
BEST PRACTICES FOR TENSORRT
PERFORMANCE

SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | February 2019

Best Practices



www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | ii

TABLE OF CONTENTS

Chapter 1. How Do I Measure Performance?............................................................... 1
1.1.  Tools.........................................................................................................2
1.2. CPU Timing................................................................................................ 2
1.3. CUDA Events............................................................................................... 3
1.4.  Profiling.....................................................................................................3
1.5. NVProf...................................................................................................... 4
1.6. Memory..................................................................................................... 5

Chapter 2. How Do I Optimize My TensorRT Performance?............................................. 6
2.1. Batching.................................................................................................... 6
2.2.  Streaming.................................................................................................. 7
2.3. Thread Safety............................................................................................. 8
2.4.  Initializing The Engine................................................................................... 8
2.5. Enabling Fusion............................................................................................9

2.5.1. Layer Fusion..........................................................................................9
2.5.2. Types Of Fusions.....................................................................................9
2.5.3. MLP Fusions......................................................................................... 11

Chapter 3. How Do I Optimize My Layer Performance?................................................ 12
Chapter 4. How Do I Optimize My Plugins?............................................................... 14
Chapter 5. How Do I Optimize My Python Performance?.............................................. 15



www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 1

Chapter 1.
HOW DO I MEASURE PERFORMANCE?

Before starting any optimization effort with TensorRT™ , it’s essential to determine what
should be measured. Without measurements, it’s impossible to make reliable progress or
measure whether success has been achieved.

Latency

The simplest performance measurement for network inference is how much time elapses
from an input being presented to the network until an output is available. This is the
latency of a single input. Lower latencies are better. In some applications, low latency is
a critical safety requirement. In other applications, latency is directly visible to users as a
quality of service issue. For larger bulk processing, latency may not be important at all.

Throughput

The next most important measurement is how many inferences can be completed in a
fixed unit of time. This is the throughput of the network. Higher throughputs are better.
Higher throughputs indicate more efficient utilization of fixed compute resources.
For bulk processing, the total time taken will be determined by the throughput of the
network.

Before we can start measuring latency and throughput, we need to choose the exact
points at which to start and stop timing. Depending on the network and application, it
might make sense to choose different points. In many applications, there is a processing
pipeline.

The overall system performance can be measured by the latency and throughput of
the entire processing pipeline. Because the pre and post-processing steps depend so
strongly on the particular application, in this section, we will mostly consider the latency
and throughput of the network inference itself; starting from input data that is already
present on the GPU, until all network outputs are available on the GPU.

Another way of looking at latency and throughput is to fix the maximum latency and
measure throughput at that latency. This is a type of quality-of-service measurement. A



How Do I Measure Performance?

www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 2

measurement like this can be a reasonable compromise between the user experience and
system efficiency.

1.1. Tools
If you have a model saved as a UFF file, or if you have a network description in a Caffe
prototxt format, you can use the trtexec tool to test the performance of running
inference on your network using TensorRT. The trtexec tool has many options for
specifying inputs and outputs, iterations and runs for performance timing, precisions
allowed, and other options.

If you have a saved serialized engine file, you can use the yais tool to run the
engine with multiple execution contexts from multiple threads in a fully pipelined
asynchronous way to test parallel inference performance.

For more information about trtexec, see Command Line Wrapper.

1.2. CPU Timing
C++11 provides high precision timers in the <chrono> standard library. For
example, std::chrono::system_clock represents wall-clock time, and
std::chrono::high_resolution_clock measures time in the highest precision
available. Every operating system also provides mechanisms for measuring time in high
precision. For example:
Linux

gettimeofday

Windows

QueryPerformanceCounter
 QueryPerformanceFrequency

These mechanisms measure wall-clock time from the host side. If there is only one
inference happening on the device at one time, then this can be a simple way of profiling
the time various operations take. Inference is typically asynchronous. When measuring
times with asynchronous operations, ensure you add an explicit CUDA stream or device
synchronization to wait for results to become available. Alternately, convert calls from
IExecutionContext::enqueue to IExecutionContext::execute to force the calls
to be synchronous.

