
TENSORRT SAMPLES

SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | March 2019

Support Guide

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | ii

TABLE OF CONTENTS

Chapter 1. Samples.. 1
1.1. C++ Samples... 3
1.2. Python Samples... 4

Chapter 2. “Hello World” For TensorRT.. 6
Chapter 3. Building A Simple MNIST Network Layer By Layer.. 7
Chapter 4. Import The TensorFlow Model And Run Inference..8
Chapter 5. “Hello World” For TensorRT From ONNX... 10
Chapter 6. Building And Running GoogleNet In TensorRT..11
Chapter 7. Building An RNN Network Layer By Layer.. 13
Chapter 8. Performing Inference In INT8 Using Custom Calibration................................. 14
Chapter 9. Performing Inference In INT8 Precision... 15
Chapter 10. Adding A Custom Layer To Your Network In TensorRT.................................. 17
Chapter 11. Object Detection With Faster R-CNN...19
Chapter 12. Object Detection With A TensorFlow SSD Network......................................21
Chapter 13. Movie Recommendation Using Neural Collaborative Filter (NCF)..................... 22
Chapter 14. Movie Recommendation Using MPS (Multi-Process Service)............................23
Chapter 15. Object Detection With SSD... 24
Chapter 16. “Hello World” For Multilayer Perceptron (MLP)... 25
Chapter 17. Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT

Using Python... 26
Chapter 18. “Hello World” For TensorRT Using TensorFlow And Python........................... 28
Chapter 19. “Hello World” For TensorRT Using PyTorch And Python................................29
Chapter 20. Adding A Custom Layer To Your Caffe Network In TensorRT In Python.............. 30
Chapter 21. Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python.......31
Chapter 22. Object Detection With The ONNX TensorRT Backend In Python...................... 32
Chapter 23. Object Detection With SSD In Python.. 33
Chapter 24. INT8 Calibration In Python... 34
Chapter 25. Engine Refit In Python.. 35

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 1

Chapter 1.
SAMPLES

The following samples show how to use TensorRT in numerous use cases while
highlighting different capabilities of the interface.

New Sample Name Old Sample Name Description

“Hello World” For TensorRT sampleMNIST Performs the basic setup and
initialization of TensorRT using
the Caffe parser.

Building A Simple OCR Network sampleMNISTAPI Uses the TensorRT API to build
an MNIST (handwritten digit
recognition) layer by layer, sets
up weights and inputs/outputs
and then performs inference.

Import The TensorFlow Model
And Run Inference

sampleUffMNIST Imports a TensorFlow model
trained on the MNIST dataset.

“Hello World” For TensorRT From
ONNX

sampleOnnxMNIST Converts a model trained on the
MNIST dataset in ONNX format to
a TensorRT network.

Applying FP16 To GoogleNet And
Profiling The App

sampleGoogleNet Shows how to import a model
trained with Caffe into TensorRT
using GoogleNet as an example.

Building An RNN Network Layer
By Layer

sampleCharRNN Uses the TensorRT API to build an
RNN network layer by layer, sets
up weights and inputs/outputs
and then performs inference.

Performing Inference In INT8
Precision

sampleINT8 Performs INT8 calibration and
inference. Calibrates a network
for execution in INT8.

Performing Inference In INT8
Using Custom Calibration

sampleINT8API Sets per tensor dynamic range
and computation precision of a
layer.

Adding A Custom Layer To Your
Network In TensorRT

samplePlugin Defines a custom layer that
supports multiple data formats
that can be serialized and
deserialized. Enables a custom
layer in NvCaffeParser.

Samples

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 2

New Sample Name Old Sample Name Description

Object Detection With
FasterRCNN

sampleFasterRCNN Uses TensorRT plugins, performs
inference, and implements a
fused custom layer for end-to-
end inferencing of a Faster R-
CNN model.

Object Detection With A
TensorFlow SSD Network

sampleUffSSD Preprocess the TensorFlow SSD
network, performs inference on
the SSD network in TensorRT, and
uses TensorRT plugins to speed
up inference.

Movie Recommendation Using
Neural Collaborative Filter (NCF)

sampleMovieLens An end-to-end sample that
imports a trained TensorFlow
model and predicts the highest
rated movie for each user.

Movie Recommendation Using
MPS (Multi-Process Service)

sampleMovieLensMPS An end-to-end sample that
imports a trained TensorFlow
model and predicts the highest
rated movie for each user using
MPS (Multi-Process Service).

Object Detection With SSD sampleSSD Preprocess the input to the SSD
network, performs inference on
the SSD network in TensorRT,
uses TensorRT plugins to speed
up inference, and performs INT8
calibration on an SSD network.

