
TENSORRT

SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate (RC) | October
2018

Release Notes

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | ii

TABLE OF CONTENTS

Chapter 1. TensorRT Overview..1
Chapter 2. TensorRT Release 5.x.x.. 2

2.1. TensorRT Release 5.0.1 Release Candidate (RC)...2
2.2. TensorRT Release 5.0 Release Candidate (RC)... 6

Chapter 3. TensorRT Release 4.x.x...11
3.1. TensorRT Release 4.0.1...11
3.2. TensorRT Release 4.0 Release Candidate (RC) 2... 14
3.3. TensorRT Release 4.0 Release Candidate (RC)..15

Chapter 4. TensorRT Release 3.x.x...19
4.1. TensorRT Release 3.0.4...19
4.2. TensorRT Release 3.0.2...19
4.3. TensorRT Release 3.0.1...21
4.4. TensorRT Release 3.0 Release Candidate (RC)..26
4.5. TensorRT Release 3.0 Early Access (EA)... 29

Chapter 5. TensorRT Release 2.x.x...32
5.1. TensorRT Release 2.1... 32

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 1

Chapter 1.
TENSORRT OVERVIEW

The core of NVIDIA TensorRT is a C++ library that facilitates high performance inference
on NVIDIA graphics processing units (GPUs). TensorRT takes a trained network, which
consists of a network definition and a set of trained parameters, and produces a highly
optimized runtime engine which performs inference for that network.

You can describe a TensorRT network using either a C++ or Python API, or you can
import an existing Caffe, ONNX, or TensorFlow model using one of the provided
parsers.

TensorRT provides API's via C++ and Python that help to express deep learning models
via the Network Definition API or load a pre-defined model via the parsers that allows
TensorRT to optimize and run them on a NVIDIA GPU. TensorRT applies graph
optimizations, layer fusion, among other optimizations, while also finding the fastest
implementation of that model leveraging a diverse collection of highly optimized
kernels. TensorRT also supplies a runtime that you can use to execute this network on all
of NVIDIA’s GPU’s from the Kepler generation onwards.

TensorRT also includes optional high speed mixed precision capabilities introduced in
the Tegra X1, and extended with the Pascal, Volta, and Turing architectures.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 2

Chapter 2.
TENSORRT RELEASE 5.X.X

2.1. TensorRT Release 5.0.1 Release Candidate
(RC)
This is the release candidate (RC) for TensorRT 5.0.1 release notes. This release is for
Windows users only. It includes several enhancements and improvements compared
to the previously released TensorRT 4.0.1. This preview release is for early testing and
feedback, therefore, for production use of TensorRT, continue to use TensorRT 4.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Platforms
Added support for CentOS 7.5, Ubuntu 18.04, and Windows 10.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution,
Deconvolution, ElementWise, FullyConnected, LRN, Pooling, and Scale. For
layer specific constraints, see DLA Supported Layers. Networks such as AlexNet,
GoogleNet, ResNet-50, and MNIST work with DLA. Other CNN networks may
work, but they have not been extensively tested and may result in failures including
segfaults.

The trtexec tool can be used to run on DLA with the --useDLA=N and --fp16
options. To run the AlexNet network on DLA using trtexec, issue:

 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLA=1
 --fp16 --allowGPUFallback

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_4
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 3

trtexec does not support ONNX models to run on DLA.

Redesigned Python API
The Python API has been rewritten from scratch and includes various improvements.
In addition to several bug fixes, it is now possible to serialize and deserialize an
engine to and from a file using the Python API. Python samples using the new API
include parser samples for ResNet-50, a Network API sample for MNIST, a plugin
sample using Caffe, and an end-to-end sample using TensorFlow.

INT8
Support for user-defined INT8 scales, using the new ITensor::setDynamicRange
function. This makes it possible to provide custom INT8 calibration without the need
for a calibration data set. setDynamicRange currently supports only symmetric
quantization. Furthermore, if no calibration table is provided, calibration scales must
be provided for each layer.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, that is a single registration
point for all plugins in an application and is used to find plugin implementations
during deserialization.

sampleSSD
This sample demonstrates how to preprocess the input to the SSD network, perform
inference on the SSD network in TensorRT, use TensorRT plugins to speed up
inference, and perform INT8 calibration on an SSD network.

See the TensorRT Developer Guide for details.

Breaking API Changes

‣ The IPluginExt API has 4 new methods, getPluginType, getPluginVersion,
destroy and clone. All plugins of type IPluginExt will have to implement
these new methods and re-compile. This is a temporary issue; we expect to restore
compatibility with the 4.0 API in the GA release. For more information, see
Migrating Plugins From TensorRT 5.0.0 RC To TensorRT 5.0.x for guidance on
migration.

Compatibility

‣ TensorRT 5.0.1 RC has been tested with cuDNN 7.3.0.

‣ TensorRT 5.0.1 RC has been tested with TensorFlow 1.9.

‣ TensorRT 5.0.1 RC for Windows has been tested with Visual Studio 2017.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA
9.2 are no longer supported. On Windows only, CUDA 10.0 is supported for
TensorRT 5.0.1 RC.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins-50rc-50ga

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 4

Limitations In 5.0.1 RC

‣ For this release, there are separate JetPack L4T and Drive D5L packages due to
differences in the DLA library dependencies. In a future release, this should become
unified.

‣ Android is not supported in TensorRT 5.0.1 RC.

‣ The Python API does not support DLA.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python
bindings.

‣ The choice of which DLA device to run on is currently made at build time. In GA, it
will be selectable at runtime.

‣ ONNX models are not supported on DLA in TensorRT 5.0.1 RC.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do
not support FP16 mode. This is because some of the weights fall outside the range of
FP16.

‣ Python is not supported on Windows 10. This includes the graphsurgeon and UFF
Python modules.

‣ The ONNX parser is not supported on Windows 10. This includes all samples which
depend on the ONNX parser. ONNX support will be added in a future release.

Deprecated Features

The following features are deprecated in TensorRT 5.0.1 RC:

‣ Majority of the old Python API, including the Lite and Utils API, is deprecated. It is
currently still accessible in the tensorrt.legacy package, but will be removed in a
future release.

‣ The following Python examples:

‣ caffe_to_trt
‣ pytorch_to_trt
‣ tf_to_trt
‣ onnx_mnist
‣ uff_mnist
‣ mnist_api
‣ sample_onnx
‣ googlenet
‣ custom_layers

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 5

‣ lite_examples
‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the
open-source ONNX parser.

‣ The DimensionTypes class.

‣ The plugin APIs that return IPlugin are being deprecated and they now return
IPluginExt. These APIs will be removed in a future release. Refer to the
NvInferPlugin.h file inside the package.

