Pointer to a location, in host memory, of the workspace size (in bytes).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For inference and training.</td>
</tr>
<tr>
<td>workSpace</td>
<td>Input</td>
<td>Workspace data in device memory.</td>
</tr>
<tr>
<td>reserveSpaceSizeInBytes</td>
<td>Input</td>
<td>Pointer to a location, in host memory, of the reserve space size (in bytes).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For training.</td>
</tr>
</tbody>
</table>
reserveSpace | Input/Output | Reserve space data in device memory. If this is NULL it is inference mode, otherwise it is training.
--- | --- | ---

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The forward calculation is successful.</td>
</tr>
<tr>
<td>CUDNN_STATUS_EXECUTION_FAILED</td>
<td>Failed to launch the kernel, or other kernel errors.</td>
</tr>
<tr>
<td>CUDNN_STATUS_INTERNAL_ERROR</td>
<td>Inconsistent internal state(s) encountered.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>An invalid or incompatible parameter value is encountered. For example:</td>
</tr>
<tr>
<td></td>
<td>- Any required input pointers are NULL</td>
</tr>
<tr>
<td></td>
<td>- currIdx is out of bound or is negative in inference mode (indicated by reserveSpace == NULL)</td>
</tr>
<tr>
<td></td>
<td>- The descriptor value for attention, query, key, value, and output are incompatible with one another.</td>
</tr>
<tr>
<td></td>
<td>- Dropout is enabled but with dropout rate &gt;= 1.</td>
</tr>
<tr>
<td>CUDNN_STATUS_NOT_SUPPORTED</td>
<td>An unsupported parameter value is encountered. For example:</td>
</tr>
<tr>
<td></td>
<td>- A combination of dataType and mathPrec that is not supported.</td>
</tr>
<tr>
<td>CUDNN_STATUS_ALLOC_FAILED</td>
<td>Not enough device share memory to launch kernel.</td>
</tr>
</tbody>
</table>

### 4.142. cudnnOpTensor

```c
cudnnStatus_t cudnnOpTensor(
 cudnnHandle_t handle,
 const cudnnOpTensorDescriptor_t opTensorDesc,
 const void *alpha1,
 const cudnnTensorDescriptor_t *aDesc,
 const void *A,
 const void *alpha2,
 const cudnnTensorDescriptor_t *bDesc,
 const void *B,
 const void *beta,
 const cudnnTensorDescriptor_t *cDesc,
 void *C)
```

This function implements the equation $C = \text{op} ( \alpha_1[0] * A, \alpha_2[0] * B ) + \beta[0] * C$, given tensors $A$, $B$, and $C$ and scaling factors $\alpha_1$, $\alpha_2$, and $\beta$. The op to use is indicated by the descriptor `opTensorDesc`. Currently-supported ops are listed by the `cudnnOpTensorOp_t` enum.

Each dimension of the input tensor $A$ must match the corresponding dimension of the destination tensor $C$, and each dimension of the input tensor $B$ must match the corresponding dimension of the destination tensor $C$ or must be equal to 1. In the latter case, the same value from the input tensor $B$ for those dimensions will be used to blend into the $C$ tensor.
The data types of the input tensors \(A\) and \(B\) must match. If the data type of the destination tensor \(C\) is double, then the data type of the input tensors also must be double.

If the data type of the destination tensor \(C\) is double, then \texttt{opTensorCompType} in \texttt{opTensorDesc} must be double. Else \texttt{opTensorCompType} must be float.

If the input tensor \(B\) is the same tensor as the destination tensor \(C\), then the input tensor \(A\) also must be the same tensor as the destination tensor \(C\).

\[\begin{align*}
\text{Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this routine is not supported}
\end{align*}\]

**Parameters**

\texttt{handle}

*Input.* Handle to a previously created cuDNN context.

\texttt{opTensorDesc}

*Input.* Handle to a previously initialized op tensor descriptor.

\texttt{alpha1, alpha2, beta}

*Input.* Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as indicated by the above op equation. Please refer to this section for additional details.

\texttt{aDesc, bDesc, cDesc}

*Input.* Handle to a previously initialized tensor descriptor.

\(A, B\)

*Input.* Pointer to data of the tensors described by the \texttt{aDesc} and \texttt{bDesc} descriptors, respectively.

\(C\)

*Input/Output.* Pointer to data of the tensor described by the \texttt{cDesc} descriptor.

The possible error values returned by this function and their meanings are listed below.

**Returns**

\texttt{CUDNN_STATUS_SUCCESS}

The function executed successfully.

\texttt{CUDNN_STATUS_NOT_SUPPORTED}

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The dimensions of the bias tensor and the output tensor dimensions are above 5.
- \texttt{opTensorCompType} is not set as stated above.

\texttt{CUDNN_STATUS_BAD_PARAM}

The data type of the destination tensor \(C\) is unrecognized or the conditions in the above paragraphs are unmet.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.143. cudnnPoolingBackward

cudnnStatus_t cudnnPoolingBackward(
    cudnnHandle_t handle,
    const cudnnPoolingDescriptor_t poolingDesc,
    const void *alpha,
    const cudnnTensorDescriptor_t yDesc,
    const void *y,
    const cudnnTensorDescriptor_t dyDesc,
    const void *dy,
    const cudnnTensorDescriptor_t xDesc,
    const void *xDATA,
    const void *beta,
    const cudnnTensorDescriptor_t dxDesc,
    void *dx)

This function computes the gradient of a pooling operation. As of cuDNN version 6.0, a deterministic algorithm is implemented for max backwards pooling. This algorithm can be chosen via the pooling mode enum of poolingDesc. The deterministic algorithm has been measured to be up to 50% slower than the legacy max backwards pooling algorithm, or up to 20% faster, depending upon the use case.

All tensor formats are supported, best performance is expected when using HW-packed tensors. Only 2 and 3 spatial dimensions are allowed

Parameters

handle

Input. Handle to a previously created cuDNN context.

poolingDesc

Input. Handle to the previously initialized pooling descriptor.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc

Input. Handle to the previously initialized input tensor descriptor.

y

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyData.
xDesc

- **Input.** Handle to the previously initialized output tensor descriptor.

x

- **Input.** Data pointer to GPU memory associated with the output tensor descriptor xDesc.

dxDesc

- **Input.** Handle to the previously initialized output differential tensor descriptor.

dx

- **Output.** Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function launched successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The dimensions \(n, c, h, w\) of the \(yDesc\) and \(dyDesc\) tensors differ.
- The strides \(nStride, cStride, hStride, wStride\) of the \(yDesc\) and \(dyDesc\) tensors differ.
- The dimensions \(n, c, h, w\) of the \(dxDesc\) and \(dxDesc\) tensors differ.
- The strides \(nStride, cStride, hStride, wStride\) of the \(xDesc\) and \(dxDesc\) tensors differ.
- The **datatype** of the four tensors differ.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The \(wStride\) of input tensor or output tensor is not 1.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

### 4.144. cudnnPoolingForward

```c

cudnnStatus_t cudnnPoolingForward(
 cudnnHandle_t handle,
 const cudnnPoolingDescriptor_t poolingDesc, // Pooling descriptor
 const void *alpha, // Alpha scalar
 const cudnnTensorDescriptor_t xDesc, // Input tensor descriptor
 const void *x, // Buffer to store input tensor
 const void *beta, // Beta scalar
 const cudnnTensorDescriptor_t yDesc, // Output tensor descriptor
 void *y) // Buffer to store output tensor

```

---

**www.nvidia.com**

**cuDNN 7.5.1**
This function computes pooling of input values (i.e., the maximum or average of several adjacent values) to produce an output with smaller height and/or width.

All tensor formats are supported, best performance is expected when using \texttt{HW-packed} tensors. Only 2 and 3 spatial dimensions are allowed.

The dimensions of the output tensor \texttt{yDesc} can be smaller or bigger than the dimensions advised by the routine \texttt{cudnnGetPooling2dForwardOutputDim} or \texttt{cudnnGetPoolingNdForwardOutputDim}.

Parameters

\texttt{handle}

\textit{Input.} Handle to a previously created cuDNN context.

\texttt{poolingDesc}

\textit{Input.} Handle to a previously initialized pooling descriptor.

\texttt{alpha, beta}

\textit{Input.} Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: \texttt{dstValue = alpha[0]*result + beta[0]*priorDstValue}. \textit{Refer to this section for additional details.}

\texttt{xDesc}

\textit{Input.} Handle to the previously initialized input tensor descriptor. Must be of type \texttt{FLOAT}, or \texttt{DOUBLE}, or \texttt{HALF}, or \texttt{INT8}. See \texttt{cudnnDataType_t}.

\texttt{x}

\textit{Input.} Data pointer to GPU memory associated with the tensor descriptor \texttt{xDesc}.

\texttt{yDesc}

\textit{Input.} Handle to the previously initialized output tensor descriptor. Must be of type \texttt{FLOAT}, or \texttt{DOUBLE}, or \texttt{HALF}, or \texttt{INT8}. See \texttt{cudnnDataType_t}.

\texttt{y}

\textit{Output.} Data pointer to GPU memory associated with the output tensor descriptor \texttt{yDesc}.

The possible error values returned by this function and their meanings are listed below.

Returns

\texttt{CUDNN_STATUS_SUCCESS}

The function launched successfully.

\texttt{CUDNN_STATUS_BAD_PARAM}

At least one of the following conditions are met:

\begin{itemize}
  \item The dimensions \texttt{n, c} of the input tensor and output tensors differ.
  \item The \texttt{datatype} of the input tensor and output tensors differs.
\end{itemize}
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The wStride of input tensor or output tensor is not 1.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.145. cudnnQueryRuntimeError

cudnnStatus_t cudnnQueryRuntimeError(
    cudnnHandle_t handle,
    cudnnStatus_t *rstatus,
    cudnnErrQueryMode_t mode,
    cudnnRuntimeTag_t *tag)

cuDNN library functions perform extensive input argument checking before launching GPU kernels. The last step is to verify that the GPU kernel actually started. When a kernel fails to start, CUDNN_STATUS_EXECUTION_FAILED is returned by the corresponding API call. Typically, after a GPU kernel starts, no runtime checks are performed by the kernel itself -- numerical results are simply written to output buffers.

When the CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode is selected in cudnnBatchNormalizationForwardTraining or cudnnBatchNormalizationBackward, the algorithm may encounter numerical overflows where CUDNN_BATCHNORM_SPATIAL performs just fine albeit at a slower speed. The user can invoke cudnnQueryRuntimeError to make sure numerical overflows did not occur during the kernel execution. Those issues are reported by the kernel that performs computations.

cudnnQueryRuntimeError can be used in polling and blocking software control flows. There are two polling modes (CUDNN_ERRQUERY_RAWCODE, CUDNN_ERRQUERY_NONBLOCKING) and one blocking mode CUDNN_ERRQUERY_BLOCKING.

CUDNN_ERRQUERY_RAWCODE reads the error storage location regardless of the kernel completion status. The kernel might not even started and the error storage (allocated per cuDNN handle) might be used by an earlier call.

CUDNN_ERRQUERY_NONBLOCKING checks if all tasks in the user stream completed. The cudnnQueryRuntimeError function will return immediately and report CUDNN_STATUS_RUNTIME_IN_PROGRESS in 'rstatus' if some tasks in the user stream are pending. Otherwise, the function will copy the remote kernel error code to 'rstatus'.

In the blocking mode (CUDNN_ERRQUERY_BLOCKING), the function waits for all tasks to drain in the user stream before reporting the remote kernel error code. The blocking flavor can be further adjusted by calling cudaSetDeviceFlags with the cudaDeviceScheduleSpin, cudaDeviceScheduleYield, or cudaDeviceScheduleBlockingSync flag.
CUDNN_ERRQUERY_NONBLOCKING and CUDNN_ERRQUERY_BLOCKING modes should not be used when the user stream is changed in the cuDNN handle, i.e., cudnnSetStream is invoked between functions that report runtime kernel errors and the cudnnQueryRuntimeError function.

The remote error status reported in rstatus can be set to: CUDNN_STATUS_SUCCESS, CUDNN_STATUS_RUNTIME_IN_PROGRESS, or CUDNN_STATUS_RUNTIME_FP_OVERFLOW. The remote kernel error is automatically cleared by cudnnQueryRuntimeError.

The cudnnQueryRuntimeError function should be used in conjunction with cudnnBatchNormalizationForwardTraining and cudnnBatchNormalizationBackward when the cudnnBatchNormMode_t argument is CUDNN_BATCHNORM_SPATIAL_PERSISTENT.

Parameters

handle

Input. Handle to a previously created cuDNN context.

rstatus

Output. Pointer to the user’s error code storage.

mode

Input. Remote error query mode.

tag

Input/Output. Currently, this argument should be NULL.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

No errors detected (rstatus holds a valid value).

CUDNN_STATUS_BAD_PARAM

Invalid input argument.

CUDNN_STATUS_INTERNAL_ERROR

A stream blocking synchronization or a non-blocking stream query failed.

CUDNN_STATUS_MAPPING_ERROR

Device cannot access zero-copy memory to report kernel errors.

4.146. cudnnRNNBackwardData

cudnnStatus_t cudnnRNNBackwardData(
    cudnnHandle_t                   handle,
    const cudnnRNNDescriptor_t      rnnDesc,
    const int                       seqLength,
    const cudnnTensorDescriptor_t  *yDesc,
    const void                     *y,
)
This routine executes the recurrent neural network described by \texttt{rnnDesc} with output gradients \texttt{dy}, \texttt{dhy}, \texttt{dhc}, weights \texttt{w} and input gradients \texttt{dx}, \texttt{dhx}, \texttt{dcx}. workspace is required for intermediate storage. The data in \texttt{reserveSpace} must have previously been generated by \texttt{cudnnRNNForwardTraining}. The same \texttt{reserveSpace} data must be used for future calls to \texttt{cudnnRNNBackwardWeights} if they execute on the same input data.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context. See \texttt{cudnnHandle_t}.

**rnnDesc**

*Input.* A previously initialized RNN descriptor. See \texttt{cudnnRNNDescriptor_t}.

**seqLength**

*Input.* Number of iterations to unroll over. The value of this \texttt{seqLength} must not exceed the value that was used in \texttt{cudnnGetRNNWorkspaceSize()} function for querying the workspace size required to execute the RNN.

**yDesc**

*Input.* An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). See \texttt{cudnnTensorDescriptor_t}. The second dimension of the tensor depends on the \texttt{direction} argument passed to the \texttt{cudnnSetRNNDescriptor} call used to initialize \texttt{rnnDesc}:

- If \texttt{direction} is \texttt{CUDNN_UNIDIRECTIONAL} the second dimension should match the \texttt{hiddenSize} argument passed to \texttt{cudnnSetRNNDescriptor}.
- If \texttt{direction} is \texttt{CUDNN_BIDIRECTIONAL} the second dimension should match double the \texttt{hiddenSize} argument passed to \texttt{cudnnSetRNNDescriptor}.

The first dimension of the tensor \texttt{n} must match the first dimension of the tensor \texttt{n} in \texttt{dyDesc}. 

```c
const cudnnTensorDescriptor_t *dyDesc,
const void *dy,
const cudnnTensorDescriptor_t dhyDesc,
const void *dhy,
const cudnnTensorDescriptor_t dcyDesc,
const void *dcy,
const cudnnFilterDescriptor_t wDesc,
const void *w,
const cudnnTensorDescriptor_t hxDesc,
const void *hx,
const cudnnTensorDescriptor_t cxDesc,
const void *cx,
const cudnnTensorDescriptor_t dxcDesc,
void *dxDesc,
void *dxcDesc,
void *workspace,
size_t *workspaceSizeInBytes,
const void *reserveSpace,
size_t *reserveSpaceSizeInBytes)
```
y

**Input.** Data pointer to GPU memory associated with the output tensor descriptor `yDesc`.

**dyDesc**

**Input.** An array of fully packed tensor descriptors describing the gradient at the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor `n` must match the first dimension of the tensor `n` in `dxDesc`.

**dy**

**Input.** Data pointer to GPU memory associated with the tensor descriptors in the array `dyDesc`.

**dhyDesc**

**Input.** A fully packed tensor descriptor describing the gradients at the final hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**dhy**

**Input.** Data pointer to GPU memory associated with the tensor descriptor `dhyDesc`. If a NULL pointer is passed, the gradients at the final hidden state of the network will be initialized to zero.

**dcyDesc**

**Input.** A fully packed tensor descriptor describing the gradients at the final cell state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**dcy**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `dcyDesc`. If a NULL pointer is passed, the gradients at the final cell state of the network will be initialized to zero.