“Hello World” For Multi-Layer
Perceptron (MLP)

sampleMLP Shows how to create a network
that triggers the multi-layer
perceptron (MLP) optimizer.

Introduction To Importing Caffe,
TensorFlow And ONNX Models
Into TensorRT Using Python

introductory_parser_samples Uses TensorRT and its included
suite of parsers (the UFF, Caffe
and ONNX parsers), to perform
inference with ResNet-50 models
trained with various different
frameworks.

“Hello World” For TensorRT Using
TensorFlow And Python

end_to_end_tensorflow_mnist An end-to-end sample that trains
a model in TensorFlow and Keras,
freezes the model and writes it
to a protobuf file, converts it to
UFF, and finally runs inference
using TensorRT.

“Hello World” For TensorRT Using
PyTorch And Python

network_api_pytorch_mnist An end-to-end sample that trains
a model in PyTorch, recreates
the network in TensorRT, imports
weights from the trained model,
and finally runs inference with a
TensorRT engine.

Adding A Custom Layer To Your
Caffe Network In TensorRT In
Python

fc_plugin_caffe_mnist Implements a FullyConnected
layer using cuBLAS and cuDNN,
wraps the implementation
in a TensorRT plugin (with a
corresponding plugin factory),
and generates Python bindings

https://en.wikipedia.org/wiki/Multilayer_perceptron

Samples

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 3

New Sample Name Old Sample Name Description

for it using pybind11. These
bindings are then used to
register the plugin factory with
the CaffeParser.

Adding A Custom Layer To Your
TensorFlow Network In TensorRT
In Python

uff_custom_plugin Implements a clip layer (as
a CUDA kernel), wraps the
implementation in a TensorRT
plugin (with a corresponding
plugin creator), and generates a
shared library module containing
its code.

Object Detection With The ONNX
TensorRT Backend In Python

yolov3_onnx Implements a full ONNX-
based pipeline for performing
inference with the YOLOv3-608
network, including pre and post-
processing.

Object Detection With SSD In
Python

uff_ssd Implements a full UFF-based
pipeline for performing inference
with an SSD (InceptionV2
feature extractor) network. The
sample downloads a pretrained
ssd_inception_v2_coco_2017_11_17
model and uses it to perform
inference. Additionally, it
superimposes bounding boxes
on the input image as a post-
processing step.

INT8 Calibration In Python int8_caffe_mnist Demonstrates how to calibrate
an engine to run in INT8 mode.

INT8 Calibration In Python engine_refit_mnist Trains an MNIST model in
PyTorch, recreates the network
in TensorRT with dummy weights,
and finally refits the TensorRT
engine with weights from the
model.

1.1. C++ Samples
You can find the C++ samples in the /usr/src/tensorrt/samples directory. The
following C++ samples are shipped with TensorRT:

‣ “Hello World” For TensorRT
‣ Building A Simple MNIST Network Layer By Layer
‣ Import The TensorFlow Model And Run Inference
‣ “Hello World” For TensorRT From ONNX
‣ Building And Running GoogleNet In TensorRT
‣ Building An RNN Network Layer By Layer
‣ Performing Inference In INT8 Using Custom Calibration

Samples

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 4

‣ Performing Inference In INT8 Precision
‣ Adding A Custom Layer To Your Network In TensorRT
‣ Object Detection With Faster R-CNN
‣ Object Detection With A TensorFlow SSD Network
‣ Movie Recommendation Using Neural Collaborative Filter (NCF)
‣ Movie Recommendation Using MPS (Multi-Process Service)
‣ Object Detection With SSD
‣ “Hello World” For Multilayer Perceptron (MLP)

Getting Started the A C++ Sample:

Every C++ sample includes a README.md file. Refer to the /usr/src/tensorrt/
samples/<sample-name>/README.md file for detailed information about how the
sample works, sample code, and step-by-step instructions on how to run and verify its
output.

Running C++ Samples on Linux

If you installed TensorRT using the debian files, copy /usr/src/tensorrt to a new
directory first before building the C++ samples. If you installed TensorRT using the tar
file, then the samples are located in {TAR_EXTRACT_PATH}/samples. To build all the
samples and then run one of the samples, use the following commands:

$ cd <samples_dir>
$ make -j4
$ cd ../bin
$./<sample_bin>

Running C++ Samples on Windows

All of the C++ samples on Windows are provided as Visual Studio Solution files.
To build a sample, open its corresponding Visual Studio Solution file and build the
solution. The output executable will be generated in (ZIP_EXTRACT_PATH)\bin. You
can then run the executable directly or through Visual Studio.