‣ nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt (still available for backward compatibility).
Instead, use the Plugin Registry and implement IPluginCreator for all new
plugins.

‣ libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a have been
renamed to libnvinfer_static.a, libnvinfer_plugin_static.a, and
libnvparsers_static.a respectively. This makes TensorRT consistent with
CUDA, cuDNN, and other NVIDIA software libraries. It also avoids some
ambiguity between dynamic and static libraries during linking.

Known Issues

‣ The Plugin Registry will only register plugins with a unique {name, version}
tuple. The API for this is likely to change in future versions to support multiple
plugins with same name and version.

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA.
Other networks may work, but they have not been extensively tested.

‣ The static library libnvparsers_static.a requires a special build of protobuf
to complete static linking. Due to filename conflicts with the official protobuf
packages, these additional libraries are only included in the tar file at this time. The
two additional libraries that you will need to link against are libprotobuf.a and
libprotobuf-lite.a from the tar file.

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are
missing from the package in order to complete static linking. The two static
libraries that are required to complete linking are libonnx_proto.a and
libnvonnxparser_plugin.a, as well as the protobuf libraries mentioned earlier.
You will need to build these two missing static libraries from the open source ONNX
project. This issue will be resolved in a future release.

https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 6

‣ If you upgrade only uff-converter-tf, for example using apt-get install
uff-converter-tf, then it will not upgrade graphsurgeon-tf due to
inexact dependencies between these two packages. You will need to specify both
packages on the command line, such as apt-get install uff-converter-tf
graphsurgeon-tf in order to upgrade both packages. This will be fixed in a future
release.

‣ The fc_plugin_caffe_mnist python sample cannot be executed if the sample
is built using pybind11 v2.2.4. We suggest that you instead clone pybind11 v2.2.3
using the following command:

git clone -b v2.2.3 https://github.com/pybind/pybind11.git

‣ The C++ API documentation is not included in the TensorRT zip file. Refer to the
online documentation if you want to view the TensorRT C++ API.

‣ Most README files that are included with the samples assume that you are
working on a Linux workstation. If you are using Windows and do not have access
to a Linux system with an NVIDIA GPU, then you can try using VirtualBox to create
a virtual machine based on Ubuntu. Many samples do not require any training,
therefore the CPU versions of TensorFlow and PyTorch are enough to complete the
samples.

‣ The TensorRT Developer Guide has been written with Linux users in mind.
Windows specific instructions, where possible, will be added in a future revision of
the document.

2.2. TensorRT Release 5.0 Release Candidate (RC)
This is the release candidate (RC) for TensorRT 5.0. It includes several enhancements and
improvements compared to the previously released TensorRT 4.0.1. This preview release
is for early testing and feedback, therefore, for production use of TensorRT, continue to
use TensorRT 4.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Platforms
Added support for CentOS 7.5 and Ubuntu 18.04.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://www.virtualbox.org/
https://www.ubuntu.com/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_4

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 7

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution,
Deconvolution, ElementWise, FullyConnected, LRN, Pooling, and Scale. For
layer specific constraints, see DLA Supported Layers. Networks such as AlexNet,
GoogleNet, ResNet-50, and MNIST work with DLA. Other CNN networks may
work, but they have not been extensively tested and may result in failures including
segfaults.

The trtexec tool can be used to run on DLA with the --useDLA=N and --fp16
options. To run the AlexNet network on DLA using trtexec, issue:

 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLA=1
 --fp16 --allowGPUFallback

trtexec does not support ONNX models to run on DLA.

Redesigned Python API
The Python API has been rewritten from scratch and includes various improvements.
In addition to several bug fixes, it is now possible to serialize and deserialize an
engine to and from a file using the Python API. Python samples using the new API
include parser samples for ResNet-50, a Network API sample for MNIST, a plugin
sample using Caffe, and an end-to-end sample using TensorFlow.

INT8
Support for user-defined INT8 scales, using the new ITensor::setDynamicRange
function. This makes it possible to provide custom INT8 calibration without the need
for a calibration data set. setDynamicRange currently supports only symmetric
quantization. Furthermore, if no calibration table is provided, calibration scales must
be provided for each layer.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, that is a single registration
point for all plugins in an application and is used to find plugin implementations
during deserialization.

See the TensorRT Developer Guide for details.

Breaking API Changes

‣ The IPluginExt API has 4 new methods, getPluginType, getPluginVersion,
destroy and clone. All plugins of type IPluginExt will have to implement
these new methods and re-compile. This is a temporary issue; we expect to
restore compatibility with the 4.0 API in the GA release. For more information,
see Migrating Plugins From TensorRT 4.0.x To TensorRT 5.0 RC for guidance on
migration.

‣ Upcoming changes in TensorRT 5.0 GA for plugins

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 8

‣ A new plugin class IPluginV2 and a corresponding IPluginV2 layer will be
introduced. The IPluginV2 class includes similar methods to IPlugin and
IPluginExt, so if your plugin implemented IPluginExt previously, you will
change the class name to IPluginV2.

‣ The IPluginCreator class will create and deserialize plugins of type
IPluginV2 as opposed to IPluginExt.

‣ The create*Plugin() methods in NvInferPlugin.h will return plugin
objects of type IPluginV2 as opposed to IPluginExt.

Compatibility

‣ TensorRT 5.0 RC has been tested with cuDNN 7.3.0.

‣ TensorRT 5.0 RC has been tested with TensorFlow 1.9.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA
9.2 are no longer supported.

Limitations In 5.0 RC

‣ For this release, there are separate JetPack L4T and Drive D5L packages due to
differences in the DLA library dependencies. In a future release, this should become
unified.

‣ Android is not supported in TensorRT 5.0 RC.

‣ The Python API does not support DLA.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python
bindings.

‣ The choice of which DLA device to run on is currently made at build time. In GA, it
will be selectable at runtime.

‣ ONNX models are not supported on DLA in TensorRT 5.0 RC.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do
not support FP16 mode. This is because some of the weights fall outside the range of
FP16.

Deprecated Features

The following features are deprecated in TensorRT 5.0:

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 9

‣ Majority of the old Python API, including the Lite and Utils API, is deprecated. It is
currently still accessible in the tensorrt.legacy package, but will be removed in a
future release.

‣ The following Python examples:

‣ caffe_to_trt
‣ pytorch_to_trt
‣ tf_to_trt
‣ onnx_mnist
‣ uff_mnist
‣ mnist_api
‣ sample_onnx
‣ googlenet
‣ custom_layers
‣ lite_examples
‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the
open-source ONNX parser.

‣ The DimensionTypes class.

‣ The plugin APIs that return IPlugin are being deprecated and they now return
IPluginExt. These APIs will be removed in a future release. Refer to the
NvInferPlugin.h file inside the package.