The following example code snippet shows measuring a network inference execution
host time:

#include <chrono>

auto startTime = std::chrono::high_resolution_clock::now();
context->enqueue(batchSize, &buffers[0], stream, nullptr);
cudaStreamSynchronize(stream);
auto endTime = std::chrono::high_resolution_clock::now();
float totalTime = std::chrono::duration<float, std::milli>

https://github.com/NVIDIA/yais/tree/master/examples/00_TensorRT
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#trtexec
http://man7.org/linux/man-pages/man2/gettimeofday.2.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx


How Do I Measure Performance?

www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 3

(endTime - startTime).count();

These types of wall-clock times can be useful for measuring overall throughput and
latency of the application, and for placing inference times in context within a larger
system.

1.3. CUDA Events
One problem with timing on the host exclusively is that it requires host/device
synchronization. Optimized applications may have many inferences running in parallel
on the device with overlapping data movement. In addition, the synchronization itself
adds some amount of noise to timing measurements. To help with these issues, CUDA
provides an Event API. This API allows you to place events into CUDA streams that will
be time-stamped by the GPU as they are encountered. Differences in timestamps can
then tell you how long different operations took.

The following example code snippet shows computing the time between two CUDA
events:

cudaEvent_t start, end;
cudaEventCreate(&start);
cudaEventCreate(&end);

cudaEventRecord(start, stream);
context->enqueue(batchSize, &buffers[0], stream, nullptr);
cudaEventRecord(end, stream);

cudaEventSynchronize(end);
float totalTime;
cudaEventElapsedTime(&totalTime, start, end);

TensorRT also includes an optional CUDA event in the method
IExecutionContext::enqueue that will be signalled once the input buffers are
free to be reused. This allows the application to immediately start refilling the input
buffer region for the next inference in parallel with finishing the current inference. For
example:

cudaEvent_t inputReady;
cudaEventCreate(&inputReady);

context->enqueue(batchSize, &buffers[0], stream, &inputReady);
cudaEventSynchronize(inputReady);

// At this point we can refill the input buffers, but output buffers may not be
 done

1.4. Profiling
To dig deeper into the performance of inference, it requires more fine-grained timing
measurements within the optimized network. The IExecutionContext interface
class provides a method called setProfiler that allows you to write a custom class
implementing the IProfiler interface. When called, the network will run in a profiling
mode. After finishing inference, the profiler object of your class is called to report the

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT


How Do I Measure Performance?

www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 4

timing for each layer in the network. These timings can be used to locate bottlenecks,
compare different versions of a serialized engine, and debug performance issues.

Profiling is currently only enabled for the synchronous execute mode when
setProfiler is called. There is a slight impact on performance when profiling is
enabled, therefore, it should only be setup when needed.

An example showing how to use the IProfiler interface is provided in the common
sample code (common.h), and then used in sampleNMT.

1.5. NVProf
CUDA provides a command line profiler called nvprof. This profiler can be used on
any CUDA program to report timing information about the kernels launched during
execution, data movement between host and device, and CUDA API calls used. It can be
configured in various ways to report only timing information for a portion of execution
of the program, or to also report traditional CPU sampling profile information together
with GPU information.

The nvprof tool can be run with TensorRT applications. It is recommended to turn on as
much debug information as possible in the application to provide the most information
in the profiler output.

For TensorRT, each layer may launch one or more kernels to perform its operations.
The exact kernels launched depends on the optimized network and the hardware
present. Depending on the choices of the builder, there may be many additional
operations that reorder data interspersed with layer computations. Some reformat
operations may be implemented as device-to-device memory copies, others with
custom kernels.

Decoding the kernel names back to layers in the original network can be complicated.
Some kernels are templated with many types and sizes as arguments. Some names
include internal block sizes and other configuration information. When interpreting
results from the profiler, it is recommended to start with the IProfiler interface to get
per-layer timing information before using nvprof to get per-kernel timing information.

