
TENSORRT

DU-08602-001_v5.0 RC | September 2018

Developer Guide

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | ii

TABLE OF CONTENTS

Chapter 1. What Is TensorRT?... 1
1.1. Benefits Of TensorRT...2
1.2. Where Does TensorRT Fit?...3
1.3. How Does TensorRT Work?.. 7
1.4. What Capabilities Does TensorRT Provide?... 8
1.5. How Do I Get TensorRT?...9

Chapter 2. Working With TensorRT Using The C++ API...10
2.1. Instantiating TensorRT Objects in C++... 10
2.2. Creating A Network Definition In C++... 12

2.2.1. Creating A Network Definition From Scratch Using The C++ API........................... 13
2.2.2. Importing A Model Using A Parser In C++.. 14
2.2.3. Importing A Caffe Model Using The C++ Parser API.. 15
2.2.4. Importing A TensorFlow Model Using The C++ UFF Parser API.............................. 15
2.2.5. Importing An ONNX Model Using The C++ Parser API...16

2.3. Building An Engine In C++... 17
2.4. Serializing A Model In C++...17
2.5. Performing Inference In C++.. 18
2.6. Memory Management In C++.. 19

Chapter 3. Working With TensorRT Using The Python API... 20
3.1. Importing TensorRT Into Python.. 20
3.2. Creating A Network Definition In Python... 21

3.2.1. Creating A Network Definition From Scratch Using The Python API....................... 21
3.2.2. Importing A Model Using A Parser In Python.. 22
3.2.3. Importing From Caffe Using Python.. 22
3.2.4. Importing From TensorFlow Using Python..23
3.2.5. Importing From ONNX Using Python.. 24
3.2.6. Importing From PyTorch And Other Frameworks..24

3.3. Building An Engine In Python... 25
3.4. Serializing A Model In Python... 25
3.5. Performing Inference In Python...26

Chapter 4. Extending TensorRT With Custom Layers... 28
4.1. Adding Custom Layers Using The C++ API...28

4.1.1. Example 1: Adding A Custom Layer Using C++ For Caffe....................................30
4.1.2. Example 2: Adding A Custom Layer That Is Not Supported In UFF Using C++.............30

4.2. Adding Custom Layers Using The Python API... 31
4.2.1. Example 1: Adding A Custom Layer to a TensorRT Network Using Python................ 31
4.2.2. Example 2: Adding A Custom Layer That Is Not Supported In UFF Using Python......... 32

4.3. Using Custom Layers When Importing A Model From A Framework............................. 33
4.3.1. Example 1: Adding A Custom Layer To A TensorFlow Model................................ 34

4.4. Plugin API Description.. 35

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | iii

4.4.1. Migrating Plugins From TensorRT 4.0.x To TensorRT 5.0 RC.................................35
4.4.2. IPluginExt API Description.. 35
4.4.3. IPluginCreator API Description...36

4.5. Best Practices For Custom Layers.. 37
Chapter 5. Working With Mixed Precision...38

5.1. Enabling FP16 Inference Using C++.. 38
5.2. Enabling FP16 Inference Using Python...38
5.3. Optimizing INT8 Calibration Using C++ API... 39
5.4. Optimizing INT8 Calibration Using Python.. 40

Chapter 6. Working With DLA..41
6.1. Running On DLA During TensorRT Inference.. 41

6.1.1. Example 1: sampleMNIST With DLA... 42
6.1.2. Example 2: Enable DLA Mode For A Layer During Network Creation.......................42

6.2. DLA Supported Layers.. 43
6.3. GPU Fallback Mode... 44

Chapter 7. Deploying A TensorRT Optimized Model...46
7.1. Deploying In The Cloud.. 46
7.2. Deploying To An Embedded System.. 46

Chapter 8. Working With Deep Learning Frameworks.. 48
8.1. Supported Operations By Framework.. 48
8.2. Working With TensorFlow.. 52

8.2.1. Freezing A TensorFlow Graph.. 52
8.2.2. Freezing A Keras Model... 52
8.2.3. Converting A Frozen Graph To UFF... 52
8.2.4. Working With TensorFlow RNN Weights.. 53

8.2.4.1. TensorFlow RNN Cells Supported In TensorRT..53
8.2.4.2. Maintaining Model Consistency Between TensorFlow And TensorRT.................. 53
8.2.4.3. Workflow... 54
8.2.4.4. Dumping The TensorFlow Weights... 54
8.2.4.5. Loading Dumped Weights..54
8.2.4.6. Converting The Weights To A TensorRT Format..54
8.2.4.7. BasicLSTMCell Example.. 56
8.2.4.8. Setting The Converted Weights And Biases...57

8.2.5. Preprocessing A TensorFlow Graph Using the Graph Surgeon API.......................... 58
8.3. Working With PyTorch And Other Frameworks... 58

Chapter 9. Samples...60
9.1. C++ Samples..60

9.1.1. sampleMNIST.. 61
9.1.2. sampleMNISTAPI.. 62
9.1.3. sampleUffMNIST.. 63
9.1.4. sampleOnnxMNIST.. 64

9.1.4.1. Configuring The ONNX Parser...64
9.1.4.2. Converting The ONNX Model To A TensorRT Network................................... 65

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | iv

9.1.4.3. Building The Engine And Running Inference..65
9.1.5. sampleGoogleNet...65

9.1.5.1. Configuring The Builder... 66
9.1.5.2. Profiling.. 66

9.1.6. sampleCharRNN...67
9.1.6.1. Network Configuration...67
9.1.6.2. RNNv2 Workflow - From TensorFlow To TensorRT....................................... 69
9.1.6.3. Seeding The Network.. 71
9.1.6.4. Generating Data.. 71

9.1.7. sampleINT8..72
9.1.7.1. Defining The Network..73
9.1.7.2. Building The Engine.. 73
9.1.7.3. Configuring The Builder... 74
9.1.7.4. Running The Engine.. 75
9.1.7.5. Verifying The Output...75
9.1.7.6. Batch Files For Calibration..75

9.1.8. samplePlugin.. 77
9.1.8.1. Defining The Network..77
9.1.8.2. Enabling Custom Layers In NvCaffeParser.. 78
9.1.8.3. Building The Engine.. 78
9.1.8.4. Serializing And Deserializing..79
9.1.8.5. Resource Management And Execution...80

9.1.9. sampleNMT.. 81
9.1.9.1. Overview... 82
9.1.9.2. Preparing The Data...83
9.1.9.3. Running The Sample... 84
9.1.9.4. Training The Model... 85
9.1.9.5. Importing Weights From A Checkpoint.. 85

9.1.10. sampleFasterRCNN..86
9.1.10.1. Overview..86
9.1.10.2. Preprocessing The Input..87
9.1.10.3. Defining The Network.. 88
9.1.10.4. Building The Engine...88
9.1.10.5. Running The Engine...88
9.1.10.6. Verifying The Output... 89

9.1.11. sampleUffSSD.. 89
9.1.11.1. API Overview...90
9.1.11.2. Processing The Input Graph... 91
9.1.11.3. Preparing The Data... 91
9.1.11.4. Defining The Network And Plugins... 92
9.1.11.5. Verifying The Output... 93

9.1.12. sampleMovieLens..94
9.1.12.1. Importing Network To TensorRT...94

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | v

9.1.12.2. Running With MPS... 94
9.1.12.3. Verifying The Output... 95

9.1.13. sampleSSD..95
9.1.13.1. Overview..95
9.1.13.2. Preprocessing The Input..96
9.1.13.3. Defining The Network.. 96
9.1.13.4. Building The Engine...96
9.1.13.5. Verifying The Output... 97

9.2. Python Samples.. 97
9.2.1. introductory_parser_samples...98
9.2.2. end_to_end_tensorflow_mnist... 98
9.2.3. network_api_pytorch_mnist.. 99
9.2.4. fc_plugin_caffe_mnist... 99
9.2.5. uff_custom_plugin... 99

Chapter 10. Troubleshooting... 101
10.1. FAQs...101
10.2. Support... 103

Appendix A. Appendix... 104
A.1. TensorRT Layers.. 104

A.1.1. Activation Layer.. 104
A.1.2. Concatenation Layer... 105
A.1.3. Constant Layer..106
A.1.4. Convolution Layer.. 106
A.1.5. Deconvolution Layer... 108
A.1.6. ElementWise Layer...109
A.1.7. FullyConnected Layer..110
A.1.8. Gather Layer.. 111
A.1.9. Identity Layer... 112
A.1.10. LRN Layer.. 113
A.1.11. MatrixMultiply Layer..114
A.1.12. Padding Layer..115
A.1.13. Plugin Layer..116
A.1.14. Pooling Layer.. 116
A.1.15. RaggedSoftMax Layer...117
A.1.16. Reduce Layer.. 118
A.1.17. RNNv2 Layer (IRNNv2Layer) Layer... 119
A.1.18. RNN Layer (IRNNLayer)...123
A.1.19. Scale Layer...124
A.1.20. Shuffle Layer...125
A.1.21. SoftMax Layer..126
A.1.22. TopK Layer... 127
A.1.23. Unary Layer.. 128

A.2. Data Format Descriptions.. 129

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | vi

A.3. Command Line Wrapper.. 132
A.4. ACKNOWLEDGEMENTS... 133

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 1

Chapter 1.
WHAT IS TENSORRT?

The core of TensorRT™ is a C++ library that facilitates high performance inference on
NVIDIA graphics processing units (GPUs). It is designed to work in a complementary
fashion with training frameworks such as TensorFlow, Caffe, PyTorch, MXNet, etc. It
focuses specifically on running an already trained network quickly and efficiently on a
GPU for the purpose of generating a result (a process that is referred to in various places
as scoring, detecting, regression, or inference).

Some training frameworks such as TensorFlow have integrated TensorRT so that it can
be used to accelerate inference within the framework. Alternatively, TensorRT can be
used as a library within a user application. It includes parsers for importing existing
models from Caffe, ONNX, or TensorFlow, and C++ and Python APIs for building
models programmatically.

Figure 1 TensorRT is a high performance neural network inference
optimizer and runtime engine for production deployment.

TensorRT optimizes the network by combining layers and optimizing kernel selection
for improved latency, throughput, power efficiency and memory consumption. If the
application specifies, it will additionally optimize the network to run in lower precision,
further increasing performance and reducing memory requirements.

What Is TensorRT?

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 2

The following figure shows TensorRT defined as part high-performance inference
optimizer and part runtime engine. It can take in neural networks trained on these
popular frameworks, optimize the neural network computation, generate a light-
weight runtime engine (which is the only thing you need to deploy to your production
environment), and it will then maximize the throughput, latency, and performance on
these GPU platforms.

Figure 2 TensorRT is a programmable inference accelerator.

The TensorRT API includes implementations for the most common deep learning layers.
For more information about the layers, see TensorRT Layers. You can also use the Plugin
API to provide implementations for infrequently used or more innovative layers that are
not supported out-of-the-box by TensorRT.

1.1. Benefits Of TensorRT
After the neural network is trained, TensorRT enables the network to be compressed,
optimized and deployed as a runtime without the overhead of a framework.

TensorRT combines layers, optimizes kernel selection, and also performs normalization
and conversion to optimized matrix math depending on the specified precision (FP32,
FP16 or INT8) for improved latency, throughput, and efficiency.

For deep learning inference, there are 5 critical factors that are used to measure software:
Throughput

The volume of output within a given period. Often measured in inferences/second
or samples/second, per-server throughput is critical to cost-effective scaling in data
centers.

Efficiency
Amount of throughput delivered per unit-power, often expressed as performance/
watt. Efficiency is another key factor to cost effective data center scaling, since servers,
server racks and entire data centers must operate within fixed power budgets.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin.html

What Is TensorRT?

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 3

Latency
Time to execute an inference, usually measured in milliseconds. Low latency is
critical to delivering rapidly growing, real-time inference-based services.

Accuracy
A trained neural network’s ability to deliver the correct answer. For image
classification based usages, the critical metric is expressed as a top-5 or top-1
percentage.

Memory usage
The host and device memory that need to be reserved to do inference on a network
depends on the algorithms used. This constrains what networks and what
combinations of networks can run on a given inference platform. This is particularly
important for systems where multiple networks are needed and memory resources
are limited - such as cascading multi-class detection networks used in intelligent
video analytics and multi-camera, multi-network autonomous driving systems.

Alternatives to using TensorRT include:

‣ Using the training framework itself to perform inference.
‣ Writing a custom application that is designed specifically to execute the network

using low level libraries and math operations.

Using the training framework to perform inference is easy, but tends to result in much
lower performance on a given GPU than would be possible with an optimized solution
like TensorRT. Training frameworks tend to implement more general purpose code
which stress generality and when they are optimized the optimizations tend to focus on
efficient training.

Higher efficiency can be obtained by writing a custom application just to execute
a neural network, however it can be quite labor intensive and require quite a bit
of specialized knowledge to reach a high level of performance on a modern GPU.
Furthermore, optimizations that work on one GPU may not translate fully to other GPUs
in the same family and each generation of GPU may introduce new capabilities that can
only be leveraged by writing new code.

TensorRT solves these problems by combining an API with a high level of abstraction
from the specific hardware details and an implementation which is developed and
optimized specifically for high throughput, low latency, and low device memory
footprint inference.

1.2. Where Does TensorRT Fit?
Generally, the workflow for developing and deploying a deep learning model goes
through three phases.

‣ Phase 1 is training
‣ Phase 2 is developing a deployment solution, and
‣ Phase 3 is the deployment of that solution

What Is TensorRT?

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 4

Phase 1: Training
During the training phase, the data scientists and developers will start with a statement
of the problem they want to solve and decide on the precise inputs, outputs and loss
function they will use. They will also collect, curate, augment, and probably label the
training, test and validation data sets. Then they will design the structure of the network
and train the model. During training, they will monitor the learning process which may
provide feedback which will cause them to revise the loss function, acquire or augment
the training data. At the end of this process, they will validate the model performance
and save the trained model. Training and validation is usually done using DGX-1™ ,
Titan, or Tesla datacenter GPUs.

TensorRT is generally not used during any part of the training phase.

Phase 2: Developing A Deployment Solution
During the second phase, the data scientists and developers will start with the trained
model and create and validate a deployment solution using this trained model. Breaking
this phase down into steps, you get:

 1. Think about how the neural network functions within the larger system of which it
is a part of and design and implement an appropriate solution. The range of systems
that might incorporate neural networks are tremendously diverse. Examples
include:

‣ the autonomous driving system in a vehicle
‣ a video security system on a public venue or corporate campus
‣ the speech interface to a consumer device
‣ an industrial production line automated quality assurance system
‣ an online retail system providing product recommendations, or
‣ a consumer web service offering entertaining filters users can apply to uploaded

images.

Determine what your priorities are. Given the diversity of different systems that
you could implement, there are a lot of things that may need to be considered for
designing and implementing the deployment architecture.

‣ Do you have a single network or many networks? For example, Are you
developing a feature or system that is based on a single network (face detection),
or will your system be comprised of a mixture or cascade of different models,
or perhaps a more general facility that serves up a collection model that may be
provided by the end user?

‣ What device or compute element will you use to run the network? CPU, GPU,
other, or a mixture? If the model is going to run on a GPU, is it a single type of
GPU, or do you need to design an application that can run on a variety of GPUs?

What Is TensorRT?

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 5

‣ How is data going to get to the models? What is the data pipeline? Is the data
coming in from a camera or sensor, from a series of files, or being uploaded over
a network connection?

‣ What pre-processing will be done? What format will the data come in? If it is an
image does it need to be cropped, rotated? If it is text what character set is it and
are all characters allowed as inputs to the model? Are there any special tokens?

‣ What latency and throughput requirements will you have?
‣ Will you be able to batch together multiple requests?
‣ Will you need multiple instances of a single network to achieve the required

overall system throughput and latency?
‣ What will you do with the output of the network?
‣ What post processing steps are needed?

TensorRT provides a fast, modular, compact, robust, reliable inference engine that
can support the inference needs within the deployment architecture.

 2. After the data scientists and developers define the architecture of their inference
solution, by which they determine what their priorities are, they then build an
inference engine from the saved network using TensorRT. There are a number
of ways to do this depending on the training framework used and the network
architecture. Generally, this means you need to take the saved neural network and
parse it from its saved format into TensorRT using the ONNX parser (see Figure 3),
Caffe parser, or TensorFlow/UFF parser.

What Is TensorRT?

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 6

Figure 3 ONNX Workflow V1

 3. After the network is being parsed, you’ll need to consider optimization options
-- batch size, workspace size and mixed precision. These options are chosen and
specified as part of the TensorRT build step where you actually build an optimized
inference engine based on your network. Subsequent sections of this guide provide
detailed instructions and numerous examples on this part of the workflow, parsing
your model into TensorRT and choosing the optimization parameters (see Figure 4).

What Is TensorRT?

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 7

Figure 4 TensorRT optimizes trained neural network models to
produce a deployment-ready runtime inference engine.

 4. After you’ve created an inference engine using TensorRT, you’ll want to validate
that it reproduces the results of the model as measured during the training process.
If you have chosen FP32 or FP16 it should match the results quite closely. If you
have chosen INT8 there may be a small gap between the accuracy achieved during
training and the inference accuracy.

 5. Write out the inference engine in a serialized format. This is also called a plan file.

Phase 3: Deploying A Solution
The TensorRT library will be linked into the deployment application which will call
into the library when it wants an inference result. To initialize the inference engine, the
application will first deserialize the model from the plan file into an inference engine.

TensorRT is usually used asynchronously, therefore, when the input data arrives,
the program calls an enqueue function with the input buffer and the buffer in which
TensorRT should put the result.

1.3. How Does TensorRT Work?
To optimize your model for inference, TensorRT takes your network definition,
performs optimizations including platform specific optimizations, and generates the
inference engine. This process is referred to as the build phase. The build phase can take
considerable time, especially when running on embedded platforms. Therefore, a typical
application will build an engine once, and then serialize it for later use.

The generated plan file must be retargeted to the specific GPU in case you want to
run it on a different GPU.

What Is TensorRT?

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 8

The build phase performs the following optimizations on the layer graph:

‣ Elimination of layers whose outputs are not used
‣ Fusion of convolution, bias and ReLU operations
‣ Aggregation of operations with sufficiently similar parameters and the same source

tensor (for example, the 1x1 convolutions in GoogleNet v5’s inception module)
‣ Merging of concatenation layers by directing layer outputs to the correct eventual

destination.

The builder also modifies the precision of weights if necessary. When generating
networks in 8-bit integer precision, it uses a process called calibration to determine the
dynamic range of intermediate activations, and hence the appropriate scaling factors for
quantization.

In addition, the build phase also runs layers on dummy data to select the fastest from its
kernel catalog, and performs weight pre-formatting and memory optimization where
appropriate.

For more information, see Working With Mixed Precision.

1.4. What Capabilities Does TensorRT Provide?
TensorRT enables developers to import, calibrate, generate, and deploy optimized
networks. Networks can be imported directly from Caffe, or from other frameworks via
the UFF or ONNX formats. They may also be created programmatically by instantiating
individual layers and setting parameters and weights directly.

Users can also run custom layers through TensorRT using the Plugin interface. The
graphsurgeon utility provides the ability to map TensorFlow nodes to custom layers in
TensorRT, thus enabling inference for many TensorFlow networks with TensorRT.

TensorRT provides a C++ implementation on all supported platforms, and a Python
implementation on x86.

The key interfaces in the TensorRT core library are:
Network Definition

The Network Definition interface provides methods for the application to specify
the definition of a network. Input and output tensors can be specified, layers can
be added, and there is an interface for configuring each supported layer type. As
well as layer types, such as convolutional and recurrent layers, and a Plugin layer
type allows the application to implement functionality not natively supported
by TensorRT. For more information about the Network Definition, see Network
Definition API.

Builder
The Builder interface allows creation of an optimized engine from a network
definition. It allows the application to specify the maximum batch and workspace
size, the minimum acceptable level of precision, timing iteration counts for
autotuning, and an interface for quantizing networks to run in 8-bit precision. For
more information about the Builder, see Builder API.

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder.html

What Is TensorRT?

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 9

Engine
The Engine interface provides allow the application to executing inference. It
supports synchronous and asynchronous execution, profiling, and enumeration and
querying of the bindings for the engine inputs and outputs. A single engine can have
multiple execution contexts, allowing a single set of set of trained parameters to be
used for the simultaneous execution of multiple batches. For more information about
the Engine, see Execution API.

TensorRT provides parsers for importing trained networks to create network definitions:
Caffe Parser

This parser can be used to parse a Caffe network created in BVLC Caffe or NVCaffe
0.16. It also provides the ability to register a plugin factory for custom layers. For
more details on the C++ Caffe Parser, see NvCaffeParser or the Python Caffe Parser.

UFF Parser
This parser can be used to parse a network in UFF format. It also provides the ability
to register a plugin factory and pass field attributes for custom layers. For more
details on the C++ UFF Parser, see NvUffParser or the Python UFF Parser.

ONNX Parser
This parser can be used to parse an ONNX model. For more details on the C++ ONNX
Parser, see NvONNXParser or the Python ONNX Parser.

1.5. How Do I Get TensorRT?
For step-by-step instructions on how to install TensorRT, see the TensorRT Installation
Guide.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_cuda_engine.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvcaffeparser1_1_1_i_caffe_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Caffe/pyCaffe.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvuffparser_1_1_i_uff_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvonnxparser_1_1_i_o_n_n_x_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Onnx/pyOnnx.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 10

Chapter 2.
WORKING WITH TENSORRT USING THE C+
+ API

The following sections highlight the TensorRT user goals and tasks that you can perform
using the C++ API. Further details are provided in the Samples section and are linked to
below where appropriate.

The assumption is that you are starting with a trained model. This chapter will cover the
following necessary steps in using TensorRT:

‣ Creating a TensorRT network definition from your model
‣ Invoking the TensorRT builder to create an optimized runtime engine from the

network
‣ Serializing and deserializing the engine so that it can be rapidly recreated at runtime
‣ Feeding the engine with data to perform inference

C++ API vs Python API

In essence, the C++ API and the Python API should be close to identical in supporting
your needs. The C++ API should be used in any performance critical scenarios, as well as
in situations where safety is important, for example, like in automotive.

The main benefit of the Python API is that data preprocessing and postprocessing is easy
to use because you’re able to use a variety of libraries like NumPy and SciPy. For more
information about the Python API, see Working With TensorRT Using The Python API.