**wDesc**

*Input.* Handle to a previously initialized filter descriptor describing the weights for the RNN. See `cudnnFilterDescriptor_t`.

**w**

*Input.* Data pointer to GPU memory associated with the filter descriptor `wDesc`.

**hxDesc**

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the second dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**hx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

**cxDesc**

*Input.* A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the second dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.
**cx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

**dxDesc**

*Input.* An array of fully packed tensor descriptors describing the gradient at the input of each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element n to element n+1 but may not increase. Each tensor descriptor must have the same second dimension (vector length).

**dx**

*Output.* Data pointer to GPU memory associated with the tensor descriptors in the array dxDesc.

**dhxDesc**

*Input.* A fully packed tensor descriptor describing the gradient at the initial hidden state of the RNN. The first dimension of the tensor depends on the direction argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

- If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the numLayers argument passed to cudnnSetRNNDescriptor.
- If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in xDesc. The third dimension must match the hiddenSize argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully packed.

**dhx**

*Output.* Data pointer to GPU memory associated with the tensor descriptor dhxDesc. If a NULL pointer is passed, the gradient at the hidden input of the network will not be set.

**dcxDesc**

*Input.* A fully packed tensor descriptor describing the gradient at the initial cell state of the RNN. The first dimension of the tensor depends on the direction argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

- If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the numLayers argument passed to cudnnSetRNNDescriptor.
- If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in xDesc. The third dimension must match the hiddenSize argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully packed.
dcx

Output. Data pointer to GPU memory associated with the tensor descriptor \( \text{dcxDesc} \). If a NULL pointer is passed, the gradient at the cell input of the network will not be set.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reserveSpace.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS
The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED
The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:

- The descriptor \( \text{rnnDesc} \) is invalid.
- At least one of the descriptors \( \text{dhxDesc}, \text{wDesc}, \text{hxDesc}, \text{cxDesc}, \text{dcxDesc}, \text{dhyDesc}, \text{dcyDesc} \) or one of the descriptors in \( \text{yDesc}, \text{dxDesc}, \text{dyDesc} \) is invalid.
- The descriptors in one of \( \text{yDesc}, \text{dxDesc}, \text{dyDesc}, \text{dhxDesc}, \text{wDesc}, \text{hxDesc}, \text{cxDesc}, \text{dcxDesc}, \text{dhyDesc}, \text{dcyDesc} \) has incorrect strides or dimensions.
- \( \text{workSpaceSizeInBytes} \) is too small.
- \( \text{reserveSpaceSizeInBytes} \) is too small.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED
The function was unable to allocate memory.

4.147. cudnnRNNBackwardDataEx

cudnnStatus_t cudnnRNNBackwardDataEx(
    cudnnHandle_t handle,
    ...
This routine is the extended version of the function `cudnnRNNBackwardData`. This function `cudnnRNNBackwardDataEx` allows the user to use unpacked (padded) layout for input `y` and output `dx`.

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length, specified by `maxSeqLength` in its corresponding `RNNDataDescriptor`. Each fixed-length sequence, for example, the nth sequence in the mini-batch, is composed of a valid segment specified by the `seqLengthArray[n]` in its corresponding `RNNDataDescriptor`, and a padding segment to make the combined sequence length equal to `maxSeqLength`.

With the unpacked layout, both sequence major (i.e. time major) and batch major are supported. For backward compatibility, the packed sequence major layout is supported. However, similar to the non-extended function `cudnnRNNBackwardData`, the sequences in the mini-batch need to be sorted in descending order according to length.

### Parameters

**handle**

*Input.* Handle to a previously created cuDNN context.

**rnnDesc**

*Input.* A previously initialized RNN descriptor.

**yDesc**

*Input.* A previously initialized RNN data descriptor. Must match or be the exact same descriptor previously passed into `cudnnRNNForwardTrainingEx`. 
**y**

*Input.* Data pointer to the GPU memory associated with the RNN data descriptor `yDesc`. The vectors are expected to be laid out in memory according to the layout specified by `yDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported. Must contain the exact same data previously produced by `cudnnRNNForwardTrainingEx`.

**dyDesc**

*Input.* A previously initialized RNN data descriptor. The `dataType`, `layout`, `maxSeqLength`, `batchSize`, `vectorSize` and `seqLengthArray` need to match the `yDesc` previously passed to `cudnnRNNForwardTrainingEx`.

**dy**

*Input.* Data pointer to the GPU memory associated with the RNN data descriptor `dyDesc`. The vectors are expected to be laid out in memory according to the layout specified by `dyDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

**dhyDesc**

*Input.* A fully packed tensor descriptor describing the gradients at the final hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. Moreover:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the `batchSize` parameter in `xDesc`. The third dimension depends on whether RNN mode is `CUDNN_LSTM` and whether LSTM projection is enabled. Moreover:

- If RNN mode is `CUDNN_LSTM` and LSTM projection is enabled, the third dimension must match the `recProjSize` argument passed to `cudnnSetRNNProjectionLayers` call used to set `rnnDesc`.
- Otherwise, the third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`.

**dhy**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `dhyDesc`. If a NULL pointer is passed, the gradients at the final hidden state of the network will be initialized to zero.

**dcyDesc**

*Input.* A fully packed tensor descriptor describing the gradients at the final cell state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. Moreover:
If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`.

The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**dcy**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `dcyDesc`. If a NULL pointer is passed, the gradients at the final cell state of the network will be initialized to zero.

**wDesc**

*Input.* Handle to a previously initialized filter descriptor describing the weights for the RNN.

**w**

*Input.* Data pointer to GPU memory associated with the filter descriptor `wDesc`.

**hxDesc**

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. Must match or be the exact same descriptor previously passed into `cudnnRNNForwardTrainingEx`.

**hx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero. Must contain the exact same data previously passed into `cudnnRNNForwardTrainingEx`, or be NULL if NULL was previously passed to `cudnnRNNForwardTrainingEx`.

**cxDesc**

*Input.* A fully packed tensor descriptor describing the initial cell state for LSTM networks. Must match or be the exact same descriptor previously passed into `cudnnRNNForwardTrainingEx`.

**cx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero. Must contain the exact same data previously passed into `cudnnRNNForwardTrainingEx`, or be NULL if NULL was previously passed to `cudnnRNNForwardTrainingEx`.

**dxDesc**

*Input.* A previously initialized RNN data descriptor. The `dataType`, `layout`, `maxSeqLength`, `batchSize`, `vectorSize` and `seqLengthArray` need to match that of `xDesc` previously passed to `cudnnRNNForwardTrainingEx`. 
dx

*Output.* Data pointer to the GPU memory associated with the RNN data descriptor `dxDesc`. The vectors are expected to be laid out in memory according to the layout specified by `dxDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

`dhxDesc`

*Input.* A fully packed tensor descriptor describing the gradient at the initial hidden state of the RNN. The descriptor must be set exactly the same way as `dhyDesc`.

`dhx`

*Output.* Data pointer to GPU memory associated with the tensor descriptor `dhxDesc`. If a NULL pointer is passed, the gradient at the hidden input of the network will not be set.

`dcxDesc`

*Input.* A fully packed tensor descriptor describing the gradient at the initial cell state of the RNN. The descriptor must be set exactly the same way as `dcyDesc`.

`dcx`

*Output.* Data pointer to GPU memory associated with the tensor descriptor `dcxDesc`. If a NULL pointer is passed, the gradient at the cell input of the network will not be set.

`dkDesc`

Reserved. User may pass in NULL.

`dkeys`

Reserved. User may pass in NULL.

`workspace`

*Input.* Data pointer to GPU memory to be used as a workspace for this call.

`workSpaceSizeInBytes`

*Input.* Specifies the size in bytes of the provided `workspace`.

`reserveSpace`

*Input/Output.* Data pointer to GPU memory to be used as a reserve space for this call.

`reserveSpaceSizeInBytes`

*Input.* Specifies the size in bytes of the provided `reserveSpace`.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function launched successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

At least one of the following conditions are met:
Variable sequence length input is passed in while `CUDNN_RNN_ALGO_PERSIST_STATIC` or `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` is used.

- `CUDNN_RNN_ALGO_PERSIST_STATIC` or `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` is used on pre-Pascal devices.
- Double input/output is used for `CUDNN_RNN_ALGO_PERSIST_STATIC`.

### CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `yDesc, dxDesc, dydesc, dhxDesc, wDesc, hxDesc, cxDesc, dcxDesc, dyDesc, dcyDesc` is invalid or has incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.
- `reserveSpaceSizeInBytes` is too small.

### CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

### CUDNN_STATUS_ALLOC_FAILED
The function was unable to allocate memory.

#### 4.148. cudnnRNNBackwardWeights

```c
cudnnStatus_t cudnnRNNBackwardWeights(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 const void *x,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t *yDesc,
 const void *y,
 const cudnnFilterDescriptor_t dwDesc,
 void *dw,
 const void *workspace,
 size_t workSpaceSizeInBytes,
 const cudnnFilterDescriptor_t reserveSpace,
 void *reserveSpace,
 size_t reserveSpaceSizeInBytes)
```

This routine accumulates weight gradients `dw` from the recurrent neural network described by `rnnDesc` with inputs `x, hx`, and outputs `y`. The mode of operation in this case is additive, the weight gradients calculated will be added to those already existing in `dw`. `workspace` is required for intermediate storage. The data in `reserveSpace` must have previously been generated by `cudnnRNNBackwardData`.

#### Parameters

- **handle**
  - Input. Handle to a previously created cuDNN context.
**rnnDesc**

*Input.* A previously initialized RNN descriptor.

**seqLength**

*Input.* Number of iterations to unroll over. The value of this `seqLength` must not exceed the value that was used in `cudnnGetRNNWorkspaceSize()` function for querying the workspace size required to execute the RNN.

**xDesc**

*Input.* An array of fully packed tensor descriptors describing the input to each recurrent iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may decrease from element \(n\) to element \(n+1\) but may not increase. Each tensor descriptor must have the same second dimension (vector length).

**x**

*Input.* Data pointer to GPU memory associated with the tensor descriptors in the array `xDesc`.

**hxDesc**

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**hx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

**yDesc**

*Input.* An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor \(n\) must match the first dimension of the tensor \(n\) in `dyDesc`.
**y**

*Input.* Data pointer to GPU memory associated with the output tensor descriptor `yDesc`.

**workspace**

*Input.* Data pointer to GPU memory to be used as a workspace for this call.

**workSpaceSizeInBytes**

*Input.* Specifies the size in bytes of the provided `workspace`.

**dwDesc**

*Input.* Handle to a previously initialized filter descriptor describing the gradients of the weights for the RNN.

**dw**

*Input/Output.* Data pointer to GPU memory associated with the filter descriptor `dwDesc`.

**reserveSpace**

*Input.* Data pointer to GPU memory to be used as a reserve space for this call.

**reserveSpaceSizeInBytes**

*Input.* Specifies the size in bytes of the provided `reserveSpace`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function launched successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `hxDesc`, `dwDesc` or one of the descriptors in `xDesc`, `yDesc` is invalid.
- The descriptors in one of `xDesc`, `hxDesc`, `yDesc`, `dwDesc` has incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.
- `reserveSpaceSizeInBytes` is too small.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

**CUDNN_STATUS_ALLOC_FAILED**

The function was unable to allocate memory.
4.149. cudnnRNNBackwardWeightsEx

```c
void cudnnRNNBackwardWeightsEx(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const cudnnRNNDataDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnRNNDataDescriptor_t yDesc,
 const void *y,
 void *workSpace,
 size_t workSpaceSizeInBytes,
 const cudnnFilterDescriptor_t dwDesc,
 void *dw,
 void *reserveSpace,
 size_t reserveSpaceSizeInBytes)
```

This routine is the extended version of the function `cudnnRNNBackwardWeights`. This function `cudnnRNNBackwardWeightsEx` allows the user to use unpacked (padded) layout for input `x` and output `dw`.

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length, specified by `maxSeqLength` in its corresponding `RNNDataDescriptor`. Each fixed-length sequence, for example, the `n`th sequence in the mini-batch, is composed of a valid segment specified by the `seqLengthArray[n]` in its corresponding `RNNDataDescriptor`; and a padding segment to make the combined sequence length equal to `maxSeqLength`.

With the unpacked layout, both sequence major (i.e. time major) and batch major are supported. For backward compatibility, the packed sequence major layout is supported. However, similar to the non-extended function `cudnnRNNBackwardWeights`, the sequences in the mini-batch need to be sorted in descending order according to length.

**Parameters**

- **handle**
  
  *Input.* Handle to a previously created cuDNN context.

- **rnnDesc**
  
  *Input.* A previously initialized RNN descriptor.

- **xDesc**
  
  *Input.* A previously initialized RNN data descriptor. Must match or be the exact same descriptor previously passed into `cudnnRNNForwardTrainingEx`.

- **x**
  
  *Input.* Data pointer to GPU memory associated with the tensor descriptors in the array `xDesc`. Must contain the exact same data previously passed into `cudnnRNNForwardTrainingEx`.
hxDesc

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. Must match or be the exact same descriptor previously passed into `cudnnRNNForwardTrainingEx`.

**hx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero. Must contain the exact same data previously passed into `cudnnRNNForwardTrainingEx`, or be `NULL` if `NULL` was previously passed to `cudnnRNNForwardTrainingEx`.

yDesc

*Input.* A previously initialized RNN data descriptor. Must match or be the exact same descriptor previously passed into `cudnnRNNForwardTrainingEx`.

**y**

*Input.* Data pointer to GPU memory associated with the output tensor descriptor `yDesc`. Must contain the exact same data previously produced by `cudnnRNNForwardTrainingEx`.

workspace

*Input.* Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

*Input.* Specifies the size in bytes of the provided `workspace`.

dwDesc

*Input.* Handle to a previously initialized filter descriptor describing the gradients of the weights for the RNN.

dw

*Input/Output.* Data pointer to GPU memory associated with the filter descriptor `dwDesc`.

reserveSpace

*Input.* Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

*Input.* Specifies the size in bytes of the provided `reserveSpace`.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function launched successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:
The descriptor `rnnDesc` is invalid.

At least one of the descriptors `xDesc`, `yDesc`, `hxDesc`, `dwDesc` is invalid, or has incorrect strides or dimensions.

`workSpaceSizeInBytes` is too small.

`reserveSpaceSizeInBytes` is too small.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

**CUDNN_STATUS_ALLOC_FAILED**

The function was unable to allocate memory.

### 4.150. cudnnRNNForwardInference

```c
void cudnnRNNForwardInference(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 const void *x,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void *cx,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t *yDesc,
 void *y,
 const cudnnTensorDescriptor_t hyDesc,
 void *hy,
 const cudnnTensorDescriptor_t cyDesc,
 void *cy,
 void* workspace,
 size_t workSpaceSizeInBytes)
```

This routine executes the recurrent neural network described by `rnnDesc` with inputs `x`, `hx`, `cx`, weights `w` and outputs `y`, `hy`, `cy`. `workspace` is required for intermediate storage. This function does not store intermediate data required for training; `cudnnRNNForwardTraining` should be used for that purpose.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**rnnDesc**

*Input.* A previously initialized RNN descriptor.

**seqLength**

*Input.* Number of iterations to unroll over. The value of this `seqLength` must not exceed the value that was used in `cudnnGetRNNWorkspaceSize()` function for querying the workspace size required to execute the RNN.
xDesc

*Input.* An array of ‘seqLength’ fully packed tensor descriptors. Each descriptor in the array should have three dimensions that describe the input data format to one recurrent iteration (one descriptor per RNN time-step). The first dimension (batch size) of the tensors may decrease from iteration $n$ to iteration $n+1$ but may not increase. Each tensor descriptor must have the same second dimension (RNN input vector length, inputSize). The third dimension of each tensor should be 1. Input data are expected to be arranged in the column-major order so strides in $xDesc$ should be set as follows: $\text{strideA}[0]=\text{inputSize}$, $\text{strideA}[1]=1$, $\text{strideA}[2]=1$.

$x$

*Input.* Data pointer to GPU memory associated with the array of tensor descriptors $xDesc$. The input vectors are expected to be packed contiguously with the first vector of iteration (time-step) $n+1$ following directly from the last vector of iteration $n$. In other words, input vectors for all RNN time-steps should be packed in the contiguous block of GPU memory with no gaps between the vectors.

hxDesc

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize $rnnDesc$:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in $xDesc$. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize $rnnDesc$. The tensor must be fully packed.

hx

*Input.* Data pointer to GPU memory associated with the tensor descriptor $hxDesc$. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc

*Input.* A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize $rnnDesc$:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in $xDesc$. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize $rnnDesc$. The tensor must be fully packed.
cx

*Input.* Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

**wDesc**

*Input.* Handle to a previously initialized filter descriptor describing the weights for the RNN.