1.2. Python Samples
You can find the Python samples in the /usr/src/tensorrt/samples/python
directory. The following Python samples are shipped with TensorRT:

‣ Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT
Using Python

‣ “Hello World” For TensorRT Using TensorFlow And Python
‣ “Hello World” For TensorRT Using PyTorch And Python
‣ Adding A Custom Layer To Your Caffe Network In TensorRT In Python

Samples

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 5

‣ Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
‣ Object Detection With The ONNX TensorRT Backend In Python
‣ Object Detection With SSD In Python
‣ INT8 Calibration In Python
‣ Engine Refit In Python

Getting Started the A Python Sample:

Every Python sample includes a README.md file. Refer to the /usr/src/tensorrt/
samples/python/<sample-name>/README.md file for detailed information about how
the sample works, sample code, and step-by-step instructions on how to run and verify
its output.

Running Python Samples

Every Python sample includes a README.md and requirements.txt file. To run one of
the Python samples, the process typically involves two steps:

 1. Install the sample requirements:

python<x> -m pip install -r requirements.txt

where python<x> is either python2 or python3.
 2. Run the sample code with the data directory provided if the TensorRT sample data

is not in the default location. For example:

python<x> sample.py [-d DATA_DIR]

For more information on running samples, see the README.md file included with the
sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 6

Chapter 2.
“HELLO WORLD” FOR TENSORRT

What Does This Sample Do?

This sample, sampleMNIST, is a simple hello world example that performs the basic
setup and initialization of TensorRT using the Caffe parser.

Specifically, this sample:

‣ Performs the basic setup and initialization of TensorRT using the Caffe parser
‣ Imports a trained Caffe model using Caffe parser
‣ Preprocesses the input and stores the result in a managed buffer
‣ Builds an engine
‣ Serializes and deserializes the engine
‣ Uses the engine to perform inference on an input image

To verify whether the engine is operating correctly, this sample picks a 28x28 image of
a digit at random and runs inference on it using the engine it created. The output of the
network is a probability distribution on the digit, showing which digit is likely that in
the image.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleMNIST directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleMNIST/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#build_engine_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#serial_model_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#perform_inference_c

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 7

Chapter 3.
BUILDING A SIMPLE MNIST NETWORK
LAYER BY LAYER

What Does This Sample Do?

This sample, sampleMNISTAPI, uses the TensorRT API to build an engine for a model
trained on the MNIST dataset. It creates the network layer by layer, sets up weights and
inputs/outputs, and then performs inference. This sample is similar to sampleMNIST.
Both of these samples use the same model weights, handle the same input, and expect
similar output.

This sample uses a Caffe model that was trained on the MNIST dataset.

In contrast to sampleMNIST, which uses the Caffe parser to import the MNIST model,
this sample uses the C++ API, individually creating every layer and loading weights
from a trained weights file. For a detailed description of how to create layers using the C
++ API, see Creating A Network Definition In C++.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleMNISTAPI
directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleMNISTAPI/README.md file for
detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md
https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#network_c

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 8

Chapter 4.
IMPORT THE TENSORFLOW MODEL AND
RUN INFERENCE

What Does This Sample Do?

This sample, sampleUffMNIST, imports a TensorFlow model trained on the MNIST
dataset.

The MNIST TensorFlow model has been converted to UFF (Universal Framework
Format) using the explanation described in Working With TensorFlow.

The UFF is designed to store neural networks as a graph. The NvUffParser that we use
in this sample parses the UFF file in order to create an inference engine based on that
neural network.

With TensorRT, you can take a TensorFlow trained model, export it into a UFF protobuf
file (.uff) using the UFF converter, and import it using the UFF parser.

This sample loads the .uff file created from the TensorFlow MNIST model, parses it to
create a TensorRT engine and performs inference using the created engine.

Specifically, this sample:

‣ Loads a trained TensorFlow model that has been pre-converted to the UFF file
format

‣ Creates the UFF Parser (see Importing From TensorFlow Using Python)
‣ Uses the UFF Parser, registers inputs and outputs, and provides the dimensions and

the order of the input tensor
‣ Builds an engine (see Building An Engine In C++)
‣ Uses the engine to perform inference 10 times and reports average inference time

(see Performing Inference in C++)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#working_tf
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_tf_python
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#build_engine_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#perform_inference_c

Import The TensorFlow Model And Run Inference

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 9

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleUffMNIST
directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleUffMNIST/README.md file for
detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 10

Chapter 5.
“HELLO WORLD” FOR TENSORRT FROM
ONNX

What Does This Sample Do?

