
TENSORRT SAMPLES

SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | January 2019

Support Guide

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | ii

TABLE OF CONTENTS

Chapter 1. Samples.. 1
1.1. C++ Samples... 3
1.2. Python Samples... 4

Chapter 2. “Hello World” For TensorRT.. 6
Chapter 3. Building A Simple OCR Network.. 8
Chapter 4. Import The TensorFlow Model And Run Inference..9
Chapter 5. “Hello World” For TensorRT From ONNX... 10

5.1. Configuring The ONNX Parser... 10
5.2. Converting The ONNX Model To A TensorRT Network... 11
5.3. Building The Engine And Running Inference.. 11

Chapter 6. Applying FP16 To GoogleNet And Profiling The App...................................... 13
6.1. Configuring The Builder.. 13

Chapter 7. Building An RNN Network Layer By Layer.. 14
7.1. Network Configuration..14

7.1.1. RNNv2 Layer Setup.. 15
7.1.2. RNNv2 Layer - Optional Inputs.. 15
7.1.3. MatrixMultiply Layer Setup... 16
7.1.4. ElementWise Layer Setup...16
7.1.5. TopK Layer Setup.. 17
7.1.6. Marking The Network Outputs... 17

7.2. RNNv2 Workflow - From TensorFlow To TensorRT.. 18
7.2.1. Training A CharRNN Model With TensorFlow...18
7.2.2. Exporting Weights From A TensorFlow Model Checkpoint................................... 18
7.2.3. Loading And Converting Weights Format...18
7.2.4. RNNv2: Setting Weights And Bias... 19

7.3. Seeding The Network... 20
7.4. Generating Data... 21

Chapter 8. Performing Inference In INT8 Using Custom Calibration................................. 22
8.1. Defining The Network.. 23
8.2. Building The Engine...23

8.2.1. Calibrating The Network..23
8.2.2. Calibration Set... 23
8.2.3. Loading A Calibration File..24

8.3. Configuring The Builder.. 25
8.4. Running The Engine...25
8.5. Verifying The Output... 25
8.6. Batch Files For Calibration.. 25

8.6.1. Generating Batch Files For Caffe Users.. 25
8.6.2. Generating Batch Files For Non-Caffe Users.. 27

Chapter 9. Performing Inference In INT8 Precision... 28

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | iii

9.1. Configuring The Builder.. 29
9.2. Configuring The Network.. 29

Chapter 10. Adding A Custom Layer To Your Network In TensorRT.................................. 31
10.1. Defining The Network...31
10.2. Enabling Custom Layers In NvCaffeParser... 32
10.3. Building The Engine... 32
10.4. Serializing And Deserializing... 33
10.5. Resource Management And Execution.. 34

Chapter 11. Neural Machine Translation (NMT) Using Sequence To Sequence (seq2seq)
Models... 36

11.1. Overview...37
11.2. Preparing The Data.. 38
11.3. Running The Sample...39
11.4. Training The Model.. 40
11.5. Importing Weights From A Checkpoint... 40

Chapter 12. Object Detection With FasterRCNN...42
12.1. Overview...42
12.2. Preprocessing The Input.. 43
12.3. Defining The Network...44
12.4. Building The Engine... 44
12.5. Running The Engine... 44
12.6. Verifying The Output.. 45

Chapter 13. Object Detection With A TensorFlow SSD Network......................................46
13.1. API Overview..46
13.2. Processing The Input Graph.. 47
13.3. Preparing The Data.. 48
13.4. Plugins Used.. 48
13.5. Verifying The Output.. 50

Chapter 14. Movie Recommendation Using Neural Collaborative Filter (NCF)..................... 51
14.1. Importing Network To TensorRT... 51
14.2. Verifying The Output.. 51

Chapter 15. Movie Recommendation Using MPS (Multi-Process Service)............................53
Chapter 16. Object Detection With SSD... 54

16.1. Overview...54
16.2. Preprocessing The Input.. 55
16.3. Defining The Network...55
16.4. Building The Engine... 56
16.5. Verifying The Output.. 56

Chapter 17. “Hello World” For Multi-Layer Perceptron (MLP)..57
17.1. Defining The Network...57

Chapter 18. Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT
Using Python... 59

Chapter 19. “Hello World” For TensorRT Using TensorFlow And Python........................... 61

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | iv

Chapter 20. “Hello World” For TensorRT Using PyTorch And Python................................62
Chapter 21. Adding A Custom Layer To Your Caffe Network In TensorRT In Python.............. 63
Chapter 22. Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python.......64
Chapter 23. Object Detection With The ONNX TensorRT Backend In Python...................... 65
Chapter 24. Object Detection With SSD In Python.. 66

24.1. Overview...66
24.2. Processing The Input Graph.. 67
24.3. Plugins Used.. 68

Chapter 25. INT8 Calibration In Python... 70
Chapter 26. Engine Refit In Python.. 71

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 1

Chapter 1.
SAMPLES

The following samples show how to use TensorRT in numerous use cases while
highlighting different capabilities of the interface.

New Sample Name Old Sample Name Description

“Hello World” For TensorRT sampleMNIST Performs the basic setup and
initialization of TensorRT using
the Caffe parser.

Building A Simple OCR Network sampleMNISTAPI Uses the TensorRT API to build
an optical character recognition
(OCR) network layer by layer,
sets up weights and inputs/
outputs and then performs
inference.

Import The TensorFlow Model
And Run Inference

sampleUffMNIST Imports a TensorFlow model
trained on the MNIST dataset.

“Hello World” For TensorRT From
ONNX

sampleOnnxMNIST Converts a model trained on the
MNIST dataset in ONNX format to
a TensorRT network.

Applying FP16 To GoogleNet And
Profiling The App

sampleGoogleNet Shows how to import a model
trained with Caffe into TensorRT
using GoogleNet as an example.

Building An RNN Network Layer
By Layer

sampleCharRNN Uses the TensorRT API to build an
RNN network layer by layer, sets
up weights and inputs/outputs
and then performs inference.

Performing Inference In INT8
Precision

sampleINT8 Performs INT8 calibration and
inference. Calibrates a network
for execution in INT8.

Performing Inference In INT8
Using Custom Calibration

sampleINT8API Sets per tensor dynamic range
and computation precision of a
layer.

Adding A Custom Layer To Your
Network In TensorRT

samplePlugin Defines a custom layer that
supports multiple data formats
that can be serialized and

Samples

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 2

New Sample Name Old Sample Name Description

deserialized. Enables a custom
layer in NvCaffeParser.

Neural Machine Translation (NMT)
Using Sequence To Sequence
(seq2seq) Models

sampleNMT An end-to-end sample that takes
a TensorFlow seq2seq model,
builds an engine, and runs
inference using the generated
network.

Object Detection With
FasterRCNN

sampleFasterRCNN Uses TensorRT plugins, performs
inference, and implements a
fused custom layer for end-to-
end inferencing of a FasterRCNN
model.

Object Detection With A
TensorFlow SSD Network

sampleUffSSD Preprocess the Tensorflow SSD
network, performs inference on
the SSD network in TensorRT, and
uses TensorRT plugins to speed
up inference.

Movie Recommendation Using
Neural Collaborative Filter (NCF)

sampleMovieLens An end-to-end sample that
imports a trained TensorFlow
model and predicts the highest
rated movie for each user.

Movie Recommendation Using
MPS (Multi-Process Service)

sampleMovieLensMPS An end-to-end sample that
imports a trained TensorFlow
model and predicts the highest
rated movie for each user using
MPS (Multi-Process Service).

Object Detection With SSD sampleSSD Preprocess the input to the SSD
network, performs inference on
the SSD network in TensorRT,
uses TensorRT plugins to speed
up inference, and performs INT8
calibration on an SSD network.

“Hello World” For Multi-Layer
Perceptron (MLP)

sampleMLP Shows how to create a network
that triggers the multi-layer
perceptron (MLP) optimizer.

Introduction To Importing Caffe,
TensorFlow And ONNX Models
Into TensorRT Using Python

introductory_parser_samples Uses TensorRT and its included
suite of parsers (the UFF, Caffe
and ONNX parsers), to perform
inference with ResNet-50 models
trained with various different
frameworks.

“Hello World” For TensorRT Using
TensorFlow And Python

end_to_end_tensorflow_mnist An end-to-end sample that trains
a model in TensorFlow and Keras,
freezes the model and writes it
to a protobuf file, converts it to
UFF, and finally runs inference
using TensorRT.

“Hello World” For TensorRT Using
PyTorch And Python

network_api_pytorch_mnist An end-to-end sample that trains
a model in PyTorch, recreates
the network in TensorRT, imports
weights from the trained model,

https://en.wikipedia.org/wiki/Multilayer_perceptron

Samples

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 3

New Sample Name Old Sample Name Description

and finally runs inference with a
TensorRT engine.

Adding A Custom Layer To Your
Caffe Network In TensorRT In
Python

fc_plugin_caffe_mnist Implements a FullyConnected
layer using cuBLAS and cuDNN,
wraps the implementation
in a TensorRT plugin (with a
corresponding plugin factory),
and generates Python bindings
for it using pybind11. These
bindings are then used to
register the plugin factory with
the CaffeParser.

Adding A Custom Layer To Your
TensorFlow Network In TensorRT
In Python

uff_custom_plugin Implements a clip layer (as
a CUDA kernel), wraps the
implementation in a TensorRT
plugin (with a corresponding
plugin creator), and generates a
shared library module containing
its code.

Object Detection With The ONNX
TensorRT Backend In Python

yolov3_onnx Implements a full ONNX-
based pipeline for performing
inference with the YOLOv3-608
network, including pre and post-
processing.

Object Detection With SSD In
Python

uff_ssd Implements a full UFF-based
pipeline for performing inference
with an SSD (InceptionV2
feature extractor) network. The
sample downloads a pretrained
ssd_inception_v2_coco_2017_11_17
model and uses it to perform
inference. Additionally, it
superimposes bounding boxes
on the input image as a post-
processing step.

INT8 Calibration In Python int8_caffe_mnist Demonstrates how to calibrate
an engine to run in INT8 mode.

INT8 Calibration In Python engine_refit_mnist Trains an MNIST model in
PyTorch, recreates the network
in TensorRT with dummy weights,
and finally refits the TensorRT
engine with weights from the
model.

1.1. C++ Samples
You can find the C++ samples in the /usr/src/tensorrt/samples directory. The
following C++ samples are shipped with TensorRT:

‣ “Hello World” For TensorRT

Samples

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 4

‣ Building A Simple OCR Network
‣ Import The TensorFlow Model And Run Inference
‣ “Hello World” For TensorRT From ONNX
‣ Applying FP16 To GoogleNet And Profiling The App
‣ Building An RNN Network Layer By Layer
‣ Performing Inference In INT8 Using Custom Calibration
‣ Performing Inference In INT8 Precision
‣ Adding A Custom Layer To Your Network In TensorRT
‣ Neural Machine Translation (NMT) Using Sequence To Sequence (seq2seq) Models
‣ Object Detection With FasterRCNN
‣ Object Detection With A TensorFlow SSD Network
‣ Movie Recommendation Using Neural Collaborative Filter (NCF)
‣ Movie Recommendation Using MPS (Multi-Process Service)
‣ Object Detection With SSD
‣ “Hello World” For Multi-Layer Perceptron (MLP)

Running C++ Samples

If you installed TensorRT using the debian files, copy /usr/src/tensorrt to a new
directory first before building the C++ samples. If you installed TensorRT using the tar
file, then the samples are located in {TAR_EXTRACT_PATH}/samples. To build all the
samples and then run one of the samples, use the following commands:

$ cd <samples_dir>
$ make -j4
$ cd ../bin
$./<sample_bin>

1.2. Python Samples
You can find the Python samples in the /usr/src/tensorrt/samples/python
directory. The following Python samples are shipped with TensorRT:

‣ Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT
Using Python

‣ “Hello World” For TensorRT Using TensorFlow And Python
‣ “Hello World” For TensorRT Using PyTorch And Python
‣ Adding A Custom Layer To Your Caffe Network In TensorRT In Python
‣ Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
‣ Object Detection With The ONNX TensorRT Backend In Python
‣ Object Detection With SSD In Python
‣ INT8 Calibration In Python
‣ Engine Refit In Python

Samples

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 5

Running Python Samples

Every Python sample includes a README.md and requirements.txt file. To run one of
the Python samples, the process typically involves two steps:

 1. Install the sample requirements:

python<x> -m pip install -r requirements.txt

where python<x> is either python2 or python3.
 2. Run the sample code with the data directory provided if the TensorRT sample data

is not in the default location. For example:

python<x> sample.py [-d DATA_DIR]

For more information on running samples, see the README.md file included with the
sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 6

Chapter 2.
“HELLO WORLD” FOR TENSORRT

What Does This Sample Do?
This sample demonstrates how to:

‣ Perform the basic setup and initialization of TensorRT using the Caffe parser
‣ Import a trained Caffe model using Caffe parser (see Importing A Caffe Model

Using The C++ Parser API)
‣ Build an engine (see Building An Engine In C++)
‣ Serialize and deserialize the engine (see Serializing A Model In C++)
‣ Use the engine to perform inference on an input image (see Performing Inference in

C++)

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleMNIST directory.

Notes About This Sample:
The Caffe model was trained on the MNIST dataset, where the dataset is from the
NVIDIA DIGITS tutorial.

To verify whether the engine is operating correctly, this sample picks a 28x28 image of
a digit at random and runs inference on it using the engine it created. The output of the
network is a probability distribution on the digits, showing which digit is most probably
that in the image.

An example of ASCII rendering of the input image with digit 8:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#build_engine_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#serial_model_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#perform_inference_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#perform_inference_c
https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md

“Hello World” For TensorRT

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 7

Figure 1 ASCII output

An example of the output from network, classifying the digit 8 from the above image:

Figure 2 Decision output

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 8

Chapter 3.
BUILDING A SIMPLE OCR NETWORK

What Does This Sample Do?
This sample is similar to “Hello World” For TensorRT sample. Both of these samples
use the same model, handle the same input, and expect similar output. In contrast to the
"Hello World" for TensorRT sample, this sample demonstrates how to:

‣ Build an optical character recognition (OCR) network by individually creating every
layer

‣ Load the layers with their weights and connect the layers by linking their inputs and
outputs

‣ Perform inference

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleMNISTAPI
directory.