**w**

*Input.* Data pointer to GPU memory associated with the filter descriptor `wDesc`.

**yDesc**

*Input.* An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the second dimension should match the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the second dimension should match double the `hiddenSize` argument passed to `cudnnSetRNNDescriptor`.

The first dimension of the tensor `n` must match the first dimension of the tensor `n` in `xDesc`.

**y**

*Output.* Data pointer to GPU memory associated with the output tensor descriptor `yDesc`. The data are expected to be packed contiguously with the first element of iteration `n+1` following directly from the last element of iteration `n`.

**hyDesc**

*Input.* A fully packed tensor descriptor describing the final hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**hy**

*Output.* Data pointer to GPU memory associated with the tensor descriptor `hyDesc`. If a NULL pointer is passed, the final hidden state of the network will not be saved.
cyDesc

*Input.* A fully packed tensor descriptor describing the final cell state for LSTM networks. The first dimension of the tensor depends on the *direction* argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**cy**

*Output.* Data pointer to GPU memory associated with the tensor descriptor `cyDesc`. If a NULL pointer is passed, the final cell state of the network will be not be saved.

**workspace**

*Input.* Data pointer to GPU memory to be used as a workspace for this call.

**workSpaceSizeInBytes**

*Input.* Specifies the size in bytes of the provided `workspace`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function launched successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

The function does not support the provided configuration.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `hxDesc, cxDesc, wDesc, hyDesc, cyDesc` or one of the descriptors in `xDesc, yDesc` is invalid.
- The descriptors in one of `xDesc, hxDesc, cxDesc, wDesc, yDesc, hyDesc, cyDesc` have incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.

**CUDNN_STATUS_EXECUTION_FAILED**

The function failed to launch on the GPU.

**CUDNN_STATUS_ALLOC_FAILED**

The function was unable to allocate memory.
4.151. cudnnRNNForwardInferenceEx

This routine is the extended version of the cudnnRNNForwardInference function. The cudnnRNNForwardTrainingEx allows the user to use unpacked (padded) layout for input \( x \) and output \( y \). In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length, specified by maxSeqLength in its corresponding RNNDataDescriptor. Each fixed-length sequence, for example, the \( n \)th sequence in the mini-batch, is composed of a valid segment, specified by the seqLengthArray\([n]\) in its corresponding RNNDataDescriptor, and a padding segment to make the combined sequence length equal to maxSeqLength.

With unpacked layout, both sequence major (i.e. time major) and batch major are supported. For backward compatibility, the packed sequence major layout is supported. However, similar to the non-extended function cudnnRNNForwardInference, the sequences in the mini-batch need to be sorted in descending order according to length.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**rnnDesc**

*Input.* A previously initialized RNN descriptor.

**xDesc**

*Input.* A previously initialized RNN Data descriptor. The dataType, layout, maxSeqLength, batchSize, and seqLengthArray need to match that of yDesc.
x

*Input.* Data pointer to the GPU memory associated with the RNN data descriptor `xDesc`. The vectors are expected to be laid out in memory according to the layout specified by `xDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

**hxDesc**

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the `batchSize` parameter described in `xDesc`.

The third dimension depends on whether RNN mode is `CUDNN_LSTM` and whether LSTM projection is enabled. In specific:

- If RNN mode is `CUDNN_LSTM` and LSTM projection is enabled, the third dimension must match the `recProjSize` argument passed to `cudnnSetRNNProjectionLayers` call used to set `rnnDesc`.
- Otherwise, the third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`.

**hx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

**cxDesc**

*Input.* A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`:

- If `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the `batchSize` parameter in `xDesc`.

The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`.

**cx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.
wDesc

*Input.* Handle to a previously initialized filter descriptor describing the weights for the RNN.

w

*Input.* Data pointer to GPU memory associated with the filter descriptor wDesc.

yDesc

*Input.* A previously initialized RNN data descriptor. The `dataType`, `layout`, `maxSeqLength`, `batchSize`, and `seqLengthArray` must match that of dyDesc and dxDesc. The parameter `vectorSize` depends on whether RNN mode is CUDNN_LSTM and whether LSTM projection is enabled and whether the network is bidirectional. In specific:

- For uni-directional network, if RNN mode is CUDNN_LSTM and LSTM projection is enabled, the parameter `vectorSize` must match the `recProjSize` argument passed to `cudnnSetRNNProjectionLayers` call used to set `rnnDesc`. If the network is bidirectional, then multiply the value by 2.
- Otherwise, for uni-directional network, the parameter `vectorSize` must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. If the network is bidirectional, then multiply the value by 2.

y

*Output.* Data pointer to the GPU memory associated with the RNN data descriptor yDesc. The vectors are expected to be laid out in memory according to the layout specified by yDesc. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

hyDesc

*Input.* A fully packed tensor descriptor describing the final hidden state of the RNN. The descriptor must be set exactly the same way as hxDesc.

hy

*Output.* Data pointer to GPU memory associated with the tensor descriptor hyDesc. If a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

*Input.* A fully packed tensor descriptor describing the final cell state for LSTM networks. The descriptor must be set exactly the same way as cxDesc.

cy

*Output.* Data pointer to GPU memory associated with the tensor descriptor cyDesc. If a NULL pointer is passed, the final cell state of the network will be not be saved.

kDesc

Reserved. User may pass in NULL.

Keys

Reserved. User may pass in NULL.
cDesc
   Reserved. User may pass in NULL.

iDesc
   Reserved. User may pass in NULL.

qDesc
   Reserved. User may pass in NULL.

workspace
   Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes
   Input. Specifies the size in bytes of the provided workspace.

Returns

CUDNN_STATUS_SUCCESS
   The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED
   At least one of the following conditions are met:
   - Variable sequence length input is passed in while
     CUDNN_RNN_ALGO_PERSIST_STATIC or CUDNN_RNN_ALGO_PERSIST_DYNAMIC is used.
   - CUDNN_RNN_ALGO_PERSIST_STATIC or CUDNN_RNN_ALGO_PERSIST_DYNAMIC is used on pre-Pascal devices.
   - Double input/output is used for CUDNN_RNN_ALGO_PERSIST_STATIC.

CUDNN_STATUS_BAD_PARAM
   At least one of the following conditions are met:
   - The descriptor rnnDesc is invalid.
   - At least one of the descriptors in xDesc, yDesc, hxDesc, cxDesc, wDesc, hyDesc, cyDesc is invalid, or have incorrect strides or dimensions.
   - reserveSpaceSizeInBytes is too small.
   - workSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED
   The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.152. cudnnRNNForwardTraining

cudnnStatus_t cudnnRNNForwardTraining(
    cudnnHandle_t handle,
    const cudnnRNNDescriptor_t rnnDesc,
    const int seqLength,
    const cudnnTensorDescriptor_t *xDesc, *x,
    const cudnnTensorDescriptor_t hxDesc, *hx,
    const cudnnTensorDescriptor_t cxDesc, *cx,
    const cudnnFilterDescriptor_t wDesc, *w,
    const cudnnTensorDescriptor_t yDesc, *y,
    const cudnnTensorDescriptor_t hyDesc, *hy,
    const cudnnTensorDescriptor_t cyDesc, *cy,
    void *workspace,
    size_t workSpaceSizeInBytes,
    void *reserveSpace,
    size_t reserveSpaceSizeInBytes)

This routine executes the recurrent neural network described by rnnDesc with inputs x, hx, cx, weights w and outputs y, hy, cy. workspace is required for intermediate storage. reserveSpace stores data required for training. The same reserveSpace data must be used for future calls to cudnnRNNBackwardData and cudnnRNNBackwardWeights if these execute on the same input data.

Parameters

handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not exceed the value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace size required to execute the RNN.

xDesc

Input. An array of ‘seqLength’ fully packed tensor descriptors. Each descriptor in the array should have three dimensions that describe the input data format to one recurrent iteration (one descriptor per RNN time-step). The first dimension (batch size) of the tensors may decrease from iteration element n to iteration element n+1 but may not increase. Each tensor descriptor must have the same second dimension (RNN input vector length, inputSize). The third dimension of each tensor should be
1. Input vectors are expected to be arranged in the column-major order so strides in \( x \) should be set as follows: \( \text{strideA}[0]=\text{inputSize} \), \( \text{strideA}[1]=1 \), \( \text{strideA}[2]=1 \).

**x**

*Input.* Data pointer to GPU memory associated with the array of tensor descriptors \( x \)Desc. The input vectors are expected to be packed contiguously with the first vector of iteration (time-step) \( n+1 \) following directly the last vector of iteration \( n \). In other words, input vectors for all RNN time-steps should be packed in the contiguous block of GPU memory with no gaps between the vectors.

**hxDesc**

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the direction argument passed to the \( \text{cudnnSetRNNDescriptor} \) call used to initialize \( \text{rnnDesc} \):

- If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the numLayers argument passed to \( \text{cudnnSetRNNDescriptor} \).
- If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the numLayers argument passed to \( \text{cudnnSetRNNDescriptor} \).

The second dimension must match the first dimension of the tensors described in \( x \)Desc. The third dimension must match the hiddenSize argument passed to the \( \text{cudnnSetRNNDescriptor} \) call used to initialize \( \text{rnnDesc} \). The tensor must be fully packed.

**hx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor \( hx \)Desc. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

**cxDesc**

*Input.* A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the direction argument passed to the \( \text{cudnnSetRNNDescriptor} \) call used to initialize \( \text{rnnDesc} \):

- If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the numLayers argument passed to \( \text{cudnnSetRNNDescriptor} \).
- If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the numLayers argument passed to \( \text{cudnnSetRNNDescriptor} \).

The second dimension must match the first dimension of the tensors described in \( x \)Desc. The third dimension must match the hiddenSize argument passed to the \( \text{cudnnSetRNNDescriptor} \) call used to initialize \( \text{rnnDesc} \). The tensor must be fully packed.

**cx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor \( cx \)Desc. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

**wDesc**

*Input.* Handle to a previously initialized filter descriptor describing the weights for the RNN.
\( w \)

*Input.* Data pointer to GPU memory associated with the filter descriptor \( w_{\text{Desc}} \).

\( y_{\text{Desc}} \)

*Input.* An array of fully packed tensor descriptors describing the output from each recurrent iteration (one descriptor per iteration). The second dimension of the tensor depends on the \( \text{direction} \) argument passed to the \text{cudnnSetRNNDescriptor} call used to initialize \( \text{rnnDesc} \):

- If \( \text{direction} \) is \text{CUDNN\_UNIDIRECTIONAL} the second dimension should match the \text{hiddenSize} argument passed to \text{cudnnSetRNNDescriptor}.
- If \( \text{direction} \) is \text{CUDNN\_BIDIRECTIONAL} the second dimension should match double the \text{hiddenSize} argument passed to \text{cudnnSetRNNDescriptor}.

The first dimension of the tensor \( n \) must match the first dimension of the tensor \( n \) in \( x_{\text{Desc}} \).

\( y \)

*Output.* Data pointer to GPU memory associated with the output tensor descriptor \( y_{\text{Desc}} \).

\( h_{\text{Desc}} \)

*Input.* A fully packed tensor descriptor describing the final hidden state of the RNN. The first dimension of the tensor depends on the \( \text{direction} \) argument passed to the \text{cudnnSetRNNDescriptor} call used to initialize \( \text{rnnDesc} \):

- If \( \text{direction} \) is \text{CUDNN\_UNIDIRECTIONAL} the first dimension should match the \text{numLayers} argument passed to \text{cudnnSetRNNDescriptor}.
- If \( \text{direction} \) is \text{CUDNN\_BIDIRECTIONAL} the first dimension should match double the \text{numLayers} argument passed to \text{cudnnSetRNNDescriptor}.

The second dimension must match the first dimension of the tensors described in \( x_{\text{Desc}} \). The third dimension must match the \text{hiddenSize} argument passed to the \text{cudnnSetRNNDescriptor} call used to initialize \( \text{rnnDesc} \). The tensor must be fully packed.

\( h_{y} \)

*Output.* Data pointer to GPU memory associated with the tensor descriptor \( h_{y_{\text{Desc}}} \). If a NULL pointer is passed, the final hidden state of the network will not be saved.

\( c_{\text{Desc}} \)

*Input.* A fully packed tensor descriptor describing the final cell state for LSTM networks. The first dimension of the tensor depends on the \( \text{direction} \) argument passed to the \text{cudnnSetRNNDescriptor} call used to initialize \( \text{rnnDesc} \):

- If \( \text{direction} \) is \text{CUDNN\_UNIDIRECTIONAL} the first dimension should match the \text{numLayers} argument passed to \text{cudnnSetRNNDescriptor}.
- If \( \text{direction} \) is \text{CUDNN\_BIDIRECTIONAL} the first dimension should match double the \text{numLayers} argument passed to \text{cudnnSetRNNDescriptor}.

The second dimension must match the first dimension of the tensors described in \( x_{\text{Desc}} \). The third dimension must match the \text{hiddenSize} argument passed to the
**cudnnSetRNNDescriptor** call used to initialize \textit{rnnDesc}. The tensor must be fully packed.

\textit{cy}

\textit{Output}. Data pointer to GPU memory associated with the tensor descriptor \textit{cyDesc}. If a NULL pointer is passed, the final cell state of the network will not be saved.

\textit{workspace}

\textit{Input}. Data pointer to GPU memory to be used as a workspace for this call.

\textit{workSpaceSizeInBytes}

\textit{Input}. Specifies the size in bytes of the provided \textit{workspace}.

\textit{reserveSpace}

\textit{Input/Output}. Data pointer to GPU memory to be used as a reserve space for this call.

\textit{reserveSpaceSizeInBytes}

\textit{Input}. Specifies the size in bytes of the provided \textit{reserveSpace}

The possible error values returned by this function and their meanings are listed below.

**Returns**

\textbf{CUDNN\_STATUS\_SUCCESS}

The function launched successfully.

\textbf{CUDNN\_STATUS\_BAD\_PARAM}

At least one of the following conditions are met:

- The descriptor \textit{rnnDesc} is invalid.
- At least one of the descriptors \textit{hxDesc, cxDesc, wDesc, hyDesc, cyDesc} or one of the descriptors in \textit{xDesc, yDesc} is invalid.
- The descriptors in one of \textit{xDesc, hxDesc, cxDesc, wDesc, yDesc, hyDesc, cyDesc} have incorrect strides or dimensions.
- \textit{workSpaceSizeInBytes} is too small.
- \textit{reserveSpaceSizeInBytes} is too small.

\textbf{CUDNN\_STATUS\_EXECUTION\_FAILED}

The function failed to launch on the GPU.

\textbf{CUDNN\_STATUS\_ALLOC\_FAILED}

The function was unable to allocate memory.

### 4.153. cudnnRNNForwardTrainingEx

```c

cudnnStatus_t cudnnRNNForwardTrainingEx(
 cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const cudnnRNNDataDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t hxDesc,
 const void *hx,
```
This routine is the extended version of the `cudnnRNNForwardTraining` function. The `cudnnRNNForwardTrainingEx` allows the user to use unpacked (padded) layout for input `x` and output `y`.

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length, specified by `maxSeqLength` in its corresponding `RNNDataDescriptor`. Each fixed-length sequence, for example, the `n`th sequence in the mini-batch, is composed of a valid segment specified by the `seqLengthArray[n]` in its corresponding `RNNDataDescriptor`; and a padding segment to make the combined sequence length equal to `maxSeqLength`.

With the unpacked layout, both sequence major (i.e. time major) and batch major are supported. For backward compatibility, the packed sequence major layout is supported. However, similar to the non-extended function `cudnnRNNForwardTraining`, the sequences in the mini-batch need to be sorted in descending order according to length.

**Parameters**

**handle**

*Input*. Handle to a previously created cuDNN context.

**rnnDesc**

*Input*. A previously initialized RNN descriptor.

**xDesc**

*Input*. A previously initialized RNN Data descriptor. The `dataType`, `layout`, `maxSeqLength`, `batchSize`, and `seqLengthArray` need to match that of `yDesc`.