This sample, sampleOnnxMNIST, converts a model trained on the MNIST dataset in
Open Neural Network Exchange (ONNX) format to a TensorRT network and runs
inference on the network.

ONNX is a standard for representing deep learning models that enables models to be
transferred between frameworks.

This sample creates and runs the TensorRT engine from an ONNX model of the MNIST
network. It demonstrates how TensorRT can consume an ONNX model as input to
create a network.

Where Is This Sample Located?

This sample is installed in the /usr/src/tensorrt/samples/sampleOnnxMNIST
directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleOnnxMNIST/README.md file for
detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

https://github.com/onnx/models/tree/master/mnist

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 11

Chapter 6.
BUILDING AND RUNNING GOOGLENET IN
TENSORRT

What Does This Sample Do?

This sample, sampleGoogleNet, demonstrates how to import a model trained with
Caffe into TensorRT using GoogleNet as an example. Specifically, this sample builds a
TensorRT engine from the saved Caffe model, sets input values to the engine, and runs
it.

This sample constructs a network based on a saved Caffe model and
network description. This sample comes with a pre-trained model called
googlenet.caffemodel located in the data/googlenet directory. The model used
by this sample was trained using ImageNet. For more information, see the BAIR/BVLC
GitHub page. The sample reads two Caffe files to build the network:
googlenet.prototxt

The prototxt file that contains the network design.
googlenet.caffemodel

The model file which contains the trained weights for the network.

For more information, see Importing A Caffe Model Using The C++ Parser API.

The sample then builds the TensorRT engine using the constructed network. See
Building an Engine in C++ for more information on this. Finally, the sample runs the
engine with the test input (all zeroes) and reports if the sample ran as expected.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleGoogleNet
directory.

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_caffe_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#build_engine_c

Building And Running GoogleNet In TensorRT

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 12

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleGoogleNet/README.md file for
detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 13

Chapter 7.
BUILDING AN RNN NETWORK LAYER BY
LAYER

What Does This Sample Do?

This sample, sampleCharRNN, uses the TensorRT API to build an RNN network layer
by layer, sets up weights and inputs/outputs and then performs inference. Specifically,
this sample creates a CharRNN network that has been trained on the Tiny Shakespeare
dataset. For more information about character level modeling, see char-rnn.

TensorFlow has a useful RNN Tutorial which can be used to train a word level model.
Word level models learn a probability distribution over a set of all possible word
sequence. Since our goal is to train a char level model, which learns a probability
distribution over a set of all possible characters, a few modifications will need to be
made to get the TensorFlow sample to work. These modifications can be seen here.

This sample provides a pre-trained model called model-20080.data-00000-
of-00001 located in the /usr/src/tensorrt/data/samples/char-rnn/model
directory, therefore, training is not required for this sample. The model used by this
sample was trained using tensorflow-char-rnn. This GitHub repository includes
instructions on how to train and produce checkpoint that can be used by TensorRT.

Where Is This Sample Located?

This sample is installed in the /usr/src/tensorrt/samples/sampleCharRNN
directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleCharRNN/README.md file for
detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://github.com/karpathy/char-rnn
https://www.tensorflow.org/tutorials/recurrent
http://deeplearningathome.com/2016/10/Text-generation-using-deep-recurrent-neural-networks.html
https://github.com/crazydonkey200/tensorflow-char-rnn

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 14

Chapter 8.
PERFORMING INFERENCE IN INT8 USING
CUSTOM CALIBRATION

What Does This Sample Do?
This sample provides the steps involved when performing inference in 8-bit integer
(INT8).

INT8 inference is available only on GPUs with compute capability 6.1 or 7.x.

This sample demonstrates how to:

‣ Perform INT8 calibration
‣ Perform INT8 inference
‣ Calibrate a network for execution in INT8
‣ Cache the output of the calibration to avoid repeating the process
‣ Repo your own experiments with Caffe in order to validate your results on

ImageNet networks

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleINT8 directory.

Notes About This Sample:
INT8 engines are built from 32-bit network definitions and require significantly more
investment than building a 32-bit or 16-bit engine. In particular, the TensorRT builder
must perform a process called calibration to determine how best to represent the
weights and activations as 8-bit integers.

This sample is accompanied by the MNIST training set, but may also be used to calibrate
and score other networks. To run the sample on MNIST, use the command line:

./sample_int8 mnist

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 15

Chapter 9.
PERFORMING INFERENCE IN INT8
PRECISION

What Does This Sample Do?
This sample provides steps to perform INT8 Inference without using the INT8 inference
calibrator; using the user provided per activation tensor dynamic range.