2.1. Instantiating TensorRT Objects in C++
In order to run inference, you need to use the IExecutionContext object. In order to
create an object of type IExecutionContext, you first need to create an object of type
ICudaEngine (the engine).

The engine can be created in one of two ways:

Working With TensorRT Using The C++ API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 11

‣ via the network definition from the user model. In this case, the engine can be
optionally serialized and saved for later use.

‣ by reading the serialized engine from the disk. In this case, the performance is better,
since the steps of parsing the model and creating intermediate objects are bypassed.

An object of type iLogger needs to be created globally. It is used as an argument to
various methods of TensorRT API. A simple example demonstrating the creation of the
logger is shown here:

class Logger : public ILogger
 {
 void log(Severity severity, const char* msg) override
 {
 // suppress info-level messages
 if (severity != Severity::kINFO)
 std::cout << msg << std::endl;
 }
 } gLogger;

A global TensorRT API method called createInferBuilder(gLogger) is used to
create an object of type iBuilder as shown in Figure 5. For more information, see
IBuilder class reference.

Figure 5 Creating iBuilder with iLogger as the input argument

A method called createNetwork defined for iBuilder is used to create an object of type
iNetworkDefinition as shown in Figure 6.

Figure 6 createNetwork() is used to create the network

One of the available parsers is created using the iNetwork definition as the input:

‣ ONNX: parser = nvonnxparser::createParser(*network, gLogger);
‣ NVCaffe: ICaffeParser* parser = createCaffeParser();
‣ UFF: parser = createUffParser();

A method called parse() from the object of type iParser is called to read the model
file and populate the TensorRT network Figure 7.

Figure 7 Parsing the model file

A method called buildCudaEngine() of iBuilder is called to create an object of
iCudaEngine type as shown in Figure 8:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder.html

Working With TensorRT Using The C++ API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 12

Figure 8 Creating the TensorRT engine

The engine can be optionally serialized and dumped into the file.

Figure 9 Creating the TensorRT engine

The execution context is used to perform inference.

Figure 10 Creating an execution context

If the serialized engine is preserved and saved to a file, you can bypass most of the steps
described above.

A global TensorRT API method called createInferRuntime(gLogger) is used to
create an object of type iRuntime as shown in Figure 11:

Figure 11 Creating TensorRT runtime

For more information about the TensorRT runtime, see IRuntime class reference. The
engine is created by calling the runtime method deserializeCudaEngine().

The rest of the inference is identical for those two usage models.

Even though it is possible to avoid creating the CUDA context, (the default context will
be created for you), it is not advisable. It is recommended to create and configure the
CUDA context before creating a runtime or builder object.

The builder or runtime will be created with the GPU context associated with the creating
thread. Although a default context will be created if it does not already exist, it is
advisable to create and configure the CUDA context before creating a runtime or builder
object.

2.2. Creating A Network Definition In C++

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_runtime.html

Working With TensorRT Using The C++ API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 13

The first step in performing inference with TensorRT is to create a TensorRT network
from your model. The easiest way to achieve this is to import the model using the
TensorRT parser library, which supports serialized models in the following formats:

‣ sampleMNIST (both BVLC and NVCaffe)
‣ sampleOnnxMNIST 1.0 and 1.1, and
‣ sampleUffMNIST (used for TensorFlow)

An alternative is to define the model directly using the TensorRT API. This requires you
to make a small number of API calls to define each layer in the network graph, and to
implement your own import mechanism for the model’s trained parameters.

In either case, you will explicitly need to tell TensorRT which tensors are required as
outputs of inference. Tensors which are not marked as outputs are considered to be
transient values that may be optimized away by the builder. There is no restriction on
the number of output tensors, however, marking a tensor as an output may prohibit
some optimizations on that tensor. Inputs and output tensors must also be given names
(using ITensor::setName()). At inference time, you will supply the engine with an
array of pointers to input and output buffers. In order to determine in which order the
engine expects these pointers, you can query using the tensor names.

An important aspect of a TensorRT network definition is that it contains pointers to
model weights, which are copied into the optimized engine by the builder. If a network
was created via a parser, the parser will own the memory occupied by the weights, and
so the parser object should not be deleted until after the builder has run.

2.2.1. Creating A Network Definition From Scratch Using
The C++ API
Instead of using a parser, you can also define the network directly to TensorRT via the
network definition API. This scenario assumes that the per-layer weights are ready in
host memory to pass to TensorRT during the network creation.

In the following example, we will create a simple network with Input, Convolution,
Pooling, FullyConnected, Activation and SoftMax layers. To see the code in totality, refer
to sampleMNISTAPI located in the /usr/src/tensorrt/samples/sampleMNISTAPI
directory.

 1. Create the builder and the network:

IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetwork();

 2. Add the Input layer to the network, with the input dimensions. A network can have
multiple inputs, although in this sample there is only one:

auto data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{1, INPUT_H,
 INPUT_W});

 3. Add the Convolution layer with hidden layer input nodes, strides and weights for
filter and bias. In order to retrieve the tensor reference from the layer, we can use:

layerName->getOutput(0)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Working With TensorRT Using The C++ API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 14

auto conv1 = network->addConvolution(*data->getOutput(0), 20, DimsHW{5, 5},
 weightMap["conv1filter"], weightMap["conv1bias"]);
conv1->setStride(DimsHW{1, 1});

Weights passed to TensorRT layers are in host memory.

 4. Add the Pooling layer:

auto pool1 = network->addPooling(*conv1->getOutput(0), PoolingType::kMAX,
 DimsHW{2, 2});
pool1->setStride(DimsHW{2, 2});

 5. Add the FullyConnected and Activation layers:

auto ip1 = network->addFullyConnected(*pool1->getOutput(0), 500,
 weightMap["ip1filter"], weightMap["ip1bias"]);
auto relu1 = network->addActivation(*ip1->getOutput(0),
 ActivationType::kRELU);

 6. Add the SoftMax layer to calculate the final probabilities and set it as the output:

auto prob = network->addSoftMax(*relu1->getOutput(0));
prob->getOutput(0)->setName(OUTPUT_BLOB_NAME);

 7. Mark the output:

network->markOutput(*prob->getOutput(0));

2.2.2. Importing A Model Using A Parser In C++
To import a model using the C++ Parser API, you will need to perform the following
high-level steps:

 1. Create the TensorRT builder and network.

IBuilder* builder = createInferBuilder(gLogger);
nvinfer1::INetworkDefinition* network = builder->createNetwork();

For an example on how to create the logger, see Instantiating TensorRT Objects in C
++.

 2. Create the TensorRT parser for the specific format.
ONNX

auto parser = nvonnxparser::createParser(*network,
 gLogger);

UFF
auto parser = createUffParser();

NVCaffe
ICaffeParser* parser = createCaffeParser();

 3. Use the parser to parse the imported model and populate the network.

parser->parse(args);

The specific args depend on what format parser is used. For more information,
refer to the parsers documented in the TensorRT API.

The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Working With TensorRT Using The C++ API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 15

2.2.3. Importing A Caffe Model Using The C++ Parser API
The following steps illustrate how to import a Caffe model using the C++ Parser API. For
more information, see sampleMNIST.

 1. Create the builder and network:

IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetwork();

 2. Create the Caffe parser:

ICaffeParser* parser = createCaffeParser();

 3. Parse the imported model:

const IBlobNameToTensor* blobNameToTensor = parser->parse("deploy_file" ,
 "modelFile", *network, DataType::kFLOAT);

This populates the TensorRT network from the Caffe model. The final argument
instructs the parser to generate a network whose weights are 32-bit floats. Using
DataType::kHALF would generate a model with 16-bit weights instead.

In addition to populating the network definition, the parser returns a dictionary that
maps from Caffe blob names to TensorRT tensors. Unlike Caffe, a TensorRT network
definition has no notion of in-place operation. When an Caffe model uses an in-place
operation, the TensorRT tensor returned in the dictionary corresponds to the last
write to that blob. For example, if a convolution writes to a blob and is followed by
an in-place ReLU, that blob’s name will map to the TensorRT tensor which is the
output of the ReLU.

 4. Specify the outputs of the network:

for (auto& s : outputs)
 network->markOutput(*blobNameToTensor->find(s.c_str()));

2.2.4. Importing A TensorFlow Model Using The C++ UFF
Parser API
Importing from the TensorFlow framework requires you to convert the TensorFlow
model into intermediate format UFF (Universal Framework Format). For more
information about the conversion, see Converting A Frozen Graph To UFF.

The following steps illustrate how to import a TensorFlow model using the C++ Parser
API. For more information about the UFF import, see sampleUffMNIST.

 1. Create the builder and network:

IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetwork();

 2. Create the UFF parser:

IUFFParser* parser = createUffParser();

 3. Declare the network inputs and outputs to the UFF parser:

Working With TensorRT Using The C++ API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 16

parser->registerInput("Input_0", DimsCHW(1, 28, 28), UffInputOrder::kNCHW);
parser->registerOutput("Binary_3");

TensorRT expects the input tensor be in CHW order. When importing from
TensorFlow, ensure that the input tensor is in the required order, and if not,
convert it to CHW.

 4. Parse the imported model to populate the network:

parser->parse(uffFile, *network, nvinfer1::DataType::kFLOAT);

2.2.5. Importing An ONNX Model Using The C++ Parser
API

Restriction Since the ONNX format is quickly developing, you may encounter a
version mismatch between the model version and the parser version. The ONNX Parser
shipped with TensorRT 5.0 RC supports ONNX IR (Intermediate Representation) version
0.0.3, opeset version 7.

In general, the newer version of the ONNX Parser is designed to be backward
compatible, therefore, encountering a model file produced by an earlier version of
ONNX exporter should not cause a problem. There could be some exceptions when the
changes were not backward compatible. In this case, convert the earlier ONNX model
file into a later supported version. For more information on this subject, see ONNX
Model Opset Version Converter.

It is also possible that the user model was generated by an exporting tool supporting
later opsets than supported by the ONNX parser shipped with TensorRT. In this
case, check whether the latest version of TensorRT released to GitHub onnx-
tensorrt supports the required version. The supported version is defined by the
BACKEND_OPSET_VERSION variable in onnx_trt_backend.cpp. Download and build
the latest version of ONNX TensorRT Parser from the GitHub. The instructions for
building can be found here: TensorRT backend for ONNX.

The following steps illustrate how to import an ONNX model using the C++ Parser API.
For more information about the ONNX import, see sampleOnnxMNIST.

 1. Create the ONNX parser. The parser uses an auxiliary configuration management
SampleConfig object to pass the input arguments from the sample executable to the
parser object:

nvonnxparser::IOnnxConfig* config = nvonnxparser::createONNXConfig();
//Create Parser
nvonnxparser::IONNXParser* parser = nvonnxparser::createONNXParser(*config);

 2. Ingest the model:

parser->parse(onnx_filename, DataType::kFLOAT);

https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt/blob/master/onnx_trt_backend.cpp
https://github.com/onnx/onnx-tensorrt/blob/master/README.md

Working With TensorRT Using The C++ API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 17

 3. Convert the model to a TensorRT network:

parser->convertToTRTNetwork();

 4. Obtain the network from the model:

nvinfer1::INetworkDefinition* trtNetwork = parser->getTRTNetwork();

2.3. Building An Engine In C++
The next step is to invoke the TensorRT builder to create an optimized runtime. One
of the functions of the builder is to search through its catalog of CUDA kernels for the
fastest implementation available, and thus it is necessary use the same GPU for building
as that on which the optimized engine will run.

The builder has many properties that you can set in order to control such things as the
precision at which the network should run, and autotuning parameters such as how
many times TensorRT should time each kernel when ascertaining which is fastest (more
iterations leads to longer runtimes, but less susceptibility to noise.) You can also query
the builder to find out what reduced precision types are natively supported by the
hardware.

Two particularly important properties are the maximum batch size and the maximum
workspace size.

‣ The maximum batch size specifies the batch size for which TensorRT will optimize.
At runtime, a smaller batch size may be chosen.

‣ Layer algorithms often require temporary workspace. This parameter limits the
maximum size that any layer in the network can use. If insufficient scratch is
provided, it is possible that TensorRT may not be able to find an implementation for
a given layer.

 1. Build the engine using the builder object:

builder->setMaxBatchSize(maxBatchSize);
builder->setMaxWorkspaceSize(1 << 20);
ICudaEngine* engine = builder->buildCudaEngine(*network);

When the engine is built, TensorRT makes copies of the weights.
 2. Dispense with the network, builder, and parser if using one.

engine->destroy();
network->destroy();
builder->destroy();

2.4. Serializing A Model In C++
To serialize, you are transforming the engine into a format to store and use at a later time
for inference. To use for inference, you would simply deserialize the engine. Serializing

https://en.wikipedia.org/wiki/Serialization

Working With TensorRT Using The C++ API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 18

and deserializing are optional. Since creating an engine from the Network Definition can
be time consuming, you could avoid rebuilding the engine every time the application
reruns by serializing it once and deserializing it while inferencing. Therefore, after the
engine is built, users typically want to serialize it for later use.

Building can take some time, so once the engine is built, you will typically want to
serialize it for later use. It is not absolutely necessary to serialize and deserialize a model
before using it for inference – if desirable, the engine object can be used for inference
directly.

Serialized engines are not portable across platforms or TensorRT versions. Engines are
specific to the exact GPU model they were built on (in addition to platforms and the
TensorRT version).

 1. Run the builder as a prior offline step and then serialize:

IHostMemory *serializedModel = engine->serialize();
// store model to disk
// <…>
serializedModel->destroy();

 2. Create a runtime object to deserialize:

IRuntime* runtime = createInferRuntime(gLogger);
ICudaEngine* engine = runtime->deserializeCudaEngine(modelData, modelSize,
 nullptr);

The final argument is a plugin layer factory for applications using custom layers. For
more information, see Extending TensorRT With Custom Layers.

2.5. Performing Inference In C++
The following steps illustrate how to perform inference in C++ now that you have an
engine.

 1. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are
held in an execution context:

IExecutionContext *context = engine->createExecutionContext();

An engine can have multiple execution contexts, allowing one set of weights to
be used for multiple overlapping inference tasks. For example, you can process
images in parallel CUDA streams using one engine and one context per stream.
Each context will be created on the same GPU as the engine.

 2. Use the input and output blob names to get the corresponding input and output
index:

int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);

Working With TensorRT Using The C++ API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 19

 3. Using these indices, set up a buffer array pointing to the input and output buffers on
the GPU:

void* buffers[2];
buffers[inputIndex] = inputbuffer;
buffers[outputIndex] = outputBuffer;

 4. TensorRT execution is typically asynchronous, so enqueue the kernels on a CUDA
stream:

context.enqueue(batchSize, buffers, stream, nullptr);

It is common to enqueue asynchronous memcpy() before and after the kernels to
move data from the GPU if it is not already there. The final argument to enqueue()
is an optional CUDA event which will be signaled when the input buffers have been
consumed and their memory may be safely reused.

To determine when the kernels (and possibly memcpy()) are complete, use standard
CUDA synchronization mechanisms such as events, or waiting on the stream.

2.6. Memory Management In C++
TensorRT provides two mechanisms to allow the application more control over device
memory.

By default, when creating an IExecutionContext, persistent device
memory is allocated to hold activation data. To avoid this allocation, call
createExecutionContextWithoutDeviceMemory. It is then the application’s
responsibility to call IExecutionContext::setDeviceMemory() to provide the
required memory to run the network. The size of the memory block is returned by
ICudaEngine::getDeviceMemorySize().

In addition, the application can supply a custom allocator for use during build
and runtime by implementing the IGpuAllocator interface. Once the interface is
implemented, call

setGpuAllocator(&allocator);

on the IBuilder or IRuntime interfaces. All device memory will then allocated and
freed through this interface.

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 20

Chapter 3.
WORKING WITH TENSORRT USING THE
PYTHON API

The following sections highlight the TensorRT user goals and tasks that you can perform
using the Python API. These sections focus on using the Python API without any
frameworks. Further details are provided in the Samples section and are linked to below
where appropriate.

The assumption is that you are starting with a trained model. This chapter will cover the
following necessary steps in using TensorRT:

‣ Creating a TensorRT network definition from your model
‣ Invoking the TensorRT builder to create an optimized runtime engine from the

network
‣ Serializing and deserializing the engine so that it can be rapidly recreated at runtime
‣ Feeding the engine with data to perform inference

Python API vs C++ API

In essence, the C++ API and the Python API should be close to identical in supporting
your needs. The main benefit of the Python API is that data preprocessing and
postprocessing is easy to use because you’re able to use a variety of libraries like NumPy
and SciPy.

The C++ API should be used in any performance critical scenarios, as well as in
situations where safety is important, for example, like in automotive. For more
information about the C++ API, see Working With TensorRT Using The C++ API.

For more information about how to optimize performance using Python, see How Do I
Optimize My Python Performance? from the Best Practices guide.

3.1. Importing TensorRT Into Python
 1. Import TensorRT:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-python
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-python

Working With TensorRT Using The Python API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 21

import tensorrt as trt

 2. Implement a logging interface through which TensorRT reports errors, warnings,
and informational messages. The following code shows how to implement the
logging interface. In this case, we have suppressed informational messages, and
report only warnings and errors. There is a simple logger included in the TensorRT
Python bindings.

TRT_LOGGER = trt.Logger(trt.Logger.WARNING)

3.2. Creating A Network Definition In Python
The first step in performing inference with TensorRT is to create a TensorRT network
from your model. The easiest way to achieve this is to import the model using the
TensorRT parser library, (see Importing A Model Using A Parser In Python, Importing
From Caffe Using Python, Importing From TensorFlow Using Python, and Importing
From ONNX Using Python), which supports serialized models in the following formats:

‣ Caffe (both BVLC and NVCaffe)
‣ ONNX 1.0 and 1.1, and
‣ UFF (used for TensorFlow)

An alternative is to define the model directly using the TensorRT API, (see Creating A
Network Definition From Scratch Using The Python API). This requires you to make a
small number of API calls to define each layer in the network graph, and to implement
your own import mechanism for the model’s trained parameters.

TensorRT Python API is available for x86_64 platform only. For more information
please see Deep Learning SDK Documentation - TensorRT workflows.

3.2.1. Creating A Network Definition From Scratch Using
The Python API
When creating a network, you must first define the engine and create a builder object
for inference. The Python API is used to create a network and engine from the Network
APIs. The network definition reference is used to add various layers to the network. For
more information about using the Python API to create a network and engine, see the
network_api_pytorch_mnist sample.

The following code illustrates how to create a simple network with Input, Convolution,
Pooling, FullyConnected, Activation and SoftMax layers.

Create the builder and network
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network:
 # Configure the network layers based on the weights provided. In this case, the
 weights are imported from a pytorch model.
 # Add an input layer. The name is a string, dtype is a TensorRT dtype, and the
 shape can be provided as either a list or tuple.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#python

Working With TensorRT Using The Python API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 22

 input_tensor = network.add_input(name=INPUT_NAME, dtype=trt.float32,
 shape=INPUT_SHAPE)

 # Add a convolution layer
 conv1_w = weights['conv1.weight'].numpy()
 conv1_b = weights['conv1.bias'].numpy()
 conv1 = network.add_convolution(input=input_tensor, num_output_maps=20,
 kernel_shape=(5, 5), kernel=conv1_w, bias=conv1_b)
 conv1.stride = (1, 1)

 pool1 = network.add_pooling(input=conv1.get_output(0),
 type=trt.PoolingType.MAX, window_size=(2, 2))
 pool1.stride = (2, 2)
 conv2_w = weights['conv2.weight'].numpy()
 conv2_b = weights['conv2.bias'].numpy()
 conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w,
 conv2_b)
 conv2.stride = (1, 1)

 pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
 pool2.stride = (2, 2)

 fc1_w = weights['fc1.weight'].numpy()
 fc1_b = weights['fc1.bias'].numpy()
 fc1 = network.add_fully_connected(input=pool2.get_output(0), num_outputs=500,
 kernel=fc1_w, bias=fc1_b)

 relu1 = network.add_activation(fc1.get_output(0), trt.ActivationType.RELU)

 fc2_w = weights['fc2.weight'].numpy()
 fc2_b = weights['fc2.bias'].numpy()
 fc2 = network.add_fully_connected(relu1.get_output(0), OUTPUT_SIZE, fc2_w,
 fc2_b)

 fc2.get_output(0).name =OUTPUT_NAME
 network.mark_output(fc2.get_output(0))

3.2.2. Importing A Model Using A Parser In Python
To import a model using the Python Parser API, you will need to perform the following
high-level steps:

 1. Create the TensorRT builder and network.
 2. Create the TensorRT parser for the specific format.
 3. Use the parser to parse the imported model and populate the network.

For examples regarding each of these steps and sample code, see Importing From Caffe
Using Python, Importing From TensorFlow Using Python, and Importing From ONNX
Using Python.

The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs. For
more information, see the Python Parser API.

3.2.3. Importing From Caffe Using Python

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/parsers.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#builder
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#networkdefinition
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/parsers.html

Working With TensorRT Using The Python API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 23

The following steps illustrate how to import a Caffe model directly using the CaffeParser
and the Python API. Refer to the introductory_parser_samples sample for more
information.

 1. Import TensorRT.

import tensorrt as trt

 2. Define the data type. In this example, we will use float32.

datatype = trt.float32

 3. Additionally, define some paths. Change the following paths to reflect where you
placed the model included with the samples:

deploy_file = 'data/mnist/mnist.prototxt'
model_file = 'data/mnist/mnist.caffemodel'

 4. Create the builder, network, and parser:

with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as
 network, trt.CaffeParser() as parser:
model_tensors = parser.parse(deploy=deploy_file, model=model_file,
 network=network, dtype=datatype)

The parser returns the model_tensors, which is a table containing the mapping
from tensor names to ITensor objects.

3.2.4. Importing From TensorFlow Using Python
The following steps illustrate how to import a TensorFlow model directly using the
UffParser and the Python API. This sample can be found in the <site-packages>/
tensorrt/samples/python/end_to_end_tensorflow_mnist directory. For more
information, see the end_to_end_tensorflow_mnist Python sample.

 1. Import TensorRT:

import tensorrt as trt

 2. Create a frozen TensorFlow model for the tensorflow model. The instructions on
freezing a TensorFlow model into a stream can be found in Freezing A TensorFlow
Graph.

 3. Use the UFF converter to convert a frozen tensorflow model to a UFF file.
Typically, this is as simple as:

convert-to-uff frozen_inference_graph.pb

Alternatively, you can use the uff python module and convert the TensorFlow
GraphDef directly.