Notes About This Sample:
For a detailed description of how to create layers using the C++ API, see Creating A
Network Definition In C++. For a detailed description of how to create layers using the
Python API, see Creating A Network Definition In Python.

Notes About Weights:
When you build a network by individually creating every layer, ensure you provide the
per-layer weights to TensorRT in host memory. You will need to extract weights from
their pre-trained model and deep learning framework and have these per-layer weights
loaded in host memory to pass to TensorRT during network creation.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#network_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#network_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#network_python

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 9

Chapter 4.
IMPORT THE TENSORFLOW MODEL AND
RUN INFERENCE

What Does This Sample Do?
This sample demonstrates how to:

‣ Import a TensorFlow model trained on the MNIST dataset
‣ Create the UFF Parser (see Importing From TensorFlow Using Python)
‣ Use the UFF Parser, register inputs and outputs, provide the dimensions and the

order of the input tensor
‣ Load a trained TensorFlow model converted to UFF
‣ Build an engine (see Building An Engine In C++)
‣ Use the engine to perform inference (see Performing Inference In C++)

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleUffMNIST
directory.

Notes About This Sample:
The TensorFlow model has been converted to UFF using the explanation described in
Working With TensorFlow.

The UFF is designed to store neural networks as a graph. The NvUffParser that we use
in this sample parses the format in order to create an inference engine based on that
neural network.

With TensorRT, you can take a TensorFlow trained model, export it into a UFF protobuf
file, and convert it to run in TensorRT. The TensorFlow to UFF converter creates an
output file in a format called UFF which can then be read in TensorRT.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_tf_python
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#build_engine_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#perform_inference_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#working_tf

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 10

Chapter 5.
“HELLO WORLD” FOR TENSORRT FROM
ONNX

What Does This Sample Do?
This sample demonstrates how to:

‣ Configure the ONNX parser
‣ Convert an MNIST network in ONNX format to a TensorRT network
‣ Build the engine and run inference using the generated TensorRT network
‣ Covers Importing An ONNX Model Using The C++ Parser API and Importing From

ONNX Using Python

This sample shows the conversion of an MNIST network in Open Neural Network
Exchange (ONNX) format to a TensorRT network. ONNX is a standard for representing
deep learning models that enable models to be transferred between frameworks. For
more information about the ONNX format, see GitHub: ONNX. You can find a collection
of ONNX networks at GitHub: ONNX Models. The network used in this sample can be
found here.

Where Is This Sample Located?

This sample is installed in the /usr/src/tensorrt/samples/sampleOnnxMNIST
directory.

5.1. Configuring The ONNX Parser
The IOnnxConfig class is the configuration manager class for the ONNX parser. The
configuration parameters can be set by creating an object of this class and set the model
file.

Set the appropriate ONNX model in the config object where onnx_filename is a c
string of the path to the filename containing that model:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_onnx_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_onnx_python
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_onnx_python
https://github.com/onnx/onnx
https://github.com/onnx/models
https://github.com/onnx/models/tree/master/mnist

“Hello World” For TensorRT From ONNX

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 11

IOnnxConfig config;
config.setModelFileName(onnx_filename);

The createONNXParser method requires a config object as an argument:

nvonnxparser::IONNXParser* parser = nvonnxparser::createONNXParser(*config);

The ONNX model file is then passed onto the parser:

if (!parser->parse(onnx_filename, dataType))
{
string msg("failed to parse onnx file");
 gLogger->log(nvinfer1::ILogger::Severity::kERROR, msg.c_str());
 exit(EXIT_FAILURE);
}

To view additional information about the network, including layer information and
individual layer dimensions, issue the following call:

config.setPrintLayerInfo(true)
parser->reportParsingInfo();

5.2. Converting The ONNX Model To A TensorRT
Network
The parser can convert the ONNX model to a TensorRT network which can be used for
inference:

 if (!parser->convertToTRTNetwork()) {
 string msg("ERROR, failed to convert onnx network into TRT network");
 gLogger->log(nvinfer1::ILogger::Severity::kERROR, msg.c_str());
 exit(EXIT_FAILURE);
 }

To get the TensorRT network, issue the following call:

nvinfer1::INetworkDefinition* network = parser->getTRTNetwork();

After the TensorRT network is built from the model, you can build the TensorRT engine
and run inference.

5.3. Building The Engine And Running Inference
Before you can run inference, you must first build the engine. To build the engine, create
the builder and pass a logger created for TensorRT which is used for reporting errors,
warnings and informational messages in the network:

IBuilder* builder = createInferBuilder(gLogger);

To build the engine from the generated TensorRT network, issue the following call:

nvinfer1::ICudaEngine* engine = builder->buildCudaEngine(*network);

“Hello World” For TensorRT From ONNX

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 12

To run inference using the created engine, see Performing Inference In C++ or
Performing Inference In Python.

It's important to preprocess the data and convert it to the format accepted by the
network. In this example, the sample input is in PGM (portable graymap) format. The
model expects an input of image 1x28x28 scaled to between [0,1].

After you build the engine, verify that the engine is running properly by confirming the
output is what you expected. The output format of this sample should be the same as the
output of the sampleMNIST described in “Hello World” For TensorRT.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#perform_inference_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#perform_inference_python

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 13

Chapter 6.
APPLYING FP16 TO GOOGLENET AND
PROFILING THE APP

What Does This Sample Do?
This sample demonstrates how to import a model trained with Caffe into TensorRT
using GoogleNet as an example.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleGoogleNet
directory.

6.1. Configuring The Builder
The sampleGoogleNet sample builds a network based on a saved Caffe model and
network description. For more information, see Importing A Caffe Model Using The C++
Parser API or Importing From Caffe Using Python.

This sample uses optimized FP16 mode (see Enabling FP16 Inference Using C++ or
Enabling FP16 Inference Using Python). To use Half2Mode, two additional steps are
required:

 1. Create an input network with 16-bit weights, by supplying the DataType::kHALF
parameter to the parser.

const IBlobNameToTensor *blobNameToTensor =
 parser->parse(locateFile(deployFile).c_str(),
 locateFile(modelFile).c_str(),
 *network,
 DataType::kHALF);

 2. Configure the builder to use Half2Mode.

builder->setFp16Mode(true);

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_python
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#enable_fp16_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#enable_fp16_python

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 14

Chapter 7.
BUILDING AN RNN NETWORK LAYER BY
LAYER

What Does This Sample Do?
This sample demonstrates how to generate a simple RNN based on the charRNN
network using the Penn Treebank (PTB) dataset. For more information about character
level modeling, see char-rnn.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleCharRNN
directory.

Notes About This Sample:
Use the TensorRT API documentation to familiarize yourself with the following layers:

‣ RNNv2 layer

‣ Weights are set for each gate and layer individually.
‣ The input format for RNNv2 is BSE (Batch, Sequence, Embedding).

‣ MatrixMultiply
‣ ElementWise
‣ TopK

7.1. Network Configuration
The CharRNN network is a fairly simple RNN network. The input into the network is a
single character that is embedded into a vector of size 512. This embedded input is then
supplied to a RNN layer containing two stacked LSTM cells. The output from the RNN
layer is then supplied to a fully connected layer, which can be represented in TensorRT
by a Matrix Multiply layer followed by an ElementWise sum layer. Constant layers are
used to supply the weights and biases to the Matrix Multiply and ElementWise Layers,

https://catalog.ldc.upenn.edu/ldc99t42
https://github.com/karpathy/char-rnn
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Building An RNN Network Layer By Layer

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 15

respectively. A TopK operation is then performed on the output of the ElementWise
sum layer where K = 1 to find the next predicted character in the sequence. For more
information about these layers, see the TensorRT API documentation.

7.1.1. RNNv2 Layer Setup
The first layer in the network is an RNN layer. This is added and configured in the
addRNNv2Layer() function. This layer consists of the following configuration
parameters:
Operation

This defines the operation of the RNN cell. Supported operations are currently relu,
LSTM, GRU, and tanh.

Direction
This defines whether the RNN is unidirectional or bidirectional (BiRNN).

Input mode
This defines whether the first layer of the RNN carries out a matrix multiply (linear
mode), or the matrix multiply is skipped (skip mode).

For the purpose of the CharRNN network, we will be using a linear, unidirectional
LSTM cell containing LAYER_COUNT number of stacked layers. The code below shows
how to create this RNNv2 layer.
C++ code snippet

auto rnn = network->addRNNv2(*data, LAYER_COUNT, HIDDEN_SIZE, SEQ_SIZE,
 RNNOperation::kLSTM);

Python code snippet

rnn = network.add_rnn_v2(data, LAYER_COUNT, HIDDEN_SIZE, SEQ_SIZE,
 trt.RNNOperation.LSTM)

For the RNNv2 layer, weights and bias need to be set separately. For more
information, see RNNv2 Layer - Optional Inputs.

For more information, see the TensorRT API documentation.

7.1.2. RNNv2 Layer - Optional Inputs
If there are cases where the hidden and cell states need to be pre-initialized to a non-zero
value, then you can pre-initialize them via the setHiddenState and setCellState
calls. These are optional inputs to the RNN.
C++ code snippet

rnn->setHiddenState(*hiddenIn);
if (rnn->getOperation() == RNNOperation::kLSTM)
 rnn->setCellState(*cellIn);

Python code snippet

rnn.hidden_state = hidden_in
if rnn.op == trt.RNNOperation.LSTM:
rnn.cell_state = cell_in

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Building An RNN Network Layer By Layer

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 16

7.1.3. MatrixMultiply Layer Setup
The Matrix Multiplication layer is used to execute the first step of the functionality
provided by a FullyConnected layer. As shown in the code below, a Constant layer
will need to be used so that the FullyConnected weights can be stored in the engine.
The output of the Constant and RNN layers are then used as inputs to the Matrix
Multiplication layer. The RNN output is transposed so that the dimensions for the
MatrixMultiply are valid.
C++ code snippet

weightMap["trt_fcw"] = transposeFCWeights(weightMap[FCW_NAME]);
auto fcwts = network->addConstant(Dims2(VOCAB_SIZE, HIDDEN_SIZE),
 weightMap["trt_fcw"]);
auto matrixMultLayer = network->addMatrixMultiply(
*fcwts->getOutput(0), false, *rnn->getOutput(0), true);
assert(matrixMultLayer != nullptr);
matrixMultLayer->getOutput(0)->setName("Matrix Multiplication output");

Python code snippet

weight_map["trt_fcw"] = transpose_fc_weights(weight_map[FCW_NAME])
fc_wts = network.add_constant((VOCAB_SIZE, HIDDEN_SIZE),
 weight_map["trt_fcw"])
matrix_mult_layer = network.add_matrix_multiply(
fc_wts.get_output(0), trt.MatrixOperation.NONE, rnn.get_output(0),
 trt.MatrixOperation.TRANSPOSE)
assert matrix_mult_layer != None
matrix_mult_layer.get_output(0).name =
"Matrix Multiplication output"

For more information, see the TensorRT API documentation.

7.1.4. ElementWise Layer Setup
The ElementWise layer is used to execute the second step of the functionality provided
by a FullyConnected layer. The output of the fcbias Constant layer and Matrix
Multiplication layer are used as inputs to the ElementWise layer. The output from this
layer is then supplied to the TopK layer. The code below demonstrates how to setup the
layer:
C++ code snippet

auto fcbias = network->addConstant(Dims2(VOCAB_SIZE, 1),
 weightMap[FCB_NAME]);
auto addBiasLayer = network->addElementWise(
*matrixMultLayer->getOutput(0),
*fcbias->getOutput(0), ElementWiseOperation::kSUM);
assert(addBiasLayer != nullptr);
addBiasLayer->getOutput(0)->setName("Add Bias output");

Python code snippet

fc_bias = network.add_constant((VOCAB_SIZE, 1), weightMap[FCB_NAME])
add_bias_layer = network.add_elementwise(
matrix_mult_layer.get_output(0),
fc_bias.get_output(0), trt.ElementWiseOperation.SUM)
assert add_bias_layer != None
add_bias_layer.get_output(0).name = "Add Bias output"

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Building An RNN Network Layer By Layer

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 17

For more information, see the TensorRT API documentation.

7.1.5. TopK Layer Setup
The TopK layer is used to identify the character that has the maximum probability of
appearing next.

The layer has two outputs. The first output is an array of the top K values. The
second, which is of more interest to us, is the index at which these maximum values
appear.

The code below sets up the TopK layer and assigns the OUTPUT_BLOB_NAME to the
second output of the layer.
C++ code snippet

auto pred = network->addTopK(*addBiasLayer->getOutput(0),
 nvinfer1::TopKOperation::kMAX, 1, reduceAxis);
assert(pred != nullptr);
pred->getOutput(1)->setName(OUTPUT_BLOB_NAME);

Python code snippet

pred = network.add_topk(add_bias_layer.get_output(0),
 trt.TopKOperation.MAX, 1, reduce_axis)
assert pred != None
pred.get_output(1).name = OUTPUT_BLOB_NAME

For more information, see the TensorRT API documentation.

7.1.6. Marking The Network Outputs
After the network is defined, mark the required outputs. RNN output tensors that are
not marked as network outputs or used as inputs to another layer are dropped.
C++ code snippet

network->markOutput(*pred->getOutput(1));
pred->getOutput(1)->setType(DataType::kINT32);
rnn->getOutput(1)->setName(HIDDEN_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(1));
if (rnn->getOperation() == RNNOperation::kLSTM)
{
rnn->getOutput(2)->setName(CELL_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(2));
};

Python code snippet

network.mark_output(pred.get_output(1))
pred.get_output(1).dtype = trt.int32
rnn.get_output(1).name = HIDDEN_OUT_BLOB_NAME
network.mark_output(rnn.get_output(1))
if rnn.op == trt.RNNOperation.LSTM:
rnn.get_output(2).name = CELL_OUT_BLOB_NAME
network.mark_output(rnn.get_output(2))

network->markOutput(*pred->getOutput(1));
pred->getOutput(1)->setType(DataType::kINT32);

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Building An RNN Network Layer By Layer

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 18

rnn->getOutput(1)->setName(HIDDEN_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(1));
if (rnn->getOperation() == RNNOperation::kLSTM)
{
rnn->getOutput(2)->setName(CELL_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(2));
};

7.2. RNNv2 Workflow - From TensorFlow To
TensorRT
The following sections provide an end-to-end walkthrough of how to train your model
in TensorFlow and convert the weights into a format that TensorRT can use.