**x**

*Input*. Data pointer to the GPU memory associated with the RNN data descriptor `xDesc`. The input vectors are expected to be laid out in memory according to the layout specified by `xDesc`. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.
**hxDesc**

*Input.* A fully packed tensor descriptor describing the initial hidden state of the RNN. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. Moreover:

- If! `direction` is `CUDNN_UNIDIRECTIONAL` then the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If! `direction` is `CUDNN_BIDIRECTIONAL` then the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the `batchSize` parameter in `xDesc`. The third dimension depends on whether RNN mode is `CUDNN_LSTM` and whether LSTM projection is enabled. Moreover:

- If RNN mode is `CUDNN_LSTM` and LSTM projection is enabled, the third dimension must match the `recProjSize` argument passed to `cudnnSetRNNProjectionLayers` call used to set `rnnDesc`.
- Otherwise, the third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`.

**hx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `hxDesc`. If a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.

**cxDesc**

*Input.* A fully packed tensor descriptor describing the initial cell state for LSTM networks. The first dimension of the tensor depends on the `direction` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. Moreover:

- If! `direction` is `CUDNN_UNIDIRECTIONAL` the first dimension should match the `numLayers` argument passed to `cudnnSetRNNDescriptor`.
- If! `direction` is `CUDNN_BIDIRECTIONAL` the first dimension should match double the `numLayers` argument passed to `cudnnSetRNNDescriptor`.

The second dimension must match the first dimension of the tensors described in `xDesc`. The third dimension must match the `hiddenSize` argument passed to the `cudnnSetRNNDescriptor` call used to initialize `rnnDesc`. The tensor must be fully packed.

**cx**

*Input.* Data pointer to GPU memory associated with the tensor descriptor `cxDesc`. If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.

**wDesc**

*Input.* Handle to a previously initialized filter descriptor describing the weights for the RNN.
Input. Data pointer to GPU memory associated with the filter descriptor wDesc.

yDesc

Input. A previously initialized RNN data descriptor. The dataType, layout, maxSeqLength, batchSize, and seqLengthArray need to match that of dyDesc and dxDesc. The parameter vectorSize depends on whether RNN mode is CUDNN_LSTM and whether LSTM projection is enabled and whether the network is bidirectional. In specific:

- For uni-directional network, if RNN mode is CUDNN_LSTM and LSTM projection is enabled, the parameter vectorSize must match the recProjSize argument passed to cudnnSetRNNProjectionLayers call used to set rnnDesc. If the network is bidirectional, then multiply the value by 2.
- Otherwise, for uni-directional network, the parameter vectorSize must match the hiddenSize argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. If the network is bidirectional, then multiply the value by 2.

y

Output. Data pointer to GPU memory associated with the RNN data descriptor yDesc. The input vectors are expected to be laid out in memory according to the layout specified by yDesc. The elements in the tensor (including elements in the padding vector) must be densely packed, and no strides are supported.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The descriptor must be set exactly the same as hxDesc.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks. The descriptor must be set exactly the same as cxDesc.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If a NULL pointer is passed, the final cell state of the network will be not be saved.

kDesc

Reserved. User may pass in NULL.

Keys

Reserved. User may pass in NULL.

cDesc

Reserved. User may pass in NULL.

cAttn

Reserved. User may pass in NULL.
iDesc
Reserved. User may pass in NULL.

iAttn
Reserved. User may pass in NULL.

qDesc
Reserved. User may pass in NULL.

Queries
Reserved. User may pass in NULL.

workspace
*Input.* Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes
*Input.* Specifies the size in bytes of the provided `workspace`.

reserveSpace
*Input/Output.* Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes
*Input.* Specifies the size in bytes of the provided `reserveSpace`.

Returns

**CUDNN_STATUS_SUCCESS**
The function launched successfully.

**CUDNN_STATUS_NOT_SUPPORTED**
At least one of the following conditions are met:

- Variable sequence length input is passed in while `CUDNN_RNN_ALGO_PERSIST_STATIC` or `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` is used.
- `CUDNN_RNN_ALGO_PERSIST_STATIC` or `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` is used on pre-Pascal devices.
- Double input/output is used for `CUDNN_RNN_ALGO_PERSIST_STATIC`.

**CUDNN_STATUS_BAD_PARAM**
At least one of the following conditions are met:

- The descriptor `rnnDesc` is invalid.
- At least one of the descriptors `xDesc`, `yDesc`, `hxDesc`, `cxDesc`, `wDesc`, `hyDesc`, `cyDesc` is invalid, or have incorrect strides or dimensions.
- `workSpaceSizeInBytes` is too small.
- `reserveSpaceSizeInBytes` is too small.

**CUDNN_STATUS_EXECUTION_FAILED**
The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.154. cudnnRNNGetClip

cudnnStatus_t cudnnRNNGetClip(
    cudnnHandle_t handle,
    cudnnRNNDescriptor_t rnnDesc,
    cudnnRNNClipMode_t *clipMode,
    cudnnNanPropagation_t *clipNanOpt,
    double *lclip,
    double *rclip);

Retrieves the current LSTM cell clipping parameters, and stores them in the arguments provided.

Parameters

*clipMode

Output. Pointer to the location where the retrieved clipMode is stored. The clipMode can be CUDNN_RNN_CLIP_NONE in which case no LSTM cell state clipping is being performed; or CUDNN_RNN_CLIP_MINMAX, in which case the cell state activation to other units are being clipped.

*lclip, *rclip

Output. Pointers to the location where the retrieved LSTM cell clipping range [lclip, rclip] is stored.

*clipNanOpt

Output. Pointer to the location where the retrieved clipNanOpt is stored.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

If any of the pointer arguments provided are NULL.

4.155. cudnnRNNSetClip

cudnnStatus_t cudnnRNNSetClip(
    cudnnHandle_t handle,
    cudnnRNNDescriptor_t rnnDesc,
    cudnnRNNClipMode_t clipMode,
    cudnnNanPropagation_t clipNanOpt,
    double lclip,
    double rclip);
Sets the LSTM cell clipping mode. The LSTM clipping is disabled by default. When enabled, clipping is applied to all layers. This `cudnnRNNSetClip()` function may be called multiple times.

**Parameters**

**clipMode**

*Input.* Enables or disables the LSTM cell clipping. When `clipMode` is set to CUDNN_RNN_CLIP_NONE no LSTM cell state clipping is performed. When `clipMode` is CUDNN_RNN_CLIP_MINMAX the cell state activation to other units are clipped.

**lclip, rclip**

*Input.* The range [lclip, rclip] to which the LSTM cell clipping should be set.

**clipNanOpt**

*Input.* When set to CUDNN_PROPAGATE_NAN (See the description for `cudnnNanPropagation_t`), NaN is propagated from the LSTM cell, or it can be set to one of the clipping range boundary values, instead of propagating.

**Returns**

**CUDNN_STATUS_SUCCESS**

The function launched successfully.

**CUDNN_STATUS_BAD_PARAM**

Returns this value if lclip > rclip; or if either lclip or rclip is NaN.

### 4.156. cudnnReduceTensor

```c
void cudnnReduceTensor(
 cudnnHandle_t handle,
 const cudnnReduceTensorDescriptor_t reduceTensorDesc,
 void *indices,
 size_t indicesSizeInBytes,
 void *workspace,
 size_t workspaceSizeInBytes,
 const void *alpha,
 const cudnnTensorDescriptor_t aDesc,
 const void *beta,
 const cudnnTensorDescriptor_t cDesc,
 void *C)
```

This function reduces tensor A by implementing the equation C = alpha * reduce op ( A ) + beta * C, given tensors A and C and scaling factors alpha and beta. The reduction op to use is indicated by the descriptor `reduceTensorDesc`. Currently-supported ops are listed by the `cudnnReduceTensorOp_t` enum.

Each dimension of the output tensor C must match the corresponding dimension of the input tensor A or must be equal to 1. The dimensions equal to 1 indicate the dimensions of A to be reduced.

The implementation will generate indices for the min and max ops only, as indicated by the `cudnnReduceTensorIndices_t` enum of the `reduceTensorDesc`. Requesting
indices for the other reduction ops results in an error. The data type of the indices is indicated by the `cudnnIndicesType_t` enum; currently only the 32-bit (unsigned int) type is supported.

The indices returned by the implementation are not absolute indices but relative to the dimensions being reduced. The indices are also flattened, i.e. not coordinate tuples.

The data types of the tensors A and C must match if of type double. In this case, alpha and beta and the computation enum of `reduceTensorDesc` are all assumed to be of type double.

The half and int8 data types may be mixed with the float data types. In these cases, the computation enum of `reduceTensorDesc` is required to be of type float.

**Up to dimension 8, all tensor formats are supported. Beyond those dimensions, this routine is not supported**

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**reduceTensorDesc**

*Input.* Handle to a previously initialized reduce tensor descriptor.

**indices**

*Output.* Handle to a previously allocated space for writing indices.

**indicesSizeInBytes**

*Input.* Size of the above previously allocated space.

**workspace**

*Input.* Handle to a previously allocated space for the reduction implementation.

**workspaceSizeInBytes**

*Input.* Size of the above previously allocated space.

**alpha, beta**

*Input.* Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as indicated by the above op equation. Please refer to this section for additional details.

**aDesc, cDesc**

*Input.* Handle to a previously initialized tensor descriptor.

**A**

*Input.* Pointer to data of the tensor described by the `aDesc` descriptor.

**C**

*Input/Output.* Pointer to data of the tensor described by the `cDesc` descriptor.

The possible error values returned by this function and their meanings are listed below.

**Returns**
CUDNN_STATUS_SUCCESS

The function executed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The dimensions of the input tensor and the output tensor are above 8.
- `reduceTensorCompType` is not set as stated above.

CUDNN_STATUS_BAD_PARAM

The corresponding dimensions of the input and output tensors all match, or the conditions in the above paragraphs are unmet.

CUDNN_INVALID_VALUE

The allocations for the indices or workspace are insufficient.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

### 4.157. `cudnnRestoreAlgorithm`

```c
void cudnnRestoreAlgorithm(
 cudnnHandle_t handle,
 void* algoSpace,
 size_t algoSpaceSizeInBytes,
 cudnnAlgorithmDescriptor_t algoDesc)
```

(New for 7.1)

This function reads algorithm metadata from the host memory space provided by the user in `algoSpace`, allowing the user to use the results of RNN finds from previous cuDNN sessions.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN context.

**algoDesc**

*Input.* A previously created algorithm descriptor.

**algoSpace**

*Input.* Pointer to the host memory to be read.

**algoSpaceSizeInBytes**

*Input.* Amount of host memory needed as workspace to be able to hold the metadata from the specified `algoDesc`.

**Returns**

CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The metadata is from a different cudnn version.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions is met:

- One of the arguments is null.
- The metadata is corrupted.

4.158. cudnnRestoreDropoutDescriptor

cudnnStatus_t cudnnRestoreDropoutDescriptor(
    cudnnDropoutDescriptor_t dropoutDesc,
    cudnnHandle_t            handle,
    float                    dropout,
    void  *states,
    size_t    stateSizeInBytes,
    unsigned long long       seed)

This function restores a dropout descriptor to a previously saved-off state.

Parameters

dropoutDesc

Input/Output. Previously created dropout descriptor.

handle

Input. Handle to a previously created cuDNN context.

dropout

Input. Probability with which the value from an input tensor is set to 0 when performing dropout.

states

Input. Pointer to GPU memory that holds random number generator states initialized by a prior call to cudnnSetDropoutDescriptor.

stateSizeInBytes

Input. Size in bytes of buffer holding random number generator states.

seed

Input. Seed used in prior call to cudnnSetDropoutDescriptor that initialized 'states' buffer. Using a different seed from this has no effect. A change of seed, and subsequent update to random number generator states can be achieved by calling cudnnSetDropoutDescriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_INVALID_VALUE

States buffer size (as indicated in stateSizeInBytes) is too small.

4.159. cudnnSaveAlgorithm

cudnnStatus_t cudnnSaveAlgorithm(
    cudnnHandle_t            handle,
    cudnnAlgorithmDescriptor_t  algoDesc,
    void*                    algoSpace,
    size_t                   algoSpaceSizeInBytes)

(New for 7.1)

This function writes algorithm metadata into the host memory space provided by the user in algoSpace, allowing the user to preserve the results of RNN finds after cuDNN exits.

Parameters

handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.

algoSpace

Input. Pointer to the host memory to be written.

algoSpaceSizeInBytes

Input. Amount of host memory needed as workspace to be able to save the metadata from the specified algoDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions is met:

- One of the arguments is null.
- algoSpaceSizeInBytes is too small.

4.160. cudnnScaleTensor

cudnnStatus_t cudnnScaleTensor(
    cudnnHandle_t            handle,
    const cudnnTensorDescriptor_t   yDesc,
    void*                    y,
    const void               *alpha)

This function scale all the elements of a tensor by a given factor.
Parameters

handle

*Input*. Handle to a previously created cuDNN context.

yDesc

*Input*. Handle to a previously initialized tensor descriptor.

y

*Input/Output*. Pointer to data of the tensor described by the `yDesc` descriptor.

alpha

*Input*. Pointer in Host memory to a single value that all elements of the tensor will be scaled with. Please refer to this section for additional details.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

one of the provided pointers is nil

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.161. cudnnSetActivationDescriptor

cudnnStatus_t cudnnSetActivationDescriptor(
    cudnnActivationDescriptor_t activationDesc,
    cudnnActivationMode_t mode,
    cudnnNanPropagation_t reluNanOpt,
    double coef)

This function initializes a previously created generic activation descriptor object.

Parameters

activationDesc

*Input/Output*. Handle to a previously created pooling descriptor.

mode

*Input*. Enumerant to specify the activation mode.

reluNanOpt

*Input*. Enumerant to specify the Nan propagation mode.
coef

*Input.* floating point number to specify the clipping threshold when the activation mode is set to `CUDNN_ACTIVATION_CLIPPED_RELU` or to specify the alpha coefficient when the activation mode is set to `CUDNN_ACTIVATION_ELU`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  The object was set successfully.
- **CUDNN_STATUS_BAD_PARAM**
  `mode` or `reluNanOpt` has an invalid enumerant value.

### 4.162. cudnnSetAlgorithmDescriptor

```c
typedef void (*cudnnSetAlgorithmDescriptor_t)(
 cudnnAlgorithmDescriptor_t algorithmDesc,
 cudnnAlgorithm_t algorithm)
```

(New for 7.1)

This function initializes a previously created generic algorithm descriptor object.

**Parameters**

- **algorithmDesc**
  
  *Input/Output.* Handle to a previously created algorithm descriptor.

- **algorithm**
  
  *Input.* Struct to specify the algorithm.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  The object was set successfully.

### 4.163. cudnnSetAlgorithmPerformance

```c
typedef void (*cudnnSetAlgorithmPerformance_t)(
 cudnnAlgorithmPerformance_t algoPerf,
 cudnnAlgorithmDescriptor_t algoDesc,
 cudnnStatus_t status,
 float time,
 size_t memory)
```

(New for 7.1)

This function initializes a previously created generic algorithm performance object.

**Parameters**
algoPerf

*Input/Output.* Handle to a previously created algorithm performance object.

algoDesc

*Input.* The algorithm descriptor which the performance results describe.

status

*Input.* The cudnn status returned from running the algoDesc algorithm.

time

*Input.* The GPU time spent running the algoDesc algorithm.

memory

*Input.* The GPU memory needed to run the algoDesc algorithm.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

mode or reluNanOpt has an invalid enumerant value.

### 4.164. cudnnSetAttnDescriptor

cudnnStatus_t cudnnSetAttnDescriptor(
    cudnnAttnDescriptor_t attnDesc,
    cudnnAttnQueryMap_t queryMap,
    int nHeads,
    double smScaler,
    cudnnDataType_t dataType,
    cudnnDataType_t computePrec,
    cudnnMathType_t mathType,
    cudnnDropoutDescriptor_t attnDropoutDesc,
    cudnnDropoutDescriptor_t postDropoutDesc,
    int qSize,
    int kSize,
    int vSize,
    int qProjSize,
    int kProjSize,
    int vProjSize,
    int oProjSize,
    int qoMaxSeqLength,
    int kvMaxSeqLength,
    int maxBatchSize,
    int maxBeamSize);

This function initializes a multi-head attention descriptor that was previously created using the cudnnCreateAttnDescriptor function.

For query, key, and value input data, the effective projection size is equal to the respective [qkv]ProjSize when the value is positive, and is equal to [qkv]Size otherwise.
The output projection size decides the hidden vector size of the forward output sequence data. It is equal to \texttt{oProjSize} when the value is positive, otherwise is equal to \texttt{nHeads} times effective value-projection size.