 4. Define some paths. Change the following paths to reflect where you placed the
model that is included with the samples:

model_file = '/data/mnist/mnist.uff

 5. Create the builder, network, and parser:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html

Working With TensorRT Using The Python API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 24

with builder = trt.Builder(TRT_LOGGER) as builder, builder.create_network()
 as network, trt.UffParser() as parser:
 parser.register_input("Placeholder", (1, 28, 28))
 parser.register_output("fc2/Relu")
parser.parse(model_file, network)

3.2.5. Importing From ONNX Using Python

Restriction Since the ONNX format is quickly developing, you may encounter a
version mismatch between the model version and the parser version. The ONNX Parser
shipped with TensorRT 5.0 RC supports ONNX IR (Intermediate Representation) version
0.0.3, opeset version 7.

In general, the newer version of the ONNX Parser is designed to be backward
compatible, therefore, encountering a model file produced by an earlier version of
ONNX exporter should not cause a problem. There could be some exceptions when the
changes were not backward compatible. In this case, convert the earlier ONNX model
file into a later supported version. For more information on this subject, see ONNX
Model Opset Version Converter.

It is also possible that the user model was generated by an exporting tool supporting
later opsets than supported by the ONNX parser shipped with TensorRT. In this
case, check whether the latest version of TensorRT released to GitHub onnx-
tensorrt supports the required version. The supported version is defined by the
BACKEND_OPSET_VERSION variable in onnx_trt_backend.cpp. Download and build
the latest version of ONNX TensorRT Parser from the GitHub. The instructions for
building can be found here: TensorRT backend for ONNX.

The following steps illustrate how to import an ONNX model directly
using the OnnxParser and the Python API. For more information, see the
introductory_parser_samples Python sample.

 1. Import TensorRT:

import tensorrt as trt

 2. Create the build, network, and parser:

with builder = trt.Builder(TRT_LOGGER) as builder, builder.create_network()
 as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
with open(model_path, 'rb') as model:
parser.parse(model.read())

3.2.6. Importing From PyTorch And Other Frameworks
Using TensorRT with PyTorch (or any other framework with NumPy compatible
weights) involves replicating the network architecture using the TensorRT API, (see
Creating A Network Definition From Scratch Using The Python API), and then copying

https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt/blob/master/onnx_trt_backend.cpp
https://github.com/onnx/onnx-tensorrt/blob/master/README.md
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Working With TensorRT Using The Python API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 25

the weights from PyTorch. For more information, see Working With PyTorch And Other
Frameworks.

To perform inference, follow the instructions outlined in Performing Inference In
Python.

3.3. Building An Engine In Python
One of the functions of the builder is to search through its catalog of CUDA kernels
for the fastest implementation available, and thus it is necessary use the same GPU for
building as that on which the optimized engine will run.

The builder has many properties that you can set in order to control such things as
the precision at which the network should run, and autotuning parameters such as
how many times TensorRT should time each kernel when ascertaining which is fastest
(more iterations leads to longer runtimes, but less susceptibility to noise.) You can also
query the builder to find out what mixed precision types are natively supported by the
hardware.

Two particularly important properties are the maximum batch size and the maximum
workspace size.

‣ The maximum batch size specifies the batch size for which TensorRT will optimize.
At runtime, a smaller batch size may be chosen.

‣ Layer algorithms often require temporary workspace. This parameter limits the
maximum size that any layer in the network can use. If insufficient scratch is
provided, it is possible that TensorRT may not be able to find an implementation for
a given layer.

For more information about building an engine in Python, see the
introductory_parser_samples sample.

 1. Build the engine using the builder object:

builder.max_batch_size = max_batch_size
builder.max_workspace_size = 1 << 20 # This determines the amount of memory
 available to the builder when building an optimized engine and should
 generally be set as high as possible.
with trt.Builder(TRT_LOGGER) as builder:
with builder.build_cuda_engine(network) as engine:
Do inference here.

When the engine is built, TensorRT makes copies of the weights.
 2. Perform inference. To perform inference, follow the instructions outlined in

Performing Inference In Python.

3.4. Serializing A Model In Python

Working With TensorRT Using The Python API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 26

To serialize, you are transforming the engine into a format to store and use at a later time
for inference. To use for inference, you would simply deserialize the engine. Serializing
and deserializing are optional. Since creating an engine from the Network Definition can
be time consuming, you could avoid rebuilding the engine every time the application
reruns by serializing it once and deserializing it while inferencing. Therefore, after the
engine is built, users typically want to serialize it for later use.

From here onwards you can either serialize the engine or you can use the engine directly
for inference. Serializing and deserializing a model is an optional step before using it for
inference - if desirable, the engine object can be used for inference directly.

Serialized engines are not portable across platforms or TensorRT versions. Engines are
specific to the exact GPU model they were built on (in addition to platforms and the
TensorRT version).

 1. Serialize the model to a modelstream:

serialized_engine = engine.serialize()

 2. Deserialize modelstream to perform inference. Deserializing requires creation of a
runtime object:

with trt.Runtime(TRT_LOGGER) as runtime:
engine = runtime.deserialize_cuda_engine(serialized_engine)

The final argument is a plugin layer factory for applications using custom layers, and
is optional otherwise. More details can be found in Extending TensorRT With Custom
Layers.

It is also possible to save a serialized engine to a file, and read it back from the file:

 1. Serialize the engine and write to a file:

with open(“sample.engine”, “wb”) as f:
 f.write(engine.serialize())

 2. Read the engine from the file and deserialize:

with open(“sample.engine”, “rb”) as f, trt.Runtime(TRT_LOGGER) as runtime:
 engine = runtime.deserialize_cuda_engine(f.read())

3.5. Performing Inference In Python
The following steps illustrate how to perform inference in Python, now that you have an
engine.

 1. Allocate some host and device buffers for inputs and outputs:

Determine dimensions and create page-locked memory buffers (i.e. won't be
 swapped to disk) to hold host inputs/outputs.
 h_input = cuda.pagelocked_empty(engine.get_binding_shape(0).volume(),
 dtype=np.float32)

https://en.wikipedia.org/wiki/Serialization

Working With TensorRT Using The Python API

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 27

 h_output = cuda.pagelocked_empty(engine.get_binding_shape(1).volume(),
 dtype=np.float32)
 # Allocate device memory for inputs and outputs.
 d_input = cuda.mem_alloc(h_input.nbytes)
 d_output = cuda.mem_alloc(h_output.nbytes)
 # Create a stream in which to copy inputs/outputs and run inference.
 stream = cuda.Stream()

 2. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are
held in an execution context:

with engine.create_execution_context() as context:
 # Transfer input data to the GPU.
 cuda.memcpy_htod_async(d_input, h_input, stream)
 # Run inference.
 context.execute_async(bindings=[int(d_input), int(d_output)],
 stream_handle=stream.handle)
 # Transfer predictions back from the GPU.
 cuda.memcpy_dtoh_async(h_output, d_output, stream)
 # Synchronize the stream
 stream.synchronize()
 # Return the host output.
return h_output

An engine can have multiple execution contexts, allowing one set of weights to
be used for multiple overlapping inference tasks. For example, you can process
images in parallel CUDA streams using one engine and one context per stream.
Each context will be created on the same GPU as the engine.

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 28

Chapter 4.
EXTENDING TENSORRT WITH CUSTOM
LAYERS

TensorRT supports many types of layers and its functionality is continually extended;
however, there may be cases in which the layers supported do not cater to the
specific needs of a model. In this case, users can extend TensorRT functionalities by
implementing custom layers using the IPluginExt class for the C++ and Python API.
Custom layers, often referred to as plugins, are implemented and instantiated by an
application, and their lifetime must span their use within a TensorRT engine.

4.1. Adding Custom Layers Using The C++ API
A custom layer is implemented by extending the IPluginExt and IPluginCreator
classes.
IPluginExt

IPluginExt includes versioning support and helps enable custom layers that
support other data formats besides NCHW and single precision. It also includes the
ability to clone plugin objects in the network, builder, and engine so that they each
have their own copy of the plugin object and plugin parameters. If there are multiple
builders created for the same network, each builder will have their own copy of the
plugin object and can be independently destroyed.

IPluginCreator
IPluginCreator is a creator class for custom layers using which, users can get
plugin name, version and plugin field parameters. It also provides methods to create
the plugin object during network build phase and deserialize it during inference.

TensorRT also provides the ability to register a plugin by calling
REGISTER_TENSORRT_PLUGIN(pluginCreator) which statically registers the Plugin
Creator to the Plugin Registry. During runtime, the Plugin Registry can be queried using
the extern function getPluginRegistry(). The Plugin Registry stores a pointer to
all the registered Plugin Creators and can be used to look up a specific Plugin Creator
based on the plugin name and version. TensorRT library contains plugins statically
registered in the Plugin Registry. The version of all these plugins is set to 1. The names of
these plugins are:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginExt.html

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 29

‣ RPROI_TRT
‣ Normalize_TRT
‣ PriorBox_TRT
‣ GridAnchor_TRT
‣ NMS_TRT
‣ LReLU_TRT
‣ Reorg_TRT
‣ Region_TRT

To use TensorRT registered plugins in your application, the
libnvinfer_plugin.so library must be loaded. This can be done by calling
registerAllTensorRTPlugins() in your application code. Alternatively, dlopen
can also be used.

In the current version, the Plugin Registry will only register plugins with a unique
{name, version} tuple. The API for this is likely to change in future versions to
support multiple plugins with same names.

For more information about these plugins, see the NvInferPlugin.h File Reference.

Using the Plugin Creator, the IPluginCreator::createPlugin() function can be
called which returns a plugin object of type IPluginExt. This object can be added to the
TensorRT network using addPluginExt() which creates and adds a layer to a network,
and then binds the layer to the given plugin. The method also returns a pointer to the
layer (of type IPluginLayer), which can be used to access the layer or the plugin itself
(via getPlugin()).

auto creator = getPluginRegistry()->getPluginCreator(pluginName, pluginVersion);
const PluginFieldCollection* pluginFC = creator->getFieldNames();
//populate the field parameters (say layerFields) for the plugin layer
PluginFieldCollection *pluginData = parseAndFillFields(pluginFC, layerFields);
IPluginExt *pluginObj = creator->createPlugin(layerName, pluginData);
auto layer = network.addPluginExt(&inputs[0], int(inputs.size()), pluginObj);
… (build rest of the network and serialize engine)
pluginObj->destroy() // Destroy the plugin object
… (destroy network, engine, builder)
… (free allocated pluginData)

pluginData should allocate the PluginField entries on the heap before passing to
createPlugin.

The createPlugin method above will create a new plugin object on the heap and
return the pointer to it. Ensure you destroy the pluginObj, as shown above, to avoid
a memory leak.

During serialization, the TensorRT engine will internally store the plugin type
and plugin version for all IPluginExt type plugins. During deserialization,
this information is looked up by the TensorRT engine to find the Plugin Creator
from the Plugin Registry. This enables the TensorRT engine to internally call the

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/_nv_infer_plugin_8h.html

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 30

IPluginCreator::deserializePlugin() method. The plugin object created
during deserialization will be destroyed internally by the TensorRT engine by calling
IPluginExt::destroy() method.

In previous versions of TensorRT, you had to implement the
nvinfer1::IPluginFactory class to call the createPlugin method during
deserialization. This is no longer necessary for plugins registered with TensorRT and
added using addPluginExt.

4.1.1. Example 1: Adding A Custom Layer Using C++ For
Caffe
To add a custom layer in C++, implement the IPluginExt class. For Caffe
based networks, if using the TensorRT Caffe Parser, you will also implement the
nvcaffeparser1::IPluginFactoryExt and nvinfer1::IPluginFactory classes.
For more information, see Using Custom Layers When Importing A Model From A
Framework.

The following sample code adds a new plugin called FooPlugin:

class FooPlugin : public IPluginExt
{
 ...implement all class methods for your plugin
};

class MyPluginFactory : public nvinfer1::IPluginFactory, public
 nvcaffeparser1::IPluginFactoryExt
{
 ...implement all factory methods for your plugin
};

If you are using plugins registered with the TensorRT plugin registry (see Adding
Custom Layers Using The C++ API for how to register your plugin), then you do not
need to implement the nvinfer1::IPluginFactory class. However, you do need to
implement the IPluginCreator class instead and register it.

class FooPluginCreator : public IPluginCreator
{
 ...implement all creator methods here
};
REGISTER_TENSORRT_PLUGIN(FooPluginCreator);

The following samples illustrate how to add a custom plugin layer using C++ for Caffe
networks:

‣ samplePlugin has a user implemented plugin
‣ sampleFasterRCNN uses plugins registered with the TensorRT Plugin Registry

4.1.2. Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using C++
In order to run TensorFlow networks with TensorRT, you must first convert it to the UFF
format.

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 31

The following steps add a custom plugin layer in C++ for TensorFlow networks:

 1. Implement the IPluginExt and IPluginCreator classes as shown in Example 1:
Adding A Custom Layer Using C++ For Caffe.

 2. Map the TensorFlow operation to the plugin operation. You can use graphsurgeon
for this. For example, refer to the following code snippet to map the TensorFlow
Relu6 operation to a plugin:

import graphsurgeon as gs
my_relu6 = gs.create_plugin_node(name=”MyRelu6”, op=”Relu6_TRT”)
Namespace_plugin_map = { “tf_relu6” : my_relu6 }
def preprocess(dynamic_graph):
 dynamic_graph.collapse_namespaces(namespace_plugin_map)

In the above code, tf_relu6 is the name of the Relu6 node in the TensorFlow
graph. Save the code above to a file called config.py. If the plugin layer expects
parameters, they should be passed in as arguments to gs.create_plugin_node.

 3. Call the UFF converter with the preprocess flag set:

convert-to-uff frozen_inference_graph.pb -p config.py -t

 4. Run the pre-processed and converted UFF file with TensorRT using the UFF parser.
For details, see Using Custom Layers When Importing A Model From A Framework.

The sampleUffSSD sample illustrates how to add a custom layer that is
not supported in UFF using C++. See config.py in the sample folder for a
demonstration of how to pre-process the graph.

4.2. Adding Custom Layers Using The Python API
Although the C++ API is the preferred language to implement custom layers; due to
easily accessing libraries like CUDA and cuDNN, you can also work with custom layers
in a Python applications.

You can use the C++ API to create a custom layer, package the layer using pybind11
in Python, then load the plugin into a Python application. For more information, see
Creating A Network Definition In Python.

The same custom layer implementation can be used for both C++ and Python. For more
information, see the fc_plugin_caffe_mnist Python sample located in the /usr/src/
tensorrt/samples/fc_plugin_caffe_mnist/ directory.

4.2.1. Example 1: Adding A Custom Layer to a TensorRT
Network Using Python
Custom layers can be added to any TensorRT network in Python using plugin nodes.
The Python API has a function called add_plugin_ext which enables you to add a
plugin node to a network. The following example illustrates this. It creates a simple
TensorRT network and adds a Leaky ReLU plugin node by looking up TensorRT Plugin
Registry.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html?highlight=add_plugin_ext#tensorrt.infer.NetworkDefinition.add_plugin_ext

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 32

import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger()

trt.register_all_tensorrt_plugins()
PLUGIN_CREATORS = trt.get_plugin_registry().plugin_creator_list

def get_trt_plugin(plugin_name):
 plugin = None
 for plugin_creator in PLUGIN_CREATORS:
 if plugin_creator.name == plugin_name:
 lrelu_slope_field = trt.PluginField("neg_slope", np.array([0.1],
 dtype=np.float32), trt.PluginFieldType.FLOAT32)
 field_collection =
 trt.PluginFieldCollection([lrelu_slope_field])
 plugin = plugin_creator.create_plugin(name=plugin_name,
 field_collection=field_collection)
 return plugin

def main():
 with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as
 network:
 builder.max_workspace_size = 2**20
 input_layer = network.add_input(name="input_layer", dtype=trt.float32,
 shape=(1, 1))
 lrelu = network.add_plugin_ext(inputs=[input_layer],
 plugin=get_trt_plugin("LReLU_TRT"))
 lrelu.get_output(0).name = "outputs"
 network.mark_output(lrelu.get_output(0))

4.2.2. Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using Python
TensorFlow networks can be converted to UFF format and run with TensorRT using
the Python interface. In order to do this, we make use of the graphsurgeon API. If you
are writing your own plugin, you need to implement it in C++ by implementing the
IPluginExt and IPluginCreator classes as shown in Example 1: Adding A Custom
Layer Using C++ For Caffe.

The following steps illustrate how you can use the UFF Parser to run custom layers
using plugin nodes registered with the TensorRT Plugin Registry.

 1. Load the libnvinfer_plugin.so by calling trt.register_all_tensorrt_plugins
(or load the .so file where you have registered your own plugin). This will register
the plugin with TensorRT Plugin Registry.

 2. Prepare the network and check the TensorFlow output:

tf_sess = tf.InteractiveSession()
tf_input = tf.placeholder(tf.float32, name="placeholder")
tf_lrelu = tf.nn.leaky_relu(tf_input, alpha=lrelu_alpha, name="tf_lrelu")
tf_result = tf_sess.run(tf_lrelu, feed_dict={tf_input: lrelu_args})
tf_sess.close()

 3. Prepare the namespace mappings. The op name LReLU_TRT corresponds to the
Leaky ReLU plugin shipped with TensorRT.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 33

trt_lrelu = gs.create_plugin_node(name="trt_lrelu", op="LReLU_TRT",
 negSlope=lrelu_alpha)
namespace_plugin_map = {
 "tf_lrelu": trt_lrelu
 }

 4. Transform the TensorFlow graph using graphsurgeon and save to UFF:

dynamic_graph = gs.DynamicGraph(tf_lrelu.graph)
dynamic_graph.collapse_namespaces(namespace_plugin_map)

 5. Run the UFF parser and compare results with TensorFlow:

uff_model = uff.from_tensorflow(dynamic_graph.as_graph_def(), ["trt_lrelu"],
 output_filename=model_path, text=True)
parser = trt.UffParser()
parser.register_input("placeholder", [lrelu_args.size])
parser.register_output("trt_lrelu")
parser.parse(model_path, trt_network)

For more information, see the uff_custom_plugin sample.

4.3. Using Custom Layers When Importing A Model
From A Framework
TensorRT parsers use the layer operation field to identify if a particular layer in the
network is a TensorRT supported operation.

TensorFlow

Compared to previous releases of TensorRT, there are several changes with how custom
layers in TensorFlow can be run with the TensorRT UFF parser. For TensorFlow models,
use the UFF converter to convert your graph to a UFF file. In this process, if the network
contains plugin layers it is also necessary to map the operation field of those layers to
the corresponding registered plugin names in TensorRT. These plugins can either be
plugins shipped with TensorRT or custom plugins that you have written. The plugin
field names in the network should also match the fields expected by the plugin. This can
be done using graphsurgeon, as explained in Preprocessing A TensorFlow Graph Using
the Graph Surgeon API and as demonstrated in sampleUffSSD by using a config file
with the UFF converter.

The UFF Parser will look up the Plugin Registry for every unsupported operation.
If it finds a match with any of the registered plugin names, the parser will parse the
plugin field parameters from the input network and create a plugin object using them.
This object is then added to the network. In previous versions of TensorRT, you had to
implement the nvuffparser::IPluginFactoryExt and manually pass the plugin
parameters to the createPlugin(...) function. Although this flow can still be
exercised, it is no longer necessary with the new additions to the Plugin API. For more
information, see:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 34

‣ IPluginExt and IPluginCreator in the C++ API
‣ IPluginExt and IPluginCreator in the Python API

Caffe

For Caffe models, use the nvcaffeparser1::IPluginFactoryExt class. The Plugin
Registry is not used by the NvCaffeParser, since there is no way to store and parse
custom layer parameters in a Caffe prototxt file. The setPluginFactoryExt method
of the parser sets the factory in the parser to enable custom layers. While parsing a
model description, for each layer, the parser invokes isPluginExt to check with the
factory if the layer name corresponds to a custom layer; if it does, the parser instantiates
the plugin invoking createPlugin with the name of the layer (so that the factory can
instantiate the corresponding plugin), a Weights array, and the number of weights as
arguments. There is no restriction on the number of plugins that a single factory can
support if they are associated with different layer names.

For both Caffe and UFF parser use cases, if setPluginFactoryExt and
IPluginFactoryExt are used, the plugin object created during deserialization will
be internally destroyed by the engine by calling IPluginExt::destroy(). User is
only responsible for destroying the plugin object created during network creation step
as shown in Adding Custom Layers Using The C++ API.

The samplePlugin sample illustrates how to extend
nvcaffeparser1::IPluginFactoryExt to use custom layers, while sampleUffSSD
uses the UFF Parser to use custom layers. For the Python usage of custom layers
with TensorRT, refer to the fc_plugin_caffe_mnist sample for Caffe networks, and the
uff_custom_plugin sample for UFF networks.

4.3.1. Example 1: Adding A Custom Layer To A
TensorFlow Model
In order to run a TensorFlow network with TensorRT, you must first convert it to the
UFF format. During the conversion process, custom layers can be marked as plugin
nodes using the graphsurgeon utility.

The UFF converter then converts the processed graph to the UFF format which is then
run by the UFF Parser. The plugin nodes are then added to the TensorRT network by the
UFF Parser.

For details using the C++ API, see Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using C++.

For details using the Python API, see Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using Python.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_creator.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginExt.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginCreator.html

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 35

4.4. Plugin API Description
All new plugins should implement both the IPluginExt and IPluginCreator classes.
In addition, new plugins should also call the REGISTER_TENSORRT_PLUGIN(...)
macro to register the plugin with the TensorRT Plugin Registry.

4.4.1. Migrating Plugins From TensorRT 4.0.x To
TensorRT 5.0 RC
TensorRT 5.0 introduces 4 new methods to the IPluginExt class. If you have a custom
plugin implemented of type IPluginExt, you must implement these new methods
and re-compile your code, see samplePlugin for an example. The description of these
methods are as follows:
virtual void const char* getPluginType() const = 0

This method returns the plugin type or name of the plugin implemented.
virtual void const char* getPluginVersion() const = 0

This method returns the plugin version.
virtual void destroy() = 0

This method is used to destroy the plugin object and/or other memory allocated each
time a new plugin object is created. It is called whenever the builder, network, or
engine is destroyed.

virtual IPluginExt* clone() const = 0
This method clones the plugin object. This method returns a new plugin object after
copying over the plugin parameters, if any.