7.2.1. Training A CharRNN Model With TensorFlow
TensorFlow has a useful RNN Tutorial which can be used to train a word level model.
Word level models learn a probability distribution over a set of all possible word
sequence. Since our goal is to train a char level model, which learns a probability
distribution over a set of all possible characters, a few modifications will need to be
made to get the TensorFlow sample to work. These modifications can be seen here.

There are also multiple GitHub repositories that contain CharRNN implementations that
will work out of the box. Tensorflow-char-rnn is one such implementation.

7.2.2. Exporting Weights From A TensorFlow Model
Checkpoint
A python script /usr/src/tensorrt/samples/common/dumpTFWts.py has been
provided to extract the weights from the model checkpoint files that are created during
training. Use dumpTFWts.py -h for directions on the usage of the script.

7.2.3. Loading And Converting Weights Format
After the TensorFlow weights have been exported into a single WTS file, the next step is
to load the weights and convert them into the TensorRT weights format. This is done by
the loadWeights and then the convertRNNWeights and convertRNNBias functions.
The functions contain detailed descriptions of the loading and conversion process. You
can use those as guides in case you need to write your own conversion functions. After
the conversion has taken place, the memory holding the converted weights is added to
the weight map so that it can be deallocated once the engine has been built.
C++ code snippet

Weights rnnwL0 = convertRNNWeights(weightMap[RNNW_L0_NAME]);
Weights rnnbL0 = convertRNNBias(weightMap[RNNB_L0_NAME]);
Weights rnnwL1 = convertRNNWeights(weightMap[RNNW_L1_NAME]);
Weights rnnbL1 = convertRNNBias(weightMap[RNNB_L1_NAME]);
...
weightMap["rnnwL0"] = rnnwL0;
weightMap["rnnbL0"] = rnnbL0;

https://www.tensorflow.org/tutorials/recurrent
http://deeplearningathome.com/2016/10/Text-generation-using-deep-recurrent-neural-networks.html
https://github.com/crazydonkey200/tensorflow-char-rnn

Building An RNN Network Layer By Layer

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 19

weightMap["rnnwL1"] = rnnwL1;
weightMap["rnnbL1"] = rnnbL1;

Python code snippet

rnnw_L0 = convert_rnn_weights(weight_map[RNNW_L0_NAME])
rnnb_L0 = convert_rnn_bias(weight_map[RNNB_L0_NAME])
rnnw_L1 = convert_rnn_weights(weight_map[RNNW_L1_NAME])
rnnb_L1 = convert_rnn_bias(weight_map[RNNB_L1_NAME])
...
weight_map["rnnw_L0"] = rnnw_L0
weight_map["rnnb_L0"] = rnnb_L0
weight_map["rnnw_L1"] = rnnw_L1
weight_map["rnnb_L1"] = rnnb_L1

7.2.4. RNNv2: Setting Weights And Bias
After the conversion to the TensorRT format, the RNN weights and biases are stored in
their respective contiguous arrays. They are stored in the format of [WLf, WLi, WLc,
WLo, RLf, RLi, RLc, RLo], where:
W

The weights for the input.
R

The weights for the recurrent input.
f

Corresponds to the forget gate.
i

Corresponds to the input gate.
c

Corresponds to the cell gate.
o

Corresponds to the output gate.

The code below takes advantage of this memory layout and iterates over the two layers
and the eight gates to extract and set the correct gate weights and gate biases for the
RNN layer.
C++ code snippet

for (int gateIndex = 0; gateIndex < NUM_GATES; gateIndex++)
{
 // extract weights and bias for a given gate and layer
 Weights gateWeightL0{.type = dataType,
.values = (void*)(wtsL0 + kernelOffset),
.count = DATA_SIZE * HIDDEN_SIZE};
 Weights gateBiasL0{.type = dataType,
.values = (void*)(biasesL0 + biasOffset),
.count = HIDDEN_SIZE};
 Weights gateWeightL1{.type = dataType,
.values = (void*)(wtsL1 + kernelOffset),
.count = DATA_SIZE * HIDDEN_SIZE};
 Weights gateBiasL1{.type = dataType,
.values = (void*)(biasesL1 + biasOffset),
.count = HIDDEN_SIZE};

 // set weights and bias for given gate
 rnn->setWeightsForGate(0, gateOrder[gateIndex % 4],
(gateIndex < 4), gateWeightL0);
 rnn->setBiasForGate(0, gateOrder[gateIndex % 4],

Building An RNN Network Layer By Layer

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 20

(gateIndex < 4), gateBiasL0);
 rnn->setWeightsForGate(1, gateOrder[gateIndex % 4],
(gateIndex < 4), gateWeightL1);
 rnn->setBiasForGate(1, gateOrder[gateIndex % 4],
(gateIndex < 4), gateBiasL1);

 // Update offsets
 kernelOffset = kernelOffset + DATA_SIZE * HIDDEN_SIZE;
 biasOffset = biasOffset + HIDDEN_SIZE;
}

Python code snippet

rnnw_L0_wts = numpy.split(rnnw_L0, 2*len(gate_order))
rnnb_L0_wts = numpy.split(rnnb_L0, 2*len(gate_order))
rnnw_L1_wts = numpy.split(rnnw_L1, 2*len(gate_order))
rnnb_L1_wts = numpy.split(rnnb_L1, 2*len(gate_order))
for i in range(2*len(gate_order)):
set weights and bias for given gate
rnn.set_weights_for_gate(0, gate_order[i % len(gate_order)], (i <
 len(gate_order)), rnnw_L0_wts[i])
rnn.set_bias_for_gate(0, gate_order[i % len(gate_order)], (i <
 len(gate_order)), rnnb_L0_wts[i])
rnn.set_weights_for_gate(1, gate_order[i % len(gate_order)], (i <
 len(gate_order)), rnnw_L1_wts[i])
rnn.set_bias_for_gate(1, gate_order[i % len(gate_order)], (i <
 len(gate_order)), rnnb_L1_wts[i])

7.3. Seeding The Network
After the network is built, it is seeded with preset inputs so that the RNN can start
generating data. Inside stepOnce, the output states are preserved for use as inputs on
the next timestep.
C++ code snippet

for (auto &a : input)
{
 std::copy(static_cast<const float*>(embed.values) +
 char_to_id[a]*DATA_SIZE,
 static_cast<const float*>(embed.values) +
 char_to_id[a]*DATA_SIZE + DATA_SIZE,
 data[INPUT_IDX]);
 stepOnce(data, output, buffers, indices, stream, context);
 cudaStreamSynchronize(stream);

 // Copy Ct/Ht to the Ct-1/Ht-1 slots.
 std::memcpy(data[HIDDEN_IN_IDX], data[HIDDEN_OUT_IDX],
 gSizes[HIDDEN_IN_IDX] * sizeof(float));
 std::memcpy(data[CELL_IN_IDX], data[CELL_OUT_IDX], gSizes[CELL_IN_IDX] *
 sizeof(float));

 genstr.push_back(a);
}
// Extract first predicted character
uint32_t predIdx = *reinterpret_cast<uint32_t*>(data[OUTPUT_IDX]);
genstr.push_back(id_to_char[predIdx]);

Python code snippet

for a in input:

Building An RNN Network Layer By Layer

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 21

data[INPUT_IDX] = embed[char_to_id[a]]
stepOnce(data, output, buffers, indices, stream, context)
stream.synchronize()

Copy Ct/Ht to the Ct-1/Ht-1 slots.
data[HIDDEN_IN_IDX] = data[HIDDEN_OUT_IDX]
data[CELL_IN_IDX] = data[CELL_OUT_IDX]

gen_str += a

Extract first predicted character
predIdx = data[OUTPUT_IDX][0]
genstr += id_to_char[predIdx]

7.4. Generating Data
The following code is similar to the seeding code, however, this code generates an
output character based on the output probability distribution. The following code
simply selects the character with the highest probability. The final result is stored in
genstr.
C++ code snippet

for (size_t x = 0, y = expected.size(); x < y; ++x)
{
 std::copy(static_cast<const float*>(embed.values) +
 char_to_id[*genstr.rbegin()]*DATA_SIZE,
 static_cast<const float*>(embed.values) +
 char_to_id[*genstr.rbegin()]*DATA_SIZE + DATA_SIZE,
 data[INPUT_IDX]);

 stepOnce(data, output, buffers, indices, stream, context);
 cudaStreamSynchronize(stream);

 // Copy Ct/Ht to the Ct-1/Ht-1 slots.
 std::memcpy(data[HIDDEN_IN_IDX], data[HIDDEN_OUT_IDX],
 gSizes[HIDDEN_IN_IDX] * sizeof(float));
 std::memcpy(data[CELL_IN_IDX], data[CELL_OUT_IDX], gSizes[CELL_IN_IDX] *
 sizeof(float));

uint32_t predIdx = *(output);
 genstr.push_back(id_to_char[predIdx]);
}

Python code snippet

for x in range(len(expected)):
 data[INPUT_IDX] = embed[char_to_id[gen_str[-1]]]
 stepOnce(data, output, buffers, indices, stream, context);
stream.synchronize()

 # Copy Ct/Ht to the Ct-1/Ht-1 slots.
 data[HIDDEN_IN_IDX] = data[HIDDEN_OUT_IDX]
data[CELL_IN_IDX] = data[CELL_OUT_IDX]

predIdx = output[0]
 gen_str += id_to_char[predIdx]

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 22

Chapter 8.
PERFORMING INFERENCE IN INT8 USING
CUSTOM CALIBRATION

What Does This Sample Do?
This sample provides the steps involved when performing inference in 8-bit integer
(INT8).

INT8 inference is available only on GPUs with compute capability 6.1 or 7.x.

This sample demonstrates how to:

‣ Perform INT8 calibration
‣ Perform INT8 inference
‣ Calibrate a network for execution in INT8
‣ Cache the output of the calibration to avoid repeating the process
‣ Repo your own experiments with Caffe in order to validate your results on

ImageNet networks

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleINT8 directory.

Notes About This Sample:
INT8 engines are built from 32-bit network definitions and require significantly more
investment than building a 32-bit or 16-bit engine. In particular, the TensorRT builder
must perform a process called calibration to determine how best to represent the
weights and activations as 8-bit integers.

This sample is accompanied by the MNIST training set, but may also be used to calibrate
and score other networks. To run the sample on MNIST, use the command line:

./sample_int8 mnist

Performing Inference In INT8 Using Custom Calibration

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 23

8.1. Defining The Network
Defining a network for INT8 execution is exactly the same as for any other precision.
Weights should be imported as FP32 values, and TensorRT will calibrate the network
to find appropriate quantization factors to reduce the network to INT8 precision. This
sample imports the network using the NvCaffeParser:

const IBlobNameToTensor* blobNameToTensor =
 parser->parse(locateFile(deployFile).c_str(),
 locateFile(modelFile).c_str(),
 *network,
 DataType::kFLOAT);

8.2. Building The Engine
Calibration is an additional step required when building networks for INT8. The
application must provide TensorRT with sample input. TensorRT will then perform
inference in FP32 and gather statistics about intermediate activation layers that it will
use to build the reduce precision INT8 engine.

8.2.1. Calibrating The Network
The application must specify the calibration set and parameters by implementing the
IInt8Calibrator interface. Because calibration is an expensive process that may need to
run multiple times, the interface provides methods for caching intermediate values.
Follow this sample to learn more about how to configure a calibrator object.

8.2.2. Calibration Set
Calibration must be performed using images representative of those which will be
used at runtime. Since the sample is based around Caffe, any image preprocessing that
Caffe would perform prior to running the network (such as scaling, cropping, or mean
subtraction) will be done in Caffe and captured as a set of files. The sample uses a utility
class (BatchStream) to read these files and create appropriate input for calibration.
Generation of these files is discussed in Batch Files For Calibration.

The builder calls the getBatchSize() method once, at the start of calibration, to obtain
the batch size for the calibration set. The method getBatch() is then called repeatedly
to obtain batches from the application, until the method returns false. Every calibration
batch must include exactly the number of images specified as the batch size.

bool getBatch(void* bindings[], const char* names[], int
 nbBindings) override
{
 if (!mStream.next())
 return false;

Performing Inference In INT8 Using Custom Calibration

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 24

 CHECK(cudaMemcpy(mDeviceInput, mStream.getBatch(),
 mInputCount * sizeof(float), cudaMemcpyHostToDevice));
 assert(!strcmp(names[0], INPUT_BLOB_NAME));
 bindings[0] = mDeviceInput;
 return true;
}

For each input tensor, a pointer to input data in GPU memory must be written into the
bindings array. The names array contains the names of the input tensors. The position
for each tensor in the bindings array matches the position of its name in the names array.
Both arrays have size nbBindings.

The calibration set must be representative of the input provided to TensorRT at
runtime; for example, for image classification networks, it should not consist of
images from just a small subset of categories. For ImageNet networks, around 500
calibration images is adequate.

8.2.3. Loading A Calibration File
A calibration file stores activation scales for each network tensor. Activations scales
are calculated using a dynamic range generated from a calibration algorithm, in other
words, abs(max_dynamic_range) / 127.0f.

The calibration file is called CalibrationTable<NetworkName>, where
<NetworkName> is the name of your network, for example mnist. The file is located
in the TensorRT-x.x.x.x/data/mnist directory, where x.x.x.x is your installed
version of TensorRT.

If the CalibrationTable file is not found, the builder will run the calibration
algorithm again to create it. The CalibrationTable contents include:

TRT-5100-EntropyCalibration2
data: 3c000889
conv1: 3c8954be
pool1: 3c8954be
conv2: 3dd33169
pool2: 3dd33169
ip1: 3daeff07
ip2: 3e7d50ec
prob: 3c010a14

Where:
<TRT-xxxx>-<xxxxxxx>

The TensorRT version followed by the calibration algorithm, for example,
EntropyCalibration2.