**Parameters:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>attnDesc</td>
<td>Output</td>
<td>Attention descriptor whose values are to be initialized.</td>
</tr>
<tr>
<td>queryMap</td>
<td>Input</td>
<td>Query mapping mode.</td>
</tr>
<tr>
<td>nHeads</td>
<td>Input</td>
<td>Number of attention heads.</td>
</tr>
<tr>
<td>smScaler</td>
<td>Input</td>
<td>Softmax smoothing, or sharpening, coefficient.</td>
</tr>
<tr>
<td>dataType</td>
<td>Input</td>
<td>Data type for Q,K,V inputs, weights, and the output.</td>
</tr>
<tr>
<td>computePrec</td>
<td>Input</td>
<td>Compute data type (precision).</td>
</tr>
<tr>
<td>mathType</td>
<td>Input</td>
<td>The Tensor Core Operations settings.</td>
</tr>
<tr>
<td>attnDropoutDesc</td>
<td>Input</td>
<td>Dropout descriptor for the dropout at the attention layer.</td>
</tr>
<tr>
<td>postDropoutDesc</td>
<td>Input</td>
<td>Dropout descriptor for the dropout at the output.</td>
</tr>
<tr>
<td>qSize, kSize, vSize</td>
<td>Input</td>
<td>Hidden size of Q, K, and V input sequence data.</td>
</tr>
<tr>
<td>qProjSize, kProjSize, vProjSize</td>
<td>Input</td>
<td>Hidden size of projected Q, K and V sequence data; 0 if no projection.</td>
</tr>
<tr>
<td>oProjSize</td>
<td>Input</td>
<td>Output projection size.</td>
</tr>
<tr>
<td>qoMaxSeqLength</td>
<td>Input</td>
<td>Largest sequence length allowed in sequence data Q and O.</td>
</tr>
<tr>
<td>kvMaxSeqLength</td>
<td>Input</td>
<td>Largest sequence length allowed in sequence data K and V.</td>
</tr>
<tr>
<td>maxBatchSize</td>
<td>Input</td>
<td>Largest batch size allowed in sequence data.</td>
</tr>
<tr>
<td>maxBeamSize</td>
<td>Input</td>
<td>Largest beam size allowed in sequence data.</td>
</tr>
</tbody>
</table>

**Returns:**

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The \texttt{attnDesc} field values are updated successfully.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>An invalid input value is encountered. For example:</td>
</tr>
<tr>
<td></td>
<td>- \texttt{attnDesc} is NULL</td>
</tr>
<tr>
<td></td>
<td>- \texttt{queryMap} is not one of enumerated labels of cudnnAttnQueryMap_t</td>
</tr>
</tbody>
</table>
**4.165. cudnnSetCTCLossDescriptor**

```c
void cudnnSetCTCLossDescriptor(
 cudnnCTCLossDescriptor_t ctcLossDesc,
 cudnnDataType_t compType)
```

This function sets a CTC loss function descriptor.

**Parameters**

- **ctcLossDesc**
  
  *Output.* CTC loss descriptor to be set.

- **compType**

  *Input.* Compute type for this CTC loss function.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  
  The function returned successfully.

- **CUDNN_STATUS_BAD_PARAM**

  At least one of input parameters passed is invalid.

**4.166. cudnnSetCallback**

```c
void cudnnSetCallback(
 unsigned mask,
 void *udata,
 cudnnCallback_t fptr)
```

*(New for 7.1)*

This function sets the internal states of cuDNN error reporting functionality.

**Parameters**

- **mask**

  *Input.* An unsigned integer. The four least significant bits (LSBs) of this unsigned integer are used for switching on and off the different levels of error reporting.
messages. This applies for both the default callbacks, and for the customized callbacks. The bit position is in correspondence with the enum of `cudnnSeverity_t`. The user may utilize the predefined macros `CUDNN_SEV_ERROR_EN`, `CUDNN_SEV_WARNING_EN`, and `CUDNN_SEV_INFO_EN` to form the bit mask. When a bit is set to 1, the corresponding message channel is enabled.

For example, when bit 3 is set to 1, the API logging is enabled. Currently only the log output of level `CUDNN_SEV_INFO` is functional; the others are not yet implemented. When used for turning on and off the logging with the default callback, the user may pass `NULL` to `udata` and `fptr`. In addition, the environment variable `CUDNN_LOGDEST_DBG` must be set (see Section 2.11).

- `CUDNN_SEV_INFO_EN = 0b1000` (functional).
- `CUDNN_SEV_ERROR_EN = 0b0010` (not yet functional).
- `CUDNN_SEV_WARNING_EN = 0b0100` (not yet functional).

The output of `CUDNN_SEV_FATAL` is always enabled, and cannot be disabled.

**udata**

*Input.* A pointer provided by the user. This pointer will be passed to the user’s custom logging callback function. The data it points to will not be read, nor be changed by cuDNN. This pointer may be used in many ways, such as in a mutex or in a communication socket for the user’s callback function for logging. If the user is utilizing the default callback function, or doesn’t want to use this input in the customized callback function, they may pass in `NULL`.

**fptr**

*Input.* A pointer to a user-supplied callback function. When `NULL` is passed to this pointer, then cuDNN switches back to the built-in default callback function. The user-supplied callback function prototype must be similar to the following (also defined in the header file):

```c
void customizedLoggingCallback (cudnnSeverity_t sev, void *udata, const cudnnDebug_t *dbg, const char *msg);
```

- The structure `cudnnDebug_t` is defined in the header file. It provides the metadata, such as time, time since start, stream ID, process and thread ID, that the user may choose to print or store in their customized callback.
- The variable `msg` is the logging message generated by cuDNN. Each line of this message is terminated by “\0”, and the end of message is terminated by “\0\0”. User may select what is necessary to show in the log, and may reformat the string.

**Returns**

- `CUDNN_STATUS_SUCCESS`

  The function launched successfully.
4.167. cudnnSetConvolution2dDescriptor

```c
void cudnnSetConvolution2dDescriptor(
 cudnnConvolutionDescriptor_t convDesc,
 int pad_h,
 int pad_w,
 int u,
 int v,
 int dilation_h,
 int dilation_w,
 cudnnConvolutionMode_t mode,
 cudnnDataType_t computeType);
```

This function initializes a previously created convolution descriptor object into a 2D correlation. This function assumes that the tensor and filter descriptors corresponds to the forward convolution path and checks if their settings are valid. That same convolution descriptor can be reused in the backward path provided it corresponds to the same layer.

**Parameters**

**convDesc**

*Input/Output.* Handle to a previously created convolution descriptor.

**pad_h**

*Input.* zero-padding height: number of rows of zeros implicitly concatenated onto the top and onto the bottom of input images.

**pad_w**

*Input.* zero-padding width: number of columns of zeros implicitly concatenated onto the left and onto the right of input images.

**u**

*Input.* Vertical filter stride.

**v**

*Input.* Horizontal filter stride.

**dilation_h**

*Input.* Filter height dilation.

**dilation_w**

*Input.* Filter width dilation.

**mode**

*Input.* Selects between CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION.

**computeType**

*Input.* compute precision.

The possible error values returned by this function and their meanings are listed below.

**Returns**
CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The descriptor `convDesc` is nil.
- One of the parameters `pad_h, pad_w` is strictly negative.
- One of the parameters `u,v` is negative or zero.
- One of the parameters `dilation_h,dilation_w` is negative or zero.
- The parameter `mode` has an invalid enumerant value.

4.168. cudnnSetConvolutionGroupCount

cudnnStatus_t cudnnSetConvolutionGroupCount(
    cudnnConvolutionDescriptor_t convDesc,
    int groupCount)

This function allows the user to specify the number of groups to be used in the associated convolution.

Returns

CUDNN_STATUS_SUCCESS

The group count was set successfully.

CUDNN_STATUS_BAD_PARAM

An invalid convolution descriptor was provided.

4.169. cudnnSetConvolutionMathType

cudnnStatus_t cudnnSetConvolutionMathType(
    cudnnConvolutionDescriptor_t convDesc,
    cudnnMathType_t mathType)

This function allows the user to specify whether or not the use of tensor op is permitted in library routines associated with a given convolution descriptor.

Returns

CUDNN_STATUS_SUCCESS

The math type was set successfully.

CUDNN_STATUS_BAD_PARAM

Either an invalid convolution descriptor was provided or an invalid math type was specified.

4.170. cudnnSetConvolutionNdDescriptor

cudnnStatus_t cudnnSetConvolutionNdDescriptor(

This function initializes a previously created generic convolution descriptor object into a n-D correlation. That same convolution descriptor can be reused in the backward path provided it corresponds to the same layer. The convolution computation will done in the specified `dataType`, which can be potentially different from the input/output tensors.

**Parameters**

```c
 cudnnConvolutionDescriptor_t convDesc,
 int arrayLength,
 const int padA[],
 const int filterStrideA[],
 const int dilationA[],
 cudnnConvolutionMode_t mode,
 cudnnDataType_t dataType)
```

**convDesc**

`Input/Output`. Handle to a previously created convolution descriptor.

**arrayLength**

`Input`. Dimension of the convolution.

**padA**

`Input`. Array of dimension `arrayLength` containing the zero-padding size for each dimension. For every dimension, the padding represents the number of extra zeros implicitly concatenated at the start and at the end of every element of that dimension.

**filterStrideA**

`Input`. Array of dimension `arrayLength` containing the filter stride for each dimension. For every dimension, the filter stride represents the number of elements to slide to reach the next start of the filtering window of the next point.

**dilationA**

`Input`. Array of dimension `arrayLength` containing the dilation factor for each dimension.

**mode**

`Input`. Selects between `CUDNN_CONVOLUTION` and `CUDNN_CROSS_CORRELATION`.

**datatype**

`Input`. Selects the datatype in which the computation will be done.

The possible error values returned by this function and their meanings are listed below.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  The object was set successfully.

- **CUDNN_STATUS_BAD_PARAM**
  At least one of the following conditions are met:
  - The descriptor `convDesc` is nil.
  - The `arrayLengthRequest` is negative.
  - The enumerant `mode` has an invalid value.
The enumerant `datatype` has an invalid value.
- One of the elements of `padA` is strictly negative.
- One of the elements of `strideA` is negative or zero.
- One of the elements of `dilationA` is negative or zero.

**CUDNN_STATUS_NOT_SUPPORTED**

At least one of the following conditions are met:
- The `arrayLengthRequest` is greater than CUDNN_DIM_MAX.

### 4.171. `cudnnSetDropoutDescriptor`

```c
uint8_t cudnnSetDropoutDescriptor(
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnHandle_t handle,
 float dropout,
 void *states,
 size_t stateSizeInBytes,
 unsigned long long seed)
```

This function initializes a previously created dropout descriptor object. If the `states` argument is equal to NULL, random number generator states won't be initialized, and only the `dropout` value will be set. No other function should be writing to the memory pointed at by the `states` argument while this function is running. The user is expected not to change memory pointed at by the `states` for the duration of the computation.

**Parameters**

**dropoutDesc**

*Input/Output.* Previously created dropout descriptor object.

**handle**

*Input.* Handle to a previously created cuDNN context.

**dropout**

*Input.* The probability with which the value from input is set to zero during the dropout layer.

**states**

*Output.* Pointer to user-allocated GPU memory that will hold random number generator states.

**stateSizeInBytes**

*Input.* Specifies size in bytes of the provided memory for the states

**seed**

*Input.* Seed used to initialize random number generator states.

The possible error values returned by this function and their meanings are listed below.

**Returns**
CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_INVALID_VALUE

sizeInBytes is less than the value returned by cudnnDropoutGetStatesSize.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

4.172. cudnnSetFilter4dDescriptor

cudnnStatus_t cudnnSetFilter4dDescriptor(
    cudnnFilterDescriptor_t    filterDesc,
    cudnnDataType_t            dataType,
    cudnnTensorFormat_t        format,
    int                        k,
    int                        c,
    int                        h,
    int                        w)

This function initializes a previously created filter descriptor object into a 4D filter. The layout of the filters must be contiguous in memory.

Tensor format CUDNN_TENSOR_NHWC has limited support in cudnnConvolutionForward, cudnnConvolutionBackwardData and cudnnConvolutionBackwardFilter; please refer to the documentation for each function for more information.

Parameters

filterDesc

    Input/Output. Handle to a previously created filter descriptor.

datatype

    Input. Data type.

format

    Input. Type of the filter layout format. If this input is set to CUDNN_TENSOR_NCHW, which is one of the enumerated values allowed by cudnnTensorFormat_t descriptor, then the layout of the filter is in the form of KCRS (K represents the number of output feature maps, C the number of input feature maps, R the number of rows per filter, and S the number of columns per filter.)

    If this input is set to CUDNN_TENSOR_NHWC, then the layout of the filter is in the form of KRSC. See also the description for cudnnTensorFormat_t.

k

    Input. Number of output feature maps.

c

    Input. Number of input feature maps.
The possible error values returned by this function and their meanings are listed below.

Returns

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of the parameters \(k, c, h, w\) is negative or **dataType** or **format** has an invalid enumerant value.

### 4.173. cudnnSetFilterNdDescriptor

```c
void cudnnSetFilterNdDescriptor(
 cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t dataType,
 cudnnTensorFormat_t format,
 int nbDims,
 const int *filterDimA[])
```

This function initializes a previously created filter descriptor object. The layout of the filters must be contiguous in memory.

The tensor format CUDNN_TENSOR_NHWC has limited support in **cudnnConvolutionForward**, **cudnnConvolutionBackwardData** and **cudnnConvolutionBackwardFilter**; please refer to the documentation for each function for more information.

### Parameters

- **filterDesc**
  
  *Input/Output.* Handle to a previously created filter descriptor.

- **datatype**
  
  *Input.* Data type.

- **format**
  
  *Input.* Type of the filter layout format. If this input is set to CUDNN_TENSOR_NCHW, which is one of the enumerated values allowed by **cudnnTensorFormat_t** descriptor, then the layout of the filter is as follows:

  - For \(N=4\), i.e., for a 4D filter descriptor, the filter layout is in the form of \(KCRS\) (\(K\) represents the number of output feature maps, \(C\) the number of input feature maps, \(R\) the number of rows per filter, and \(S\) the number of columns per filter.)
  - For \(N=3\), i.e., for a 3D filter descriptor, the number \(S\) (number of columns per filter) is omitted.
  - For \(N=5\) and greater, the layout of the higher dimensions immediately follow \(RS\).
On the other hand, if this input is set to CUDNN_TENSOR_NHWC, then the layout of the filter is as follows:

- For N=4, i.e., for a 4D filter descriptor, the filter layout is in the form of KRSC.
- For N=3, i.e., for a 3D filter descriptor, the number S (number of columns per filter) is omitted, and the layout of C immediately follows R.
- For N=5 and greater, the layout of the higher dimensions are inserted between S and C. See also the description for cudnnTensorFormat_t.

**nbDims**

*Input.* Dimension of the filter.

**filterDimA**

*Input.* Array of dimension `nbDims` containing the size of the filter for each dimension.

The possible error values returned by this function and their meanings are listed below.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  The object was set successfully.
- **CUDNN_STATUS_BAD_PARAM**
  At least one of the elements of the array `filterDimA` is negative or `dataType` or `format` has an invalid enumerant value.
- **CUDNN_STATUS_NOT_SUPPORTED**
  The parameter `nbDims` exceeds CUDNN_DIM_MAX.

### 4.174. cudnnSetLRNDescriptor

```c
void cudnnSetLRNDescriptor(
 cudnnLRNDescriptor_t normDesc,
 unsigned lrnN,
 double lrnAlpha,
 double lrnBeta,
 double lrnK);
```

This function initializes a previously created LRN descriptor object.

**Parameters**

- **normDesc**
  *Output.* Handle to a previously created LRN descriptor.
lrnN

*Input.* Normalization window width in elements. LRN layer uses a window [center-lookBehind, center+lookAhead], where lookBehind = floor((lrnN-1)/2), lookAhead = lrnN-lookBehind-1. So for n=10, the window is [k-4...k...k+5] with a total of 10 samples. For DivisiveNormalization layer the window has the same extents as above in all 'spatial' dimensions (dimA[2], dimA[3], dimA[4]). By default lrnN is set to 5 in cudnnCreateLRNDescriptor.

lrnAlpha

*Input.* Value of the alpha variance scaling parameter in the normalization formula. Inside the library code this value is divided by the window width for LRN and by (window width)^#spatialDimensions for DivisiveNormalization. By default this value is set to 1e-4 in cudnnCreateLRNDescriptor.

lrnBeta

*Input.* Value of the beta power parameter in the normalization formula. By default this value is set to 0.75 in cudnnCreateLRNDescriptor.

lrnK

*Input.* Value of the k parameter in normalization formula. By default this value is set to 2.0.

Possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

One of the input parameters was out of valid range as described above.

### 4.175. cudnnSetOpTensorDescriptor

```c
#include <cudnn.h>

cudnnStatus_t cudnnSetOpTensorDescriptor(
 cudnnOpTensorDescriptor_t opTensorDesc,
 cudnnOpTensorOp_t opTensorOp,
 cudnnDataType_t opTensorCompType,
 cudnnNanPropagation_t opTensorNanOpt)
```

This function initializes a Tensor Pointwise math descriptor.

**Parameters**

**opTensorDesc**

*Output.* Pointer to the structure holding the description of the Tensor Pointwise math descriptor.

**opTensorOp**

*Input.* Tensor Pointwise math operation for this Tensor Pointwise math descriptor.
opTensorCompType

*Input.* Computation datatype for this Tensor Pointwise math descriptor.

opTensorNanOpt

*Input.* NAN propagation policy

Returns

**CUDNN_STATUS_SUCCESS**

The function returned successfully.

**CUDNN_STATUS_BAD_PARAM**

At least one of input parameters passed is invalid.

### 4.176. cudnnSetPersistentRNNPlan

cudnnStatus_t cudnnSetPersistentRNNPlan(
    cudnnRNNDescriptor_t        rnnDesc,
    cudnnPersistentRNNPlan_t    plan)

This function sets the persistent RNN plan to be executed when using `rnnDesc` and `CUDNN_RNN_ALGO_PERSIST_DYNAMIC` algo.

Returns

**CUDNN_STATUS_SUCCESS**

The plan was set successfully.

**CUDNN_STATUS_BAD_PARAM**

The algo selected in `rnnDesc` is not `CUDNN_RNN_ALGO_PERSIST_DYNAMIC`.

### 4.177. cudnnSetPooling2dDescriptor

cudnnStatus_t cudnnSetPooling2dDescriptor(
    cudnnPoolingDescriptor_t    poolingDesc,
    cudnnPoolingMode_t          mode,
    cudnnNanPropagation_t       maxpoolingNanOpt,
    int                         windowHeight,
    int                         windowWidth,
    int                         verticalPadding,
    int                         horizontalPadding,
    int                         verticalStride,
    int                         horizontalStride)

This function initializes a previously created generic pooling descriptor object into a 2D description.

**Parameters**

**poolingDesc**

*Input/Output.* Handle to a previously created pooling descriptor.

**mode**

*Input.* Enumerant to specify the pooling mode.
maxpoolingNanOpt
   
   Input. Enumerant to specify the Nan propagation mode.

windowHeight
   
   Input. Height of the pooling window.

windowWidth
   
   Input. Width of the pooling window.

verticalPadding
   
   Input. Size of vertical padding.

horizontalPadding
   
   Input. Size of horizontal padding.

verticalStride
   
   Input. Pooling vertical stride.

horizontalStride
   
   Input. Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS
   The object was set successfully.

CUDNN_STATUS_BAD_PARAM
   At least one of the parameters windowHeight, windowWidth, verticalStride, horizontalStride is negative or mode or maxpoolingNanOpt has an invalid enumerant value.

4.178. cudnnSetPoolingNdDescriptor

cudnnStatus_t cudnnSetPoolingNdDescriptor(
   cudnnPoolingDescriptor_t poolingDesc,
   const cudnnPoolingMode_t mode,
   const cudnnNanPropagation_t maxpoolingNanOpt,
   int nbDims,
   const int paddingA[],
   const int strideA[])

This function initializes a previously created generic pooling descriptor object.

Parameters

poolingDesc
   
   Input/Output. Handle to a previously created pooling descriptor.

mode
   
   Input. Enumerant to specify the pooling mode.
maxpoolingNanOpt

*Input:* Enumerant to specify the Nan propagation mode.

**nbDims**

*Input:* Dimension of the pooling operation. Must be greater than zero.

**windowDimA**

*Input:* Array of dimension **nbDims** containing the window size for each dimension. The value of array elements must be greater than zero.

**paddingA**

*Input:* Array of dimension **nbDims** containing the padding size for each dimension. Negative padding is allowed.

**strideA**

*Input:* Array of dimension **nbDims** containing the striding size for each dimension. The value of array elements must be greater than zero (i.e., negative striding size is not allowed).

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was initialized successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

If (nbDims > CUDNN_DIM_MAX - 2).

**CUDNN_STATUS_BAD_PARAM**

Either nbDims, or at least one of the elements of the arrays windowDimA, or strideA is negative, or mode or maxpoolingNanOpt has an invalid enumerant value.

### 4.179. cudnnSetRNNBiasMode

```c
cudnnStatus_t cudnnSetRNNBiasMode(
 cudnnRNNDescriptor_t rnnDesc,
 cudnnRNNBiasMode_t biasMode)
```

The **cudnnSetRNNBiasMode()** function sets the number of bias vectors for a previously created and initialized RNN descriptor. This function should be called after **cudnnSetRNNDescriptor()** to enable the specified bias mode in an RNN. The default value of biasMode in rnnDesc after **cudnnCreateRNNDescriptor()** is CUDNN_RNN_DOUBLE_BIAS.

**Parameters**

**rnnDesc**

*Input/Output:* A previously created RNN descriptor.

**biasMode**

*Input:* Sets the number of bias vectors. See cudnnRNNBiasMode_t.
Returns

CUDNN_STATUS_BAD_PARAM

Either the \texttt{rnnDesc} is NULL, or \texttt{biasMode} has an invalid enumerant value.

CUDNN_STATUS_SUCCESS

The \texttt{biasMode} was set successfully.

CUDNN_STATUS_NOT_SUPPORTED

Non-default bias mode (an enumerated type besides \texttt{CUDNN_RNN_DOUBLE_BIAS}) applied to RNN algo other than \texttt{CUDNN_RNN_ALGO_STANDARD}.

4.180. cudnnSetRNNDataDescriptor

cudnnStatus_t cudnnSetRNNDataDescriptor(
    cudnnRNNDataDescriptor_t RNNDataDesc,
    cudnnDataType_t dataType,
    cudnnRNNDataLayout_t layout,
    int maxSeqLength,
    int batchSize,
    int vectorSize,
    const int *seqLengthArray,
    void *paddingFill);

This function initializes a previously created RNN data descriptor object. This data structure is intended to support the unpacked (padded) layout for input and output of extended RNN inference and training functions. A packed (unpadded) layout is also supported for backward compatibility.

Parameters

RNNDataDesc

\textit{Input/Output}. A previously created RNN descriptor. See \texttt{cudnnRNNDataDescriptor_t}.

dataType

\textit{Input}. The datatype of the RNN data tensor. See \texttt{cudnnDataType_t}.

layout

\textit{Input}. The memory layout of the RNN data tensor.

maxSeqLength

\textit{Input}. The maximum sequence length within this RNN data tensor. In the unpacked (padded) layout, this should include the padding vectors in each sequence. In the packed (unpadded) layout, this should be equal to the greatest element in \texttt{seqLengthArray}.

batchSize

\textit{Input}. The number of sequences within the mini-batch.

vectorSize

\textit{Input}. The vector length (i.e. embedding size) of the input or output tensor at each timestep.
seqLengthArray

*Input.* An integer array with `batchSize` number of elements. Describes the length (i.e., number of timesteps) of each sequence. Each element in `seqLengthArray` must be greater than 0 but less than or equal to `maxSeqLength`. In the packed layout, the elements should be sorted in descending order, similar to the layout required by the non-extended RNN compute functions.

paddingFill

*Input.* A user-defined symbol for filling the padding position in RNN output. This is only effective when the descriptor is describing the RNN output, and the unpacked layout is specified. The symbol should be in the host memory, and is interpreted as the same data type as that of the RNN data tensor. If NULL pointer is passed in, then the padding position in the output will be undefined.

Returns

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_NOT_SUPPORTED**

`dataType` is not one of `CUDNN_DATA_HALF`, `CUDNN_DATA_FLOAT`, `CUDNN_DATA_DOUBLE`.

**CUDNN_STATUS_BAD_PARAM**

Any one of these have occurred:

- RNNDesc is NULL.
- Any one of `maxSeqLength`, `batchSize`, or `vectorSize` is less than or equal to zero.
- An element of `seqLengthArray` is less than or equal to zero or greater than `maxSeqLength`.
- Layout is not one of `CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED`, `CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_PACKED`, or `CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED`.

**CUDNN_STATUS_ALLOC_FAILED**

The allocation of internal array storage has failed.

---

### 4.181. cudnnSetRNNDescriptor

```c

int cudnnSetRNNDescriptor(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, int hiddenSize, int numLayers, cudnnDropoutDescriptor_t dropoutDesc, cudnnRNNInputMode_t inputMode, cudnnDirectionMode_t direction, cudnnRNNMode_t mode, cudnnRNNAlgo_t algo, cudnnDataType_t mathPrec)
```
This function initializes a previously created RNN descriptor object.

> Larger networks (e.g., longer sequences, more layers) are expected to be more efficient than smaller networks.

**Parameters**

**rnnDesc**

*Input/Output.* A previously created RNN descriptor.

**hiddenSize**

*Input.* Size of the internal hidden state for each layer.

**numLayers**

*Input.* Number of stacked layers.

**dropoutDesc**

*Input.* Handle to a previously created and initialized dropout descriptor. Dropout will be applied between layers; a single layer network will have no dropout applied.

**inputMode**

*Input.* Specifies the behavior at the input to the first layer.

**direction**

*Input.* Specifies the recurrence pattern. (e.g., bidirectional).

**mode**

*Input.* Specifies the type of RNN to compute.

**mathPrec**

*Input.* Math precision. This parameter is used for controlling the math precision in RNN. The following applies:

- For the input/output in FP16, the parameter `mathPrec` can be `CUDNN_DATA_HALF` or `CUDNN_DATA_FLOAT`.
- For the input/output in FP32, the parameter `mathPrec` can only be `CUDNN_DATA_FLOAT`, and
- For the input/output in FP64, double type, the parameter `mathPrec` can only be `CUDNN_DATA_DOUBLE`.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

Either at least one of the parameters `hiddenSize`, `numLayers` was zero or negative, one of `inputMode`, `direction`, `mode`, `dataType` has an invalid enumerant value, `dropoutDesc` is an invalid dropout descriptor or `rnnDesc` has not been created correctly.
4.182. cudnnSetRNNDescrortor_v5

```c

cudnnStatus_t cudnnSetRNNDescrortor_v5(
 cudnnRNNDescrortor_t rnnDesc,
 int hiddenSize,
 int numLayers,
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnRNNNInputMode_t inputMode,
 cudnnDirectionMode_t direction,
 cudnnRNNDMode_t mode,
 cudnnDataType_t mathPrec)
```

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more efficient than smaller networks.

**Parameters**

**rnnDesc**

*Input/Output.* A previously created RNN descriptor.

**hiddenSize**

*Input.* Size of the internal hidden state for each layer.

**numLayers**

*Input.* Number of stacked layers.

**dropoutDesc**

*Input.* Handle to a previously created and initialized dropout descriptor. Dropout will be applied between layers (e.g., a single layer network will have no dropout applied).

**inputMode**

*Input.* Specifies the behavior at the input to the first layer

**direction**

*Input.* Specifies the recurrence pattern. (e.g., bidirectional)

**mode**

*Input.* Specifies the type of RNN to compute.

**mathPrec**

*Input.* Math precision. This parameter is used for controlling the math precision in RNN. The following applies:

- For the input/output in FP16, the parameter `mathPrec` can be `CUDNN_DATA_HALF` or `CUDNN_DATA_FLOAT`.
- For the input/output in FP32, the parameter `mathPrec` can only be `CUDNN_DATA_FLOAT`, and
- For the input/output in FP64, double type, the parameter `mathPrec` can only be `CUDNN_DATA_DOUBLE`. 
The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

Either at least one of the parameters `hiddenSize`, `numLayers` was zero or negative, one of `inputMode`, `direction`, `mode`, `algo`, `dataType` has an invalid enumerant value, `dropoutDesc` is an invalid dropout descriptor or `rnnDesc` has not been created correctly.

### 4.183. cudnnSetRNNDescriptor_v6

```c

cudnnStatus_t cudnnSetRNNDescriptor_v6(
 cudnnHandle_t handle,
 cudnnRNNDescriptor_t rnnDesc,
 const int hiddenSize,
 const int numLayers,
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnRNNInputMode_t inputMode,
 cudnnDirectionMode_t direction,
 cudnnRNNMode_t mode,
 cudnnRNNAlgo_t algo,
 cudnnDataType_t mathPrec
)
```

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more efficient than smaller networks.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN library descriptor.

**rnnDesc**

*Input/Output.* A previously created RNN descriptor.

**hiddenSize**

*Input.* Size of the internal hidden state for each layer.

**numLayers**

*Input.* Number of stacked layers.

**dropoutDesc**

*Input.* Handle to a previously created and initialized dropout descriptor. Dropout will be applied between layers (e.g., a single layer network will have no dropout applied).

**inputMode**

*Input.* Specifies the behavior at the input to the first layer.
direction

*Input.* Specifies the recurrence pattern. (e.g., bidirectional)

mode

*Input.* Specifies the type of RNN to compute.

algo

*Input.* Specifies which RNN algorithm should be used to compute the results.

mathPrec

*Input.* Math precision. This parameter is used for controlling the math precision in RNN. The following applies:

- For the input/output in FP16, the parameter `mathPrec` can be `CUDNN_DATA_HALF` or `CUDNN_DATA_FLOAT`.
- For the input/output in FP32, the parameter `mathPrec` can only be `CUDNN_DATA_FLOAT`, and
- For the input/output in FP64, double type, the parameter `mathPrec` can only be `CUDNN_DATA_DOUBLE`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

Either at least one of the parameters `hiddenSize`, `numLayers` was zero or negative, one of `inputMode`, `direction`, `mode`, `algo`, `dataType` has an invalid enumerant value, `dropoutDesc` is an invalid dropout descriptor or `rnnDesc` has not been created correctly.

**4.184. cudnnSetRNNMatrixMathType**

cudnnStatus_t cudnnSetRNNMatrixMathType(
    cudnnRNNDescriptor_t    rnnDesc,
    cudnnMathType_t         mType)

This function sets the preferred option to use NVIDIA Tensor Cores accelerators on Volta GPU-s (SM 7.0 or higher). When the `mType` parameter is `CUDNN_TENSOR_OP_MATH`, inference and training RNN API-s will attempt use Tensor Cores when weights/biases are of type `CUDNN_DATA_HALF` or `CUDNN_DATA_FLOAT`. When RNN weights/biases are stored in the `CUDNN_DATA_FLOAT` format, the original weights and intermediate results will be down-converted to `CUDNN_DATA_HALF` before they are used in another recursive iteration.

**Parameters**

rnnDesc

*Input.* A previously created and initialized RNN descriptor.
mType

*Input.* A preferred compute option when performing RNN GEMM-s (general matrix-matrix multiplications). This option has an “advisory” status meaning that Tensor Cores may not be utilized, e.g., due to specific GEMM dimensions.

**Returns**

**CUDNN_STATUS_SUCCESS**

The preferred compute option for the RNN network was set successfully.

**CUDNN_STATUS_BAD_PARAM**

An invalid input parameter was detected.

### 4.185. cudnnSetRNNPaddingMode

```c
cudnnStatus_t cudnnSetRNNPaddingMode(
 cudnnRNNDescriptor_t rnnDesc,
 cudnnRNNPaddingMode_t paddingMode)
```

This function enables or disables the padded RNN input/output for a previously created and initialized RNN descriptor. This information is required before calling the `cudnnGetRNNWorkspaceSize` and `cudnnGetRNNTrainingReserveSize` functions, to determine whether additional workspace and training reserve space is needed. By default the padded RNN input/output is not enabled.

#### Parameters

**rnnDesc**

*Input/Output.* A previously created RNN descriptor.

**paddingMode**

*Input.* Enables or disables the padded input/output. See the description for `cudnnRNNPaddingMode_t`.

#### Returns

**CUDNN_STATUS_SUCCESS**

The `paddingMode` was set successfully.

**CUDNN_STATUS_BAD_PARAM**

Either the `rnnDesc` is NULL, or `paddingMode` has an invalid enumerant value.

