IIIIIII

1.1, Benefits Of TeNSOIRT . ..uit ittt ettt ieiteteeeeeaaeetaneeeeaneeranneeeeneeessneeeonnsesannens 2
1.1.1. Who Can Benefit From TensOrRT.......ceiiiiiiitiiiiiiiiii et rerreeaeerenneennes 3
1.2. Where Does TenSOrRT Fit?....ueiieiiiitiiiiiii it reiteeeeerenneereneeeeaneerenneesennesennes 4
1.3. How Does TenSOrRT WOIK?.uuuiiiiiiit ittt re e et s eneenanes 7
1.4. What Capabilities Does TensorRT Provide?......ccuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeiiieeeeannn 8
1.5. HOW DO | Get TenSOrRT . ..ttt ettt ettt ettt e e eiaeeeeneeeeanens 9
Chapter 2. Working With TensorRT Using The C++ APlccciieiiiiieiiiiiiiiinciiiensescnssonensans 10
2.1. Instantiating TensorRT ObjJects in CH+...ciiiiiiiiiiiiiiiiiiii i it eeeieeeeaeeeenaeeaaneans 10
2.2. Creating A Network Definition In CH+. ..ot e et e eeiieeeeeanns 12
2.2.1. Creating A Network Definition From Scratch Using The C++ APlL............ceevvveeenneen. 13
2.2.2. Importing A Model Using A Parser In G4+, oiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeiiiaeeeeaaannnes 14
2.2.3. Importing A Caffe Model Using The C++ Parser APlL.......cccvviiiiiiiiiniiiniiieennnenns 15
2.2.4. Importing A TensorFlow Model Using The C++ UFF Parser APlL.........cccvvviiiinneinnnnnn. 15
2.2.5. Importing An ONNX Model Using The C++ Parser APL..........cooviiiiiiiiiiiiiiiiiiinnn... 16
2.3. Building An ENGine In G, .. uuiiiiiiiiiiii ittt eeeiineeeeereannneeessessnnnnesssesnnnneessanns 17
2.4. Serializing A Model TN ..ottt ittt e ittt e eeiee e e eeeaiaaeeeaannnaes 18
2.5. Performing Inference IN Gt it ieiiii e ieeeieteeseennnnneeseesnnnnsessessnnnnes 18
2.6. Memory Management IN Gt it it ceeeii et eeeeieeeeeeeeaaeeeeeannnnes 19
Chapter 3. Working With TensorRT Using The Python APL.......cccciiiiiiiiiiiiiiiieiineeennnennn. 20
3.1. Importing TensorRT INtO PYthon.......ciiiiiiiiiiiiiiiiiiii ittt it eeiiee e eeannaes 20
3.2. Creating A Network Definition In Python.......ccceiiiiiiiiiiiiiiiii e 21
3.2.1. Creating A Network Definition From Scratch Using The Python APIL....................... 21
3.2.2. Importing A Model Using A Parser In Python.........ccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiinenens 22
3.2.3. Importing From Caffe Using Python........coiiiiiiiiiiiiiiiiii it iieeiiiieeeeaannanes 22
3.2.4. Importing From TensorFlow Using Python...........ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeees 23
3.2.5. Importing From ONNX Using PYython.......cciiiiiiiiiiiiiiiiiiiiiiiiiireeiiieeeeeenannnens 24
3.2.6. Importing From PyTorch And Other Frameworks.ccceveieiiiiiiiiieiriieennneennnnnns 25
3.3. Building An Engine In Python.......eueiiiiiiiii it e e irr e eeeirneeeaeannnas 25
3.4. Serializing A Model In Python. ... st it et e e aaes 26
3.5. Performing Inference In Python.......coeeniiiiiiiiiiiiiiiiiiiiii i i e eeereeereeennnneees 27
Chapter 4. Extending TensorRT With CuStOm Layers......cccccieiieiieiiniieinnieninsionnseosnssonnnss 28
4.1. Adding Custom Layers Using The C++ APlciiiiiiiiiiiiiiiiiiiiiieiiiieiiienieeeeieeeaaneeas 28
4.1.1. Example 1: Adding A Custom Layer Using C++ For Caffe.....cccovvviiiiiiiiiiiniinnnnnnns 30
4.1.2. Example 2: Adding A Custom Layer That Is Not Supported In UFF Using C++............. 31
4.2. Adding Custom Layers Using The Python APL..........viiiiiiiiiiiiiiiiiiiiiiiiiiiiiei e eeeeaeaes 32
4.2.1. Example 1: Adding A Custom Layer to a TensorRT Network Using Python................ 32
4.2.2. Example 2: Adding A Custom Layer That Is Not Supported In UFF Using Python......... 33
4.3. Using Custom Layers When Importing A Model From A Framework...........c.coevveiinnenn... 34
4.3.1. Example 1: Adding A Custom Layer To A TensorFlow Model.........ccovvvviniiiiniinnnnn, 35
www.nvidia.com

TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | ii

o o L (U3 I o I D T ol o) o (o] o PO PPt 35

4.4.1. Migrating Plugins From TensorRT 5.0.0 RC To TensorRT 5.0.X.c.cccviiiieiiiinniiinnennnnnn. 35
4.4.2. Migrating Plugins From TensorRT 4.0.1 To TensorRT 5.0.0 RC......cccvvviiiiiinnnnnnnnn. 36
4.4.3. IPlLUGINV2 APl DeSCIiPtION. 1t tttteiittieitt et eeeieeeeieeeeaneeeenaeeeeneeeasneeesnaeeesnnens 36
4.4.4. IPluginCreator APl DesCription.ciiiiiieetiiiiiiiiitiiiiiieeeeeeineeeeeeesnnaseeeeeannnes 37
4.5, Best Practices FOr CUSTOM LayerS.uueeiiiiiitetieiiiiteeteeainneeeeeansnaressesensnneesssanes 38
Chapter 5. Working With MiXxed PrecCision......ccciieeeeiiieiirneeeieceereneetecesesnesescesesnnsssccannes 39
5.1. Mixed Precision Using The C++ APlciiiiiiiiiiiiiiiiiiiiiiiii i eaes 39
5.1.1. Setting The Layer Precision Using CH+....iiiiiiiiiiiiiiiiiierieiiiieeeeraesnneeeesesnnnnnes 39
5.1.2. Enabling FP16 Inference UsiNg C+....cietiiiiiiiiiiieittrentereneeeeaneerenneesaneeeannes 40
5.1.3. Enabling INT8 Inference USiNG CH+.....ceuiiiiiiiietiereiiieeeeeeenrnneeeeresonneneessennnnes 40
5.1.3.1. Setting Per-Tensor Dynamic Range Using C++.. . iiiiiiiiiiiiiiiiiiiiiiiiieeieniinnnes 41
5.1.3.2. INT8 Calibration Using CH+...ciiiiiiiiiiiiiiiiieiiiteeteennneeereeennnneesesannnns 41
5.2. Mixed Precision Using The Python APL......ccoiiiiiiiiiiii i it i e 42
5.2.1. Setting The Layer Precision Using Python.......cccouiiiiiiiiiiiiiiiiiiiiii i eeiieeas 42
5.2.2. Enabling FP16 Inference Using Python........cccoiiiiiiiiiiiiiiiiiiiiiiiiii i eeeenns 43
5.2.3. Enabling INT8 Inference Using Python........ccuiiiiiiiiiiiiiiiiiiiiiiiiiii i eeieeeanas 43
5.2.3.1. Setting Per-Tensor Dynamic Range Using Python.........ccooiiiiiiiiiiiiiiiiiiiiinn, 43
5.2.3.2. INT8 Calibration Using PYthon.........ccoviiieiiiiiiiiiiiiiiii e eeeeens 43
Chapter 6. Working With DLA.......ciiiiiiiieititiiiinneeeeeetesennetecessennsseccsssnssssccssssnnsseccnnes 45
6.1. Running On DLA During TensorRT INference........coevviiiiiiiiiiiiiiiiiiiiiiieineene, 45
6.1.1. Example 1: sampleMNIST With DLA.oiiiiiiiiii it eiiiie e reesineeeeaannnnes 46
6.1.2. Example 2: Enable DLA Mode For A Layer During Network Creation..............c......... 47
6.2. DLA SUPPOITEA Layers. . ueiiiiiiiettttieiiietetreeaneeeeeeeannneeessessnnnsessesssnnnessssssnnnnesens 47
6.3. GPU FallDack MOdE.uiinntiiiitieiiieii et eeeeeeereeeeaneeeenaeeeanaeseaneesannnseennens 49
Chapter 7. Deploying A TensorRT Optimized Model........cceineiiiiiiiiiiiiiiiiiiiieeireeenneennns 50
7.1. Deploying In The CloUd.....ciiiiiiiiiiiiiiiiiiii ittt ittt ittt eeeiiaeeeeeeeninaeaseesennnnes 50
7.2. Deploying To An Embedded System......ciiiiiiiiiiiiiiii i eeieeieeeaeeeeanaees 50
Chapter 8. Working With Deep Learning Frameworks......c.ccceeieiieiiiiniiiiinieiieicsincccsnsenns 52
8.1. Supported Operations By FrameWorkK.cc.eeeeeiiiiieiiiiieiieeiiereieeeaieeeaneeeenaees 52
8.2. Working With TensOrFlOW. . ..uueeiiiiiiiiii it it i i et eiieeeeeeeenneeeeeeannnnseseenns 55
8.2.1. Freezing A TensorFlow Graph......coccoiiiiiiiiiiiiiiiiiiiiii e 55
8.2.2. Freezing A Keras MOGeL. . .ccuuuuuiiiiiiiiiiiiiiiiitteteeeiieeeeeeeainnaeeeesssnnnneseessnnnnes 55
8.2.3. Converting A Frozen Graph TO UFF....cccuiiiiiiiiiiiiiiiieieeenereneereneeeeaneeeanns 56
8.2.4. Working With TensorFlow RNN Weights......ccoiireiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeaaennnas 56
8.2.4.1. TensorFlow RNN Cells Supported In TensorRT.....cciiiiiiiiiiiiiiiiiiiiiiiiiieeeanns 56
8.2.4.2. Maintaining Model Consistency Between TensorFlow And TensorRT.................. 57
S T T 0 ¢ 4 1 U 1V Tt 57
8.2.4.4. Dumping The TensorFlow Weights.......cccuiiiiiiiiiiiiiiiii it eieeeas 57
8.2.4.5. Loading Dumped Weights.civiiiiiiiiiiiiiii ittt eiiit e eeinee e eeannnaaas 58
8.2.4.6. Converting The Weights To A TensorRT Format........cceveieiiiiiieiieeeniieeennneenn. 58
8.2.4.7. BasiCLSTMCEll EXamMPLe. . .uuieiiiiiiiiitiiiiiiittieeeiieeeeeeinneeeeeessnnnneeeeeannnns 59
8.2.4.8. Setting The Converted Weights ANd Biases.....ccuvieeuiieiiieieiiiieeneeeeneeeenneeenns 61
www.nvidia.com

TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | iii

8.2.5. Preprocessing A TensorFlow Graph Using the Graph Surgeon APL.........cc.ccovvvveena.n. 62

8.3. Working With PyTorch And Other Frameworks........cccciiiieiiiiiiiiiiiiiiiiiiiiiiiieeieennee, 62
Chapter 9. SaAMIPIES. . ciiiieiiiiiiieeteteeearaneetecesnneseeecssanseccesssnnsssecesssnsseccesssansssecannns 64
B T O . 11 o] L= PPN 64
L I =114 o1 L= LN I PP 65
9.1.2. SAMPLEMNISTAPL ...ttt ettt e e et e ate et seneeaneanaennaes 66
9.1.3. SAMPLEUTIMNIS T . it ittt et ettt eeeeiaeeeesessnnanessessnnnnessssnnnnes 67
9.1.4. samPleONNXMNIST .. . u ettt ettt ee e eeteeteeeeeneeanes 68
9.1.4.1. Configuring The ONNX Parser.......cceeiiieiieeiiieriiiteeeeeeireseeeeeesnnnseeeesennnnes 68
9.1.4.2. Converting The ONNX Model To A TensorRT Network........ccevvveviiiieiiinnennnnn. 69
9.1.4.3. Building The Engine And Running Inference.......c.ccovviiiiiiiiiiiiiiiiiiiiiinneeennnnns 69
9.1.5. SAMPLEGOOGIENEL. . ettt it ettt e e ettt eeeiaae et eaearaaaaaaas 69
9.1.5.1. Configuring The BUilder........ccciiiiiiiiiiiiiiiiiieeiiieeeeeeaaaeeeeeeennneeeesanns 70
R S T A & o) i 1113 V- PP PP PPPPPP 70
9.1.6. samPleCharRNN.ot it e e e et eeie e eeeneeeenaeeeeaeeaaneeeanneeann 71
9.1.6.1. Network Configuration......coiueiiiiiiiiiiiiiiiiiiiiii ittt eeiieeeeeaeenaeeeeaanns 71
9.1.6.2. RNNv2 Workflow - From TensorFlow To TensorRT.......ccevveeieeiiiernerenerenennnnn. 74
9.1.6.3. Seeding The NeTWOIK.uuiiiiiiiii ittt iieiiii et teeeieeeeeaeennnaeeesennnnnnes 77
9.1.6.4. Generating Data......covvuuiiiiiiiiiiiiiiii i e 77
R A - 1101 1= | I T PP 78
9.1.7.1. Defining The NetWOrK......ciiuiiiiiii ittt e i e e eeneeeeneeeanneennn 79
9.1.7.2. BUIlding The ENGiNe.....ciiiiiiiittiiiiiiittereeiieeeeerenrnneeeesessnnnneessesnnneseenes 79
9.1.7.3. Configuring The BUilder........cviiiiiiiiiiiiiiiiiii it et e e eaaaas 81
9.1.7.4. RUNNING The ENGiNe..c..uuuiiiiiiiiiiiii it reeeiteeeeernnneeesreeannnnesseennnnns 81
9.1.7.5. Verifying The OULPUL. ..ottt ettt e e eiieeeeeaeeiaeeeeaaannnes 81
9.1.7.6. Batch Files For Calibration........cccivuiiiriiiiiiiiiiiiiiiiii i eer e e eeeans 81
9.1.8. SAMPLEINT B AP . ettt ittt ettt et ettt eeeearaeeeeeeeansaaeesesennnseseesnnns 83
9.1.8.1. Configuring The BUilder........cuviiiiiiiiiiiiii it ee e eeie e eenaeeaaaees 84
9.1.8.2. Configuring The NeTWOIK.uuiiiiiiiiiiiiiiiiiiiii ettt eeeiieeeeeaeannneeeeeanns 84
9.1.9. SAMPLEPIUGIN. . ettt ettt ettt et eeeeeeeaneeeanaeeeanaeeaaneeesnneeesnneeenneens 85
9.1.9.1. Defining The NetWOrK...oociuuiiiiiiiiiiiii ittt i reeeneeeeeaannnnaeeenanns 86
9.1.9.2. Enabling Custom Layers In NvCaffeParser.........cevveiiiiiiiiiiiiiiiiiiniiiinneennnen. 86
9.1.9.3. BUilding The ENGiNe.....cciiiiiiiitiiiiiiiitttreeiieeteeeenrneeeesessnneneessennnnneeeees 86
9.1.9.4. Serializing And Deserializing.......c.cveiiiiiiiiiiiiiiieiieeeieeeneeeeneeeaaneeens 87
9.1.9.5. Resource Management And EXE@CULION......ciiiiiiiieeeiiriiiieeeeeeenrnneeeerennnneeeens 88
0. 1.10. SAMPLENMT ittt ittt ettt et eeeaeeeeeeeaanaaaeeeeesnsesesesennnsseseennn 89
Lo R 0 R 107 Y = 90
9.1.10.2. Preparing The Data.......cciiiiiiiiiiiiiiiiiiiiiiiiiiii ettt eeeiireeeeeenaiaaeeen 91
9.1.10.3. RUNNING The SamPle. .. .uiiiiiiiiiiiiii i i ei e et eenaeeeenaeeanaeens 92
9.1.10.4. Training The MOdel....cciiiiiiiiiiiiiiiiii ittt ittt e eiiieee e eeeeiaeaeeaannns 93
9.1.10.5. Importing Weights From A Checkpoint.......ccoviiiiiiiiiiiiiiiiiiiiiiiiniieeeaeen 94
9.1.11. samPpPleFasterRCNN. it it ettt teeeieteeeaeennaeeeeeesnnneeeseanns 94
B It T Tt OO 0 1= T N 95
www.nvidia.com

TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | iv

9.1.11.2. Preprocessing The INPUL.uuiiiiiiiiiiii it it eeeiie e eeeeiineaaeaanns 95

9.1.11.3. Defining The NetWOIK....c.uiiii it i e ee e e e e eanas 96
9.1.11.4. BUilding The ENgine. ..ot ittt eeiie e eeeiiaeeeeaaanns 96
9.1.11.5. RUNNING The ENGiNe...cc.uiiiiiiiiiiiiiii it i e e e et e naeeaaneans 97
9.1.11.6. Verifying The OULPUL.....iiiiiiiii i it e e e e eeiieeeeeenenaaeees 97
9.1.12. SAMPLEUTTSSD. ..ttt et ettt e et eeeeeeenaeeeenaeeaaneeesnneeeenaeesnnes 97
L O 0 T O AT = 98
9.1.12.2. Processing The Input Graph.........ccooeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiir e 99
9.1.12.3. Preparing The Data......cciieiiieiiiiiiiiitiireiiieeeeeeeinneeeeeeenrnneeeesessnnnneens 100
9.1.12.4. Defining The Network And PlUZiNS......ccoueiiiutiriietirieereneeeaneeeenneeeenneennn 100
9.1.12.5. Verifying The OULPUL. ...iiiiii ittt eeeeieeeeeeenrnneeeesennnneneens 102
9.1.13. SAMPLEMOVIELENS. ... ittt i ittt et ittt eeeieeeeeeeaannaaeeeannn 102
9.1.13.1. Importing Network To TenSOrRTuuuuetiiiiiiiiietieiiiieereeeinneeeeeeeannnneess 102
9.1.13.2. Verifying The OULPUL. ..ciiiiiii i it et eeiee e e eeenaeaeeas 103
9.1.14. sampleMoViELENSMPS. i i e e e e i ee e et eenaeeeanaeeaanaaans 103
R I B T Y- 1101 0] 5] D J PP PP 103
B P 5 T R 1= = 104
9.1.15.2. Preprocessing The INPUL......ueiiiiiiiiiiii it ieeiiieeeeeeeaneeeeeeennnnaeeenns 104
9.1.15.3. Defining The NetWOrK......ccuiiiiiiiiiii e e 105
9.1.15.4. Building The ENgine...cccuuiiiiiiiiiiii it ieeiiieeeereeenneeeeeeesnnneeeesannn 105
9.1.15.5. Verifying The OULPUL.....cociiiiiiiiiiiii et 105
9.1.16. SAMPLEMLP. ..ttt ettt eeeieeeereeannaeesseesnnnneessesnnnnnessesannnnes 106
9.1.16.1. Defining The NetWOIK.ciiiiiiiii i it et eecei e eeeaiaaas 106
L A oA T Y- T 4T 0] U PN 107
9.2.1. iNtroductory_Parser_SamMPlES. ..cccuuueitiiieiittttieiiieteeteeeiiaeeeeeeensnseesesennnnsseens 107
9.2.2. end_to_end_tensorflow_MNiSt.......coieeiitiiitiiitiiiiiitiiiiireierierieenneeeneeaneenns 108
9.2.3. network_api_pytorCh_MNist.ceiiiiiiiiiiiiiiiiiiii it it e it et eeeeiaeeeeeaannns 108
9.2.4. fo_plugin_caffe_MNist.....coiiiiiii i e e i e ee e e eaaeeaanaees 108
9.2, 5. Uff_CUSTOM PlUGIN. ¢t ettt ettt eeeireeeeeaeeneeeeeeeennneeeseesnnnnneess 109
9.2.6. YOLOV3 _ONMNXu e tnntttentteeneetennteeaneeeeaneerenneeesneesesneesenseeesneesesnsesenseeesneesannes 109
L B U T« P 110
Chapter 10. Troubleshooting........ccceeiiiiiiiiiiiiiiiiiineeiieeeieeeeeenescncnsccnnascscnsscnnnanes 111
10T FAQS . et enteent et teteee et eeeeeteeneeaneeeneeenteanesanesanssanssonssnsssnssnesnnssnnesnnsennenn 111
07 2 U o oo) N 113
10.2.1. HOW DO | REPOIt A BUG?. . .uueiiiiiiiiiiiiiiiiieeeeeeineeeeeeannneeessessnnnnessssannnns 113
APPENAiX A, APPENAIX...uuetiiiiiiieeieteeianeeteeeeesnaseeeceessnsstecesssnsssecessssasssccssssnssseccnnns 114
Y R [o o S I T 1= T PP 114
O IO I ot V7= o o o T - 1= PP 114
A 1.2, CoNCAtENAtION LAY @l .. ueiiiiiiittttteeiiiteeeeeeieteereeennneeeseessanneessessnnnnesssennns 115
7 I TR 0o 1 =13 Al I 1Y P PP 115
A 1.4, CONVOLULION LAy @l . e iittiieittiiiteeitteeeiteeeteeeraeeeenaeeaaneeeanneeesnaeesonaeeennens 115
A 1.5, DECONVOLULION LAY Ol e et iiiiiitttteieiiteeeeeeiieeeeeeeesnseeeesesnnnssessessnasseeesennnnes 117
A1.6. ElementWise Layer....o.eeitiiiiiiiiiiiiiiii ittt ee et et e eaeeneeanaes 118
www.nvidia.com

TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | v

A1.7. FUllYCOoNNECtEd Layer. oo iiiiiiiiiiiii ittt e ettt eeeaiaaeeeeeannaeeeeeenannenes 118

N IR T € - Y LT ol I 1T PP 119
Y I R e 1= a1 1 4 YA I 1< P PP PP 119
O 0 I - = N 120
AT 1T, MatriXMULLIPLY Layer. e eeiiiiiiiii ittt ettt eeeiiaeeeeeaennnaaeeeeesnnnseeens 120
Y I R o Te [L B - Y O P PP 121
R It e T o U =3 1 T I Y O PPN 122
S I B T o U =3[A IR =] PP PPN 122
O It B T oo To] g T I 1Y P 122
A.1.16. RagedSOfIMAX Layer. . ueierteeenteeieteeneeeeneeeeaaeeeaneeeenneeesnaeeeeneesesneeesnnnes 123
S I A 2 (=T 18 o= - 1Y o 124
A 1.18. RNN Layer (IRNNLAYEI) . ..uuttttiieiiitttiiiiitetteiaitteeeeeaiaeeeetenanseseesesnnnaseenns 124
A.1.19. RNNv2 Layer (IRNNVZLAyer) Layer...ccuueeiiiiiiiietiieiiieeeereennnnreeeeesnnnneeesenns 125
R B O Yot LT IR Y P PP 128
0 B A B o 10 LT I N PP P 129
YO B o) 11 I 1Y PP PP PP 129
R 2 T [o]G - =] 130
F B U [o - YA I N =T P PP 131
A.2. Data Format DesCriplionS......coveiiiiiiiiiiiiiiiiiiiiiiiii ittt e e 131
A3, CommMaANd Line WA PPl . it iiiitetteiiiieetteeeineeeeeeesnnneeessssnnseseesssnnnasesssnnnnes 134
A4, ACKNOWLEDGEMENTS. .t tttttiittieeteteenteeaeeeeaneeeanneeeaneeeesnnesenneeesnnnessnsesennnenns 135
www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | vi

Chapter 1.
WHAT IS TENSORRT?

The core of TensorRT " is a C++ library that facilitates high performance inference on
NVIDIA graphics processing units (GPUs). It is designed to work in a complementary
fashion with training frameworks such as TensorFlow, Caffe, PyTorch, MXNet, etc. It
focuses specifically on running an already trained network quickly and efficiently on a
GPU for the purpose of generating a result (a process that is referred to in various places
as scoring, detecting, regression, or inference).

Some training frameworks such as TensorFlow have integrated TensorRT so that it can
be used to accelerate inference within the framework. Alternatively, TensorRT can be
used as a library within a user application. It includes parsers for importing existing
models from Caffe, ONNX, or TensorFlow, and C++ and Python APIs for building
models programmatically.

ﬁ.

Trained TensorRT TensorRT
Neural Obtimi Runtime
Network ptimizer _

e Engine

Figure 1 TensorRT is a high performance neural network inference
optimizer and runtime engine for production deployment.

TensorRT optimizes the network by combining layers and optimizing kernel selection
for improved latency, throughput, power efficiency and memory consumption. If the
application specifies, it will additionally optimize the network to run in lower precision,
further increasing performance and reducing memory requirements.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 1

What Is TensorRT?

The following figure shows TensorRT defined as part high-performance inference
optimizer and part runtime engine. It can take in neural networks trained on these
popular frameworks, optimize the neural network computation, generate a light-
weight runtime engine (which is the only thing you need to deploy to your production
environment), and it will then maximize the throughput, latency, and performance on
these GPU platforms.

FRAMEWORKS GPU PLATFORMS
Caffe?

TensorRT

NVIDIA DLA

theano

TESLA V100

Figure 2 TensorRT is a programmable inference accelerator.

The TensorRT API includes implementations for the most common deep learning layers.
For more information about the layers, see TensorRT Layers. You can also use the C++
Plugin API or Python Plugin API to provide implementations for infrequently used or
more innovative layers that are not supported out-of-the-box by TensorRT.

1.1. Benefits Of TensorRT

After the neural network is trained, TensorRT enables the network to be compressed,
optimized and deployed as a runtime without the overhead of a framework.

TensorRT combines layers, optimizes kernel selection, and also performs normalization
and conversion to optimized matrix math depending on the specified precision (FP32,
FP16 or INTS) for improved latency, throughput, and efficiency.

For deep learning inference, there are 5 critical factors that are used to measure software:
Throughput
The volume of output within a given period. Often measured in inferences/second
or samples/second, per-server throughput is critical to cost-effective scaling in data
centers.
Efficiency
Amount of throughput delivered per unit-power, often expressed as performance/
watt. Efficiency is another key factor to cost effective data center scaling, since servers,
server racks and entire data centers must operate within fixed power budgets.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 2

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/pyPlugin.html

What Is TensorRT?

Latency
Time to execute an inference, usually measured in milliseconds. Low latency is
critical to delivering rapidly growing, real-time inference-based services.

Accuracy
A trained neural network’s ability to deliver the correct answer. For image
classification based usages, the critical metric is expressed as a top-5 or top-1
percentage.

Memory usage
The host and device memory that need to be reserved to do inference on a network
depends on the algorithms used. This constrains what networks and what
combinations of networks can run on a given inference platform. This is particularly
important for systems where multiple networks are needed and memory resources
are limited - such as cascading multi-class detection networks used in intelligent
video analytics and multi-camera, multi-network autonomous driving systems.

Alternatives to using TensorRT include:

» Using the training framework itself to perform inference.
» Writing a custom application that is designed specifically to execute the network
using low level libraries and math operations.

Using the training framework to perform inference is easy, but tends to result in much
lower performance on a given GPU than would be possible with an optimized solution
like TensorRT. Training frameworks tend to implement more general purpose code
which stress generality and when they are optimized the optimizations tend to focus on
efficient training.

Higher efficiency can be obtained by writing a custom application just to execute

a neural network, however it can be quite labor intensive and require quite a bit

of specialized knowledge to reach a high level of performance on a modern GPU.
Furthermore, optimizations that work on one GPU may not translate fully to other GPUs
in the same family and each generation of GPU may introduce new capabilities that can
only be leveraged by writing new code.

TensorRT solves these problems by combining an API with a high level of abstraction
from the specific hardware details and an implementation which is developed and
optimized specifically for high throughput, low latency, and low device memory
footprint inference.

1.1.1. Who Can Benefit From TensorRT

TensorRT is intended for use by engineers who are responsible for building features and
applications based on new or existing deep learning models or deploying models into
production environments. These deployments might be into servers in a datacenter or
cloud, in an embedded device, robot or vehicle, or application software which will run
on users workstations.

TensorRT has been used successfully across a wide range of scenarios, including:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 3

What Is TensorRT?

Robots
Companies sell robots using TensorRT to run various kinds of computer vision
models to autonomously guide an unmanned aerial system flying in dynamic
environments.
Autonomous Vehicles
TensorRT is used to power computer vision in the NVIDIA Drive products.
Scientific and Technical Computing
A popular technical computing package embeds TensorRT to enable high throughput
execution of neural network models.
Deep Learning Training and Deployment Frameworks
TensorRT is included in several popular Deep Learning Frameworks including
TensorFlow and MXNet. For TensorFlow and MXNet container release notes, see
TensorFlow Release Notes and MXNet Release Notes.
Video Analytics
TensorRT is used in NVIDIA’s DeepStream product to power sophisticated video
analytics solutions both at the edge with 1 - 16 camera feeds and in the datacenter
where hundreds or even thousands of video feeds might come together.
Automatic Speech Recognition
TensorRT is used to power speech recognition on a small tabletop/desktop device.
A limited vocabulary is supported on the device with a larger vocabulary speech
recognition system available in the cloud.

1.2. Where Does TensorRT Fit?

Generally, the workflow for developing and deploying a deep learning model goes
through three phases.

» Phase 1 is training
» Phase 2 is developing a deployment solution, and
» Phase 3 is the deployment of that solution

Phase 1: Training

During the training phase, the data scientists and developers will start with a statement
of the problem they want to solve and decide on the precise inputs, outputs and loss
function they will use. They will also collect, curate, augment, and probably label the
training, test and validation data sets. Then they will design the structure of the network
and train the model. During training, they will monitor the learning process which may
provide feedback which will cause them to revise the loss function, acquire or augment
the training data. At the end of this process, they will validate the model performance

and save the trained model. Training and validation is usually done using DGX-1 ,
Titan, or Tesla datacenter GPUs.

TensorRT is generally not used during any part of the training phase.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 4

https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/tensorflow/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/mxnet/
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/index.html
https://docs.nvidia.com/deeplearning/dgx/mxnet-release-notes/index.html
https://developer.nvidia.com/deepstream-sdk

What Is TensorRT?

Phase 2: Developing A Deployment Solution

During the second phase, the data scientists and developers will start with the trained
model and create and validate a deployment solution using this trained model. Breaking
this phase down into steps, you get:

1.

Think about how the neural network functions within the larger system of which it
is a part of and design and implement an appropriate solution. The range of systems
that might incorporate neural networks are tremendously diverse. Examples
include:

»

»

the autonomous driving system in a vehicle

a video security system on a public venue or corporate campus
the speech interface to a consumer device

an industrial production line automated quality assurance system
an online retail system providing product recommendations, or

a consumer web service offering entertaining filters users can apply to uploaded
images.

Determine what your priorities are. Given the diversity of different systems that
you could implement, there are a lot of things that may need to be considered for
designing and implementing the deployment architecture.

>

>

»

Do you have a single network or many networks? For example, Are you
developing a feature or system that is based on a single network (face detection),
or will your system be comprised of a mixture or cascade of different models,

or perhaps a more general facility that serves up a collection model that may be
provided by the end user?

What device or compute element will you use to run the network? CPU, GPU,
other, or a mixture? If the model is going to run on a GPU, is it a single type of
GPU, or do you need to design an application that can run on a variety of GPUs?
How is data going to get to the models? What is the data pipeline? Is the data
coming in from a camera or sensor, from a series of files, or being uploaded over
a network connection?

What pre-processing will be done? What format will the data come in? If it is an
image does it need to be cropped, rotated? If it is text what character set is it and
are all characters allowed as inputs to the model? Are there any special tokens?
What latency and throughput requirements will you have?

Will you be able to batch together multiple requests?

Will you need multiple instances of a single network to achieve the required
overall system throughput and latency?

What will you do with the output of the network?

What post processing steps are needed?

TensorRT provides a fast, modular, compact, robust, reliable inference engine that
can support the inference needs within the deployment architecture.

www.nvidia.com

TensorRT

SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 5

What Is TensorRT?

2. After the data scientists and developers define the architecture of their inference
solution, by which they determine what their priorities are, they then build an
inference engine from the saved network using TensorRT. There are a number
of ways to do this depending on the training framework used and the network
architecture. Generally, this means you need to take the saved neural network and
parse it from its saved format into TensorRT using the ONNX parser (see Figure 3),
Caffe parser, or TensorFlow/UFF parser.

ONNX Workflow V1

ONNX & Model

Import

cotez CNTK cnatmer |

BYTHRCH .;met

Framework
Integration

TensorRT Runtime

-e

L]
‘ N /
| m - P
" 1ATLAB Optimizer .

Tensorf]

-

Network

Definition API

Custom

Framework

Figure 3 ONNX Workflow V1

3. After the network is being parsed, you'll need to consider optimization options
-- batch size, workspace size and mixed precision. These options are chosen and
specified as part of the TensorRT build step where you actually build an optimized
inference engine based on your network. Subsequent sections of this guide provide
detailed instructions and numerous examples on this part of the workflow, parsing
your model into TensorRT and choosing the optimization parameters (see Figure 4).

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 6

What Is TensorRT?

Layer & Tensor Fusion

Precision Calibration iz Kernel Auto-Tuning

e~ |

"': P ———— ...-“-— .

N] gy,

. o
Trained Neural oo Optimized

Network Inference

Dynamic Tensor Multi-Stream Engine
Memory Execution

Figure 4 TensorRT optimizes trained neural network models to
produce a deployment-ready runtime inference engine.

4. After you've created an inference engine using TensorRT, you'll want to validate
that it reproduces the results of the model as measured during the training process.
If you have chosen FP32 or FP16 it should match the results quite closely. If you
have chosen INTS there may be a small gap between the accuracy achieved during
training and the inference accuracy.