‣ nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt (still available for backward compatibility).
Instead, use the Plugin Registry and implement IPluginCreator for all new
plugins.

‣ libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a have been
renamed to libnvinfer_static.a, libnvinfer_plugin_static.a, and
libnvparsers_static.a respectively. This makes TensorRT consistent with
CUDA, cuDNN, and other NVIDIA software libraries. It also avoids some
ambiguity between dynamic and static libraries during linking.

Known Issues

‣ The Plugin Registry will only register plugins with a unique {name, version}
tuple. The API for this is likely to change in future versions to support multiple
plugins with same name and version.

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 10

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA.
Other networks may work, but they have not been extensively tested.

‣ The static library libnvparsers_static.a requires a special build of protobuf
to complete static linking. Due to filename conflicts with the official protobuf
packages, these additional libraries are only included in the tar file at this time. The
two additional libraries that you will need to link against are libprotobuf.a and
libprotobuf-lite.a from the tar file.

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are
missing from the package in order to complete static linking. The two static
libraries that are required to complete linking are libonnx_proto.a and
libnvonnxparser_plugin.a, as well as the protobuf libraries mentioned earlier.
You will need to build these two missing static libraries from the open source ONNX
project. This issue will be resolved in a future release.

‣ If you upgrade only uff-converter-tf, for example using apt-get install
uff-converter-tf, then it will not upgrade graphsurgeon-tf due to
inexact dependencies between these two packages. You will need to specify both
packages on the command line, such as apt-get install uff-converter-tf
graphsurgeon-tf in order to upgrade both packages. This will be fixed in a future
release.

‣ The fc_plugin_caffe_mnist python sample cannot be executed if the sample
is built using pybind11 v2.2.4. We suggest that you instead clone pybind11 v2.2.3
using the following command:

git clone -b v2.2.3 https://github.com/pybind/pybind11.git

https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 11

Chapter 3.
TENSORRT RELEASE 4.X.X

3.1. TensorRT Release 4.0.1
This TensorRT 4.0.1 General Availability release includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 4.0.1 GA has been tested with cuDNN 7.1.3 and now requires cuDNN
7.1.x.

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented.
ONNX is a standard for representing deep learning models that enable models to be
transferred between frameworks. TensorRT can now parse the network definitions
in ONNX format, in addition to NVCaffe and UFF formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or
FP16, inputs and return FP16 outputs.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce,
RNNv2 and TopK layers (for K up to 25).

‣ This release has optimizations which target recommender systems like Neural
Collaborative Filtering.

‣ Many layers now support the ability to broadcast across the batch dimension.

‣ In TensorRT 3.0, INT8 had issues with rounding and striding in the Activation layer.
This may have caused INT8 accuracy to be low. Those issues have been fixed.

‣ The C++ samples and Python examples were tested with TensorFlow 1.8 and
PyTorch 0.4.0 where applicable.

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 12

‣ Added sampleOnnxMNIST. This sample shows the conversion of an MNIST
network in ONNX format to a TensorRT network.

‣ Added sampleNMT. Neural Machine Translation (NMT) using sequence to sequence
(seq2seq) models has garnered a lot of attention and is used in various NMT
frameworks. sampleNMT is a highly modular sample for inferencing using C++ and
TensorRT API so that you can consider using it as a reference point in your projects.

‣ Updated sampleCharRNN to use RNNv2 and converting weights from TensorFlow
to TensorRT.

‣ Added sampleUffSSD. This sample converts the TensorFlow Single Shot MultiBox
Detector (SSD) network to a UFF format and runs it on TensorRT using plugins. This
sample also demonstrates how other TensorFlow networks can be preprocessed and
converted to UFF format with support of custom plugin nodes.

‣ Memory management improvements (see the Memory Management section in the
Developer Guide for details.)

‣ Applications may now provide their own memory for activations and
workspace during inference, which is used only while the pipeline is running.

‣ An allocator callback is available for all memory allocated on the GPU. In
addition, model deserialization is significantly faster (from system memory, up
to 10x faster on large models).

Using TensorRT 4.0.1

Ensure you are familiar with the following notes when using this release.

‣ The builder methods setHalf2Mode and getHalf2Mode have been superseded by
setFp16Mode and getFp16Mode which better represent their intended usage.

‣ The sample utility giexec has been renamed to trtexec to be consistent with the
product name, TensorRT, which is often shortened to TRT. A compatibility script for
users of giexec has been included to help users make the transition.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available
for backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were
NV_GIE_MAJOR, NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct
alternatives are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH,
and NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension types are now ignored in the API, however, they are still available for
backwards compatibility.

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 13

Known Issues

‣ If the ONNX parser included with TensorRT is unable to parse your model, then try
updating to the latest open source ONNX parser, which may resolve your issue.

‣ PyTorch no longer supports Python 3.4 with their current release (0.4.0). Therefore,
the TensorRT PyTorch examples will not work when using Python 3 on Ubuntu
14.04.

‣ Reshape to a tensor that has a larger number of dimensions than the input tensor is
not supported.

‣ Reformat has a known memory overwrite issue on Volta when FP16 is used with the
Concatenation layer and the Reformat layer.

‣ If you have two different CUDA versions of TensorRT installed, such as CUDA 8.0
and CUDA 9.0, or CUDA 9.2 using local repos, then you will need to execute an
additional command to install the CUDA 8.0 version of TensorRT and prevent it
from upgrading to the CUDA 9.0 or CUDA 9.2 versions of TensorRT.

sudo apt-get install libnvinfer4=4.1.2-1+cuda8.0 \
 libnvinfer-dev=4.1.2-1+cuda8.0
sudo apt-mark hold libnvinfer4 libnvinfer-dev

‣ sampleNMT

‣ Performance is not fully optimized

‣ sampleUffSSD

‣ Some precision loss was observed while running the network in INT8 mode,
causing some objects to go undetected in the image. Our general observation is
that having at least 500 images for calibration is a good starting point.

‣ Performance regressions

‣ Compared to earlier TensorRT versions, a 5% slowdown was observed
on AlexNet when running on GP102 devices with batch size 2 using the
NvCaffeParser.

‣ Compared to earlier TensorRT versions, a 5% to 10% slowdown was observed
on variants of inception and some instances of ResNet when using the
NvUffParser.

‣ The NvUffParser returns the output tensor in the shape specified by the user, and
not in NCHW shape as in earlier versions of TensorRT. In other words, the output
tensor shape will match the shape of the tensor returned by TensorFlow, for the
same network.

‣ The Python 3.4 documentation is missing from the Ubuntu 14.04 packages. Refer
to the Python 2.7 documentation or view the online Python documentation as an
alternative.

https://github.com/onnx/onnx-tensorrt

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 14

‣ Some samples do not provide a -h argument to print the sample usage. You can
refer to the README.txt file in the sample directory for usage examples. Also, if the
data files for some samples cannot be found it will sometimes raise an exception and
abort instead of exiting normally.