INT8 inference is available only on GPUs with compute capability 6.1 or 7.x.

This sample demonstrates how to:

‣ Set per tensor dynamic range.
‣ Set computation precision of a layer.
‣ Perform INT8 inference using the user defined dynamic range, without using INT8

calibration.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleINT8API
directory.

Notes About This Sample:
In order to perform INT8 inference, TensorRT expects you to provide dynamic range
corresponding to each network tensor including input and output tensor. Dynamic
range can be obtained using various methods including quantization aware training or
simply recording the min and max per tensor values during training.

To run this sample, you will need per tensor dynamic range stored in a text file
along with the ImageNet label reference file. We will perform INT8 inference on a
classification network, for example, ResNet50, VGG19, MobileNet v2, etc.

To print usage information:

Performing Inference In INT8 Precision

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 16

./sample_int8_api [-h or --help]

To run INT8 inference with your dynamic ranges:

./sample_int8_api [--model=model_file]
[--ranges=per_tensor_dynamic_range_file] [--image=image_file]
[--reference=reference_file] [--data=/path/to/data/dir]
[--useDLACore=<int>] [-v or --verbose]

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 17

Chapter 10.
ADDING A CUSTOM LAYER TO YOUR
NETWORK IN TENSORRT

What Does This Sample Do?

This sample, samplePlugin, defines a custom layer that supports multiple data
formats and demonstrates how to serialize/deserialize plugin layers.. This sample also
demonstrates how to use a fully connected plugin (FCPlugin) as a custom layer and the
integration with NvCaffeParser.

This sample implements the MNIST model (data/samples/mnist/mnist.prototxt)
with the difference that the custom layer implements the Caffe InnerProduct layer using
gemmroutines (Matrix Multiplication) in cuBLAS and tensor addition in cuDNN (bias
offset). Normally, the Caffe InnerProduct layer can be implemented in TensorRT using
the IFullyConnected layer. However, in this sample, we use FCPlugin for this layer as
an example of how to use plugins. The sample demonstrates plugin usage through the
IPluginExt interface and uses the nvcaffeparser1::IPluginFactoryExt to add
the plugin object to the network.

Specifically, this sample:

‣ Defines the network
‣ Enables custom layers
‣ Builds the engine
‣ Serialize and deserialize
‣ Initializes the plugin and executes the custom layers

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/samplePlugin
directory.

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3

Adding A Custom Layer To Your Network In TensorRT

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 18

Getting Started:

Refer to the /usr/src/tensorrt/samples/samplePlugin/README.md file for
detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 19

Chapter 11.
OBJECT DETECTION WITH FASTER R-CNN

What Does This Sample Do?

This sample, sampleFasterRCNN, uses TensorRT plugins, performs inference, and
implements a fused custom layer for end-to-end inferencing of a Faster R-CNN model.
Specifically, this sample demonstrates the implementation of a Faster R-CNN network
in TensorRT, performs a quick performance test in TensorRT, implements a fused
custom layer, and constructs the basis for further optimization, for example using INT8
calibration, user trained network, etc. The Faster R-CNN network is based on the paper
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

Faster R-CNN is a fusion of Fast R-CNN and RPN (Region Proposal Network). The
latter is a fully convolutional network that simultaneously predicts object bounds and
objectness scores at each position. It can be merged with Fast R-CNN into a single
network because it is trained end-to-end along with the Fast R-CNN detection network
and thus shares with it the full-image convolutional features, enabling nearly cost-free
region proposals. These region proposals will then be used by Fast R-CNN for detection.

Faster R-CNN is faster and more accurate than its predecessors (RCNN, Fast R-CNN)
because it allows for an end-to-end inferencing and does not need standalone region
proposal algorithms (like selective search in Fast R-CNN) or classification method (like
SVM in RCNN).

The sampleFasterRCNN sample uses a plugin from the TensorRT plugin library to
include a fused implementation of Faster R-CNN’s Region Proposal Network (RPN) and
ROIPooling layers. These particular layers are from the Faster R-CNN paper and are
implemented together as a single plugin called RPNROIPlugin. This plugin is registered
in the TensorRT Plugin Registry with the name RPROI_TRT.

Where Is This Sample Located?