5. Write out the inference engine in a serialized format. This is also called a plan file.

Phase 3: Deploying A Solution

The TensorRT library will be linked into the deployment application which will call
into the library when it wants an inference result. To initialize the inference engine, the
application will first deserialize the model from the plan file into an inference engine.

TensorRT is usually used asynchronously, therefore, when the input data arrives,
the program calls an enqueue function with the input buffer and the buffer in which
TensorRT should put the result.

1.3. How Does TensorRT Work?

To optimize your model for inference, TensorRT takes your network definition,

performs optimizations including platform specific optimizations, and generates the
inference engine. This process is referred to as the build phase. The build phase can take
considerable time, especially when running on embedded platforms. Therefore, a typical
application will build an engine once, and then serialize it as a plan file for later use.

The generated plan files are not portable across platforms or TensorRT versions. Plans
are specific to the exact GPU model they were built on (in addition to platforms and

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 7

What Is TensorRT?

the TensorRT version) and must be re-targeted to the specific GPU in case you want to
run them on a different GPU.

The build phase performs the following optimizations on the layer graph:

» Elimination of layers whose outputs are not used

» Fusion of convolution, bias and ReLU operations

» Aggregation of operations with sufficiently similar parameters and the same source
tensor (for example, the 1x1 convolutions in GoogleNet v5’s inception module)

» Merging of concatenation layers by directing layer outputs to the correct eventual
destination.

The builder also modifies the precision of weights if necessary. When generating
networks in 8-bit integer precision, it uses a process called calibration to determine the
dynamic range of intermediate activations, and hence the appropriate scaling factors for
quantization.

In addition, the build phase also runs layers on dummy data to select the fastest from its
kernel catalog, and performs weight pre-formatting and memory optimization where
appropriate.

For more information, see Working With Mixed Precision.

1.4. What Capabilities Does TensorRT Provide?

TensorRT enables developers to import, calibrate, generate, and deploy optimized
networks. Networks can be imported directly from Caffe, or from other frameworks via
the UFF or ONNX formats. They may also be created programmatically by instantiating
individual layers and setting parameters and weights directly.

Users can also run custom layers through TensorRT using the Plugin interface. The
graphsurgeon utility provides the ability to map TensorFlow nodes to custom layers in
TensorRT, thus enabling inference for many TensorFlow networks with TensorRT.

TensorRT provides a C++ implementation on all supported platforms, and a Python
implementation on x86.

The key interfaces in the TensorRT core library are:

Network Definition
The Network Definition interface provides methods for the application to specify
the definition of a network. Input and output tensors can be specified, layers can
be added, and there is an interface for configuring each supported layer type. As
well as layer types, such as convolutional and recurrent layers, and a Plugin layer
type allows the application to implement functionality not natively supported
by TensorRT. For more information about the Network Definition, see Network
Definition API.

Builder
The Builder interface allows creation of an optimized engine from a network
definition. It allows the application to specify the maximum batch and workspace
size, the minimum acceptable level of precision, timing iteration counts for

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 8

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html

What Is TensorRT?

autotuning, and an interface for quantizing networks to run in 8-bit precision. For
more information about the Builder, see Builder API.

Engine
The Engine interface allows the application to execute inference. It supports
synchronous and asynchronous execution, profiling, and enumeration and querying
of the bindings for the engine inputs and outputs. A single engine can have multiple
execution contexts, allowing a single set of trained parameters to be used for the
simultaneous execution of multiple batches. For more information about the Engine,
see Execution APL

TensorRT provides parsers for importing trained networks to create network definitions:
Caffe Parser
This parser can be used to parse a Caffe network created in BVLC Caffe or NVCaffe
0.16. It also provides the ability to register a plugin factory for custom layers. For
more details on the C++ Caffe Parser, see NvCaffeParser or the Python Caffe Parser.

UFF Parser
This parser can be used to parse a network in UFF format. It also provides the ability

to register a plugin factory and pass field attributes for custom layers. For more
details on the C++ UFF Parser, see NvUffParser or the Python UFF Parser.

ONNX Parser
This parser can be used to parse an ONNX model. For more details on the C++ ONNX
Parser, see NVONNXParser or the Python ONNX Parser.

Restriction Since the ONNX format is quickly developing, you may encounter
a version mismatch between the model version and the parser version. The
ONNX Parser shipped with TensorRT 5.0.0 supports ONNX IR (Intermediate
Representation) version 0.0.3, opset version 7.

1.5. How Do | Get TensorRT?

For step-by-step instructions on how to install TensorRT, see the TensorRT Installation
Guide.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 9

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_cuda_engine.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvcaffeparser1_1_1_i_caffe_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Caffe/pyCaffe.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvuffparser_1_1_i_uff_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Uff/pyUff.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvonnxparser_1_1_i_o_n_n_x_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Onnx/pyOnnx.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html

Chapter 2.
WORKING WITH TENSORRT USING THE C+
+ AP

The following sections highlight the TensorRT user goals and tasks that you can perform
using the C++ API. Further details are provided in the Samples section and are linked to
below where appropriate.

The assumption is that you are starting with a trained model. This chapter will cover the
following necessary steps in using TensorRT:

» Creating a TensorRT network definition from your model

» Invoking the TensorRT builder to create an optimized runtime engine from the
network

» Serializing and deserializing the engine so that it can be rapidly recreated at runtime
» Feeding the engine with data to perform inference

C++ API vs Python API

In essence, the C++ API and the Python API should be close to identical in supporting
your needs. The C++ API should be used in any performance critical scenarios, as well as
in situations where safety is important, for example, like in automotive.

The main benefit of the Python API is that data preprocessing and postprocessing is easy
to use because you're able to use a variety of libraries like NumPy and SciPy. For more
information about the Python API, see Working With TensorRT Using The Python APL.

2.1. Instantiating TensorRT Objects in C++

In order to run inference, you need to use the IExecutionContext object. In order to
create an object of type IExecutionContext, you first need to create an object of type
ICudaEngine (the engine).

The engine can be created in one of two ways:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 10

Working With TensorRT Using The C++ API

» via the network definition from the user model. In this case, the engine can be
optionally serialized and saved for later use.

» by reading the serialized engine from the disk. In this case, the performance is better,
since the steps of parsing the model and creating intermediate objects are bypassed.

An object of type iLogger needs to be created globally. It is used as an argument to
various methods of TensorRT API. A simple example demonstrating the creation of the
logger is shown here:

class Logger : public ILogger
{

void log(Severity severity, const char* msg) override

{

// suppress info-level messages
if (severity != Severity: :kINFO)
std: :cout << msg << std::endl;

}
} glogger;

A global TensorRT API method called createInferBuilder (gLogger) is used to
create an object of type iBuilder as shown in Figure 5. For more information, see
IBuilder class reference.

[iLogger< }—(iBuilder ‘

Figure 5 Creating iBuilder with iLogger as the input argument

A method called createNetwork defined for iBuilder is used to create an object of type
iNetworkDefinition as shown in Figure 6.

Builder createNetwork() | iNetworkDefinition

Figure 6 createNetwork () is used to create the network

One of the available parsers is created using the iNetwork definition as the input:

» ONNX: parser = nvonnxparser: :createParser (*network, glogger) ;
» NVCaffe: ICaffeParser* parser = createCaffeParser () ;
» UFF: parser = createUffParser () ;

A method called parse () from the object of type iParser is called to read the model
file and populate the TensorRT network Figure 7.

‘ iParser |parse() [mﬁ —-‘mm

Figure 7 Parsing the model file

A method called buildCudaEngine () of iBuilder is called to create an object of
iCudaEngine type as shown in Figure 8:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 11

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder.html

Working With TensorRT Using The C++ API

Figure 8 Creating the TensorRT engine

The engine can be optionally serialized and dumped into the file.

-

=0

Figure 9 Creating the TensorRT engine

The execution context is used to perform inference.

Figure 10 Creating an execution context

If the serialized engine is preserved and saved to a file, you can bypass most of the steps
described above.

A global TensorRT API method called createInferRuntime (gLogger) is used to
create an object of type iRuntime as shown in Figure 11:

Figure 11 Creating TensorRT runtime

For more information about the TensorRT runtime, see IRuntime class reference. The
engine is created by calling the runtime method deserializeCudaEngine ().

The rest of the inference is identical for those two usage models.

Even though it is possible to avoid creating the CUDA context, (the default context will
be created for you), it is not advisable. It is recommended to create and configure the
CUDA context before creating a runtime or builder object.

The builder or runtime will be created with the GPU context associated with the creating
thread. Although a default context will be created if it does not already exist, it is
advisable to create and configure the CUDA context before creating a runtime or builder
object.

2.2. Creating A Network Definition In C++

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 12

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_runtime.html

Working With TensorRT Using The C++ API

The first step in performing inference with TensorRT is to create a TensorRT network
from your model. The easiest way to achieve this is to import the model using the
TensorRT parser library, which supports serialized models in the following formats:

» sampleMNIST (both BVLC and NVCaffe)
» sampleOnnxMNIST
» sampleUffMNIST (used for TensorFlow)

An alternative is to define the model directly using the TensorRT API. This requires you
to make a small number of API calls to define each layer in the network graph, and to
implement your own import mechanism for the model’s trained parameters.

In either case, you will explicitly need to tell TensorRT which tensors are required as
outputs of inference. Tensors which are not marked as outputs are considered to be
transient values that may be optimized away by the builder. There is no restriction on
the number of output tensors, however, marking a tensor as an output may prohibit
some optimizations on that tensor. Inputs and output tensors must also be given names
(using ITensor: : setName ()). At inference time, you will supply the engine with an
array of pointers to input and output buffers. In order to determine in which order the
engine expects these pointers, you can query using the tensor names.

An important aspect of a TensorRT network definition is that it contains pointers to
model weights, which are copied into the optimized engine by the builder. If a network
was created via a parser, the parser will own the memory occupied by the weights, and
so the parser object should not be deleted until after the builder has run.

2.2.1. Creating A Network Definition From Scratch Using
The C++ API

Instead of using a parser, you can also define the network directly to TensorRT via the
network definition API. This scenario assumes that the per-layer weights are ready in
host memory to pass to TensorRT during the network creation.

In the following example, we will create a simple network with Input, Convolution,
Pooling, FullyConnected, Activation and SoftMax layers. To see the code in totality, refer
to sampleMNISTAPI located in the /usr/src/tensorrt/samples/sampleMNISTAPI
directory.

1. Create the builder and the network:

IBuilder* builder = createInferBuilder (glLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

2. Add the Input layer to the network, with the input dimensions. A network can have
multiple inputs, although in this sample there is only one:

auto data = network->addInput (INPUT BLOB_NAME, dt, Dims3{1, INPUT H,
INPUT W}) ;

3. Add the Convolution layer with hidden layer input nodes, strides and weights for
filter and bias. In order to retrieve the tensor reference from the layer, we can use:

layerName->getOutput (0)

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 13

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Working With TensorRT Using The C++ API

auto convl = network->addConvolution (*data->getOutput(0), 20, DimsHW{5, 5},
weightMap["convlfilter"], weightMap|["convlbias"]) ;
convl->setStride (DimsHW{1l, 1});

Weights passed to TensorRT layers are in host memory.

4. Add the Pooling layer:

auto pooll = network->addPooling(*convl->getOutput(0), PoolingType: :kMAX,
DimsHW{2, 2});
pooll->setStride (DimsHW{2, 2});

5. Add the FullyConnected and Activation layers:

auto ipl = network->addFullyConnected (*pooll->getOutput(0), 500,
weightMap["iplfilter"], weightMap["iplbias"]) ;

auto relul = network->addActivation (*ipl->getOutput (0) ,
ActivationType: :kRELU) ;

6. Add the SoftMax layer to calculate the final probabilities and set it as the output:

auto prob = network->addSoftMax (*relul->getOutput(0)) ;
prob->getOutput (0) ->setName (OUTPUT_BLOB_NAME) ;

7. Mark the output:

network->markOutput (*prob->getOutput (0)) ;

2.2.2. Importing A Model Using A Parser In C++

To import a model using the C++ Parser API, you will need to perform the following
high-level steps:

1. Create the TensorRT builder and network.

IBuilder* builder = createInferBuilder (glLogger) ;
nvinferl: :INetworkDefinition* network = builder->createNetwork() ;

For an example on how to create the logger, see Instantiating TensorRT Objects in C

++,
2. Create the TensorRT parser for the specific format.
ONNX
auto parser = nvonnxparser::createParser (*network,
gLogger) ;
UFF
auto parser = createUffParser() ;
NVCaffe

ICaffeParser* parser = createCaffeParser() ;
3. Use the parser to parse the imported model and populate the network.
parser->parse (args) ;

The specific args depend on what format parser is used. For more information,
refer to the parsers documented in the TensorRT API.

The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 14

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Working With TensorRT Using The C++ API

2.2.3. Importing A Caffe Model Using The C++ Parser API

The following steps illustrate how to import a Caffe model using the C++ Parser API. For
more information, see sampleMNIST.

1.

Create the builder and network:

IBuilder* builder = createInferBuilder (gLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

Create the Caffe parser:

ICaffeParser* parser = createCaffeParser() ;

Parse the imported model:

const IBlobNameToTensor* blobNameToTensor = parser->parse ("deploy file" ,
"modelFile", *network, DataType: :kFLOAT) ;

This populates the TensorRT network from the Caffe model. The final argument
instructs the parser to generate a network whose weights are 32-bit floats. Using
DataType: : kHALF would generate a model with 16-bit weights instead.

In addition to populating the network definition, the parser returns a dictionary that
maps from Caffe blob names to TensorRT tensors. Unlike Caffe, a TensorRT network
definition has no notion of in-place operation. When an Caffe model uses an in-place
operation, the TensorRT tensor returned in the dictionary corresponds to the last
write to that blob. For example, if a convolution writes to a blob and is followed by
an in-place ReLU, that blob’s name will map to the TensorRT tensor which is the
output of the ReLU.

Specify the outputs of the network:

for (auto& s : outputs)
network->markOutput (*blobNameToTensor->find(s.c_str()));

2.2.4. Importing A TensorFlow Model Using The C++ UFF
Parser API

For new projects, it’s recommended to use the TensorFlow-TensorRT integration as
a method for converting your TensorFlow network to use TensorRT for inference. For
integration instructions, see Integrating TensorFlow With TensorRT and its Release
Notes.

Importing from the TensorFlow framework requires you to convert the TensorFlow
model into intermediate format UFF (Universal Framework Format). For more
information about the conversion, see Converting A Frozen Graph To UFF.

The following steps illustrate how to import a TensorFlow model using the C++ Parser
API. For more information about the UFF import, see sampleUffMNIST.

1.

Create the builder and network:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 15

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt-release-notes/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt-release-notes/index.html

Working With TensorRT Using The C++ API

IBuilder* builder = createInferBuilder (gLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

2. Create the UFF parser:

IUFFParser* parser = createUffParser()

3. Declare the network inputs and outputs to the UFF parser:

parser->registerInput ("Input 0", DimsCHW(1l, 28, 28), UffInputOrder: :kNCHW) ;
parser->registerOutput ("Binary 3");

TensorRT expects the input tensor be in CHW order. When importing from
TensorFlow, ensure that the input tensor is in the required order, and if not,
convert it to CHW.

4. Parse the imported model to populate the network:

parser->parse (uffFile, *network, nvinferl::DataType: :kFLOAT) ;

2.2.5. Importing An ONNX Model Using The C++ Parser
API

Restriction Since the ONNX format is quickly developing, you may encounter a

version mismatch between the model version and the parser version. The ONNX Parser
shipped with TensorRT 5.0.0 supports ONNX IR (Intermediate Representation) version
0.0.3, opset version 7.

In general, the newer version of the ONNX Parser is designed to be backward
compatible, therefore, encountering a model file produced by an earlier version of
ONNX exporter should not cause a problem. There could be some exceptions when the
changes were not backward compatible. In this case, convert the earlier ONNX model
file into a later supported version. For more information on this subject, see ONNX
Model Opset Version Converter.

It is also possible that the user model was generated by an exporting tool supporting
later opsets than supported by the ONNX parser shipped with TensorRT. In this

case, check whether the latest version of TensorRT released to GitHub onnx-
tensorrt supports the required version. The supported version is defined by the
BACKEND_OPSET_VERSION variable in onnx_trt backend.cpp. Download and build
the latest version of ONNX TensorRT Parser from the GitHub. The instructions for
building can be found here: TensorRT backend for ONNX.

The following steps illustrate how to import an ONNX model using the C++ Parser APL
For more information about the ONNX import, see sampleOnnxMNIST.

1. Create the ONNX parser. The parser uses an auxiliary configuration management
SampleConfig object to pass the input arguments from the sample executable to the
parser object:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 16

https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt/blob/master/onnx_trt_backend.cpp
https://github.com/onnx/onnx-tensorrt/blob/master/README.md

Working With TensorRT Using The C++ API

nvonnxparser: : IOnnxConfig* config = nvonnxparser::createONNXConfig() ;
//Create Parser
nvonnxparser: : IONNXParser* parser = nvonnxparser::createONNXParser (*config) ;

2. Ingest the model:

parser->parse (onnx_filename, DataType: :kFLOAT) ;
3. Convert the model to a TensorRT network:

parser->convertToTRTNetwork () ;

4. (Obtain the network from the model:

nvinferl: :INetworkDefinition* trtNetwork = parser->getTRTNetwork() ;

2.3. Building An Engine In C++

The next step is to invoke the TensorRT builder to create an optimized runtime. One

of the functions of the builder is to search through its catalog of CUDA kernels for the
fastest implementation available, and thus it is necessary use the same GPU for building
as that on which the optimized engine will run.

The builder has many properties that you can set in order to control such things as the
precision at which the network should run, and autotuning parameters such as how
many times TensorRT should time each kernel when ascertaining which is fastest (more
iterations leads to longer runtimes, but less susceptibility to noise.) You can also query
the builder to find out what reduced precision types are natively supported by the
hardware.

Two particularly important properties are the maximum batch size and the maximum
workspace size.

» The maximum batch size specifies the batch size for which TensorRT will optimize.
At runtime, a smaller batch size may be chosen.

» Layer algorithms often require temporary workspace. This parameter limits the
maximum size that any layer in the network can use. If insufficient scratch is
provided, it is possible that TensorRT may not be able to find an implementation for
a given layer.

1. Build the engine using the builder object:

builder->setMaxBatchSize (maxBatchSize) ;
builder->setMaxWorkspaceSize (1 << 20);
ICudaEngine* engine = builder->buildCudaEngine (*network) ;

When the engine is built, TensorRT makes copies of the weights.
2. Dispense with the network, builder, and parser if using one.
engine->destroy () ;

network->destroy () ;
builder->destroy () ;

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 17

Working With TensorRT Using The C++ API

2.4. Serializing A Model In C++

To serialize, you are transforming the engine into a format to store and use at a later time
for inference. To use for inference, you would simply deserialize the engine. Serializing
and deserializing are optional. Since creating an engine from the Network Definition can
be time consuming, you could avoid rebuilding the engine every time the application
reruns by serializing it once and deserializing it while inferencing. Therefore, after the
engine is built, users typically want to serialize it for later use.

Building can take some time, so once the engine is built, you will typically want to
serialize it for later use. It is not absolutely necessary to serialize and deserialize a model
before using it for inference — if desirable, the engine object can be used for inference
directly.

Serialized engines are not portable across platforms or TensorRT versions. Engines are
specific to the exact GPU model they were built on (in addition to platforms and the
TensorRT version).

1. Run the builder as a prior offline step and then serialize:

IHostMemory *serializedModel = engine->serialize();
// store model to disk

// <.>
serializedModel->destroy () ;

2. Create a runtime object to deserialize:

IRuntime* runtime = createInferRuntime (gLogger) ;
ICudaEngine* engine = runtime->deserializeCudaEngine (modelData, modelSize,
nullptr) ;

The final argument is a plugin layer factory for applications using custom layers. For
more information, see Extending TensorRT With Custom Layers.

2.5. Performing Inference In C++

The following steps illustrate how to perform inference in C++ now that you have an
engine.

1. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are
held in an execution context:

IExecutionContext *context = engine->createExecutionContext() ;

An engine can have multiple execution contexts, allowing one set of weights to
be used for multiple overlapping inference tasks. For example, you can process

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 18

https://en.wikipedia.org/wiki/Serialization

Working With TensorRT Using The C++ API

images in parallel CUDA streams using one engine and one context per stream.
Each context will be created on the same GPU as the engine.

2. Use the input and output blob names to get the corresponding input and output
index:

int inputIndex = engine.getBindingIndex (INPUT BLOB_NAME) ;
int outputIndex = engine.getBindingIndex (OUTPUT BLOB_ NAME) ;

3. Using these indices, set up a buffer array pointing to the input and output buffers on
the GPU:

void* buffers[2];
buffers[inputIndex] = inputbuffer;
buffers[outputIndex] = outputBuffer;

4. TensorRT execution is typically asynchronous, so enqueue the kernels on a CUDA
stream:

context.enqueue (batchSize, buffers, stream, nullptr);

It is common to enqueue asynchronous memcpy () before and after the kernels to
move data from the GPU if it is not already there. The final argument to enqueue ()
is an optional CUDA event which will be signaled when the input buffers have been
consumed and their memory may be safely reused.

To determine when the kernels (and possibly memcpy ()) are complete, use standard
CUDA synchronization mechanisms such as events, or waiting on the stream.

2.6. Memory Management In C++

TensorRT provides two mechanisms to allow the application more control over device
memory.

By default, when creating an IExecutionContext, persistent device

memory is allocated to hold activation data. To avoid this allocation, call
createExecutionContextWithoutDeviceMemory. It is then the application’s
responsibility to call IExecutionContext: : setDeviceMemory () to provide the
required memory to run the network. The size of the memory block is returned by
ICudaEngine: :getDeviceMemorySize ().

In addition, the application can supply a custom allocator for use during build
and runtime by implementing the IGpuAllocator interface. Once the interface is
implemented, call

setGpuAllocator (&allocator) ;

on the IBuilder or IRuntime interfaces. All device memory will then allocated and
freed through this interface.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 19

Chapter 3.
WORKING WITH TENSORRT USING THE

PYTHON API

The following sections highlight the TensorRT user goals and tasks that you can perform
using the Python API. These sections focus on using the Python API without any
frameworks. Further details are provided in the Samples section and are linked to below
where appropriate.

The assumption is that you are starting with a trained model. This chapter will cover the
following necessary steps in using TensorRT:

» Creating a TensorRT network definition from your model

» Invoking the TensorRT builder to create an optimized runtime engine from the
network

» Serializing and deserializing the engine so that it can be rapidly recreated at runtime

» Feeding the engine with data to perform inference

Python API vs C++ API

In essence, the C++ API and the Python API should be close to identical in supporting
your needs. The main benefit of the Python API is that data preprocessing and
postprocessing is easy to use because you're able to use a variety of libraries like NumPy
and SciPy.

The C++ API should be used in situations where safety is important, for example, like in
automotive. For more information about the C++ API, see Working With TensorRT Using
The C++ APL

For more information about how to optimize performance using Python, see How Do I
Optimize My Python Performance? from the Best Practices guide.

3.1. Importing TensorRT Into Python

1. Import TensorRT:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 20

https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-python
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-python

Working With TensorRT Using The Python API

import tensorrt as trt

2. Implement a logging interface through which TensorRT reports errors, warnings,
and informational messages. The following code shows how to implement the
logging interface. In this case, we have suppressed informational messages, and
report only warnings and errors. There is a simple logger included in the TensorRT
Python bindings.

TRT_LOGGER = trt.Logger (trt.Logger.WARNING)

3.2. Creating A Network Definition In Python

The first step in performing inference with TensorRT is to create a TensorRT network
from your model. The easiest way to achieve this is to import the model using the
TensorRT parser library, (see Importing A Model Using A Parser In Python, Importing
From Caffe Using Python, Importing From TensorFlow Using Python, and Importing
From ONNX Using Python), which supports serialized models in the following formats:

» Caffe (both BVLC and NVCaffe)
» ONNX1.0and 1.1, and
» UFF (used for TensorFlow)

An alternative is to define the model directly using the TensorRT Network API, (see
Creating A Network Definition From Scratch Using The Python API). This requires you
to make a small number of API calls to define each layer in the network graph, and to
implement your own import mechanism for the model’s trained parameters.

TensorRT Python API is available for x86_64 platform only. For more information
please see Deep Learning SDK Documentation - TensorRT workflows.

3.2.1. Creating A Network Definition From Scratch Using
The Python API

When creating a network, you must first define the engine and create a builder object
for inference. The Python API is used to create a network and engine from the Network
APIs. The network definition reference is used to add various layers to the network. For
more information about using the Python API to create a network and engine, see the
network_api_pytorch_mnist sample.

The following code illustrates how to create a simple network with Input, Convolution,
Pooling, FullyConnected, Activation and SoftMax layers.

Create the builder and network
with trt.Builder (TRT_LOGGER) as builder, builder.create_network() as network:
Configure the network layers based on the weights provided. In this case, the
weights are imported from a pytorch model.
Add an input layer. The name is a string, dtype is a TensorRT dtype, and the
shape can be provided as either a list or tuple.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 21

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/index.html

Working With TensorRT Using The Python API

input_tensor = network.add input(name=INPUT_NAME, dtype=trt.float32,
shape=INPUT_SHAPE)

Add a convolution layer

convl w = weights['convl.weight'].numpy ()

convl b = weights['convl.bias'] .numpy ()

convl = network.add convolution (input=input_tensor, num output_maps=20,
kernel shape=(5, 5), kernel=convl w, bias=convl_b)

convl.stride = (1, 1)

pooll = network.add pooling(input=convl.get_ output(0),
type=trt.PoolingType.MAX, window_size=(2, 2))

pooll.stride = (2, 2)

conv2_w = weights['conv2.weight'].numpy ()

conv2 b = weights['conv2.bias'] .numpy ()

conv2 = network.add convolution(pooll.get output(0), 50, (5, 5), conv2 w,
conv2_b)

conv2.stride = (1, 1)

pool2 = network.add pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
pool2.stride = (2, 2)

fcl w = weights['fcl.weight'] .numpy ()

fcl b = weights['fcl.bias'] .numpy ()

fcl = network.add fully connected(input=pool2.get output(0), num outputs=500,
kernel=fcl_w, bias=fcl_b)

relul = network.add activation(fcl.get output(0), trt.ActivationType.RELU)

fc2 w = weights['fc2.weight'] .numpy ()

fc2 b = weights['fc2.bias'] .numpy ()

fc2 = network.add fully connected(relul.get_output(0), OUTPUT SIZE, fc2 w,
fc2 b)

fc2.get_output (0) .name =OUTPUT_NAME
network.mark output(fc2.get_output(0))

3.2.2. Importing A Model Using A Parser In Python

To import a model using a parser, you will need to perform the following high-level
steps:

1. Create the TensorRT builder and network.

2. Create the TensorRT parser for the specific format.
3. Use the parser to parse the imported model and populate the network.

For examples regarding each of these steps and sample code, see Importing From Caffe
Using Python, Importing From TensorFlow Using Python, and Importing From ONNX
Using Python.

The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs. For
more information, see the UFF Parser API, Caffe Parser API, and ONNX Parser API.

3.2.3. Importing From Caffe Using Python

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 22

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Core/Builder.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Uff/pyUff.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Caffe/pyCaffe.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Onnx/pyOnnx.html

Working With TensorRT Using The Python API

The following steps illustrate how to import a Caffe model directly using the CaffeParser
and the Python API. Refer to the introductory_parser_samples sample for more
information.

1.

Import TensorRT.

import tensorrt as trt

Define the data type. In this example, we will use float32.

datatype = trt.float32

Additionally, define some paths. Change the following paths to reflect where you
placed the model included with the samples:

deploy file = 'data/mnist/mnist.prototxt'’
model file = 'data/mnist/mnist.caffemodel’

Create the builder, network, and parser:

with trt.Builder (TRT_LOGGER) as builder, builder.create_ network() as
network, trt.CaffeParser() as parser:

model tensors = parser.parse (deploy=deploy file, model=model file,
network=network, dtype=datatype)

The parser returns the model tensors, which is a table containing the mapping
from tensor names to ITensor objects.

3.2.4. Importing From TensorFlow Using Python

The following steps illustrate how to import a TensorFlow model directly using the
UffParser and the Python API. This sample can be found in the <site-packages>/
tensorrt/samples/python/end to_end tensorflow _mnist directory. For more
information, see the end_to_end_tensorflow_mnist Python sample.

1.

Import TensorRT:

import tensorrt as trt

Create a frozen TensorFlow model for the tensorflow model. The instructions on
freezing a TensorFlow model into a stream can be found in Freezing A TensorFlow
Graph.

Use the UFF converter to convert a frozen tensorflow model to a UFF file.
Typically, this is as simple as:

convert-to-uff frozen inference_graph.pb

Depending on how you installed TensorRT, the convert-to-uf£ utility might not
be installed in your system path. In this case, invoke the underlying Python script
directly. It should be located in the bin directory of the UFF module; for example,
~/.local/lib/python2.7/site-packages/uff/bin/convert to uff.py.

To find the location of the UFF module, run the python -c¢ “import uff;
print (uff.__path)” command.

Alternatively, you can use the UFF Parser API and convert the TensorFlow
GraphDef directly.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 23

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Uff/pyUff.html

Working With TensorRT Using The Python API

4. Define some paths. Change the following paths to reflect where you placed the
model that is included with the samples:

model file = '/data/mnist/mnist.uff’
5. Create the builder, network, and parser:

with builder = trt.Builder (TRT_LOGGER) as builder, builder.create network()
as network, trt.UffParser() as parser:

parser.register_ input("Placeholder", (1, 28, 28))

parser.register output("fc2/Relu")
parser.parse (model file, network)

3.2.5. Importing From ONNX Using Python

Restriction Since the ONNX format is quickly developing, you may encounter a
version mismatch between the model version and the parser version. The ONNX Parser
shipped with TensorRT 5.0.0 supports ONNX IR (Intermediate Representation) version
0.0.3, opset version 7.

In general, the newer version of the ONNX Parser is designed to be backward
compatible, therefore, encountering a model file produced by an earlier version of
ONNX exporter should not cause a problem. There could be some exceptions when the
changes were not backward compatible. In this case, convert the earlier ONNX model
file into a later supported version. For more information on this subject, see ONNX
Model Opset Version Converter.

It is also possible that the user model was generated by an exporting tool supporting
later opsets than supported by the ONNX parser shipped with TensorRT. In this case,
check whether the latest version of TensorRT released to GitHub onnx-tensorrt
supports the required version. For more information, see yolov3_onnx.

The supported version is defined by the BACKEND OPSET_ VERSION variable in
onnx_trt backend.cpp. Download and build the latest version of ONNX TensorRT
Parser from the GitHub. The instructions for building can be found here: TensorRT
backend for ONNX.

The following steps illustrate how to import an ONNX model directly
using the OnnxParser and the Python API For more information, see the
introductory_parser_samples Python sample.

1. Import TensorRT:

import tensorrt as trt

2. Create the build, network, and parser:

with builder = trt.Builder (TRT_LOGGER) as builder, builder.create_network ()
as network, trt.OnnxParser (network, TRT LOGGER) as parser:

with open(model path, 'rb') as model:

parser.parse (model.read())

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 24

https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt/blob/master/onnx_trt_backend.cpp
https://github.com/onnx/onnx-tensorrt/blob/master/README.md
https://github.com/onnx/onnx-tensorrt/blob/master/README.md

Working With TensorRT Using The Python API

3.2.6. Importing From PyTorch And Other Frameworks

Using TensorRT with PyTorch (or any other framework with NumPy compatible
weights) involves replicating the network architecture using the TensorRT AP, (see
Creating A Network Definition From Scratch Using The Python API), and then copying
the weights from PyTorch. For more information, see Working With PyTorch And Other
Frameworks.

On Ubuntu 14.04 and CentOS, loading the torch module and TensorRT at the same
time may cause segmentation faults.

To perform inference, follow the instructions outlined in Performing Inference In
Python.

3.3. Building An Engine In Python

One of the functions of the builder is to search through its catalog of CUDA kernels
for the fastest implementation available, and thus it is necessary use the same GPU for
building as that on which the optimized engine will run.

The builder has many properties that you can set in order to control such things as

the precision at which the network should run, and autotuning parameters such as
how many times TensorRT should time each kernel when ascertaining which is fastest
(more iterations leads to longer runtimes, but less susceptibility to noise.) You can also
query the builder to find out what mixed precision types are natively supported by the
hardware.

Two particularly important properties are the maximum batch size and the maximum
workspace size.

» The maximum batch size specifies the batch size for which TensorRT will optimize.
At runtime, a smaller batch size may be chosen.

» Layer algorithms often require temporary workspace. This parameter limits the
maximum size that any layer in the network can use. If insufficient scratch is
provided, it is possible that TensorRT may not be able to find an implementation for
a given layer.

For more information about building an engine in Python, see the
introductory_parser_samples sample.

1. Build the engine using the builder object:

builder.max batch _size = max batch size

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 25

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Working With TensorRT Using The Python API

builder.max workspace size = 1 << 20 # This determines the amount of memory

available to the builder when building an optimized engine and should
generally be set as high as possible.

with trt.Builder (TRT_LOGGER) as builder:

with builder.build cuda_engine (network) as engine:

Do inference here.

When the engine is built, TensorRT makes copies of the weights.

2. Perform inference. To perform inference, follow the instructions outlined in
Performing Inference In Python.

3.4. Serializing A Model In Python

When you serialize, you are transforming the engine into a format to store and use at a
later time for inference. To use for inference, you would simply deserialize the engine.
Serializing and deserializing are optional. Since creating an engine from the Network
Definition can be time consuming, you could avoid rebuilding the engine every time the
application reruns by serializing it once and deserializing it while inferencing. Therefore,
after the engine is built, users typically want to serialize it for later use.