For the simplest migration, a typical implementation will choose unique values for type
and version. clone() would call a copy constructor and destroy() would call the
object’s destructor.

4.4.2. IPluginExt API Description
The following section describes the functions of the IPluginExt class.

To connect a plugin layer to neighboring layers and setup input and output data
structures, the builder checks for the number of outputs and their dimensions by calling
the following plugins methods:
getNbOutputs

Used to specify the number of output tensors.
getOutputDimensions

Used to specify the dimensions of an output as a function of the input dimensions.
supportsFormat

Used to check if a plugin supports a given data format.

Plugin layers can support four data formats and layouts, for example:

‣ NCHW single and half precision tensors
‣ NC/2HW2 and NHWC8 half precision tensors

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 36

The formats are enumerated by PluginFormatType.

Plugins that do not compute all data in place and need memory space in addition to
input and output tensors can specify the additional memory requirements with the
getWorkspaceSize method, which is called by the builder to determine and pre-
allocate scratch space.

During both build and inference time, the plugin layer is configured and executed,
possibly multiple times. At build time, to discover optimal configurations, the layer is
configured, initialized, executed, and terminated. Once the optimal format is selected
for a plugin, the plugin is once again configured, and then it will be initialized once
and executed as many times as needed for the lifetime of the inference application,
and finally terminated when the engine is destroyed. These steps are controlled by the
builder and the engine using the following plugin methods:
configureWithFormat

Communicates input and output number, dimensions, datatype, format, and
maximum batch size. At this point, the plugin sets up its internal state, and select the
most appropriate algorithm and data structures for the given configuration.

initialize
The configuration is known at this time and the inference engine is being created, so
the plugin can set up its internal data structures and prepare for execution.

enqueue
Encapsulates the actual algorithm and kernel calls of the plugin, and provides the
runtime batch size, pointers to input, output, and scratch space, and the CUDA
stream to be used for kernel execution.

terminate
The engine context is destroyed and all the resources held by the plugin should be
released.

In addition, the plugins also implement the following methods for plugin object memory
management:
clone

This is called every time a new builder, network or engine is created which includes
this plugin layer. It should return a new plugin object with the correct parameters.

destroy
Used to destroy the plugin object and/or other memory allocated each time a new
plugin object is created. It is called whenever the builder or network or engine is
destroyed.

4.4.3. IPluginCreator API Description
The following methods in the IPluginCreator class are used to find and create the
appropriate plugin from the Plugin Registry:
getPluginName

This returns the plugin name and should match the return value of
IPluginExt::getPluginType.

getPluginVersion
Returns the plugin version. For all internal TensorRT plugins, this defaults to 1.

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 37

getFieldNames
In order to successfully create a plugin, it is necessary to know all the field
parameters of the plugin. This method returns the PluginFieldCollection
struct with the PluginField entries populated to reflect the field name and
PluginFieldType (the data should point to nullptr).

createPlugin
This method is used to create the plugin using the PluginFieldCollection
argument. The data field of the PluginField entries should be populated to point to
the actual data for each plugin field entry.

deserializePlugin
This method is called internally by the TensorRT engine based on the plugin name
and version. It should return the plugin object to be used for inference.

4.5. Best Practices For Custom Layers

Converting User-Defined Layers

To create a custom layer implementation as a TensorRT plugin, you need to implement
the IPluginExt class and possibly the IPluginCreator class for your plugin.

For more information about both API classes, see Plugin API Description.

For Caffe networks, see Example 1: Adding A Custom Layer Using C++ For Caffe.
For TensorFlow (UFF) networks, see Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using C++.

Using The UFF Plugin API

For an example of how to use plugins with UFF in both C++ and Python, see Example 1:
Adding A Custom Layer Using C++ For Caffe and Example 2: Adding A Custom Layer
That Is Not Supported In UFF Using Python.

Debuggin Custom Layer Issues

Memory allocated in the plugin must be freed to ensure no memory leak. If
resources are acquired in the initialize() function, they need to be released in the
terminate() function. All other memory allocations should be freed preferably in
the plugin class destructor or in the destroy() method. Adding Custom Layers Using
The C++ API outlines this in detail and also provides some notes for best practices when
using plugins.

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 38

Chapter 5.
WORKING WITH MIXED PRECISION

Mixed precision is the combined use of different numerical precisions in a computational
method. TensorRT can store weights and activations, and execute layers, in 32-bit
floating point, 16-bit floating point, or quantized 8-bit integer.

Using precision lower than FP32 reduces memory usage, allowing deployment of larger
networks. Data transfers take less time, and compute performance increases, especially
on GPUs with Tensor Core support for that precision.

By default, TensorRT uses FP32 inference, but it also supports FP16 and INT8. While
running FP16 inference, it automatically converts FP32 weights to FP16 weights.

Specifying the precision for a network defines the minimum acceptable precision for
the application. Higher precision kernels may be chosen if they are faster for some
particular set of kernel parameters, or if no lower-precision kernel exists.

5.1. Enabling FP16 Inference Using C++
Setting the builder’s Fp16Mode flag indicates that 16-bit precision is acceptable.

builder->setFp16Mode(true);

This flag allows, but does not guarantee, that 16-bit kernels will be used when building
the engine.

Weights can be specified in FP16 or FP32, and they will be converted automatically to
the appropriate precision for the computation.

See sampleGoogleNet for an example of running FP16 inference.

5.2. Enabling FP16 Inference Using Python
In Python, set the fp16_mode flag as follows:

Working With Mixed Precision

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 39

builder.fp16_mode = True;

For more information, see sampleMNIST for C++.

5.3. Optimizing INT8 Calibration Using C++ API
When using 8-bit quantized representation, TensorRT needs to understand the dynamic
range of each activation tensor so that it can choose an appropriate quantization scale.
The process of determining these scale factors is called calibration, and requires the
application to pass batches of representative input for the network (typically batches
from the training set.) Experiments indicate that about 500 images is sufficient for
calibrating ImageNet classification networks.

To provide calibration data to TensorRT, implement the IInt8Calibrator interface.
The builder invokes the calibrator as follows:

‣ First, it calls getBatchSize() to determine the size of the input batch to expect
‣ Then, it repeatedly calls getBatch() to obtain batches of input. Batches should

be exactly the batch size by getBatchSize(). When there are no more batches,
getBatch() should return false.

Calibration can be slow, therefore, the IInt8Calibrator interface provides methods for
caching intermediate data. Using these methods effectively requires a more detailed
understanding of calibration.

When building an INT8 engine, the builder performs the following steps:

 1. Builds a 32-bit engine, runs it on the calibration set, and records a histogram for each
tensor of the distribution of activation values.

 2. Builds a calibration table from the histograms.
 3. Builds the INT8 engine from the calibration table and the network definition.

The calibration table can be cached. Caching is useful when building the same network
multiple times, for example, on multiple platforms. It captures data derived from the
network and the calibration set. The parameters are recorded in the table. If the network
or calibration set changes, it is the application’s responsibility to invalidate the cache.

The cache is used as follows:

‣ if a calibration table is found, calibration is skipped, otherwise:

‣ the calibration table is built from the histograms and parameters
‣ then the INT8 network is built from the network definition and the calibration table.

Cached data is passed as a pointer and length.

After you have implemented the calibrator, you can configure the builder to use it:

builder->setInt8Mode(true);
builder->setInt8Calibrator(calibrator);

Working With Mixed Precision

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 40

It is possible to cache the output of calibration using the writeCalibrationCache()
and readCalibrationCache() methods. The builder checks the cache prior to
performing calibration, and if data is found, calibration is skipped.

For more information about configuring INT8 Calibrator objects, see sampleINT8.

5.4. Optimizing INT8 Calibration Using Python
The following steps illustrate how to create an INT8 Calibrator object using the Python
API. By default, TensorRT supports INT8 Calibration.

 1. Import TensorRT:

import tensorrt as trt

 2. Similar to test/validation files, use set of input files as calibration files dataset.
Make sure the calibration files are representative of the overall inference data files.
For TensorRT to use the calibration files, we need to create batchstream object.
Batchstream object will be used to configure the calibrator.

NUM_IMAGES_PER_BATCH = 5
batchstream = ImageBatchStream(NUM_IMAGES_PER_BATCH, calibration_files)

 3. Create an Int8_calibrator object with input nodes names and batch stream:

Int8_calibrator = EntropyCalibrator(["input_node_name"], batchstream)

 4. Set INT8 mode and INT8 Calibrator:

trt_builder = trt.Builder(TRT_LOGGER)
trt_builder.int8_mode = True
trt_builder.int8_calibrator = Int8_calibrator

The rest of the logic for engine creation and inference is similar to Importing From
ONNX Using Python.

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 41

Chapter 6.
WORKING WITH DLA

NVIDIA DLA (Deep Learning Accelerator) is a fixed function accelerator engine
targeted for deep learning operations. DLA is designed to do full hardware acceleration
of convolutional neural networks. DLA supports various layers such as convolution,
deconvolution, fully-connected, activation, pooling, batch normalization, etc.

For more information about DLA support in TensorRT layers, see DLA Supported
Layers. The trtexec tool has additional arguments to run networks on DLA, see
Command Line Wrapper. To run the AlexNet network on DLA using trtexec, issue:

 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLA=1 --
fp16 --allowGPUFallback

6.1. Running On DLA During TensorRT Inference
The TensorRT builder can be configured to enable inference on DLA. DLA support is
currently limited to networks running in FP16 mode. The DeviceType enumeration is
used to specify the device that the network or layer will execute on. The following API
functions in the IBuilder class can be used to configure the network to use DLA:
setDeviceType(ILayer* layer, DeviceType deviceType)

This function can be used to set the deviceType that the layer must execute on.
getDeviceType(const ILayer* layer)

This function can be used to return the deviceType that this layer will execute on. If
the layer is executing on the GPU, this will return DeviceType::kGPU.

canRunOnDLA(const ILayer* layer)
This function can be used to check if a layer can run on DLA.

setDefaultDeviceType(DeviceType deviceType)
This function sets the default deviceType to be used by the builder. It ensures that
all the layers that can run on DLA will run on DLA, unless setDeviceType is used to
override the deviceType for a layer.

getDefaultDeviceType()
This function returns the default deviceType which was set by
setDefaultDeviceType.

Working With DLA

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 42

isDeviceTypeSet(const ILayer* layer)
This function checks whether the deviceType has been explicitly set for this layer.

resetDeviceType(ILayer* layer)
This function resets the deviceType for this layer. The value is reset to the
deviceType that is specified by setDefaultDeviceType or DeviceType::kGPU if
none specified.

getMaxDLABatchSize(DeviceType deviceType)
This function returns the maximum batch size DLA can support.

For any tensor, the total volume of index dimensions combined with the requested
batch size should not exceed the value returned by this function.

allowGPUFallback(bool setFallBackMode)
This function notifies the builder to use GPU if a layer that was supposed to run on
DLA cannot run on DLA. For more information, see GPU Fallback Mode.

reset(nvinfer1::INetworkDefinition& network)
This function can be used to reset the builder state, which sets the deviceType for
all layers to be DeviceType::kGPU. After reset, the builder can be re-used to build
another network with a different DLA config.

6.1.1. Example 1: sampleMNIST With DLA
This section provides details on how to run a TensorRT sample with DLA enabled.
The sampleMNIST sample demonstrates how to import a trained Caffe model, build
the TensorRT engine, serialize and deserialize the engine and finally use the engine to
perform inference.

The sample first creates the builder:

auto builder =
 SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(gLogger));
if (!builder) return false;
builder->setMaxBatchSize(batchSize);
builder->setMaxWorkspaceSize(16_MB);

Then, enable GPUFallback mode:

builder->allowGPUFallback(true);
builder->setFp16Mode(true);

Enable execution on DLA, where deviceType specifies the DLA core to execute on:

builder->setDefaultDeviceType(deviceType);

With these additional changes, sampleMNIST is ready to execute on DLA. To run
sampleMNIST with DLA, use the following command:

./sample_mnist --useDLA=1

6.1.2. Example 2: Enable DLA Mode For A Layer During
Network Creation

Working With DLA

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 43

In this example, let’s create a simple network with Input, Convolution and Output.

 1. Create the builder and the network:

IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetwork();

 2. Add the Input layer to the network, with the input dimensions.

auto data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{1, INPUT_H,
 INPUT_W});

 3. Add the Convolution layer with hidden layer input nodes, strides, and weights for
filter and bias.

auto conv1 = network->addConvolution(*data->getOutput(0), 20, DimsHW{5, 5},
 weightMap["conv1filter"], weightMap["conv1bias"]);
conv1->setStride(DimsHW{1, 1});

 4. Set the convolution layer to run on DLA:

if(canRunOnDLA(conv1))
{
builder->setFp16Mode(true);
builder->setDeviceType(conv1, DeviceType::kDLA0);

}

 5. Mark the output:

network->markOutput(*conv1->getOutput(0));

6.2. DLA Supported Layers
This section lists the layers supported by DLA along with the constraints associated with
each layer.

Generic restrictions while running on DLA (applicable to all layers)

‣ Max batch size supported is 32.

Batch size for DLA is the product of all index dimensions except the CHW
dimensions. For example, if input dimensions are NPQRS, the effective batch size
is N*P.

‣ Input and output tensor data format should be FP16.

Layer specific restrictions
Convolution, Deconvolution, and Fully Connected Layers
Convolution and Deconvolution Layers

‣ Width and height of kernel size must be in the range [1, 32]
‣ Width and height of padding must be in the range [0, 31]

Working With DLA

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 44

‣ Width and height of stride must be in the range [1,8] for Convolution Layer and
[1,32] for Deconvolution layer

‣ Number of output maps must be in the range [1, 8192]
‣ Axis must be 1
‣ Grouped and dilated convolution supported. Dilation values must be in the range

[1,32]

Pooling Layer

‣ Operations supported: kMIN, kMAX, kAVERAGE
‣ Width and height of the window size must be in the range [1, 8]
‣ Width and height of padding must be in the range [0, 7]
‣ Width and height of stride must be in the range [1, 16]

Activation Layer

‣ Functions supported: ReLU, Sigmoid, Hyperbolic Tangent

‣ Negative slope not supported for ReLU

ElementWise Layer

‣ Operations supported: Sum, Product, Max, and Min

Scale Layer

‣ Mode supported: Uniform, Per-Channel, and Elementwise

LRN (Local Response Normalization) Layer

‣ Window size is configurable to 3, 5, 7, or 9
‣ Normalization region supported is: ACROSS_CHANNELS

Concatenation Layer

‣ DLA supports concatenation only along the channel axis

6.3. GPU Fallback Mode
The GPUFallbackMode sets the builder to use GPU if a layer that was marked to run on
DLA could not run on DLA. A layer may not run on DLA due to the following reasons:

 1. The layer operation is not supported on DLA.
 2. The parameters specified are out of supported range for DLA.
 3. The given batch size exceeds the maximum permissible DLA batch size. For more

information, see DLA Supported Layers.

If the GPUFallbackMode is set to false, a layer set to execute on DLA, that couldn't
run on DLA will result in an error. However, with GPUFallbackMode set to true, it will
continue to execute on the GPU instead, after reporting a warning.

Working With DLA

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 45

Similarly, if defaultDeviceType is set to DeviceType::kDLA and GPUFallbackMode
is set to false, it will result in an error if any of the layers can't run on DLA. With
GPUFallbackMode set to true, it will report a warning and continue executing on the
GPU.

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 46

Chapter 7.
DEPLOYING A TENSORRT OPTIMIZED
MODEL

After you’ve created a plan file containing your optimized inference model, you can
deploy that file into your production environment. How you create and deploy the plan
file will depend on your environment. For example, you may have a dedicated inference
executable for your model that loads the plan file and then uses the TensorRT Execution
API to pass inputs to the model, execute the model to perform inference, and finally
read outputs from the model.

This section discusses how TensorRT can be deployed in some common deployment
environments.

7.1. Deploying In The Cloud
One common cloud deployment strategy for inferencing is to expose a model through a
server that implements an HTTP REST or gRPC endpoint for the model. A remote client
can then perform inferencing by sending a properly formatted request to that endpoint.
The request will select a model, provide the necessary input tensor values required by
the model, and indicate which model outputs should be calculated.

To take advantage of TensorRT optimized models within this deployment strategy does
not require any fundamental change. The inference server must be updated to accept
models represented by TensorRT plan files and must use the TensorRT Execution APIs
to load and executes those plans. An example of an inference server that provides a
REST endpoint for inferencing can be found in the Inference Server Container Release
Notes and Inference Server User Guide.

7.2. Deploying To An Embedded System
TensorRT can also be used to deploy trained networks to embedded systems such as
NVIDIA Drive PX. In this context, deployment means taking the network and using it

http://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html
http://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html
http://docs.nvidia.com/deeplearning/sdk/inference-user-guide/index.html

Deploying A TensorRT Optimized Model

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 47

in a software application running on the embedded device, such as an object detection
or mapping service. Deploying a trained network to an embedded system involves the
following steps:

 1. Export the trained network to a format such as UFF or ONNX which can be
imported into TensorRT (see Working With Deep Learning Frameworks for more
details).

 2. Write a program that uses the TensorRT C++ API to import, optimize, and serialize
the trained network to a plan file (see sections Working With Deep Learning
Frameworks, Working With Mixed Precision, and Performing Inference In C++). For
the purpose of discussion, let’s call this program make_plan.
a) Optionally, perform INT8 calibration and export a calibration cache (see Working

With Mixed Precision).
 3. Build and run make_plan on the host system to validate the trained model before

deployment to the target system.
 4. Copy the trained network (and INT8 calibration cache, if applicable) to the target

system. Re-build and re-run the make_plan program on the target system to
generate a plan file.

The make_plan program must run on the target system in order for the TensorRT
engine to be optimized correctly for that system. However, if an INT8 calibration
cache was produced on the host, the cache may be re-used by the builder on the
target when generating the engine (in other words, there is no need to do INT8
calibration on the target system itself).

After the plan file has been created on the embedded system, an embedded
application can create an engine from the plan file and perform inferencing with
the engine by using the TensorRT C++ API. For more information, see Performing
Inference In C++.

To walk through a typical use case where a TensorRT engine is deployed on an
embedded system, see:

‣ Deploying INT8 Inference For Autonomous Vehicles for DRIVE PX
‣ GitHub for Jetson and Jetpack

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://devblogs.nvidia.com/int8-inference-autonomous-vehicles-tensorrt/
https://github.com/dusty-nv/jetson-inference

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 48

Chapter 8.
WORKING WITH DEEP LEARNING
FRAMEWORKS

With the Python API, an existing model built with TensorFlow, Caffe, or an ONNX
compatible framework can be used to build a TensorRT engine using the provided
parsers. The Python API also supports frameworks that store layer weights in a NumPy
compatible format, for example PyTorch.

8.1. Supported Operations By Framework
The following lists describe the operations that are supported in a Caffe or TensorFlow
framework and in the ONNX TensorRT parser:

Caffe
These are the operations that are supported in a Caffe framework:

‣ Convolution

‣ Pooling

‣ InnerProduct

‣ SoftMax

‣ ReLU, TanH, and Sigmoid
‣ LRN

‣ Power

‣ ElementWise

‣ Concatenation

‣ Deconvolution

‣ BatchNormalization

‣ Scale

‣ Crop

‣ Reduction

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 49

‣ Reshape

‣ Permute

‣ Dropout

TensorFlow
These are the operations that are supported in a TensorFlow framework:

‣ Placeholder

‣ Const

‣ Add, Sub, Mul, Div, Minimum and Maximum
‣ BiasAdd

‣ Negative, Abs, Sqrt, Rsqrt, Pow, Exp and Log

The NvUffParser supports Neg, Abs, Sqrt, Rsqrt, Exp and Log for const
nodes only.

‣ FusedBatchNorm

‣ ReLU, TanH, and Sigmoid
‣ SoftMax

‣ Mean

‣ ConcatV2

‣ Reshape

‣ Transpose

‣ Conv2D

‣ DepthwiseConv2dNative

‣ ConvTranspose2D

‣ MaxPool

‣ AvgPool

‣ Pad is supported if followed by one of these TensorFlow layers: Conv2D,
DepthwiseConv2dNative, MaxPool, and AvgPool

ONNX
Since the ONNX parser is an open source project, the most up-to-date information
regarding the supported operations can be found in GitHub: ONNX TensorRT.

Restriction Since the ONNX format is quickly developing, you may encounter a
version mismatch between the model version and the parser version. The ONNX Parser
shipped with TensorRT 5.0 RC supports ONNX IR (Intermediate Representation) version
0.0.3, opeset version 7.

In general, the newer version of the ONNX Parser is designed to be backward
compatible, therefore, encountering a model file produced by an earlier version of
ONNX exporter should not cause a problem. There could be some exceptions when the

https://github.com/onnx/onnx-tensorrt

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 50

changes were not backward compatible. In this case, convert the earlier ONNX model
file into a later supported version. For more information on this subject, see ONNX
Model Opset Version Converter.

It is also possible that the user model was generated by an exporting tool supporting
later opsets than supported by the ONNX parser shipped with TensorRT. In this
case, check whether the latest version of TensorRT released to GitHub onnx-
tensorrt supports the required version. The supported version is defined by the
BACKEND_OPSET_VERSION variable in onnx_trt_backend.cpp. Download and build
the latest version of ONNX TensorRT Parser from the GitHub. The instructions for
building can be found here: TensorRT backend for ONNX.