When running nvprof, it is recommended to only enable it after the engine has been
built. During the build phase, all possible tactics are tried and timed. Using nvprof for
this portion of the execution will not show any meaningful performance measurements
and will include all possible kernels, not the ones actually selected for inference. One
way to limit the scope of nvprof is to:
First phase

Structure the application to build and then serialize the engines in one phase.
Second phase

Load the serialized engines and run inference in a second phase.
Third phase

Run nvprof on this second phase only.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#nmt_sample
https://docs.nvidia.com/cuda/profiler-users-guide/index.html


How Do I Measure Performance?

www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 5

1.6. Memory
Tracking memory usage can be as important as execution performance. Usually,
memory will be more constrained on the device than on the host. To keep track of device
memory, the recommended mechanism is to create a simple custom GPU allocator
that internally keeps some statistics then uses the regular CUDA memory allocation
functions cudaMalloc and cudaFree.

A custom GPU allocator can be set for the builder IBuilder for network optimizations,
and for IRuntime when deserializing engines. One idea for the custom allocator is
to keep track of the current amount of memory allocated, and to push an allocation
event with a timestamp and other information onto a global list of allocation events.
Looking through the list of allocation events allows profiling memory usage over time.
For guidance on how to determine the amount of memory a model will use, see FAQs,
question How do I determine how much device memory will be required by my network?.

You can use the yais tool to track the base pointer and size of a memory
allocation (see yais/Memory.h. For more information about using the default
cudaMallocManagedRuntime that saves weights to cudaMallocManaged memory, see
yais/TensorRT.cc.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#faq
https://github.com/NVIDIA/yais/blob/master/yais/include/YAIS/Memory.h
https://github.com/NVIDIA/yais/blob/master/yais/src/TensorRT.cc#L133-L180


www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 6

Chapter 2.
HOW DO I OPTIMIZE MY TENSORRT
PERFORMANCE?

The following sections focus on the general inference flow on GPUs and some of the
general strategies to improve performance. These ideas are applicable to most CUDA
programmers but may not be as obvious to developers coming from other backgrounds.

2.1. Batching
The most important optimization is to compute as many results in parallel as possible
using batching. In TensorRT, a batch is a collection of inputs that can all be processed
uniformly. Each instance in the batch has the same shape and flows through the network
in exactly the same way. Each instance can therefore be trivially computed in parallel.

Each layer of the network will have some amount of overhead and synchronization
required to compute forward inference. By computing more results in parallel, this
overhead is paid off more efficiently. In addition, many layers are performance-limited
by the smallest dimension in the input. If the batch size is one or small, this size can
often be the performance limiting dimension. For example, the FullyConnected layer
with V inputs and K outputs can be implemented for one batch instance as a matrix
multiply of an 1xV matrix with a VxK weight matrix. If N instances are batched, this
becomes an NxV multiplied by VxK matrix. The vector-matrix multiply becomes a
matrix-matrix multiply, which is much more efficient.

Larger batch sizes are almost always more efficient on the GPU. Extremely large batches,
such as N > 2^16, can sometimes require extended index computation and so should
be avoided if possible. Often the time taken to compute results for batch size N=1 is
almost identical to batch sizes up to N=16 or N=32. In this case, increasing the batch
size from N=1 to N=32 would dramatically improve total throughput with only a small
effect on latency. In addition, when the network contains MatrixMultiply layers or
FullyConnected layers, batch sizes of multiples of 32 tend to have the best performance
for FP16 and INT8 inference because of the utilization of Tensor Cores, if the hardware
supports them.



How Do I Optimize My TensorRT Performance?

www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 7

Sometimes batching inference work is not possible due to the organization of the
application. In some common applications, such as a server that does inference per
request, it can be possible to implement opportunistic batching. For each incoming
request, wait a time T. If other requests come in during that time, batch them together.
Otherwise, continue with a single instance inference. This type of strategy adds fixed
latency to each request but can improve maximum throughput of the system by orders
of magnitude.