From here onwards, you can either serialize the engine or you can use the engine
directly for inference. Serializing and deserializing a model is an optional step before
using it for inference - if desirable, the engine object can be used for inference directly.

Serialized engines are not portable across platforms or TensorRT versions. Engines are
specific to the exact GPU model they were built on (in addition to platforms and the
TensorRT version).

1. Serialize the model to a modelstream:

serialized engine = engine.serialize()
2. Deserialize modelstream to perform inference. Deserializing requires creation of a
runtime object:

with trt.Runtime (TRT_LOGGER) as runtime:
engine = runtime.deserialize cuda_engine(serialized_engine)

The final argument is a plugin layer factory for applications using custom layers, and
is optional otherwise. More details can be found in Extending TensorRT With Custom
Layers.

It is also possible to save a serialized engine to a file, and read it back from the file:
1. Serialize the engine and write to a file:
with open (“sample.engine”, “wb”) as f:
f.write (engine.serialize())

2. Read the engine from the file and deserialize:

with open (“sample.engine”, “rb”) as £, trt.Runtime(TRT_LOGGER) as runtime:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 26

https://en.wikipedia.org/wiki/Serialization

Working With TensorRT Using The Python API

engine = runtime.deserialize cuda_engine(f.read())

3.5. Performing Inference In Python

The following steps illustrate how to perform inference in Python, now that you have an
engine.

1. Allocate some host and device buffers for inputs and outputs:

Determine dimensions and create page-locked memory buffers (i.e. won't be
swapped to disk) to hold host inputs/outputs.

h_input = cuda.pagelocked empty(engine.get binding_ shape (0) .volume(),
dtype=np.float32)

h_output = cuda.pagelocked empty(engine.get binding shape(l) .volume(),
dtype=np.float32)

Allocate device memory for inputs and outputs.

d_input = cuda.mem_alloc(h_input.nbytes)

d _output = cuda.mem_alloc(h_output.nbytes)

Create a stream in which to copy inputs/outputs and run inference.

stream = cuda.Stream()

2. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are
held in an execution context:

with engine.create_execution_context() as context:
Transfer input data to the GPU.
cuda.memcpy htod_async(d_input, h_input, stream)
Run inference.
context.execute_ async (bindings=[int(d_input), int(d_output)],
stream handle=stream.handle)
Transfer predictions back from the GPU.
cuda.memcpy_dtoh_async (h_output, d_output, stream)
Synchronize the stream
stream. synchronize ()
Return the host output.

return h output

An engine can have multiple execution contexts, allowing one set of weights to
be used for multiple overlapping inference tasks. For example, you can process
images in parallel CUDA streams using one engine and one context per stream.
Each context will be created on the same GPU as the engine.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 27

Chapter 4.
EXTENDING TENSORRT WITH CUSTOM

LAYERS

TensorRT supports many types of layers and its functionality is continually extended;
however, there may be cases in which the layers supported do not cater to the
specific needs of a model. In this case, users can extend TensorRT functionalities by
implementing custom layers using the IP1luginV2 class for the C++ and Python APIL
Custom layers, often referred to as plugins, are implemented and instantiated by an
application, and their lifetime must span their use within a TensorRT engine.

4.1. Adding Custom Layers Using The C++ API

A custom layer is implemented by extending the IP1uginVv2 and IPluginCreator

classes.

IPluginVv2
IPluginV2 is the base class you should implement for your plugins. It includes
versioning support and helps enable custom layers that support other data formats
besides NCHW and single precision.

IPluginCreator
IPluginCreator isa creator class for custom layers using which, users can get
plugin name, version and plugin field parameters. It also provides methods to create
the plugin object during network build phase and deserialize it during inference.

In previous versions of TensorRT, you implemented IPluginExt for custom layers.
While this API is still supported, we highly encourage you to move to IPluginv2 to be
able to use all the new plugin functionalities.

TensorRT also provides the ability to register a plugin by calling

REGISTER TENSORRT_ PLUGIN (pluginCreator) which statically registers the Plugin
Creator to the Plugin Registry. During runtime, the Plugin Registry can be queried using
the extern function getPluginRegistry () . The Plugin Registry stores a pointer to

all the registered Plugin Creators and can be used to look up a specific Plugin Creator
based on the plugin name and version. TensorRT library contains plugins that can be

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 28

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_creator.html

Extending TensorRT With Custom Layers

loaded into your application. The version of all these plugins is set to 1. The names of
these plugins are:

RPROI_TRT
Normalize TRT
PriorBox TRT
GridAnchor_ TRT
NMS_TRT
LReLU_TRT
Reorg TRT
Region_TRT
Clip TRT

vV Vv v vV v v v v

To use TensorRT registered plugins in your application, the 1ibnvinfer plugin.so
library must be loaded and all plugins must be registered. This can be done by calling
initLibNvInferPlugins (void* logger, const char* libNamespace) () in
your application code.

If you have your own plugin library, you can include a similar entry point to register
all plugins in the registry under a unique namespace. This ensures there are no plugin
name collisions during build time across different plugin libraries.

For more information about these plugins, see the NvInferPlugin.h File Reference.

Using the Plugin Creator, the IPluginCreator: :createPlugin () function can be
called which returns a plugin object of type IP1uginV2. This object can be added to the
TensorRT network using addPluginV2 () which creates and adds a layer to a network,
and then binds the layer to the given plugin. The method also returns a pointer to the
layer (of type IPluginV2Layer), which can be used to access the layer or the plugin
itself (via getPlugin()).

For example, to add a plugin layer to your network with plugin name set to
pluginName and version set to pluginVersion, you can issue the following;:

//Use the extern function getPluginRegistry to access the global TensorRT Plugin
Registry
auto creator = getPluginRegistry () ->getPluginCreator (pluginName, pluginVersion) ;
const PluginFieldCollection* pluginFC = creator->getFieldNames () ;
//populate the field parameters (say layerFields) for the plugin layer
PluginFieldCollection *pluginData = parseAndFillFields (pluginFC, layerFields)
//create the plugin object using the layerName and the plugin meta data
IPluginV2 *pluginObj = creator->createPlugin(layerName, pluginData) ;
//add the plugin to the TensorRT network using the network API
auto layer = network.addPluginV2 (&inputs[0], int(inputs.size()), pluginObj) ;
(build rest of the network and serialize engine)
pluginObj->destroy() // Destroy the plugin object
(destroy network, engine, builder)

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 29

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/_nv_infer_plugin_8h.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0c6e2a0b4e1c8a4df1722a24cc7c0473

Extending TensorRT With Custom Layers

. (free allocated pluginData)

pluginData should allocate the PluginField entries on the heap before passing to
createPlugin.

The createPlugin method above will create a new plugin object on the heap and
return the pointer to it. Ensure you destroy the pluginObj, as shown above, to avoid
a memory leak.

During serialization, the TensorRT engine will internally store the plugin type,

plugin version and namespace (if it exists) for all IPluginV2 type plugins. During
deserialization, this information is looked up by the TensorRT engine to find the Plugin
Creator from the Plugin Registry. This enables the TensorRT engine to internally call
the IPluginCreator: :deserializePlugin () method. The plugin object created
during deserialization will be destroyed internally by the TensorRT engine by calling
IPluginV2: :destroy () method.

In previous versions of TensorRT, you had to implement the

nvinferl: :IPluginFactory class to call the createPlugin method during
deserialization. This is no longer necessary for plugins registered with TensorRT and
added using addPluginV2.

4.1.1. Example 1: Adding A Custom Layer Using C++ For
Caffe

To add a custom layer in C++, implement the IP1luginExt class. For Caffe

based networks, if using the TensorRT Caffe Parser, you will also implement the
nvcaffeparserl: : IPluginFactoryExt (for plugins of type IPluginExt) and
nvinferl: :IPluginFactory classes. For more information, see Using Custom Layers
When Importing A Model From A Framework.

The following sample code adds a new plugin called FooPlugin:

class FooPlugin : public IPluginExt
{

...implement all class methods for your plugin

};

class MyPluginFactory : public nvinferl::IPluginFactory, public
nvcaffeparserl: :IPluginFactoryExt

{

..implement all factory methods for your plugin
};
If you are using plugins registered with the TensorRT plugin registry of type
IPluginV2, then you do not need to implement the nvinferl: : IPluginFactory
class. However, you do need to implement the nvcaffeparserl: :IPluginFactoryV2
and IPluginCreator classes instead and register them.

class FooPlugin : public IPluginV2
{

...implement all class methods for your plugin

};

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 30

Extending TensorRT With Custom Layers

class FooPluginFactory : public nvcaffeparserl::IPluginFactoryV2
{

virtual nvinferl::IPluginV2* createPlugin(...)

{

...create and return plugin object of type FooPlugin

}

bool isPlugin(const char* name)

{

...check if layer name corresponds to plugin

}
}

class FooPluginCreator : public IPluginCreator

{

...implement all creator methods here
}i
REGISTER TENSORRT_ PLUGIN (FooPluginCreator) ;

The following samples illustrate how to add a custom plugin layer using C++ for Caffe
networks:

» samplePlugin has a user implemented plugin
» sampleFasterRCNN uses plugins registered with the TensorRT Plugin Registry

4.1.2. Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using C++

In order to run TensorFlow networks with TensorRT, you must first convert it to the UFF
format.

The following steps add a custom plugin layer in C++ for TensorFlow networks:

1. Implement the IPluginV2 and IPluginCreator classes as shown in Example 1:
Adding A Custom Layer Using C++ For Caffe.

2. Map the TensorFlow operation to the plugin operation. You can use graphsurgeon
for this. For example, refer to the following code snippet to map the TensorFlow
Relu6 operation to a plugin:

import graphsurgeon as gs

my relu6 = gs.create plugin node (name="MyRelu6”, op="Clip TRT”, clipMin=0.0,
clipMax=6.0)

Namespace_plugin _map = { “tf_relu6” : my relu6 }

def preprocess(dynamic_graph) :

dynamic_graph.collapse namespaces (namespace plugin_map)

In the above code, t£_relué is the name of the Relu6 node in the TensorFlow

graph. It maps the tf_relu6 node to a custom plugin node with operation

“Clip_TRT” which is the name of the plugin to be used. Save the code above to a file

called config.py. If the plugin layer expects parameters, they should be passed in

as arguments to gs.create_plugin node. In this case, clipMin and clipMax are

the parameters expected by the clip plugin.

3. Call the UFF converter with the preprocess -p flag set:

convert-to-uff frozen inference_graph.pb -p config.py -t

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 31

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html

Extending TensorRT With Custom Layers

This will generate a UFF file with the TensorFlow operations replaced by TensorRT
plugin nodes.

4. Run the pre-processed and converted UFF file with TensorRT using the UFF parser.
For details, see Using Custom Layers When Importing A Model From A Framework.

The sampleUffSSD sample illustrates how to add a custom layer that is
not supported in UFF using C++. See config.py in the sample folder for a
demonstration of how to pre-process the graph.

4.2. Adding Custom Layers Using The Python API

Although the C++ APl is the preferred language to implement custom layers; due to
easily accessing libraries like CUDA and cuDNN, you can also work with custom layers
in a Python applications.

You can use the C++ API to create a custom layer, package the layer using pybind11
in Python, then load the plugin into a Python application. For more information, see
Creating A Network Definition In Python.

The same custom layer implementation can be used for both C++ and Python. For more
information, see the fc_plugin_caffe_mnist Python sample located in the /usr/src/
tensorrt/samples/fc_plugin_caffe mnist/ directory.

4.2.1. Example 1: Adding A Custom Layer to a TensorRT
Network Using Python

Custom layers can be added to any TensorRT network in Python using plugin nodes.
The Python API has a function called add_plugin_v2 which enables you to add a
plugin node to a network. The following example illustrates this. It creates a simple
TensorRT network and adds a Leaky ReLU plugin node by looking up TensorRT Plugin
Registry.

import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger ()

trt.init libnvinfer plugins(TRT_LOGGER, '')
PLUGIN_CREATORS = trt.get plugin_ registry() .plugin_creator_list

def get trt_plugin(plugin_name) :
plugin = None
for plugin_creator in PLUGIN_CREATORS:
if plugin_creator.name == plugin name:
lrelu_slope_ field = trt.PluginField("neg_slope", np.array([0.1],
dtype=np.float32), trt.PluginFieldType.FLOAT32)
field collection =
trt.PluginFieldCollection([lrelu_slope field])
plugin = plugin_creator.create_plugin(name=plugin name,
field collection=field collection)
return plugin

def main() :

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 32

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_plugin_v2

Extending TensorRT With Custom Layers

with trt.Builder (TRT_LOGGER) as builder, builder.create_network() as

network:

builder.max workspace size = 2**20

input_layer = network.add input(name="input_ layer", dtype=trt.float32,
shape=(1, 1))

lrelu = network.add plugin v2 (inputs=[input_layer],
plugin=get_trt plugin("LReLU TRT"))

lrelu.get output(0) .name = "outputs"

network.mark output(lrelu.get output(0))

4.2.2. Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using Python
TensorFlow networks can be converted to UFF format and run with TensorRT using

the Python interface. In order to do this, we make use of the graphsurgeon APL If you
are writing your own plugin, you need to implement it in C++ by implementing the

IPluginExt and IPluginCreator classes as shown in Example 1: Adding A Custom
Layer Using C++ For Caffe.

The following steps illustrate how you can use the UFF Parser to run custom layers
using plugin nodes registered with the TensorRT Plugin Registry.

1. Register the TensorRT plugins by calling
trt.init libnvinfer plugins(TRT_LOGGER, '') (or load the .so file where
you have registered your own plugin).

2. Prepare the network and check the TensorFlow output:

tf sess = tf.InteractiveSession()

tf_input tf.placeholder (tf.float32, name="placeholder")

tf lrelu tf.nn.leaky relu(tf input, alpha=lrelu_alpha, name="tf lrelu")
tf _result = tf_sess.run(tf_ lrelu, feed dict={tf_input: lrelu args})

tf sess.close()

3. Prepare the namespace mappings. The op name LReLU_TRT corresponds to the
Leaky ReLU plugin shipped with TensorRT.

trt_lrelu = gs.create_plugin_node (name="trt_ lrelu", op="LReLU_ TRT",
negSlope=lrelu alpha)
namespace_plugin map = {
"tf lrelu": trt_lrelu
}

4. Transform the TensorFlow graph using graphsurgeon and save to UFF:

dynamic_graph = gs.DynamicGraph (tf_lrelu.graph)
dynamic_graph.collapse namespaces (namespace plugin_map)

5. Run the UFF parser and compare results with TensorFlow:

uff model = uff.from tensorflow(dynamic_graph.as_graph def(), ["trt lrelu"],
output_filename=model path, text=True)

parser = trt.UffParser ()

parser.register_input("placeholder", [lrelu_args.size])

parser.register output("trt lrelu")

parser.parse (model path, trt network)

For more information, see the uff custom_plugin sample.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 33

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html

Extending TensorRT With Custom Layers

4.3. Using Custom Layers When Importing A Model
From A Framework

TensorRT parsers use the layer operation field to identify if a particular layer in the
network is a TensorRT supported operation.

TensorFlow

Compared to previous releases of TensorRT, there are several changes with how custom
layers in TensorFlow can be run with the TensorRT UFF parser. For TensorFlow models,
use the UFF converter to convert your graph to a UFF file. In this process, if the network
contains plugin layers it is also necessary to map the operation field of those layers to
the corresponding registered plugin names in TensorRT. These plugins can either be
plugins shipped with TensorRT or custom plugins that you have written. The plugin
field names in the network should also match the fields expected by the plugin. This can
be done using graphsurgeon, as explained in Preprocessing A TensorFlow Graph Using
the Graph Surgeon API and as demonstrated in sampleUffSSD by using a contfig file
with the UFF converter.

The UFF Parser will look up the Plugin Registry for every unsupported operation.

If it finds a match with any of the registered plugin names, the parser will parse the
plugin field parameters from the input network and create a plugin object using them.
This object is then added to the network. In previous versions of TensorRT, you had to
implement the nvuffparser: : IPluginFactoryExt and manually pass the plugin
parameters to the createPlugin (.. .) function. Although this flow can still be
exercised, it is no longer necessary with the new additions to the Plugin API. For more
information, see:

» IPluginV2 and IPluginCreator in the C++ API
» IPluginV2 and IPluginCreator in the Python API

Caffe

For Caffe models, use the nvcaffeparserl: : IPluginFactoryV2 class. The
setPluginFactoryV2 method of the parser sets the factory in the parser to enable
custom layers. While parsing a model description, for each layer, the parser invokes
isPluginV2 to check with the factory if the layer name corresponds to a custom layer; if
it does, the parser instantiates the plugin invoking createPlugin with the name of the
layer (so that the factory can instantiate the corresponding plugin), a Weights array, and

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 34

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_creator.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginCreator.html

Extending TensorRT With Custom Layers

the number of weights as arguments. There is no restriction on the number of plugins
that a single factory can support if they are associated with different layer names.

For the Caffe parser, if setPluginFactoryV2 and IPluginFactoryV2 are used,
the plugin object created during deserialization will be internally destroyed by the
engine by calling IPluginExt: :destroy (). You are only responsible for destroying
the plugin object created during network creation step as shown in Adding Custom
Layers Using The C++ API.

The samplePlugin sample illustrates how to extend
nvcaffeparserl: : IPluginFactoryExt to use custom layers, while sampleUffSSD
uses the UFF Parser to use custom layers.

For the Python usage of custom layers with TensorRT, refer to the fc_plugin_caffe_mnist
sample for Caffe networks, and the uff_custom_plugin and uff_ssd samples for UFF
networks.

4.3.1. Example 1: Adding A Custom Layer To A
TensorFlow Model

In order to run a TensorFlow network with TensorRT, you must first convert it to the
UFF format. During the conversion process, custom layers can be marked as plugin
nodes using the graphsurgeon utility.

The UFF converter then converts the processed graph to the UFF format which is then
run by the UFF Parser. The plugin nodes are then added to the TensorRT network by the
UFF Parser.

For details using the C++ AP see Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using C++.

For details using the Python API, see Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using Python. Additionally, the uff ssd Python sample demonstrates
an end-to-end workflow in Python for running TensorFlow object detection networks
using TensorRT.

4.4, Plugin API Description

All new plugins should implement both the IP1uginv2 and IPluginCreator classes.
In addition, new plugins should also call the REGISTER_TENSORRT PLUGIN(...)
macro to register the plugin with the TensorRT Plugin Registry or create an init
function equivalent to initLibNvInferPlugins ().

4.4.1. Migrating Plugins From TensorRT 5.0.0 RC To
TensorRT 5.0.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 35

Extending TensorRT With Custom Layers

The I1P1uginVv2 plugin class has been added. The IPluginExt class has been
reverted to be made compatible with the version in 4.0 GA. This means that the
functions added to IPluginExt as mentioned in Migrating Plugins From TensorRT 4.0.1
To TensorRT 5.0.0 RC, no longer exist in the class and should be removed from your
implementation if you want to use IPluginExt.

To use the new features of the plugin registry, implement IP1uginv2. See the API
description in IPluginV2 API Description for details on the API.

4.4.2. Migrating Plugins From TensorRT 4.0.1 To
TensorRT 5.0.0 RC

TensorRT 5.0.x introduces four new methods to the IP1luginExt class. If you have
a custom plugin implemented of type IPluginExt, you must implement these new
methods and re-compile your code, see samplePlugin for an example. The description of
these methods are as follows:
virtual void const char* getPluginType() const = 0
This method returns the plugin type or name of the plugin implemented.
virtual void const char* getPluginVersion() const = 0
This method returns the plugin version.
virtual void destroy() = 0
This method is used to destroy the plugin object and/or other memory allocated each
time a new plugin object is created. It is called whenever the builder, network, or
engine is destroyed.
virtual IPluginExt* clone() const = 0
This method clones the plugin object. This method returns a new plugin object after
copying over the plugin parameters, if any.

For the simplest migration, a typical implementation will choose unique values for type
and version. clone () would call a copy constructor and destroy () would call the
object’s destructor.

4.4.3. IP1luginVv2 API| Description

The following section describes the functions of the IP1uginVv2 class.

To connect a plugin layer to neighboring layers and setup input and output data
structures, the builder checks for the number of outputs and their dimensions by calling
the following plugins methods:
getNbOutputs

Used to specify the number of output tensors.
getOutputDimensions

Used to specify the dimensions of an output as a function of the input dimensions.
supportsFormat

Used to check if a plugin supports a given data format.

Plugin layers can support four data formats and layouts, for example:

» NCHW single (FP32), half precision (FP16) and integer (INT32) tensors
» NC/2HW2 and NHWC8 half precision (FP16) tensors

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 36

Extending TensorRT With Custom Layers

The formats are enumerated by PluginFormatType.

Plugins that do not compute all data in place and need memory space in addition to
input and output tensors can specify the additional memory requirements with the
getWorkspaceSize method, which is called by the builder to determine and pre-
allocate scratch space.

During both build and inference time, the plugin layer is configured and executed,
possibly multiple times. At build time, to discover optimal configurations, the layer is
configured, initialized, executed, and terminated. Once the optimal format is selected
for a plugin, the plugin is once again configured, and then it will be initialized once
and executed as many times as needed for the lifetime of the inference application,
and finally terminated when the engine is destroyed. These steps are controlled by the
builder and the engine using the following plugin methods:
configureWithFormat
Communicates input and output number, dimensions, datatype, format, and
maximum batch size. At this point, the plugin sets up its internal state, and select the
most appropriate algorithm and data structures for the given configuration.
initialize
The configuration is known at this time and the inference engine is being created, so
the plugin can set up its internal data structures and prepare for execution.
enqueue
Encapsulates the actual algorithm and kernel calls of the plugin, and provides the
runtime batch size, pointers to input, output, and scratch space, and the CUDA
stream to be used for kernel execution.
terminate
The engine context is destroyed and all the resources held by the plugin should be
released.

In addition, the plugins also implement the following methods:

clone
This is called every time a new builder, network or engine is created which includes
this plugin layer. It should return a new plugin object with the correct parameters.

destroy
Used to destroy the plugin object and/or other memory allocated each time a new
plugin object is created. It is called whenever the builder or network or engine is
destroyed.

set/getPluginNamespace
This method is used to set the library namespace that this plugin object belongs to
(default can be ""). All plugin objects from the same plugin library should have the
same namespace.

4.4.4. T1PluginCreator API Description

The following methods in the IP1luginCreator class are used to find and create the
appropriate plugin from the Plugin Registry:
getPluginName

This returns the plugin name and should match the return value of

IPluginExt: :getPluginType.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 37

Extending TensorRT With Custom Layers

getPluginVersion
Returns the plugin version. For all internal TensorRT plugins, this defaults to 1.
getFieldNames
In order to successfully create a plugin, it is necessary to know all the field
parameters of the plugin. This method returns the PluginFieldCollection
struct with the PluginField entries populated to reflect the field name and
PluginFieldType (the data should point to nullptr).
createPlugin
This method is used to create the plugin using the PluginFieldCollection
argument. The data field of the PluginField entries should be populated to point to
the actual data for each plugin field entry.
deserializePlugin
This method is called internally by the TensorRT engine based on the plugin name
and version. It should return the plugin object to be used for inference.
set/getPluginNamespace
This method is used to set the namespace that this creator instance belongs to (default
can be).

4.5. Best Practices For Custom Layers

Converting User-Defined Layers

To create a custom layer implementation as a TensorRT plugin, you need to implement
the IP1uginV2 class and the IPluginCreator class for your plugin.

For more information about both API classes, see Plugin API Description.

For Caffe networks, see Example 1: Adding A Custom Layer Using C++ For Caffe.
For TensorFlow (UFF) networks, see Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using C++.

Using The UFF Plugin API

For an example of how to use plugins with UFF in both C++ and Python, see Example 1:
Adding A Custom Layer Using C++ For Caffe and Example 2: Adding A Custom Layer
That Is Not Supported In UFF Using Python.

Debuggin Custom Layer Issues

Memory allocated in the plugin must be freed to ensure no memory leak. If

resources are acquired in the initialize () function, they need to be released in the
terminate () function. All other memory allocations should be freed preferably in

the plugin class destructor or in the destroy () method. Adding Custom Layers Using
The C++ API outlines this in detail and also provides some notes for best practices when
using plugins.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 38

Chapter 5.
WORKING WITH MIXED PRECISION

Mixed precision is the combined use of different numerical precisions in a computational
method. TensorRT can store weights and activations, and execute layers, in 32-bit
floating point, 16-bit floating point, or quantized 8-bit integer.

Using precision lower than FP32 reduces memory usage, allowing deployment of larger
networks. Data transfers take less time, and compute performance increases, especially
on GPUs with Tensor Core support for that precision.

By default, TensorRT uses FP32 inference, but it also supports FP16 and INT8. While
running FP16 inference, it automatically converts FP32 weights to FP16 weights.

You can check the supported precision on a platform using the following APIs:

if (builder->platformHasFastFpl6()) { .. };

if (builder->platformHasFastInt8()) { .. };

Specifying the precision for a network defines the minimum acceptable precision for the
application. Higher precision kernels may be chosen if they are faster for some particular
set of kernel parameters, or if no lower-precision kernel exists. You can set the builder
flag setStrictTypeConstraints to force the network or layer precision, which may
not have optimal performance. Usage of this flag is only recommended for debugging
purposes.

You can also choose to set both INT8 and FP16 mode if the platform supports it.
TensorRT will choose the most performance optimal kernel to perform inference.

5.1. Mixed Precision Using The C++ API

5.1.1. Setting The Layer Precision Using C++

If you want to run certain layers a specific precision, you can set the precision per layer
using the following API:

layer->setPrecision (nvinferl: :DataType: :kINTS8)

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 39

Working With Mixed Precision

This gives the layer’s inputs and outputs a preferred type. You can choose a different
preferred type for an output of a layer using:

layer->setOutputType (out_tensor_ index, nvinferl::DataType: :kINT8)

TensorRT has very few implementations that run in heterogeneous precision: in
TensorRT 5.0 the only ones are INT8 implementations for Convolution, Deconvolution,
and FullyConnected layers that produce FP32 output.

Setting the precision, requests TensorRT to use a layer implementation whose inputs
and outputs matches the preferred types, inserting reformat operations if necessary.

By default, TensorRT will choose such an implementation only if it results in a higher-
performance network. If an implementation at a higher precision is faster, TensorRT will
use it, and issue a warning. Thus, you can detect whether using lower precision would
result in unexpected performance loss.

You can override this behavior by making the type constraints strict.

builder->setStrictTypeConstraints (true) ;

If the constraints are strict, TensorRT will obey them unless there is no implementation
with the preferred precision constraints, in which case it will issue a warning and use the
fastest available implementation.

If the precision is not explicitly set, TensorRT will select the computational precision
based on performance considerations and the flags specified to the builder.

See sampleINT8API for an example of running mixed precision inference with these
APlIs.

5.1.2. Enabling FP16 Inference Using C++

Setting the builder’s Fp16Mode flag indicates that 16-bit precision is acceptable.

builder->setFpl6Mode (true) ;

This flag allows, but does not guarantee, that 16-bit kernels will be used when building
the engine. You can choose to force 16-bit precision by setting the following builder flag:

builder->setStrictTypeConstraints (true) ;

Weights can be specified in FP16 or FP32, and they will be converted automatically to
the appropriate precision for the computation.

See sampleGoogleNet and sampleMNIST for examples of running FP16 inference.

5.1.3. Enabling INT8 Inference Using C++

Setting the builder flag enables INT8 precision inference.

builder->setInt8Mode (true) ;

In order to perform INTS inference, FP32 activation tensors and weights need to be
quantized. In order to represent 32-bit floating point values and INT 8-bit quantized

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 40

Working With Mixed Precision

values, TensorRT needs to understand the dynamic range of each activation tensor. The
dynamic range is used to determine the appropriate quantization scale.

TensorRT supports symmetric quantization with quantization scale calculated using
absolute maximum dynamic range values.

TensorRT needs the dynamic range for each tensor in the network. There are two ways
in which the dynamic range can be provided to the network:

» manually set the dynamic range for each network tensor using setDynamicRange
API

Or

» use INTS calibration to generate per tensor dynamic range using the calibration
dataset.

The dynamic range API can also be used along with INT8 calibration, such that
manually setting the range will take precedence over the calibration generated dynamic
range. Such scenario is possible if INTS8 calibration does not generate a satisfactory
dynamic range for certain tensors.

For more information, see sampleINT8API.

5.1.3.1. Setting Per-Tensor Dynamic Range Using C++

You can generate per tensor the dynamic range using various techniques. The basic
technique includes recording per tensor the min and max values during the last epoch of
training, or using quantization aware training. TensorRT expects you to set the dynamic
range for each network tensor to perform INT8 inference. After you have the dynamic
range information, you can set the dynamic range as follows:

ITensor* tensor = network->getLayer (layer_index)->getOutput (output_index) ;
tensor->setDynamicRange (min_float, max float);

You also need to set the dynamic range for the network input:

ITensor* input_tensor = network->getInput (input_index) ;
input_tensor->setDynamicRange (min_float, max_ float);

One way to achieve this, is to iterate through the network layers and tensors and set per
tensor the dynamic range. For more information, see sampleINT8APL.

5.1.3.2. INT8 Calibration Using C++

INTS calibration provides an alternative to generate per activation tensor the dynamic
range. This methods can be categorized as post training technique to generate the
appropriate quantization scale. The process of determining these scale factors is called
calibration, and requires the application to pass batches of representative input for the
network (typically batches from the training set.) Experiments indicate that about 500
images is sufficient for calibrating ImageNet classification networks.

To provide calibration data to TensorRT, implement the IInt8Calibrator interface.
The builder invokes the calibrator as follows:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 41

Working With Mixed Precision

» First, it calls getBatchSize () to determine the size of the input batch to expect

» Then, it repeatedly calls getBatch () to obtain batches of input. Batches should
be exactly the batch size by getBatchSize (). When there are no more batches,
getBatch () should return false.

Calibration can be slow, therefore, the IInt8Calibrator interface provides methods for
caching intermediate data. Using these methods effectively requires a more detailed
understanding of calibration.

When building an INT8 engine, the builder performs the following steps:

1. Builds a 32-bit engine, runs it on the calibration set, and records a histogram for each
tensor of the distribution of activation values.

2. Builds a calibration table from the histograms.
3. Builds the INT8 engine from the calibration table and the network definition.

The calibration table can be cached. Caching is useful when building the same network
multiple times, for example, on multiple platforms. It captures data derived from the
network and the calibration set. The parameters are recorded in the table. If the network
or calibration set changes, it is the application’s responsibility to invalidate the cache.

The cache is used as follows:
» if a calibration table is found, calibration is skipped, otherwise:

» the calibration table is built from the histograms and parameters
» then the INTS8 network is built from the network definition and the calibration table.

Cached data is passed as a pointer and length.
After you have implemented the calibrator, you can configure the builder to use it:

builder->setInt8Calibrator (calibrator) ;

It is possible to cache the output of calibration using the writeCalibrationCache ()
and readCalibrationCache () methods. The builder checks the cache prior to
performing calibration, and if data is found, calibration is skipped.

For more information about configuring INT8 Calibrator objects, see sampleINTS.

5.2. Mixed Precision Using The Python API

5.2.1. Setting The Layer Precision Using Python

In Python, you can specify the layer precision using the precision flag:

layer.precision = trt.int8

You can set the output tensor data type to conform with the layer implementation:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 42

Working With Mixed Precision

layer.set output_type (out_tensor_index, trt.int8)

Ensure that the builder understands to force the precision:

builder.strict_type_ constraints = true

5.2.2. Enabling FP16 Inference Using Python
In Python, set the £p16_mode flag as follows:

builder.fpl6_mode = True

Force 16-bit precision by setting the builder flag:

builder.strict_ type constraints = True

5.2.3. Enabling INT8 Inference Using Python

Enable INT8 mode by setting the builder flag:

trt builder.int8 mode = True

Similar to the C++ API, you can choose per activation tensor the dynamic range either
using set_dynamic_range or using INT8 calibration.

INTS calibration can be used along with the dynamic range APIs. Setting the dynamic
range manually will override the dynamic range generated from INT8 calibration.

5.2.3.1. Setting Per-Tensor Dynamic Range Using Python

In order to perform INTS8 inference, you must set the dynamic range for each network
tensor. You can derive the dynamic range values using various methods including
quantization aware training or simply recording per tensor the min and max values
during the last training epoch. To set the dynamic range use:

layer = network[layer index]
tensor = layer.get output (output_index)
tensor.set_dynamic_range (min_float, max_float)

You also need to set the dynamic range for the network input:

input_tensor = network.get input (input_index)
input_tensor.set dynamic_range (min_float, max float)

5.2.3.2. INT8 Calibration Using Python

INTS calibration provides an alternative approach to generate per activation tensor the
dynamic range. This method can be categorized as a post training technique to generate
the appropriate quantization scale.

The following steps illustrate how to create an INT8 Calibrator object using the Python
API. By default, TensorRT supports INT8 Calibration.

1. Import TensorRT:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 43

Working With Mixed Precision

import tensorrt as trt

2. Similar to test/validation files, use set of input files as calibration files dataset.
Make sure the calibration files are representative of the overall inference data files.
For TensorRT to use the calibration files, we need to create batchstream object.
Batchstream object will be used to configure the calibrator.

NUM_IMAGES PER BATCH = 5
batchstream = ImageBatchStream (NUM IMAGES PER BATCH, calibration_ files)

3. Create an Int8_calibrator object with input nodes names and batch stream:

Int8 calibrator = EntropyCalibrator (["input_node name"], batchstream)
4. Set INT8 mode and INTS8 Calibrator:
trt builder.int8_ calibrator = Int8 calibrator

The rest of the logic for engine creation and inference is similar to Importing From
ONNX Using Python.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 44

Chapter 6.
WORKING WITH DLA

NVIDIA DLA (Deep Learning Accelerator) is a fixed function accelerator engine
targeted for deep learning operations. DLA is designed to do full hardware acceleration
of convolutional neural networks. DLA supports various layers such as convolution,
deconvolution, fully-connected, activation, pooling, batch normalization, etc.