This sample is installed in the /usr/src/tensorrt/samples/sampleFasterRNN
directory.

https://arxiv.org/abs/1506.01497

Object Detection With Faster R-CNN

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 20

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleFasterRCNN/README.md file
for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 21

Chapter 12.
OBJECT DETECTION WITH A TENSORFLOW
SSD NETWORK

What Does This Sample Do?
This sample demonstrates how to:

‣ Preprocess the TensorFlow SSD network
‣ Perform inference on the SSD network in TensorRT
‣ Use TensorRT plugins to speed up inference

Where Is This Sample Located?
This sample is installed in the tensorrt/samples/sampleUffSSD directory.

Notes About This Sample:
The frozen graph for the SSD network is too large to include in the TensorRT package.
Ensure you read the instructions in the README located at tensorrt/samples/
sampleUffSSD for details on how to generate the network to run inference.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 22

Chapter 13.
MOVIE RECOMMENDATION USING NEURAL
COLLABORATIVE FILTER (NCF)

What Does This Sample Do?

This sample, sampleMovieLens, is an end-to-end sample that imports a trained
TensorFlow model and predicts the highest rated movie for each user. This sample
demonstrates a simple movie recommender system using a multi-layer perceptron
(MLP) based Neural Collaborative Filter (NCF) recommender.

Specifically, this sample demonstrates how to generate weights for a MovieLens dataset
that TensorRT can then accelerate.

The network is trained in TensorFlow on the MovieLens dataset containing 6,040
users and 3,706 movies. The NCF recommender system is based off of the Neural
Collaborative Filtering paper.

Each query to the network consists of a userID and list of MovieIDs. The network
predicts the highest-rated movie for each user. As trained parameters, the network has
embeddings for users and movies, and weights for a sequence of MLPs.

Where Is This Sample Located?
This sample in installed in the /usr/src/tensorrt/samples/sampleMovieLens
directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleMLP/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

https://grouplens.org/datasets/movielens/

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 23

Chapter 14.
MOVIE RECOMMENDATION USING MPS
(MULTI-PROCESS SERVICE)

What Does This Sample Do?

This sample, sampleMovieLensMPS, is an end-to-end sample that imports a trained
TensorFlow model and predicts the highest rated movie for each user using MPS (Multi-
Process Service).

MPS allows multiple CUDA processes to share single GPU context. With MPS, multiple
overlapping kernel execution and memcpy operations from different processes can be
scheduled concurrently to achieve maximum utilization. This can be especially effective
in increasing parallelism for small networks with low resource utilization such as those
primarily consisting of a series of small MLPs.

This sample is identical to sampleMovieLens in terms of functionality, but is modified
to support concurrent execution in multiple processes. Specifically, this sample
demonstrates how to generate weights for a MovieLens dataset that TensorRT can then
accelerate.

Currently, sampleMovieLensMPS supports only Linux x86-64 (includes Ubuntu and
RedHat) desktop users.

Where Is This Sample Located?
This sample in installed in the usr/src/tensorrt/samples/sampleMovieLensMPS
directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleMovieLensMPS/README.md file
for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample_movie

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 24

Chapter 15.
OBJECT DETECTION WITH SSD

What Does This Sample Do?

This sample, sample SSD, is based on the SSD: Single Shot MultiBox Detector paper. The
SSD network performs the task of object detection and localization in a single forward
pass of the network. This network is built using the VGG network as a backbone and
trained using PASCAL VOC 2007+ 2012 datasets.

Unlike Faster R-CNN, SSD completely eliminates proposal generation and subsequent
pixel or feature resampling stages and encapsulates all computation in a single network.
This makes SSD straightforward to integrate into systems that require a detection
component.

This sample pre-processes the input to the SSD network and performs inference on the
SSD network in TensorRT, using plugins to run layers that are not natively supported
in TensorRT. Additionally, the sample can also be run in INT8 mode for which it first
performs INT8 calibration and then does inference int INT8.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleSSD directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleSSD/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

https://arxiv.org/abs/1512.02325
https://github.com/weiliu89/caffe/tree/ssd

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 25

Chapter 16.
“HELLO WORLD” FOR MULTILAYER
PERCEPTRON (MLP)

What Does This Sample Do?

This sample, sampleMLP, is a simple hello world example that shows how to create a
network that triggers the multilayer perceptron (MLP) optimizer. The generated MLP
optimizer can then accelerate TensorRT.

This sample uses a publicly accessible TensorFlow tutorial to train a MLP network based
on the MNIST data set and how to transform that data into a format that the samples
use.