‣ If you have more than one version of the CUDA toolkit installed on your system and
the CUDA version for TensorRT is not the latest version of the CUDA toolkit, then
you will need to provide an additional argument when compiling the samples. For
example, you have CUDA 9.0 and CUDA 9.2 installed and you are using TensorRT
for CUDA 9.0.

make CUDA_INSTALL_DIR=/usr/local/cuda-9.0

‣ When you pip uninstall the tensorrtplugins Python package, you may see
the following error which can be ignored.

OSError: [Errno 2] No such file or directory: '/usr/local/lib/python2.7/
dist-packages/tensorrtplugins-4.0.1.0-py2.7-linux-x86_64.egg'

‣ Due to a bug in cuDNN 7.1.3, which is the version of cuDNN TensorRT has been
validated against, using RNNs with half precision on Kepler GPUs will cause
TensorRT to abort. FP16 support is non-native on Kepler GPUs, therefore, using any
precision other than FP32 is discouraged except for testing.

‣ sampleMovieLens is currently limited to running a maximum of 8 concurrent
processes on a Titan V and may result in suboptimal engines during parallel
execution. The sample will be enhanced in the near future to support a greater
degree of concurrency. Additionally, to ensure compatibility with TensorRT, use
TensorFlow <= 1.7.0 to train the model. There may be a conflict between the versions
of CUDA and/or cuDNN used by TensorRT and TensorFlow 1.7. We suggest that
you install TensorFlow 1.7 CPU in order to complete the sample.

python -m pip install tensorflow==1.7.0

3.2. TensorRT Release 4.0 Release Candidate (RC)
2
This TensorRT 4.0 Release Candidate (RC) 2 includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4. TensorRT 4.0 RC2
supports desktop and Tegra platforms. This release candidate is for early testing and
feedback, for production use of TensorRT, continue to use 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 15

‣ TensorRT 4.0 RC2 for mobile supports cuDNN 7.1.2.

‣ TensorRT 4.0 RC2 for desktop supports cuDNN 7.1.3.

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented.
TensorRT can now parse the network definitions in ONNX format, in addition to
NVCaffe and UFF formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or
FP16, inputs and return FP16 tensors.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce,
RNNv2 and TopK layers (for K up to 25).

‣ Added SampleONNXMNIST sample. Open Neural Network Exchange (ONNX) is a
standard for representing deep learning models that enable models to be transferred
between frameworks. This sample shows the conversion of an MNIST network in
ONNX format to a TensorRT network.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available
for backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were
NV_GIE_MAJOR, NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct
alternatives are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH,
and NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension Types are now ignored in the API, however, they are still available for
backwards compatibility.

Known Issues
SampleMLP and SampleNMT are included in this release, however, they are beta
samples. They are currently not optimized for mobile platforms.

3.3. TensorRT Release 4.0 Release Candidate (RC)
This TensorRT 4.0 Release Candidate (RC) includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4. TensorRT 4.0 RC
supports x86 desktop platforms only. This release candidate is for early testing and
feedback, for production use of TensorRT, continue to use 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 16

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented.
TensorRT can now parse the network definitions in ONNX format, in addition to
NVCaffe and UFF formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or
FP16, inputs and return FP16 tensors.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce,
RNNv2 and TopK layers (for K up to 25).

‣ The samples were tested with TensorFlow 1.6. You must be using cuDNN 7.0.x in
order to use both TensorRT and TensorFlow at the same time since TensorFlow 1.6
does not support cuDNN 7.1.x yet.

‣ Added SampleMLP sample for multi-layer perceptrons.

‣ Added SampleONNXMNIST sample. Open Neural Network Exchange (ONNX) is a
standard for representing deep learning models that enable models to be transferred
between frameworks. This sample shows the conversion of an MNIST network in
ONNX format to a TensorRT network.

‣ Added SampleNMT sample. Neural Machine Translation (NMT) using sequence
to sequence (seq2seq) models has garnered a lot of attention and is used in various
NMT frameworks. SampleNMT is a highly modular sample for inferencing using C
++ and TensorRT API so that you can consider using it as a reference point in your
projects.

‣ Updated SampleCharRNN sample to use RNNv2 and converting weights from
TensorFlow to TensorRT.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available
for backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were
NV_GIE_MAJOR, NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct
alternatives are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH,
and NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension Types are now ignored in the API, however, they are still available for
backwards compatibility.

Known Issues

‣ If you were previously using the machine learning debian repository, then it will
conflict with the version of libcudnn7 that is contained within the local repository
for TensorRT. The following commands will downgrade libcudnn7 to version
7.0.5.15, which is supported and tested with TensorRT, and hold the package at

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 17

this version. If you are using CUDA 8.0 for your application, ensure you replace
cuda9.0 with cuda8.0.

sudo apt-get install libcudnn7=7.0.5.15-1+cuda9.0 libcudnn7-
dev=7.0.5.15-1+cuda9.0
sudo apt-mark hold libcudnn7 libcudnn7-dev

If you would like to later upgrade libcudnn7 to the latest version, then you can use
the following commands to remove the hold.

sudo apt-mark unhold libcudnn7 libcudnn7-dev
sudo apt-get dist-upgrade

‣ If you have both the CUDA 8.0 and CUDA 9.0 local repos installed for TensorRT,
then you will need to execute an additional command to install the CUDA 8.0
version of TensorRT and prevent it from upgrading to the CUDA 9.0 version of
TensorRT.

sudo apt-get install libnvinfer4=4.1.0-1+cuda8.0 libnvinfer-
dev=4.1.0-1+cuda8.0
sudo apt-mark hold libnvinfer4 libnvinfer-dev

‣ If you installed the dependencies for the TensorRT python examples using pip
install tensorrt[examples] then it could replace the GPU accelerated version
of TensorFlow with the CPU accelerated version of TensorFlow. You will need to
remove the version of TensorFlow installed as a TensorRT dependency and install
the GPU accelerated version in its place.

pip uninstall tensorflow
pip install tensorflow-gpu

‣ SampleNMT

‣ Performance is not fully optimized
‣ SampleNMT does not support FP16
‣ The vocabulary files are expected to be in the ../../../../data/samples/

nmt/deen directory from the executable. The sample doesn’t print usage
if vocabulary files are not present in the above mentioned path. For more
information, see the README.txt file for usage details.

‣ SampleMLP

‣ Performance is not fully optimized
‣ SampleMLP does not support FP16
‣ The accuracy of MLPs for handwritten digit recognition is lower than CNNs,

therefore, the sample may give an incorrect prediction in some cases.
‣ SampleMLP usage has incorrect details on the -a parameter. It should be -a <#>.