For more information about DLA support in TensorRT layers, see DLA Supported
Layers. The trtexec tool has additional arguments to run networks on DLA, see
Command Line Wrapper. To run the AlexNet network on DLA using trtexec, issue:

./trtexec --deploy=data/AlexNet/AlexNet N2.prototxt --output=prob --
useDLACore=1 --fpl6é --allowGPUFallback

6.1. Running On DLA During TensorRT Inference

The TensorRT builder can be configured to enable inference on DLA. DLA support is
currently limited to networks running in FP16 mode. The DeviceType enumeration is
used to specify the device that the network or layer will execute on. The following API
functions in the IBuilder class can be used to configure the network to use DLA:
setDeviceType (ILayer* layer, DeviceType deviceType)

This function can be used to set the deviceType that the layer must execute on.
getDeviceType (const ILayer* layer)

This function can be used to return the deviceType that this layer will execute on. If

the layer is executing on the GPU, this will return DeviceType: : kGPU.
canRunOnDLA (const ILayer* layer)

This function can be used to check if a layer can run on DLA.
setDefaultDeviceType (DeviceType deviceType)

This function sets the default deviceType to be used by the builder. It ensures that

all the layers that can run on DLA will run on DLA, unless setDeviceType is used to

override the deviceType for a layer.
getDefaultDeviceType ()

This function returns the default deviceType which was set by

setDefaultDeviceType.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 45

Working With DLA

isDeviceTypeSet (const ILayer* layer)
This function checks whether the deviceType has been explicitly set for this layer.
resetDeviceType (ILayer* layer)
This function resets the deviceType for this layer. The value is reset to the
deviceType that is specified by setDefaultDeviceType or DeviceType: : kGPU if
none specified.
getMaxDLABatchSize (DeviceType deviceType)
This function returns the maximum batch size DLA can support.

For any tensor, the total volume of index dimensions combined with the requested
batch size should not exceed the value returned by this function.

allowGPUFallback (bool setFallBackMode)
This function notifies the builder to use GPU if a layer that was supposed to run on
DLA cannot run on DLA. For more information, see GPU Fallback Mode.

reset (nvinferl: : INetworkDefinition& network)
This function can be used to reset the builder state, which sets the deviceType for
all layers to be DeviceType: :kGPU. After reset, the builder can be re-used to build
another network with a different DLA config.

Caution In TensorRT 5.0, this resets the state for all networks and not the current
network.

If the builder is not accessible, such as in the case where a plan file is being loaded online
in an inference application, then the DLA to be utilized can be specified differently by
using DLA extensions to the IRuntime. The following API functions in the IRuntime
class can be used to configure the network to use DLA:
getNbDLACores ()

This function returns the number of DLA cores that are accessible to the user.
setDLACore (int dlaCore)

The DLA core to execute on. Where dlaCore is a value between 0 and

getNbDLACores () - 1. The default value is 0.

6.1.1. Example 1: sampleMNIST With DLA

This section provides details on how to run a TensorRT sample with DLA enabled.
The sampleMNIST sample demonstrates how to import a trained Caffe model, build
the TensorRT engine, serialize and deserialize the engine and finally use the engine to
perform inference.

The sample first creates the builder:

auto builder =
SampleUniquePtr<nvinferl: :IBuilder> (nvinferl: :createInferBuilder (gLogger)) ;
if (!'builder) return false;
builder->setMaxBatchSize (batchSize) ;
builder->setMaxWorkspaceSize (16_MB) ;

Then, enable GPUFallback mode:

builder->allowGPUFallback (true) ;

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 46

Working With DLA

builder->setFpl6Mode (true) ;

Enable execution on DLA, where deviceType specifies the DLA core to execute on:

builder->setDefaul tDeviceType (deviceType) ;

With these additional changes, sampleMNIST is ready to execute on DLA. To run
sampleMNIST with DLA, use the following command:

./sample mnist --useDLACore=1

6.1.2. Example 2: Enable DLA Mode For A Layer During
Network Creation

In this example, let’s create a simple network with Input, Convolution and Output.

1.

Create the builder and the network:

IBuilder* builder = createInferBuilder (glLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

Add the Input layer to the network, with the input dimensions.
auto data = network->addInput (INPUT BLOB_NAME, dt, Dims3{1, INPUT H,
INPUT_W}) ;

Add the Convolution layer with hidden layer input nodes, strides, and weights for
filter and bias.

auto convl = network->addConvolution (*data->getOutput(0), 20, DimsHW{5, 5},
weightMap["convlfilter"], weightMap|["convlbias"]) ;
convl->setStride (DimsHW{1l, 1});

Set the convolution layer to run on DLA:

if (canRunOnDLA (convl))

{
builder->setFpl6Mode (true) ;
builder->setDeviceType (convl, DeviceType: :kDLA) ;

}
Mark the output:

network->markOutput (*convl->getOutput (0)) ;
Set the DLA engine to execute on:

engine->setDLACore (0)

6.2. DLA Supported Layers

This section lists the layers supported by DLA along with the constraints associated with
each layer.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 47

Working With DLA

Generic restrictions while running on DLA (applicable to all layers)

» Max batch size supported is 32.

Batch size for DLA is the product of all index dimensions except the CHW
dimensions. For example, if input dimensions are NPQRS, the effective batch size
iS N*P.

» Input and output tensor data format should be FP16.

Layer specific restrictions
Convolution, Deconvolution, and Fully Connected Layers
Convolution and Deconvolution Layers

» Width and height of kernel size must be in the range [1, 32]
» Width and height of padding must be in the range [0, 31]

» Width and height of stride must be in the range [1,8] for Convolution Layer and
[1,32] for Deconvolution layer

» Number of output maps must be in the range [1, 8192]
» Axis mustbel

» Grouped and dilated convolution supported. Dilation values must be in the range
[1,32]

Pooling Layer

» Operations supported: kMIN, kMAX, kAVERAGE

» Width and height of the window size must be in the range [1, 8]
» Width and height of padding must be in the range [0, 7]

» Width and height of stride must be in the range [1, 16]

Activation Layer
» Functions supported: ReLU, Sigmoid, Hyperbolic Tangent
» Negative slope not supported for ReLU
ElementWise Layer
» Operations supported: Sum, Product, Max, and Min
Scale Layer
» Mode supported: Uniform, Per-Channel, and Elementwise
LRN (Local Response Normalization) Layer

» Window size is configurable to 3, 5, 7, or 9
» Normalization region supported is: ACROSS_CHANNELS

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 48

Working With DLA

Concatenation Layer

» DLA supports concatenation only along the channel axis

6.3. GPU Fallback Mode

The GPUFallbackMode sets the builder to use GPU if a layer that was marked to run on
DLA could not run on DLA. A layer may not run on DLA due to the following reasons:

The layer operation is not supported on DLA.
The parameters specified are out of supported range for DLA.
The given batch size exceeds the maximum permissible DLA batch size. For more
information, see DLA Supported Layers.

4. A combination of layers in the network causes the internal state to exceed what the
DLA is capable of supporting.

If the GPUFallbackMode is set to false, a layer set to execute on DLA, that couldn't
run on DLA will result in an error. However, with GPUFallbackMode set to true, it will
continue to execute on the GPU instead, after reporting a warning.

Similarly, if defaultDeviceType is set to DeviceType: : kDLA and GPUFallbackMode
is set to £alse, it will result in an error if any of the layers can't run on DLA. With
GPUFallbackMode set to true, it will report a warning and continue executing on the
GPU.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 49

Chapter 7.
DEPLOYING A TENSORRT OPTIMIZED

MODEL

After you've created a plan file containing your optimized inference model, you can
deploy that file into your production environment. How you create and deploy the plan
file will depend on your environment. For example, you may have a dedicated inference
executable for your model that loads the plan file and then uses the TensorRT Execution
API to pass inputs to the model, execute the model to perform inference, and finally
read outputs from the model.

This section discusses how TensorRT can be deployed in some common deployment
environments.

7.1. Deploying In The Cloud

One common cloud deployment strategy for inferencing is to expose a model through a
server that implements an HTTP REST or gRPC endpoint for the model. A remote client
can then perform inferencing by sending a properly formatted request to that endpoint.
The request will select a model, provide the necessary input tensor values required by
the model, and indicate which model outputs should be calculated.

To take advantage of TensorRT optimized models within this deployment strategy does
not require any fundamental change. The inference server must be updated to accept
models represented by TensorRT plan files and must use the TensorRT Execution APIs
to load and executes those plans. An example of an inference server that provides a
REST endpoint for inferencing can be found in the Inference Server Container Release
Notes and Inference Server User Guide.

7.2. Deploying To An Embedded System

TensorRT can also be used to deploy trained networks to embedded systems such as
NVIDIA Drive PX. In this context, deployment means taking the network and using it

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 50

http://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html
http://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html
http://docs.nvidia.com/deeplearning/sdk/inference-user-guide/index.html

Deploying A TensorRT Optimized Model

in a software application running on the embedded device, such as an object detection
or mapping service. Deploying a trained network to an embedded system involves the
following steps:

1.

Export the trained network to a format such as UFF or ONNX which can be
imported into TensorRT (see Working With Deep Learning Frameworks for more
details).

Write a program that uses the TensorRT C++ API to import, optimize, and serialize
the trained network to a plan file (see sections Working With Deep Learning
Frameworks, Working With Mixed Precision, and Performing Inference In C++). For
the purpose of discussion, let’s call this program make_plan.

a) Optionally, perform INTS calibration and export a calibration cache (see Working
With Mixed Precision).

Build and run make_plan on the host system to validate the trained model before
deployment to the target system.

Copy the trained network (and INTS calibration cache, if applicable) to the target
system. Re-build and re-run the make_plan program on the target system to
generate a plan file.

The make plan program must run on the target system in order for the TensorRT
engine to be optimized correctly for that system. However, if an INT8 calibration
cache was produced on the host, the cache may be re-used by the builder on the
target when generating the engine (in other words, there is no need to do INT8
calibration on the target system itself).

After the plan file has been created on the embedded system, an embedded
application can create an engine from the plan file and perform inferencing with
the engine by using the TensorRT C++ API. For more information, see Performing
Inference In C++.

To walk through a typical use case where a TensorRT engine is deployed on an
embedded system, see:

» Deploying INT8 Inference For Autonomous Vehicles for DRIVE PX
» GitHub for Jetson and Jetpack

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 51

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://devblogs.nvidia.com/int8-inference-autonomous-vehicles-tensorrt/
https://github.com/dusty-nv/jetson-inference

Chapter 8.
WORKING WITH DEEP LEARNING
FRAMEWORKS

With the Python AP, an existing model built with TensorFlow, Caffe, or an ONNX
compatible framework can be used to build a TensorRT engine using the provided
parsers. The Python API also supports frameworks that store layer weights in a NumPy
compatible format, for example PyTorch.

8.1. Supported Operations By Framework

The following lists describe the operations that are supported in a Caffe or TensorFlow
framework and in the ONNX TensorRT parser:

Caffe
These are the operations that are supported in a Caffe framework:

» Convolution
» Pooling

» InnerProduct

> SoftMax

» ReLU, TanH, and Sigmoid
> LRN

> Power

> ElementWise

» Concatenation

> Deconvolution

» BatchNormalization
> Scale

» Crop

» Reduction

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 52

Working With Deep Learning Frameworks

» Reshape
» Permute

» Dropout

TensorFlow
These are the operations that are supported in a TensorFlow framework:

» Placeholder

» Const

» Add, Sub, Mul, Div, Minimum and Maximum

» BiasAdd

» Negative, Abs, Sqrt, Rsqrt, Pow, Exp and Log

The NvUffParser supports Neg, Abs, Sqgrt, Rsqrt, Exp and Log for const
nodes only.

» FusedBatchNorm
» ReLU, TanH, and Sigmoid
» SoftMax

If the input to a TensorFlow SoftMax op is not NHWC, TensorFlow will
automatically insert a transpose layer with a non-constant permutation, causing
the UFF converter to fail. It is therefore advisable to manually transpose SoftMax
inputs to NHWC using a constant permutation.

» Mean

» Concatv2

» Reshape

» Transpose

» Conv2D

» DepthwiseConv2dNative
» ConvTranspose2D

» MaxPool

» AvgPool

» Pad is supported if followed by one of these TensorFlow layers: Conv2D,
DepthwiseConv2dNative, MaxPool, and AvgPool

ONNX
Since the ONNX parser is an open source project, the most up-to-date information
regarding the supported operations can be found in GitHub: ONNX TensorRT.

These are the operations that are supported in the ONNX framework:

» Abs

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 53

https://github.com/onnx/onnx-tensorrt

» Add

» AveragePool

» BatchNormalization
» Ceil

» Clip

» Concat

» Constant

» Conv

» ConvTranspose
» DepthToSpace
» Div

» Dropout

» Elu

» Exp

» Flatten
» Floor

> Gemm

» GlobalAveragePool

» GlobalMaxPool

» HardSigmoid

» TIdentity

» InstanceNormalization
» LRN

» LeakyRelu

» Log

» LogSoftmax
» MatMul

» Max

» MaxPool

» Mean
» Min

» Mul

> Neg

» PRelu
» Pad

» Pow

» Reciprocal
» Reducell
» Reducel2

www.nvidia.com
TensorRT

Working With Deep Learning Frameworks

SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 54

Working With Deep Learning Frameworks

» ReduceLogSum

» ReduceLogSumExp
» ReduceMax

» ReduceMean

» ReduceMin

» ReduceProd

» ReduceSum

» ReduceSumSquare
» Relu

» Reshape

» Selu

» Shape

» Sigmoid
» Size

» Softmax

» Softplus
» SpaceToDepth

» Split

» Squeeze
» Sub

» Sum

» Tanh

» TopK

» Transpose
» Unsqueeze

» Upsample

8.2. Working With TensorFlow

For information on using TensorRT with a TensorFlow model, see the
end_to_end_tensorflow_mnist Python sample.

8.2.1. Freezing A TensorFlow Graph

In order to use the command-line UFF utility, TensorFlow graphs must be frozen and
saved as .pb files. For more information, see:

» A Tool Developer's Guide to TensorFlow Model Files: Freezing
» Exporting trained TensorFlow models to C++ the RIGHT way!

8.2.2. Freezing A Keras Model

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 55

https://www.tensorflow.org/extend/tool_developers/#freezing
https://medium.com/@hamedmp/exporting-trained-tensorflow-models-to-c-the-right-way-cf24b609d183

Working With Deep Learning Frameworks

You can use the following sample code to freeze a Keras model.

from keras.models import load model

import keras.backend as K

from tensorflow.python.framework import graph io

from tensorflow.python.tools import freeze graph

from tensorflow.core.protobuf import saver pb2

from tensorflow.python.training import saver as saver 1lib

def convert keras to pb(keras model, out names, models dir,
model filename) :

model = load model (keras model)

K.set learning phase (0)

sess = K.get session()

saver = saver lib.Saver(write version=saver pb2.SaverDef.V2)
checkpoint path = saver.save(sess, 'saved ckpt', global step=0,
latest filename='checkpoint state')

graph io.write graph(sess.graph, '.', 'tmp.pb')

freeze graph.freeze graph('./tmp.pb', '',
False, checkpoint path, out names,
"save/restore all", "save/Const:0",
models dir+model filename, False, "")

8.2.3. Converting A Frozen Graph To UFF

You can use the following sample code to convert the . pb frozen graph to .uff format
file.

convert-to-uff input file [-o output file] [-O output node]

You can list the TensorFlow layers:

convert-to-uff input file -1

8.2.4. Working With TensorFlow RNN Weights

This section provides information about TensorFlow weights and their stored formats.
Additionally, the following sections will guide you on how to approach and decrypt
RNN weights from TensorFlow.

8.2.4.1. TensorFlow RNN Cells Supported In TensorRT

An RNN layer in TensorRT can be thought of as a MultiRNNCell from TensorFlow. One
layer consists of sublayers with the same configurations, in other words, hidden and
embedding size. This encapsulation is done so that the internal connections between the
multiple sublayers can be abstracted away from the user. This allows for simpler code
when deeper networks are involved.

TensorRT supports four different RNN layer types. These layer types are RNN relu,
RNN tanh, LSTM, and GRU. The TensorFlow cells that match these types are:

TensorRT RNN Relu/Tanh Layer

1. BasicRNNCell

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 56

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicRNNCell

Working With Deep Learning Frameworks

a. Permitted activation functions: t£f. tanh and tf.nn.relu.
b. This is a platform independent cell.

TensorRT LSTM Layer
1. BasicLSTMCell

a. forget bias must be set to 0 when creating an instance of this cell in
TensorFlow. To support a non-zero forget bias, you need to preprocess the bias
by adding the parameterized forget bias to the dumped TensorFlow forget
biases.

b. This is a platform independent cell.

2. CudnnCompatibleLSTMCell

a. Same condition for the forget bias applies to this cell as it does to the

BasicLSTMCell.
b. TensorRT does not currently support peepholes so use_peepholes must be set
to False.
¢. Thisis a cuDNN compatible cell.
TensorRT GRU Layer

1. CudnnCompatibleGRUCell

a. This is a cuDNN compatible cell.
b. Differs in implementation from standard, platform independent GRU cells. Due
to this, CudnnCompatiableGRUCell is the correct cell to use with TensorRT.

8.2.4.2. Maintaining Model Consistency Between TensorFlow And
TensorRT

For any TensorFlow cell not listed in TensorFlow RNN Cells Supported In TensorRT,
consult the TensorRT API and TensorFlow API to ensure the cell is mathematically
equivalent to what TensorRT supports and the storage format is consistent with the
format that you are expecting. One good way of doing this is to set up unit tests to
validate the output from TensorRT by using TensorFlow as the ground truth.

8.2.4.3. Workflow

We will be using the following workflow to extract and use TensorFlow weights:

Figure 12 TensorFlow RNN Workflow

8.2.4.4. Dumping The TensorFlow Weights

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 57

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell
https://www.tensorflow.org/api_docs/python/tf/contrib/cudnn_rnn/CudnnCompatibleLSTMCell
https://www.tensorflow.org/api_docs/python/tf/contrib/cudnn_rnn/CudnnCompatibleGRUCell
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/GRUCell
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://www.tensorflow.org/api_docs/

Working With Deep Learning Frameworks

Python script dumpTFWts . py can be used to dump all the variables and weights from
a given TensorFlow checkpoint. The script is located in the /usr/src/tensorrt/
samples/common/dumpTFWts . py directory. Issue dumpTFWts.py -h for more
information on the usage of this script.

8.2.4.5. Loading Dumped Weights

Function loadWeights () loads from the dump of the dumpTFWts.py script. It has
been provided as an example in sampleCharRNN. The function signature is:

std: :map<std::string, Weights> loadWeights (const std::string file,
std: :unordered_set<std::string> names);

This function loads the weights specified by the names set from the specified file and
returns them in a std: :map<std: :string, Weights>.

8.2.4.6. Converting The Weights To A TensorRT Format

At this point, we are ready to convert the weights. To do this, the following steps are
required:

1. Understanding and using the TensorFlow checkpoint to get the tensor.

2. Understanding and using the tensors to extract and reformat relevant weights and
set them to the corresponding layers in TensorRT.

8.2.4.6.1. TensorFlow Checkpoint Storage Format

There are two possible TensorFlow checkpoint storage formats:
1. Platform independent format - separated by layer

a. Cell_i_kernel <Weights>
b. Cell i bias <Weights>
2. cuDNN compatible format - separated by input and recurrent

a. Cell i Candidate_ Input_kernel <Weights>

b. Cell i Candidate_ Hidden kernel <Weights>
In other words, 1.1 Cell_i_kernel <Weights> in the concatenation
of 2.1 Cell_i_Candidate_Input_kernel <Weights>and 2.2

Cell i Candidate_ Hidden kernel <Weights>. Therefore, storage format 2 is
simply a more fine-grain version of storage format 1.

8.2.4.6.2. TensorFlow Kernel Tensor Storage Format

Before storing the weights in the checkpoint, TensorFlow transposes and then interleaves
the rows of transposed matrices. The order of the interleaving is described in the next
section. A figure is provided in BasicLSTMCell Example to further illustrate this format.

Gate Order Based On Layer Operation Type The transposed weight matrices are
interleaved in the following order:

1. RNN relu/tanh:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 58

Working With Deep Learning Frameworks

a. input gate (1)
2. LSTM:

a. input gate (i), cell gate (c), forget gate (£), output gate (o)
3. GRU:

a. reset (r), update (u)

8.2.4.6.3. Kernel Weights Conversion To A TensorRT Format

Converting the weights from TensorFlow format can be summarized in two steps.

1. Reshape the weights to push the interleaving down to a lower dimension.
2. Transpose the weights to get rid of the interleaving completely and have the weight
matrices stored contiguously in memory.

Transformation Utilities To help perform these transformations correctly,
reorderSubBuffers (), transposeSubBuffers (), and reshapeWeights () are
functions that have been provided. For more information, see /usr/include/x86_ 64-
linux-gnu/NvUtils.h.

8.2.4.6.4. TensorFlow Bias Weights Storage Format

The bias tensor is simply stored as contiguous vectors concatenated in the order
specified in TensorFlow Kernel Tensor Storage Format. If the checkpoint storage is
platform independent, then TensorFlow combines the recurrent and input biases into
a single tensor by adding them together. Otherwise, the recurrent and input biases and
stored in separate tensors.

8.2.4.6.5. Bias Tensor Conversion To TensorRT Format

Since the biases are stored as contiguous vectors, there aren’t any transformations that
need to be applied to get the bias into the TensorRT format.

8.2.4.7. BasicLSTMCell Example

8.2.4.7.1. BasicLSTMCell Kernel Tensor

To understand the format in which these tensors are being stored, let us consider an
example of a BasicLSTMCell. Figure 13 illustrates what the tensor looks like within the
TensorFlow checkpoint.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 59

Working With Deep Learning Frameworks

w,[0] W,'[0] W, [0] W, '[0]

w,'[1] W, [1] Wi [1] W, '[1]

W;'[2] W,'[2] Wi [2] W, '[2]
W, [Ds-1] W, [DS"1] Wi [DS'-1] W, [DS-1]

R."[0] R, [0] R{[0] R, '[0]

R/'[1] R:'[1] R 1] R, [1]

en R[2] R.'[2] R{[2] Ro'[2]
R [HS-1] Rc [HS-1] R{ [HS-1] Ro [HS-1]

Figure 13 Tensors within a TensorFlow checkpoint

DS/Data Size is distinct from Hidden Size for the first layer. For all the following
sublayers Data Size is equal to Hidden Size.

In Figure 13, W represents the input weights, R represents the hidden weights, DS
represents the data size, and HS represents hidden size.

Since this is a platform independent cell, the input weights and hidden weights have
been concatenated together. If we had used a CudnnCompatibleLSTMCell, then
these weights would have been split into two separate tensors.

Applying the conversion process discussed earlier will result in the converted tensor
shown in Figure 14.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 60

Working With Deep Learning Frameworks

Figure 14 Converted tensors

Data Size is distinct from Hidden Size for the first layer in the sequence of RNN
sublayers. For all the following sublayers Data Size is equal to Hidden Size.

8.2.4.7.2. BasicLSTMCell Bias Tensor

Figure 15 illustrates the format in which the bias tensor is stored.

W; W, W W,

Figure 15 Bias tensor stored format

Because this is a platform independent cell, W in the image above represents the result
of ElementWise adding the input and recurrent biases together. TensorFlow does this
addition internally to save memory before it stores the tensor.

This is already in the format we require, therefore, we do not need to apply any
transformations.

8.2.4.8. Setting The Converted Weights And Biases

The converted tensors for both the weights and bias are now ready to use. You need
to iterate over the tensors in the order specified in TensorFlow Kernel Tensor Storage

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 61

Working With Deep Learning Frameworks

Format and set the weights and bias using IRNNv2Layer: : setWeightsForGate () and
IRNNv2Layer: : setBiasForGate () functions, respectively.

If you are using a platform independent cell, you will need to set all the recurrent
biases manually using zeroed out dummy weights.

A real-world example of the training, dumping, converting, and setting process is
described in sampleCharRNN. For more information, consult the code in this sample.

8.2.5. Preprocessing A TensorFlow Graph Using the
Graph Surgeon API

The Graph Surgeon API, also known as graphsurgeon, allows you to transform
TensorFlow graphs. Its capabilities are broadly divided into two categories:
Search

The search functions allow you to find nodes in a TensorFlow graph.
Manipulation

The manipulation functions allow you to modify, add, or remove nodes.

Using graphsurgeon, you can mark certain nodes (or sets of nodes) as plugin nodes
in the graph. These plugins can either be plugins shipped with TensorRT or plugins
written by you. For more information, see Extending TensorRT With Custom Layers.

If you are writing a plugin, also refer to see Extending TensorRT With Custom Layers for
details on how to implement the IP1luginExt and IPluignCreator classes in addition
to registering the plugin.

The following code snippet illustrates how to use graphsurgeon to map a TensorFlow
Leaky ReLU operation to a TensorRT Leaky ReLU plugin node.

import graphsurgeon as gs

lrelu node = gs.create plugin node (name="trt lrelu”, op="LReLU_TRT”,
negSlope=0.2)

namespace_plugin map = { “tf lrelu” : lrelu node }

Transform TensorFlow graph using graphsurgeon and save to UFF
dynamic_graph = gs.DynamicGraph (tf_lrelu.graph)

dynamic_graph.collapse namespaces (namespace plugin map)

Run UFF converter using new graphdef

uff model = uff.from tensorflow(dynamic_graph.as_graph def (), ["trt lrelu"],

output_filename="test_ lrelu.uff”, text=True)

In the above code, the op field in the create_plugin_node method should match the
registered plugin name. This enables the UFF parser to look up the Plugin in the Plugin
Registry using this field to insert the plugin node into the network.

For a working graphsurgeon example, see sampleUffSSD for C++.

For more details about the graphsurgeon AP], see the Graph Surgeon APL

8.3. Working With PyTorch And Other Frameworks

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 62

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html

Working With Deep Learning Frameworks

Using TensorRT with PyTorch and other frameworks involves replicating the network
architecture using the TensorRT API, and then copying the weights from PyTorch (or
any other framework with NumPy compatible weights). For more information on using
TensorRT with a PyTorch model, see the network_api_pytorch_mnist Python sample.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 63

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Chapter 9.
SAMPLES

The following samples show how to use TensorRT in numerous use cases while
highlighting different capabilities of the interface.

9.1. C++ Samples

You can find the C++ samples in the /usr/src/tensorrt/samples directory. The
following C++ samples are shipped with TensorRT:

» sampleMNIST

» sampleMNISTAPI

» sampleUffMNIST

» sampleOnnxMNIST
» sampleGoogleNet

» sampleCharRNN

» sampleINT8

» sampleINT8API

» samplePlugin

» sampleNMT

» sampleFasterRCNN
» sampleUffSSD

» sampleMovieLens

» sampleMovieLensMPS
» sampleSSD

» sampleMLP

Running C++ Samples

If you installed TensorRT using the debian files, copy /usr/src/tensorrt to a new
directory first before building the C++ samples. If you installed TensorRT using the tar

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 64

Samples

file, then the samples are located in {TAR_EXTRACT PATH}/samples. To build all the
samples and then run one of the samples, use the following commands:

$ cd <samples_dir>
$ make -j4

$ cd ../bin

$./<sample bin>

9.1.1. sampleMNIST

What Does This Sample Do?
The sampleMNIST sample demonstrates how to:

» Perform the basic setup and initialization of TensorRT

» Import a trained Caffe model using Caffe parser (see Importing A Caffe Model
Using The C++ Parser API)

» Build an engine (see Building An Engine In C++)

» Serialize and deserialize the engine (see Serializing A Model In C++)

» Use the engine to perform inference on an input image (see Performing Inference In
C+t)

Where Is This Sample Located?
The sampleMNIST sample is installed in the /usr/src/tensorrt/samples/
sampleMNIST directory.

Notes About This Sample:
The Caffe model was trained on the MNIST dataset, where the dataset is from the
NVIDIA DIGITS tutorial.

To verify whether the engine is operating correctly, sampleMNIST picks a 28x28 image
of a digit at random and runs inference on it using the engine it created. The output

of the network is a probability distribution on the digits, showing which digit is most
probably that in the image.

An example of ASCII rendering of the input image with digit 8:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 65

https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md

Samples

@00EEEE%= -000" *@EEEEEE
@00EEEE :7%#E-#E0R. +#EEEEE
@0P@EE™ +00@0: *@Ed *@EECEQ
@0@eEE* +@0EP EEP% @EEEEER
@00eEEE. :7%EQ.0E0. *EEEEEER
@000EEER- =EER. -@EEEEEER
@0PEPEREE%: +0- :@EEPERECEQ
@00@PEREEEE%- : -0EEPEEECED
@00EEEEEEPENE+ #E0EEEEEEER
@000EEEEEEENER+ - @EPEREE

@0PEPEPEEEERER+ *EEPERECEQ

@00EEEEEEPENER -@ [EEEEEEER
@00EEEEEEEEEET +@ EEEERECEE
@00@PEEEEEERE™ ++ @EPEEECED
@000EEEEEPENE™ ~EEEEEER
@00eEEEEERENE =E00EEEEEER
@00EEEEEEEEEER. +EPEEEERECEE
@00@EEEAEEEENEEYEDRERERECED
@00EEEEEERENEREEENEREREREDED

Figure 16 ASCII output

An example of the output from network, classifying the digit 8 from the above image:

N R W N e ®

Figure 17 Decision output

9.1.2. sampleMNISTAPI

What Does This Sample Do?

The sampleMNISTAPI sample is similar to sampleMNIST sample. Both of these samples
use the same model, handle the same input, and expect similar output. In contrast to
sampleMNIST, the sampleMNISTAPI demonstrates how to:

» Build a network by individually creating every layer

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 66

Samples

» Load the layers with theirs weights and connecting the layers by linking their inputs
and outputs

Where Is This Sample Located?
The sampleMNISTAPI sample is installed in the /usr/src/tensorrt/samples/
sampleMNISTAPI directory.

Notes About This Sample:

For a detailed description of how to create layers using the C++ AP]I, see Creating A
Network Definition From Scratch Using The C++ API. For a detailed description of how
to create layers using the Python API, see Creating A Network Definition From Scratch
Using The Python API.

Notes About Weights:

When you build a network by individually creating every layer, ensure you provide the
per-layer weights to TensorRT in host memory. You will need to extract weights from
their pre-trained model and deep learning framework and have these per-layer weights
loaded in host memory to pass to TensorRT during network creation.

9.1.3. sampleUffMNIST

What Does This Sample Do?
The sampleUffMNIST sample demonstrates how to:

» Implement a TensorFlow model trained on the MNIST dataset

» Create the UFF Parser (see Importing From TensorFlow Using Python)

» Use the UFF Parser, register inputs and outputs, provide the dimensions and the
order of the input tensor

» Load a trained TensorFlow model converted to UFF

» Build an engine (see Building An Engine In C++)

» Use the engine to perform inference (see Performing Inference In C++)

Where Is This Sample Located?
The sampleUffMNIST sample is installed in the /usr/src/tensorrt/samples/
sampleUf£fMNIST directory.

Notes About This Sample:
The TensorFlow model has been converted to UFF using the explanation described in
Working With TensorFlow.

The UFF is designed to store neural networks as a graph. The NvUffParser that we use
in this sample parses the format in order to create an inference engine based on that
neural network.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 67

Samples

With TensorRT, you can take a TensorFlow trained model, export it into a UFF protobuf
file, and convert it to run in TensorRT. The TensorFlow to UFF converter creates an
output file in a format called UFF which can then be read in TensorRT.

9.1.4. sampleOnnxMNIST

What Does This Sample Do?
The sampleOnnxMNIST sample demonstrates how to:

» Configure the ONNX parser
» Convert an MNIST network in ONNX format to a TensorRT network
» Build the engine and run inference using the generated TensorRT network

» Covers Importing An ONNX Model Using The C++ Parser API and Importing From
ONNX Using Python

The sampleOnnxMNIST sample shows the conversion of an MNIST network in Open
Neural Network Exchange (ONNX) format to a TensorRT network. ONNX is a standard
for representing deep learning models that enable models to be transferred between
frameworks. For more information about the ONNX format, see GitHub: ONNX. You
can find a collection of ONNX networks at GitHub: ONNX Models. The network used in
this sample can be found here.

Where Is This Sample Located?

The sampleOnnxMNIST sample is installed in the /usr/src/tensorrt/samples/
sampleOnnxMNIST directory.

9.1.4.1. Configuring The ONNX Parser

The I0nnxConfig class is the configuration manager class for the ONNX parser. The

configuration parameters can be set by creating an object of this class and set the model
tile.

Set the appropriate ONNX model in the config object where onnx_filenameisac
string of the path to the filename containing that model:

IOnnxConfig config;
config.setModelFileName (onnx_filename) ;

The createONNXParser method requires a config object as an argument:

nvonnxparser: : IONNXParser* parser = nvonnxparser: :createONNXParser (*config) ;

The ONNX model file is then passed onto the parser:

if (!parser->parse(onnx_filename, dataType))
{
string msg("failed to parse onnx file");
glogger->log(nvinferl: :ILogger: :Severity: :kERROR, msg.c_str());
exit (EXIT_FAILURE) ;
}

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 68

https://github.com/onnx/onnx
https://github.com/onnx/models
https://github.com/onnx/models/tree/master/mnist

Samples

To view additional information about the network, including layer information and
individual layer dimensions, issue the following call:

config.setPrintLayerInfo (true)
parser->reportParsingInfo() ;

9.1.4.2. Converting The ONNX Model To A TensorRT Network

The parser can convert the ONNX model to a TensorRT network which can be used for
inference:

if (!parser->convertToTRTNetwork()) ({
string msg("ERROR, failed to convert onnx network into TRT network") ;
glogger->log(nvinferl: :ILogger: :Severity: :kERROR, msg.c_str());
exit (EXIT_FAILURE) ;
}

To get the TensorRT network, issue the following call:

nvinferl: :INetworkDefinition* network = parser->getTRTNetwork() ;

After the TensorRT network is built from the model, you can build the TensorRT engine
and run inference.