### 4.186. cudnnSetRNNProjectionLayers

```c
cudnnStatus_t cudnnSetRNNProjectionLayers(
 cudnnHandle_t handle,
 cudnnRNNDescriptor_t rnnDesc,
 int recProjSize,
 int outProjSize)
```

(New for 7.1)
The `cudnnSetRNNProjectionLayers()` function should be called after `cudnnSetRNNDescriptor()` to enable the "recurrent" and/or "output" projection in a recursive neural network. The "recurrent" projection is an additional matrix multiplication in the LSTM cell to project hidden state vectors $h_t$ into smaller vectors $r_t = W_r h_t$, where $W_r$ is a rectangular matrix with `recProjSize` rows and `hiddenSize` columns. When the recurrent projection is enabled, the output of the LSTM cell (both to the next layer and unrolled in-time) is $r_t$ instead of $h_t$. The dimensionality of $i_t$, $f_t$, $o_t$, and $c_t$ vectors used in conjunction with non-linear functions remains the same as in the canonical LSTM cell. To make this possible, the shapes of matrices in the LSTM formulas (see the chapter describing the `cudnnRNNMode_t` type), such as $W_i$ in hidden RNN layers or $R_i$ in the entire network, become rectangular versus square in the canonical LSTM mode. Obviously, the result of "$R_i^* W_r$" is a square matrix but it is rank deficient, reflecting the "compression" of LSTM output. The recurrent projection is typically employed when the number of independent (adjustable) weights in the RNN network with projection is smaller in comparison to canonical LSTM for the same `hiddenSize` value.

The "recurrent" projection can be enabled for LSTM cells and `CUDNN_RNN_ALGO_STANDARD` only. The `recProjSize` parameter should be smaller than the `hiddenSize` value programmed in the `cudnnSetRNNDescriptor()` call. It is legal to set `recProjSize` equal to `hiddenSize` but in that case the recurrent projection feature is disabled.

The "output" projection is currently not implemented.

For more information on the "recurrent" and "output" RNN projections see the paper by Hasim Sak, et al.: Long Short-Term Memory Based Recurrent Neural Network Architectures For Large Vocabulary Speech Recognition.

**Parameters**

**handle**

*Input.* Handle to a previously created cuDNN library descriptor.

**rnnDesc**

*Input.* A previously created and initialized RNN descriptor.

**recProjSize**

*Input.* The size of the LSTM cell output after the “recurrent” projection. This value should not be larger than `hiddenSize` programmed via `cudnnSetRNNDescriptor()`.

**outProjSize**

*Input.* This parameter should be zero.

**Returns**

**CUDNN_STATUS_SUCCESS**

RNN projection parameters were set successfully.

**CUDNN_STATUS_BAD_PARAM**

An invalid input argument was detected (e.g., NULL handles, negative values for projection parameters).
**CUDNN_STATUS_NOT_SUPPORTED**

Projection applied to RNN algo other than **CUDNN_RNN_ALGO_STANDARD**, cell type other than **CUDNN_LSTM**, recProjSize larger than hiddenSize.

### 4.187. cudnnSetReduceTensorDescriptor

| cudnnStatus_t cudnnSetReduceTensorDescriptor(  |
| cudnnReduceTensorDescriptor_t reduceTensorDesc, |
| cudnnReduceTensorOp_t reduceTensorOp, |
| cudnnDataType_t reduceTensorCompType, |
| cudnnNanPropagation_t reduceTensorNanOpt, |
| cudnnReduceTensorIndices_t reduceTensorIndices, |
| cudnnIndicesType_t reduceTensorIndicesType) |

This function initializes a previously created reduce tensor descriptor object.

**Parameters**

**reduceTensorDesc**

*Input/Output.* Handle to a previously created reduce tensor descriptor.

**reduceTensorOp**

*Input.* Enumerant to specify the reduce tensor operation.

**reduceTensorCompType**

*Input.* Enumerant to specify the computation datatype of the reduction.

**reduceTensorNanOpt**

*Input.* Enumerant to specify the Nan propagation mode.

**reduceTensorIndices**

*Input.* Enumerant to specify the reduce tensor indices.

**reduceTensorIndicesType**

*Input.* Enumerant to specify the reduce tensor indices type.

**Returns**

**CUDNN_STATUS_SUCCESS**

The object was set successfully.

**CUDNN_STATUS_BAD_PARAM**

reduceTensorDesc is NULL (reduceTensorOp, reduceTensorCompType, reduceTensorNanOpt, reduceTensorIndices or reduceTensorIndicesType has an invalid enumerant value).

### 4.188. cudnnSetSeqDataDescriptor

| cudnnStatus_t cudnnSetSeqDataDescriptor(  |
| cudnnSeqDataDescriptor_t seqDataDesc, |
| cudnnDataType_t dataType, |
| int nbDims, |
| const int dimA[]) |

This function sets a sequence data descriptor object.

**Parameters**

**seqDataDesc**

*Input.* Handle to a previously created sequence data descriptor.

**dataType**

*Input.* Enumerant to specify the datatype of the sequence data.

**nbDims**

*Input.* Number of dimensions of the sequence data.

**dimA[]**

*Input.* Array of integers specifying the dimensions of the sequence data.
This function initializes a previously created sequence data descriptor object. This descriptor points to a buffer that holds a batch of sequence samples. Each sample consists of a fixed beam size number of sequences.

Sequence data are regularly strided in memory with the order of time, batch, beam, and vector axes specified by the array `axes[]`.

Each sequence has different sequence length and is specified in `seqLengthArray`, an array of size `seqLengthArraySize`.

The value of `seqLengthArraySize` is $<\dimA[CUDNN_SEQDATA_TIME_DIM]$.

### Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seqDataDesc</td>
<td>Output</td>
<td>Pointer to a previously created cudnnSeqDataDescriptor structure to initialize.</td>
</tr>
<tr>
<td>dataType</td>
<td>Input</td>
<td>Data type of the sequence data.</td>
</tr>
<tr>
<td>nbDims</td>
<td>Input</td>
<td>Number of sequence data dimensions.</td>
</tr>
<tr>
<td>dimA[]</td>
<td>Input</td>
<td>Size of each axes dimension. Array that contains the dimensions of the buffer that holds a batch of sequence samples. This <code>dimA</code> is an array of 4 positive integers, where:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- $\dimA[CUDNN_SEQDATA_TIME_DIM]$ is the maximum allowed sequence length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- $\dimA[CUDNN_SEQDATA_BATCH_DIM]$ is the maximum allowed batch size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- $\dimA[CUDNN_SEQDATA_BEAM_DIM]$ is the number of beam in each sample</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- $\dimA[CUDNN_SEQDATA_VECT_DIM]$ is the vector length.</td>
</tr>
<tr>
<td>axes[]</td>
<td>Input</td>
<td>Array of axes, sorted from outermost to innermost dimension. The array size is CUDNN_SEQDATA_DIM_COUNT. The elements of axes[] array is a valid permutation of enumerated labels of cudnnSeqDataAxis_t (in the order from the outermost to the innermost axes in memory.)</td>
</tr>
<tr>
<td>seqLengthArraySize</td>
<td>Input</td>
<td>Number of elements in, i.e., the length of, the seqLengthArray. The value of this seqLengthArraySize is $&lt;\dimA[CUDNN_SEQDATA_TIME_DIM]$.</td>
</tr>
<tr>
<td>seqLengthArray[]</td>
<td>Input</td>
<td>Array that holds the sequence lengths of each sequence.</td>
</tr>
</tbody>
</table>
paddingFill

| Input | Points to a value, of dataType, that is used to fill up the buffer beyond the sequence length of each sequence. The only supported value for paddingFill is 0. |

## Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>All input values are validated and the descriptor value updated successfully.</td>
</tr>
</tbody>
</table>
| CUDNN_STATUS_BAD_PARAM | Any of the below invalid inputs has occurred:
  - seqDataDesc == NULL
  - dateType is not a valid data type
  - nbDims is not positive.
  - Any element of dimA is not positive
  - seqLengthArraySize is not equal to dimA[CUDNN_SEQDATA_BATCH_DIM] * dimA[CUDNN_SEQDATA_BEAM_DIM]
  - Any element of seqLengthArray is not positive
  - Any element of seqLengthArray is larger than dimA[CUDNN_SEQDATA_TIME_DIM] |
| CUDNN_STATUS_NOT_SUPPORTED | Encountered any of the below unsupported values:
  - nbDims is not equal to CUDNN_SEQDATA_DIM_COUNT (4)
  - paddingFill is not a NULL pointer, and the value pointed to is not of the dataType. |
| CUDNN_STATUS_ALLOC_FAILED | Failed to allocate storage for some field of the descriptor structure. |

### 4.189. cudnnSetSpatialTransformerNdDescriptor

```c

cudnnStatus_t cudnnSetSpatialTransformerNdDescriptor(
 cudnnSpatialTransformerDescriptor_t stDesc,
 cudnnSamplerType_t samplerType,
 cudnnDataType_t dataType,
 const int nbDims,
 const int dimA[])
```

This function initializes a previously created generic spatial transformer descriptor object.

**Parameters**

- **stDesc**
  
  *Input/Output.* Previously created spatial transformer descriptor object.

- **samplerType**
  
  *Input.* Enumerant to specify the sampler type.
**dataType**

*Input.* Data type.

**nbDims**

*Input.* Dimension of the transformed tensor.

**dimA**

*Input.* Array of dimension `nbDims` containing the size of the transformed tensor for every dimension.

The possible error values returned by this function and their meanings are listed below.

**Returns**

**CUDNN_STATUS_SUCCESS**

The call was successful.

**CUDNN_STATUS_BAD_PARAM**

At least one of the following conditions are met:

- Either `stDesc` or `dimA` is NULL.
- Either `dataType` or `samplerType` has an invalid enumerant value

### 4.190. cudnnSetStream

cudnnStatus_t cudnnSetStream(
    cudnnHandle_t   handle,
    cudaStream_t    streamId)

This function sets the user's CUDA stream in the cuDNN handle. The new stream will be used to launch cuDNN GPU kernels or to synchronize to this stream when cuDNN kernels are launched in the internal streams. If the cuDNN library stream is not set, all kernels use the default (NULL) stream. Setting the user stream in the cuDNN handle guarantees the issue-order execution of cuDNN calls and other GPU kernels launched in the same stream.

**Parameters**

**handle**

*Input.* Pointer to the cuDNN handle.

**streamID**

*Input.* New CUDA stream to be written to the cuDNN handle.

**Returns**

**CUDNN_STATUS_BAD_PARAM**

Invalid (NULL) handle.

**CUDNN_STATUS_MAPPING_ERROR**

Mismatch between the user stream and the cuDNN handle context.
CUDNN_STATUS_SUCCESS
The new stream was set successfully.

4.191. cudnnSetTensor

```c
cudnnStatus_t cudnnSetTensor(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const void *valuePtr)
```

This function sets all the elements of a tensor to a given value.

**Parameters**

- **handle**
  
  *Input*. Handle to a previously created cuDNN context.

- **yDesc**
  
  *Input*. Handle to a previously initialized tensor descriptor.

- **y**
  
  *Input/Output*. Pointer to data of the tensor described by the `yDesc` descriptor.

- **valuePtr**
  
  *Input*. Pointer in Host memory to a single value. All elements of the `y` tensor will be set to `value[0]`. The data type of the element in `value[0]` has to match the data type of tensor `y`.

The possible error values returned by this function and their meanings are listed below.

**Returns**

- **CUDNN_STATUS_SUCCESS**
  
  The function launched successfully.

- **CUDNN_STATUS_NOT_SUPPORTED**
  
  The function does not support the provided configuration.

- **CUDNN_STATUS_BAD_PARAM**
  
  one of the provided pointers is nil

- **CUDNN_STATUS_EXECUTION_FAILED**
  
  The function failed to launch on the GPU.

4.192. cudnnSetTensor4dDescriptor

```c
cudnnStatus_t cudnnSetTensor4dDescriptor(
 cudnnTensorDescriptor_t tensorDesc,
 cudnnTensorFormat_t format,
 cudnnDataType_t dataType,
 int n,
 int c,
)```
int h,
int w)

This function initializes a previously created generic Tensor descriptor object into a 4D tensor. The strides of the four dimensions are inferred from the format parameter and set in such a way that the data is contiguous in memory with no padding between dimensions.

The total size of a tensor including the potential padding between dimensions is limited to 2 Giga-elements of type datatype.

Parameters

tensorDesc

Input/Output. Handle to a previously created tensor descriptor.

format

Input. Type of format.

datatype

Input. Data type.

n

Input. Number of images.

c

Input. Number of feature maps per image.

h

Input. Height of each feature map.

w

Input. Width of each feature map.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the parameters n, c, h, w was negative or format has an invalid enumerant value or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The total size of the tensor descriptor exceeds the maximum limit of 2 Giga-elements.

4.193. cudnnSetTensor4dDescriptorEx

cudnnStatus_t cudnnSetTensor4dDescriptorEx(
cudnnTensorDescriptor_t tensorDesc,
cudnnDataType_t dataType,
The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the parameters n, c, h, w was negative or format has an invalid enumerant value or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The total size of the tensor descriptor exceeds the maximum limit of 2 Giga-elements.
This function initializes a previously created generic Tensor descriptor object into a 4D tensor, similarly to `cudnnSetTensor4dDescriptor` but with the strides explicitly passed as parameters. This can be used to lay out the 4D tensor in any order or simply to define gaps between dimensions.

As present, some cuDNN routines have limited support for strides; Those routines will return CUDNN_STATUS_NOT_SUPPORTED if a Tensor4D object with an unsupported stride is used. `cudnnTransformTensor` can be used to convert the data to a supported layout.

The total size of a tensor including the potential padding between dimensions is limited to 2 Giga-elements of type `datatype`.

Parameters

- **tensorDesc**

 Input/Output. Handle to a previously created tensor descriptor.

- **datatype**

 Input. Data type.

- **n**

 Input. Number of images.

- **c**

 Input. Number of feature maps per image.

- **h**

 Input. Height of each feature map.

- **w**

 Input. Width of each feature map.

- **nStride**

 Input. Stride between two consecutive images.

- **cStride**

 Input. Stride between two consecutive feature maps.

- **hStride**

 Input. Stride between two consecutive rows.

- **wStride**

 Input. Stride between two consecutive columns.
The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the parameters n,c,h,w or $nStride,cStride,hStride,wStride$ is negative or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The total size of the tensor descriptor exceeds the maximum limit of 2 Giga-elements.

4.194. cudnnSetTensorNdDescriptor

cudnnStatus_t cudnnSetTensorNdDescriptor(
 cudnnTensorDescriptor_t tensorDesc,
 cudnnDataType_t dataType,
 int nbDims,
 const int dimA[],
 const int strideA[])

This function initializes a previously created generic Tensor descriptor object.

> The total size of a tensor including the potential padding between dimensions is limited to 2 Giga-elements of type datatype. Tensors are restricted to having at least 4 dimensions, and at most CUDNN_DIM_MAX dimensions (defined in cudnn.h). When working with lower dimensional data, it is recommended that the user create a 4D tensor, and set the size along unused dimensions to 1.

Parameters

tensorDesc

Input/Output. Handle to a previously created tensor descriptor.

datatype

Input. Data type.

nbDims

Input. Dimension of the tensor.

> Do not use 2 dimensions. Due to historical reasons, the minimum number of dimensions in the filter descriptor is three. See also the cudnnGetRNNLinLayerBiasParams().

dimA

Input. Array of dimension nbDims that contain the size of the tensor for every dimension. Size along unused dimensions should be set to 1.
strideA

Input. Array of dimension `nbDims` that contain the stride of the tensor for every dimension.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the elements of the array `dimA` was negative or zero, or `dataType` has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The parameter `nbDims` is outside the range [4, CUDNN_DIM_MAX], or the total size of the tensor descriptor exceeds the maximum limit of 2 Giga-elements.

4.195. `cudnnSetTensorNdDescriptorEx`

```c
void cudnnSetTensorNdDescriptorEx(  
  cudnnTensorDescriptor_t tensorDesc,  
  cudnnTensorFormat_t format,  
  cudnnDataType_t dataType,  
  int nbDims,  
  const int dimA[])
```

This function initializes an n-D tensor descriptor.

Parameters

tensorDesc

Output. Pointer to the tensor descriptor struct to be initialized.

format

Input. Tensor format.

dataType

Input. Tensor data type.

nbDims

Input. Dimension of the tensor.

dimA

Input. Array containing size of each dimension.

Do not use 2 dimensions. Due to historical reasons, the minimum number of dimensions in the filter descriptor is three. See also the cudnnGetRNNLinLayerBiasParams().

Returns
CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

Tensor descriptor was not allocated properly; or input parameters are not set correctly.

CUDNN_STATUS_NOT_SUPPORTED

Dimension size requested is larger than maximum dimension size supported.

4.196. cudnnSetTensorTransformDescriptor