The activation to use on the layers, defaults to 1. Valid values are 1[ReLU],
2[Sigmoid], and 3[TanH]; instead of -a <#>. The activation to use in on the
layers, defaults to 1. Valid values are 0[ReLU], 1[Sigmoid], and 2[TanH].

‣ The timing information printed by the sample may not be accurate.

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 18

‣ Performance regressions

‣ A 5% slowdown was observed on AlexNet when running on GP102 devices
with batch size 2 using the Caffe parser.

‣ A 5% to 10% slowdown was observed on variants of inception, some instances
of ResNet, and some instances of SSD when using the UFF parser.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 19

Chapter 4.
TENSORRT RELEASE 3.X.X

4.1. TensorRT Release 3.0.4
This TensorRT 3.0.4 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.2.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Fixed an issue with INT8 deconvolution bias. If you have seen an issue with
deconvolution INT8 accuracy especially regarding TensorRT. 2.1, then this fix
should solve the issue.

‣ Fixed an accuracy issue in FP16 mode for NVCaffe models.

Using TensorRT 3.0.4

Ensure you are familiar with the following notes when using this release.

‣ The UFF converter script is packaged only for x86 users. If you are not an x86 user,
and you want to convert TensorFlow models into UFF, you need to obtain the
conversion script from the x86 package of TensorRT.

4.2. TensorRT Release 3.0.2
This TensorRT 3.0.2 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 20

‣ Fixed a bug in one of the INT8 deconvolution kernels that was generating
incorrect results. This fixed accuracy regression from 2.1 for networks that use
deconvolutions.

‣ Fixed a bug where the builder would report out-of-memory when compiling a low
precision network, in the case that a low-precision version of the kernel could not
be found. The builder now correctly falls back to a higher precision version of the
kernel.

‣ Fixed a bug where the existence of some low-precision kernels were being
incorrectly reported to the builder.

Using TensorRT 3.0.2

Ensure you are familiar with the following notes when using this release.

‣ When working with large networks and large batch sizes on the Jetson TX1 you
may see failures that are the result of CUDA error 4. This error generally means a
CUDA kernel failed to execute properly, but sometimes this can mean the CUDA
kernel actually timed out. The CPU and GPU share memory on the Jetson TX1 and
reducing the memory used by the CPU would help the situation. If you are not
using the graphical display on L4T you can stop the X11 server to free up CPU and
GPU memory. This can be done using:

$ sudo systemctl stop lightdm.service

Known Issues

‣ INT8 deconvolutions with biases have the bias scaled incorrectly. U-Net based
segmentation networks typically have non-zero bias.

‣ For TensorRT Android 32-bit, if your memory usage is high, then you may see
TensorRT failures. The issue is related to the CUDA allocated buffer address being
higher or equal to 0x80000000 and it is hard to know the exact memory usage after
which this issue is hit.

‣ If you are installing TensorRT from a tar package (instead of using the .deb
packages and apt-get), you will need to update the custom_plugins example
to point to the location that the tar package was installed into. For example,
in the <PYTHON_INSTALL_PATH>/tensorrt/examples/custom_layers/
tensorrtplugins/setup.py file change the following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include
directory.

‣ Change TENSORRT_LIB_DIR to point to <TAR_INSTALL_ROOT>/lib directory.
‣ If you were previously using the machine learning debian repository, then it will

conflict with the version of libcudnn7 that is contained within the local repository
for TensorRT. The following commands will downgrad libcudnn7 to the CUDA 9.0
version, which is supported by TensorRT, and hold the package at this version.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 21

sudo apt-get install libcudnn7=7.0.5.15-1+cuda9.0
libcudnn7-dev=7.0.5.15-1+cuda9.0
sudo apt-mark hold libcudnn7 libcudnn7-dev

If you would like to later upgrade libcudnn7 to the latest version, then you can use
the following commands to remove the hold.

sudo apt-mark unhold libcudnn7 libcudnn7-dev
sudo apt-get dist-upgrade

4.3. TensorRT Release 3.0.1
This TensorRT 3.0.1 General Availability release includes several enhancements and
improvements compared to the previously released TensorRT 2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

NvCaffeParser
NVCaffe 0.16 is now supported.

New deep learning layers or algorithms

‣ The TensorRT deconvolution layer previously did not support non-zero padding,
or stride values that were distinct from kernel size. These restrictions have now
been lifted.

‣ The TensorRT deconvolution layer now supports groups.
‣ Non-determinism in the deconvolution layer implementation has been

eliminated.
‣ The TensorRT convolution layer API now supports dilated convolutions.
‣ The TensorRT API now supports these new layers (but they are not supported via

the NvCaffeParser):

‣ unary
‣ shuffle
‣ padding

‣ The Elementwise (eltwise) layer now supports broadcasting of input dimensions.
‣ The Flatten layer flattens the input while maintaining the batch_size. This layer

was added in the UFF converter and NvUffParser.
‣ The Squeeze layer removes dimensions of size 1 from the shape of a tensor. This

layer was added in the UFF converter and NvUffParser.

Universal Framework Format 0.2
UFF format is designed to encapsulate trained neural networks so that they can be
parsed by TensorRT. It’s also designed in a way of storing the information about a

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 22

neural network that is needed to create an inference engine based on that neural
network.

Performance

‣ Performance regressions seen from v2.1 to 3.0.1 Release Candidate for INT8 and
FP16 are now fixed.

‣ The INT8 regression in LRN that impacted networks like GoogleNet and
AlexNet is now fixed.

‣ The FP16 regression that impacted networks like AlexNet and ResNet-50 is
now fixed.

‣ The performance of the Xception network has improved, for example, by more
than 3 times when batch size is 8 on Tesla P4.

‣ Changed how the CPU synchronizes with the GPU in order to reduce the overall
load on the CPU when running inference with TensorRT.

‣ The deconvolution layer implementation included with TensorRT was, in some
circumstances, using significantly more memory and had lower performance
than the implementation provided by the cuDNN library. This has now been
fixed.

‣ MAX_TENSOR_SIZE changed from (1<<30) to ((1<<31)-1). This change
enables the user to run larger batch sizes for networks with large input images.

Samples

‣ All Python examples now import TensorRT after the appropriate framework is
imported. For example, the tf_to_trt.py example imports TensorFlow before
importing TensorRT. This is done to avoid cuDNN version conflict issues.

‣ The tf_to_trt and pytorch_to_trt samples shipped with the TensorRT 3.0
Release Candidate included network models that were improperly trained with
the MNIST dataset, resulting in poor classification accuracy. This version has new
models that have been properly trained with the MNIST dataset to provide better
classification accuracy.