9.1.4.3. Building The Engine And Running Inference

Before you can run inference, you must first build the engine. To build the engine, create
the builder and pass a logger created for TensorRT which is used for reporting errors,
warnings and informational messages in the network:

IBuilder* builder = createInferBuilder (gLogger) ;

To build the engine from the generated TensorRT network, issue the following call:

nvinferl: :ICudaEngine* engine = builder->buildCudaEngine (*network) ;

To run inference using the created engine, see Performing Inference In C++ or
Performing Inference In Python.

It's important to preprocess the data and convert it to the format accepted by the
network. In this example, the sample input is in PGM (portable graymap) format. The
model expects an input of image 1x28x28 scaled to between [0,1].

After you build the engine, verify that the engine is running properly by confirming the
output is what you expected. The output format of this sample should be the same as the
output of the sampleMNIST described in sampleMNIST.

9.1.5. sampleGoogleNet

What Does This Sample Do?
The sampleGoogleNet sample demonstrates how to:

» Use FP16 mode in TensorRT

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 69

Samples

» Use TensorRT Half2Mode
» Use layer-based profiling

Where Is This Sample Located?
The sampleGoogleNet sample is installed in the /usr/src/tensorrt/samples/
sampleGoogleNet directory.

9.1.5.1. Configuring The Builder

The sampleGoogleNet sample builds a network based on a saved Caffe model and
network description. For more information, see Importing A Caffe Model Using The C++
Parser API or Importing From Caffe Using Python.

This sample uses optimized FP16 mode (see Enabling FP16 Inference Using C++ or
Enabling FP16 Inference Using Python). To use Hal£2Mode, two additional steps are
required:

1. Create an input network with 16-bit weights, by supplying the DataType::kHALF
parameter to the parser.

const IBlobNameToTensor *blobNameToTensor =
parser->parse (locateFile (deployFile) .c _str (),
locateFile (modelFile) .c str (),
*network,
DataType: : kKHALF) ;

2. Configure the builder to use Half£2Mode.

builder->setFpl6Mode (true) ;

9.1.5.2. Profiling

To profile a network, implement the IProfiler interface and add the profiler to the
execution context:

context.profiler = &gProfiler;

Profiling is not currently supported for asynchronous execution, therefore, use TensorRT
synchronous execute () method:

for (int 1 = 0; 1 < TIMING_ITERATIONS;i++)
engine->execute (context, buffers);

After execution has completed, the profiler callback is called once for every layer. The
sample accumulates layer times over invocations, and averages the time for each layer at
the end.

The layer names are modified by TensorRT layer-combining operations, so the reported
layer names in the profiling output may not be a one-to-one map to the original

layer names. For example, the layers inception_5a/3x3 and inception_5a/
relu_3x3in the original network are fused into one layer named inception_5a/3x3 +
inception_5a/relu_ 3x3.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 70

Samples

9.1.6. sampleCharRNN

What Does This Sample Do?

The sampleCharRNN sample demonstrates how to generate a simple RNN based on the
charRNN network using the Penn Treebank (PTB) dataset. For more information about
character level modeling, see char-rnn.

Where Is This Sample Located?
The sampleCharRNN sample is installed in the /usr/src/tensorrt/samples/
sampleCharRNN directory.

Notes About This Sample:
Use the TensorRT API documentation to familiarize yourself with the following layers:

» RNNV2 layer

» Weights are set for each gate and layer individually.

» The input format for RNNv2 is BSE (Batch, Sequence, Embedding).
» MatrixMultiply
» ElementWise
» TopK

9.1.6.1. Network Configuration

The CharRNN network is a fairly simple RNN network. The input into the network is a
single character that is embedded into a vector of size 512. This embedded input is then
supplied to a RNN layer containing two stacked LSTM cells. The output from the RNN
layer is then supplied to a fully connected layer, which can be represented in TensorRT
by a Matrix Multiply layer followed by an ElementWise sum layer. Constant layers are
used to supply the weights and biases to the Matrix Multiply and ElementWise Layers,
respectively. A TopK operation is then performed on the output of the ElementWise
sum layer where K = 1 to find the next predicted character in the sequence. For more
information about these layers, see the TensorRT API documentation.

9.1.6.1.1. RNNv2 Layer Setup

The first layer in the network is an RNN layer. This is added and configured in the
addRNNv2Layer () function. This layer consists of the following configuration
parameters:
Operation
This defines the operation of the RNN cell. Supported operations are currently relu,
LSTM, GRU, and tanh.
Direction
This defines whether the RNN is unidirectional or bidirectional (BiRNN).

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 71

https://catalog.ldc.upenn.edu/ldc99t42
https://github.com/karpathy/char-rnn
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

Input mode
This defines whether the first layer of the RNN carries out a matrix multiply (linear
mode), or the matrix multiply is skipped (skip mode).

For the purpose of the CharRNN network, we will be using a linear, unidirectional
LSTM cell containing LAYER _COUNT number of stacked layers. The code below shows
how to create this RNNv2 layer.

C++ code snippet

auto rnn = network->addRNNv2 (*data, LAYER COUNT, HIDDEN SIZE, SEQ SIZE,
RNNOperation: : kLSTM) ;

Python code snippet

rnn = network.add rnn_v2(data, LAYER COUNT, HIDDEN SIZE, SEQ SIZE,
trt.RNNOperation.LSTM)

For the RNNv2 layer, weights and bias need to be set separately. For more
information, see RNNv2 Layer - Optional Inputs.

For more information, see the TensorRT API documentation.

9.1.6.1.2. RNNv2 Layer - Optional Inputs

If there are cases where the hidden and cell states need to be pre-initialized to a non-zero
value, then you can pre-initialize them via the setHiddenState and setCellState
calls. These are optional inputs to the RNN.

C++ code snippet

rnn->setHiddenState (*hiddenIn) ;
if (rnn->getOperation() == RNNOperation: :kLSTM)
rnn->setCellState (*cellln) ;

Python code snippet

rnn.hidden_state = hidden_in
if rnn.op == trt.RNNOperation.LSTM:
rnn.cell state = cell_in

9.1.6.1.3. MatrixMultiply Layer Setup

The Matrix Multiplication layer is used to execute the first step of the functionality
provided by a FullyConnected layer. As shown in the code below, a Constant layer
will need to be used so that the FullyConnected weights can be stored in the engine.
The output of the Constant and RNN layers are then used as inputs to the Matrix
Multiplication layer. The RNN output is transposed so that the dimensions for the
MatrixMultiply are valid.

C++ code snippet

weightMap["trt fcw"] = transposeFCWeights (weightMap[FCW_NAME]) ;
auto fcwts = network->addConstant (Dims2 (VOCAB SIZE, HIDDEN_ SIZE),
weightMap["trt_fcw"]) ;

auto matrixMultLayer = network->addMatrixMultiply (
*fcwts->getOutput (0) , false, *rnn->getOutput(0), true);

assert (matrixMultlLayer !'= nullptr);

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 72

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

matrixMultLayer->getOutput (0) ->setName ("Matrix Multiplication output");

Python code snippet

weight map["trt_fcw"] = transpose_ fc_weights (weight map[FCW_NAME])
fc_wts = network.add constant((VOCAB_SIZE, HIDDEN SIZE),
weight map["trt_fcw"])
matrix mult layer = network.add matrix multiply(
fc_wts.get_output(0), trt.MatrixOperation.NONE, rnn.get output(O0),
trt.MatrixOperation.TRANSPOSE)
assert matrix mult layer '= None
matrix mult layer.get_ output(0) .name =
"Matrix Multiplication output"

For more information, see the TensorRT API documentation.

9.1.6.1.4. ElementWise Layer Setup

The ElementWise layer is used to execute the second step of the functionality provided
by a FullyConnected layer. The output of the fecbias Constant layer and Matrix
Multiplication layer are used as inputs to the ElementWise layer. The output from this
layer is then supplied to the TopK layer. The code below demonstrates how to setup the
layer:

C++ code snippet

auto fcbias = network->addConstant (Dims2 (VOCAB SIZE, 1),
weightMap [FCB_NAME]) ;

auto addBiasLayer = network->addElementWise (
*matrixMultLayer->getOutput (0),

*fcbias->getOutput (0) , ElementWiseOperation: :kSUM) ;
assert (addBiasLayer !'= nullptr);
addBiasLayer->getOutput (0) ->setName ("Add Bias output") ;

Python code snippet

fc _bias = network.add_constant ((VOCAB_SIZE, 1), weightMap[FCB NAME])
add bias_layer = network.add elementwise(

matrix mult layer.get_output(0),

fc bias.get output(0), trt.ElementWiseOperation.SUM)

assert add bias layer != None

add bias_layer.get output(0) .name = "Add Bias output”

For more information, see the TensorRT API documentation.
9.1.6.1.5. TopK Layer Setup
The TopK layer is used to identify the character that has the maximum probability of

appearing next.

The layer has two outputs. The first output is an array of the top K values. The
second, which is of more interest to us, is the index at which these maximum values
appear.

The code below sets up the TopK layer and assigns the OUTPUT _BLOB_NAME to the
second output of the layer.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 73

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

C++ code snippet

auto pred = network->addTopK (*addBiasLayer->getOutput (0),
nvinferl: :TopKOperation: :kMAX, 1, reduceAxis) ;

assert(pred !'= nullptr);

pred->getOutput (1) ->setName (OUTPUT_BLOB_NAME) ;

Python code snippet

pred = network.add topk(add bias_layer.get output(0),
trt.TopKOperation.MAX, 1, reduce_axis)

assert pred !'= None

pred.get_output(l) .name = OUTPUT_BLOB_NAME

For more information, see the TensorRT API documentation.

9.1.6.1.6. Marking The Network Outputs

After the network is defined, mark the required outputs. RNN output tensors that are
not marked as network outputs or used as inputs to another layer are dropped.
C++ code snippet

network->markOutput (*pred->getOutput (1)) ;
pred->getOutput (1) ->setType (DataType: : kINT32) ;
rnn->getOutput (1) ->setName (HIDDEN_OUT_BLOB_NAME) ;
network->markOutput (*rnn->getOutput (1)) ;

if (rnn->getOperation() == RNNOperation: :kLSTM)

{

rnn->getOutput (2) ->setName (CELL_OUT_BLOB_NAME) ;
network->markOutput (*rnn->getOutput (2)) ;

};

Python code snippet

network.mark output (pred.get output(1l))
pred.get_output(l) .dtype = trt.int32
rnn.get_output(l) .name = HIDDEN OUT BLOB NAME
network.mark output(rnn.get_ output (1))

if rnn.op == trt.RNNOperation.LSTM:
rnn.get_output(2) .name = CELL_OUT_ BLOB NAME
network.mark output(rnn.get output(2))

network->markOutput (*pred->getOutput (1)) ;
pred->getOutput (1) ->setType (DataType: : kINT32) ;
rnn->getOutput (1) ->setName (HIDDEN OUT BLOB_NAME) ;
network->markOutput (*rnn->getOutput (1)) ;

if (rnn->getOperation() == RNNOperation: :kLSTM)

{

rnn->getOutput (2) ->setName (CELL_OUT_ BLOB NAME) ;
network->markOutput (*rnn->getOutput (2)) ;

}i

9.1.6.2. RNNv2 Workflow - From TensorFlow To TensorRT

The following sections provide an end-to-end walkthrough of how to train your model
in TensorFlow and convert the weights into a format that TensorRT can use.

9.1.6.2.1. Training A CharRNN Model With TensorFlow

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 74

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

TensorFlow has a useful RNN Tutorial which can be used to train a word level model.
Word level models learn a probability distribution over a set of all possible word
sequence. Since our goal is to train a char level model, which learns a probability
distribution over a set of all possible characters, a few modifications will need to be
made to get the TensorFlow sample to work. These modifications can be seen here.

There are also multiple GitHub repositories that contain CharRNN implementations that
will work out of the box. Tensorflow-char-rnn is one such implementation.

9.1.6.2.2. Exporting Weights From A TensorFlow Model Checkpoint

A python script /usr/src/tensorrt/samples/common/dumpTFWts . py has been
provided to extract the weights from the model checkpoint files that are created during
training. Use dumpTFWts.py -h for directions on the usage of the script.

9.1.6.2.3. Loading And Converting Weights Format

After the TensorFlow weights have been exported into a single WTS file, the next step is
to load the weights and convert them into the TensorRT weights format. This is done by
the loadWeights and then the convertRNNWeights and convertRNNBias functions.
The functions contain detailed descriptions of the loading and conversion process. You
can use those as guides in case you need to write your own conversion functions. After
the conversion has taken place, the memory holding the converted weights is added to
the weight map so that it can be deallocated once the engine has been built.

C++ code snippet

Weights rnnwLO
Weights rnnbLO
Weights rnnwLl
Weights rnnbLl

convertRNNWeights (weightMap [RNNW_LO_NAME]) ;
convertRNNBias (weightMap [RNNB LO NAME]) ;
convertRNNWeights (weightMap [RNNW_L1 NAME]) ;
convertRNNBias (weightMap [RNNB L1 NAME]) ;

weightMap["rnnwL0"] = rnnwLlO;
weightMap["rnnbL0"] = rnnblO;
weightMap["rnnwLl"] = rnnwlLl;
weightMap["rnnbLl"] = rnnbLl;

Python code snippet
rnnw_LO0 = convert rnn weights (weight map[RNNW _LO_NAME])
rnnb_LO0 = convert_rnn_bias(weight map[RNNB_LO NAME])
rnnw_L1 = convert_rnn weights(weight map[RNNW L1 NAME])
rnnb L1 = convert rnn bias(weight map[RNNB_ L1 NAME])
weight map["rnnw_LO0"] = rnnw_LO
weight map["rnnb LO0"] = rnnb_LO
weight map["rnnw_L1"] = rnnw_L1
weight map["rnnb L1"] = rnnb L1

9.1.6.2.4. RNNv2: Setting Weights And Bias

After the conversion to the TensorRT format, the RNN weights and biases are stored in
their respective contiguous arrays. They are stored in the format of [Wi, Wpi, Wyc,
Wro, Rpyf, Rpi, Rpe, Rpo], where:
W

The weights for the input.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 75

https://www.tensorflow.org/tutorials/recurrent
http://deeplearningathome.com/2016/10/Text-generation-using-deep-recurrent-neural-networks.html
https://github.com/crazydonkey200/tensorflow-char-rnn

Samples

The weights for the recurrent input.
Corresponds to the forget gate.
Corresponds to the input gate.
Corresponds to the cell gate.

Corresponds to the output gate.

The code below takes advantage of this memory layout and iterates over the two layers
and the eight gates to extract and set the correct gate weights and gate biases for the
RNN layer.

C++ code snippet

for (int gateIndex = 0; gateIndex < NUM GATES; gateIndex++)
{
// extract weights and bias for a given gate and layer
Weights gateWeightLO{.type = dataType,
.values = (void*) (wtsLO + kernelOffset),
.count = DATA SIZE * HIDDEN SIZE};
Weights gateBiasLO{.type = dataType,
.values = (void*) (biasesLO0 + biasOffset),
.count = HIDDEN SIZE};
Weights gateWeightLl{.type = dataType,
.values = (void*) (wtsLl + kernelOffset),
.count = DATA SIZE * HIDDEN SIZE};
Weights gateBiasLl{.type = dataType,
.values = (void*) (biasesLl + biasOffset),
.count = HIDDEN SIZE};

// set weights and bias for given gate

rnn->setWeightsForGate (0, gateOrder[gateIndex % 4],
(gateIndex < 4), gateWeightLO) ;

rnn->setBiasForGate (0, gateOrder[gateIndex % 4],
(gateIndex < 4), gateBiasLO) ;

rnn->setWeightsForGate (1, gateOrder[gateIndex % 4],
(gateIndex < 4), gateWeightLl) ;

rnn->setBiasForGate (1, gateOrder[gateIndex % 4],
(gateIndex < 4), gateBiaslLl);

// Update offsets
kernelOffset = kernelOffset + DATA SIZE * HIDDEN SIZE;
biasOffset = biasOffset + HIDDEN SIZE;

}

Python code snippet

rnnw_LO_wts numpy . split (rnnw_LO, 2*len(gate_order))
rnnb LO_wts numpy.split(rnnb_L0, 2*len(gate_order))
rnnw_L1 wts numpy .split(rnnw_L1, 2*len(gate_order))
rnnb L1 wts = numpy.split(rnnb_L1, 2*len(gate_order))
for i in range(2*len(gate_order)):

set weights and bias for given gate

rnn.set_weights_for gate(0, gate order[i % len(gate_order)], (i <
len(gate_order)), rnnw_LO_wts[i])
rnn.set_bias for gate (0, gate_order[i % len(gate_order)], (i <

len(gate_order)), rnnb LO_wts[i])

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 76

Samples

rnn.set_weights_ for gate(l, gate_order[i % len(gate order)], (i <
len(gate_order)), rnnw L1 wts[i])
rnn.set _bias_for gate(l gate_order[i % len(gate order)], (i <

1en(gate order)), rnnb L1 wts[i])

9.1.6.3. Seeding The Network

After the network is built, it is seeded with preset inputs so that the RNN can start
generating data. Inside stepOnce, the output states are preserved for use as inputs on
the next timestep.

C++ code snippet

for (auto &a : input)

{
std: :copy(static_cast<const float*>(embed.values) +
char to_id[a] *DATA_SIZE,
static_cast<const float*>(embed.values) +
char to :Ld[a] *DATA . SIZE + DATA SIZE,
data[INPUT IDX]) ;
stepOnce (data, output, buffers, indices, stream, context);
cudaStreamSynchronize (stream) ;

// Copy Ct/Ht to the Ct-1/Ht-1 slots.
std: memcpy(data[HIDDEN IN IDX] 0 data[HIDDEN OouT IDX] 0
gSizes[HIDDEN_ IN IDX] * 51zeof(float))
std: memcpy(data[CELL IN _IDX], data[CELL_OUT_IDX], gSizes[CELL_IN IDX] *

sizeof (float)) ;

genstr.push back(a) ;

}
// Extract first predicted character

uint32_t predIdx = *reinterpret cast<uint32_ t*>(data[OUTPUT_IDX]) ;
genstr. push back (id_to_char[predIdx]) ;

Python code snippet

for a in input:

data[INPUT_IDX] = embed[char to_id[a]]

stepOnce (data, output, buffers, indices, stream, context)
stream. synchronize ()

Copy Ct/Ht to the Ct-1/Ht-1 slots.
data[HIDDEN IN IDX] = data[HIDDEN OUT IDX]
data[CELL IN IDX] = data[CELL OUT_IDX]

gen_str += a

Extract first predicted character
predIdx = data[OUTPUT_IDX] [0]
genstr += id_to_char[predIdx]

9.1.6.4. Generating Data

The following code is similar to the seeding code, however, this code generates an
output character based on the output probability distribution. The following code
simply selects the character with the highest probability. The final result is stored in
genstr.

C++ code snippet

for (size_t x = 0, y = expected.size(); x < y; ++x)

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 77

Samples

std: :copy(static_cast<const float*>(embed.values) +
char to_id[*genstr.rbegin()]*DATA SIZE,
static_cast<const float*>(embed.values) +
char to_id[*genstr.rbegin()] *DATA SIZE + DATA SIZE,
data[INPUT IDX]) ;

stepOnce (data, output, buffers, indices, stream, context);
cudaStreamSynchronize (stream) ;

// Copy Ct/Ht to the Ct-1/Ht-1 slots.

std: :memcpy (data[HIDDEN IN IDX], data[HIDDEN OUT_ IDX],
gSizes[HIDDEN IN IDX] * sizeof(float));

std: :memcpy (data[CELL_IN IDX], data[CELL OUT_IDX], gSizes[CELL IN_IDX] *
sizeof (float)) ;

uint32_t predIdx = * (output);
genstr.push back(id_to_char[predIdx]) ;
}

Python code snippet

for x in range(len (expected)) :

data[INPUT_ IDX] = embed[char_ to_id[gen_str[-1]]]

stepOnce (data, output, buffers, indices, stream, context);
stream. synchronize ()

Copy Ct/Ht to the Ct-1/Ht-1 slots.
data[HIDDEN_ IN IDX] = data[HIDDEN OUT_ IDX]
data[CELL_IN IDX] = data[CELL_OUT_IDX]

predIdx = output[O0]
gen_str += id_to_char[predIdx]

9.1.7. sampleINT8

What Does This Sample Do?
The sampleINT8 sample provides the steps involved when performing inference in 8-bit
integer (INT8).

INT8 inference is available only on GPUs with compute capability 6.1 or 7.x.

The sampleINT8 sample demonstrates how to:

» Perform INTS8 calibration

» Perform INTS8 inference

» Calibrate a network for execution in INT8

» Cache the output of the calibration to avoid repeating the process

» Repo your own experiments with Caffe in order to validate your results on
ImageNet networks

Where Is This Sample Located?
The sampleINT8 sample is installed in the /usr/src/tensorrt/samples/
sampleINT8 directory.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 78

Samples

Notes About This Sample:

INTS engines are built from 32-bit network definitions and require significantly more
investment than building a 32-bit or 16-bit engine. In particular, the TensorRT builder
must perform a process called calibration to determine how best to represent the
weights and activations as 8-bit integers.

The sample is accompanied by the MNIST training set, but may also be used to calibrate
and score other networks. To run the sample on MNIST, use the command line:

./sample int8 mnist

9.1.7.1. Defining The Network

Defining a network for INT8 execution is exactly the same as for any other precision.
Weights should be imported as FP32 values, and TensorRT will calibrate the network
to find appropriate quantization factors to reduce the network to INT8 precision. This
sample imports the network using the NvCaffeParser:

const IBlobNameToTensor* blobNameToTensor =
parser->parse (locateFile (deployFile) .c_str(),
locateFile (modelFile) .c_str(),
*network,
DataType: : kFLOAT) ;

9.1.7.2. Building The Engine

Calibration is an additional step required when building networks for INT8. The
application must provide TensorRT with sample input. TensorRT will then perform
inference in FP32 and gather statistics about intermediate activation layers that it will
use to build the reduce precision INT8 engine.

9.1.7.2.1. Calibrating The Network

The application must specify the calibration set and parameters by implementing the
IInt8Calibrator interface. Because calibration is an expensive process that may need to
run multiple times, the interface provides methods for caching intermediate values.
Follow this sample to learn more about how to configure a calibrator object.

9.1.7.2.2. Calibration Set

Calibration must be performed using images representative of those which will be

used at runtime. Since the sample is based around Caffe, any image preprocessing that
Caffe would perform prior to running the network (such as scaling, cropping, or mean
subtraction) will be done in Caffe and captured as a set of files. The sample uses a utility
class (BatchStream) to read these files and create appropriate input for calibration.
Generation of these files is discussed in Batch Files For Calibration.

The builder calls the getBatchSize () method once, at the start of calibration, to obtain
the batch size for the calibration set. The method getBatch () is then called repeatedly
to obtain batches from the application, until the method returns false. Every calibration
batch must include exactly the number of images specified as the batch size.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 79

Samples

bool getBatch (void* bindings[], const char* names[], int
nbBindings) override

{

if (!mStream.next ())
return false;

CHECK (cudaMemcpy (mDeviceInput, mStream.getBatch (),
mInputCount * sizeof (float), cudaMemcpyHostToDevice)) :;

assert (!strcmp (names[0], INPUT BLOB NAME)) ;

bindings[0] = mDevicelnput;

return true;

}

For each input tensor, a pointer to input data in GPU memory must be written into the
bindings array. The names array contains the names of the input tensors. The position
for each tensor in the bindings array matches the position of its name in the names array.
Both arrays have size nbBindings.

The calibration set must be representative of the input provided to TensorRT at
runtime; for example, for image classification networks, it should not consist of
images from just a small subset of categories. For ImageNet networks, around 500
calibration images is adequate.

9.1.7.2.3. Loading A Calibration File

A calibration file stores activation scales for each network tensor. Activations scales
are calculated using a dynamic range generated from a calibration algorithm, in other
words, abs (max_dynamic_range) / 127.0f.

The calibration file is called CalibrationTable<NetworkName>, where
<NetworkName> is the name of your network, for example mnist. The file is located
in the TensorRT-x.x.x.x/data/mnist directory, where x.x.x.x is your installed
version of TensorRT.

If the CalibrationTable file is not found, the builder will run the calibration
algorithm again to create it. The CalibrationTable contents include:

1

data: 3c000889
convl: 3c8954be
pooll: 3c88e7e3

conv2: 3dd33169
pool2: 3d9ccc94
ipl: 3daeff07
ip2: 3e7d50ec
prob: 3c010al4

Where:

1
The calibration algorithm, for example, Entropy Calibration.

<layer name> : value
Corresponds to the floating point activation scales determined during calibration for
each layer in the network.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 80

Samples

The calibrationTable file is generated during the build phase while running the
calibration algorithm. Specifically, to create the calibration file, you first need to provide
a calibrator object and pass it to the builder. The calibrator object should be configured
to use the calibration image batches. During the build phase, the builder will create the
calibration file using the calibrator object.

After the calibration file is created, the file must get loaded. You cannot manually load a
calibration file using an API, the builder first checks whether the file exists. If it does, it
will not calibrate again and instead will load that same calibration file for every runtime.
Therefore, the calibration file needs to be created only once.

9.1.7.3. Configuring The Builder

There are two additional methods to call on the builder:

builder->setInt8Mode (true) ;
builder->setInt8Calibrator (calibrator) ;

9.1.7.4. Running The Engine

After the network has been built, it can be used just like an FP32 network, for example,
inputs and outputs remain in 32-bit floating point.

9.1.7.5. Verifying The Output

This sample outputs Top-1 and Top-5 metrics for both FP32 and INTS precision, as well
as for FP16 if it is natively supported by the hardware. These numbers should be within
1%.

9.1.7.6. Batch Files For Calibration

The sampleINTS8 sample uses batch files in order to calibrate for the INT8 data. The INT8
batch file is a binary file containing a set of N images, whose format is as follows:

» Four 32-bit integer values representing {N,C, H, W} representing the number of
images N in the file, and the dimensions {C, H, W} of each image.

» N 32-bit floating point data blobs of dimensions {C, H, W} that are used as inputs
to the network.

9.1.7.6.1. Generating Batch Files For Caffe Users

Calibration requires that the images passed to the calibrator are in the same format

as those that will be passed to TensorRT at runtime. For developers using Caffe for
training, or who can easily transfer their network to Caffe, a supplied patchset supports
capturing images after image preprocessing.

These instructions are provided so that users can easily use the sample code to test
accuracy and performance on classification networks. In typical production use cases,
applications will have such preprocessing already implemented, and should integrate
with the calibrator directly.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 81

Samples

These instructions are for Caffe git commit
473£143£9422e7£c66e9590dab6b2albb88e50b2£ from GitHub: BVLC Caffe. The
patchfile might be slightly different for later versions of Caffe.

1. Apply the patch. The patch can be applied by going to the root directory of the Caffe
source tree and applying the patch with the command:

patch -pl < int8 caffe.patch

2. Rebuild Caffe and set the environment variable
TENSORRT_INT8 BATCH DIRECTORY to the location where the batch files are to be
generated.

After training for 1000 iterations, there are 1003 batch files in the directory specified.
This occurs because Caffe preprocesses three batches in advance of the current iteration.

These batch files can then be used with the BatchStream and Int8Calibrator to
calibrate the data for INTS.

When running Caffe to generate the batch files, the training prototxt, and not the
deployment prototxt, is required to be used.

The following example depicts the sequence of commands to run . /sample int8
mnist with Caffe generated batch files.

1. Navigate to the samples data directory and create an INT8 mnist directory:

cd <TensorRT>/samples/data
mkdir -p int8/mnist
cd int8/mnist

If Caffe is not installed anywhere, ensure you clone, checkout, patch, and build
Caffe at the specific commit:

git clone https://github.com/BVLC/caffe.git

cd caffe

git checkout 473f143f9422e7fc66e9590dab6b2albb88e50b2f
patch -pl < <TensorRT>/samples/mnist/int8 caffe.patch
mkdir build

pushd build

cmake -DUSE_OPENCV=FALSE -DUSE_CUDNN=OFF . ./

make -j4

popd

2. Download the mnist dataset from Caffe and create a link to it:

bash data/mnist/get mnist.sh

bash examples/mnist/create mnist.sh
cd ..

1ln -s caffe/examples .

3. Set the directory to store the batch data, execute Caffe, and link the mnist files:

mkdir batches
export TENSORRT_ INT 8_BATCH_DIRECTORY=batche s

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 82

https://github.com/BVLC/caffe.git

Samples

caffe/build/tools/caffe test -gpu 0 -iterations 1000 -model examples/mnist/
lenet_ train_ test.prototxt -weights
<TensorRT>/samples/mnist/mnist.caffemodel

1ln -s <TensorRT>/samples/mnist/mnist.caffemodel .

1n -s <TensorRT>/samples/mnist/mnist.prototxt .

Execute sampleINTS8 from the bin directory after being built with the following
command:

./sample int8 mnist

9.1.7.6.2. Generating Batch Files For Non-Caffe Users

For developers that are not using Caffe, or cannot easily convert to Caffe, the batch files
can be generated via the following sequence of steps on the input training data.

1.
2.
3.

4.

Subtract out the normalized mean from the dataset.
Crop all of the input data to the same dimensions.

Split the data into batch files where each batch file has N preprocessed images and
labels.

Generate the batch files based on the format specified in Batch Files for Calibration.

The following example depicts the sequence of commands to run . /sample int8
mnist without Caffe.

1.

Navigate to the samples data directory and create an INT8 mnist directory:

cd <TensorRT>/samples/data

mkdir -p int8/mnist/batches

cd int8/mnist

In -s <TensorRT>/samples/mnist/mnist.caffemodel
In -s <TensorRT>/samples/mnist/mnist.prototxt

Copy the generated batch files to the int8/mnist/batches/ directory.
Execute sampleINT8 from the bin directory after being built with the command ./
sample int8 mnist.

./sample int8 mnist

9.1.8. sampleIlNT8API

What Does This Sample Do?
The sampleINT8API sample provides steps to perform INTS8 Inference without using the
INTS calibrator; using the user provided per activation tensor dynamic range.

INT8 inference is available only on GPUs with compute capability 6.1 or 7.x.

The sampleINTS8API sample demonstrates how to:

>

>

Set per tensor dynamic range.
Set computation precision of a layer.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 83

Samples

» Perform INTS inference using the user defined dynamic range, without using INT8
calibration.

Where Is This Sample Located?
The sampleINT8API sample is installed in the /usr/src/tensorrt/samples/
sampleINTB8API directory.

Notes About This Sample:

In order to perform INT8 inference, TensorRT expects you to provide dynamic range
corresponding to each network tensor including input and output tensor. Dynamic
range can be obtained using various methods including quantization aware training or
simply recording the min and max per tensor values during training.

To run this sample, you will need per tensor dynamic range stored in a text file
along with the ImageNet label reference file. We will perform INT8 inference on a
classification network, for example, ResNet50, VGG19, MobileNet v2, etc.

To print usage information:
./sample int8 api [-h or --help]
To run INTS inference with your dynamic ranges:

./sample int8 api [--model=model file]

[——ranges=per_tensor_dynamic_ranae_file] [--image=image file]
[--reference=reference file] [--data=/path/to/data/dir]
[--useDLACore=<int>] [-v or --verbose]

9.1.8.1. Configuring The Builder

Ensure that INT8 inference is supported on the platform:

if ('builder->platformHasFastInt8()) return false;

Enable INT8 mode by setting the builder flag:

builder->setInt8Mode (true) ;

builder->setInt8Calibrator (nullptr); // User can choose to not provide INTS8
calibrator. If user choose to provide the calibrator, manual dynamic range will
override calibration generate dynamic range/scale.

Optionally, you can also force the layer precision using the following builder
configuration:

builder->setStrictTypeConstraints (true) ;

This step is not required to perform INT8 inference. Enabling it will force INT8
precision for all the layers irrespective of performance. Therefore, it’s only
recommended for debugging purposes.

9.1.8.2. Configuring The Network

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 84

Samples

Iterate through the network to set the per activation tensor dynamic range.

readPerTensorDynamicRangeValue() // This function populates dictionary with
keys=tensor names, values=floating point dynamic range.

Set the dynamic range for network inputs:

string input name = network->getInput (i)->getName /() ;
network->getInput (i) ->setDynamicRange (-tensorMap.at (input_name),
tensorMap.at (input_name)) ;

Set the dynamic range for per layer tensors:

string tensor_ name = network->getLayer (i) ->getOutput (j)->getName () ;
network->getLayer (i) ->getOutput (j) ->setDynamicRange (-tensorMap. at (name) ,
tensorMap.at (name)) ;

This sample also showcases using layer precision APIs. Using these APIs, you can
selectively choose to run the layer with user configurable precision. It may not result
in optimal inference performance, but can be handy while debugging mixed precision
inference.

Iterate through the network to per layer precision:

auto layer = network->getLayer (i) ;
layer->setPrecision (nvinferl: :DataType: :kINTS) ;
for (int j=0; j<layer->getNbOutputs(); ++3j) {
layer->setOutputType (j, nvinferl::DataType: :kINTS8) ;
}

Once the network is configured, build the engine and run inference as any other sample.
For details regarding how to run the sample, see the README within the sample.