Specifically, this sample defines the network, triggers the MLP optimizer by creating
a sequence of networks to increase performance, and creates a sequence of TensorRT
layers that represent an MLP layer.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/sampleMLP directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/sampleMLP/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

https://en.wikipedia.org/wiki/Multilayer_perceptron
https://github.com/aymericdamien/TensorFlow-Examples
https://en.wikipedia.org/wiki/Multilayer_perceptron
http://yann.lecun.com/exdb/mnist/

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 26

Chapter 17.
INTRODUCTION TO IMPORTING CAFFE,
TENSORFLOW AND ONNX MODELS INTO
TENSORRT USING PYTHON

What Does This Sample Do?

This sample, introductory_parser_samples, is a Python sample which uses TensorRT
and its included suite of parsers (the UFF, Caffe and ONNX parsers), to perform
inference with ResNet-50 models trained with various different frameworks.

This sample is a collection of three smaller samples, with each focusing on a specific
parser. The following sections describe how each sample works.
caffe_resnet50

This sample demonstrates how to build an engine from a trained Caffe model using
the Caffe parser and then run inference. The Caffe parser is used for Caffe2 models.
After training, you can invoke the Caffe parser directly on the model file (usually
.caffemodel) and deploy file (usually .prototxt).

onnx_resnet50
This sample demonstrates how to build an engine from an ONNX model file using
the open-source ONNX parser and then run inference. The ONNX parser can be used
with any framework that supports the ONNX format (typically .onnx files).

uff_resnet50
This sample demonstrates how to build an engine from a UFF model file (converted
from a TensorFlow protobuf) and then run inference. The UFF parser is used for
TensorFlow models. After freezing a TensorFlow graph and writing it to a protobuf
file, you can convert it to UFF with the convert-to-uff utility included with
TensorRT. This sample ships with a pre-generated UFF file.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
introductory_parser_samples directory.

Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using Python

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 27

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/
introductory_parser_samples/README.md file for detailed information about how
this sample works, sample code, and step-by-step instructions on how to run and verify
its output.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 28

Chapter 18.
“HELLO WORLD” FOR TENSORRT USING
TENSORFLOW AND PYTHON

What Does This Sample Do?

This sample, end_to_end_tensorflow_mnist, trains a small, fully-connected model on the
MNIST dataset and runs inference using TensorRT

This sample is an end-to-end Python sample that trains a small 3-layer model in
TensorFlow and Keras, freezes the model and writes it to a protobuf file, converts it to
UFF, and finally runs inference using TensorRT.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
end_to_end_tensorflow_mnist directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/
end_to_end_tensorflow_mnist/README.md file for detailed information about how
this sample works, sample code, and step-by-step instructions on how to run and verify
its output.

http://yann.lecun.com/exdb/mnist/
https://www.tensorflow.org/tutorials
https://www.tensorflow.org/tutorials

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 29

Chapter 19.
“HELLO WORLD” FOR TENSORRT USING
PYTORCH AND PYTHON

What Does This Sample Do?

This sample, network_api_pytorch_mnist, trains a convolutional model on the MNIST
dataset and runs inference with a TensorRT engine.

This sample is an end-to-end sample that trains a model in PyTorch, recreates the
network in TensorRT, imports weights from the trained model, and finally runs
inference with a TensorRT engine. For more information, see Creating A Network
Definition In Python.

The sample.py script imports the functions from the mnist.py script for training the
PyTorch model, as well as retrieving test cases from the PyTorch Data Loader.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
network_api_pytorch_mnist directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/network_api_pytorch_mnist/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

http://yann.lecun.com/exdb/mnist/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#network_python
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#network_python

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 30

Chapter 20.
ADDING A CUSTOM LAYER TO YOUR CAFFE
NETWORK IN TENSORRT IN PYTHON

What Does This Sample Do?

This sample, fc_plugin_caffe_mnist, demonstrates how to implement a custom
FullyConnected layer using cuBLAS and cuDNN, wraps the implementation in a
TensorRT plugin (with a corresponding plugin factory), and generates Python bindings
for it using pybind11. These bindings are then used to register the plugin factory with
the CaffeParser.

The Caffe InnerProduct/FullyConnected layer is normally handled natively in
TensorRT using the IFullyConnected layer. However, in this sample, we use a plugin
implementation for instructive purposes.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
fc_plugin_caffe_mnist directory.

Getting started:

Refer to the /usr/src/tensorrt/samples/python/fc_plugin_caffe_mnist/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 31

Chapter 21.
ADDING A CUSTOM LAYER TO YOUR
TENSORFLOW NETWORK IN TENSORRT IN
PYTHON

What Does This Sample Do?