‣ The pytorch_to_trt sample originally showed low accuracy with MNIST,
however, data and training parameters were modified to address this.

‣ The giexec command line wrapper in earlier versions would fail if users specify
workspace >= 2048 MB. This issue is now fixed.

Functionality
The AverageCountExcludesPadding attribute has been added to the pooling
layer to control whether to use inclusive or exclusive averaging. The default is
true, as used by most frameworks. The NvCaffeParser sets this to false, restoring
compatibility of padded average pooling between NVCaffe and TensorRT.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 23

TensorRT Python API
TensorRT 3.0.1 introduces the TensorRT Python API, which provides developers
interfaces to:

‣ the NvCaffeParser
‣ the NvUffParser
‣ The nvinfer graph definition API
‣ the inference engine builder
‣ the engine executor
‣ the perform calibration for running inference with INT8
‣ a workflow to include C++ custom layer implementations

TensorRT Lite: A simplified API for inference
TensorRT 3.0.1 provides a streamlined set of API functions (tensorrt.lite) that
allow users to export a trained model, build an engine, and run inference, with only a
few lines of Python code.

Streamlined export of models trained in TensorFlow into TensorRT
With this release, you can take a trained model in TensorFlow saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow model exporter creates
an output file in a format called UFF (Universal Framework Format), which can then
be parsed by TensorRT.

Currently the export path is expected to support the following:

‣ TensorFlow 1.3
‣ FP32 CNNs
‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc.)
‣ RNNs
‣ INT8 CNNs

Volta
The NVIDIA Volta architecture is now supported, including the Tesla V100 GPU. On
Volta devices, the Tensor Core feature provides a large performance improvement,
and Tensor Cores are automatically used when the builder is set to half2mode.

QNX
TensorRT 3.0.1 runs on the QNX operating system on the Drive PX2 platform.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 24

Release Notes 3.0.1 Errata

‣ Due to the cuDNN symbol conflict issues between TensorRT and TensorFlow,
the tf_to_trt Python example works with TensorFlow 1.4.0 only and not prior
versions of TensorFlow.

‣ If your system has multiple libcudnnX-dev versions installed, ensure that cuDNN
7 is used for compiling and running TensorRT samples. This problem can occur
when you have TensorRT and a framework installed. TensorRT uses cuDNN 7 while
most frameworks are currently on cuDNN 6.

‣ There are various details in the Release Notes and Developer Guide about the
pytorch_to_trt Python example. This sample is no longer part of the package
because of cuDNN symbol conflict issues between PyTorch and TensorRT.

‣ In the Installation and Setup section of the Release Notes, it is mentioned that
TENSORRT_LIB_DIR should point to <TAR_INSTALL_ROOT>/lib64. Instead,
TENSORRT_LIB_DIR should point to <TAR_INSTALL_ROOT>/lib.

‣ There are some known minor performance regressions for FP32 mode on K80 for
large batch sizes on CUDA 8. Update to CUDA 9 if you see similar performance
regression.

Using TensorRT 3.0.1

Ensure you are familiar with the following notes when using this release.

‣ Although networks can use NHWC and NCHW, TensorFlow users are encouraged
to convert their networks to use NCHW data ordering explicitly in order to achieve
the best possible performance.

‣ The libnvcaffe_parsers.so library file is now called libnvparsers.so. The
links for libnvcaffe_parsers are updated to point to the new libnvparsers
library. The static library libnvcaffe_parser.a is also linked to the new
libnvparsers.

Known Issues

Installation and Setup

‣ If you are installing TensorRT from a tar package (instead of using the .deb
packages and apt-get), you will need to update the custom_plugins example
to point to the location that the tar package was installed into. For example,
in the <PYTHON_INSTALL_PATH>/tensorrt/examples/custom_layers/
tensorrtplugins/setup.py file change the following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include
directory.

‣ Change TENSORRT_LIB_DIR to point to <TAR_INSTALL_ROOT>/lib64
directory.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 25

‣ The PyTorch based sample will not work with the CUDA 9 Toolkit. It will only work
with the CUDA 8 Toolkit.

‣ When using the TensorRT APIs from Python, import the tensorflow and uff
modules before importing the tensorrt module. This is required to avoid a
potential namespace conflict with the protobuf library as well as the cuDNN
version. In a future update, the modules will be fixed to allow the loading of these
Python modules to be in an arbitrary order.

‣ The TensorRT Python APIs are only supported on x86 based systems. Some
installation packages for ARM based systems may contain Python .whl files. Do not
install these on the ARM systems, as they will not function.

‣ The TensorRT product version is incremented from 2.1 to 3.0.1 because we added
major new functionality to the product. The libnvinfer package version number
was incremented from 3.0.2 to 4.0 because we made non-backward compatible
changes to the application programming interface.

‣ The TensorRT debian package name was simplified in this release to tensorrt.
In previous releases, the product version was used as a suffix, for example
tensorrt-2.1.2.

‣ If you have trouble installing the TensorRT Python modules on Ubuntu 14.04, refer
to the steps on installing swig to resolve the issue. For installation instructions, see
Unix Installation.

‣ The Flatten layer can only be placed in front of the Fully Connected layer. This
means that the Flatten layer can only be used if its output is directly fed to a Fully
Connected layer.

‣ The Squeeze layer only implements the binary squeeze (removing specific size 1
dimensions). The batch dimension cannot be removed.

‣ If you see the Numpy.core.multiarray failed to import error message,
upgrade your NumPy to version 1.13.0 or greater.

‣ For Ubuntu 14.04, use pip version >= 9.0.1 to get all the dependencies installed.

TensorFlow Model Conversion

‣ The TensorFlow to TensorRT model export works only when running TensorFlow
with GPU support enabled. The converter does not work if TensorFlow is running
without GPU acceleration.

‣ The TensorFlow to TensorRT model export does not work with network models
specified using the TensorFlow Slim interface, nor does it work with models
specified using the Keras interface.

‣ The TensorFlow to TensorRT model export does not support recurrent neural
network (RNN) models.

‣ The TensorFlow to TensorRT model export may produce a model that has extra
tensor reformatting layers compared to a model generated directly using the C++ or
Python TensorRT graph builder API. This may cause the model that originated from

http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 26

TensorFlow to run slower than the model constructed directly with the TensorRT
APIs.

‣ Although TensorFlow models can use either NHWC or NCHW tensor layouts,
TensorFlow users are encouraged to convert their models to use the NCHW tensor
layout explicitly, in order to achieve the best possible performance when exporting
the model to TensorRT.

‣ The TensorFlow parser requires that input will be fed to the network in NCHW
format.

Other known issues

‣ On the V100 GPU, running models with INT8 only works if the batch size is evenly
divisible by 4.