<layer name> : value
Corresponds to the floating point activation scales determined during calibration for
each tensor in the network.

The CalibrationTable file is generated during the build phase while running the
calibration algorithm. Specifically, to create the calibration file, you first need to provide
a calibrator object and pass it to the builder. The calibrator object should be configured
to use the calibration image batches. During the build phase, the builder will create the
calibration file using the calibrator object.

Performing Inference In INT8 Using Custom Calibration

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 25

After the calibration file is created, the file must get loaded. You cannot manually load a
calibration file using an API, the builder first checks whether the file exists. If it does, it
will not calibrate again and instead will load that same calibration file for every runtime.
Therefore, the calibration file needs to be created only once.

8.3. Configuring The Builder
There are two additional methods to call on the builder:

builder->setInt8Mode(true);
builder->setInt8Calibrator(calibrator);

8.4. Running The Engine
After the network has been built, it can be used just like an FP32 network, for example,
inputs and outputs remain in 32-bit floating point.

8.5. Verifying The Output
This sample outputs Top-1 and Top-5 metrics for both FP32 and INT8 precision, as well
as for FP16 if it is natively supported by the hardware. These numbers should be within
1%.

8.6. Batch Files For Calibration
The sampleINT8 sample uses batch files in order to calibrate for the INT8 data. The INT8
batch file is a binary file containing a set of N images, whose format is as follows:

‣ Four 32-bit integer values representing {N,C, H, W} representing the number of
images N in the file, and the dimensions {C, H, W} of each image.

‣ N 32-bit floating point data blobs of dimensions {C, H, W} that are used as inputs
to the network.

8.6.1. Generating Batch Files For Caffe Users
Calibration requires that the images passed to the calibrator are in the same format
as those that will be passed to TensorRT at runtime. For developers using Caffe for
training, or who can easily transfer their network to Caffe, a supplied patchset supports
capturing images after image preprocessing.

These instructions are provided so that users can easily use the sample code to test
accuracy and performance on classification networks. In typical production use cases,

Performing Inference In INT8 Using Custom Calibration

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 26

applications will have such preprocessing already implemented, and should integrate
with the calibrator directly.

These instructions are for Caffe git commit
473f143f9422e7fc66e9590da6b2a1bb88e50b2f from GitHub: BVLC Caffe. The
patchfile might be slightly different for later versions of Caffe.

 1. Apply the patch. The patch can be applied by going to the root directory of the Caffe
source tree and applying the patch with the command:

patch -p1 < int8_caffe.patch

 2. Rebuild Caffe and set the environment variable
TENSORRT_INT8_BATCH_DIRECTORY to the location where the batch files are to be
generated.

After training for 1000 iterations, there are 1003 batch files in the directory specified.
This occurs because Caffe preprocesses three batches in advance of the current iteration.

These batch files can then be used with the BatchStream and Int8Calibrator to
calibrate the data for INT8.

When running Caffe to generate the batch files, the training prototxt, and not the
deployment prototxt, is required to be used.

The following example depicts the sequence of commands to run ./sample_int8
mnist with Caffe generated batch files.

 1. Navigate to the samples data directory and create an INT8 mnist directory:

cd <TensorRT>/samples/data
mkdir -p int8/mnist
cd int8/mnist

If Caffe is not installed anywhere, ensure you clone, checkout, patch, and build
Caffe at the specific commit:

git clone https://github.com/BVLC/caffe.git
cd caffe
git checkout 473f143f9422e7fc66e9590da6b2a1bb88e50b2f
patch -p1 < <TensorRT>/samples/mnist/int8_caffe.patch
mkdir build
pushd build
cmake -DUSE_OPENCV=FALSE -DUSE_CUDNN=OFF ../
make -j4
popd

 2. Download the mnist dataset from Caffe and create a link to it:

bash data/mnist/get_mnist.sh
bash examples/mnist/create_mnist.sh
cd ..
ln -s caffe/examples .

 3. Set the directory to store the batch data, execute Caffe, and link the mnist files:

https://github.com/BVLC/caffe.git

Performing Inference In INT8 Using Custom Calibration

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 27

mkdir batches
export TENSORRT_INT8_BATCH_DIRECTORY=batches
caffe/build/tools/caffe test -gpu 0 -iterations 1000 -model examples/mnist/
lenet_train_test.prototxt -weights
<TensorRT>/samples/mnist/mnist.caffemodel
ln -s <TensorRT>/samples/mnist/mnist.caffemodel .
ln -s <TensorRT>/samples/mnist/mnist.prototxt .

 4. Execute sampleINT8 from the bin directory after being built with the following
command:

 ./sample_int8 mnist

8.6.2. Generating Batch Files For Non-Caffe Users
For developers that are not using Caffe, or cannot easily convert to Caffe, the batch files
can be generated via the following sequence of steps on the input training data.

 1. Subtract out the normalized mean from the dataset.
 2. Crop all of the input data to the same dimensions.
 3. Split the data into batch files where each batch file has N preprocessed images and

labels.
 4. Generate the batch files based on the format specified in Batch Files for Calibration.

The following example depicts the sequence of commands to run ./sample_int8
mnist without Caffe.

 1. Navigate to the samples data directory and create an INT8 mnist directory:

cd <TensorRT>/samples/data
mkdir -p int8/mnist/batches
cd int8/mnist
ln -s <TensorRT>/samples/mnist/mnist.caffemodel .
ln -s <TensorRT>/samples/mnist/mnist.prototxt .

 2. Copy the generated batch files to the int8/mnist/batches/ directory.
 3. Execute sampleINT8 from the bin directory after being built with the command ./

sample_int8 mnist.

./sample_int8 mnist

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 28

Chapter 9.
PERFORMING INFERENCE IN INT8
PRECISION

What Does This Sample Do?
This sample provides steps to perform INT8 Inference without using the INT8 inference
calibrator; using the user provided per activation tensor dynamic range.

INT8 inference is available only on GPUs with compute capability 6.1 or 7.x.

This sample demonstrates how to:

‣ Set per tensor dynamic range.
‣ Set computation precision of a layer.
‣ Perform INT8 inference using the user defined dynamic range, without using INT8

calibration.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleINT8API
directory.

Notes About This Sample:
In order to perform INT8 inference, TensorRT expects you to provide dynamic range
corresponding to each network tensor including input and output tensor. Dynamic
range can be obtained using various methods including quantization aware training or
simply recording the min and max per tensor values during training.

To run this sample, you will need per tensor dynamic range stored in a text file
along with the ImageNet label reference file. We will perform INT8 inference on a
classification network, for example, ResNet50, VGG19, MobileNet v2, etc.

To print usage information:

Performing Inference In INT8 Precision

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 29

./sample_int8_api [-h or --help]

To run INT8 inference with your dynamic ranges:

./sample_int8_api [--model=model_file]
[--ranges=per_tensor_dynamic_range_file] [--image=image_file]
[--reference=reference_file] [--data=/path/to/data/dir]
[--useDLACore=<int>] [-v or --verbose]

9.1. Configuring The Builder
Ensure that INT8 inference is supported on the platform:

if (!builder->platformHasFastInt8()) return false;

Enable INT8 mode by setting the builder flag:

builder->setInt8Mode(true);
builder->setInt8Calibrator(nullptr); // User can choose to not provide INT8
 calibrator. If user choose to provide the calibrator, manual dynamic range will
 override calibration generate dynamic range/scale.

Optionally, you can also force the layer precision using the following builder
configuration:

builder->setStrictTypeConstraints(true);

This step is not required to perform INT8 inference. Enabling it will force INT8
precision for all the layers irrespective of performance. Therefore, it’s only
recommended for debugging purposes.

9.2. Configuring The Network
Iterate through the network to set the per activation tensor dynamic range.

readPerTensorDynamicRangeValue() // This function populates dictionary with
 keys=tensor_names, values=floating point dynamic range.

Set the dynamic range for network inputs:

string input_name = network->getInput(i)->getName();
network->getInput(i)->setDynamicRange(-tensorMap.at(input_name),
 tensorMap.at(input_name));

Set the dynamic range for per layer tensors:

string tensor_name = network->getLayer(i)->getOutput(j)->getName();
 network->getLayer(i)->getOutput(j)->setDynamicRange(-tensorMap.at(name),
 tensorMap.at(name));

This sample also showcases using layer precision APIs. Using these APIs, you can
selectively choose to run the layer with user configurable precision. It may not result
in optimal inference performance, but can be handy while debugging mixed precision
inference.

Performing Inference In INT8 Precision

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 30

Iterate through the network to per layer precision:

auto layer = network->getLayer(i);
 layer->setPrecision(nvinfer1::DataType::kINT8);
 for (int j=0; j<layer->getNbOutputs(); ++j) {
 layer->setOutputType(j, nvinfer1::DataType::kINT8);
 }

Once the network is configured, build the engine and run inference as any other sample.
For details regarding how to run the sample, see the README within the sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 31

Chapter 10.
ADDING A CUSTOM LAYER TO YOUR
NETWORK IN TENSORRT

What Does This Sample Do?
This sample demonstrates how to add a Custom layer to TensorRT. This sample
implements the MNIST model with the difference that the final FullyConnected layer is
replaced by a Custom layer. To read more information about MNIST, see “Hello World”
For TensorRT, Building A Simple OCR Network, and Import The TensorFlow Model
And Run Inference.

This sample demonstrates how to:

‣ Define a Custom layer that supports multiple data formats
‣ Define a Custom layer that can be serialized and deserialized
‣ Enable a Custom layer in NvCaffeParser

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/samplePlugin
directory.

Notes About This Sample:
The Custom layer implements the FullyConnected layer using gemm routines (Matrix
Multiplication) in cuBLAS, and tensor addition in cuDNN (bias offset). This sample
illustrates the definition of the FCPlugin for the Custom layer, and the integration with
NvCaffeParser.

10.1. Defining The Network
The FCPlugin redefines the FullyConnected layer, which in this case has a single
output. Accordingly, getNbOutputs returns 1 and getOutputDimensions includes
validation checks and returns the dimensions of the output:

Adding A Custom Layer To Your Network In TensorRT

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 32

Dims getOutputDimensions(int index, const Dims* inputDims,
 int nbInputDims) override
{
 assert(index == 0 && nbInputDims == 1 &&
 inputDims[0].nbDims == 3);
 assert(mNbInputChannels == inputDims[0].d[0] *
 inputDims[0].d[1] *
 inputDims[0].d[2]);
 return DimsCHW(mNbOutputChannels, 1, 1);
}

10.2. Enabling Custom Layers In NvCaffeParser
The model is imported using NvCaffeParser (see Importing A Caffe Model Using The C
++ Parser API and Using Custom Layers When Importing A Model From A Framework).
To use the FCPlugin implementation for the FullyConnected layer, a plugin factory is
defined which recognizes the name of the FullyConnected layer (inner product ip2 in
Caffe).

bool isPlugin(const char* name) override
{ return !strcmp(name, "ip2"); }

The factory can then instantiate FCPlugin objects as directed by the parser. The
createPlugin method receives the layer name, and a set of weights extracted from
the Caffe model file, which are then passed to the plugin constructor. Since the lifetime
of the weights and that of the newly created plugin are decoupled, the plugin makes a
copy of the weights in the constructor.

virtual nvinfer1::IPlugin* createPlugin(const char* layerName, const
 nvinfer1::Weights* weights, int nbWeights) override
{
 …
 mPlugin =
 std::unique_ptr<FCPlugin>(new FCPlugin(weights,nbWeights));

 return mPlugin.get();
}

10.3. Building The Engine
FCPlugin does not need any scratch space, therefore, for building the engine, the most
important methods deal with the formats supported and the configuration. FCPlugin
supports two formats: NCHW in both single and half precision as defined in the
supportsFormat method.

bool supportsFormat(DataType type, PluginFormat format) const override
{
 return (type == DataType::kFLOAT || type == DataType::kHALF) &&
 format == PluginFormat::kNCHW;
}

Supported configurations are selected in the building phase. The builder selects a
configuration with the networks configureWithFormat() method, to give it a chance
to select an algorithm based on its inputs. In this example, the inputs are checked

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#using_custom_layer

Adding A Custom Layer To Your Network In TensorRT

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 33

to ensure they are in a supported format, and the selected format is recorded in a
member variable. No other information needs to be stored in this simple case; in more
complex cases, you may need to do so or even choose an ad-hoc algorithm for the given
configuration.

void configureWithFormat(..., DataType type, PluginFormat format, ...) override
{
 assert((type == DataType::kFLOAT || type == DataType::kHALF) &&
 format == PluginFormat::kNCHW);
 mDataType = type;
}

The configuration takes place at build time, therefore, any information or state
determined here that is required at runtime should be stored as a member variable of the
plugin, and serialized and deserialized.

10.4. Serializing And Deserializing
Fully complaint plugins support serialization and deserialization, as described
in Serializing A Model In C++. In the example, FCPlugin stores the number of
channels and weights, the format selected, and the actual weights. The size of
these variables makes up for the size of the serialized image; the size is returned by
getSerializationSize:

virtual size_t getSerializationSize() override
{
 return sizeof(mNbInputChannels) + sizeof(mNbOutputChannels) +
 sizeof(mBiasWeights.count) + sizeof(mDataType) +
 (mKernelWeights.count + mBiasWeights.count) *
 type2size(mDataType);
}

Eventually, when the engine is serialized, these variables are serialized, the weights
converted is needed, and written on a buffer:

virtual void serialize(void* buffer) override
{
 char* d = static_cast<char*>(buffer), *a = d;
 write(d, mNbInputChannels);
 ...
 convertAndCopyToBuffer(d, mKernelWeights);
 convertAndCopyToBuffer(d, mBiasWeights);
 assert(d == a + getSerializationSize());
}

Then, when the engine is deployed, it is deserialized. As the runtime scans the serialized
image, when a plugin image is encountered, it create a new plugin instance via the
factory. The plugin object created during deserialization (shows below using new) is
destroyed when the engine is destroyed by calling FCPlugin::destroy().