9.1.9. samplePlugin

What Does This Sample Do?

The samplePlugin demonstrates how to add a Custom layer to TensorRT. This sample
implements the MNIST model with the difference that the final FullyConnected layer is
replaced by a Custom layer. To read more information about MNIST, see sampleMNIST,
sampleMNISTAPI, and sampleUffMNIST.

The samplePlugin sample demonstrates how to:

» Define a Custom layer that supports multiple data formats
» Define a Custom layer that can be serialized and deserialized
» Enable a Custom layer in NvCaffeParser

Where Is This Sample Located?
The samplePlugin sample is installed in the /usr/src/tensorrt/samples/
samplePlugin directory.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 85

Samples

Notes About This Sample:

The Custom layer implements the FullyConnected layer using germm routines (Matrix
Multiplication) in cuBLAS, and tensor addition in cuDNN (bias offset). This sample
illustrates the definition of the FCP1lugin for the Custom layer, and the integration with
NvCaffeParser.

9.1.9.1. Defining The Network

The FCP1lugin redefines the FullyConnected layer, which in this case has a single
output. Accordingly, getNbOutputs returns 1 and getOutputDimensions includes
validation checks and returns the dimensions of the output:

Dims getOutputDimensions (int index, const Dims* inputDims,
int nbInputDims) override

{

assert(index == 0 && nbInputDims == 1 &&
inputDims[0] .nbDims == 3);
assert (mNbInputChannels == inputDims[0].d[0] *

inputDims[0] .d[1] *
inputDims[0] .d[2]) ;
return DimsCHW (mNbOutputChannels, 1, 1);
}

9.1.9.2. Enabling Custom Layers In NvCaffeParser

The model is imported using NvCaffeParser (see Importing A Caffe Model Using The C
++ Parser API and Using Custom Layers When Importing A Model From A Framework).
To use the FCPlugin implementation for the FullyConnected layer, a plugin factory is
defined which recognizes the name of the FullyConnected layer (inner product ip2 in
Caffe).

bool isPlugin(const char* name) override
{ return !strcmp(name, "ip2"); }

The factory can then instantiate FCPlugin objects as directed by the parser. The
createPlugin method receives the layer name, and a set of weights extracted from
the Caffe model file, which are then passed to the plugin constructor. Since the lifetime
of the weights and that of the newly created plugin are decoupled, the plugin makes a
copy of the weights in the constructor.

virtual nvinferl::IPlugin* createPlugin(const char* layerName, const
nvinferl: :Weights* weights, int nbWeights) override

{

mPlugin =
std: :unique ptr<FCPlugin>(new FCPlugin (weights,nbWeights)) ;

return mPlugin.get() ;

}

9.1.9.3. Building The Engine

FCPlugin does not need any scratch space, therefore, for building the engine, the most
important methods deal with the formats supported and the configuration. FCPlugin

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 86

Samples

supports two formats: NCHW in both single and half precision as defined in the
supportsFormat method.

bool supportsFormat (DataType type, PluginFormat format) const override

{
return (type == DataType: :kFLOAT || type == DataType: :kHALF) &&
format == PluginFormat: :kNCHW;
}

Supported configurations are selected in the building phase. The builder selects a
configuration with the networks configureWithFormat () method, to give it a chance
to select an algorithm based on its inputs. In this example, the inputs are checked

to ensure they are in a supported format, and the selected format is recorded in a
member variable. No other information needs to be stored in this simple case; in more
complex cases, you may need to do so or even choose an ad-hoc algorithm for the given
configuration.

void configureWithFormat(..., DataType type, PluginFormat format, ...) override
{
assert((type == DataType: :kFLOAT || type == DataType: :kHALF) &&
format == PluginFormat: :kNCHW) ;
mDataType = type;
}

The configuration takes place at build time, therefore, any information or state

determined here that is required at runtime should be stored as a member variable of the
plugin, and serialized and deserialized.

9.1.9.4. Serializing And Deserializing

Fully complaint plugins support serialization and deserialization, as described

in Serializing A Model In C++. In the example, FCPlugin stores the number of
channels and weights, the format selected, and the actual weights. The size of
these variables makes up for the size of the serialized image; the size is returned by
getSerializationSize:

virtual size_t getSerializationSize() override

{
return sizeof (mNbInputChannels) + sizeof (mNbOutputChannels) +
sizeof (mBiasWeights.count) + sizeof (mDataType) +
(mKernelWeights.count + mBiasWeights.count) *
type2size (mDataType) ;
}

Eventually, when the engine is serialized, these variables are serialized, the weights
converted is needed, and written on a buffer:

virtual void serialize (void* buffer) override

{
char* d = static_cast<char*>(buffer), *a = d;
write(d, mNbInputChannels) ;

convertAndCopyToBuffer (d, mKernelWeights) ;
convertAndCopyToBuffer (d, mBiasWeights) ;
assert(d == a + getSerializationSize())

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 87

Samples

Then, when the engine is deployed, it is deserialized. As the runtime scans the serialized
image, when a plugin image is encountered, it create a new plugin instance via the
factory. The plugin object created during deserialization (shows below using new) is
destroyed when the engine is destroyed by calling FCPlugin: :destroy ().

IPlugin* createPlugin(...) override

{

return new FCPlugin (serialData, seriallength) ;

}

In the same order as in the serialization, the variables are read and their values restored.
In addition, at this point the weights have been converted to selected format and can be
stored directly on the device.

FCPlugin (const void* data, size_t length)
{

const char* d = static_cast<const char*>(data), *a = d;
read (d, mNbInputChannels) ;

deserializeToDevice (d, mDeviceKernel,
mKernelWeights.count*type2size (mDataType)) ;
deserializeToDevice (d, mDeviceBias,
mBiasWeights.count*type2size (mDataType)) ;
assert(d == a + length);
}

9.1.9.5. Resource Management And Execution

Before a custom layer is executed, the plugin is initialized. This is where resources are
held for the lifetime of the plugin and can be acquired and initialized. In this example,
weights are kept in CPU memory at first, so that during the build phase, for each
configuration tested, weights can be converted to the desired format and then copied

to the device in the initialization of the plugin. The method initialize creates the
required cuBLAS and cuDNN handles, sets up tensor descriptors, allocates device
memory, and copies the weights to device memory. Conversely, terminate destroys the
handles and frees the memory allocated on the device.

int initialize () override

{
CHECK (cudnnCreate (&mCudnn)) ;
CHECK (cublasCreate (&mCublas)) ;

if (mKernelWeights.values != nullptr)
convertAndCopyToDevice (mDeviceKernel, mKernelWeights) ;

}

The core of the plugin is enqueue, which is used to execute the custom layer at runtime.
The call parameters include the actual batch size, inputs, and outputs. The handles for

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 88

Samples

cuBLAS and cuDNN operations are placed on the given stream; then, according to the
data type and format configured, the plugin executes in single or half precision.

The two handles are part of the plugin object, therefore, the same engine cannot be
executed concurrently on multiple streams. In order to enable multiple streams of
execution, plugins must be re-entrant and handle stream-specific data accordingly.

virtual int enqueue (int batchSize, const void*const * inputs, void**
outputs, ...) override

{

cublasSetStream (mCublas, stream);
cudnnSetStream (mCudnn, stream) ;
if (mDataType == DataType: :kFLOAT)
{...}

else
{

CHECK (cublasHgemm (mCublas, CUBLAS OP T, CUBLAS OP N,
mNbOutputChannels, batchSize,
mNbInputChannels, &oneh,
mDeviceKernel) , mNbInputChannels,
inputs[0] , mNbInputChannels, &zeroh,
outputs[0] , mNbOutputChannels)) ;

}
if (mBiasWeights.count)

{
cudnnDataType t cudnnDT = mDataType == DataType: :kFLOAT ?
CUDNN_DATA_ FLOAT : CUDNN_DATA HALF;

}

return 0;

}

The plugin object created in the sample is cloned by each of the network, builder, and
engine by calling the FCPlugin: :clone () method. The clone () method calls the
plugin constructor and can also clone plugin parameters, if necessary.

IPluginExt* clone()

{
return new FCPlugin (&mKernelWeights, mNbWeights, mNbOutputChannels) ;

}

The cloned plugin objects are deleted when the network, builder, or engine are
destroyed. This is done by invoking the FCPlugin: :destroy () method.

void destroy() { delete this; }

9.1.10. sampleNMT

What Does This Sample Do?

sampleNMT is a highly modular sample for inferencing using C++ and TensorRT API
so that you can consider using it as a reference point in your projects. Neural Machine
Translation (NMT) using sequence to sequence (seq2seq) models has garnered a lot of
attention and is used in various NMT frameworks.

The sampleNMT sample demonstrates how to:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 89

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

» Create an attention based seq2seq type NMT inference engine using a checkpoint
from TensorFlow

» Convert trained weights using Python and import trained weights data into
TensorRT
» Build relevant engines and run inference using the generated TensorRT network
» Use layers, such as:
RNNv2
The RNNv2 layer is used in the 1stm_encoder.cpp and 1stm _decoder. cpp
files.
Constant
The Constant layer is used in the slp_attention.cpp, slp_embedder.cpp and
slp_projection.cpp files.
MatrixMultiply
The MatrixMultiply layer is used in the context. cpp,
multiplicative _alignment.cpp, slp_attention.cpp, and
slp_projection.cpp files.
Shuffle
The Shuffle layer is used in the 1stm_encoder.cpp and 1stm_decoder.cpp
files.
RaggedSoftmax
The RaggedSoftmax layer is used in the context. cpp file.
TopK
The TopK layer is used in the softmax_likelihood. cpp file.
Gather
The Gather layer is used in the s1p_embedder . cpp file.

Where Is This Sample Located?

The sampleNMT sample is installed in the tensorrt/samples/sampleNMT directory.
For more information about how to run the sample, see the README . txt file in the
samples/sampleNMT/ directory.

Notes About This Sample:
For more information about sampleNMT, read the Neural Machine Translation Inference
with TensorRT 4 technical blog.

9.1.10.1. Overview

At a high level, the basic architecture of the NMT model consists of two sides: an
encoder and a decoder. Incoming sentences are translated into sequences of words in a
fixed vocabulary. The incoming sequence goes through the encoder and is transformed
by a network of Recurrent Neural Network (RNN) layers into an internal state space that
represents a language-independent "meaning" of the sentence. The decoder works the
opposite way, transforming from the internal state space back into a sequence of words
in the output vocabulary.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 90

https://devblogs.nvidia.com/neural-machine-translation-inference-tensorrt-4/
https://devblogs.nvidia.com/neural-machine-translation-inference-tensorrt-4/

Samples

Encoding And Embedding

The encoding process requires a fixed vocabulary of words from the source language.
Words not appearing in the vocabulary are replaced with an UNKNOWN token. Special
symbols also represent START-OF-SENTENCE and END-OF-SENTENCE. After the input is
finished, a START-OF-SENTENCE is fed in to mark the switch to decoding. The decoder
will then produce the END-OF-SENTENCE symbol to indicate it is finished translating.

Vocabulary words are not just represented as single numbers, they are encoded as word
vectors of a fixed size. The mapping from vocabulary word to embedding vector is
learned during training.

Attention

Attention mechanisms sit between the encoder and decoder and allow the network to
focus on one part of the translation task at a time. It is possible to directly connect the

encoding and decoding stages but this would mean the internal state representing the
meaning of the sentence would have to cover sentences of all possible lengths at once.

This sample implements Luong attention. In this model, at each decoder step the target
hidden state is combined with all source states using the attention weights. A scoring
function weighs each contribution from the source states. The attention vector is then fed
into the next decoder stage as an input.

Beam Search And Projection

There are several ways to organize the decode stage. The output of the RNN layer is not
a single word. The simplest method, is to choose the most likely word at each time step,
assume that is the correct output, and continue until the decoder generates the END-OF-
SENTENCE symbol.

A better way to perform the decoding is to keep track of multiple candidate possibilities
in parallel and keep updating the possibilities with the most likely sequences. In
practice, a small fixed size of candidates works well. This method is called beam

search. The beam width is the number of simultaneous candidate sequences that are in
consideration at each time step.

As part of beam search we need a mechanism to convert output states into probability
vectors over the vocabulary. This is accomplished with the projection layer using a fixed
dense matrix.

For more information related to SampleNMT, see Creating A Network Definition In C++,
Working With Deep Learning Frameworks, and Enabling FP16 Inference Using C++.

9.1.10.2. Preparing The Data

The NMT sample can be run with pre-trained weights. Link to the weights in the correct
format can be found in the samples/sampleNMT/README. txt file.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 91

Samples

Running the sample also requires text and vocabulary data. For the De-En model, the
data can be fetched and processed using the script: wmt16_en_de.sh. Running this script
may take some time, since it prepares 4.5M samples for training as well as inference.

Run the script wmt16_de_en.sh and collect the following files into a directory:

newstest2015. tok.bpe.32000.de
newstest2015. tok.bpe.32000.en
vocab.bpe.32000.de
vocab.bpe.32000.en

vV v v VY

The weights .bin files from the link in the README . txt should be put in a subdirectory
named weights in this directory.

In the event that the data files change, as of March 26, 2018 the MD5SUM for the data
files are:

3c0a6e29d67b081a961febc6e9f53ed4c newstest2015.tok.bpe.32000.de
875215£2951b21a5140e4£3734b47d6c newstest2015. tok.bpe.32000.en
c1d0ca6d4994c75574£28d£f7c9e8253f vocab.bpe.32000.de

cl1d0ca6d4994c75574£28df7c9e8253f vocab.bpe.32000.en

9.1.10.3. Running The Sample

The sample executable is located in the tensorrt/bin directory. Running the sample
requires pre-trained weights and the data files mentioned in Preparing The Data. After
the data directory is setup, pass the location of the data directory to the sample with the
following option:

--data_dir=<path_ to_data_directory>
To generate example translation output, issue:

sample nmt --data_dir=<path> --data_writer=text
The example translations can then be found in the translation_output. txt file.

To get the BLEU score for the first 100 sentences, issue:
sample_nmt --data_dir=<path> --max_inference_samples=100

The following options are available when running the sample:
--help

Output help message and exit.
--data_writer=bleu/text/benchmark

Type of the output the app generates (default =bleu).
--output_file=<path_ to file>

Path to the output file when data_writer=text.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 92

https://github.com/tensorflow/nmt/blob/master/nmt/scripts/wmt16_en_de.sh

Samples

--batch=<N>
Batch size (default = 128).
--beam=<N>
Beam width (default = 5).
--max_input_ sequence_ length=<N>
Maximum length for input sequences (default = 150).
--max_output_ sequence_length=<N>
Maximum length for output sequences (default = -1), negative value indicates no
limit.
--max_inference_samples=<N>
Maximum sample count to run inference for, negative values indicates no limit is set
(default=-1).
--verbose
Output information level messages by TensorRT.
--max_workspace_ size=<N>
Maximum workspace size (default = 268435456).
--data_dir=<path_to_data directory>
Path to the directory where data and weights are located (default="../../../../
data/samples/nmt/deen).
--profile
Profile TensorRT execution layer by layer. Use benchmark data_writer when
profiling on, disregard benchmark results.
--aggregate_profile
Merge profiles from multiple TensorRT engines.
--fplé6
Switch on FP16 math.

9.1.10.4. Training The Model

Training the NMT model can be done in TensorFlow. This sample was trained following
the general outline of the TensorFlow Neural Machine Translation Tutorial. The first step
is to obtain training data, which is handled by the steps in Preparing The Data.

The next step is to fetch the TensorFlow NMT framework, for example:

git clone https://github.com/tensorflow/nmt.git

The model description is located in the nmt/nmt/standard hparams/wmtl6.json
file. This file encodes values for all the hyperparameters available for NMT models.
Not all variations are supported by the current NMT sample code so this file should be
edited with appropriate values. For example, only unidirectional LSTMs and the Luong
attention model are supported. The exact parameters used for the pre-trained weights
are available in the sample README.. txt file.

After the model description is ready and the training data is available in the <path>/
wmtl6_de_en directory, the command to train the model is:

python -m nmt.nmt \

--src=de --tgt=en \

--hparams _path=<path to_json config>/wmtlé6.json \
--out_dir=/tmp/deen nmt \
--vocab_prefix=/tmp/wmtl6_de en/vocab.bpe.32000 \

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 93

https://github.com/tensorflow/nmt

Samples

--train prefix=/tmp/wmtl6_de en/train.tok.clean.bpe.32000 \
--dev_prefix=/tmp/wmtl6_de en/newstest2013 tok.bpe.32000 \
——testdpreflx—/tmp/wmtl6_de_en/newstest2015 tok.bpe.32000

9.1.10.5. Importing Weights From A Checkpoint

Training the model generates various output files describing the state of the model. In
order to use the model with TensorRT, model weights must be loaded into the TensorRT
network. The weight values themselves are included in the TensorFlow checkpoint
produced during training. In the sample directory, we provide a Python script that
extracts the weights from a TensorFlow checkpoint into a set of binary weight files that
can be directly loaded by the sample.

To use the script, run the command:

The chpt_to_bin.py script is located in the /usr/src/tensorrt/samples/
sampleNMT directory.

python ./chpt to bin.py \
--src=de --tgt=en \
--ckpt=/tmp/deen_nmt/translate.ckpt-340000 \
--hparams_path=<path to_json config>/wmtlé6.json \
--out_dir=/tmp/deen \
--vocab_prefix=<path>/wmtl6_de en/vocab.bpe.32000 \
--inference_ input file=\
<path>/wmtl6_de en/newstest2015.tok.bpe.32000.de \
--inference_ output_. flle—/tmp/deen/output infer \
--inference ref flle—\
<path>/wmt16 de_en/newstest2015. tok.bpe.32000.en
This generates 7 binary weight files for all the pieces of the model. The binary format is
just a raw dump of the floating point values in order, followed by a metadata. The script

was tested against TensorFlow 1.6.

9.1.11. sampleFasterRCNN

What Does This Sample Do?
The sampleFasterRCNN sample demonstrates how to:

» Use the Faster R-CNN plugin which allows for end-to-end inferencing
» Implement the Faster R-CNN network in TensorRT

» Perform a quick performance test in TensorRT

» Implement a fused custom layer

» Construct the basis for further optimization, for example using INT8 calibration,
user trained network, etc.

Where Is This Sample Located?
The sampleFasterRCNN sample is installed in the /usr/src/tensorrt/samples/
sampleFasterRNN directory.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 94

https://github.com/tensorflow/tensorflow/releases/tag/v1.6.0

Samples

The Faster R-CNN Caffe model is too large to include in the product bundle. To run
this sample, download the model using the instructions in the README . txt in the
sample directory. The README is located in the <TensorRT directory>/samples/
sampleFasterRCNN directory. Once the model is downloaded and extracted as per the
instructions, the sample can be run by invoking sample_fasterRCNN binary.

Notes About This Sample:
The original Caffe model has been modified to include the Faster R-CNN’s RPN and
ROIPooling layers.

9.1.11.1. Overview

The sampleFasterRCNN is a more complex sample. The Faster R-CNN network is based
on the paper Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks.

Faster R-CNN is a fusion of Fast R-CNN and RPN (Region Proposal Network). The
latter is a fully convolutional network that simultaneously predicts object bounds and
objectness scores at each position. It can be merged with Fast R-CNN into a single
network because it is trained end-to-end along with the Fast R-CNN detection network
and thus shares with it the full-image convolutional features, enabling nearly cost-free
region proposals. These region proposals will then be used by Fast R-CNN for detection.

The sampleFasterRCNN sample uses a plugin from the TensorRT plugin library to
include a fused implementation of Faster R-CNN'’s Region Proposal Network (RPN) and
ROIPooling layers. These particular layers are from the Faster R-CNN paper and are
implemented together as a single plugin called RPNROIP1lugin. This plugin is registered
in the TensorRT Plugin Registry with the name RPROI_TRT.

Faster R-CNN is faster and more accurate than its predecessors (RCNN, Fast R-CNN)
because it allows for an end-to-end inferencing and does not need standalone region
proposal algorithms (like selective search in Fast R-CNN) or classification method (like
SVM in RCNN).

9.1.11.2. Preprocessing The Input
The input to the Faster R-CNN network is 3 channel 375x500 images.

Since TensorRT does not depend on any computer vision libraries, the images are
represented in binary R, G, and B values for each pixels. The format is Portable PixMap
(PPM), which is a netpbm color image format. In this format, the R, G, and B values for
each pixel are represented by a byte of integer (0-255) and they are stored together, pixel
by pixel.

However, the authors of SSD have trained the network such that the first Convolution
layer sees the image data in B, G, and R order. Therefore, we reverse the channel order
when the PPM images are being put into the network buffer.

float* data = new float[N*INPUT C*INPUT H*INPUT W];

// pixel mean used by the Faster R-CNN's author

float pixelMean[3]{ 102.9801f, 115.9465f, 122.7717f }; // also in BGR order
for (int i = 0, volImg = INPUT C*INPUT H*INPUT W; i < N; ++i)

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 95

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497

Samples

{
for (int ¢ = 0; ¢ < INPUT_C; ++c)
{
// the color image to input should be in BGR order
for (unsigned j = 0, volChl = INPUT_ H*INPUT W; j < volChl; ++j)
data[i*volImg + c*volChl + j] = float(ppms[i].buffer[j*INPUT C + 2 - c]) -
pixelMean|c];
}
}

There is a simple PPM reading function called readPPMFile.

The readPPMFile function will not work correctly if the header of the PPM image
contains any annotations starting with #.

Furthermore, within the sample, there is another function called
writePPMFileWithBBox, that plots a given bounding box in the image with one-pixel
width red lines.

In order to obtain PPM images, you can easily use the command-line tools such as
ImageMagick to perform the resizing and conversion from JPEG images.

If you choose to use off-the-shelf image processing libraries to preprocess the inputs,
ensure that the TensorRT inference engine sees the input data in the form that it is
supposed to.

9.1.11.3. Defining The Network

The network is defined in a prototxt file which is shipped with the sample and located in
the data/faster-rcnn directory. The prototxt file is very similar to the one used by the
inventors of Faster R-CNN except that the RPN and the ROI pooling layer is fused and
replaced by a custom layer named RPROIFused.

Similar to samplePlugin, in order to add Custom layers via NvCaffeParser, you need

to create a factory by implementing the nvcaffeParser: : IPluginFactory interface
and then pass an instance to ICaffeParser: :parse (). But unlike samplePlugin, in
which the FCP1lugin is defined in the sample, the RPROIFused plugin layer instance
can be created by the create function implemented in the TensorRT plugin library
createRPNROIPlugin. This function returns an instance that implements an optimized
RPROIFused Custom layer and performs the same logic designed by the authors.

9.1.11.4. Building The Engine

For details on how to build the TensorRT engine, see Building An Engine In C++.

In the case of the Faster R-CNN sample, maxWorkspaceSize is set to 10 * (2220),
namely 10MB, because there is a need of roughly 6MB of scratch space for the plugin
layer for batch size 5.

After the engine is built, the next steps are to serialize the engine, then run the inference
with the deserialized engine. For more information, see Serializing A Model In C++.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 96

Samples

9.1.11.5. Running The Engine

To deserialize the engine, see Performing Inference In C++.

In sampleFasterRCNN. cpp, there are two inputs to the inference function:
data
data is the image input
imInfo
imInfo is the image information array which stores the number of rows, columns,
and the scale for each image in a batch.
and four outputs:
bbox pred
bbox_pred is the predicted offsets to the heights, widths and center coordinates.
cls_prob
cls_prob is the probability associated with each object class of every bounding box.
rois
rois is the height, width, and the center coordinates for each bounding box.
count
count is deprecated and can be ignored.

The count output was used to specify the number of resulting NMS bounding
boxes if the output is not alighed to nmsMaxout. Although it is deprecated, always
allocate the engine buffer of size batchSize * sizeof (int) for it until it is
completely removed from the future version of TensorRT.

9.1.11.6. Verifying The Output

The outputs of the Faster R-CNN network need to be post-processed in order to obtain
human interpretable results.

First, because the bounding boxes are now represented by the offsets to the center,
height, and width, they need to be unscaled back to the raw image space by dividing the
scale defined in the imInfo (image info).

Ensure you apply the inverse transformation on the bounding boxes and clip the
resulting coordinates so that they do not go beyond the image boundaries.

Lastly, overlapped predictions have to be removed by the non-maximum suppression
algorithm. The post-processing codes are defined within the CPU because they are
neither compute intensive nor memory intensive.

After all of the above work, the bounding boxes are available in terms of the class
number, the confidence score (probability), and four coordinates. They are drawn in the
output PPM images using the writePPMFileWithBBox function.

9.1.12. sampleUffSSD

What Does This Sample Do?
The sampleUffSSD sample demonstrates how to:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 97

Samples

» Preprocess the TensorFlow SSD network
» Perform inference on the SSD network in TensorRT

» Use TensorRT plugins to speed up inference

Where Is This Sample Located?
The sampleUffSSD sample is installed in the tensorrt/samples/sampleU££SSD
directory.

Notes About This Sample:

The frozen graph for the SSD network is too large to include in the TensorRT package.
Ensure you read the instructions in the README located at tensorrt/samples/
sampleU££SSD for details on how to generate the network to run inference.

9.1.12.1. APl Overview

The sampleUffSSD is based on the following paper, SSD: Single Shot MultiBox Detector.
The SSD network, built on the VGG-16 network, performs the task of object detection
and localization in a single forward pass of the network. This approach discretizes the
output space of bounding boxes into a set of default boxes over different aspect ratios
and scales per feature map location. At prediction time, the network generates scores
for the presence of each object category in each default box and produces adjustments to
the box to better match the object shape. Additionally, the network combines predictions
from multiple features with different resolutions to naturally handle objects of various
sizes.

The sampleUffSSD is based on the TensorFlow implementation of SSD. For more
information, see ssd_inception_v2_coco.

Unlike the paper, the TensorFlow SSD network was trained on the InceptionV2
architecture using the MSCOCO dataset which has 91 classes (including the background
class). The configuration details of the network can be found at GitHub: TensorFlow
models.

The main components of this network are the Preprocessor, FeatureExtractor,

BoxPredictor, Grid AnchorGenerator and Postprocessor.

Preprocessor
The preprocessor step of the graph is responsible for resizing the image. The image is
resized to a 300x300x3 size tensor. The preprocessor step also performs normalization
of the image so all pixel values lie between the range [-1, 1].

FeatureExtractor
The FeatureExtractor portion of the graph runs the InceptionV2 network on the
preprocessed image. The feature maps generated are used by the anchor generation
step to generate default bounding boxes for each feature map.

In this network, the size of feature maps that are used for anchor generation are
[(19x19), (10x10), (5x5), (3x3), (2x2), (1x1)].

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 98

https://arxiv.org/abs/1512.02325
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config

Samples

BoxPredictor
The BoxPredictor step takes in a high level feature map as input and produces a list of
box encodings (x-y coordinates) and a list of class scores for each of these encodings
per feature map. This information is passed to the postprocessor.
GridAnchorGenerator
The goal of this step is to generate a set of default bounding boxes (given the
scale and aspect ratios mentioned in the config) for each feature map cell. This is
implemented as a plugin layer in TensorRT called the gridAnchorGenerator
plugin. The registered plugin name is GridAnchor_TRT.
Postprocessor
The postprocessor step performs the final steps to generate the network output.
The bounding box data and confidence scores for all feature maps are fed to
the step along with the pre-computed default bounding boxes (generated in the
GridAnchorGenerator namespace). It then performs NMS (non-maximum
suppression) which prunes away most of the bounding boxes based on a confidence
threshold and IoU (Intersection over Union) overlap, thus storing only the top N
boxes per class. This is implemented as a plugin layer in TensorRT called the NMS
plugin. The registered plugin name is NMS_TRT.

This sample also implements another plugin called FlattenConcat which is used
to flatten each input and then concatenate the results. This is applied to the
location and confidence data before it is fed to the post processor step since the
NMS plugin requires the data to be in this format.

For details on how a plugin is implemented, see the implementation of
FlattenConcat Plugin and FlattenConcatPluginCreator in the
sampleUf£SSD. cpp file in the tensorrt/samples/sampleUf£SSD directory.

9.1.12.2. Processing The Input Graph

The TensorFlow SSD graph has some operations that are currently not supported in
TensorRT. Using a preprocessor on the graph, we can combine multiple operations in
the graph into a single custom operation which can be implemented as a plugin layer
in TensorRT. Currently, the preprocessor provides the ability to stitch all nodes within a
namespace into one custom node.

To use the preprocessor, the convert-to-uf£ utility should be called with a -p flag
and a config file. The config script should also include attributes for all custom plugins
which will be embedded in the generated .u£f file. Current sample scripts for SSD is
located in /usr/src/tensorrt/samples/sampleUf£SSD/config.py.

Using the preprocessor on the graph, we were able to remove the preprocessor
namespace from the graph, stitch the GridAnchorGenerator namespace to create the
GridAnchorGenerator plugin, stitch the postprocessor namespace to the NMS plugin
and mark the concat operations in the BoxPredictor as FlattenConcat plugins.

The TensorFlow graph has some operations like Assert and Identity which can be
removed for the inferencing. Operations like Assert are removed and leftover nodes
(with no outputs once assert is deleted) are then recursively removed.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 99

Samples

Identity operations are deleted and the input is forwarded to all the connected outputs.
Additional documentation on the graph preprocessor can be found in the TensorRT API.

9.1.12.3. Preparing The Data

The generated network has an input node called Input and the output node is given
the name MarkOutput_0 by the UFF converter. These nodes are registered by the UFF
Parser in the sample.

parser->registerInput ("Input", DimsCHW(3, 300, 300), UffInputOrder: :kNCHW) ;
parser->registerOutput ("MarkOutput 0") ;

The input to the SSD network in this sample is 3 channel 300x300 images. In the sample,
we normalize the image so the pixel values lie in the range [-1,1]. This is equivalent to
the preprocessing stage of the network.

Since TensorRT does not depend on any computer vision libraries, the images are
represented in binary R, G, and B values for each pixels. The format is Portable PixMap
(PPM), which is a netpbm color image format. In this format, the R, G, and B values for
each pixel are represented by a byte of integer (0-255) and they are stored together, pixel
by pixel. There is a simple PPM reading function called readPPMFile.

9.1.12.4. Defining The Network And Plugins

Details about how to create TensorRT plugins can be found in Extending TensorRT With
Custom Layers.

The config.py defined for the convert-to-uff command should have the custom
layers mapped to the plugin names in TensorRT by modifying the op field. The names
of the plugin parameters should also exactly match those expected by the TensorRT
plugins. For example, for the GridAnchor Plugin, the config.py should have the
following:

PriorBox = gs.create_plugin_node (name="GridAnchor", op="GridAnchor TRT",
numLayers=6,
minSize=0.2,
maxSize=0.95,
aspectRatios=[1.0, 2.0, 0.5, 3.0, 0.33],
variance=[0.1,0.1,0.2,0.2],
featureMapShapes=[19, 10, 5, 3, 2, 1])

Here, GridAnchor_TRT matches the registered plugin name and the parameters have
the same name and type as expected by the plugin.

If the config.py is defined as above, the NvUf{fParser will be able to parser the network
and call the appropriate plugins with the correct parameters.

Alternately, the older flow of using the IPluginFactory can also be used. In

this case, the pluginFactory object created needs to be passed to an instance of
IUffParser: :parse () which will invoke the createPlugin () function for each
Custom layer which has to be implemented by the user. Details about some of the plugin
layers implemented for SSD in TensorRT are given below.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 100

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html

Samples

GridAnchorGeneration Plugin
This plugin layer implements the grid anchor generation step in the TensorFlow SSD
network. For each feature map we calculate the bounding boxes for each grid cell. In
this network, there are 6 feature maps and the number of boxes per grid cell are as
follows:

19x19] feature map: 3 boxes (19x19x3x4(co-ordinates/box))
10x10] feature map: 6 boxes (10x10x6x4)

5x5] feature map: 6 boxes (5x5x6x4)

3x3] feature map: 6 boxes (3x3x6x4)

2x2] feature map: 6 boxes (2x2x6x4)

1x1] feature map: 6 boxes (1x1x6x4)

vV Vv v v Vv
—_—————

NMS Plugin
The NMS plugin generates the detection output based on location and confidence
predictions generated by the BoxPredictor. This layer has three input tensors
corresponding to location data (locData), confidence data (confData) and priorbox
data (priorData).

The inputs to detection output plugin have to be flattened and concatenated across
all the feature maps. We use the FlattenConcat plugin implemented in the sample
to achieve this. The location data generated from the box predictor has the following
dimensions:

19x19x12 -> Reshape -> 1083x4 -> Flatten -> 4332x1
10x10x24 -> Reshape -> 600x4 -> Flatten -> 2400x1

and so on for the remaining feature maps.

After concatenating, the input dimensions for locData input are of the order of
7668x1.

The confidence data generated from the box predictor has the following dimensions:

19x19%x273 -> Reshape -> 1083x91 -> Flatten -> 98553x1
10x10x546 -> Reshape -> 600x91 -> Flatten -> 54600x1

and so on for the remaining feature maps.

After concatenating, the input dimensions for confData input are of the order of
174447x1.

The prior data generated from the grid anchor generator plugin has the following
dimensions, for example 19x19 feature map has 2x4332x1 (there are two channels
here because one channel is used to store variance of each coordinate that is used in
the NMS step). After concatenating, the input dimensions for priorData input are of
the order of 2x7668x1.

struct DetectionOutputParameters

{
bool sharelocation, varianceEncodedInTarget;
int backgroundlLabellId, numClasses, topK, keepTopK;
float confidenceThreshold, nmsThreshold;
CodeTypeSSD codeType;
int inputOrder[3];
bool confSigmoid;

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 101

Samples

bool isNormalized;

};

sharelLocation and varianceEncodedInTarget are used for the Caffe
implementation, so for the TensorFlow network they should be set to true and
false respectively. The confSigmoid and isNormalized parameters are necessary
for the TensorFlow implementation. If confSigmoid is set to true, it calculates the
sigmoid values of all the confidence scores. The isNormalized flag specifies if the
data is normalized and is set to true for the TensorFlow graph.