These are the operations that are supported in the ONNX framework:

‣ Abs

‣ Add

‣ AveragePool

‣ BatchNormalization

‣ Ceil

‣ Clip

‣ Concat

‣ Constant

‣ Conv

‣ ConvTranspose

‣ DepthToSpace

‣ Div

‣ Dropout

‣ Elu

‣ Exp

‣ Flatten

‣ Floor

‣ Gemm

‣ GlobalAveragePool

‣ GlobalMaxPool

‣ HardSigmoid

‣ Identity

‣ InstanceNormalization

‣ LRN

‣ LeakyRelu

‣ Log

‣ LogSoftmax

‣ MatMul

https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt/blob/master/onnx_trt_backend.cpp
https://github.com/onnx/onnx-tensorrt/blob/master/README.md

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 51

‣ Max

‣ MaxPool

‣ Mean

‣ Min

‣ Mul

‣ Neg

‣ PRelu

‣ Pad

‣ Pow

‣ Reciprocal

‣ ReduceL1

‣ ReduceL2

‣ ReduceLogSum

‣ ReduceLogSumExp

‣ ReduceMax

‣ ReduceMean

‣ ReduceMin

‣ ReduceProd

‣ ReduceSum

‣ ReduceSumSquare

‣ Relu

‣ Reshape

‣ Selu

‣ Shape

‣ Sigmoid

‣ Size

‣ Softmax

‣ Softplus

‣ SpaceToDepth

‣ Split

‣ Squeeze

‣ Sub

‣ Sum

‣ Tanh

‣ TopK

‣ Transpose

‣ Unsqueeze

‣ Upsample

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 52

8.2. Working With TensorFlow
For information on using TensorRT with a TensorFlow model, see:

‣ The end_to_end_tensorflow_mnist Python sample
‣ Generate TensorRT Engines from Tensorflow (or other UFF Compatible

Frameworks)

8.2.1. Freezing A TensorFlow Graph
In order to use the command-line UFF utility, TensorFlow graphs must be frozen and
saved as .pb files. For more information, see:

‣ A Tool Developer's Guide to TensorFlow Model Files: Freezing
‣ Exporting trained TensorFlow models to C++ the RIGHT way!

8.2.2. Freezing A Keras Model
You can use the following sample code to freeze a Keras model.

from keras.models import load_model
import keras.backend as K
from tensorflow.python.framework import graph_io
from tensorflow.python.tools import freeze_graph
from tensorflow.core.protobuf import saver_pb2
from tensorflow.python.training import saver as saver_lib

def convert_keras_to_pb(keras_model, out_names, models_dir,
 model_filename):
 model = load_model(keras_model)
 K.set_learning_phase(0)
 sess = K.get_session()
 saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V2)
 checkpoint_path = saver.save(sess, 'saved_ckpt', global_step=0,
 latest_filename='checkpoint_state')
 graph_io.write_graph(sess.graph, '.', 'tmp.pb')
 freeze_graph.freeze_graph('./tmp.pb', '',
 False, checkpoint_path, out_names,
 "save/restore_all", "save/Const:0",
 models_dir+model_filename, False, "")

8.2.3. Converting A Frozen Graph To UFF
You can use the following sample code to convert the .pb frozen graph to .uff format
file.

convert-to-uff input_file [-o output_file] [-O output_node]

You can list the TensorFlow layers:

convert-to-uff input_file -l

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/workflows/tf_to_tensorrt.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/workflows/tf_to_tensorrt.html
https://www.tensorflow.org/extend/tool_developers/#freezing
https://medium.com/@hamedmp/exporting-trained-tensorflow-models-to-c-the-right-way-cf24b609d183

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 53

8.2.4. Working With TensorFlow RNN Weights
This section provides information about TensorFlow weights and their stored formats.
Additionally, the following sections will guide you on how to approach and decrypt
RNN weights from TensorFlow.

8.2.4.1. TensorFlow RNN Cells Supported In TensorRT

An RNN layer in TensorRT can be thought of as a MultiRNNCell from TensorFlow. One
layer consists of sublayers with the same configurations, in other words, hidden and
embedding size. This encapsulation is done so that the internal connections between the
multiple sublayers can be abstracted away from the user. This allows for simpler code
when deeper networks are involved.

TensorRT supports four different RNN layer types. These layer types are RNN relu,
RNN tanh, LSTM, and GRU. The TensorFlow cells that match these types are:

TensorRT RNN Relu/Tanh Layer

 1. BasicRNNCell

 a. Permitted activation functions: tf.tanh and tf.nn.relu.
 b. This is a platform independent cell.

TensorRT LSTM Layer

 1. BasicLSTMCell

 a. forget_bias must be set to 0 when creating an instance of this cell in
TensorFlow. To support a non-zero forget bias, you need to preprocess the bias
by adding the parameterized forget bias to the dumped TensorFlow forget
biases.

 b. This is a platform independent cell.
 2. CudnnCompatibleLSTMCell

 a. Same condition for the forget bias applies to this cell as it does to the
BasicLSTMCell.

 b. TensorRT does not currently support peepholes so use_peepholes must be set
to False.

 c. This is a cuDNN compatible cell.

TensorRT GRU Layer

 1. CudnnCompatibleGRUCell

 a. This is a cuDNN compatible cell.
 b. Differs in implementation from standard, platform independent GRU cells. Due

to this, CudnnCompatiableGRUCell is the correct cell to use with TensorRT.

8.2.4.2. Maintaining Model Consistency Between TensorFlow And
TensorRT

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicRNNCell
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell
https://www.tensorflow.org/api_docs/python/tf/contrib/cudnn_rnn/CudnnCompatibleLSTMCell
https://www.tensorflow.org/api_docs/python/tf/contrib/cudnn_rnn/CudnnCompatibleGRUCell
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/GRUCell

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 54

For any TensorFlow cell not listed in TensorFlow RNN Cells Supported In TensorRT,
consult the TensorRT API and TensorFlow API to ensure the cell is mathematically
equivalent to what TensorRT supports and the storage format is consistent with the
format that you are expecting. One good way of doing this is to set up unit tests to
validate the output from TensorRT by using TensorFlow as the ground truth.

8.2.4.3. Workflow

We will be using the following workflow to extract and use TensorFlow weights:

Figure 12 TensorFlow RNN Workflow

8.2.4.4. Dumping The TensorFlow Weights

Python script dumpTFWts.py can be used to dump all the variables and weights from
a given TensorFlow checkpoint. The script is located in the /usr/src/tensorrt/
samples/common/dumpTFWts.py directory. Issue dumpTFWts.py -h for more
information on the usage of this script.

8.2.4.5. Loading Dumped Weights

Function loadWeights() loads from the dump of the dumpTFWts.py script. It has
been provided as an example in sampleCharRNN. The function signature is:

std::map<std::string, Weights> loadWeights(const std::string file,
 std::unordered_set<std::string> names);

This function loads the weights specified by the names set from the specified file and
returns them in a std::map<std::string, Weights>.

8.2.4.6. Converting The Weights To A TensorRT Format

At this point, we are ready to convert the weights. To do this, the following steps are
required:

 1. Understanding and using the TensorFlow checkpoint to get the tensor.
 2. Understanding and using the tensors to extract and reformat relevant weights and

set them to the corresponding layers in TensorRT.

8.2.4.6.1. TensorFlow Checkpoint Storage Format

There are two possible TensorFlow checkpoint storage formats:

 1. Platform independent format - separated by layer

 a. Cell_i_kernel <Weights>
 b. Cell_i_bias <Weights>

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://www.tensorflow.org/api_docs/

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 55

 2. cuDNN compatible format - separated by input and recurrent

 a. Cell_i_Candidate_Input_kernel <Weights>
 b. Cell_i_Candidate_Hidden_kernel <Weights>

In other words, 1.1 Cell_i_kernel <Weights> in the concatenation
of 2.1 Cell_i_Candidate_Input_kernel <Weights> and 2.2
Cell_i_Candidate_Hidden_kernel <Weights>. Therefore, storage format 2 is
simply a more fine-grain version of storage format 1.

8.2.4.6.2. TensorFlow Kernel Tensor Storage Format

Before storing the weights in the checkpoint, TensorFlow transposes and then interleaves
the rows of transposed matrices. The order of the interleaving is described in the next
section. A figure is provided in BasicLSTMCell Example to further illustrate this format.

Gate Order Based On Layer Operation Type The transposed weight matrices are
interleaved in the following order:

 1. RNN relu/tanh:

 a. input gate (i)
 2. LSTM:

 a. input gate (i), cell gate (c) , forget gate (f), output gate (o)
 3. GRU:

 a. reset (r), update (u)

8.2.4.6.3. Kernel Weights Conversion To A TensorRT Format

Converting the weights from TensorFlow format can be summarized in two steps.

 1. Reshape the weights to push the interleaving down to a lower dimension.
 2. Transpose the weights to get rid of the interleaving completely and have the weight

matrices stored contiguously in memory.

Transformation Utilities To help perform these transformations correctly,
reorderSubBuffers(), transposeSubBuffers(), and reshapeWeights() are
functions that have been provided. For more information, see /usr/include/x86_64-
linux-gnu/NvUtils.h.

8.2.4.6.4. TensorFlow Bias Weights Storage Format

The bias tensor is simply stored as contiguous vectors concatenated in the order
specified in TensorFlow Kernel Tensor Storage Format. If the checkpoint storage is
platform independent, then TensorFlow combines the recurrent and input biases into
a single tensor by adding them together. Otherwise, the recurrent and input biases and
stored in separate tensors.

8.2.4.6.5. Bias Tensor Conversion To TensorRT Format

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 56

Since the biases are stored as contiguous vectors, there aren’t any transformations that
need to be applied to get the bias into the TensorRT format.

8.2.4.7. BasicLSTMCell Example

8.2.4.7.1. BasicLSTMCell Kernel Tensor

To understand the format in which these tensors are being stored, let us consider an
example of a BasicLSTMCell. Figure 13 illustrates what the tensor looks like within the
TensorFlow checkpoint.

Figure 13 Tensors within a TensorFlow checkpoint

DS/Data Size is distinct from Hidden Size for the first layer. For all the following
sublayers Data Size is equal to Hidden Size.

In Figure 13, W represents the input weights, R represents the hidden weights, DS
represents the data size, and HS represents hidden size.

Since this is a platform independent cell, the input weights and hidden weights have
been concatenated together. If we had used a CudnnCompatibleLSTMCell, then
these weights would have been split into two separate tensors.

Applying the conversion process discussed earlier will result in the converted tensor
shown in Figure 14.

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 57

Figure 14 Converted tensors

Data Size is distinct from Hidden Size for the first layer in the sequence of RNN
sublayers. For all the following sublayers Data Size is equal to Hidden Size.

8.2.4.7.2. BasicLSTMCell Bias Tensor

Figure 15 illustrates the format in which the bias tensor is stored.

Figure 15 Bias tensor stored format

Because this is a platform independent cell, W in the image above represents the result
of ElementWise adding the input and recurrent biases together. TensorFlow does this
addition internally to save memory before it stores the tensor.

This is already in the format we require, therefore, we do not need to apply any
transformations.

8.2.4.8. Setting The Converted Weights And Biases

The converted tensors for both the weights and bias are now ready to use. You need
to iterate over the tensors in the order specified in TensorFlow Kernel Tensor Storage

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 58

Format and set the weights and bias using IRNNv2Layer::setWeightsForGate() and
IRNNv2Layer::setBiasForGate() functions, respectively.

If you are using a platform independent cell, you will need to set all the recurrent
biases manually using zeroed out dummy weights.

A real-world example of the training, dumping, converting, and setting process is
described in sampleCharRNN. For more information, consult the code in this sample.

8.2.5. Preprocessing A TensorFlow Graph Using the
Graph Surgeon API
The Graph Surgeon API, also known as graphsurgeon, allows you to transform
TensorFlow graphs. Its capabilities are broadly divided into two categories:
Search

The search functions allow you to find nodes in a TensorFlow graph.
Manipulation

The manipulation functions allow you to modify, add, or remove nodes.

Using graphsurgeon, you can mark certain nodes (or sets of nodes) as plugin nodes
in the graph. These plugins can either be plugins shipped with TensorRT or plugins
written by you. For more information, see Extending TensorRT With Custom Layers.

If you are writing a plugin, also refer to see Extending TensorRT With Custom Layers for
details on how to implement the IPluginExt and IPluignCreator classes in addition
to registering the plugin.

The following code snippet illustrates how to use graphsurgeon to map a TensorFlow
Leaky ReLU operation to a TensorRT Leaky ReLU plugin node.

import graphsurgeon as gs
lrelu_node = gs.create_plugin_node(name=”trt_lrelu”, op=”LReLU_TRT”,
 negSlope=0.2)
namespace_plugin_map = { “tf_lrelu” : lrelu_node }

Transform TensorFlow graph using graphsurgeon and save to UFF
dynamic_graph = gs.DynamicGraph(tf_lrelu.graph)
dynamic_graph.collapse_namespaces(namespace_plugin_map)

Run UFF converter using new graphdef
uff_model = uff.from_tensorflow(dynamic_graph.as_graph_def(), ["trt_lrelu"],
 output_filename=”test_lrelu.uff”, text=True)

In the above code, the op field in the create_plugin_node method should match the
registered plugin name. This enables the UFF parser to look up the Plugin Registry
using this field to insert the plugin node into the network.

For a working graphsurgeon example, see sampleUffSSD for C++.

For more details about the graphsurgeon API, see the Graph Surgeon API.

8.3. Working With PyTorch And Other Frameworks

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#graphsurgeon
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#graphsurgeon

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 59

Using TensorRT with PyTorch and other frameworks involves replicating the network
architecture using the TensorRT API, and then copying the weights from PyTorch (or
any other framework with NumPy compatible weights). For more information on using
TensorRT with a PyTorch model, see:

‣ the network_api_pytorch_mnist Python sample
‣ Generate TensorRT Engines from Tensorflow (or other UFF Compatible

Frameworks)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/topics/topics/workflows/tf_to_tensorrt.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/topics/topics/workflows/tf_to_tensorrt.html

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 60

Chapter 9.
SAMPLES

The following samples show how to use TensorRT in numerous use cases while
highlighting different capabilities of the interface.

9.1. C++ Samples
You can find the C++ samples in the /usr/src/tensorrt/samples directory. The
following C++ samples are shipped with TensorRT:

‣ sampleMNIST
‣ sampleMNISTAPI
‣ sampleUffMNIST
‣ sampleOnnxMNIST
‣ sampleGoogleNet
‣ sampleCharRNN
‣ sampleINT8
‣ samplePlugin
‣ sampleNMT
‣ sampleFasterRCNN
‣ sampleUffSSD
‣ sampleMovieLens
‣ sampleSSD

Running C++ Samples

If you installed TensorRT using the debian files, copy /usr/src/tensorrt to a new
directory first before building the C++ samples. If you installed TensorRT using the tar
file, then the samples are located in {TAR_EXTRACT_PATH}/samples. To build all the
samples and then run one of the samples, use the following commands:

$ cd <samples_dir>

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 61

$ make -j4
$ cd ../bin
$./<sample_bin>

9.1.1. sampleMNIST

What Does This Sample Do?
The sampleMNIST sample demonstrates how to:

‣ Perform the basic setup and initialization of TensorRT
‣ Import a trained Caffe model using Caffe parser (see Importing A Caffe Model

Using The C++ Parser API)
‣ Build an engine (see Building An Engine In C++)
‣ Serialize and deserialize the engine (see Serializing A Model In C++)
‣ Use the engine to perform inference on an input image (see Performing Inference In

C++)

Where Is This Sample Located?
The sampleMNIST sample is installed in the /usr/src/tensorrt/samples/
sampleMNIST directory.

Notes About This Sample:
The Caffe model was trained on the MNIST dataset, where the dataset is from the
NVIDIA DIGITS tutorial.

To verify whether the engine is operating correctly, sampleMNIST picks a 28x28 image
of a digit at random and runs inference on it using the engine it created. The output
of the network is a probability distribution on the digits, showing which digit is most
probably that in the image.

An example of ASCII rendering of the input image with digit 8:

https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 62

Figure 16 ASCII output

An example of the output from network, classifying the digit 8 from the above image:

Figure 17 Decision output

9.1.2. sampleMNISTAPI

What Does This Sample Do?
The sampleMNISTAPI sample is similar to sampleMNIST sample. Both of these samples
use the same model, handle the same input, and expect similar output. In contrast to
sampleMNIST, the sampleMNISTAPI demonstrates how to:

‣ Build a network by individually creating every layer

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 63

‣ Load the layers with theirs weights and connecting the layers by linking their inputs
and outputs

Where Is This Sample Located?
The sampleMNISTAPI sample is installed in the /usr/src/tensorrt/samples/
sampleMNISTAPI directory.

Notes About This Sample:
For a detailed description of how to create layers using the C++ API, see Creating A
Network Definition From Scratch Using The C++ API. For a detailed description of how
to create layers using the Python API, see Creating A Network Definition From Scratch
Using The Python API.

Notes About Weights:
When you build a network by individually creating every layer, ensure you provide the
per-layer weights to TensorRT in host memory. You will need to extract weights from
their pre-trained model and deep learning framework and have these per-layer weights
loaded in host memory to pass to TensorRT during network creation.

9.1.3. sampleUffMNIST

What Does This Sample Do?
The sampleUffMNIST sample demonstrates how to:

‣ Implement a TensorFlow model trained on the MNIST dataset
‣ Create the UFF Parser (see Importing From TensorFlow Using Python)
‣ Use the UFF Parser, register inputs and outputs, provide the dimensions and the

order of the input tensor
‣ Load a trained TensorFlow model converted to UFF
‣ Build an engine (see Building An Engine In C++)
‣ Use the engine to perform inference (see Performing Inference In C++)

Where Is This Sample Located?
The sampleUffMNIST sample is installed in the /usr/src/tensorrt/samples/
sampleUffMNIST directory.

Notes About This Sample:
The TensorFlow model has been converted to UFF using the explanation described in
Working With TensorFlow.

The UFF is designed to store neural networks as a graph. The NvUffParser that we use
in this sample parses the format in order to create an inference engine based on that
neural network.

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 64

With TensorRT, you can take a TensorFlow trained model, export it into a UFF protobuf
file, and convert it to run in TensorRT. The TensorFlow to UFF converter creates an
output file in a format called UFF which can then be read in TensorRT.

9.1.4. sampleOnnxMNIST

What Does This Sample Do?
The sampleOnnxMNIST sample demonstrates how to:

‣ Configure the ONNX parser
‣ Convert an MNIST network in ONNX format to a TensorRT network
‣ Build the engine and run inference using the generated TensorRT network
‣ Covers Importing An ONNX Model Using The C++ Parser API and Importing From

ONNX Using Python

The sampleOnnxMNIST sample shows the conversion of an MNIST network in Open
Neural Network Exchange (ONNX) format to a TensorRT network. ONNX is a standard
for representing deep learning models that enable models to be transferred between
frameworks. For more information about the ONNX format, see GitHub: ONNX. You
can find a collection of ONNX networks at GitHub: ONNX Models. The network used in
this sample can be found here.

Where Is This Sample Located?

The sampleOnnxMNIST sample is installed in the /usr/src/tensorrt/samples/
sampleOnnxMNIST directory.

9.1.4.1. Configuring The ONNX Parser

The IOnnxConfig class is the configuration manager class for the ONNX parser. The
configuration parameters can be set by creating an object of this class and set the model
file.

Set the appropriate ONNX model in the config object where onnx_filename is a c
string of the path to the filename containing that model:

IOnnxConfig config;
config.setModelFileName(onnx_filename);

The createONNXParser method requires a config object as an argument:

nvonnxparser::IONNXParser* parser = nvonnxparser::createONNXParser(*config);

The ONNX model file is then passed onto the parser:

if (!parser->parse(onnx_filename, dataType))
{
string msg("failed to parse onnx file");
 gLogger->log(nvinfer1::ILogger::Severity::kERROR, msg.c_str());
 exit(EXIT_FAILURE);
}

https://github.com/onnx/onnx
https://github.com/onnx/models
https://github.com/onnx/models/tree/master/mnist

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 65

To view additional information about the network, including layer information and
individual layer dimensions, issue the following call:

config.setPrintLayerInfo(true)
parser->reportParsingInfo();

9.1.4.2. Converting The ONNX Model To A TensorRT Network

The parser can convert the ONNX model to a TensorRT network which can be used for
inference:

 if (!parser->convertToTRTNetwork()) {
 string msg("ERROR, failed to convert onnx network into TRT network");
 gLogger->log(nvinfer1::ILogger::Severity::kERROR, msg.c_str());
 exit(EXIT_FAILURE);
 }

To get the TensorRT network, issue the following call:

nvinfer1::INetworkDefinition* network = parser->getTRTNetwork();

After the TensorRT network is built from the model, you can build the TensorRT engine
and run inference.

9.1.4.3. Building The Engine And Running Inference

Before you can run inference, you must first build the engine. To build the engine, create
the builder and pass a logger created for TensorRT which is used for reporting errors,
warnings and informational messages in the network:

IBuilder* builder = createInferBuilder(gLogger);

To build the engine from the generated TensorRT network, issue the following call:

nvinfer1::ICudaEngine* engine = builder->buildCudaEngine(*network);

To run inference using the created engine, see Performing Inference In C++ or
Performing Inference In Python.

It's important to preprocess the data and convert it to the format accepted by the
network. In this example, the sample input is in PGM (portable graymap) format. The
model expects an input of image 1x28x28 scaled to between [0,1].

After you build the engine, verify that the engine is running properly by confirming the
output is what you expected. The output format of this sample should be the same as the
output of the sampleMNIST described in sampleMNIST.

9.1.5. sampleGoogleNet

What Does This Sample Do?
The sampleGoogleNet sample demonstrates how to:

‣ Use FP16 mode in TensorRT

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 66

‣ Use TensorRT Half2Mode
‣ Use layer-based profiling

Where Is This Sample Located?
The sampleGoogleNet sample is installed in the /usr/src/tensorrt/samples/
sampleGoogleNet directory.

9.1.5.1. Configuring The Builder

The sampleGoogleNet sample builds a network based on a saved Caffe model and
network description. For more information, see Importing A Caffe Model Using The C++
Parser API or Importing From Caffe Using Python.

This sample uses optimized FP16 mode (see Enabling FP16 Inference Using C++ or
Enabling FP16 Inference Using Python). To use Half2Mode, two additional steps are
required:

 1. Create an input network with 16-bit weights, by supplying the DataType::kHALF
parameter to the parser.

const IBlobNameToTensor *blobNameToTensor =
 parser->parse(locateFile(deployFile).c_str(),
 locateFile(modelFile).c_str(),
 *network,
 DataType::kHALF);

 2. Configure the builder to use Half2Mode.

builder->setFp16Mode(true);

9.1.5.2. Profiling

To profile a network, implement the IProfiler interface and add the profiler to the
execution context:

context.profiler = &gProfiler;

Profiling is not currently supported for asynchronous execution, therefore, use TensorRT
synchronous execute() method:

for (int i = 0; i < TIMING_ITERATIONS;i++)
 engine->execute(context, buffers);

After execution has completed, the profiler callback is called once for every layer. The
sample accumulates layer times over invocations, and averages the time for each layer at
the end.