IPlugin* createPlugin(...) override
{
 …

 return new FCPlugin(serialData, serialLength);
}

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#serial_model_c

Adding A Custom Layer To Your Network In TensorRT

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 34

In the same order as in the serialization, the variables are read and their values restored.
In addition, at this point the weights have been converted to selected format and can be
stored directly on the device.

FCPlugin(const void* data, size_t length)
{
 const char* d = static_cast<const char*>(data), *a = d;
 read(d, mNbInputChannels);
 ...
 deserializeToDevice(d, mDeviceKernel,
 mKernelWeights.count*type2size(mDataType));
 deserializeToDevice(d, mDeviceBias,
 mBiasWeights.count*type2size(mDataType));
 assert(d == a + length);
}

10.5. Resource Management And Execution
Before a custom layer is executed, the plugin is initialized. This is where resources are
held for the lifetime of the plugin and can be acquired and initialized. In this example,
weights are kept in CPU memory at first, so that during the build phase, for each
configuration tested, weights can be converted to the desired format and then copied
to the device in the initialization of the plugin. The method initialize creates the
required cuBLAS and cuDNN handles, sets up tensor descriptors, allocates device
memory, and copies the weights to device memory. Conversely, terminate destroys the
handles and frees the memory allocated on the device.

int initialize() override
{
 CHECK(cudnnCreate(&mCudnn));
 CHECK(cublasCreate(&mCublas));
 …
 if (mKernelWeights.values != nullptr)
 convertAndCopyToDevice(mDeviceKernel, mKernelWeights);
 …
}

The core of the plugin is enqueue, which is used to execute the custom layer at runtime.
The call parameters include the actual batch size, inputs, and outputs. The handles for
cuBLAS and cuDNN operations are placed on the given stream; then, according to the
data type and format configured, the plugin executes in single or half precision.

The two handles are part of the plugin object, therefore, the same engine cannot be
executed concurrently on multiple streams. In order to enable multiple streams of
execution, plugins must be re-entrant and handle stream-specific data accordingly.

virtual int enqueue(int batchSize, const void*const * inputs, void**
 outputs, ...) override
{
 ...
 cublasSetStream(mCublas, stream);
 cudnnSetStream(mCudnn, stream);
 if (mDataType == DataType::kFLOAT)
 {...}
 else

Adding A Custom Layer To Your Network In TensorRT

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 35

 {
 CHECK(cublasHgemm(mCublas, CUBLAS_OP_T, CUBLAS_OP_N,
 mNbOutputChannels, batchSize,
 mNbInputChannels, &oneh,
 mDeviceKernel), mNbInputChannels,
 inputs[0], mNbInputChannels, &zeroh,
 outputs[0], mNbOutputChannels));
 }
 if (mBiasWeights.count)
 {
 cudnnDataType_t cudnnDT = mDataType == DataType::kFLOAT ?
 CUDNN_DATA_FLOAT : CUDNN_DATA_HALF;
 ...
 }
 return 0;
}

The plugin object created in the sample is cloned by each of the network, builder, and
engine by calling the FCPlugin::clone() method. The clone() method calls the
plugin constructor and can also clone plugin parameters, if necessary.

IPluginExt* clone()
 {
 return new FCPlugin(&mKernelWeights, mNbWeights, mNbOutputChannels);
 }

The cloned plugin objects are deleted when the network, builder, or engine are
destroyed. This is done by invoking the FCPlugin::destroy() method.

void destroy() { delete this; }

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 36

Chapter 11.
NEURAL MACHINE TRANSLATION
(NMT) USING SEQUENCE TO SEQUENCE
(SEQ2SEQ) MODELS

What Does This Sample Do?
This sample is a highly modular sample for inferencing using C++ and TensorRT API
so that you can consider using it as a reference point in your projects. Neural Machine
Translation (NMT) using sequence to sequence (seq2seq) models has garnered a lot of
attention and is used in various NMT frameworks.

This sample demonstrates how to:

‣ Create an attention based seq2seq type NMT inference engine using a checkpoint
from TensorFlow

‣ Convert trained weights using Python and import trained weights data into
TensorRT

‣ Build relevant engines and run inference using the generated TensorRT network
‣ Use layers, such as:

RNNv2
The RNNv2 layer is used in the lstm_encoder.cpp and lstm_decoder.cpp
files.

Constant
The Constant layer is used in the slp_attention.cpp, slp_embedder.cpp and
slp_projection.cpp files.

MatrixMultiply
The MatrixMultiply layer is used in the context.cpp,
multiplicative_alignment.cpp, slp_attention.cpp, and
slp_projection.cpp files.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Neural Machine Translation (NMT) Using Sequence To Sequence (seq2seq) Models

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 37

Shuffle
The Shuffle layer is used in the lstm_encoder.cpp and lstm_decoder.cpp
files.

RaggedSoftmax
The RaggedSoftmax layer is used in the context.cpp file.

TopK
The TopK layer is used in the softmax_likelihood.cpp file.

Gather
The Gather layer is used in the slp_embedder.cpp file.

Where Is This Sample Located?
This sample is installed in the tensorrt/samples/sampleNMT directory. For more
information about how to run the sample, see the README.txt file in the samples/
sampleNMT/ directory.

Notes About This Sample:
For more information about this sample, read the Neural Machine Translation Inference
with TensorRT 4 technical blog.

11.1. Overview
At a high level, the basic architecture of the NMT model consists of two sides: an
encoder and a decoder. Incoming sentences are translated into sequences of words in a
fixed vocabulary. The incoming sequence goes through the encoder and is transformed
by a network of Recurrent Neural Network (RNN) layers into an internal state space that
represents a language-independent "meaning" of the sentence. The decoder works the
opposite way, transforming from the internal state space back into a sequence of words
in the output vocabulary.

Encoding And Embedding

The encoding process requires a fixed vocabulary of words from the source language.
Words not appearing in the vocabulary are replaced with an UNKNOWN token. Special
symbols also represent START-OF-SENTENCE and END-OF-SENTENCE. After the input is
finished, a START-OF-SENTENCE is fed in to mark the switch to decoding. The decoder
will then produce the END-OF-SENTENCE symbol to indicate it is finished translating.

Vocabulary words are not just represented as single numbers, they are encoded as word
vectors of a fixed size. The mapping from vocabulary word to embedding vector is
learned during training.

Attention

Attention mechanisms sit between the encoder and decoder and allow the network to
focus on one part of the translation task at a time. It is possible to directly connect the

https://devblogs.nvidia.com/neural-machine-translation-inference-tensorrt-4/
https://devblogs.nvidia.com/neural-machine-translation-inference-tensorrt-4/

Neural Machine Translation (NMT) Using Sequence To Sequence (seq2seq) Models

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 38

encoding and decoding stages but this would mean the internal state representing the
meaning of the sentence would have to cover sentences of all possible lengths at once.

This sample implements Luong attention. In this model, at each decoder step the target
hidden state is combined with all source states using the attention weights. A scoring
function weighs each contribution from the source states. The attention vector is then fed
into the next decoder stage as an input.

Beam Search And Projection

There are several ways to organize the decode stage. The output of the RNN layer is not
a single word. The simplest method, is to choose the most likely word at each time step,
assume that is the correct output, and continue until the decoder generates the END-OF-
SENTENCE symbol.

A better way to perform the decoding is to keep track of multiple candidate possibilities
in parallel and keep updating the possibilities with the most likely sequences. In
practice, a small fixed size of candidates works well. This method is called beam
search. The beam width is the number of simultaneous candidate sequences that are in
consideration at each time step.

As part of beam search we need a mechanism to convert output states into probability
vectors over the vocabulary. This is accomplished with the projection layer using a fixed
dense matrix.

For more information related to sampleNMT, see Creating A Network Definition In C++,
Working With Deep Learning Frameworks, and Enabling FP16 Inference Using C++.

11.2. Preparing The Data
The NMT sample can be run with pre-trained weights. Link to the weights in the correct
format can be found in the samples/sampleNMT/README.txt file.

Running the sample also requires text and vocabulary data. For the De-En model, the
data can be fetched and processed using the script: wmt16_en_de.sh. Running this script
may take some time, since it prepares 4.5M samples for training as well as inference.

Run the script wmt16_de_en.sh and collect the following files into a directory:

‣ newstest2015.tok.bpe.32000.de
‣ newstest2015.tok.bpe.32000.en
‣ vocab.bpe.32000.de
‣ vocab.bpe.32000.en

The weights .bin files from the link in the README.txt should be put in a subdirectory
named weights in this directory.

In the event that the data files change, as of March 26, 2018 the MD5SUM for the data
files are:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#network_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#build_model
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#enable_fp16_c
https://github.com/tensorflow/nmt/blob/master/nmt/scripts/wmt16_en_de.sh

Neural Machine Translation (NMT) Using Sequence To Sequence (seq2seq) Models

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 39

3c0a6e29d67b081a961febc6e9f53e4c newstest2015.tok.bpe.32000.de

875215f2951b21a5140e4f3734b47d6c newstest2015.tok.bpe.32000.en

c1d0ca6d4994c75574f28df7c9e8253f vocab.bpe.32000.de

c1d0ca6d4994c75574f28df7c9e8253f vocab.bpe.32000.en

11.3. Running The Sample
The sample executable is located in the tensorrt/bin directory. Running the sample
requires pre-trained weights and the data files mentioned in Preparing The Data. After
the data directory is setup, pass the location of the data directory to the sample with the
following option:

--data_dir=<path_to_data_directory>

To generate example translation output, issue:

sample_nmt --data_dir=<path> --data_writer=text

The example translations can then be found in the translation_output.txt file.

To get the BLEU score for the first 100 sentences, issue:

sample_nmt --data_dir=<path> --max_inference_samples=100

The following options are available when running the sample:
--help

Output help message and exit.
--data_writer=bleu/text/benchmark

Type of the output the app generates (default = bleu).
--output_file=<path_to_file>

Path to the output file when data_writer=text.
--batch=<N>

Batch size (default = 128).
--beam=<N>

Beam width (default = 5).
--max_input_sequence_length=<N>

Maximum length for input sequences (default = 150).
--max_output_sequence_length=<N>

Maximum length for output sequences (default = -1), negative value indicates no
limit.

--max_inference_samples=<N>
Maximum sample count to run inference for, negative values indicates no limit is set
(default = -1).

--verbose
Output information level messages by TensorRT.

Neural Machine Translation (NMT) Using Sequence To Sequence (seq2seq) Models

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 40

--max_workspace_size=<N>
Maximum workspace size (default = 268435456).

--data_dir=<path_to_data_directory>
Path to the directory where data and weights are located (default = ../../../../
data/samples/nmt/deen).

--profile
Profile TensorRT execution layer by layer. Use benchmark data_writer when
profiling on, disregard benchmark results.

--aggregate_profile
Merge profiles from multiple TensorRT engines.

--fp16
Switch on FP16 math.

11.4. Training The Model
Training the NMT model can be done in TensorFlow. This sample was trained following
the general outline of the TensorFlow Neural Machine Translation Tutorial. The first step
is to obtain training data, which is handled by the steps in Preparing The Data.

The next step is to fetch the TensorFlow NMT framework, for example:

git clone https://github.com/tensorflow/nmt.git

The model description is located in the nmt/nmt/standard_hparams/wmt16.json
file. This file encodes values for all the hyperparameters available for NMT models.
Not all variations are supported by the current NMT sample code so this file should be
edited with appropriate values. For example, only unidirectional LSTMs and the Luong
attention model are supported. The exact parameters used for the pre-trained weights
are available in the sample README.txt file.

After the model description is ready and the training data is available in the <path>/
wmt16_de_en directory, the command to train the model is:

python -m nmt.nmt \
--src=de --tgt=en \
--hparams_path=<path_to_json_config>/wmt16.json \
--out_dir=/tmp/deen_nmt \
--vocab_prefix=/tmp/wmt16_de_en/vocab.bpe.32000 \
--train_prefix=/tmp/wmt16_de_en/train.tok.clean.bpe.32000 \
--dev_prefix=/tmp/wmt16_de_en/newstest2013.tok.bpe.32000 \
--test_prefix=/tmp/wmt16_de_en/newstest2015.tok.bpe.32000

11.5. Importing Weights From A Checkpoint
Training the model generates various output files describing the state of the model. In
order to use the model with TensorRT, model weights must be loaded into the TensorRT
network. The weight values themselves are included in the TensorFlow checkpoint
produced during training. In the sample directory, we provide a Python script that
extracts the weights from a TensorFlow checkpoint into a set of binary weight files that
can be directly loaded by the sample.

https://github.com/tensorflow/nmt

Neural Machine Translation (NMT) Using Sequence To Sequence (seq2seq) Models

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 41

To use the script, run the command:

The chpt_to_bin.py script is located in the /usr/src/tensorrt/samples/
sampleNMT directory.

python ./chpt_to_bin.py \
 --src=de --tgt=en \
 --ckpt=/tmp/deen_nmt/translate.ckpt-340000 \
 --hparams_path=<path_to_json_config>/wmt16.json \
 --out_dir=/tmp/deen \
 --vocab_prefix=<path>/wmt16_de_en/vocab.bpe.32000 \
 --inference_input_file=\
 <path>/wmt16_de_en/newstest2015.tok.bpe.32000.de \
 --inference_output_file=/tmp/deen/output_infer \
 --inference_ref_file=\
 <path>/wmt16_de_en/newstest2015.tok.bpe.32000.en

This generates 7 binary weight files for all the pieces of the model. The binary format is
just a raw dump of the floating point values in order, followed by a metadata. The script
was tested against TensorFlow 1.6.

https://github.com/tensorflow/tensorflow/releases/tag/v1.6.0

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 42

Chapter 12.
OBJECT DETECTION WITH FASTERRCNN

What Does This Sample Do?
This sample demonstrates how to:

‣ Uses TensorRT plugins which allow for end-to-end inferencing
‣ Implement the Faster R-CNN network in TensorRT
‣ Perform a quick performance test in TensorRT
‣ Implement a fused custom layer
‣ Construct the basis for further optimization, for example using INT8 calibration,

user trained network, etc.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleFasterRNN
directory.

The Faster R-CNN Caffe model is too large to include in the product bundle. To run
this sample, download the model using the instructions in the README.txt in the
sample directory. The README is located in the <TensorRT directory>/samples/
sampleFasterRCNN directory. Once the model is downloaded and extracted as per the
instructions, the sample can be run by invoking sample_fasterRCNN binary.