Using batching

The C++ and Python APIs are designed for batch input. The
IExecutionContext::execute (IExecutionContext.execute in Python)
and IExecutionContext::enqueue (IExecutionContext.execute_async
in Python) methods take an explicit batch size parameter. The maximum batch
size should also be set for the builder when building the optimized network with
IBuilder::setMaxBatchSize (Builder.max_batch_size in Python). When calling
IExecutionContext::execute or enqueue, the bindings passed as the bindings
parameter are organized per tensor and not per instance. In other words, the data for
one input instance is not grouped together into one contiguous region of memory.
Instead, each tensor binding is an array of instance data for that tensor.

Another consideration is that building the optimized network optimizes for the given
maximum batch size. The final result will be tuned for the maximum batch size but
will still work correctly for any smaller batch size. It is possible to run multiple build
operations to create multiple optimized engines for different batch sizes, then choose
which engine to use based on the actual batch size at runtime.

2.2. Streaming
In general, CUDA programming streams are a way of organizing asynchronous work.
Asynchronous commands put into a stream are guaranteed to run in sequence, but
may execute out of order with respect to other streams. In particular, asynchronous
commands in two streams may be scheduled to run concurrently (subject to hardware
limitations).

In the context of TensorRT and inference, each layer of the optimized final network
will require work on the GPU. However, not all layers will be able to fully utilize the
computation capabilities of the hardware. Scheduling requests in separate streams
allows work to be scheduled immediately as the hardware becomes available without
unnecessary synchronization. Even if only some layers can be overlapped, overall
performance will improve.

Using streaming

 1. Identify the batches of inferences that are independent.
 2. Create a single engine for the network.



How Do I Optimize My TensorRT Performance?

www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 8

 3. Create a CUDA stream using cudaStreamCreate for each independent batch and
an IExecutionContext for each independent batch.

 4. Launch inference work by requesting asynchronous results using
IExecutionContext::enqueue from the appropriate IExecutionContext and
passing in the appropriate stream.

 5. After all work has been launched, synchronize with all the streams to wait for
results. The execution contexts and streams can be reused for later batches of
independent work.

For an example using streaming, see yais/inference.cc.

It is also possible to use multiple host threads with streams. A common pattern is
incoming requests dispatched to a pool of waiting worker threads. In this case, the pool
of worker threads will each have one execution context and CUDA stream. Each thread
will request work in its own stream as the work becomes available. Each thread will
synchronize with its stream to wait for results without blocking other worker threads.

2.3. Thread Safety
The TensorRT builder may only be used by one thread at a time. If you need to run
multiple builds simultaneously, you will need to create multiple builders.

The TensorRT runtime can be used by multiple threads simultaneously, so long as each
object uses a different execution context.

Plugins are shared at the engine level, not the execution context level, and thus
plugins which may be used simultaneously by multiple threads need to manage their
resources in a thread-safe manner.

The TensorRT library pointer to the logger is a singleton within the library. If using
multiple builder or runtime objects, use the same logger, and ensure that it is thread-
safe.

2.4. Initializing The Engine
In general, creating an engine from scratch is an expensive operation. The builder
optimizes the given network in various ways, then performs timing tests to choose
the highest performance implementation for each layer specific to the actual GPU in
the system. As the number of layers in the network increases, the number of possible
configurations increases and the time taken to choose the optimal one also increases.

More complicated deployment scenarios can involve multiple networks for the same
application or even multiple applications running at the same time. The recommended
strategy in these scenarios is to create engines and serialize them before they are needed.
An engine can be deserialized relatively quickly. One engine can then be used to create
multiple IExecutionContext objects.

https://github.com/NVIDIA/yais/blob/master/examples/00_TensorRT/inference.cc#L102-L120


How Do I Optimize My TensorRT Performance?

www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 9

2.5. Enabling Fusion

2.5.1. Layer Fusion
TensorRT attempts to perform many different types of optimizations in a network
during the build phase. In the first phase, layers are fused together whenever
possible. Fusions transform the network into a simpler form but preserve the same
overall behavior. Internally, many layer implementations have extra parameters and
options that are not directly accessible when creating the network. Instead, the fusion
optimization step detects supported patterns of operations and fuses multiple layers into
one layer with internal options set.