The layer names are modified by TensorRT layer-combining operations, so the reported
layer names in the profiling output may not be a one-to-one map to the original
layer names. For example, the layers inception_5a/3x3 and inception_5a/
relu_3x3 in the original network are fused into one layer named inception_5a/3x3 +
inception_5a/relu_3x3.

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 67

9.1.6. sampleCharRNN

What Does This Sample Do?
The sampleCharRNN sample demonstrates how to generate a simple RNN based on the
charRNN network using the Penn Treebank (PTB) dataset. For more information about
character level modeling, see char-rnn.

Where Is This Sample Located?
The sampleCharRNN sample is installed in the /usr/src/tensorrt/samples/
sampleCharRNN directory.

Notes About This Sample:
Use the TensorRT API documentation to familiarize yourself with the following layers:

‣ RNNv2 layer

‣ Weights are set for each gate and layer individually.
‣ The input format for RNNv2 is BSE (Batch, Sequence, Embedding).

‣ MatrixMultiply
‣ ElementWise
‣ TopK

9.1.6.1. Network Configuration

The CharRNN network is a fairly simple RNN network. The input into the network is a
single character that is embedded into a vector of size 512. This embedded input is then
supplied to a RNN layer containing two stacked LSTM cells. The output from the RNN
layer is then supplied to a fully connected layer, which can be represented in TensorRT
by a Matrix Multiply layer followed by an ElementWise sum layer. Constant layers are
used to supply the weights and biases to the Matrix Multiply and ElementWise Layers,
respectively. A TopK operation is then performed on the output of the ElementWise
sum layer where K = 1 to find the next predicted character in the sequence. For more
information about these layers, see the TensorRT API documentation.

9.1.6.1.1. RNNv2 Layer Setup

The first layer in the network is an RNN layer. This is added and configured in the
addRNNv2Layer() function. This layer consists of the following configuration
parameters:
Operation

This defines the operation of the RNN cell. Supported operations are currently relu,
LSTM, GRU, and tanh.

Direction
This defines whether the RNN is unidirectional or bidirectional (BiRNN).

https://catalog.ldc.upenn.edu/ldc99t42
https://github.com/karpathy/char-rnn
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 68

Input mode
This defines whether the first layer of the RNN carries out a matrix multiply (linear
mode), or the matrix multiply is skipped (skip mode).

For the purpose of the CharRNN network, we will be using a linear, unidirectional
LSTM cell containing LAYER_COUNT number of stacked layers. The code below shows
how to create this RNNv2 layer.

auto rnn = network->addRNNv2(*data, LAYER_COUNT, HIDDEN_SIZE, SEQ_SIZE,
 RNNOperation::kLSTM);

For the RNNv2 layer, weights and bias need to be set separately. For more
information, see RNNv2 Layer - Optional Inputs.

For more information, see the TensorRT API documentation.

9.1.6.1.2. RNNv2 Layer - Optional Inputs

If there are cases where the hidden and cell states need to be pre-initialized to a non-zero
value, then you can pre-initialize them via the setHiddenState and setCellState
calls. These are optional inputs to the RNN.

rnn->setHiddenState(*hiddenIn);
if (rnn->getOperation() == RNNOperation::kLSTM)
 rnn->setCellState(*cellIn);

9.1.6.1.3. MatrixMultiply Layer Setup

The Matrix Multiplication layer is used to execute the first step of the functionality
provided by a FullyConnected layer. As shown in the code below, a Constant layer
will need to be used so that the FullyConnected weights can be stored in the engine.
The output of the Constant and RNN layers are then used as inputs to the Matrix
Multiplication layer. The RNN output is transposed so that the dimensions for the
MatrixMultiply are valid.

weightMap["trt_fcw"] = transposeFCWeights(weightMap[FCW_NAME]);
auto fcwts = network->addConstant(Dims2(VOCAB_SIZE, HIDDEN_SIZE),
 weightMap["trt_fcw"]);
auto matrixMultLayer = network->addMatrixMultiply(
*fcwts->getOutput(0), false, *rnn->getOutput(0), true);
assert(matrixMultLayer != nullptr);
matrixMultLayer->getOutput(0)->setName("Matrix Multiplicaton output");

For more information, see the TensorRT API documentation.

9.1.6.1.4. ElementWise Layer Setup

The ElementWise layer is used to execute the second step of the functionality provided
by a FullyConnected layer. The output of the fcbias Constant layer and Matrix
Multiplication layer are used as inputs to the ElementWise layer. The output from this
layer is then supplied to the TopK layer. The code below demonstrates how to setup the
layer:

auto fcbias = network->addConstant(Dims2(VOCAB_SIZE, 1), weightMap[FCB_NAME]);

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 69

auto addBiasLayer = network->addElementWise(
*matrixMultLayer->getOutput(0),
*fcbias->getOutput(0), ElementWiseOperation::kSUM);
assert(addBiasLayer != nullptr);
addBiasLayer-getOutput(0)->setName("Add Bias output");

For more information, see the TensorRT API documentation.

9.1.6.1.5. TopK Layer Setup

The TopK layer is used to identify the character that has the maximum probability of
appearing next.

The layer has two outputs. The first output is an array of the top K values. The
second, which is of more interest to us, is the index at which these maximum values
appear.

The code below sets up the TopK layer and assigns the OUTPUT_BLOB_NAME to the
second output of the layer.

auto pred = network->addTopK(*softMax->getOutput(0),
 nvinfer1::TopKOperation::kMAX, 1, REDUCE_AXES);
assert(pred != nullptr);
pred->getOutput(1)->setName(OUTPUT_BLOB_NAME);

For more information, see the TensorRT API documentation.

9.1.6.1.6. Marking The Network Outputs

After the network is defined, mark the required outputs. RNN output tensors that are
not marked as network outputs or used as inputs to another layer are dropped.

network->markOutput(*pred->getOutput(1));
pred->getOutput(1)->setType(DataType::kINT32);
rnn->getOutput(1)->setName(HIDDEN_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(1));
if (rnn->getOperation() == RNNOperation::kLSTM)
{
rnn->getOutput(2)->setName(CELL_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(2));
};

9.1.6.2. RNNv2 Workflow - From TensorFlow To TensorRT

The following sections provide an end-to-end walkthrough of how to train your model
in TensorFlow and convert the weights into a format that TensorRT can use.

9.1.6.2.1. Training A CharRNN Model With TensorFlow

TensorFlow has a useful RNN Tutorial which can be used to train a word level model.
Word level models learn a probability distribution over a set of all possible word
sequence. Since our goal is to train a char level model, which learns a probability
distribution over a set of all possible characters, a few modifications will need to be
made to get the TensorFlow sample to work. These modifications can be seen here.

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://www.tensorflow.org/tutorials/recurrent
http://deeplearningathome.com/2016/10/Text-generation-using-deep-recurrent-neural-networks.html

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 70

There are also multiple GitHub repositories that contain CharRNN implementations that
will work out of the box. Tensorflow-char-rnn is one such implementation.

9.1.6.2.2. Exporting Weights From A TensorFlow Model Checkpoint

A python script /usr/src/tensorrt/samples/common/dumpTFWts.py has been
provided to extract the weights from the model checkpoint files that are created during
training. Use dumpTFWts.py -h for directions on the usage of the script.

9.1.6.2.3. Loading And Converting Weights Format

After the TensorFlow weights have been exported into a single WTS file, the next step is
to load the weights and convert them into the TensorRT weights format. This is done by
the loadWeights and then the convertRNNWeights and convertRNNBias functions.
The functions contain detailed descriptions of the loading and conversion process. You
can use those as guides in case you need to write your own conversion functions. After
the conversion has taken place, the memory holding the converted weights is added to
the weight map so that it can be deallocated once the engine has been built.

Weights rnnwL0 = convertRNNWeights(weightMap[RNNW_L0_NAME]);
Weights rnnbL0 = convertRNNBias(weightMap[RNNB_L0_NAME]);
Weights rnnwL1 = convertRNNWeights(weightMap[RNNW_L1_NAME]);
Weights rnnbL1 = convertRNNBias(weightMap[RNNB_L1_NAME]);

...
weightMap["rnnwL0"] = rnnwL0;
weightMap["rnnbL0"] = rnnbL0;
weightMap["rnnwL1"] = rnnwL1;
weightMap["rnnbL1"] = rnnbL1;

9.1.6.2.4. RNNv2: Setting Weights And Bias

After the conversion to the TensorRT format, the RNN weights and biases are stored in
their respective contiguous arrays. They are stored in the format of [WLf, WLi, WLc,
WLo, RLf, RLi, RLc, RLo], where:
W

The weights for the input.
R

The weights for the recurrent input.
f

Corresponds to the forget gate.
i

Corresponds to the input gate.
c

Corresponds to the cell gate.
o

Corresponds to the output gate.

The code below takes advantage of this memory layout and iterates over the two layers
and the eight gates to extract and set the correct gate weights and gate biases for the
RNN layer.

for (int gateIndex = 0; gateIndex < NUM_GATES; gateIndex++)

https://github.com/crazydonkey200/tensorflow-char-rnn

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 71

{
 // extract weights and bias for a given gate and layer
 Weights gateWeightL0{.type = dataType,
.values = (void*)(wtsL0 + kernelOffset),
.count = DATA_SIZE * HIDDEN_SIZE};
 Weights gateBiasL0{.type = dataType,
.values = (void*)(biasesL0 + biasOffset),
.count = HIDDEN_SIZE};
 Weights gateWeightL1{.type = dataType,
.values = (void*)(wtsL1 + kernelOffset),
.count = DATA_SIZE * HIDDEN_SIZE};
 Weights gateBiasL1{.type = dataType,
.values = (void*)(biasesL1 + biasOffset),
.count = HIDDEN_SIZE};

 // set weights and bias for given gate
 rnn->setWeightsForGate(0, gateOrder[gateIndex % 4],
(gateIndex < 4), gateWeightL0);
 rnn->setBiasForGate(0, gateOrder[gateIndex % 4],
(gateIndex < 4), gateBiasL0);
 rnn->setWeightsForGate(1, gateOrder[gateIndex % 4],
(gateIndex < 4), gateWeightL1);
 rnn->setBiasForGate(1, gateOrder[gateIndex % 4],
(gateIndex < 4), gateBiasL1);

 // Update offsets
 kernelOffset = kernelOffset + DATA_SIZE * HIDDEN_SIZE;
 biasOffset = biasOffset + HIDDEN_SIZE;
}

9.1.6.3. Seeding The Network

After the network is built, it is seeded with preset inputs so that the RNN can start
generating data. Inside stepOnce, the output states are preserved for use as inputs on
the next timestep.

for (auto &a : input)
{
 std::copy(static_cast<const float*>(embed.values) +
 char_to_id[a]*DATA_SIZE,
 static_cast<const float*>(embed.values) + char_to_id[a]*DATA_SIZE +
 DATA_SIZE,
 data[INPUT_IDX]);
 stepOnce(data, output, buffers, indices, stream, context);
 cudaStreamSynchronize(stream);

 // Copy Ct/Ht to the Ct-1/Ht-1 slots.
 std::memcpy(data[HIDDEN_IN_IDX], data[HIDDEN_OUT_IDX],
 gSizes[HIDDEN_IN_IDX] * sizeof(float));
 std::memcpy(data[CELL_IN_IDX], data[CELL_OUT_IDX], gSizes[CELL_IN_IDX] *
 sizeof(float));

 genstr.push_back(a);
}
// Extract first predicted character
uint32_t predIdx = *reinterpret_cast<uint32_t*>(data[OUTPUT_IDX]);
genstr.push_back(id_to_char[predIdx]);

9.1.6.4. Generating Data

The following code is similar to the seeding code, however, this code generates an
output character based on the output probability distribution. The following code

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 72

simply selects the character with the highest probability. The final result is stored in
genstr.

for (size_t x = 0, y = expected.size(); x < y; ++x)
{
 std::copy(static_cast<const float*>(embed.values) +
 char_to_id[*genstr.rbegin()]*DATA_SIZE,
 static_cast<const float*>(embed.values) +
 char_to_id[*genstr.rbegin()]*DATA_SIZE + DATA_SIZE,
 data[INPUT_IDX]);

 stepOnce(data, output, buffers, indices, stream, context);
 cudaStreamSynchronize(stream);

 // Copy Ct/Ht to the Ct-1/Ht-1 slots.
 std::memcpy(data[HIDDEN_IN_IDX], data[HIDDEN_OUT_IDX],
 gSizes[HIDDEN_IN_IDX] * sizeof(float));
 std::memcpy(data[CELL_IN_IDX], data[CELL_OUT_IDX], gSizes[CELL_IN_IDX] *
 sizeof(float));

uint32_t predIdx = *(output);
 genstr.push_back(id_to_char[predIdx]);
}

9.1.7. sampleINT8

What Does This Sample Do?
The sampleINT8 sample provides the steps involved when performing inference in 8-bit
integer (INT8).

INT8 inference is available only on GPUs with compute capability 6.1 or 7.x.

The sampleINT8 sample demonstrates how to:

‣ Perform INT8 calibration
‣ Perform INT8 inference
‣ Calibrate a network for execution in INT8
‣ Cache the output of the calibration to avoid repeating the process
‣ Repo your own experiments with Caffe in order to validate your results on

ImageNet networks

Where Is This Sample Located?
The sampleINT8 sample is installed in the /usr/src/tensorrt/samples/
sampleINT8 directory.

Notes About This Sample:
INT8 engines are built from 32-bit network definitions and require significantly more
investment than building a 32-bit or 16-bit engine. In particular, the TensorRT builder
must perform a process called calibration to determine how best to represent the
weights and activations as 8-bit integers.

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 73

The sample is accompanied by the MNIST training set, but may also be used to calibrate
and score other networks. To run the sample on MNIST, use the command line:

./sample_int8 mnist

9.1.7.1. Defining The Network

Defining a network for INT8 execution is exactly the same as for any other precision.
Weights should be imported as FP32 values, and TensorRT will calibrate the network
to find appropriate quantization factors to reduce the network to INT8 precision. This
sample imports the network using the NvCaffeParser:

const IBlobNameToTensor* blobNameToTensor =
 parser->parse(locateFile(deployFile).c_str(),
 locateFile(modelFile).c_str(),
 *network,
 DataType::kFLOAT);

9.1.7.2. Building The Engine

Calibration is an additional step required when building networks for INT8. The
application must provide TensorRT with sample input. TensorRT will then perform
inference in FP32 and gather statistics about intermediate activation layers that it will
use to build the reduce precision INT8 engine.

9.1.7.2.1. Calibrating The Network

The application must specify the calibration set and parameters by implementing the
IInt8Calibrator interface. Because calibration is an expensive process that may need to
run multiple times, the interface provides methods for caching intermediate values.
Follow this sample to learn more about how to configure a calibrator object.

9.1.7.2.2. Calibration Set

Calibration must be performed using images representative of those which will be
used at runtime. Since the sample is based around Caffe, any image preprocessing that
Caffe would perform prior to running the network (such as scaling, cropping, or mean
subtraction) will be done in Caffe and captured as a set of files. The sample uses a utility
class (BatchStream) to read these files and create appropriate input for calibration.
Generation of these files is discussed in Batch Files For Calibration.

The builder calls the getBatchSize() method once, at the start of calibration, to obtain
the batch size for the calibration set. The method getBatch() is then called repeatedly
to obtain batches from the application, until the method returns false. Every calibration
batch must include exactly the number of images specified as the batch size.

bool getBatch(void* bindings[], const char* names[], int
 nbBindings) override
{
 if (!mStream.next())
 return false;

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 74

 CHECK(cudaMemcpy(mDeviceInput, mStream.getBatch(),
 mInputCount * sizeof(float), cudaMemcpyHostToDevice));
 assert(!strcmp(names[0], INPUT_BLOB_NAME));
 bindings[0] = mDeviceInput;
 return true;
}

For each input tensor, a pointer to input data in GPU memory must be written into the
bindings array. The names array contains the names of the input tensors. The position
for each tensor in the bindings array matches the position of its name in the names array.
Both arrays have size nbBindings.

The calibration set must be representative of the input provided to TensorRT at
runtime; for example, for image classification networks, it should not consist of
images from just a small subset of categories. For ImageNet networks, around 500
calibration images is adequate.

9.1.7.2.3. Loading A Calibration File

A calibration file stores activation scales for each network layer. The calibration file is
called CalibrationTable<NetworkName>, where <NetworkName> is the name of your
network, for example mnist. The file is located in the TensorRT-x.x.x.x/data/mnist
directory, where x.x.x.x is your installed version of TensorRT.

If the CalibrationTable file is not found, the builder will run the calibration
algorithm again to create it. The CalibrationTable contents include:

1
data: 3c000889
pool2: 3d9ccc94
ip1: 3daeff07
prob: 3c010a14
conv2: 3dd33169
pool1: 3c88e7e3
ip2: 3e7d50ec
conv1: 3c8954be

Where 1 stands for the calibration algorithm, for example, Entropy Calibration.

The CalibrationTable file is generated during the build phase while running the
calibration algorithm. Specifically, to create the calibration file, you first need to provide
a calibrator object and pass it to the builder. The calibrator object should be configured
to use the calibration image batches. During the build phase, the builder will create the
calibration file using the calibrator object.

After the calibration file is created, the file must get loaded. You cannot manually load a
calibration file using an API, the builder first checks whether the file exists. If it does, it
will not calibrate again and instead will load that same calibration file for every runtime.
Therefore, the calibration file needs to be created only once.

9.1.7.3. Configuring The Builder

There are two additional methods to call on the builder:

builder->setInt8Mode(true);

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 75

builder->setInt8Calibrator(calibrator);

9.1.7.4. Running The Engine

After the network has been built, it can be used just like an FP32 network, for example,
inputs and outputs remain in 32-bit floating point.

9.1.7.5. Verifying The Output

This sample outputs Top-1 and Top-5 metrics for both FP32 and INT8 precision, as well
as for FP16 if it is natively supported by the hardware. These numbers should be within
1%.

9.1.7.6. Batch Files For Calibration

The sampleINT8 sample uses batch files in order to calibrate for the INT8 data. The INT8
batch file is a binary file containing a set of N images, whose format is as follows:

‣ Four 32-bit integer values representing {N,C, H, W} representing the number of
images N in the file, and the dimensions {C, H, W} of each image.

‣ N 32-bit floating point data blobs of dimensions {C, H, W} that are used as inputs
to the network.

9.1.7.6.1. Generating Batch Files For Caffe Users

Calibration requires that the images passed to the calibrator are in the same format
as those that will be passed to TensorRT at runtime. For developers using Caffe for
training, or who can easily transfer their network to Caffe, a supplied patchset supports
capturing images after image preprocessing.

These instructions are provided so that users can easily use the sample code to test
accuracy and performance on classification networks. In typical production use cases,
applications will have such preprocessing already implemented, and should integrate
with the calibrator directly.

These instructions are for Caffe git commit
473f143f9422e7fc66e9590da6b2a1bb88e50b2f from GitHub: BVLC Caffe. The
patchfile might be slightly different for later versions of Caffe.

 1. Apply the patch. The patch can be applied by going to the root directory of the Caffe
source tree and applying the patch with the command:

patch -p1 < int8_caffe.patch

 2. Rebuild Caffe and set the environment variable
TENSORRT_INT8_BATCH_DIRECTORY to the location where the batch files are to be
generated.

After training for 1000 iterations, there are 1003 batch files in the directory specified.
This occurs because Caffe preprocesses three batches in advance of the current iteration.

https://github.com/BVLC/caffe.git

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 76

These batch files can then be used with the BatchStream and Int8Calibrator to
calibrate the data for INT8.

When running Caffe to generate the batch files, the training prototxt, and not the
deployment prototxt, is required to be used.

The following example depicts the sequence of commands to run ./sample_int8
mnist with Caffe generated batch files.

 1. Navigate to the samples data directory and create an INT8 mnist directory:

cd <TensorRT>/samples/data
mkdir -p int8/mnist
cd int8/mnist

If Caffe is not installed anywhere, ensure you clone, checkout, patch, and build
Caffe at the specific commit:

git clone https://github.com/BVLC/caffe.git
cd caffe
git checkout 473f143f9422e7fc66e9590da6b2a1bb88e50b2f
patch -p1 < <TensorRT>/samples/mnist/int8_caffe.patch
mkdir build
pushd build
cmake -DUSE_OPENCV=FALSE -DUSE_CUDNN=OFF ../
make -j4
popd

 2. Download the mnist dataset from Caffe and create a link to it:

bash data/mnist/get_mnist.sh
bash examples/mnist/create_mnist.sh
cd ..
ln -s caffe/examples .

 3. Set the directory to store the batch data, execute Caffe, and link the mnist files:

mkdir batches
export TENSORRT_INT8_BATCH_DIRECTORY=batches
caffe/build/tools/caffe test -gpu 0 -iterations 1000 -model examples/mnist/
lenet_train_test.prototxt -weights
<TensorRT>/samples/mnist/mnist.caffemodel
ln -s <TensorRT>/samples/mnist/mnist.caffemodel .
ln -s <TensorRT>/samples/mnist/mnist.prototxt .

 4. Execute sampleINT8 from the bin directory after being built with the following
command:

 ./sample_int8 mnist

9.1.7.6.2. Generating Batch Files For Non-Caffe Users

For developers that are not using Caffe, or cannot easily convert to Caffe, the batch files
can be generated via the following sequence of steps on the input training data.

 1. Subtract out the normalized mean from the dataset.

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 77

 2. Crop all of the input data to the same dimensions.
 3. Split the data into batch files where each batch file has N preprocessed images and

labels.
 4. Generate the batch files based on the format specified in Batch Files for Calibration.

The following example depicts the sequence of commands to run ./sample_int8
mnist without Caffe.

 1. Navigate to the samples data directory and create an INT8 mnist directory:

cd <TensorRT>/samples/data
mkdir -p int8/mnist/batches
cd int8/mnist
ln -s <TensorRT>/samples/mnist/mnist.caffemodel .
ln -s <TensorRT>/samples/mnist/mnist.prototxt .

 2. Copy the generated batch files to the int8/mnist/batches/ directory.
 3. Execute sampleINT8 from the bin directory after being built with the command ./

sample_int8 mnist.

./sample_int8 mnist

9.1.8. samplePlugin

What Does This Sample Do?
The samplePlugin demonstrates how to add a Custom layer to TensorRT. This sample
implements the MNIST model with the difference that the final FullyConnected layer is
replaced by a Custom layer. To read more information about MNIST, see sampleMNIST,
sampleMNISTAPI, and sampleUffMNIST.