Notes About This Sample:
The original Caffe model has been modified to include the Faster R-CNN’s RPN and
ROIPooling layers.

12.1. Overview
The sampleFasterRCNN is a more complex sample. The Faster R-CNN network is based
on the paper Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks.

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497

Object Detection With FasterRCNN

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 43

Faster R-CNN is a fusion of Fast R-CNN and RPN (Region Proposal Network). The
latter is a fully convolutional network that simultaneously predicts object bounds and
objectness scores at each position. It can be merged with Fast R-CNN into a single
network because it is trained end-to-end along with the Fast R-CNN detection network
and thus shares with it the full-image convolutional features, enabling nearly cost-free
region proposals. These region proposals will then be used by Fast R-CNN for detection.

The sampleFasterRCNN sample uses a plugin from the TensorRT plugin library to
include a fused implementation of Faster R-CNN’s Region Proposal Network (RPN) and
ROIPooling layers. These particular layers are from the Faster R-CNN paper and are
implemented together as a single plugin called RPNROIPlugin. This plugin is registered
in the TensorRT Plugin Registry with the name RPROI_TRT.

Faster R-CNN is faster and more accurate than its predecessors (RCNN, Fast R-CNN)
because it allows for an end-to-end inferencing and does not need standalone region
proposal algorithms (like selective search in Fast R-CNN) or classification method (like
SVM in RCNN).

12.2. Preprocessing The Input
The input to the Faster R-CNN network is 3 channel 375x500 images.

Since TensorRT does not depend on any computer vision libraries, the images are
represented in binary R, G, and B values for each pixels. The format is Portable PixMap
(PPM), which is a netpbm color image format. In this format, the R, G, and B values for
each pixel are represented by a byte of integer (0-255) and they are stored together, pixel
by pixel.

However, the authors of SSD have trained the network such that the first Convolution
layer sees the image data in B, G, and R order. Therefore, we reverse the channel order
when the PPM images are being put into the network buffer.

float* data = new float[N*INPUT_C*INPUT_H*INPUT_W];
// pixel mean used by the Faster R-CNN's author
float pixelMean[3]{ 102.9801f, 115.9465f, 122.7717f }; // also in BGR order
for (int i = 0, volImg = INPUT_C*INPUT_H*INPUT_W; i < N; ++i)
{
 for (int c = 0; c < INPUT_C; ++c)
 {
 // the color image to input should be in BGR order
 for (unsigned j = 0, volChl = INPUT_H*INPUT_W; j < volChl; ++j)
data[i*volImg + c*volChl + j] = float(ppms[i].buffer[j*INPUT_C + 2 - c]) -
 pixelMean[c];
 }
}

There is a simple PPM reading function called readPPMFile.

The readPPMFile function will not work correctly if the header of the PPM image
contains any annotations starting with #.

Object Detection With FasterRCNN

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 44

Furthermore, within the sample, there is another function called
writePPMFileWithBBox, that plots a given bounding box in the image with one-pixel
width red lines.

In order to obtain PPM images, you can easily use the command-line tools such as
ImageMagick to perform the resizing and conversion from JPEG images.

If you choose to use off-the-shelf image processing libraries to preprocess the inputs,
ensure that the TensorRT inference engine sees the input data in the form that it is
supposed to.

12.3. Defining The Network
The network is defined in a prototxt file which is shipped with the sample and located in
the data/faster-rcnn directory. The prototxt file is very similar to the one used by the
inventors of Faster R-CNN except that the RPN and the ROI pooling layer is fused and
replaced by a custom layer named RPROIFused.

Similar to Adding A Custom Layer To Your Network In TensorRT, in order to add
Custom layers via NvCaffeParser, you need to create a factory by implementing
the nvcaffeParser::IPluginFactory interface and then pass an instance to
ICaffeParser::parse(). But unlike Adding A Custom Layer To Your Network In
TensorRT, in which the FCPlugin is defined in the sample, the RPROIFused plugin
layer instance can be created by the create function implemented in the TensorRT
plugin library createRPNROIPlugin. This function returns an instance that implements
an optimized RPROIFused Custom layer and performs the same logic designed by the
authors.

12.4. Building The Engine
For details on how to build the TensorRT engine, see Building An Engine In C++.

In the case of the Faster R-CNN sample, maxWorkspaceSize is set to 10 * (2^20),
namely 10MB, because there is a need of roughly 6MB of scratch space for the plugin
layer for batch size 5.

After the engine is built, the next steps are to serialize the engine, then run the inference
with the deserialized engine. For more information, see Serializing A Model In C++.

12.5. Running The Engine
To deserialize the engine, see Performing Inference In C++.

In sampleFasterRCNN.cpp, there are two inputs to the inference function:
data

data is the image input

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#build_engine_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#serial_model_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#perform_inference_c

Object Detection With FasterRCNN

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 45

imInfo
imInfo is the image information array which stores the number of rows, columns,
and the scale for each image in a batch.

and four outputs:
bbox_pred

bbox_pred is the predicted offsets to the heights, widths and center coordinates.
cls_prob

cls_prob is the probability associated with each object class of every bounding box.
rois

rois is the height, width, and the center coordinates for each bounding box.
count

count is deprecated and can be ignored.

The count output was used to specify the number of resulting NMS bounding
boxes if the output is not aligned to nmsMaxOut. Although it is deprecated, always
allocate the engine buffer of size batchSize * sizeof(int) for it until it is
completely removed from the future version of TensorRT.

12.6. Verifying The Output
The outputs of the Faster R-CNN network need to be post-processed in order to obtain
human interpretable results.

First, because the bounding boxes are now represented by the offsets to the center,
height, and width, they need to be unscaled back to the raw image space by dividing the
scale defined in the imInfo (image info).

Ensure you apply the inverse transformation on the bounding boxes and clip the
resulting coordinates so that they do not go beyond the image boundaries.

Lastly, overlapped predictions have to be removed by the non-maximum suppression
algorithm. The post-processing codes are defined within the CPU because they are
neither compute intensive nor memory intensive.

After all of the above work, the bounding boxes are available in terms of the class
number, the confidence score (probability), and four coordinates. They are drawn in the
output PPM images using the writePPMFileWithBBox function.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 46

Chapter 13.
OBJECT DETECTION WITH A TENSORFLOW
SSD NETWORK

What Does This Sample Do?
This sample demonstrates how to:

‣ Preprocess the TensorFlow SSD network
‣ Perform inference on the SSD network in TensorRT
‣ Use TensorRT plugins to speed up inference

Where Is This Sample Located?
This sample is installed in the tensorrt/samples/sampleUffSSD directory.

Notes About This Sample:
The frozen graph for the SSD network is too large to include in the TensorRT package.
Ensure you read the instructions in the README located at tensorrt/samples/
sampleUffSSD for details on how to generate the network to run inference.

13.1. API Overview
The sampleUffSSD is based on the following paper, SSD: Single Shot MultiBox Detector.
The SSD network, built on the VGG-16 network, performs the task of object detection
and localization in a single forward pass of the network. This approach discretizes the
output space of bounding boxes into a set of default boxes over different aspect ratios
and scales per feature map location. At prediction time, the network generates scores
for the presence of each object category in each default box and produces adjustments to
the box to better match the object shape. Additionally, the network combines predictions
from multiple features with different resolutions to naturally handle objects of various
sizes.

The sampleUffSSD is based on the TensorFlow implementation of SSD. For more
information, see ssd_inception_v2_coco.

https://arxiv.org/abs/1512.02325
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz

Object Detection With A TensorFlow SSD Network

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 47

Unlike the paper, the TensorFlow SSD network was trained on the InceptionV2
architecture using the MSCOCO dataset which has 91 classes (including the background
class). The configuration details of the network can be found at GitHub: TensorFlow
models.

The main components of this network are the Preprocessor, FeatureExtractor,
BoxPredictor, GridAnchorGenerator and Postprocessor.
Preprocessor

The preprocessor step of the graph is responsible for resizing the image. The image is
resized to a 300x300x3 size tensor. The preprocessor step also performs normalization
of the image so all pixel values lie between the range [-1, 1].

FeatureExtractor
The FeatureExtractor portion of the graph runs the InceptionV2 network on the
preprocessed image. The feature maps generated are used by the anchor generation
step to generate default bounding boxes for each feature map.

In this network, the size of feature maps that are used for anchor generation are
[(19x19), (10x10), (5x5), (3x3), (2x2), (1x1)].

BoxPredictor
The BoxPredictor step takes in a high level feature map as input and produces a list of
box encodings (x-y coordinates) and a list of class scores for each of these encodings
per feature map. This information is passed to the postprocessor.

GridAnchorGenerator
The goal of this step is to generate a set of default bounding boxes (given the
scale and aspect ratios mentioned in the config) for each feature map cell. This is
implemented as a plugin layer in TensorRT called the gridAnchorGenerator
plugin. The registered plugin name is GridAnchor_TRT.

Postprocessor
The postprocessor step performs the final steps to generate the network output.
The bounding box data and confidence scores for all feature maps are fed to
the step along with the pre-computed default bounding boxes (generated in the
GridAnchorGenerator namespace). It then performs NMS (non-maximum
suppression) which prunes away most of the bounding boxes based on a confidence
threshold and IoU (Intersection over Union) overlap, thus storing only the top N
boxes per class. This is implemented as a plugin layer in TensorRT called the NMS
plugin. The registered plugin name is NMS_TRT.

This sample also implements another plugin called FlattenConcat which is used
to flatten each input and then concatenate the results. This is applied to the
location and confidence data before it is fed to the post processor step since the
NMS plugin requires the data to be in this format.

For details on how a plugin is implemented, see the implementation of
FlattenConcat Plugin and FlattenConcatPluginCreator in the
sampleUffSSD.cpp file in the tensorrt/samples/sampleUffSSD directory.

13.2. Processing The Input Graph

https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config

Object Detection With A TensorFlow SSD Network

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 48

The TensorFlow SSD graph has some operations that are currently not supported in
TensorRT. Using a preprocessor on the graph, we can combine multiple operations in
the graph into a single custom operation which can be implemented as a plugin layer
in TensorRT. Currently, the preprocessor provides the ability to stitch all nodes within a
namespace into one custom node.

To use the preprocessor, the convert-to-uff utility should be called with a -p flag
and a config file. The config script should also include attributes for all custom plugins
which will be embedded in the generated .uff file. Current sample scripts for SSD is
located in /usr/src/tensorrt/samples/sampleUffSSD/config.py.

Using the preprocessor on the graph, we were able to remove the preprocessor
namespace from the graph, stitch the GridAnchorGenerator namespace to create the
GridAnchorGenerator plugin, stitch the postprocessor namespace to the NMS plugin
and mark the concat operations in the BoxPredictor as FlattenConcat plugins.

The TensorFlow graph has some operations like Assert and Identity which can be
removed for the inferencing. Operations like Assert are removed and leftover nodes
(with no outputs once assert is deleted) are then recursively removed.

Identity operations are deleted and the input is forwarded to all the connected outputs.
Additional documentation on the graph preprocessor can be found in the TensorRT API.

13.3. Preparing The Data
The generated network has an input node called Input and the output node is given
the name MarkOutput_0 by the UFF converter. These nodes are registered by the UFF
Parser in the sample.

parser->registerInput("Input", DimsCHW(3, 300, 300), UffInputOrder::kNCHW);
parser->registerOutput("MarkOutput_0");

The input to the SSD network in this sample is 3 channel 300x300 images. In the sample,
we normalize the image so the pixel values lie in the range [-1,1]. This is equivalent to
the preprocessing stage of the network.

Since TensorRT does not depend on any computer vision libraries, the images are
represented in binary R, G, and B values for each pixels. The format is Portable PixMap
(PPM), which is a netpbm color image format. In this format, the R, G, and B values for
each pixel are represented by a byte of integer (0-255) and they are stored together, pixel
by pixel. There is a simple PPM reading function called readPPMFile.

13.4. Plugins Used
Details about how to create TensorRT plugins can be found in Extending TensorRT With
Custom Layers.

The config.py defined for the convert-to-uff command should have the custom
layers mapped to the plugin names in TensorRT by modifying the op field. The names

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending

Object Detection With A TensorFlow SSD Network

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 49

of the plugin parameters should also exactly match those expected by the TensorRT
plugins. For example, for the GridAnchor Plugin, the config.py should have the
following:

PriorBox = gs.create_plugin_node(name="GridAnchor", op="GridAnchor_TRT",
 numLayers=6,
 minSize=0.2,
 maxSize=0.95,
 aspectRatios=[1.0, 2.0, 0.5, 3.0, 0.33],
 variance=[0.1,0.1,0.2,0.2],
 featureMapShapes=[19, 10, 5, 3, 2, 1])

Here, GridAnchor_TRT matches the registered plugin name and the parameters have
the same name and type as expected by the plugin.

If the config.py is defined as above, the NvUffParser will be able to parse the network
and call the appropriate plugins with the correct parameters.

Alternately, the older flow of using the IPluginFactory can also be used. In
this case, the pluginFactory object created needs to be passed to an instance of
IUffParser::parse() which will invoke the createPlugin() function for each
Custom layer which has to be implemented by the user. Details about some of the plugin
layers implemented for SSD in TensorRT are given below.
GridAnchorGeneration Plugin

This plugin layer implements the grid anchor generation step in the TensorFlow SSD
network. For each feature map we calculate the bounding boxes for each grid cell. In
this network, there are 6 feature maps and the number of boxes per grid cell are as
follows:

‣ [19x19] feature map: 3 boxes (19x19x3x4(co-ordinates/box))
‣ [10x10] feature map: 6 boxes (10x10x6x4)
‣ [5x5] feature map: 6 boxes (5x5x6x4)
‣ [3x3] feature map: 6 boxes (3x3x6x4)
‣ [2x2] feature map: 6 boxes (2x2x6x4)
‣ [1x1] feature map: 6 boxes (1x1x6x4)

NMS Plugin
The NMS plugin generates the detection output based on location and confidence
predictions generated by the BoxPredictor. This layer has three input tensors
corresponding to location data (locData), confidence data (confData) and priorbox
data (priorData).