This sample, uff_custom_plugin, demonstrates how to use plugins written in C++ with
the TensorRT Python bindings and UFF Parser. This sample uses the MNIST dataset.

This sample implements a clip layer (as a CUDA kernel), wraps the implementation in
a TensorRT plugin (with a corresponding plugin creator) and then generates a shared
library module containing its code. The user then dynamically loads this library in
Python, which causes the plugin to be registered in TensorRT's PluginRegistry and
makes it available to the UFF parser.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
uff_custom_plugin directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/uff_custom_plugin/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

http://yann.lecun.com/exdb/mnist/

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 32

Chapter 22.
OBJECT DETECTION WITH THE ONNX
TENSORRT BACKEND IN PYTHON

What Does This Sample Do?

This sample, yolov3_onnx, implements a full ONNX-based pipeline for performing
inference with the YOLOv3 network, with an input size of 608 x 608 pixels, including pre
and post-processing. This sample is based on the YOLOv3-608 paper.

First, the original YOLOv3 specification from the paper is converted to the Open Neural
Network Exchange (ONNX) format in yolov3_to_onnx.py (only has to be done once).

Second, this ONNX representation of YOLOv3 is used to build a TensorRT engine,
followed by inference on a sample image in onnx_to_tensorrt.py. The predicted
bounding boxes are finally drawn to the original input image and saved to disk.

After inference, post-processing including bounding-box clustering is applied. The
resulting bounding boxes are eventually drawn to a new image file and stored on disk
for inspection.

This sample is not supported on Ubuntu 14.04 and older. Additionally, the
yolov3_to_onnx.py script does not support Python 3.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/yolov3_onnx
directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/yolov3_onnx/README.md file
for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 33

Chapter 23.
OBJECT DETECTION WITH SSD IN PYTHON

What Does This Sample Do?
This sample demonstrates a full UFF-based inference pipeline for performing inference
with an SSD (InceptionV2 feature extractor) network.

The sample downloads a pretrained ssd_inception_v2_coco_2017_11_17 model
and uses it to perform inference. Additionally, it superimposes bounding boxes on the
input image as a post-processing step.

It is also capable of validating the TensorRT engine using the VOC 2007 data set.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/uff_ssd
directory.

For more details, see the README.md file included with this sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 34

Chapter 24.
INT8 CALIBRATION IN PYTHON

What Does This Sample Do?
This sample demonstrates how to create an INT8 calibrator, build and calibrate an
engine for INT8 mode, and finally run inference in INT8 mode.

During calibration, the calibrator retrieves a total of 1003 batches, with 100 images each.
We have simplified the process of reading and writing a calibration cache in Python, so
that it is now easily possible to cache calibration data to speed up engine builds.

During inference, the sample loads a random batch from the calibrator, then performs
inference on the whole batch of 100 images.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
int8_caffe_mnist directory.

For more details, see the README.md file included with this sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 5.1.2 RC | 35

Chapter 25.
ENGINE REFIT IN PYTHON

What Does This Sample Do?
This sample demonstrates the engine refit functionality provided by TensorRT. The
model first trains an MNIST model in PyTorch, then recreates the network in TensorRT.
In the first pass, the weights for one of the conv layers (conv_1) is fed with dummy
values resulting in an incorrect inference result. In the second pass, we refit the engine
with the trained weights for the conv_1 layer and run inference.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
engine_refit_mnist directory.

For more details, see the README.md file included with this sample.

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,

Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Samples
	1.1. C++ Samples
	1.2. Python Samples

	“Hello World” For TensorRT
	Building A Simple MNIST Network Layer By Layer
	Import The TensorFlow Model And Run Inference
	“Hello World” For TensorRT From ONNX
	Building And Running GoogleNet In TensorRT
	Building An RNN Network Layer By Layer
	Performing Inference In INT8 Using Custom Calibration
	Performing Inference In INT8 Precision
	Adding A Custom Layer To Your Network In TensorRT
	Object Detection With Faster R-CNN
	Object Detection With A TensorFlow SSD Network
	Movie Recommendation Using Neural Collaborative Filter (NCF)
	Movie Recommendation Using MPS (Multi-Process Service)
	Object Detection With SSD
	“Hello World” For Multilayer Perceptron (MLP)
	Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using Python
	“Hello World” For TensorRT Using TensorFlow And Python
	“Hello World” For TensorRT Using PyTorch And Python
	Adding A Custom Layer To Your Caffe Network In TensorRT In Python
	Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
	Object Detection With The ONNX TensorRT Backend In Python
	Object Detection With SSD In Python
	INT8 Calibration In Python
	Engine Refit In Python