‣ TensorRT Python interface requires NumPy 1.13.0 while the installing TensorRT
using pip may only install 1.11.0. Use sudo pip install numpy -U to update if
the NumPy version on the user machine is not 1.13.0.

4.4. TensorRT Release 3.0 Release Candidate (RC)
This is the second preview release of TensorRT. For production use of TensorRT,
continue to use 2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Volta
The NVIDIA Volta architecture is now supported, including the Tesla V100 GPU. On
Volta devices, the Tensor Core feature provides a large performance improvement,
and Tensor Cores are automatically used when the builder is set to half2mode.

Streamlined export of models trained in TensorFlow into TensorRT
With this release you can take a trained model in TensorFlow saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow model exporter creates
an output file in a format called UFF (Universal Framework Format), which can then
be parsed by TensorRT.

Currently the export path is expected to support the following:

‣ Tensorflow 1.3
‣ FP32 CNNs
‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc.)

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 27

‣ RNNs
‣ INT8 CNNs

TensorFlow convenience functions
NVIDIA provides convenience functions so that when using UFF and TensorRT to
export a model and run inference, only a few lines of code is needed.

Universal Framework Format 0.1
UFF format is designed to encapsulate trained neural networks so they can be parsed
by TensorRT.

Python API
TensorRT 3.0 introduces the TensorRT Python API, which provides developers
interfaces to:

‣ the NvCaffeParser
‣ the NvUffParser
‣ The nvinfer graph definition API
‣ the inference engine builder
‣ the engine executor

TensorRT also introduces a workflow to include C++ custom layer implementations in
Python based TensorRT applications.

New deep learning layers or algorithms

‣ The TensorRT deconvolution layer previously did not support non-zero padding,
or stride values that were distinct from kernel size. These restrictions have now
been lifted.

‣ The TensorRT deconvolution layer now supports groups.
‣ Non-determinism in the deconvolution layer implementation has been

eliminated.
‣ The TensorRT convolution layer API now supports dilated convolutions.
‣ The TensorRT API now supports these new layers (but they are not supported via

the NvCaffeParser):

‣ unary
‣ shuffle
‣ padding

‣ The Elementwise (eltwise) layer now supports broadcasting of input dimensions.

QNX
TensorRT 3.0 runs on the QNX operating system on the Drive PX2 platform.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 28

Known Issues

Installation and Setup

‣ If you are installing TensorRT from a tar package (instead of using the .deb
packages and apt-get), then the custom_plugins example will need to be
updated to point to the location that the tar package was installed to. For example,
in the <PYTHON_INSTALL_PATH>/tensorrt/examples/custom_layers/
tensorrtplugins/setup.py file change the following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include
directory.

‣ Change TENSORRT_LIB_DIR to point to the <TAR_INSTALL_ROOT>/lib
directory.

‣ The PyTorch based sample will not work with the CUDA 9 Toolkit. It will only work
with the CUDA 8 Toolkit.

‣ When using the TensorRT APIs from Python, import the tensorflow and uff
modules before importing the tensorrt module. This is required to avoid a
potential namespace conflict with the protobuf library. In a future update, the
modules will be fixed to allow the loading of these Python modules to be in an
arbitrary order.

‣ The TensorRT Python APIs are only supported on x86 based systems. Some
installation packages for ARM based systems may contain Python .whl files. Do not
install these on the ARM systems, as they will not function.

‣ The TensorRT product version is incremented from 2.1 to 3.0 because we added
major new functionality to the product. The libnvinfer package version number
was incremented from 3.0.2 to 4.0 because we made non-backward compatible
changes to the application programming interface.

‣ The TensorRT debian package name was simplified in this release to tensorrt.
In previous releases, the product version was used as a suffix, for example
tensorrt-2.1.2.

‣ If you have trouble installing the TensorRT Python modules on Ubuntu 14.04, refer
to the steps on installing swig to resolve the issue. For installation instructions, see
Unix Installation.

‣ There is a performance regression in the LRN layer when the network is running
in INT8 mode. It impacts networks like GoogleNet and AlexNet but not ResNet-50,
VGG-19 etc.

TensorFlow Model Conversion

‣ The TensorFlow to TensorRT model export works only when running TensorFlow
with GPU support enabled. The converter does not work if TensorFlow is running
without GPU acceleration.

http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 29

‣ The TensorFlow to TensorRT model export does not work with network models
specified using the TensorFlow Slim interface, nor does it work with models
specified using the Keras interface.

‣ The TensorFlow to TensorRT model export does not support recurrent neural
network (RNN) models.

‣ The TensorFlow to TensorRT model export does not support convolutional layers
that have asymmetric padding (a different number of zero-padded rows and
columns).

‣ The TensorFlow to TensorRT model export may produce a model that has extra
tensor reformatting layers compared to a model generated directly using the C++ or
Python TensorRT graph builder API. This may cause the model that originated from
TensorFlow to run slower than the model constructed directly with the TensorRT
APIs.

‣ Although TensorFlow models can use either NHWC or NCHW tensor layouts,
TensorFlow users are encouraged to convert their models to use the NCHW tensor
layout explicitly, in order to achieve the best possible performance.

Other known issues

‣ The Inception v4 network models are not supported with this Release Candidate
with FP16 on V100.

‣ On V100, running models with INT8 do not work if the batch size is not divisible by
4.

‣ The Average Pooling behavior has changed to exclude padding from the
computation, which is how all other Pooling modes handle padding. This results in
incorrect behavior for network models which rely on Average Pooling and which
include padding, such as Inception v3. This issue will be addressed in a future
release.

‣ In this Release Candidate, the arguments for the tensorrt_exec.py script are
slightly different than the ones for the giexec executable, and can be a source
of confusion for users. Consult the documentation carefully to avoid unexpected
errors. The command-line arguments will be changed to match giexec in a future
update.

‣ The INT8 Calibration feature is not available in the TensorRT Python APIs.
‣ The examples/custom_layer sample will not work on Ubuntu 14.04 x86_64

systems, however, it does work properly on Ubuntu 16.04 systems. This will be fixed
in the next update of the software.

4.5. TensorRT Release 3.0 Early Access (EA)
This is a preview release of TensorRT. For production use of TensorRT, continue to use
2.1.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 30

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Streamlined export for models trained in TensorFlow to TensorRT
With this release you can take a TensorFlow trained model saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow to UFF converter creates
an output file in a format called UFF (Universal Framework Format) which can then
be read into TensorRT.

Currently the export path is expected to support the following:

‣ Tensorflow 1.0
‣ FP32 CNNs
‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc..)
‣ RNNs
‣ INT8 CNNs

TensorFlow convenience functions
NVIDIA provides convenience functions so that when using UFF and TensorRT to
export a model and run inference, only a few lines of code is needed.