The inputs to detection output plugin have to be flattened and concatenated across
all the feature maps. We use the FlattenConcat plugin implemented in the sample
to achieve this. The location data generated from the box predictor has the following
dimensions:

19x19x12 -> Reshape -> 1083x4 -> Flatten -> 4332x1
10x10x24 -> Reshape -> 600x4 -> Flatten -> 2400x1

and so on for the remaining feature maps.

After concatenating, the input dimensions for locData input are of the order of
7668x1.

Object Detection With A TensorFlow SSD Network

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 50

The confidence data generated from the box predictor has the following dimensions:

19x19x273 -> Reshape -> 1083x91 -> Flatten -> 98553x1
10x10x546 -> Reshape -> 600x91 -> Flatten -> 54600x1

and so on for the remaining feature maps.

After concatenating, the input dimensions for confData input are of the order of
174447x1.

The prior data generated from the grid anchor generator plugin has the following
dimensions, for example 19x19 feature map has 2x4332x1 (there are two channels
here because one channel is used to store variance of each coordinate that is used in
the NMS step). After concatenating, the input dimensions for priorData input are of
the order of 2x7668x1.

struct DetectionOutputParameters
{
 bool shareLocation, varianceEncodedInTarget;
 int backgroundLabelId, numClasses, topK, keepTopK;
 float confidenceThreshold, nmsThreshold;
 CodeTypeSSD codeType;
 int inputOrder[3];
 bool confSigmoid;
 bool isNormalized;
};

shareLocation and varianceEncodedInTarget are used for the Caffe
implementation, so for the TensorFlow network they should be set to true and
false respectively. The confSigmoid and isNormalized parameters are necessary
for the TensorFlow implementation. If confSigmoid is set to true, it calculates the
sigmoid values of all the confidence scores. The isNormalized flag specifies if the
data is normalized and is set to true for the TensorFlow graph.

13.5. Verifying The Output
After the builder is created (see Building An Engine In C++) and the engine is serialized
(see Serializing A Model In C++), we can perform inference. Steps for deserialization and
running inference are outlined in Performing Inference In C++.

The outputs of the SSD network are human interpretable. The post-processing work,
such as the final NMS, is done in the NMS plugin. The results are organized as tuples of
7. In each tuple, the 7 elements are respectively image ID, object label, confidence score,
(x,y) coordinates of the lower left corner of the bounding box, and (x,y) coordinates of
the upper right corner of the bounding box. This information can be drawn in the output
PPM image using the writePPMFileWithBBox function. The visualizeThreshold
parameter can be used to control the visualization of objects in the image. It is currently
set to 0.5 so the output will display all objects with confidence score of 50% and above.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#build_engine_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#serial_model_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#perform_inference_c

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 51

Chapter 14.
MOVIE RECOMMENDATION USING NEURAL
COLLABORATIVE FILTER (NCF)

What Does This Sample Do?
This sample demonstrates a simple movie recommender system using Neural
Collaborative Filter (NCF). The network is trained in TensorFlow on the MovieLens
dataset containing 6040 users and 3706 movies. For more information about the
recommender system network, see Neural Collaborative Filtering.

Where Is This Sample Located?
This sample in installed in the usr/src/tensorrt/samples/sampleMovieLens
directory.

Notes About This Sample:
Each query to the network consists of a userID and list of MovieIDs. The network
predicts the highest-rated movie for each user. As trained parameters, the network
has embeddings for users and movies, and weights for a sequence of Multi-Layer
Perceptrons (MLPs).

14.1. Importing Network To TensorRT
The network is converted from TensorFlow using the UFF converter (see Converting A
Frozen Graph To UFF), and imported using the UFF parser. Constant layers are used to
represent the trained parameters within the network, and the MLPs are implemented
using FullyConnected layers. A TopK operation is added manually after parsing to find
the highest rated movie for the given user.

14.2. Verifying The Output

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#samplecode3
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#samplecode3

Movie Recommendation Using Neural Collaborative Filter (NCF)

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 52

The output of the MLP based NCF network is in human readable format. The final
output is movieID with probability rating for give userID.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 53

Chapter 15.
MOVIE RECOMMENDATION USING MPS
(MULTI-PROCESS SERVICE)

What Does This Sample Do?
This sample is identical to the Movie Recommendation Using Neural Collaborative
Filter (NCF) sample in terms of functionality, but is modified to support concurrent
execution in multiple processes.

Where Is This Sample Located?
This sample in installed in the usr/src/tensorrt/samples/sampleMovieLensMPS
directory.

Notes About This Sample:

MPS (Multi-Process Service) allows multiple CUDA processes to share single GPU
context. With MPS, multiple overlapping kernel execution and memcpy operations from
different processes can be scheduled concurrently to achieve maximum utilization. This
can be especially effective in increasing parallelism for small networks with low resource
utilization such as those primarily consisting of a series of small MLPs. For more
information about MPS, see Multi-Process Service documentation or in the README.txt
file for the sample.

MPS requires a server process. To start the process:

export CUDA_VISIBLE_DEVICES=<GPU_ID>
nvidia-smi -i <GPU_ID> -c EXCLUSIVE_PROCESS
nvidia-cuda-mps-control -d

https://docs.nvidia.com/deploy/mps/index.html

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 54

Chapter 16.
OBJECT DETECTION WITH SSD

What Does This Sample Do?
This sample demonstrates how to:

‣ Preprocess the input to the SSD network
‣ Perform inference on the SSD network in TensorRT
‣ Use TensorRT plugins to speed up inference
‣ Perform INT8 calibration on an SSD network

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleSSD directory.

Notes About This Sample:
The SSD Caffe model is too large to include in the product bundle. To run this
sample, download the model using the instructions in the README.md in the sample
<TensorRT directory>/samples/sampleSSD directory. The original Caffe model
(prototxt) has been modified to include the SSD’s customized Plugin layers.

16.1. Overview
The SSD network is based on the following paper SSD: Single Shot MultiBox Detector.
This network is based on the VGG-16 network. It can perform object detection and
localization in a single forward pass.

Unlike Faster R-CNN, SSD completely eliminates proposal generation and subsequent
pixel or feature resampling stages and encapsulates all computation in a single network.
This makes SSD straightforward to integrate into systems that require a detection
component.

Object Detection With SSD

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 55

16.2. Preprocessing The Input
The input to the SSD network in this sample is a RGB 300x300 image. The image format
is Portable PixMap (PPM), which is a netpbm color image format. In this format, the R,
G, and B values for each pixel are represented by a byte of integer (0-255) and they are
stored together, pixel by pixel.

The authors of SSD have trained the network such that the first Convolution layer sees
the image data in B, G, and R order. Therefore, the channel order needs to be changed
when the PPM image is being put into the network’s input buffer.

float pixelMean[3]{ 104.0f, 117.0f, 123.0f }; // also in BGR order
float* data = new float[N * kINPUT_C * kINPUT_H * kINPUT_W];
 for (int i = 0, volImg = kINPUT_C * kINPUT_H * kINPUT_W; i < N; ++i)
 {
 for (int c = 0; c < kINPUT_C; ++c)
 {
 // the color image to input should be in BGR order
 for (unsigned j = 0, volChl = kINPUT_H * kINPUT_W; j < volChl; ++j){
 Data[i * volImg + c * volChl + j] = float(ppms[i].buffer[j * kINPUT_C + 2 -
 c]) - pixelMean[c];
 }
 }
 }

The readPPMFile and writePPMFileWithBBox functions read a PPM image and
produce output images with red colored bounding boxes respectively.

The readPPMFile function will not work correctly if the header of the PPM image
contains any annotations starting with #.

16.3. Defining The Network
The network is defined in a prototxt file which is shipped with the sample and located
in the data/ssd directory. The original prototxt file provided by the authors is modified
and included in the TensorRT in-built plugin layers in the prototxt file.

The built-in plugin layers used in sampleSSD are Normalize, PriorBox, and
DetectionOutput. The corresponding registered plugins for these layers are
Normalize_TRT, PriorBox_TRT and NMS_TRT.

To initialize and register these TensorRT plugins to the plugin registry, the
initLibNvInferPlugins method is used. After registering the plugins and while
parsing the prototxt file, the NvCaffeParser creates plugins for the layers based on the
parameters that were provided in the prototxt file automatically. The details about each
parameter is provided in the README.md and can be modified similar to the Caffe
Layer parameter.

Object Detection With SSD

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 56

16.4. Building The Engine
The sampleSSD sample builds a network based on a Caffe model and network
description. For details on importing a Caffe model, see Importing A Caffe Model Using
The C++ Parser API. The SSD network has few non-natively supported layers which
are implemented as plugins in TensorRT. The Caffe parser can create plugins for these
layers internally which avoids creating additional code for plugin factory like in the
sampleFasterRCNN sample.

This sample can run in FP16 and INT8 modes based on the user input. For more details,
seeINT8 Calibration Using C++ and Enabling FP16 Inference Using C++. The sample
selects the entropy calibrator as a default choice. The CalibrationMode parameter in
the sample code needs to be set to 0 to switch to the Legacy calibrator.

For details on how to build the TensorRT engine, seeBuilding An Engine In C++. After
the engine is built, the next steps are to serialize the engine and run the inference with
the deserialized engine. For more information about these steps, seeSerializing A Model
In C++.

16.5. Verifying The Output
After deserializing the engine, you can perform inference. To perform inference, see
Performing Inference In C++.

In sampleSSD, there is a single input:
data

Namely the image input.
and 2 outputs:
detectionOut

The detection array, containing the image ID, label, confidence, and 4 coordinates.
keepCount

The number of valid detections.

The outputs of the SSD network are directly human interpretable. The results are
organized as tuples of 7. In each tuple, the 7 elements are:

‣ image ID
‣ object label
‣ confidence score
‣ (x,y) coordinates of the lower left corner of the bounding box
‣ (x,y) coordinates of the upper right corner of the bounding box

This information can be drawn in the output PPM image using the
writePPMFileWithBBox function. The kVISUAL_THRESHOLD parameter can be used to
control the visualization of objects in the image. It is currently set to 0.6, therefore, the
output will display all objects with confidence score of 60% and above.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#optimizing_int8_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#enable_fp16_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#build_engine_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#serial_model_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#serial_model_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#perform_inference_c

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 57

Chapter 17.
“HELLO WORLD” FOR MULTI-LAYER
PERCEPTRON (MLP)

What Does This Sample Do?
This sample is a simple hello world example that shows how to create a network
that triggers the multi-layer perceptron (MLP) optimizer. The sample uses a publicly
accessible TensorFlow tutorial to train a MLP network based on the MNIST data set and
how to transform that data into a format that the samples use.

This sample demonstrates how to:

‣ Trigger the MLP optimizer by creating a sequence of networks to increase
performance

‣ Create a sequence of TensorRT layers that represent an MLP layer

Where Is This Sample Located?
This sample is installed in the tensorrt/samples/sampleMLP directory.

17.1. Defining The Network
This sample follows the same flow as Building A Simple OCR Network with one
exception. The network is defined as a sequence of addMLP calls, which adds
FullyConnected and Activation layers to the network.

Currently, an MLP layer is defined as a FullyConnected or MatrixMultiplication
operation with optional bias and activations. A MLP network is more than one MLP
layer generated sequentially in the TensorRT network. The optimizer will detect this
pattern and generate optimized MLP code.

The current variations that trigger the MLP optimizer:

{MatrixMultiplication [-> ElementWiseSum] [-> Activation]}+
{FullyConnected [-> Activation]}+

https://en.wikipedia.org/wiki/Multilayer_perceptron

“Hello World” For Multi-Layer Perceptron (MLP)

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 58

{FullyConnected [-> Scale(with empty scale and power arguments)] [->
 Activation]}+

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 59

Chapter 18.
INTRODUCTION TO IMPORTING CAFFE,
TENSORFLOW AND ONNX MODELS INTO
TENSORRT USING PYTHON

What Does This Sample Do?
This sample demonstrates how to use TensorRT and its included suite of parsers
(the UFF, Caffe and ONNX parsers), to perform inference with ResNet-50 models
trained with various different frameworks. TensorRT uses a suite of parsers to generate
TensorRT networks from models trained in different frameworks.

This sample includes the following:
caffe_resnet50

This sample demonstrates how to build an engine from a trained Caffe model using
the Caffe parser and then run inference. The Caffe parser is used for Caffe2 models.
After training, you can invoke the Caffe parser directly on the model file (usually
.caffemodel) and deploy file (usually .prototxt).

onnx_resnet50
This sample demonstrates how to build an engine from an ONNX model file using
the open-source ONNX parser and then run inference. The ONNX parser can be used
with any framework that supports the ONNX format. It can be used with .onnx files.

uff_resnet50
This sample demonstrates how to build an engine from a UFF model file (converted
from a TensorFlow protobuf) and then run inference. The UFF parser is used for
TensorFlow models. After freezing a TensorFlow graph and writing it to a protobuf
file, you can convert it to UFF with the convert-to-uff utility included with
TensorRT. This sample ships with a pre-generated UFF file.

Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using Python

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 60

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
introductory_parser_samples directory.

For more details, see the README.md file included with this sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 61

Chapter 19.
“HELLO WORLD” FOR TENSORRT USING
TENSORFLOW AND PYTHON

What Does This Sample Do?
This sample demonstrates how to first train a model using TensorFlow and Keras, freeze
the model and write it to a protobuf file, convert it to UFF, and finally run inference
using TensorRT.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
end_to_end_tensorflow_mnist directory.

For more details, see the README.md file included with this sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 62

Chapter 20.
“HELLO WORLD” FOR TENSORRT USING
PYTORCH AND PYTHON

What Does This Sample Do?
This sample demonstrates how to train a model in PyTorch, recreate the network in
TensorRT and import weights from the trained model, and finally run inference with a
TensorRT engine.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
network_api_pytorch_mnist directory.

Notes About This Sample:
The sample.py script imports the functions from the mnist.py script for training the
PyTorch model, as well as retrieving test cases from the PyTorch Data Loader.