The samplePlugin sample demonstrates how to:

‣ Define a Custom layer that supports multiple data formats
‣ Define a Custom layer that can be serialized and deserialized
‣ Enable a Custom layer in NvCaffeParser

Where Is This Sample Located?
The samplePlugin sample is installed in the /usr/src/tensorrt/samples/
samplePlugin directory.

Notes About This Sample:
The Custom layer implements the FullyConnected layer using gemm routines (Matrix
Multiplication) in cuBLAS, and tensor addition in cuDNN (bias offset). This sample
illustrates the definition of the FCPlugin for the Custom layer, and the integration with
NvCaffeParser.

9.1.8.1. Defining The Network

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 78

The FCPlugin redefines the FullyConnected layer, which in this case has a single
output. Accordingly, getNbOutputs returns 1 and getOutputDimensions includes
validation checks and returns the dimensions of the output:

Dims getOutputDimensions(int index, const Dims* inputDims,
 int nbInputDims) override
{
 assert(index == 0 && nbInputDims == 1 &&
 inputDims[0].nbDims == 3);
 assert(mNbInputChannels == inputDims[0].d[0] *
 inputDims[0].d[1] *
 inputDims[0].d[2]);
 return DimsCHW(mNbOutputChannels, 1, 1);
}

9.1.8.2. Enabling Custom Layers In NvCaffeParser

The model is imported using NvCaffeParser (see Importing A Caffe Model Using The C
++ Parser API and Using Custom Layers When Importing A Model From A Framework).
To use the FCPlugin implementation for the FullyConnected layer, a plugin factory is
defined which recognizes the name of the FullyConnected layer (inner product ip2 in
Caffe).

bool isPlugin(const char* name) override
{ return !strcmp(name, "ip2"); }

The factory can then instantiate FCPlugin objects as directed by the parser. The
createPlugin method receives the layer name, and a set of weights extracted from
the Caffe model file, which are then passed to the plugin constructor. Since the lifetime
of the weights and that of the newly created plugin are decoupled, the plugin makes a
copy of the weights in the constructor.

virtual nvinfer1::IPlugin* createPlugin(const char* layerName, const
 nvinfer1::Weights* weights, int nbWeights) override
{
 …
 mPlugin =
 std::unique_ptr<FCPlugin>(new FCPlugin(weights,nbWeights));

 return mPlugin.get();
}

9.1.8.3. Building The Engine

FCPlugin does not need any scratch space, therefore, for building the engine, the most
important methods deal with the formats supported and the configuration. FCPlugin
supports two formats: NCHW in both single and half precision as defined in the
supportsFormat method.

bool supportsFormat(DataType type, PluginFormat format) const override
{
 return (type == DataType::kFLOAT || type == DataType::kHALF) &&
 format == PluginFormat::kNCHW;
}

Supported configurations are selected in the building phase. The builder selects a
configuration with the networks configureWithFormat() method, to give it a chance

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 79

to select an algorithm based on its inputs. In this example, the inputs are checked
to ensure they are in a supported format, and the selected format is recorded in a
member variable. No other information needs to be stored in this simple case; in more
complex cases, you may need to do so or even choose an ad-hoc algorithm for the given
configuration.

void configureWithFormat(..., DataType type, PluginFormat format, ...) override
{
 assert((type == DataType::kFLOAT || type == DataType::kHALF) &&
 format == PluginFormat::kNCHW);
 mDataType = type;
}

The configuration takes place at build time, therefore, any information or state
determined here that is required at runtime should be stored as a member variable of the
plugin, and serialized and deserialized.

9.1.8.4. Serializing And Deserializing

Fully complaint plugins support serialization and deserialization, as described
in Serializing A Model In C++. In the example, FCPlugin stores the number of
channels and weights, the format selected, and the actual weights. The size of
these variables makes up for the size of the serialized image; the size is returned by
getSerializationSize:

virtual size_t getSerializationSize() override
{
 return sizeof(mNbInputChannels) + sizeof(mNbOutputChannels) +
 sizeof(mBiasWeights.count) + sizeof(mDataType) +
 (mKernelWeights.count + mBiasWeights.count) *
 type2size(mDataType);
}

Eventually, when the engine is serialized, these variables are serialized, the weights
converted is needed, and written on a buffer:

virtual void serialize(void* buffer) override
{
 char* d = static_cast<char*>(buffer), *a = d;
 write(d, mNbInputChannels);
 ...
 convertAndCopyToBuffer(d, mKernelWeights);
 convertAndCopyToBuffer(d, mBiasWeights);
 assert(d == a + getSerializationSize());
}

Then, when the engine is deployed, it is deserialized. As the runtime scans the serialized
image, when a plugin image is encountered, it create a new plugin instance via the
factory. The plugin object created during deserialization (shows below using new) is
destroyed when the engine is destroyed by calling FCPlugin::destroy().

IPlugin* createPlugin(...) override
{
 …

 return new FCPlugin(serialData, serialLength);
}

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 80

In the same order as in the serialization, the variables are read and their values restored.
In addition, at this point the weights have been converted to selected format and can be
stored directly on the device.

FCPlugin(const void* data, size_t length)
{
 const char* d = static_cast<const char*>(data), *a = d;
 read(d, mNbInputChannels);
 ...
 deserializeToDevice(d, mDeviceKernel,
 mKernelWeights.count*type2size(mDataType));
 deserializeToDevice(d, mDeviceBias,
 mBiasWeights.count*type2size(mDataType));
 assert(d == a + length);
}

9.1.8.5. Resource Management And Execution

Before a custom layer is executed, the plugin is initialized. This is where resources are
held for the lifetime of the plugin and can be acquired and initialized. In this example,
weights are kept in CPU memory at first, so that during the build phase, for each
configuration tested, weights can be converted to the desired format and then copied
to the device in the initialization of the plugin. The method initialize creates the
required cuBLAS and cuDNN handles, sets up tensor descriptors, allocates device
memory, and copies the weights to device memory. Conversely, terminate destroys the
handles and frees the memory allocated on the device.

int initialize() override
{
 CHECK(cudnnCreate(&mCudnn));
 CHECK(cublasCreate(&mCublas));
 …
 if (mKernelWeights.values != nullptr)
 convertAndCopyToDevice(mDeviceKernel, mKernelWeights);
 …
}

The core of the plugin is enqueue, which is used to execute the custom layer at runtime.
The call parameters include the actual batch size, inputs, and outputs. The handles for
cuBLAS and cuDNN operations are placed on the given stream; then, according to the
data type and format configured, the plugin executes in single or half precision.

The two handles are part of the plugin object, therefore, the same engine cannot be
executed concurrently on multiple streams. In order to enable multiple streams of
execution, plugins must be re-entrant and handle stream-specific data accordingly.

virtual int enqueue(int batchSize, const void*const * inputs, void**
 outputs, ...) override
{
 ...
 cublasSetStream(mCublas, stream);
 cudnnSetStream(mCudnn, stream);
 if (mDataType == DataType::kFLOAT)
 {...}
 else
 {
 CHECK(cublasHgemm(mCublas, CUBLAS_OP_T, CUBLAS_OP_N,

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 81

 mNbOutputChannels, batchSize,
 mNbInputChannels, &oneh,
 mDeviceKernel), mNbInputChannels,
 inputs[0], mNbInputChannels, &zeroh,
 outputs[0], mNbOutputChannels));
 }
 if (mBiasWeights.count)
 {
 cudnnDataType_t cudnnDT = mDataType == DataType::kFLOAT ?
 CUDNN_DATA_FLOAT : CUDNN_DATA_HALF;
 ...
 }
 return 0;
}

The plugin object created in the sample is cloned by each of the network, builder, and
engine by calling the FCPlugin::clone() method. The clone() method calls the
plugin constructor and can also clone plugin parameters, if necessary.

IPluginExt* clone()
 {
 return new FCPlugin(&mKernelWeights, mNbWeights, mNbOutputChannels);
 }

The cloned plugin objects are deleted when the network, builder, or engine are
destroyed. This is done by invoking the FCPlugin::destroy() method.

void destroy() { delete this; }

9.1.9. sampleNMT

What Does This Sample Do?
sampleNMT is a highly modular sample for inferencing using C++ and TensorRT API
so that you can consider using it as a reference point in your projects. Neural Machine
Translation (NMT) using sequence to sequence (seq2seq) models has garnered a lot of
attention and is used in various NMT frameworks.

The sampleNMT sample demonstrates how to:

‣ Create an attention based seq2seq type NMT inference engine using a checkpoint
from TensorFlow

‣ Convert trained weights using Python and import trained weights data into
TensorRT

‣ Build relevant engines and run inference using the generated TensorRT network
‣ Use layers, such as:

RNNv2
The RNNv2 layer is used in the lstm_encoder.cpp and lstm_decoder.cpp
files.

Constant
The Constant layer is used in the slp_attention.cpp, slp_embedder.cpp and
slp_projection.cpp files.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 82

MatrixMultiply
The MatrixMultiply layer is used in the context.cpp,
multiplicative_alignment.cpp, slp_attention.cpp, and
slp_projection.cpp files.

Shuffle
The Shuffle layer is used in the lstm_encoder.cpp and lstm_decoder.cpp
files.

RaggedSoftmax
The RaggedSoftmax layer is used in the context.cpp file.

TopK
The TopK layer is used in the softmax_likelihood.cpp file.

Gather
The Gather layer is used in the slp_embedder.cpp file.

Where Is This Sample Located?
The sampleNMT sample is installed in the tensorrt/samples/sampleNMT directory.
For more information about how to run the sample, see the README.txt file in the
samples/sampleNMT/ directory.

9.1.9.1. Overview

At a high level, the basic architecture of the NMT model consists of two sides: an
encoder and a decoder. Incoming sentences are translated into sequences of words in a
fixed vocabulary. The incoming sequence goes through the encoder and is transformed
by a network of Recurrent Neural Network (RNN) layers into an internal state space that
represents a language-independent "meaning" of the sentence. The decoder works the
opposite way, transforming from the internal state space back into a sequence of words
in the output vocabulary.

Encoding And Embedding

The encoding process requires a fixed vocabulary of words from the source language.
Words not appearing in the vocabulary are replaced with an UNKNOWN token. Special
symbols also represent START-OF-SENTENCE and END-OF-SENTENCE. After the input is
finished, a START-OF-SENTENCE is fed in to mark the switch to decoding. The decoder
will then produce the END-OF-SENTENCE symbol to indicate it is finished translating.

Vocabulary words are not just represented as single numbers, they are encoded as word
vectors of a fixed size. The mapping from vocabulary word to embedding vector is
learned during training.

Attention

Attention mechanisms sit between the encoder and decoder and allow the network to
focus on one part of the translation task at a time. It is possible to directly connect the

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 83

encoding and decoding stages but this would mean the internal state representing the
meaning of the sentence would have to cover sentences of all possible lengths at once.

This sample implements Luong attention. In this model, at each decoder step the target
hidden state is combined with all source states using the attention weights. A scoring
function weighs each contribution from the source states. The attention vector is then fed
into the next decoder stage as an input.

Beam Search And Projection

There are several ways to organize the decode stage. The output of the RNN layer is not
a single word. The simplest method, is to choose the most likely word at each time step,
assume that is the correct output, and continue until the decoder generates the END-OF-
SENTENCE symbol.

A better way to perform the decoding is to keep track of multiple candidate possibilities
in parallel and keep updating the possibilities with the most likely sequences. In
practice, a small fixed size of candidates works well. This method is called beam
search. The beam width is the number of simultaneous candidate sequences that are in
consideration at each time step.

As part of beam search we need a mechanism to convert output states into probability
vectors over the vocabulary. This is accomplished with the projection layer using a fixed
dense matrix.

For more information related to SampleNMT, see Creating A Network Definition In C++,
Working With Deep Learning Frameworks, and Enabling FP16 Inference Using C++.

9.1.9.2. Preparing The Data

The NMT sample can be run with pre-trained weights. Link to the weights in the correct
format can be found in the samples/sampleNMT/README.txt file.

Running the sample also requires text and vocabulary data. For the De-En model, the
data can be fetched and processed using the script: wmt16_en_de.sh. Running this script
may take some time, since it prepares 4.5M samples for training as well as inference.

Run the script wmt16_de_en.sh and collect the following files into a directory:

‣ newstest2015.tok.bpe.32000.de
‣ newstest2015.tok.bpe.32000.en
‣ vocab.bpe.32000.de
‣ vocab.bpe.32000.en

The weights .bin files from the link in the README.txt should be put in a subdirectory
named weights in this directory.

In the event that the data files change, as of March 26, 2018 the MD5SUM for the data
files are:

https://github.com/tensorflow/nmt/blob/master/nmt/scripts/wmt16_en_de.sh

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 84

3c0a6e29d67b081a961febc6e9f53e4c newstest2015.tok.bpe.32000.de

875215f2951b21a5140e4f3734b47d6c newstest2015.tok.bpe.32000.en

c1d0ca6d4994c75574f28df7c9e8253f vocab.bpe.32000.de

c1d0ca6d4994c75574f28df7c9e8253f vocab.bpe.32000.en

9.1.9.3. Running The Sample

The sample executable is located in the tensorrt/bin directory. Running the sample
requires pre-trained weights and the data files mentioned in Preparing The Data. After
the data directory is setup, pass the location of the data directory to the sample with the
following option:

--data_dir=<path_to_data_directory>

To generate example translation output, issue:

sample_nmt --data_dir=<path> --data_writer=text

The example translations can then be found in the translation_output.txt file.

To get the BLEU score for the first 100 sentences, issue:

sample_nmt --data_dir=<path> --max_inference_samples=100

The following options are available when running the sample:
--help

Output help message and exit.
--data_writer=bleu/text/benchmark

Type of the output the app generates (default = bleu).
--output_file=<path_to_file>

Path to the output file when data_writer=text.
--batch=<N>

Batch size (default = 128).
--beam=<N>

Beam width (default = 5).
--max_input_sequence_length=<N>

Maximum length for input sequences (default = 150).
--max_output_sequence_length=<N>

Maximum length for output sequences (default = -1), negative value indicates no
limit.

--max_inference_samples=<N>
Maximum sample count to run inference for, negative values indicates no limit is set
(default = -1).

--verbose
Output information level messages by TensorRT.

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 85

--max_workspace_size=<N>
Maximum workspace size (default = 268435456).

--data_dir=<path_to_data_directory>
Path to the directory where data and weights are located (default = ../../../../
data/samples/nmt/deen).

--profile
Profile TensorRT execution layer by layer. Use benchmark data_writer when
profiling on, disregard benchmark results.

--aggregate_profile
Merge profiles from multiple TensorRT engines.

--fp16
Switch on FP16 math.

9.1.9.4. Training The Model

Training the NMT model can be done in TensorFlow. This sample was trained following
the general outline of the TensorFlow Neural Machine Translation Tutorial. The first step
is to obtain training data, which is handled by the steps in Preparing The Data.

The next step is to fetch the TensorFlow NMT framework, for example:

git clone https://github.com/tensorflow/nmt.git

The model description is located in the nmt/nmt/standard_hparams/wmt16.json
file. This file encodes values for all the hyperparameters available for NMT models.
Not all variations are supported by the current NMT sample code so this file should be
edited with appropriate values. For example, only unidirectional LSTMs and the Luong
attention model are supported. The exact parameters used for the pre-trained weights
are available in the sample README.txt file.

After the model description is ready and the training data is available in the <path>/
wmt16_de_en directory, the command to train the model is:

python -m nmt.nmt \
--src=de --tgt=en \
--hparams_path=<path_to_json_config>/wmt16.json \
--out_dir=/tmp/deen_nmt \
--vocab_prefix=/tmp/wmt16_de_en/vocab.bpe.32000 \
--train_prefix=/tmp/wmt16_de_en/train.tok.clean.bpe.32000 \
--dev_prefix=/tmp/wmt16_de_en/newstest2013.tok.bpe.32000 \
--test_prefix=/tmp/wmt16_de_en/newstest2015.tok.bpe.32000

9.1.9.5. Importing Weights From A Checkpoint

Training the model generates various output files describing the state of the model. In
order to use the model with TensorRT, model weights must be loaded into the TensorRT
network. The weight values themselves are included in the TensorFlow checkpoint
produced during training. In the sample directory, we provide a Python script that
extracts the weights from a TensorFlow checkpoint into a set of binary weight files that
can be directly loaded by the sample.

https://github.com/tensorflow/nmt

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 86

To use the script, run the command:

The chpt_to_bin.py script is located in the /usr/src/tensorrt/samples/
sampleNMT directory.

python ./chpt_to_bin.py \
 --src=de --tgt=en \
 --ckpt=/tmp/deen_nmt/translate.ckpt-340000 \
 --hparams_path=<path_to_json_config>/wmt16.json \
 --out_dir=/tmp/deen \
 --vocab_prefix=<path>/wmt16_de_en/vocab.bpe.32000 \
 --inference_input_file=\
 <path>/wmt16_de_en/newstest2015.tok.bpe.32000.de \
 --inference_output_file=/tmp/deen/output_infer \
 --inference_ref_file=\
 <path>/wmt16_de_en/newstest2015.tok.bpe.32000.en

This generates 7 binary weight files for all the pieces of the model. The binary format is
just a raw dump of the floating point values in order, followed by a metadata. The script
was tested against TensorFlow 1.6.

9.1.10. sampleFasterRCNN

What Does This Sample Do?
The sampleFasterRCNN sample demonstrates how to:

‣ Use the Faster R-CNN plugin which allows for end-to-end inferencing
‣ Implement the Faster R-CNN network in TensorRT
‣ Perform a quick performance test in TensorRT
‣ Implement a fused custom layer
‣ Construct the basis for further optimization, for example using INT8 calibration,

user trained network, etc.

Where Is This Sample Located?
The sampleFasterRCNN sample is installed in the /usr/src/tensorrt/samples/
sampleFasterRNN directory.

The Faster R-CNN Caffe model is too large to include in the product bundle. To run
this sample, download the model using the instructions in the README.txt in the
sample directory. The README is located in the <TensorRT directory>/samples/
sampleFasterRCNN directory. Once the model is downloaded and extracted as per the
instructions, the sample can be run by invoking sample_fasterRCNN binary.

Notes About This Sample:
The original Caffe model has been modified to include the Faster R-CNN’s RPN and
ROIPooling layers.

9.1.10.1. Overview

https://github.com/tensorflow/tensorflow/releases/tag/v1.6.0

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 87

The sampleFasterRCNN is a more complex sample. The Faster R-CNN network is based
on the paper Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks.

Faster R-CNN is a fusion of Fast R-CNN and RPN (Region Proposal Network). The
latter is a fully convolutional network that simultaneously predicts object bounds and
objectness scores at each position. It can be merged with Fast R-CNN into a single
network because it is trained end-to-end along with the Fast R-CNN detection network
and thus shares with it the full-image convolutional features, enabling nearly cost-free
region proposals. These region proposals will then be used by Fast R-CNN for detection.

The sampleFasterRCNN sample uses a plugin from the TensorRT plugin library to
include a fused implementation of Faster R-CNN’s Region Proposal Network (RPN) and
ROIPooling layers. These particular layers are from the Faster R-CNN paper and are
implemented together as a single plugin called RPNROIPlugin. This plugin is registered
in the TensorRT Plugin Registry with the name RPROI_TRT.

Faster R-CNN is faster and more accurate than its predecessors (RCNN, Fast R-CNN)
because it allows for an end-to-end inferencing and does not need standalone region
proposal algorithms (like selective search in Fast R-CNN) or classification method (like
SVM in RCNN).

9.1.10.2. Preprocessing The Input

The input to the Faster R-CNN network is 3 channel 375x500 images.

Since TensorRT does not depend on any computer vision libraries, the images are
represented in binary R, G, and B values for each pixels. The format is Portable PixMap
(PPM), which is a netpbm color image format. In this format, the R, G, and B values for
each pixel are represented by a byte of integer (0-255) and they are stored together, pixel
by pixel.

However, the authors of SSD have trained the network such that the first Convolution
layer sees the image data in B, G, and R order. Therefore, we reverse the channel order
when the PPM images are being put into the network buffer.

float* data = new float[N*INPUT_C*INPUT_H*INPUT_W];
// pixel mean used by the Faster R-CNN's author
float pixelMean[3]{ 102.9801f, 115.9465f, 122.7717f }; // also in BGR order
for (int i = 0, volImg = INPUT_C*INPUT_H*INPUT_W; i < N; ++i)
{
 for (int c = 0; c < INPUT_C; ++c)
 {
 // the color image to input should be in BGR order
 for (unsigned j = 0, volChl = INPUT_H*INPUT_W; j < volChl; ++j)
data[i*volImg + c*volChl + j] = float(ppms[i].buffer[j*INPUT_C + 2 - c]) -
 pixelMean[c];
 }
}

There is a simple PPM reading function called readPPMFile.

The readPPMFile function will not work correctly if the header of the PPM image
contains any annotations starting with #.

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 88

Furthermore, within the sample, there is another function called
writePPMFileWithBBox, that plots a given bounding box in the image with one-pixel
width red lines.

In order to obtain PPM images, you can easily use the command-line tools such as
ImageMagick to perform the resizing and conversion from JPEG images.

If you choose to use off-the-shelf image processing libraries to preprocess the inputs,
ensure that the TensorRT inference engine sees the input data in the form that it is
supposed to.

9.1.10.3. Defining The Network

The network is defined in a prototxt file which is shipped with the sample and located in
the data/faster-rcnn directory. The prototxt file is very similar to the one used by the
inventors of Faster R-CNN except that the RPN and the ROI pooling layer is fused and
replaced by a custom layer named RPROIFused.

Similar to samplePlugin, in order to add Custom layers via NvCaffeParser, you need
to create a factory by implementing the nvcaffeParser::IPluginFactory interface
and then pass an instance to ICaffeParser::parse(). But unlike samplePlugin, in
which the FCPlugin is defined in the sample, the RPROIFused plugin layer instance
can be created by the create function implemented in the TensorRT plugin library
createRPNROIPlugin. This function returns an instance that implements an optimized
RPROIFused Custom layer and performs the same logic designed by the authors.

9.1.10.4. Building The Engine

For details on how to build the TensorRT engine, see Building An Engine In C++.

In the case of the Faster R-CNN sample, maxWorkspaceSize is set to 10 * (2^20),
namely 10MB, because there is a need of roughly 6MB of scratch space for the plugin
layer for batch size 5.