9.1.12.5. Verifying The Output

After the builder is created (see Building An Engine In C++) and the engine is serialized
(see Serializing A Model In C++), we can perform inference. Steps for deserialization and
running inference are outlined in Performing Inference In C++.

The outputs of the SSD network are human interpretable. The post-processing work,
such as the final NMS, is done in the NMS plugin. The results are organized as tuples of
7. In each tuple, the 7 elements are respectively image ID, object label, confidence score,
(x,y) coordinates of the lower left corner of the bounding box, and (x, y) coordinates of
the upper right corner of the bounding box. This information can be drawn in the output
PPM image using the writePPMFileWithBBox function. The visualizeThreshold
parameter can be used to control the visualization of objects in the image. It is currently
set to 0.5 so the output will display all objects with confidence score of 50% and above.

9.1.13. sampleMovielLens

What Does This Sample Do?

The sampleMovieLens sample demonstrates a simple movie recommender system
using Neural Collaborative Filter (NCF). The network is trained in TensorFlow on the
MovieLens dataset containing 6040 users and 3706 movies. For more information about
the recommender system network, see Neural Collaborative Filtering.

Where Is This Sample Located?
The sampleMovieLens sample in installed in the usr/src/tensorrt/samples/
sampleMovieLens directory.

Notes About This Sample:

Each query to the network consists of a userID and list of MovieIDs. The network
predicts the highest-rated movie for each user. As trained parameters, the network
has embeddings for users and movies, and weights for a sequence of Multi-Layer
Perceptrons (MLPs).

9.1.13.1. Importing Network To TensorRT

The network is converted from TensorFlow using the UFF converter (see Converting A
Frozen Graph To UFF), and imported using the UFF parser. Constant layers are used to
represent the trained parameters within the network, and the MLPs are implemented

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 102

https://grouplens.org/datasets/movielens/

Samples

using FullyConnected layers. A TopK operation is added manually after parsing to find
the highest rated movie for the given user.

9.1.13.2. Verifying The Output

The output of the MLP based NCF network is in human readable format. The final
output is movieID with probability rating for give userID.

9.1.14. sampleMovieLensMPS

What Does This Sample Do?
The sampleMovieLensMPS sample is identical to sampleMovieLens in terms of
functionality, but is modified to support concurrent execution in multiple processes.

Where Is This Sample Located?
The sampleMovieLensMPS sample in installed in the usr/src/tensorrt/samples/
sampleMovieLensMPS directory.

Notes About This Sample:

MPS (Multi-Process Service) allows multiple CUDA processes to share single GPU
context. With MPS, multiple overlapping kernel execution and memcpy operations from
different processes can be scheduled concurrently to achieve maximum utilization. This
can be especially effective in increasing parallelism for small networks with low resource
utilization such as those primarily consisting of a series of small MLPs. For more
information about MPS, see Multi-Process Service documentation or in the README . txt
tile for the sample.

MPS requires a server process. To start the process:

export CUDA VISIBLE DEVICES=<GPU_ID>
nvidia-smi -i <GPU_ID> -c EXCLUSIVE_ PROCESS
nvidia-cuda-mps-control -d

9.1.15. sampleSSD

What Does This Sample Do?
The sampleSSD sample demonstrates how to:

» Preprocess the input to the SSD network

» Perform inference on the SSD network in TensorRT
» Use TensorRT plugins to speed up inference

» Perform INTS calibration on an SSD network

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 103

https://docs.nvidia.com/deploy/mps/index.html

Samples

Where Is This Sample Located?
The sampleSSD sample is installed in the /usr/src/tensorrt/samples/sampleSSD
directory.

Notes About This Sample:

The SSD Caffe model is too large to include in the product bundle. To run this
sample, download the model using the instructions in the README.md in the sample
<TensorRT directory>/samples/sampleSSD directory. The original Caffe model
(prototxt) has been modified to include the SSD’s customized Plugin layers.

9.1.15.1. Overview

The SSD network is based on the following paper SSD: Single Shot MultiBox Detector.
This network is based on the VGG-16 network. It can perform object detection and
localization in a single forward pass.

Unlike Faster R-CNN, SSD completely eliminates proposal generation and subsequent
pixel or feature resampling stages and encapsulates all computation in a single network.
This makes SSD straightforward to integrate into systems that require a detection
component.

9.1.15.2. Preprocessing The Input

The input to the SSD network in this sample is a RGB 300x300 image. The image format
is Portable PixMap (PPM), which is a netpbm color image format. In this format, the R,
G, and B values for each pixel are represented by a byte of integer (0-255) and they are
stored together, pixel by pixel.

The authors of SSD have trained the network such that the first Convolution layer sees
the image data in B, G, and R order. Therefore, the channel order needs to be changed
when the PPM image is being put into the network’s input buffer.

float pixelMean[3]{ 104.0f, 117.0f, 123.0f }; // also in BGR order
float* data = new float[N * kINPUT C * kINPUT H * kINPUT W];

for (int i = 0, volImg = kINPUT C * kINPUT H * kINPUT W; i < N; ++i)
{

for (int ¢ = 0; ¢ < kINPUT C; ++c)

// the color image to input should be in BGR order

for (unsigned j = 0, volChl = kINPUT H * kINPUT W; j < volChl; ++3j){

Data[i * volImg + ¢ * volChl + j] = float(ppms[i] .buffer[]j * kINPUT C + 2 -
c]) - pixelMean]|c];

}
}

}

The readPPMFile and writePPMFileWithBBox functions read a PPM image and
produce output images with red colored bounding boxes respectively.

The readPPMFile function will not work correctly if the header of the PPM image
contains any annotations starting with #.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 104

Samples

9.1.15.3. Defining The Network

The network is defined in a prototxt file which is shipped with the sample and located
in the data/ssd directory. The original prototxt file provided by the authors is modified
and included in the TensorRT in-built plugin layers in the prototxt file.

The built-in plugin layers used in sampleSSD are Normalize, PriorBox, and
DetectionOutput. The corresponding registered plugins for these layers are
Normalize_TRT,PriorBox_IRTznuiNMS_TRT.

To initialize and register these TensorRT plugins to the plugin registry, the
initLibNvInferPlugins method is used. After registering the plugins and while
parsing the prototxt file, the NvCaffeParser creates plugins for the layers based on the
parameters that were provided in the prototxt file automatically. The details about each
parameter is provided in the README.md and can be modified similar to the Caffe
Layer parameter.

9.1.15.4. Building The Engine

The sampleSSD sample builds a network based on a Caffe model and network
description. For details on importing a Caffe model, seelmporting A Caffe Model Using
The C++ Parser APIL. The SSD network has few non-natively supported layers which

are implemented as plugins in TensorRT. The Caffe parser can create plugins for these
layers internally which avoids creating additional code for plugin factory like in the
sampleFasterRCNN sample.

This sample can run in FP16 and INT8 modes based on the user input. For more details,
seeINT8 Calibration Using C++ and Enabling FP16 Inference Using C++. The sample
selects the entropy calibrator as a default choice. The CalibrationMode parameter in
the sample code needs to be set to 0 to switch to the Legacy calibrator.

For details on how to build the TensorRT engine, seeBuilding An Engine In C++. After
the engine is built, the next steps are to serialize the engine and run the inference with
the deserialized engine. For more information about these steps, seeSerializing A Model
In C++.

9.1.15.5. Verifying The Output

After deserializing the engine, you can perform inference. To perform inference, see
Performing Inference In C++.

In sampleSSD, there is a single input:
data
Namely the image input.
and 2 outputs:
detectionOut
The detection array, containing the image ID, label, confidence, and 4 coordinates.
keepCount
The number of valid detections.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 105

Samples

The outputs of the SSD network are directly human interpretable. The results are
organized as tuples of 7. In each tuple, the 7 elements are:

image ID

object label

confidence score

(x,y) coordinates of the lower left corner of the bounding box
(x,y) coordinates of the upper right corner of the bounding box

vV vV v v VY

This information can be drawn in the output PPM image using the
writePPMFileWithBBox function. The kVISUAL THRESHOLD parameter can be used to
control the visualization of objects in the image. It is currently set to 0.6, therefore, the
output will display all objects with confidence score of 60% and above.

9.1.16. sampleMLP

What Does This Sample Do?

sampleMLP is a simple hello world example that shows how to create a network

that triggers the multi-layer perceptron (MLP) optimizer. The sample uses a publicly
accessible TensorFlow tutorial to train a MLP network based on the MNIST data set and
how to transform that data into a format that the samples use.

The sampleMLP sample demonstrates how to:

» Trigger the MLP optimizer by creating a sequence of networks to increase
performance

» Create a sequence of TensorRT layers that represent an MLP layer

Where Is This Sample Located?
The sampleMLP sample is installed in the tensorrt/samples/sampleMLP directory.

9.1.16.1. Defining The Network

This sample follows the same flow as sampleMNISTAPI with one exception. The
network is defined as a sequence of addMLP calls, which adds FullyConnected and
Activation layers to the network.

Currently, an MLP layer is defined as a FullyConnected or MatrixMultiplication
operation with optional bias and activations. A MLP network is more than one MLP
layer generated sequentially in the TensorRT network. The optimizer will detect this
pattern and generate optimized MLP code.

The current variations that trigger the MLP optimizer:

{MatrixMultiplication [-> ElementWiseSum] [-> Activation]}+
{FullyConnected [-> Activation]}+

{FullyConnected [-> Scale(with empty scale and power arguments)] [->
Activation] }+

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 106

https://en.wikipedia.org/wiki/Multilayer_perceptron

Samples

9.2. Python Samples

You can find the Python samples in the /usr/src/tensorrt/samples/python
directory. The following Python samples are shipped with TensorRT:

» introductory_parser_samples
» end_to_end_tensorflow mnist
» network_api_pytorch_mnist

» fc_plugin_caffe_mnist

» uff_custom_plugin

» yolov3_onnx

» uff ssd

Running Python Samples

Every Python sample includes a README .md and requirements. txt file. To run one of
the Python samples, the process typically involves two steps:

1. Install the sample requirements:

python<x> -m pip install -r requirements.txt

where python<x> is either python2 or python3.

2. Run the sample code with the data directory provided if the TensorRT sample data
is not in the default location. For example:

python<x> sample.py [-d DATA DIR]

For more information on running samples, see the README . md file included with the
sample.

9.2.1. introductory_parser_samples

What Does This Sample Do?

This sample demonstrates how to use TensorRT and its included suite of parsers (the
UFF, Caffe and ONNX parsers), to perform inference with ResNet-50 models trained
with various different frameworks.

This sample includes the following:

caffe_resnet50
This sample demonstrates how to build an engine from a trained Caffe model using
the Caffe parser and then run inference.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 107

Samples

onnx_resnet50
This sample demonstrates how to build an engine from an ONNX model file using
the open-source ONNX parser and then run inference.

uff_resnet50
This sample demonstrates how to build an engine from a UFF model file (converted
from a TensorFlow protobuf) and then run inference.

Where Is This Sample Located?
The introductory_parser_samples sample is installed in the /usr/src/tensorrt/
samples/python/introductory parser_ samples directory.

9.2.2. end_to_end_tensorflow_mnist

What Does This Sample Do?

This sample demonstrates how to first train a model using TensorFlow and Keras, freeze
the model and write it to a protobuf file, convert it to UFF, and finally run inference
using TensorRT.

Where Is This Sample Located?
The end_to_end_tensorflow_mnist sample is installed in the /usr/src/tensorrt/
samples/python/end to_end tensorflow_mnist directory.

9.2.3. network_api_pytorch_mnist

What Does This Sample Do?

This sample demonstrates how to train a model in PyTorch, recreate the network in
TensorRT and import weights from the trained model, and finally run inference with a
TensorRT engine.

Where Is This Sample Located?
The network_api_pytorch_mnist sample is installed in the /usr/src/tensorrt/
samples/python/network_api_pytorch mnist directory.

Notes About This Sample:
The sample.py script imports the functions from the mnist. py script for training the
PyTorch model, as well as retrieving test cases from the PyTorch Data Loader.

9.2.4. fc_plugin_caffe_mnist

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 108

Samples

What Does This Sample Do?

This sample demonstrates how to use plugins written in C++ with the TensorRT Python
bindings and CaffeParser. More specifically, this sample implements a FullyConnected
layer using cuBLAS and cuDNN, wraps the implementation in a TensorRT plugin
(with a corresponding plugin factory) and then generates Python bindings for it

using pybind11. These bindings are then used to register the plugin factory with the
CaffeParser.

Where Is This Sample Located?
The fc_plugin_caffe_mnist sample is installed in the /usr/src/tensorrt/samples/
python/fc_plugin caffe mnist directory.

9.2.5. uff_custom_plugin

What Does This Sample Do?

This sample demonstrates how to use plugins written in C++ with the TensorRT Python
bindings and UFF Parser. More specifically, this sample implements a clip layer (as a
CUDA kernel), wraps the implementation in a TensorRT plugin (with a corresponding
plugin creator) and then generates a shared library module containing its code. The user
then dynamically links this library in Python,which causes plugin to be registered in
TensorRT's Plugin Registry and makes it available for UFF parser.

Where Is This Sample Located?
The uff_custom_plugin sample is installed in the /usr/src/tensorrt/samples/
python/uff custom plugin directory.

9.2.6. yolov3_onnx

What Does This Sample Do?
This sample demonstrates a full ONNX-based pipeline for inference with the network
YOLOV3-608, including pre- and post-processing.

First, the YOLOvV3 configuration and the weights from the author’s official mirror are
read to generate an ONNX representation of the model that can be parsed by TensorRT.
Thereafter, that ONNX graph is used to create a TensorRT engine with the open-sourced
repository.

Next, the YOLOv3 pre-processing steps are applied on an example image and used as an

input to the previously created engine.

After inference, post-processing including bounding-box clustering is applied. The
resulting bounding boxes are eventually drawn to a new image file and stored on disk
for inspection.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 109

https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt

Samples

Where Is This Sample Located?
The yolov3_onnx sample is installed in the /usr/src/tensorrt/samples/python/
yolov3_onnx directory.

Notes About This Sample:

This sample requires the installation of ONNX-TensorRT: TensorRT backend for ONNX,
which includes layer implementations for the required ONNX operators Upsample and
LeakyReLU.

9.2.7. uff_ssd

What Does This Sample Do?
This sample demonstrates a full UFF-based inference pipeline for performing inference
with an SSD (InceptionV?2 feature extractor) network.

The sample downloads a pretrained ssd_inception_v2 coco_2017_11_17 model
and uses it to perform inference. Additionally, it superimposes bounding boxes on the
input image as a post-processing step.

It is also capable of validating the TensorRT engine using the VOC 2007 data set.
Where Is This Sample Located?

The uff_ssd sample is installed in the /usr/src/tensorrt/samples/python/
uff_ssd directory.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 110

https://github.com/onnx/onnx-tensorrt

Chapter 10.
TROUBLESHOOTING

The following sections help answer the most commonly asked questions regarding
typical use cases.

10.1. FAQs

Q: How do you create an engine that is optimized for several different batch sizes?
A: While TensorRT allows an engine optimized for a given batch size to run at any
smaller size, the performance for those smaller sizes may not be as well-optimized. To
optimize for multiple different batch sizes, run the builder and serialize an engine for
each batch size.

Q: Are engines and calibration tables portable across TensorRT versions?

A: No. Internal implementations and formats are continually optimized and may change
between versions. For this reason, engines and calibration tables are not guaranteed to
be binary compatible with different versions of TensorRT. Applications should build
new engines and INT8 calibration tables when using a new version of TensorRT.

Q: How do you choose the optimal workspace size?

A: Some TensorRT algorithms require additional workspace on the GPU. The method
IBuilder: : setMaxWorkspaceSize () controls the maximum amount of workspace
that may be allocated, and will prevent algorithms that require more workspace from
being considered by the builder. At runtime, the space is allocated automatically

when creating an IExecutionContext. The amount allocated will be no more than

is required, even if the amount set in IBuilder: : setMaxWorkspaceSize () is much
higher. Applications should therefore allow the TensorRT builder as much workspace as
they can afford; at runtime TensorRT will allocate no more than this, and typically less.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 111

Troubleshooting

Q: How do you use TensorRT on multiple GPUs?

A: Each ICudaEngine object is bound to a specific GPU when it is instantiated, either
by the builder or on deserialization. To select the GPU, use cudaSetDevice () before
calling the builder or deserializing the engine. Each IExecutionContext is bound
to the same GPU as the engine from which it was created. When calling execute ()
or enqueue (), ensure that the thread is associated with the correct device by calling
cudaSetDevice () if necessary.

Q: How do | get the version of TensorRT from the library file?

A: There is a symbol in the symbol table named tensorrt version_# # # # which
contains the TensorRT version number. One possible way to read this symbol on Linux is
to use the nm command like in the example below:

$ nm -D libnvinfer.so.4.1.0 | grep tensorrt version
000000000c18£78c B tensorrt version_4 0 0 _7

Q: What can | do if my network is producing the wrong answer?

A: There are several reasons why your network may be generating incorrect answers.
Here are some troubleshooting approaches which may help diagnose the problem:

» Turn on INFO level messages from the log stream and check what TensorRT is
reporting.

» Check that your input preprocessing is generating exactly the input format required
by the network.

» If you're using reduced precision, run the network in FP32. If it produces the correct
result, it is possible that lower precision has insufficient dynamic range for the
network.

» Try marking intermediate tensors in the network as outputs, and see if they
match what you are expecting. Note: Marking tensors as outputs may inhibit
optimizations, and therefore, may change the results.

Q: How do | determine how much device memory will be required by my network?
A: TensorRT uses device memory for two purposes: to hold the weights required

by the network, and to hold the intermediate activations. The size of the weights

can be closely approximated by the size of the serialized engine (in fact this

will be a slight overestimate, as the serialized engine also includes the network
definition). The size of the activation memory required can be determined by calling
ICudaEngine: :getDeviceMemorySize (). The sum of these will be the amount of
device memory TensorRT allocates.

The CUDA infrastructure and device code also consume device memory. The amount
of memory will vary by platform, device, and TensorRT version. Use cudaGetMemInfo
to determine the total amount of device memory in use.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 112

Troubleshooting

10.2. Support

Support, resources, and information about TensorRT can be found online at https://
developer.nvidia.com/tensorrt. This includes blogs, samples, and more.

In addition, you can access the NVIDIA DevTalk TensorRT forum at https://
devtalk.nvidia.com/default/board/304/tensorrt/ for all things related to TensorRT. This
forum offers the possibility of finding answers, make connections, and to get involved in
discussions with customers, developers, and TensorRT engineers.

10.2.1. How Do | Report A Bug?

We appreciate all types of feedback. If you encounter any issues, please report them by
following these steps:

Register for the NVIDIA Developer website.

Log into the developer site.

Click on your name in the upper right corner.

Click My account > My Bugs and select Submit a New Bug.

o hw DR

Fill out the bug reporting page. Be descriptive and if possible, provide the steps that
you are following to help reproduce the problem.

6. Click Submit a bug.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 113

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://devtalk.nvidia.com/default/board/304/tensorrt/
https://devtalk.nvidia.com/default/board/304/tensorrt/
https://developer.nvidia.com/

Appendix A.
APPENDIX

A.1. TensorRT Layers

In TensorRT, layers represent distinct flavours of mathematical and/or programmatic
operations. The following sections describe every layer that is supported by TensorRT.
To view a list of the specific attributes that are supported by each layer, refer to the
TensorRT API documentation.

TensorRT has the ability to optimize performance by fusing layers. For information
about how to enable layer fusion optimizations, see Types Of Fusions. For information
about how to optimize layer performance, see How Do I Optimize My Layer
Performance? from the Best Practices guide.

A.1.1. Activation Layer

The Activation layer implements element-wise activation functions.

Layer Description

Apply an activation function on a input tensor A, and produce an output tensor B with
the same dimensions.

The Activation layer supports the following operations:
rectified Linear Unit (RelLU): B = ReLU(A)

Hyperbolic tangent: B = tanh(3)
“s” shaped curve (sigmoid): B = o (A)

Conditions And Limitations
None

See the C++ [ActivationLayer method or the Python IActivationLayer method for further
details.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 114

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#fusion-types
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0382282a59e3841726f6c29c4ac1f684
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_activation

Appendix

A.1.2. Concatenation Layer

The Concatenation layer links together multiple tensors of the same non-channel sizes
along the channel dimension.

Layer Description

The concatenation layer is passed in an array of minput tensors A* and a channel axis c.

All dimensions of all input tensors must match in every axis except axis c. Let each input
tensor have dimensions a*. The concatenated output tensor will have dimensions b such
that

m—1
b,={a, if j#c, and Y a.otherwise}
<

]

Conditions And Limitations

The default channel axis is assumed to be the third from last axis, or the first non-batch
axis if there are fewer than 3 non-batch axes. Concatenation cannot be done along the
batch axis. All input tensors must either be non-INT32 type or all must be INT32 type.

See the C++ IConcatenationLayer method or the Python IConcatenationLayer method for
further details.

A.1.3. Constant Layer

The Constant layer outputs a tensor with values provided as parameters to this layer,
enabling the convenient use of constants in computations.
Layer Description

Given dimensions d and weight vector w, the constant layer will output a tensor B of
dimensions d with the constant values in w. This layer takes no input tensor. The number
of elements in the weight vector wis equal to the volume of d.

Conditions And Limitations
The output can be a tensor of zero to seven dimensions.

See the C++ IConstantLayer method or the Python IConstantLayer method for further
details.

A.1.4. Convolution Layer

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 115

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a80d81ac3ebb81efbd3a29d4c9f5c3a72
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_concatenation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#aec3314208c6d807cb572cd7d336bf5ed
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_constant

Appendix

The Convolution layer computes a 2D (channel, height, and width) convolution, with or
without bias.

The operation the Convolution layer performs is actually a correlation. Therefore, it
is a consideration if you are formatting weights to import via an API, rather than via
the NvCaffeParser library.

Layer Description

Compute a cross-correlation with 2D filters on a 4D tensor &, of dimensions a, to
produce a 4D tensor B, of dimensions b. The dimensions of B depend on the dimensions
of &, the number of output maps m, kernel size r, symmetric padding p, stride s, dilation
d, and dilated kernel size t = r+d(r-1), such that height and width are adjusted
accordingly as follows:

» b = [ag m by b3s]
> by (az+2po-to) /so+1
» b3 = (az+2p;-ti1)/si1+l

The kernel weights w and bias weights x (optional) for the number of groups g, are such
that:

» wis ordered according to shape [m a;/g ro ri]
» xhaslengthm

Let tensor K with dimensionsk = [m a;/g to ti] be defined as the zero-filled tensor,
such that:

> ki,j,hh,11 = Wi, j,h,1
» hh = {0 if h = 0, h + dg(h-1) otherwise},and11l = {0 if 1 =0, 1 +
d; (1-1) otherwise}.

and tensor C the zero-padded copy of A with dimensions [ag a; az+p:1], then tensor B
is defined as:

B =% (C

i,9,k,1 = i, kikk,1:11

zx K, ..)tx,

mgpow

where kk = k+tp-1,and 11 = 1+t;-1.

Conditions And Limitations

Input and output may have more than 4 dimensions; beyond 4, all dimensions are
treated as multipliers on the batch size, and input and output are treated as 4D tensors.
If groups are specified and INTS8 data type is used, then the size of the groups must be a
multiple of 4 for both input and output.

See the C++ IConvolutionLayer method or the Python IConvolutionLayer method for
further details.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 116

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a29fb055009bb117be0e957cd1bce44a9
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_convolution

Appendix

A.1.5. Deconvolution Layer

The Deconvolution layer computes a 2D (channel, height, and width) deconvolution,
with or without bias.

This layer actually applies a 2D transposed convolution operator over a 2D input. It is
also known as fractionally-strided convolution or transposed convolution.

Layer Description

Compute a cross-correlation with 2D filters on a 4D tensor 3, of dimensions a, to
produce a 4D tensor B, of dimensions b. The dimensions of B depend on the dimensions
of &, the number of output maps m, kernel size r, symmetric padding p, stride s, dilation
d, and dilated kernel size t = r+d(r-1), such that height and width are adjusted
accordingly as follows:

» b = [ag m by b3]
» by = (ax-l)*sp + to - 2po
» b3y = (az-1)*s; + t1 - 2pg

The kernel weights w and bias weights x (optional) for the number of groups g, are such
that:

» wis ordered according to shape [ai1/g m ro ri]
» xhaslengthm

Let tensor K with dimensionsk = [m b1/g to ti1] be defined as the zero-filled tensor,
such that:

> ki,j,ph,11 = Wi,j,h,1
» hh = {0 if h = 0, h + dy(h-1) otherwise},and1l = {0 if 1 =0, 1 +

d; (1-1) otherwise}.

and tensor C the zero-padded copy of A with dimensions [ag a; az+p:1], then tensor B
is defined as:

B —%

i, 9,k 1 ;:,v{c Kj+xj

i,d,k-u,l-w
where u ranges from 0 tomin (to-1, k), and v ranges from 0 tomin (t;-1, 1).

Conditions And Limitations

Input and output may have more than 4 dimensions; beyond 4, all dimensions are
treated as multipliers on the batch size, and input and output are treated as 4D tensors.
If groups are specified and INTS8 data type is used, then the size of the groups must be a
multiple of 4 for both input and output.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 117

Appendix

See the C++ IDeconvolutionLayer method or the Python IDeconvolutionLayer method
for further details.

A.1.6. ElementWise Layer

The ElementWise layer, also known as the Eltwise layer, implements per-element
operations.

Layer Description

Compute a per-element binary operation between input tensor A and input tensor B to
produce an output tensor C. For each dimension, their lengths must match, or one of
them must be one. In the latter case, the tensor is broadcast along that axis. The output
tensor has the same number of dimensions as the inputs. For each dimension, its length
is the maximum of the lengths of the corresponding input dimension.

The ElementWise layer supports the following operations:

Sum: C = A+B

Product: C = A*B
Maximum: C = min (A, B)
Minimum: C = max (A, B)

Subtraction: C = A-B
Division: C = A/B
Power: C = A”B

Conditions And Limitations

The length of each dimension of the two input tensors A and B must be equal or equal to
one.

See the C++ [ElementWiseLayer method or the Python IElementWiseLayer method for
further details.

A.1.7. FullyConnected Layer

The FullyConnected layer implements a matrix-vector product, with or without bias.

Layer Description

The FullyConnected layer expects an input tensor A of three or more dimensions. Given
an input tensor A of dimensions a=[ag ... ap-1],itis first reshaped into a tensor

A’ of dimensionsa’=[ag ... apn-s (a@n-3*an-2*ap-1) 1 by squeezing the last three
dimensions into one dimension.

Then, the layer performs the operation B’ =WA’ +X where W is the weight tensor of
dimensions w=[(ap-3*an-2*an-1) k], X is the bias tensor of dimensions x=[k]
broadcasted along the other dimensions, and k is the number of output channels,
configurable via setNbOutputChannels (). If X is not specified, the value of the bias is
implicitly 0. The resulting B’ is a tensor of dimensionsb’=[ag ... ap-s4 k].

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 118

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a80f985a0a5e5e68561ef205bf346fc33
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_deconvolution
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#aa12fda7cb22a7a12f4d58701e9f3988f
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_elementwise
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html#a7a268ddbb5c40ac1c35b872a3f08278b

Appendix

Finally, B’ is reshaped again into the output tensor B of dimensionsb=[ag ... an-4 k
1 1] by inserting two lower dimensions each of size 1.

In summary, for input tensor & of dimensions a=[ag ... an-1], the output tensor B will
have dimensionsb=[ag ... as-4 k 1 1].

Conditions And Limitations
A must have three dimensions or more.

See the C++ [FullyConnectedLayer method or the Python IFullyConnectedLayer method
for further details.

A.1.8. Gather Layer

The Gather layer implements the gather operation on a given axis.

Layer Description

Gather elements of each data tensor A along the specified axisxusing indices tensor B of
zero dimensions or more dimensions, to produce output tensor C of dimensions c.

If B has zero dimensions and it is a scalar b, then cy={ay if k<x, and ay,; if k>x}
and c has length equal to one less than the length of a. In this case, C;=A; where jx={b
if k=x, iy if k<x, and ix.; if k>x}.

If B is a tensor of dimensions b (with length b), then cxy={ax if k<x, byx_x if k2x
and k<x+b, and ayp+1 otherwise}.In this case, C;=A; where j={Bx(;) if k=x,
ix if k<x, and ixp if k>x} and X (i) =iy, .. x+p-1-

Conditions And Limitations

Elements cannot be gathered along the batch size dimension. The data tensor A must
contain at least one non-batch dimension. The data tensor A must contain at least axis
+1 non-batch dimensions. The indices tensor B must contain only INT32 values. The
parameter axis is zero-indexed and starts at the first non-batch dimension of data tensor
A. If there are any invalid indices elements in the indices tensor, then zeros will be stored
at the appropriate locations in the output tensor.

See the C++ IGatherLayer method or the Python IGatherLayer method for further
details.

A.1.9. Identity Layer

The Identity layer implements the identity operation.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 119

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a411e2cefb9a4307d99fcc442c2a708a8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_fully_connected
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a81ea0b5ce4a6a24e8e4953fd0e0b3216
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_gather

Appendix

Layer Description

The output of the layer is mathematically identical to the input. This layer allows you to
precisely control the precision of tensors and transform from one precision to another.
If the input is at a different precision than the output, the layer will convert the input
tensor into the output precision.

Conditions And Limitations
None

See the C++ IIdentityLayer method or the Python IIdentityLayer method for further
details.

A.1.10. LRN Layer

The LRN layer implements cross-channel Local Response Normalization.

Layer Description

Given an input A, the LRN layer performs a cross-channel Local Response
Normalization to produce output Bof the same dimensions.. The operation of this layer
depends on 4 constant values: wis the size of the cross-channel window over which the
normalization will occur, &, g, and k are normalization parameters. The formula below
describes the operation performed by the layer:

— ‘41
BI (ke ‘MJ(DE)B

Where I represents the indexes of tensor elements, and j (I) the indices where the
channel dimension is replaced by j. For channel index ¢ of cchannels, index j ranges
from max (0, c-w) and min(C-1, c+w).

Conditions And Limitations

A must have 3 or more dimensions. The following list shows the possible values for the
parameters:

» w #{1, 3, 5, 7, 9, 11, 13, 15}

» a #[-1 x 10%°, 1 x 102°

» B #[0.01, 1 x 10°]

» k #[1 x 1075, 1 x 107

See the C++ ILRNLayer method or the Python ILRNLayer method for further details.

A.1.11. MatrixMultiply Layer

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 120

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a01811cfea946a80324a5538667e2a427
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_identity
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#aa1c8386fd389fd74b0b48121d22abc67
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_lrn

Appendix

The MatrixMultiply layer implements matrix multiplication for a collection of matrices.

Layer Description

The matrix multiply layer computes the matrix multiplication of input tensors &, of
dimensions a, and B, of dimensions b, and produces output tensor C, of dimensions c.
A, B, and C all have the same rank n22. If n>2, then A, B, and C are treated as collections
of matrices; A and B may be optionally transposed (the transpose is applied to the last

two dimensions). Let A* and B* be the input tensors after the optional transpose, then

—al I
CiO,..,in-3,:,:—A iO,..,in—3,:,:*B i0,..,in-3,:,:"

Given the corresponding dimensions a® and b* of AT and B?, then c;={max (a; ,b;) if
i<n-2,a%; if i=n-2, andb’; if i=n-1};thatis the resulting collection has the
same number of matrices as the input collections, and the rows and columns correspond
to the rows in AT and the columns in BE. Notice also the use of max in the lengths, for the
case of broadcast on a dimension.

Conditions And Limitations

Tensors A and B must have at least two dimensions, and agree on the number of
dimensions. The length of each dimension must be the same, assuming that dimensions
of length one are broadcast to match the corresponding length.

See the C++ IMatrixMultiplyLayer method or the Python IMatrixMultiply method for
further details.

A.1.12. Padding Layer

The Padding layer implements spatial zero-padding of tensors along the two innermost
dimensions.

Layer Description

The Padding layer pads zeros to (or trims edges from) an input tensor A along each of
the two innermost dimensions and gives the output tensor B. Padding can be different
on each dimension, asymmetric, and can be either positive (resulting in expansion of the
tensor) or negative (resulting in trimming). Padding at the beginning and end of the two
dimensions is specified by 2D vectors x and y, for pre and post padding respectively.

For input tensor A of n dimensions a, the output B will have n dimensions b such

that bj={xo+as-2+yg if i=n-2; =x;+a,-1+y:1 if i=n-1; and a; otherwise}.
Accordingly, the values of B, are zeros if w,_,<x¢o or xXo+an-» Sw,_» or w,_1<x; or
x1+an_» Swy_1 . Otherwise, B,=A, where z,_>=wp_2+Xg, Zn-1=Wn_1+x1, and z;=w; for all
other dimensions i.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 121

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a434fd652b4b5d09cb2462d169d63044c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_matrix_multiply

Appendix

Conditions And Limitations

» A must have three dimensions or more.
» The padding can only be applied along the two innermost dimensions.
» Only zero-padding is supported.

See the C++ [PaddingLayer method or the Python IPaddingLayer method for further
details.

A.1.13. Plugin Layer

Plugin layers are user-defined and provide the ability to extend the functionalities of
TensorRT. See Extending TensorRT With Custom Layers for more details.