Universal Framework Format 0.1
UFF format is designed as a way of storing the information about a neural network
that is needed to create an inference engine based on that neural network.

Python API
TensorRT 3.0 introduces the TensorRT Python API, allowing developers to access:

‣ the NvCaffeParser
‣ the NvUffParser
‣ The nvinfer graph definition API
‣ the inference engine builder
‣ the inference-time interface for engine execution within Python

TensorRT also introduces a workflow to include C++ custom layer implementations in
Python based TensorRT applications.

Using TensorRT 3.0

Ensure you are familiar with the following notes when using this release.

‣ Although networks can use NHWC and NCHW, TensorFlow users are encouraged
to convert their networks to use NCHW data ordering explicitly in order to achieve
the best possible performance.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 31

‣ Average pooling behavior changed to exclude the padding from the computation.
The padding is now excluded from the computation in all of the pooling modes.
This results in incorrect behavior for networks which rely on average pooling which
includes padding, such as inceptionV3. This issue will be addressed in a future
release.

‣ The libnvcaffe_parsers.so library file is now called libnvparsers.so. The
links for libnvcaffe_parsers are updated to point to the new libnvparsers
library. The static library libnvcaffe_parser.a is also linked to the new
libnvparsers. For example:

‣ Old structure: libnvcaffe_parsers.4.0.0.so links to
libnvcaffe_parsers.4.so which links to libnvcaffe_parsers.so.

‣ New structure: libnvcaffe_parsers.4.0.0.so links to
ibnvcaffe_parsers.4.so which links to libnvcaffe_parsers.so which
links to libnvparsers.so(actual file).

Known Issues

‣ TensorRT does not support asymmetric padding.
‣ Some TensorRT optimizations disabled just for this Early Release (EA) to ensure that

the UFF model runs properly. This will be addressed in TensorRT 3.0.
‣ The TensorFlow conversion path is not fully optimized.
‣ INT8 Calibration is not available in Python.
‣ Deconvolution is not implemented in the UFF workflow.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 32

Chapter 5.
TENSORRT RELEASE 2.X.X

5.1. TensorRT Release 2.1

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Custom Layer API
If you want TensorRT to use novel, unique or proprietary layers in the evaluation of
certain networks, the Custom Layer API lets you provide a CUDA kernel function
that implements the functionality you want.

Installers
You have two ways you can install TensorRT 2.1:

 1. Ubuntu deb packages. If you have root access and prefer to use package
management to ensure consistency of dependencies, then you can use the apt-
get command and the deb packages.

 2. Tar file based installers. If you do not have root access or you want to install
multiple versions of TensorRT side-by-side for comparison purposes, then you
can use the tar file install. The tar file installation uses target dep-style directory
structures so that you can install TensorRT libraries for multiple architectures and
then do cross compilation.

INT8 support
TensorRT can be used on supported GPUs (such as P4 and P40) to execute networks
using INT8 rather than FP32 precision. Networks using INT8 deliver significant
performance improvements.

TensorRT Release 2.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 33

Recurrent Neural Network
LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) are two popular
and powerful variations of a Recurrent Neural Network cell. Recurrent neural
networks are designed to work with sequences of characters, words, sounds, images,
etc. TensorRT 2.1 provides implementations of LSTM, GRU and the original RNN
layer.

Using TensorRT 2.1

Ensure you are familiar with the following notes when using this release.

‣ Running networks in FP16 or INT8 may not work correctly on platforms without
hardware support for the appropriate reduced precision instructions.

‣ GTX 750 and K1200 users will need to upgrade to CUDA 8 in order to use TensorRT.
‣ If you have previously installed TensorRT 2.0 EA or TensorRT 2.1 RC and you install

TensorRT 2.1, you may find that the old meta package is still installed. It can be
safely removed with the apt-get command.

‣ Debian packages are supplied in the form of local repositories. Once you have
installed TensorRT, you can safely remove the TensorRT local repository debian
package.

‣ The implementation of deconvolution is now deterministic. In order to ensure
determinism, the new algorithm requires more workspace.

‣ FP16 performance was significantly improved for batch size = 1. The new algorithm
is sometimes slower for batch sizes greater than one.

‣ Calibration for INT8 does not require labeled data. SampleINT8 uses labels only to
compare the accuracy of INT8 inference with the accuracy of FP32 inference.

‣ Running with larger batch sizes gives higher overall throughput but uses more
memory. When trying TensorRT out on GPUs with smaller memory, be aware that
some of the samples may not work with batch sizes of 128.

‣ The included Caffe parser library does not currently understand the NVIDIA/Caffe
format for batch normalization. The BVLC/Caffe batch normalization format is
parsed correctly.

Deprecated Features

The parameterized calibration technique introduced in the 2.0 EA pre-release has been
replaced by the new entropy calibration mechanism.

‣ The Legacy class IInt8LegacyCalibrator is deprecated.

https://github.com/NVIDIA/caffe
https://github.com/BVLC/caffe

TensorRT Release 2.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 5.0.1 Release Candidate

(RC) | 34

Known Issues

‣ When using reduced precision, either INT8 or FP16, on platforms with hardware
support for those types, pooling with window sizes other than 1,2,3,5 or 7 will fail.

‣ When using MAX_AVERAGE_BLEND or AVERAGE pooling in INT8 with a channel
count that is not a multiple of 4, TensorRT may generate incorrect results.

‣ When downloading the Faster R-CNN data on Jetson TX1 users may see the
following error:

ERROR: cannot verify dl.dropboxusercontent.com's certificate,
 issued by 'CN=DigiCert SHA2 High Assurance Server
 CA,OU=www.digicert.com,O=DigiCert Inc,C=US':
 Unable to locally verify the issuer's authority.
To connect to dl.dropboxusercontent.com insecurely, use `--no-
check-certificate`.

Adding the --no-check-certificate flag should resolve the issue.

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,

Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	TensorRT Overview
	TensorRT Release 5.x.x
	2.1. TensorRT Release 5.0.1 Release Candidate (RC)
	2.2. TensorRT Release 5.0 Release Candidate (RC)

	TensorRT Release 4.x.x
	3.1. TensorRT Release 4.0.1
	3.2. TensorRT Release 4.0 Release Candidate (RC) 2
	3.3. TensorRT Release 4.0 Release Candidate (RC)

	TensorRT Release 3.x.x
	4.1. TensorRT Release 3.0.4
	4.2. TensorRT Release 3.0.2
	4.3. TensorRT Release 3.0.1
	4.4. TensorRT Release 3.0 Release Candidate (RC)
	4.5. TensorRT Release 3.0 Early Access (EA)

	TensorRT Release 2.x.x
	5.1. TensorRT Release 2.1