Consider the common case of a convolution followed by ReLU activation. To create
a network with these operations, it involves adding a Convolution layer with
addConvolution, following it with an Activation layer using addActivation with
an ActivationType of kRELU. The unoptimized graph will contain separate layers
for convolution and activation. The internal implementation of convolution supports
computing the ReLU function on the output in one step directly from the convolution
kernel without requiring a second kernel call. The fusion optimization step will detect
the convolution followed by ReLU, verify that the operations are supported by the
implementation, then fuse them into one layer.

To investigate which fusions have happened, or has not happened, the builder logs
its operations to the logger object provided during construction. Optimization steps
are at the kINFO log level. To see these messages, ensure you log them in the ILogger
callback.

Fusions are normally handled by creating a new layer with a name containing the names
of both of the layers which were fused. For example, in MNIST, a FullyConnected layer
(InnerProduct) named ip1 is fused with a ReLU Activation layer named relu1; to
create a new layer named ip1 + relu1.

2.5.2. Types Of Fusions

Supported Layer Fusions
Convolution and ReLU Activation

The Convolution layer can be of any type and there are no restrictions on values. The
Activation layer must be ReLU type.

FullyConnected and ReLU Activation
The FullyConnected layer has no restrictions. The Activation layer must be ReLU
type.

Scale and Activation
The Scale layer followed by an Activation layer can be fused into a single Activation
layer.



How Do I Optimize My TensorRT Performance?

www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 10

Convolution And ElementWise Sum
A Convolution layer followed by a simple Sum in an ElementWise layer can be
fused into the Convolution layer. The sum must not use broadcasting, unless the
broadcasting is across the batch size.

Shuffle and Reduce
A Shuffle layer without reshape, followed by a Reduce layer can be fused into a single
Reduce layer. The Shuffle layer can perform permutations but cannot perform any
reshape operation. The Reduce layer must have keepDimensions set.

Shuffle and Shuffle
Each Shuffle layer consists of a transpose, a reshape, and a second transpose. A
Shuffle layer followed by another Shuffle layer can be replaced by a single Shuffle
(or nothing). If both Shuffle layers perform reshape operations, this fusion is only
allowed if the second transpose of the first shuffle is the inverse of the first transpose
of the second shuffle.

Scale
A Scale layer that adds 0, multiplied by 1, or computes powers to the 1 can be erased.

Convolution and Scale
A Convolution layer followed by a Scale layer that is kUNIFORM or kCHANNEL can be
fused into a single convolution by adjusting the convolution weights. This fusion is
disabled if the scale has a non-constant power parameter.

Reduce
A Reduce layer that performs average pooling will be replaced by a Pooling layer.
The Reduce layer must have keepDimensions set, reduce across H and W dimensions
from CHW input format before batching, using the kAVG operation.

Supported Reduction Operation Fusions
L1Norm

A Unary layer kABS operation followed by a Reduce layer kSUM operation can be
fused into a single L1Norm reduction operation.

Sum of Square
A product ElementWise layer with the same input (square operation) followed by a
kSUM reduction can be fused into a single square Sum reduction operation.

L2Norm
A sum of squares operation followed by a kSQRT UnaryOperation can be fused into a
single L2Norm reduction operation.

LogSum
A Reduce layer kSUM followed by a kLOG UnaryOperation can be fused into a single
LogSum reduction operation.

LogSumExp
A Unary kEXP ElementWise operation followed by a LogSum fusion can be fused into
a single LogSumExp reduction.