```c
  cudnnStatus_t cudnnSetTensorTransformDescriptor(
    cudnnTensorTransformDescriptor_t transformDesc,
    const uint32_t nbDims,
    const cudnnTensorFormat_t destFormat,
    const int32_t padBeforeA[],
    const int32_t padAfterA[],
    const uint32_t foldA[],
    const cudnnFoldingDirection_t direction);
```

This function initializes a Tensor transform descriptor that was previously created using the `cudnnCreateTensorTransformDescriptor` function.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transformDesc</td>
<td>Output</td>
<td>The Tensor transform descriptor to be initialized.</td>
</tr>
<tr>
<td>nbDims</td>
<td>Input</td>
<td>The dimensionality of the transform operands. Must be greater than 2. See also https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor</td>
</tr>
<tr>
<td>destFormat</td>
<td>Input</td>
<td>The desired destination format.</td>
</tr>
<tr>
<td>padBeforeA[]</td>
<td>Input</td>
<td>An array that contains the amount of padding that should be added before each dimension. Set to NULL for no padding.</td>
</tr>
<tr>
<td>padAfterA[]</td>
<td>Input</td>
<td>An array that contains the amount of padding that should be added after each dimension. Set to NULL for no padding.</td>
</tr>
<tr>
<td>foldA[]</td>
<td>Input</td>
<td>An array that contains the folding parameters for each spatial dimension (dimensions 2 and up). Set to NULL for no folding.</td>
</tr>
<tr>
<td>direction</td>
<td>Input</td>
<td>Selects folding or unfolding. This input has no effect when folding parameters are all (\leq 1). See <code>cudnnFoldingDirection_t</code>.</td>
</tr>
</tbody>
</table>

Returns:
4.197. **cudnnSoftmaxBackward**

```c
cudnnStatus_t cudnnSoftmaxBackward(
    cudnnHandle_t                    handle,
    cudnnSoftmaxAlgorithm_t          algorithm,
    cudnnSoftmaxMode_t               mode,
    const void                      *alpha,
    const cudnnTensorDescriptor_t    yDesc,
    const void                      *yData,
    const cudnnTensorDescriptor_t    dyDesc,
    const void                      *dy,
    const void                      *beta,
    const cudnnTensorDescriptor_t    dxDesc,
    void                            *dx)
```

This routine computes the gradient of the softmax function.

> **In-place operation is allowed for this routine; i.e., dy and dx pointers may be equal. However, this requires dyDesc and dxDesc descriptors to be identical (particularly, the strides of the input and output must match for in-place operation to be allowed).**

> **All tensor formats are supported for all modes and algorithms with 4 and 5D tensors. Performance is expected to be highest with NCHW fully-packed tensors. For more than 5 dimensions tensors must be packed in their spatial dimensions.**

Parameters

handle

Input. Handle to a previously created cuDNN context.

algorithm

Input. Enumerant to specify the softmax algorithm.

mode

Input. Enumerant to specify the softmax mode.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: dstValue = alpha[0]*result + beta[0]*priorDstValue. Please refer to this section for additional details.
yDesc
Input. Handle to the previously initialized input tensor descriptor.

y
Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.

dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.

dy
Input. Data pointer to GPU memory associated with the tensor descriptor dyData.

dxDesc
Input. Handle to the previously initialized output differential tensor descriptor.

dx
Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS
The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED
The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:

- The dimensions n, c, h, w of the yDesc, dyDesc and dxDesc tensors differ.
- The strides nStride, cStride, hStride, wStride of the yDesc and dyDesc tensors differ.
- The datatype of the three tensors differs.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.198. cudnnSoftmaxForward

cudnnStatus_t cudnnSoftmaxForward(
 cudnnHandle_t handle,
cudnnSoftmaxAlgorithm_t algorithm,
cudnnSoftmaxMode_t mode,
const void *alpha,
const cudnnTensorDescriptor_t xDesc,
const void *x,
const void *beta,
const cudnnTensorDescriptor_t yDesc,
void *y)
This routine computes the softmax function.

All tensor formats are supported for all modes and algorithms with 4 and 5D tensors. Performance is expected to be highest with **NCHW fully-packed** tensors. For more than 5 dimensions tensors must be packed in their spatial dimensions.

Parameters

handle

Input. Handle to a previously created cuDNN context.

algorithm

Input. Enumerant to specify the softmax algorithm.

mode

Input. Enumerant to specify the softmax mode.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result with prior value in the output layer as follows: \(\text{dstValue} = \alpha[0] \times \text{result} + \beta[0] \times \text{priorDstValue} \). Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

x

Input. Data pointer to GPU memory associated with the tensor descriptor \(x\text{Desc} \).

yDesc

Input. Handle to the previously initialized output tensor descriptor.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor \(y\text{Desc} \).

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- The dimensions \(n,c,h,w \) of the input tensor and output tensors differ.
- The **datatype** of the input tensor and output tensors differ.
- The parameters **algorithm** or **mode** have an invalid enumerant value.
CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.199. cudnnSpatialTfGridGeneratorBackward

cudnnStatus_t cudnnSpatialTfGridGeneratorBackward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void *dgrid,
 void *dtheta)

This function computes the gradient of a grid generation operation.

Only 2d transformation is supported.

Parameters

handle

Input. Handle to a previously created cuDNN context.
stDesc

Input. Previously created spatial transformer descriptor object.
dgrid

Input. Data pointer to GPU memory contains the input differential data.
dtheta

Output. Data pointer to GPU memory contains the output differential data.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS
The call was successful.

CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:

- handle is NULL.
- One of the parameters dgrid, dtheta is NULL.

CUDNN_STATUS_NOT_SUPPORTED
The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The dimension of transformed tensor specified in stDesc > 4.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.
4.200. `cudnnSpatialTfGridGeneratorForward`

```c
void cudnnSpatialTfGridGeneratorForward(
    const cudnnHandle_t handle,
    const cudnnSpatialTransformerDescriptor_t stDesc,
    const void *theta,
    void *grid)
```

This function generates a grid of coordinates in the input tensor corresponding to each pixel from the output tensor.

Only 2d transformation is supported.

Parameters

handle

Input. Handle to a previously created cuDNN context.

stDesc

Input. Previously created spatial transformer descriptor object.

theta

Input. Affine transformation matrix. It should be of size \(n \times 2 \times 3\) for a 2d transformation, where \(n\) is the number of images specified in `stDesc`.

grid

Output. A grid of coordinates. It is of size \(n \times h \times w \times 2\) for a 2d transformation, where \(n, h, w\) is specified in `stDesc`. In the 4th dimension, the first coordinate is \(x\), and the second coordinate is \(y\).

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- `handle` is NULL.
- One of the parameters `grid`, `theta` is NULL.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The dimension of transformed tensor specified in `stDesc` > 4.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.
4.201. cudnnSpatialTfSamplerBackward

```c
void cudnnSpatialTfSamplerBackward(
    cudnnStatus_t cudnnSpatialTfSamplerBackward(
        cudnnHandle_t handle,
    const cudnnSpatialTransformerDescriptor_t stDesc,
    const void *alpha,
    const cudnnTensorDescriptor_t xDesc,
    const void *x,
    const void *beta,
    const cudnnTensorDescriptor_t dxDesc,
    void *dx,
    void *alphaDgrid,
    const cudnnTensorDescriptor_t dyDesc,
    void *dy,
    void *grid,
    const void *betaDgrid,
    void *dgrid)
```

This function computes the gradient of a sampling operation.

Only 2d transformation is supported.

Parameters

handle

Input. Handle to a previously created cuDNN context.

stDesc

Input. Previously created spatial transformer descriptor object.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

x

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.

dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

alphaDgrid, betaDgrid

Input. Pointers to scaling factors (in host memory) used to blend the gradient outputs dgrid with prior value in the destination pointer as follows: dstValue =
alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to this section for additional details.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

dy

Input. Data pointer to GPU memory associated with the tensor descriptor `dyDesc`.

grid

Input. A grid of coordinates generated by

`cudnnSpatialTfGridGeneratorForward`.

dgrid

Output. Data pointer to GPU memory contains the output differential data.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- handle is NULL.
- One of the parameters `x, dx, y, dy, grid, dgrid` is NULL.
- The dimension of `dy` differs from those specified in `stDesc`

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:

- The dimension of transformed tensor > 4.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.202. cudnnSpatialTfSamplerForward

```c

cudnnStatus_t cudnnSpatialTfSamplerForward(
    cudnnHandle_t                              handle,
    const cudnnSpatialTransformerDescriptor_t  stDesc,
    const void                                *alpha,
    const cudnnTensorDescriptor_t              xDesc,
    const void                                *x,
    const void                                *grid,
    const void                                *beta,
    cudnnTensorDescriptor_t                    yDesc,
    void                                      *y)
```

This function performs a sampler operation and generates the output tensor using the grid given by the grid generator.

Parameters

handle

Input. Handle to a previously created cuDNN context.

stDesc

Input. Previously created spatial transformer descriptor object.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as follows: \(\text{dstValue} = \alpha[0] \times \text{srcValue} + \beta[0] \times \text{priorDstValue} \). Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

x

Input. Data pointer to GPU memory associated with the tensor descriptor \(\text{xDesc} \).

grid

Input. A grid of coordinates generated by \(\text{cudnnSpatialTfGridGeneratorForward} \).

yDesc

Input. Handle to the previously initialized output tensor descriptor.

y

Output. Data pointer to GPU memory associated with the output tensor descriptor \(\text{yDesc} \).

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

- **handle** is NULL.
- One of the parameters \(\text{x, y, grid} \) is NULL.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some examples of non-supported configurations:
The dimension of transformed tensor > 4.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.203. cudnnTransformTensor

```c
void cudnnTransformTensor(  
    cudnnHandle_t            handle,  
    const void               *alpha,  
    const cudnnTensorDescriptor_t  xDesc,  
    const void               *x,  
    const void               *beta,  
    const cudnnTensorDescriptor_t  yDesc,  
    void                      *y)
```

This function copies the scaled data from one tensor to another tensor with a different layout. Those descriptors need to have the same dimensions but not necessarily the same strides. The input and output tensors must not overlap in any way (i.e., tensors cannot be transformed in place). This function can be used to convert a tensor with an unsupported format to a supported one.

Parameters

- **handle**
 - *Input*. Handle to a previously created cuDNN context.

- **alpha, beta**
 - *Input*. Pointers to scaling factors (in host memory) used to blend the source value with prior value in the destination tensor as follows: \(\text{dstValue} = \alpha[0] \times \text{srcValue} + \beta[0] \times \text{priorDstValue} \). Please refer to this section for additional details.

- **xDesc**
 - *Input*. Handle to a previously initialized tensor descriptor.

- **x**
 - *Input*. Pointer to data of the tensor described by the xDesc descriptor.

- **yDesc**
 - *Input*. Handle to a previously initialized tensor descriptor.

- **y**
 - *Output*. Pointer to data of the tensor described by the yDesc descriptor.

Returns

- **CUDNN_STATUS_SUCCESS**
 - The function launched successfully.

- **CUDNN_STATUS_NOT_SUPPORTED**
 - The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

The dimensions \(n, c, h, w \) or the \texttt{dataType} of the two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.204. cudnnTransformTensorEx

cudnnStatus_t cudnnTransformTensorEx(
 cudnnHandle_t handle,
 const cudnnTransformDescriptor_t transDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t srcDesc,
 const void *srcData,
 const void *beta,
 const cudnnTensorDescriptor_t destDesc,
 void *destData);

This function converts the Tensor layouts between different formats. It can be used to convert a Tensor with an unsupported layout format to a Tensor with a supported layout format.

This function copies the scaled data from the input Tensor \texttt{srcDesc} to the output Tensor \texttt{destDesc} with a different layout. The Tensor descriptors of \texttt{srcDesc} and \texttt{destDesc} should have the same dimensions but need not have the same strides.

The \texttt{srcDesc} and \texttt{destDesc} Tensors must not overlap in any way (i.e., Tensors cannot be transformed in place).

When performing a folding transform or a zero-padding transform, the scaling factors \((\texttt{alpha}, \texttt{beta})\) should be set to \((1, 0)\). However, unfolding transforms support any \((\texttt{alpha}, \texttt{beta})\) values. This function is thread safe.

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input / Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handle</td>
<td>Input</td>
<td>Handle to a previously created cuDNN context.</td>
</tr>
<tr>
<td>transDesc</td>
<td>Input</td>
<td>A descriptor containing the details of the requested Tensor transformation.</td>
</tr>
</tbody>
</table>
| alpha, beta | Input | Pointers, in the host memory, to the scaling factors used to scale the data in the input Tensor \texttt{srcDesc}.

Beta is used to scale the destination tensor, while alpha is used to scale the source tensor.
The beta scaling value is not honored in the folding and zero-padding cases.
Unfolding supports any \((\texttt{alpha}, \texttt{beta})\). |
<table>
<thead>
<tr>
<th>srcDesc, destDesc</th>
<th>Input</th>
<th>Handles to the previously initialized Tensor descriptors. \texttt{srcDesc} and \texttt{destDesc} must not overlap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>srcData, destData</td>
<td>Input</td>
<td>Pointers, in the host memory, to the data of the Tensor described by \texttt{srcDesc} and \texttt{destData} respectively.</td>
</tr>
</tbody>
</table>

Returns:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDNN_STATUS_SUCCESS</td>
<td>The function was launched successfully.</td>
</tr>
<tr>
<td>CUDNN_STATUS_BAD_PARAM</td>
<td>A parameter is uninitialized, or initialized incorrectly, or the number of dimensions is different between \texttt{srcDesc} and \texttt{destDesc}.</td>
</tr>
<tr>
<td>CUDNN_STATUS_NOT_SUPPORTED</td>
<td>Function does not support the provided configuration. Also, in the folding and padding paths, any value other than A=1 and B=0 will result in a CUDNN_STATUS_NOT_SUPPORTED.</td>
</tr>
<tr>
<td>CUDNN_STATUS_EXECUTION_FAILED</td>
<td>Function failed to launch on the GPU.</td>
</tr>
</tbody>
</table>
Chapter 5.
ACKNOWLEDGMENTS

Some of the cuDNN library routines were derived from code developed by others and are subject to the following:

5.1. University of Tennessee

Copyright (c) 2010 The University of Tennessee.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5.2. University of California, Berkeley

COPYRIGHT

All contributions by the University of California:
Copyright (c) 2014, The Regents of the University of California (Regents)
Acknowledgments

All rights reserved.

All other contributions:
Copyright (c) 2014, the respective contributors
All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over
their contributions to Caffe. The project versioning records all such
contribution and copyright details. If a contributor wants to further mark
their specific copyright on a particular contribution, they should indicate
their copyright solely in the commit message of the change when it is
committed.

LICENSE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/caffe repository through pull-request, comment,
or otherwise, the contributor releases their content to the
license and copyright terms herein.

5.3. Facebook AI Research, New York

Copyright (c) 2014, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
 endorse or promote products derived from this software without specific
 prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
Acknowledgments

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional Grant of Patent Rights

“Software” means fbcunn software distributed by Facebook, Inc.

Facebook hereby grants you a perpetual, worldwide, royalty-free, non-exclusive,
irrevocable (subject to the termination provision below) license under any
rights in any patent claims owned by Facebook, to make, have made, use, sell,
offer to sell, import, and otherwise transfer the Software. For avoidance of
doubt, no license is granted under Facebook’s rights in any patent claims that
are infringed by (i) modifications to the Software made by you or a third party,
or (ii) the Software in combination with any software or other technology
provided by you or a third party.

The license granted hereunder will terminate, automatically and without notice,
for anyone that makes any claim (including by filing any lawsuit, assertion or
other action) alleging (a) direct, indirect, or contributory infringement or
inducement to infringe any patent: (i) by Facebook or any of its subsidiaries or
affiliates, whether or not such claim is related to the Software, (ii) by any
party if such claim arises in whole or in part from any software, product or
service of Facebook or any of its subsidiaries or affiliates, whether or not
such claim is related to the Software, or (iii) by any party relating to the
Software; or (b) that any right in any patent claim of Facebook is invalid or
unenforceable.
Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license, either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson, Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com