See the C++ IPluginLayer method or the Python IPluginLayer method for further details.

A.1.14. PluginV2 Layer

The IPluginV2 layer provides the ability to extend the functionalities of TensorRT by
using custom implementations for unsupported layers.
Layer Description

The IPluginV2 is used to set-up and configure the plugin. See IPluginV2 API Description
for more details on the API. TensorRT also has support for a Plugin Registry; a single
registration point for all plugins in the network. In order to register plugins with the
registry, implement the IPluginV2 class and the IPluginCreator class for your plugin.

Conditions And Limitations
None

See the C++ IPluginV2Layer method or the Python IPluginV2 method for further details.

A.1.15. Pooling Layer

The Pooling layer implements pooling within a channel. Supported pooling types are
maximum, average and maximum-average blend.

Layer Description

Compute a pooling with 2D filters on a tensor A, of dimensions a, to produce a tensor
B, of dimensions b. The dimensions of B depend on the dimensions of &, window size r,
symmetric padding p and stride s such that:

» b = [ap a1...an-3 by-2 by-1]
» bnp2 = (an-2+2po-ro) /so+l
» bp1 = (ap-1+2p1-ri1)/si1+l

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 122

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a334d849cb8720a8a66a95fc84487b132
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_padding
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a4b31ce474ba291e1c95e39ab13c76942
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0c6e2a0b4e1c8a4df1722a24cc7c0473
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_plugin_v2

Appendix

Let tensor C be the zero-padded copy of A with dimensions [ap a;1... an-2+2po
x1= func (Cj._._ k:kk 1:11) where kk = k+ro-1, and 11 = 1

an-1+2p;] then, By
+r;-1.

Where func is defined by one of the pooling types t:

PoolingType: : kMAX
Maximum over elements in window.

PoolingType: : kKAVERAGE
Average over elements in the window.

PoolingType: :kMAX AVERAGE BLEND
Hybrid of maximum and average pooling. The results of the
maximum pooling and the average pooling are combined with the
blending factor as (1-blendFactor) *maximumPoolingResult +
blendFactor*averagePoolingResult to yield the result. The blendFactor can be
set to a value between 0 and 1.

By default, average pooling is performed on the overlap between the pooling window
and the padded input. If the exclusive parameter is set to true, the average pooling is
performed on the overlap area between the pooling window and unpadded input.

Conditions And Limitations
Input and output tensors should have 3 or more dimensions.

See the C++ [PoolingLayer method or the Python IPoolingLayer method for further
details.

A.1.16. RaggedSoftMax Layer

The Ragged SoftMax layer applies the SoftMax function on an input tensor of sequences
across the sequence lengths specified by the user.

Layer Description

This layer has two inputs: a 2D input tensor A of shape zs containing z sequences
of data and a 1D bounds tensor B of shape z containing the lengths of each of the z
sequences in A. The resulting output tensor C has the same dimensions as the input
tensor A.

The SoftMax function S is defined on every i of the z sequences of data values &; ¢:p:
just like in the SoftMax layer.

Conditions And Limitations

None

See the C++ [RaggedSoftMaxLayer method or the Python IRaggedSoftMaxLayer method
for further details.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 123

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a49459eaa7e1bbff5371365f125c2f0c5
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/nfer/Graph/Network.html#tensorrt.INetworkDefinition.add_pooling
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#aea842c9f897201eb855ce164944e9110
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_ragged_softmax

Appendix

A.1.17. Reduce Layer

The Reduce layer implements dimension reduction of tensors using reduce operators.

Layer Description

Compute a reduction of input tensor &, of dimensions a, to produce an output tensor B,
of dimensions b, over the set of reduction dimensions r. The reduction operator op is
one of max, min, product, sum, and average. The reduction can preserve the number
of dimensions of A or not. If the dimensions are kept, thenb;={1 if i#r, and a;
otherwise}; if the dimensions are not kept, then b;y_n(5)=aj where j#r and m(3j) is the
number of reduction indexes in r less than or equal to j.

With the sequence of indexes i, Bi=op (A;), where the sequence of indexes j is such that
jx={: if k#r, and iy otherwise}.

Conditions And Limitations

Input must have at least one non-batch dimension. The batch size dimension cannot be
reduced.

See the C++ [ReduceLayer method or the Python IReduceLayer method for further
details.

A.1.18. RNN Layer (IRNNLayer)

This layer type is deprecated in favor of RNNv2, however, it is still available for
backwards compatibility.

Layer Description

This layer is identical to the RNNv2 layer (see below) in functionality, but contains
additional limitations as described in the Conditions and Limitations section.

Conditions And Limitations

Unlike the RNNv2 layer, the legacy RNN layer does not support specifying sequence
lengths via an input tensor.

The legacy RNN layer does not support arbitrary batch dimensions, and requires that
input tensor data be specified using the dimension ordering: sequence length T, batch
size N, embedding size E. In contrast, the RNNv2 layer requires that tensor data be
specified using the dimension ordering: batch size N, sequence length T, embedding size
E.

All limitations that apply to the RNNv2 layer also apply to the legacy RNN layer.
See the C++ IRNNLayer method or the Python IRNNLayer method for further details.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 124

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a41437aa7107e61b82c5f3490984bf011
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_reduce
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0ed8d1ed43046a041a90ad579fad5a20
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_rnn

Appendix

A.1.19. RNNv2 Layer (IRNNv2Layer) Layer

The RNNv2 layer implements recurrent layers such as Recurrent Neural Network
(RNN), Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM).
Supported types are RNN, GRU, and LSTM. It performs a recurrent operation, where
the operation is defined by one of several well-known recurrent neural network (RNN)
"cells".

Layer Description

This layer accepts an input sequence X, initial hidden state Ho, and if the cell is a long
short-term memory (LSTM) cell, initial cell state Co, and produces an output ¥ which
represents the output of the final RNN "sub-layer" computed across T timesteps (see
below). Optionally, the layer can also produce an output hy representing the final hidden
state, and, if the cell is an LSTM cell, an output cr representing the final cell state.

Let the operation of the cell be defined as the function G(x, h, c). This function
takes vector inputs x, h, and ¢, and produces up to two vector outputs, h’ and ¢’,
representing the hidden and cell state after the cell operation has been performed.

In the default (unidirectional) configuration, the RNNv2 layer applies Gas shown in the
following diagram:

Yo Y "= Y11
A —
fo. G hyy G hyp v G hry
> > ' 2 '
1) . 1
. . .
. . - - :
A, A, Ay,
hyy — P > >, . P —>
G |hi| G |hy G | hu
> > > > >

Avo Ahy Ahy g

hy g — > —» — —»
o0 G' |[ho| G | hypt" G' | hro
—> > -—>» > —>

Xp Xy T XT.1

G’ is avariantof G, .

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 125

Appendix

Arrows leading into boxes are function inputs, and arrows leading away from boxes are
function outputs. X = [x¢, X1, .., %11, Y = [yo, Y1, -, ¥Yrl, Hi= [hi o, hi, 1,
~, hj 1]l,and Ci= [ci,0, €i,1/ -, Ci,Ll.

The gray c edges are only present if the RNN is using LSTM cells for G and G’ .

The above construction has L "sub-layers" (horizontal rows of G), and the matrices H;
and c; have dimensionality L.

Optionally, the sequence length Tmay be specified as an input to the RNNv?2 layer,
allowing the client to specify a batch of input sequences with different lengths.

Bidirectional RNNs (BiRNNs): The RNN can be configured to be bidirectional. In that
case, each sub-layer consists of a "forward" layer and "backward" layer. The forward
layer iteratively applies G using x; from 0 to T, and the backward layer iteratively
applies G using x; from T to 0, as shown in the diagram below:

#hr.-_r +'F‘.'.'

Tm-.._ T ‘l‘h_..»L

by, € <
' G herges | G

y N T } 7
>

>

by, € < —
| G her. 16, | G hir.ape, 15,1 G
Cri1 f—r — -« [e— a1
7 CiTajs } CiT2)6,1 Cita y
b —ib > >
G| [P G| [h - G
o —> > =
V g1 / M1 /
hyo hio
l;:n.-..: l hgs g hyg | Fito Mernio hirajen
finse | G' ‘h.-r e | G' heraws * " hwo | G' hauo
CTh0 <— < e <« e Cui0
y CiT-11b.0 } S(T-28.0
! T
o ¢ [2 e [-
= . g
Xp x;

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 126

Appendix

Black bars in the diagram above represent concatenation. The full hidden state h. is
defined by the concatenation of the forward hidden state h¢ and the backward hidden
state hyy:

» h¢,s = [Ber,i ,hep, il

» he = [he,o,, ht,1, ..,he,n].

Similarly, for the cell state (not shown). Each ht,i isused as input to the next sub-
layer, as shown above.

RNN operations: The RNNv2 layer supports the following cell operations:

» ReLU: G(x, h, ¢) := max(Wix + R;h + Wy, + Ry, 0) (cnotused)
» tanh: G(x, h, ¢) := tanh(W;x + R;h + W, + Rp) (cnotused)
» GRU:
» Z := sigmoid(W,x + R;h + Wy, + Ry;)
» M := sigmoid (W.x + R:h + Wpy + Rypy)
» G(x, h, ¢) := tanh(Wyx + M(h + Ry) + W) (¢ notused)
» LSTM:

I := sigmoid(Wix + Rth + Wp; + Rpj)
F := sigmoid (Wex + Rfh + Wpe + Rps)

» O := sigmoid(Wox + Roh + Wpo + Rypo)
C := tanh(Wex + Rch + Wpe + Rpc)

» C’' :=F x C
» H := 0 x tanh(C’)
» G(x, h, ¢) (= { H, C" }

For GRU and LSTM, we refer to the intermediate computations for z, M, I, F, etc. as
"gates".

In the unidirectional case, the dimensionality of the W matrices is HxE for the first layer
and HxH for subsequent layers (unless skip mode is set, see below). In the bidirectional
case, the dimensionality of the W matrices is HxE for the first forward/backward layer,
and Hx2H for subsequent layers.

The dimensionality of the R matrices is always HxH. The biases Wyx and Rpy have
dimensionality H.

Skip mode: The default mode used by RNNv2 is "linear mode". In this mode, the first
sub-layer of the RNNv2 layer uses the cell G’ (x, h, ¢), which accepts a vector x of
size E (embedding size), and vectors h and c of size H (hidden state size), and is defined
by the cell operation formula. Subsequent layers use the cell G(x, h, c), where x, h,
and c are all vectors of size H, and is also defined by the cell operation formula.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 127

Appendix

Optionally, the RNN can be configured to run in "skip mode", which means the input
weight matrices for the first layer are implicitly identity matrices, and x Is expected to
be size H.

Conditions And Limitations

The data (X) input and initial hidden/cell state (Ho and Cy) tensors have at least 2 non-
batch dimensions. Additional dimensions are considered batch dimensions.

The optional sequence length input T'is 0-dimensional (scalar) when excluding batch
dimensions.

The data (Y) output and final hidden/cell state (Hy and Cr) tensors have at least 2 non-
batch dimensions. Additional dimensions are considered batch dimensions. If the
sequence length input is provided, each output in the batch is padded to the maximum
sequence length Tpayx.

RNNV2 supports FP32 and FP16 data type for input and output, hidden, and cell
tensors. RNNv2 supports INT32 data type only for the sequence length tensor.

See the C++ IRNNvV2 Layer method or the Python IRNNv2Layer method for further
details.

A.1.20. Scale Layer

The Scale layer implements a per-tensor, per-channel, or per-element affine
transformation and/or exponentiation by constant values.

Layer Description

Given an input tensor A, the scale layer performs a per-tensor, per-channel or per-
element transformation to produce an output tensor B of the same dimensions. The
transformations corresponding to each mode are:
ScaleMode: : kUNIFORM tensor-wise transformation

B = (A * scale + shift)P°ver
ScaleMode: : kCHANNEL channel-wise transformation

Br = (A; * scale.(r) + shiftg(r))Po"ere®
ScaleMode: : kKELEMENTWISE element-wise transformation

Br = (A; * scale; + shift;)FP°¥e™:
Where I represents the indexes of tensor elements and ¢ (I) is the channel dimension in
I.

Conditions And Limitations

A must have 3 or more dimensions.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 128

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a6cd3869f7406f73261857987be1b18a9
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_rnn_v2

Appendix

If an empty weight object is provided for scale, shift, or power, then a default value
is used. By default, scale has a value of 1.0, shift has a value of 0.0, and power has a
value of 1.0.

See the C++ IScaleLayer method or the Python IScaleLayer method for further details.

A.1.21. Shuffle Layer

The Shuffle layer implements a reshape and transpose operator for tensors.

Layer Description

The shuffle layer implements reshuffling of tensors to permute the tensor and/or reshape
it. An input tensor A of dimensions a is transformed by applying a transpose, followed
by a reshape operation with reshape dimensions r, and then followed by another
transpose operation to produce an output data tensor B of dimensions b.

To apply the transpose operation to A, the permutation order needs to be specified.

The specified permutation p1 is used to permute the elements of A in the following
manner to produce output C of dimensions ¢, such that ci=api (i) and C1=Ag; (1)

for a sequence of indexes I. By default, the permutation is assumed to be an identity (no
change to the input tensor).

The reshape operation does not alter the order of the elements, and reshapes tensor C
into tensor R of shape r?, such that £*;={r; if r;>0, c; if r;=0, inferred if
r;=-1}. Only one dimension can be inferred, such that Mrli=Mla;.

The second transpose operation is applied after the reshape operation. It follows the
same rules as the first transpose operation and requires a permutation (say p2) to be

specified. This permutation produces an output tensor B of dimensions b, such that
b;=rp (i) and By (1)=R; for a sequence of indexes I.

Conditions And Limitations

Product of dimensions r* must be equal to the product of input dimensions a.

See the C++ IShuffleLayer method or the Python IShuffleLayer method for further
details.

A.1.22. SoftMax Layer

The SoftMax layer applies the SoftMax function on the input tensor along an input
dimension specified by the user.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 129

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a37cf24c7c620aa661de167f302559289
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_scale
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a2628a97544b7802076246069321e2bf9
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_shuffle

Appendix

Layer Description

Given an input tensor A of shape a and an input dimension i, this layer applies the
SoftMax function on every slice .o, ., ai-1, :, ai+1, ., an-1 along dimension i of A.
The resulting output tensor C has the same dimensions as the input tensor A.

The SoftMax function S for a slice x is defined as:

S(x)=exp(x.)/ Y exp (x;)

The SoftMax function rescales the input such that every value in the output lies in
the range [0, 1] and the values of every slice Cao, ., ai-1, :, ai+1, .., an-1along
dimension i of C sum up to 1.

Conditions And Limitations

For n being the length of a, the input dimension i should be i#[0,n-1]. If the user does
not provide an input dimension, then i=max (0, n-3).

See the C++ [SoftMaxLayer method or the Python ISoftmaxLayer method for further
details.

A.1.23. TopK Layer

The TopK layer finds the top K maximum (or minimum) elements along a dimension,
returning a reduced tensor and a tensor of index positions.
Layer Description

For an input tensor A of dimensions a, given an axis i, an operator that is either max
or min, and a value for k, produces a tensor of values V and a tensor of indices I of
dimensions v such that vs={k if i#j, and a; otherwise}.

The output values are:

» Va0, ., ai-1, :, ai+l, .,an sort (A0, .., ai-1, :, ai+l, ..,an) :K

» Ta0, ., ai-1, :, ai+l, ..,an argsort (Ao, ., ai-1, :, ait+l, ..,an) :K

where sort is in descending order for operator max and ascending order for operator
min.

Ties are broken during sorting with lower index considered to be larger for operator
max, and lower index considered to be smaller for operator min.

Conditions And Limitations

The K value must be 1024 or less. Only one axis can be searched to find the top K
minimum or maximum values; this axis cannot be the batch dimension.

See the C++ ITopKLayer method or the Python ITopKLayer method for further details.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 130

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a595af67528bf0664afa9815114933320
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_softmax
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a384a409318bf416be3aa4442f2b0ce76
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_topk

Appendix

A.1.24. Unary Layer

The Unary layer supports pointwise unary operations.

Layer Description

The unary layer performs pointwise operations on input tensor Aresulting in output
tensor Bof the same dimensions. The following functions are supported:

» exp: B = e”A
» abs: B = |A|
» 1log: B = 1ln(A)

» sqgrt: B = \a (rounded to nearest even mode)
» neg: B = -A

» recip: B =1/ A (reciprocal) in rounded to nearest even mode

Conditions And Limitations
Input and output can be zero to 7 dimensional tensors.

See the C++ IUnaryLayer method or the Python IUnaryLayer method for further details.

A.2. Data Format Descriptions

TensorRT supports different data formats. There are two aspects to consider: data type
and layout.

Data type format

The data type is the representation of each individual value. Its size determines the
range of values and the precision of the representation; which are FP32 (32-bit floating
point, or single precision), FP16 (16-bit floating point, or half precision), INT32 (32-bit
integer representation) and INT8 (8-bit representation).

Layout format

The layout format determines the ordering in which values are stored. Typically,
batch dimensions are the leftmost dimensions, and the other dimensions refer to
aspects of each data item such as C is channel, H is height, and W is width, in images.
Ignoring batch sizes, which are always preceding these, C, H, and W are typically
sorted as CHW #unique_212/unique_212_Connect_42_figl or HWC #unique_212/
unique_212_Connect_42_fig2.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 131

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a4b85bd3f05c234fcc1118f827d7c0720
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_unary

Appendix

—"'"‘_

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 132

Appendix

To enable faster computations, more formats are defined to pack together channel values
and use reduced precision. For this reason, TensorRT also supports formats NC/2HW2 and
NHWCS.

In NC/2HW2, pairs of channel values are packed together in each HxW matrix (with

an empty value in the case of an odd number of channels). The result is a format in
which the values of #C/2#HxW matrices are pairs of values of two consecutive channels
#unique_212/unique_212_Connect_42_fig3; notice that this ordering interleaves
dimensions as values of channels that have stride 1 if they are in the same pair and
stride 2xHxW otherwise.

I I I |

0,0 0,1 0,W-1
1,0

0,H-1 H-1,W-1

C=0
c=1 |
C=2
0.0 01 0.1 1.0 | Hee 0,0 P WA

In NHWCS, the entries of an HxW matrix include the values of all the channels
#unique_212/unique_212_Connect_42_fig4. In addition, these values are packed together
in #C/8# 8-tuples and C is rounded up to the nearest multiple of 8.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 133

Appendix

0,0 0.1
1,0
0,H-1 H-1,W-1
Cc=0
c=1|
c=2
| 0.0 01 | __u.w-1 | 1o ‘ LH-1.W—1‘

A.3. Command Line Wrapper

Included in the samples directory is a command line wrapper, called trtexec, for
TensorRT. It is useful for benchmarking networks on random data and for generating
serialized engines from such models.

The command line arguments are as follows:

Mandatory params:

——deploy=<file> Caffe deploy file
OR —--uff=<file> UFF file
-—output=<name> Output blob name (can be specified

multiple times)

Mandatory params for onnx:
-—onnx=<file> ONNX Model file

Optional params:

-—-uffInput=<name>,C,H,W Input blob names along with their
dimensions for UFF parser

--model=<file> Caffe model file (default = no model,
random weights used)

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 134

Appendix

--batch=N Set batch size (default = 1)

-—device=N Set cuda device to N (default = 0)
-—iterations=N Run N iterations (default = 10)
—-—avgRuns=N Set avgRuns to N - perf is measured as an
average of avgRuns (default=10)

--percentile=P For each iteration, report the percentile
time at P percentage (0<P<=100, default = 99.0%)

—-—-workspace=N Set workspace size in megabytes (default =
16)

-—-fplé6 Run in fpl6 mode (default = false).
Permits 16-bit kernels

--int8 Run in int8 mode (default = false).
Currently no support for ONNX model.

—--verbose Use verbose logging (default = false)
--hostTime Measure host time rather than GPU time
(default = false)

—-—engine=<file> Generate a serialized TensorRT engine
-—calib=<file> Read INT8 calibration cache file.
Currently no support for ONNX model.

—--useDLA=N Enable execution on DLA for all layers that

support DLA. Value can range from 1 to N, where N is the number
of DLA engines on the platform. Set the --fpl6 flag as well for
DLA

--allowGPUFallback If --useDLA flag is present and if a layer
cannot run on DLA, then run it on GPU.

For example:

trtexec --deploy=/path/to/mnist.prototxt
--model=/path/to/mnist.caffemodel --output=prob

If no model is supplied, random weights are generated.

A.4. ACKNOWLEDGEMENTS

TensorRT uses elements from the following software, whose licenses are reproduced
below:

Google Protobuf

This license applies to all parts of Protocol Buffers except the following:

» Atomicops support for generic gcc, located in sre/google/protobuf/stubs/
atomicops_internals generic_gcc.h. This file is copyrighted by Red Hat Inc.
» Atomicops support for AIX/POWER, located in sre/google/protobuf/stubs/

atomicops_internals power.h. This file is copyrighted by Bloomberg Finance
LP.

Copyright 2014, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 135

Appendix

» Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

» Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner of the input file
used when generating it. This code is not standalone and requires a support library to be
linked with it. This support library is itself covered by the above license.

Google Flatbuffers
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control” means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 136

http://www.apache.org/licenses/

Appendix

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed by,
or on behalf of, the Licensor for the purpose of discussing and improving the Work,
but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works
of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 137

Appendix

such license applies only to those patent claims licensable by such Contributor that
are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or
Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form
of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute,
alongside or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and

may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such Derivative
Works as a whole, provided Your use, reproduction, and distribution of the
Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 138

Appendix

supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions)
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has been
advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights
consistent with this License. However, in accepting such obligations, You may act
only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor
by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2014 Google Inc.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 139

Appendix

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at: http://
www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed

under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

BVLC Caffe
COPYRIGHT
All contributions by the University of California:

Copyright (c) 2014, 2015, The Regents of the University of California (Regents) All rights
reserved.

All other contributions:
Copyright (c) 2014, 2015, the respective contributors All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over their
contributions to Caffe. The project versioning records all such contribution and
copyright details. If a contributor wants to further mark their specific copyright on
a particular contribution, they should indicate their copyright solely in the commit
message of the change when it is committed.

LICENSE

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 140

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Appendix

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/Caffe repository through pull-request, comment, or
otherwise, the contributor releases their content to the license and copyright terms
herein.

half.h
Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

jQuery.js
jQuery.js is generated automatically under doxygen.

In all cases TensorRT uses the functions under the MIT license.

CRC

policies, either expressed or implied, of the Regents of the University of California.

The copyright of UC Berkeley's Berkeley Software Distribution ("BSD") source has
been updated. The copyright addendum may be found at ftp://ftp.cs.berkeley.edu/
pub/4bsd/README.Impt.License.Change and is

William Hoskins

Director, Office of Technology Licensing

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 141

Appendix

University of California, Berkeley

getopt.c
Copyright (c) 2002 Todd C. Miller <Todd.Miller@courtesan.com>

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS

ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement
number F39502-99-1-0512.

Copyright (c) 2000 The NetBSD Foundation, Inc.
All rights reserved.

This code is derived from software contributed to The NetBSD Foundation by Dieter
Baron and Thomas Klausner.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 142

Appendix

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.0.5 | 143

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION
REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,
MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,
AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A
SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE
(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER
LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS
FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR
IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and
fit for the application planned by customer and to do the necessary testing for the application in order
to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect
the quality and reliability of the NVIDIA product and may result in additional or different conditions and/
or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any
default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,
either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information
in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,
Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered
trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVIbIA®

	Table of Contents
	What Is TensorRT?
	1.1. Benefits Of TensorRT
	1.1.1. Who Can Benefit From TensorRT

	1.2. Where Does TensorRT Fit?
	1.3. How Does TensorRT Work?
	1.4. What Capabilities Does TensorRT Provide?
	1.5. How Do I Get TensorRT?

	Working With TensorRT Using The C++ API
	2.1. Instantiating TensorRT Objects in C++
	2.2. Creating A Network Definition In C++
	2.2.1. Creating A Network Definition From Scratch Using The C++ API
	2.2.2. Importing A Model Using A Parser In C++
	2.2.3. Importing A Caffe Model Using The C++ Parser API
	2.2.4. Importing A TensorFlow Model Using The C++ UFF Parser API
	2.2.5. Importing An ONNX Model Using The C++ Parser API

	2.3. Building An Engine In C++
	2.4. Serializing A Model In C++
	2.5. Performing Inference In C++
	2.6. Memory Management In C++

	Working With TensorRT Using The Python API
	3.1. Importing TensorRT Into Python
	3.2. Creating A Network Definition In Python
	3.2.1. Creating A Network Definition From Scratch Using The Python API
	3.2.2. Importing A Model Using A Parser In Python
	3.2.3. Importing From Caffe Using Python
	3.2.4. Importing From TensorFlow Using Python
	3.2.5. Importing From ONNX Using Python
	3.2.6. Importing From PyTorch And Other Frameworks

	3.3. Building An Engine In Python
	3.4. Serializing A Model In Python
	3.5. Performing Inference In Python

	Extending TensorRT With Custom Layers
	4.1. Adding Custom Layers Using The C++ API
	4.1.1. Example 1: Adding A Custom Layer Using C++ For Caffe
	4.1.2. Example 2: Adding A Custom Layer That Is Not Supported In UFF Using C++

	4.2. Adding Custom Layers Using The Python API
	4.2.1. Example 1: Adding A Custom Layer to a TensorRT Network Using Python
	4.2.2. Example 2: Adding A Custom Layer That Is Not Supported In UFF Using Python

	4.3. Using Custom Layers When Importing A Model From A Framework
	4.3.1. Example 1: Adding A Custom Layer To A TensorFlow Model

	4.4. Plugin API Description
	4.4.1. Migrating Plugins From TensorRT 5.0.0 RC To TensorRT 5.0.x
	4.4.2. Migrating Plugins From TensorRT 4.0.1 To TensorRT 5.0.0 RC
	4.4.3. IPluginV2 API Description
	4.4.4. IPluginCreator API Description

	4.5. Best Practices For Custom Layers

	Working With Mixed Precision
	5.1. Mixed Precision Using The C++ API
	5.1.1. Setting The Layer Precision Using C++
	5.1.2. Enabling FP16 Inference Using C++
	5.1.3. Enabling INT8 Inference Using C++
	5.1.3.1. Setting Per-Tensor Dynamic Range Using C++
	5.1.3.2. INT8 Calibration Using C++

	5.2. Mixed Precision Using The Python API
	5.2.1. Setting The Layer Precision Using Python
	5.2.2. Enabling FP16 Inference Using Python
	5.2.3. Enabling INT8 Inference Using Python
	5.2.3.1. Setting Per-Tensor Dynamic Range Using Python
	5.2.3.2. INT8 Calibration Using Python

	Working With DLA
	6.1. Running On DLA During TensorRT Inference
	6.1.1. Example 1: sampleMNIST With DLA
	6.1.2. Example 2: Enable DLA Mode For A Layer During Network Creation

	6.2. DLA Supported Layers
	6.3. GPU Fallback Mode

	Deploying A TensorRT Optimized Model
	7.1. Deploying In The Cloud
	7.2. Deploying To An Embedded System

	Working With Deep Learning Frameworks
	8.1. Supported Operations By Framework
	8.2. Working With TensorFlow
	8.2.1. Freezing A TensorFlow Graph
	8.2.2. Freezing A Keras Model
	8.2.3. Converting A Frozen Graph To UFF
	8.2.4. Working With TensorFlow RNN Weights
	8.2.4.1. TensorFlow RNN Cells Supported In TensorRT
	8.2.4.2. Maintaining Model Consistency Between TensorFlow And TensorRT
	8.2.4.3. Workflow
	8.2.4.4. Dumping The TensorFlow Weights
	8.2.4.5. Loading Dumped Weights
	8.2.4.6. Converting The Weights To A TensorRT Format
	8.2.4.6.1. TensorFlow Checkpoint Storage Format
	8.2.4.6.2. TensorFlow Kernel Tensor Storage Format
	8.2.4.6.3. Kernel Weights Conversion To A TensorRT Format
	8.2.4.6.4. TensorFlow Bias Weights Storage Format
	8.2.4.6.5. Bias Tensor Conversion To TensorRT Format

	8.2.4.7. BasicLSTMCell Example
	8.2.4.7.1. BasicLSTMCell Kernel Tensor
	8.2.4.7.2. BasicLSTMCell Bias Tensor

	8.2.4.8. Setting The Converted Weights And Biases

	8.2.5. Preprocessing A TensorFlow Graph Using the Graph Surgeon API

	8.3. Working With PyTorch And Other Frameworks

	Samples
	9.1. C++ Samples
	9.1.1. sampleMNIST
	9.1.2. sampleMNISTAPI
	9.1.3. sampleUffMNIST
	9.1.4. sampleOnnxMNIST
	9.1.4.1. Configuring The ONNX Parser
	9.1.4.2. Converting The ONNX Model To A TensorRT Network
	9.1.4.3. Building The Engine And Running Inference

	9.1.5. sampleGoogleNet
	9.1.5.1. Configuring The Builder
	9.1.5.2. Profiling

	9.1.6. sampleCharRNN
	9.1.6.1. Network Configuration
	9.1.6.1.1. RNNv2 Layer Setup
	9.1.6.1.2. RNNv2 Layer - Optional Inputs
	9.1.6.1.3. MatrixMultiply Layer Setup
	9.1.6.1.4. ElementWise Layer Setup
	9.1.6.1.5. TopK Layer Setup
	9.1.6.1.6. Marking The Network Outputs

	9.1.6.2. RNNv2 Workflow - From TensorFlow To TensorRT
	9.1.6.2.1. Training A CharRNN Model With TensorFlow
	9.1.6.2.2. Exporting Weights From A TensorFlow Model Checkpoint
	9.1.6.2.3. Loading And Converting Weights Format
	9.1.6.2.4. RNNv2: Setting Weights And Bias

	9.1.6.3. Seeding The Network
	9.1.6.4. Generating Data

	9.1.7. sampleINT8
	9.1.7.1. Defining The Network
	9.1.7.2. Building The Engine
	9.1.7.2.1. Calibrating The Network
	9.1.7.2.2. Calibration Set
	9.1.7.2.3. Loading A Calibration File

	9.1.7.3. Configuring The Builder
	9.1.7.4. Running The Engine
	9.1.7.5. Verifying The Output
	9.1.7.6. Batch Files For Calibration
	9.1.7.6.1. Generating Batch Files For Caffe Users
	9.1.7.6.2. Generating Batch Files For Non-Caffe Users

	9.1.8. sampleINT8API
	9.1.8.1. Configuring The Builder
	9.1.8.2. Configuring The Network

	9.1.9. samplePlugin
	9.1.9.1. Defining The Network
	9.1.9.2. Enabling Custom Layers In NvCaffeParser
	9.1.9.3. Building The Engine
	9.1.9.4. Serializing And Deserializing
	9.1.9.5. Resource Management And Execution

	9.1.10. sampleNMT
	9.1.10.1. Overview
	9.1.10.2. Preparing The Data
	9.1.10.3. Running The Sample
	9.1.10.4. Training The Model
	9.1.10.5. Importing Weights From A Checkpoint

	9.1.11. sampleFasterRCNN
	9.1.11.1. Overview
	9.1.11.2. Preprocessing The Input
	9.1.11.3. Defining The Network
	9.1.11.4. Building The Engine
	9.1.11.5. Running The Engine
	9.1.11.6. Verifying The Output

	9.1.12. sampleUffSSD
	9.1.12.1. API Overview
	9.1.12.2. Processing The Input Graph
	9.1.12.3. Preparing The Data
	9.1.12.4. Defining The Network And Plugins
	9.1.12.5. Verifying The Output

	9.1.13. sampleMovieLens
	9.1.13.1. Importing Network To TensorRT
	9.1.13.2. Verifying The Output

	9.1.14. sampleMovieLensMPS
	9.1.15. sampleSSD
	9.1.15.1. Overview
	9.1.15.2. Preprocessing The Input
	9.1.15.3. Defining The Network
	9.1.15.4. Building The Engine
	9.1.15.5. Verifying The Output

	9.1.16. sampleMLP
	9.1.16.1. Defining The Network

	9.2. Python Samples
	9.2.1. introductory_parser_samples
	9.2.2. end_to_end_tensorflow_mnist
	9.2.3. network_api_pytorch_mnist
	9.2.4. fc_plugin_caffe_mnist
	9.2.5. uff_custom_plugin
	9.2.6. yolov3_onnx
	9.2.7. uff_ssd

	Troubleshooting
	10.1. FAQs
	10.2. Support
	10.2.1. How Do I Report A Bug?

	Appendix
	A.1. TensorRT Layers
	A.1.1. Activation Layer
	A.1.2. Concatenation Layer
	A.1.3. Constant Layer
	A.1.4. Convolution Layer
	A.1.5. Deconvolution Layer
	A.1.6. ElementWise Layer
	A.1.7. FullyConnected Layer
	A.1.8. Gather Layer
	A.1.9. Identity Layer
	A.1.10. LRN Layer
	A.1.11. MatrixMultiply Layer
	A.1.12. Padding Layer
	A.1.13. Plugin Layer
	A.1.14. PluginV2 Layer
	A.1.15. Pooling Layer
	A.1.16. RaggedSoftMax Layer
	A.1.17. Reduce Layer
	A.1.18. RNN Layer (IRNNLayer)
	A.1.19. RNNv2 Layer (IRNNv2Layer) Layer
	A.1.20. Scale Layer
	A.1.21. Shuffle Layer
	A.1.22. SoftMax Layer
	A.1.23. TopK Layer
	A.1.24. Unary Layer

	A.2. Data Format Descriptions
	A.3. Command Line Wrapper
	A.4. ACKNOWLEDGEMENTS