For more information about layers, see TensorRT Layers

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers


How Do I Optimize My TensorRT Performance?

www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 11

2.5.3. MLP Fusions
Multilayer Perceptron (MLP) networks can be described as stacked layers of
FullyConnected or MatrixMultiply layers interleaved with Activation layer functions. To
improve performance of Multilayer Perceptron networks, different types of fusions are
possible.

Initial creation of a dedicated MLP layer comes from a MatrixMultiply layer fused with
an Activation layer. The MatrixMultiply layer must be a 2D multiplication. The size of
the matrices must be small enough to use hardware shared memory to store temporary
weights; for the untransposed case this means the product of the widths of both matrices
must be limited (heights if transposed).

Other patterns supported for the creation of the initial MLP layer is fusing a
MatrixMultiply with an ElementWise kSUM operation with a constant, for example bias,
and fusing two MatrixMultiply layers together with no intermediate computation.

It is also possible to create the initial MLP layer from fusing a FullyConnected layer
with an Activation layer, fusing a FullyConnected layer with a Scale layer (performing
bias only using the shift parameter), and fusing two FullyConnected layers with no
intermediate computation.

Once an MLP layer is created, it will be reported in the builder log as a 1-layer MLP
layer (or a 2-layer MLP layer if two MatrixMultiply or FullyConnected layers were
merged). This layer can then also be fused with more layers to create deeper MLP
fusions.

MLP layers can be fused with subsequent MatrixMultiply, FullyConnected, Activation,
ElementWise sums, and Scale layers. The general restrictions are that:

‣ MatrixMultiply must be strictly 2D
‣ ElementWise must be a kSUM with a constant
‣ Scale must be a bias using the shift parameter

All activations are supported. The size of matrices being multiplied must allow shared
memory for weight reuse as described for initial MLP layer creation.

Two MLP layer nodes can also be fused into one larger MLP layer. The total number of
layers is limited to 31. The last layer of the first MLP layer must match the input of the
second MLP layer.

Because these fusions are general, sometimes networks not designed as strictly as
Multilayer Perceptron networks will use MLP layers as an automatic optimization.
For example, the MNIST sample contains an InnerProduct layer followed by a ReLU
activation, followed by another InnerProduct layer. InnerProduct from Caffe is parsed
as a FullyConnected layer in TensorRT. The ip1 and relu1 layers are fused into ip1 +
relu1 as described previously. This layer is then fused with ip2 into a new layer named
2-layer MLP.



www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 12

Chapter 3.
HOW DO I OPTIMIZE MY LAYER
PERFORMANCE?

Concatenation Layer
The main consideration with the Concatenation layer is that if multiple outputs
are concatenated together, they can not be broadcasted across the batch dimension
and must be explicitly copied. Most layers support broadcasting across the batch
dimension to avoid copying data unnecessarily, but this will be disabled if the output
is concatenated with other tensors.

Gather Layer
To get maximum performance out of a Gather layer, use an axis of 0. There are no
fusions available for a Gather layer.

MatrixMultiply and FullyConnected Layers
New development is encouraged to use MatrixMultiply in preference to
FullyConnected layers for consistency of interface. Matrix multiplication is generally
significantly faster in FP16 Tensor Cores compared to FP32. FullyConnected supports
INT8 Tensor Cores format but MatrixMultiply does not. Therefore, performance
improvements may be possible by switching to FullyConnected when using INT8
datatypes on hardware that supports INT8 Tensor Cores.

Tensor dimensions (or the number of input and output channels for FullyConnected
layer) of multiples of 32 tend to have the best performance for FP16 and INT8
inference because of the utilization of Tensor Cores, if the hardware supports them.
Tensor Core kernels for FP16 data requires striding between data rows to be multiples
of 8 data elements. For example, a MatrixMultiply that is M x K times K x N requires
M, K, and N to be multiple of 8 to use Tensor Core optimized kernels.

Reduce Layer
To get maximum performance out of a Reduce layer, perform the reduction across
the last dimensions (tail reduce). This allows optimal memory read/write patterns
through sequential memory locations. If doing common reduction operations, express
the reduction in a way that will be fused to a single operation if possible.