For more details, see the README.md file included with this sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 63

Chapter 21.
ADDING A CUSTOM LAYER TO YOUR CAFFE
NETWORK IN TENSORRT IN PYTHON

What Does This Sample Do?
This sample demonstrates how to use plugins written in C++ with the TensorRT Python
bindings and CaffeParser. More specifically, this sample implements a FullyConnected
layer using cuBLAS and cuDNN, wraps the implementation in a TensorRT plugin
(with a corresponding plugin factory) and then generates Python bindings for it
using pybind11. These bindings are then used to register the plugin factory with the
CaffeParser.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
fc_plugin_caffe_mnist directory.

For more details, see the README.md file included with this sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 64

Chapter 22.
ADDING A CUSTOM LAYER TO YOUR
TENSORFLOW NETWORK IN TENSORRT IN
PYTHON

What Does This Sample Do?
This sample demonstrates how to use plugins written in C++ with the TensorRT Python
bindings and UFF Parser. More specifically, this sample implements a clip layer (as a
CUDA kernel), wraps the implementation in a TensorRT plugin (with a corresponding
plugin creator) and then generates a shared library module containing its code. The user
then dynamically loads this library in Python, which causes the plugin to be registered
in TensorRT's PluginRegistry and makes it available to the UFF parser.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
uff_custom_plugin directory.

For more details, see the README.md file included with this sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 65

Chapter 23.
OBJECT DETECTION WITH THE ONNX
TENSORRT BACKEND IN PYTHON

What Does This Sample Do?
This sample demonstrates a full ONNX-based pipeline for inference with the network
YOLOv3-608, including pre- and post-processing.

First, the YOLOv3 configuration and the weights from the author’s official mirror are
read to generate an ONNX representation of the model that can be parsed by TensorRT.
Thereafter, that ONNX graph is used to create a TensorRT engine with the open-sourced
repository.

Next, the YOLOv3 pre-processing steps are applied on an example image and used as an
input to the previously created engine.

After inference, post-processing including bounding-box clustering is applied. The
resulting bounding boxes are eventually drawn to a new image file and stored on disk
for inspection.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/yolov3_onnx
directory.

Notes About This Sample:
This sample requires the installation of ONNX-TensorRT: TensorRT backend for ONNX,
which includes layer implementations for the required ONNX operators Upsample and
LeakyReLU.

For more details, see the README.md file included with this sample.

https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 66

Chapter 24.
OBJECT DETECTION WITH SSD IN PYTHON

What Does This Sample Do?
This sample demonstrates a full UFF-based inference pipeline for performing inference
with an SSD (InceptionV2 feature extractor) network.

The sample downloads a pretrained ssd_inception_v2_coco_2017_11_17 model
and uses it to perform inference. Additionally, it superimposes bounding boxes on the
input image as a post-processing step.

It is also capable of validating the TensorRT engine using the VOC 2007 data set.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/uff_ssd
directory.

For more details, see the README.md file included with this sample.

24.1. Overview
The uff_ssd is based on the following paper, SSD: Single Shot MultiBox Detector. The
SSD network, built on the VGG-16 network, performs the task of object detection and
localization in a single forward pass of the network. This approach discretizes the output
space of bounding boxes into a set of default boxes over different aspect ratios and
scales per feature map location. At prediction time, the network generates scores for the
presence of each object category in each default box and produces adjustments to the
box to better match the object shape. Additionally, the network combines predictions
from multiple features with different resolutions to naturally handle objects of various
sizes.

The sample is based on the TensorFlow implementation of SSD. For more information,
see ssd_inception_v2_coco.

https://arxiv.org/abs/1512.02325
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz

Object Detection With SSD In Python

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 67

Unlike the paper, the TensorFlow SSD network was trained on the InceptionV2
architecture using the MSCOCO dataset which has 91 classes (including the background
class). The configuration details of the network can be found at GitHub: TensorFlow
models.

The main components of this network are the Preprocessor, FeatureExtractor,
BoxPredictor, GridAnchorGenerator and Postprocessor.
Preprocessor

The preprocessor step of the graph is responsible for resizing the image. The image is
resized to a 300x300x3 size tensor. The preprocessor step also performs normalization
of the image so all pixel values lie between the range [-1, 1].

FeatureExtractor
The FeatureExtractor portion of the graph runs the InceptionV2 network on the
preprocessed image. The feature maps generated are used by the anchor generation
step to generate default bounding boxes for each feature map.

In this network, the size of feature maps that are used for anchor generation are
[(19x19), (10x10), (5x5), (3x3), (2x2), (1x1)].

BoxPredictor
The BoxPredictor step takes in a high level feature map as input and produces a list of
box encodings (x-y coordinates) and a list of class scores for each of these encodings
per feature map. This information is passed to the postprocessor.

GridAnchorGenerator
The goal of this step is to generate a set of default bounding boxes (given the
scale and aspect ratios mentioned in the config) for each feature map cell. This is
implemented as a plugin layer in TensorRT called the gridAnchorGenerator
plugin. The registered plugin name is GridAnchor_TRT.

Postprocessor
The postprocessor step performs the final steps to generate the network output.
The bounding box data and confidence scores for all feature maps are fed to
the step along with the pre-computed default bounding boxes (generated in the
GridAnchorGenerator namespace). It then performs NMS (non-maximum
suppression) which prunes away most of the bounding boxes based on a confidence
threshold and IoU (Intersection over Union) overlap, thus storing only the top N
boxes per class. This is implemented as a plugin layer in TensorRT called the NMS
plugin. The registered plugin name is NMS_TRT.

This sample also implements another plugin called FlattenConcat which is used
to flatten each input and then concatenate the results. This is applied to the
location and confidence data before it is fed to the post processor step since the
NMS plugin requires the data to be in this format.

For details on how a plugin is implemented, see the implementation of
FlattenConcat Plugin and FlattenConcatPluginCreator in the
sampleUffSSD.cpp file in the tensorrt/samples/sampleUffSSD directory.

24.2. Processing The Input Graph

https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config

Object Detection With SSD In Python

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 68

The TensorFlow SSD graph has some operations that are currently not supported in
TensorRT. Using a preprocessor on the graph, we can combine multiple operations in
the graph into a single custom operation which can be implemented as a plugin layer
in TensorRT. Currently, the preprocessor provides the ability to stitch all nodes within a
namespace into one custom node.

Using GraphSurgeon, we were able to remove the preprocessor namespace
from the graph, stitch the GridAnchorGenerator namespace to create the
GridAnchorGenerator plugin, stitch the postprocessor namespace to the NMS plugin
and mark the concat operations in the BoxPredictor as FlattenConcat plugins.

Additional documentation on GraphSurgeon can be found in the TensorRT API.

24.3. Plugins Used
Details about how to create TensorRT plugins can be found in Extending TensorRT With
Custom Layers.

Details about some of the plugin layers implemented for SSD in TensorRT are given
below.
GridAnchorGeneration Plugin

This plugin layer implements the grid anchor generation step in the TensorFlow SSD
network. For each feature map we calculate the bounding boxes for each grid cell. In
this network, there are 6 feature maps and the number of boxes per grid cell are as
follows:

‣ [19x19] feature map: 3 boxes (19x19x3x4(co-ordinates/box))
‣ [10x10] feature map: 6 boxes (10x10x6x4)
‣ [5x5] feature map: 6 boxes (5x5x6x4)
‣ [3x3] feature map: 6 boxes (3x3x6x4)
‣ [2x2] feature map: 6 boxes (2x2x6x4)
‣ [1x1] feature map: 6 boxes (1x1x6x4)

NMS Plugin
The NMS plugin generates the detection output based on location and confidence
predictions generated by the BoxPredictor. This layer has three input tensors
corresponding to location data (locData), confidence data (confData) and priorbox
data (priorData).

The inputs to detection output plugin have to be flattened and concatenated across
all the feature maps. We use the FlattenConcat plugin implemented in the sample
to achieve this. The location data generated from the box predictor has the following
dimensions:

19x19x12 -> Reshape -> 1083x4 -> Flatten -> 4332x1
10x10x24 -> Reshape -> 600x4 -> Flatten -> 2400x1

and so on for the remaining feature maps.

After concatenating, the input dimensions for locData input are of the order of
7668x1.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending

Object Detection With SSD In Python

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 69

The confidence data generated from the box predictor has the following dimensions:

19x19x273 -> Reshape -> 1083x91 -> Flatten -> 98553x1
10x10x546 -> Reshape -> 600x91 -> Flatten -> 54600x1

and so on for the remaining feature maps.

After concatenating, the input dimensions for confData input are of the order of
174447x1.

The prior data generated from the grid anchor generator plugin has the following
dimensions, for example 19x19 feature map has 2x4332x1 (there are two channels
here because one channel is used to store variance of each coordinate that is used in
the NMS step). After concatenating, the input dimensions for priorData input are of
the order of 2x7668x1.

struct DetectionOutputParameters
{
 bool shareLocation, varianceEncodedInTarget;
 int backgroundLabelId, numClasses, topK, keepTopK;
 float confidenceThreshold, nmsThreshold;
 CodeTypeSSD codeType;
 int inputOrder[3];
 bool confSigmoid;
 bool isNormalized;
};

shareLocation and varianceEncodedInTarget are used for the Caffe
implementation, so for the TensorFlow network they should be set to true and
false respectively. The confSigmoid and isNormalized parameters are necessary
for the TensorFlow implementation. If confSigmoid is set to true, it calculates the
sigmoid values of all the confidence scores. The isNormalized flag specifies if the
data is normalized and is set to true for the TensorFlow graph.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 70

Chapter 25.
INT8 CALIBRATION IN PYTHON

What Does This Sample Do?
This sample demonstrates how to create an INT8 calibrator, build and calibrate an
engine for INT8 mode, and finally run inference in INT8 mode.

During calibration, the calibrator retrieves a total of 1003 batches, with 100 images each.
We have simplified the process of reading and writing a calibration cache in Python, so
that it is now easily possible to cache calibration data to speed up engine builds.

During inference, the sample loads a random batch from the calibrator, then performs
inference on the whole batch of 100 images.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
int8_caffe_mnist directory.

For more details, see the README.md file included with this sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.0 RC | 71

Chapter 26.
ENGINE REFIT IN PYTHON

What Does This Sample Do?
This sample demonstrates the engine refit functionality provided by TensorRT. The
model first trains an MNIST model in PyTorch, then recreates the network in TensorRT.
In the first pass, the weights for one of the conv layers (conv_1) is fed with dummy
values resulting in an incorrect inference result. In the second pass, we refit the engine
with the trained weights for the conv_1 layer and run inference.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
engine_refit_mnist directory.

For more details, see the README.md file included with this sample.

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,

Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Samples
	1.1. C++ Samples
	1.2. Python Samples

	“Hello World” For TensorRT
	Building A Simple OCR Network
	Import The TensorFlow Model And Run Inference
	“Hello World” For TensorRT From ONNX
	5.1. Configuring The ONNX Parser
	5.2. Converting The ONNX Model To A TensorRT Network
	5.3. Building The Engine And Running Inference

	Applying FP16 To GoogleNet And Profiling The App
	6.1. Configuring The Builder

	Building An RNN Network Layer By Layer
	7.1. Network Configuration
	7.1.1. RNNv2 Layer Setup
	7.1.2. RNNv2 Layer - Optional Inputs
	7.1.3. MatrixMultiply Layer Setup
	7.1.4. ElementWise Layer Setup
	7.1.5. TopK Layer Setup
	7.1.6. Marking The Network Outputs

	7.2. RNNv2 Workflow - From TensorFlow To TensorRT
	7.2.1. Training A CharRNN Model With TensorFlow
	7.2.2. Exporting Weights From A TensorFlow Model Checkpoint
	7.2.3. Loading And Converting Weights Format
	7.2.4. RNNv2: Setting Weights And Bias

	7.3. Seeding The Network
	7.4. Generating Data

	Performing Inference In INT8 Using Custom Calibration
	8.1. Defining The Network
	8.2. Building The Engine
	8.2.1. Calibrating The Network
	8.2.2. Calibration Set
	8.2.3. Loading A Calibration File

	8.3. Configuring The Builder
	8.4. Running The Engine
	8.5. Verifying The Output
	8.6. Batch Files For Calibration
	8.6.1. Generating Batch Files For Caffe Users
	8.6.2. Generating Batch Files For Non-Caffe Users

	Performing Inference In INT8 Precision
	9.1. Configuring The Builder
	9.2. Configuring The Network

	Adding A Custom Layer To Your Network In TensorRT
	10.1. Defining The Network
	10.2. Enabling Custom Layers In NvCaffeParser
	10.3. Building The Engine
	10.4. Serializing And Deserializing
	10.5. Resource Management And Execution

	Neural Machine Translation (NMT) Using Sequence To Sequence (seq2seq) Models
	11.1. Overview
	11.2. Preparing The Data
	11.3. Running The Sample
	11.4. Training The Model
	11.5. Importing Weights From A Checkpoint

	Object Detection With FasterRCNN
	12.1. Overview
	12.2. Preprocessing The Input
	12.3. Defining The Network
	12.4. Building The Engine
	12.5. Running The Engine
	12.6. Verifying The Output

	Object Detection With A TensorFlow SSD Network
	13.1. API Overview
	13.2. Processing The Input Graph
	13.3. Preparing The Data
	13.4. Plugins Used
	13.5. Verifying The Output

	Movie Recommendation Using Neural Collaborative Filter (NCF)
	14.1. Importing Network To TensorRT
	14.2. Verifying The Output

	Movie Recommendation Using MPS (Multi-Process Service)
	Object Detection With SSD
	16.1. Overview
	16.2. Preprocessing The Input
	16.3. Defining The Network
	16.4. Building The Engine
	16.5. Verifying The Output

	“Hello World” For Multi-Layer Perceptron (MLP)
	17.1. Defining The Network

	Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using Python
	“Hello World” For TensorRT Using TensorFlow And Python
	“Hello World” For TensorRT Using PyTorch And Python
	Adding A Custom Layer To Your Caffe Network In TensorRT In Python
	Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
	Object Detection With The ONNX TensorRT Backend In Python
	Object Detection With SSD In Python
	24.1. Overview
	24.2. Processing The Input Graph
	24.3. Plugins Used

	INT8 Calibration In Python
	Engine Refit In Python