RNN Layer
If possible, opt to use the newer RNNv2 interface in preference to the legacy RNN
interface. The newer interface supports variable sequence lengths and variable batch
sizes, as well as having a more consistent interface. To get maximum performance,



How Do I Optimize My Layer Performance?

www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 13

larger batch sizes are better. In general, sizes that are multiples of 64 achieve highest
performance. Bidirectional RNN mode prevents wavefront propagation because of
the added dependency, therefore, it tends to be slower.

TopK
To get maximum performance out of a TopK layer, use small values of K reducing
the last dimension of data to allow optimal sequential memory accesses. Reductions
along multiple dimensions at once can be simulated by using a Shuffle layer to
reshape the data, then reinterpreting the index values appropriately.

For more information about layers, see TensorRT Layers

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers


www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 14

Chapter 4.
HOW DO I OPTIMIZE MY PLUGINS?

TensorRT provides a mechanism for registering custom plugins that perform layer
operations. After a plugin creator is registered, you can look up the registry to find the
creator and add the corresponding plugin object to the network during serialization/
deserialization. All TensorRT plugins are automatically registered once the plugin
library is loaded. For more information about custom plugins, see Extending TensorRT
With Custom Layers.

Performance of plugins depends on the CUDA code performing the plugin operation.
Standard CUDA best practices apply. When developing plugins, it can be helpful to
start with simple standalone CUDA applications that perform the plugin operation
and verify correctness. The plugin program can then be extended with performance
measurements, more unit testing, and alternate implementations. After the code is
working and optimized, it can be integrated as a plugin into TensorRT.

To get the best performance possible in FP16 mode, it is important to support as many
formats as possible in the plugin. This removes the need for internal reformat operations
during execution of the network. Currently, plugins can support:

‣ FP32 NCHW
‣ FP16 NCHW
‣ FP16 N(C/2)HW2 (Half2 format)
‣ FP16 NHWC8 format (8-element packed channels; C is a multiple of 8)

For more information, see Data Format Descriptions.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#data-format-desc


www.nvidia.com
Best Practices For TensorRT Performance SWE-SWDOCTRT-001-BPRC _vTensorRT 5.1.1 RC | 15

Chapter 5.
HOW DO I OPTIMIZE MY PYTHON
PERFORMANCE?

When using the Python API, most of the same performance considerations apply. When
building engines, the builder optimization phase will normally be the performance
bottleneck; not API calls to construct the network. Inference time should be nearly
identical when execute or execute_async is called through the Python API as
opposed to the C++ API.

Setting up the input buffers in the Python API involves using pycuda to transfer the
data from the host to device memory. The details of how this works will depend on
where the host data is coming from. Internally, pycuda supports the Python Buffer
Protocol which allows efficient access to memory regions. This means that if the input
data is available in a suitable format in numpy arrays or another type that also has
support for the buffer protocol, this allows efficient access and transfer to the GPU. For
even better performance, ensure that you allocate a page-locked buffer using pycuda
and write your final preprocessed input there.

For more information about using the Python API, see Working With TensorRT Using
The Python API.

https://docs.python.org/3/c-api/buffer.html
https://docs.python.org/3/c-api/buffer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#python_topics
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#python_topics


Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,

Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com


	Table of Contents
	How Do I Measure Performance?
	1.1. Tools
	1.2. CPU Timing
	1.3. CUDA Events
	1.4. Profiling
	1.5. NVProf
	1.6. Memory

	How Do I Optimize My TensorRT Performance?
	2.1. Batching
	2.2. Streaming
	2.3. Thread Safety
	2.4. Initializing The Engine
	2.5. Enabling Fusion
	2.5.1. Layer Fusion
	2.5.2. Types Of Fusions
	2.5.3. MLP Fusions


	How Do I Optimize My Layer Performance?
	How Do I Optimize My Plugins?
	How Do I Optimize My Python Performance?