After the engine is built, the next steps are to serialize the engine, then run the inference
with the deserialized engine. For more information, see Serializing A Model In C++.

9.1.10.5. Running The Engine

To deserialize the engine, see Performing Inference In C++.

In sampleFasterRCNN.cpp, there are two inputs to the inference function:
data

data is the image input
imInfo

imInfo is the image information array which stores the number of rows, columns,
and the scale for each image in a batch.

and four outputs:
bbox_pred

bbox_pred is the predicted offsets to the heights, widths and center coordinates.

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 89

cls_prob
cls_prob is the probability associated with each object class of every bounding box.

rois
rois is the height, width, and the center coordinates for each bounding box.

count
count is deprecated and can be ignored.

The count output was used to specify the number of resulting NMS bounding
boxes if the output is not aligned to nmsMaxOut. Although it is deprecated, always
allocate the engine buffer of size batchSize * sizeof(int) for it until it is
completely removed from the future version of TensorRT.

9.1.10.6. Verifying The Output

The outputs of the Faster R-CNN network need to be post-processed in order to obtain
human interpretable results.

First, because the bounding boxes are now represented by the offsets to the center,
height, and width, they need to be unscaled back to the raw image space by dividing the
scale defined in the imInfo (image info).

Ensure you apply the inverse transformation on the bounding boxes and clip the
resulting coordinates so that they do not go beyond the image boundaries.

Lastly, overlapped predictions have to be removed by the non-maximum suppression
algorithm. The post-processing codes are defined within the CPU because they are
neither compute intensive nor memory intensive.

After all of the above work, the bounding boxes are available in terms of the class
number, the confidence score (probability), and four coordinates. They are drawn in the
output PPM images using the writePPMFileWithBBox function.

9.1.11. sampleUffSSD

What Does This Sample Do?
The sampleUffSSD sample demonstrates how to:

‣ Preprocess the TensorFlow SSD network
‣ Perform inference on the SSD network in TensorRT
‣ Use TensorRT plugins to speed up inference

Where Is This Sample Located?
The sampleUffSSD sample is installed in the tensorrt/samples/sampleUffSSD
directory.

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 90

Notes About This Sample:
The frozen graph for the SSD network is too large to include in the TensorRT package.
Ensure you read the instructions in the README located at tensorrt/samples/
sampleUffSSD for details on how to generate the network to run inference.

9.1.11.1. API Overview

The sampleUffSSD is based on the following paper, SSD: Single Shot MultiBox Detector.
The SSD network, built on the VGG-16 network, performs the task of object detection
and localization in a single forward pass of the network. This approach discretizes the
output space of bounding boxes into a set of default boxes over different aspect ratios
and scales per feature map location. At prediction time, the network generates scores
for the presence of each object category in each default box and produces adjustments to
the box to better match the object shape. Additionally, the network combines predictions
from multiple features with different resolutions to naturally handle objects of various
sizes.

The sampleUffSSD is based on the TensorFlow implementation of SSD. For more
information, see ssd_inception_v2_coco.

Unlike the paper, the TensorFlow SSD network was trained on the InceptionV2
architecture using the MSCOCO dataset which has 91 classes (including the background
class). The configuration details of the network can be found at GitHub: TensorFlow
models.

The main components of this network are the Preprocessor, FeatureExtractor,
BoxPredictor, GridAnchorGenerator and Postprocessor.
Preprocessor

The preprocessor step of the graph is responsible for resizing the image. The image is
resized to a 300x300x3 size tensor. The preprocessor step also performs normalization
of the image so all pixel values lie between the range [-1, 1].

FeatureExtractor
The FeatureExtractor portion of the graph runs the InceptionV2 network on the
preprocessed image. The feature maps generated are used by the anchor generation
step to generate default bounding boxes for each feature map.

In this network, the size of feature maps that are used for anchor generation are
[(19x19), (10x10), (5x5), (3x3), (2x2), (1x1)].

BoxPredictor
The BoxPredictor step takes in a high level feature map as input and produces a list of
box encodings (x-y coordinates) and a list of class scores for each of these encodings
per feature map. This information is passed to the postprocessor.

GridAnchorGenerator
The goal of this step is to generate a set of default bounding boxes (given the
scale and aspect ratios mentioned in the config) for each feature map cell. This is
implemented as a plugin layer in TensorRT called the gridAnchorGenerator
plugin. The registered plugin name is GridAnchor_TRT.

Postprocessor
The postprocessor step performs the final steps to generate the network output.
The bounding box data and confidence scores for all feature maps are fed to

https://arxiv.org/abs/1512.02325
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 91

the step along with the pre-computed default bounding boxes (generated in the
GridAnchorGenerator namespace). It then performs NMS (non-maximum
suppression) which prunes away most of the bounding boxes based on a confidence
threshold and IoU (Intersection over Union) overlap, thus storing only the top N
boxes per class. This is implemented as a plugin layer in TensorRT called the NMS
plugin. The registered plugin name is NMS_TRT.

This sample also implements another plugin called FlattenConcat which is used
to flatten each input and then concatenate the results. This is applied to the
location and confidence data before it is fed to the post processor step since the
NMS plugin requires the data to be in this format.

For details on how a plugin is implemented, see the implementation of
FlattenConcat Plugin and FlattenConcatPluginCreator in the
sampleUffSSD.cpp file in the tensorrt/samples/sampleUffSSD directory.

9.1.11.2. Processing The Input Graph

The TensorFlow SSD graph has some operations that are currently not supported in
TensorRT. Using a preprocessor on the graph, we can combine multiple operations in
the graph into a single custom operation which can be implemented as a plugin layer
in TensorRT. Currently, the preprocessor provides the ability to stitch all nodes within a
namespace into one custom node.

To use the preprocessor, the convert-to-uff utility should be called with a -p flag
and a config file. The config script should also include attributes for all custom plugins
which will be embedded in the generated .uff file. Current sample scripts for SSD is
located in /usr/src/tensorrt/samples/sampleUffSSD/config.py.

Using the preprocessor on the graph, we were able to remove the preprocessor
namespace from the graph, stitch the GridAnchorGenerator namespace to create the
GridAnchorGenerator plugin, stitch the postprocessor namespace to the NMS plugin
and mark the concat operations in the BoxPredictor as FlattenConcat plugins.

The TensorFlow graph has some operations like Assert and Identity which can be
removed for the inferencing. Operations like Assert are removed and leftover nodes
(with no outputs once assert is deleted) are then recursively removed.

Identity operations are deleted and the input is forwarded to all the connected outputs.
TensorRT does not currently support Relu6(x) operation, so the preprocessor also
replaces this operation with a Relu(x) - Relu(x-6).

Additional documentation on the graph preprocessor can be found in the TensorRT API.

9.1.11.3. Preparing The Data

The generated network has an input node called Input and the output node is given
the name MarkOutput_0 by the UFF converter. These nodes are registered by the UFF
Parser in the sample.

parser->registerInput("Input", DimsCHW(3, 300, 300), UffInputOrder::kNCHW);
parser->registerOutput("MarkOutput_0");

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 92

The input to the SSD network in this sample is 3 channel 300x300 images. In the sample,
we normalize the image so the pixel values lie in the range [-1,1]. This is equivalent to
the preprocessing stage of the network.

Since TensorRT does not depend on any computer vision libraries, the images are
represented in binary R, G, and B values for each pixels. The format is Portable PixMap
(PPM), which is a netpbm color image format. In this format, the R, G, and B values for
each pixel are represented by a byte of integer (0-255) and they are stored together, pixel
by pixel. There is a simple PPM reading function called readPPMFile.

9.1.11.4. Defining The Network And Plugins

Details about how to create TensorRT plugins can be found in Extending TensorRT With
Custom Layers.

The config.py defined for the convert-to-uff command should have the custom
layers mapped to the plugin names in TensorRT by modifying the op field. The names
of the plugin parameters should also exactly match those expected by the TensorRT
plugins. For example, for the GridAnchor Plugin, the config.py should have the
following:

PriorBox = gs.create_plugin_node(name="GridAnchor", op="GridAnchor_TRT",
 numLayers=6,
 minSize=0.2,
 maxSize=0.95,
 aspectRatios=[1.0, 2.0, 0.5, 3.0, 0.33],
 variance=[0.1,0.1,0.2,0.2],
 featureMapShapes=[19, 10, 5, 3, 2, 1])

Here, GridAnchor_TRT matches the registered plugin name and the parameters have
the same name and type as expected by the plugin.

If the config.py is defined as above, the NvUffParser will be able to parser the network
and call the appropriate plugins with the correct parameters.

Alternately, the older flow of using the IPluginFactory can also be used. In
this case, the pluginFactory object created needs to be passed to an instance of
IUffParser::parse() which will invoke the createPlugin() function for each
Custom layer which has to be implemented by the user. Details about some of the plugin
layers implemented for SSD in TensorRT are given below.
GridAnchorGeneration Plugin

This plugin layer implements the grid anchor generation step in the TensorFlow SSD
network. For each feature map we calculate the bounding boxes for each grid cell. In
this network, there are 6 feature maps and the number of boxes per grid cell are as
follows:

‣ [19x19] feature map: 3 boxes (19x19x3x4(co-ordinates/box))
‣ [10x10] feature map: 6 boxes (10x10x6x4)
‣ [5x5] feature map: 6 boxes (5x5x6x4)
‣ [3x3] feature map: 6 boxes (3x3x6x4)
‣ [2x2] feature map: 6 boxes (2x2x6x4)
‣ [1x1] feature map: 6 boxes (1x1x6x4)

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 93

NMS Plugin
The NMS plugin generates the detection output based on location and confidence
predictions generated by the BoxPredictor. This layer has three input tensors
corresponding to location data (locData), confidence data (confData) and priorbox
data (priorData).

The inputs to detection output plugin have to be flattened and concatenated across
all the feature maps. We use the FlattenConcat plugin implemented in the sample
to achieve this. The location data generated from the box predictor has the following
dimensions:

19x19x12 -> Reshape -> 1083x4 -> Flatten -> 4332x1
10x10x24 -> Reshape -> 600x4 -> Flatten -> 2400x1

and so on for the remaining feature maps.

After concatenating, the input dimensions for locData input are of the order of
7668x1.

The confidence data generated from the box predictor has the following dimensions:

19x19x273 -> Reshape -> 1083x91 -> Flatten -> 98553x1
10x10x546 -> Reshape -> 600x91 -> Flatten -> 54600x1

and so on for the remaining feature maps.

After concatenating, the input dimensions for confData input are of the order of
174447x1.

The prior data generated from the grid anchor generator plugin has the following
dimensions, for example 19x19 feature map has 2x4332x1 (there are two channels
here because one channel is used to store variance of each coordinate that is used in
the NMS step). After concatenating, the input dimensions for priorData input are of
the order of 2x7668x1.

struct DetectionOutputParameters
{
 bool shareLocation, varianceEncodedInTarget;
 int backgroundLabelId, numClasses, topK, keepTopK;
 float confidenceThreshold, nmsThreshold;
 CodeTypeSSD codeType;
 int inputOrder[3];
 bool confSigmoid;
 bool isNormalized;
};

shareLocation and varianceEncodedInTarget are used for the Caffe
implementation, so for the TensorFlow network they should be set to true and
false respectively. The confSigmoid and isNormalized parameters are necessary
for the TensorFlow implementation. If confSigmoid is set to true, it calculates the
sigmoid values of all the confidence scores. The isNormalized flag specifies if the
data is normalized and is set to true for the TensorFlow graph.

9.1.11.5. Verifying The Output

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 94

After the builder is created (see Building An Engine In C++) and the engine is serialized
(see Serializing A Model In C++), we can perform inference. Steps for deserialization and
running inference are outlined in Performing Inference In C++.

The outputs of the SSD network are human interpretable. The post-processing work,
such as the final NMS, is done in the NMS plugin. The results are organized as tuples of
7. In each tuple, the 7 elements are respectively image ID, object label, confidence score,
(x,y) coordinates of the lower left corner of the bounding box, and (x,y) coordinates of
the upper right corner of the bounding box. This information can be drawn in the output
PPM image using the writePPMFileWithBBox function. The visualizeThreshold
parameter can be used to control the visualization of objects in the image. It is currently
set to 0.5 so the output will display all objects with confidence score of 50% and above.

9.1.12. sampleMovieLens

What Does This Sample Do?
The sampleMovieLens sample demonstrates a simple movie recommender system
using Neural Collaborative Filter (NCF). The network is trained in TensorFlow on the
MovieLens dataset containing 6040 users and 3706 movies. For more information about
the recommender system network, see Neural Collaborative Filtering.

Where Is This Sample Located?
The sampleMovieLens sample in installed in the usr/src/tensorrt/samples/
sampleMovieLens directory.

Notes About This Sample:
Each query to the network consists of a userID and list of MovieIDs. The network
predicts the highest-rated movie for each user. As trained parameters, the network
has embeddings for users and movies, and weights for a sequence of Multi-Layer
Perceptrons (MLPs).

The sample can be built with Multi Process Service (MPS) mode enabled, and can use a
configurable number of processes once MPS mode is enabled.

9.1.12.1. Importing Network To TensorRT

The network is converted from TensorFlow using the UFF converter (see Converting A
Frozen Graph To UFF), and imported using the UFF parser. Constant layers are used to
represent the trained parameters within the network, and the MLPs are implemented
using FullyConnected layers. A TopK operation is added manually after parsing to find
the highest rated movie for the given user.

9.1.12.2. Running With MPS

MPS (Multi-Process Service) allows multiple CUDA processes to share single GPU
context. With MPS, multiple overlapping kernel execution and memcpy operations from
different processes can be scheduled concurrently to achieve maximum utilization. This

https://grouplens.org/datasets/movielens/

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 95

can be especially effective in increasing parallelism for small networks with low resource
utilization such as those primarily consisting of a series of small MLPs. For more
information about MPS, see Multi-Process Service documentation or in the README.txt
file for the sample.

MPS requires a server process. To start the process:

export CUDA_VISIBLE_DEVICES=<GPU_ID>
nvidia-smi -i <GPU_ID> -c EXCLUSIVE_PROCESS
nvidia-cuda-mps-control -d

In order to run the sample with MPS, recompile with USE_MPS=1.

9.1.12.3. Verifying The Output

The output of the MLP based NCF network is in human readable format. The final
output is movieID with probability rating for give userID.

9.1.13. sampleSSD

What Does This Sample Do?
The sampleSSD sample demonstrates how to:

‣ Preprocess the input to the SSD network
‣ Perform inference on the SSD network in TensorRT
‣ Use TensorRT plugins to speed up inference
‣ Perform INT8 calibration on an SSD network

Where Is This Sample Located?
The sampleSSD sample is installed in the /usr/src/tensorrt/samples/sampleSSD
directory.

Notes About This Sample:
The SSD Caffe model is too large to include in the product bundle. To run this
sample, download the model using the instructions in the README.md in the sample
<TensorRT directory>/samples/sampleSSD directory. The original Caffe model
(prototxt) has been modified to include the SSD’s customized Plugin layers.

9.1.13.1. Overview

The SSD network is based on the following paper SSD: Single Shot MultiBox Detector.
This network is based on the VGG-16 network. It can perform object detection and
localization in a single forward pass.

Unlike Faster R-CNN, SSD completely eliminates proposal generation and subsequent
pixel or feature resampling stages and encapsulates all computation in a single network.
This makes SSD straightforward to integrate into systems that require a detection
component.

https://docs.nvidia.com/deploy/mps/index.html

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 96

9.1.13.2. Preprocessing The Input

The input to the SSD network in this sample is a RGB 300x300 image. The image format
is Portable PixMap (PPM), which is a netpbm color image format. In this format, the R,
G, and B values for each pixel are represented by a byte of integer (0-255) and they are
stored together, pixel by pixel.

The authors of SSD have trained the network such that the first Convolution layer sees
the image data in B, G, and R order. Therefore, the channel order needs to be changed
when the PPM image is being put into the network’s input buffer.

float pixelMean[3]{ 104.0f, 117.0f, 123.0f }; // also in BGR order
float* data = new float[N * kINPUT_C * kINPUT_H * kINPUT_W];
 for (int i = 0, volImg = kINPUT_C * kINPUT_H * kINPUT_W; i < N; ++i)
 {
 for (int c = 0; c < kINPUT_C; ++c)
 {
 // the color image to input should be in BGR order
 for (unsigned j = 0, volChl = kINPUT_H * kINPUT_W; j < volChl; ++j){
 Data[i * volImg + c * volChl + j] = float(ppms[i].buffer[j * kINPUT_C + 2 -
 c]) - pixelMean[c];
 }
 }
 }

The readPPMFile and writePPMFileWithBBox functions read a PPM image and
produce output images with red colored bounding boxes respectively.

The readPPMFile function will not work correctly if the header of the PPM image
contains any annotations starting with #.

9.1.13.3. Defining The Network

The network is defined in a prototxt file which is shipped with the sample and located
in the data/ssd directory. The original prototxt file provided by the authors is modified
and included in the TensorRT in-built plugin layers in the prototxt file.

The built-in plugin layers used in sampleSSD are Normalize, PriorBox, and
DetectionOutput. The corresponding registered plugins for these layers are
Normalize_TRT, PriorBox_TRT and NMS_TRT.

To initialize and register these TensorRT plugins to the plugin registry, the
initLibNvInferPlugins method is used. After registering the plugins and while
parsing the prototxt file, the NvCaffeParser creates plugins for the layers based on the
parameters that were provided in the prototxt file automatically. The details about each
parameter is provided in the README.md and can be modified similar to the Caffe
Layer parameter.

9.1.13.4. Building The Engine

The sampleSSD sample builds a network based on a Caffe model and network
description. For details on importing a Caffe model, seeImporting A Caffe Model Using
The C++ Parser API. The SSD network has few non-natively supported layers which

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 97

are implemented as plugins in TensorRT. The Caffe parser can create plugins for these
layers internally which avoids creating additional code for plugin factory like in the
sampleFasterRCNN sample.

This sample can run in FP16 and INT8 modes based on the user input. For more details,
seeOptimizing INT8 Calibration Using C++ API and Enabling FP16 Inference Using C+
+. The sample selects the entropy calibrator as a default choice. The CalibrationMode
parameter in the sample code needs to be set to 0 to switch to the Legacy calibrator.

For details on how to build the TensorRT engine, seeBuilding An Engine In C++. After
the engine is built, the next steps are to serialize the engine and run the inference with
the deserialized engine. For more information about these steps, seeSerializing A Model
In C++.

9.1.13.5. Verifying The Output

After deserializing the engine, you can perform inference. To perform inference, see
Performing Inference In C++.

In sampleSSD, there is a single input:
data

Namely the image input.
and 2 outputs:
detectionOut

The detection array, containing the image ID, label, confidence, and 4 coordinates.
keepCount

The number of valid detections.

The outputs of the SSD network are directly human interpretable. The results are
organized as tuples of 7. In each tuple, the 7 elements are:

‣ image ID
‣ object label
‣ confidence score
‣ (x,y) coordinates of the lower left corner of the bounding box
‣ (x,y) coordinates of the upper right corner of the bounding box

This information can be drawn in the output PPM image using the
writePPMFileWithBBox function. The kVISUAL_THRESHOLD parameter can be used to
control the visualization of objects in the image. It is currently set to 0.6, therefore, the
output will display all objects with confidence score of 60% and above.

9.2. Python Samples
You can find the Python samples in the /usr/src/tensorrt/samples/python
directory. The following Python samples are shipped with TensorRT:

‣ introductory_parser_samples
‣ end_to_end_tensorflow_mnist

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 98

‣ network_api_pytorch_mnist
‣ fc_plugin_caffe_mnist
‣ uff_custom_plugin

Running Python Samples

Every Python sample includes a README.md and requirements.txt file. To run one of
the Python samples, the process typically involves two steps:

 1. Install the sample requirements:

python<x> -m pip install -r requirements.txt

where python<x> is either python2 or python3.
 2. Run the sample code with the data directory provided if the TensorRT sample data

is not in the default location. For example:

python<x> sample.py [-d DATA_DIR]

For more information on running samples, see the README.md file included with the
sample.

9.2.1. introductory_parser_samples

What Does This Sample Do?
This sample demonstrates how to use TensorRT and its included suite of parsers (the
UFF, Caffe and ONNX parsers), to perform inference with ResNet-50 models trained
with various different frameworks.

This sample includes the following:
caffe_resnet50

This sample demonstrates how to build an engine from a trained Caffe model using
the Caffe parser and then run inference.

onnx_resnet50
This sample demonstrates how to build an engine from an ONNX model file using
the open-source ONNX parser and then run inference.

uff_resnet50
This sample demonstrates how to build an engine from a UFF model file (converted
from a TensorFlow protobuf) and then run inference.

Where Is This Sample Located?
The introductory_parser_samples sample is installed in the /usr/src/tensorrt/
samples/python/introductory_parser_samples directory.

9.2.2. end_to_end_tensorflow_mnist

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 99

What Does This Sample Do?
This sample demonstrates how to first train a model using TensorFlow and Keras, freeze
the model and write it to a protobuf file, convert it to UFF, and finally run inference
using TensorRT.

Where Is This Sample Located?
The end_to_end_tensorflow_mnist sample is installed in the /usr/src/tensorrt/
samples/python/end_to_end_tensorflow_mnist directory.

9.2.3. network_api_pytorch_mnist

What Does This Sample Do?
This sample demonstrates how to train a model in PyTorch, recreate the network in
TensorRT and import weights from the trained model, and finally run inference with a
TensorRT engine.

Where Is This Sample Located?
The network_api_pytorch_mnist sample is installed in the /usr/src/tensorrt/
samples/python/network_api_pytorch_mnist directory.

Notes About This Sample:
The sample.py script imports the functions from the mnist.py script for training the
PyTorch model, as well as retrieving test cases from the PyTorch Data Loader.

9.2.4. fc_plugin_caffe_mnist

What Does This Sample Do?
This sample demonstrates how to use plugins written in C++ with the TensorRT Python
bindings and CaffeParser. More specifically, this sample implements a FullyConnected
layer using cuBLAS and cuDNN, wraps the implementation in a TensorRT plugin
(with a corresponding plugin factory) and then generates Python bindings for it
using pybind11. These bindings are then used to register the plugin factory with the
CaffeParser.

Where Is This Sample Located?
The fc_plugin_caffe_mnist sample is installed in the /usr/src/tensorrt/samples/
python/fc_plugin_caffe_mnist directory.

9.2.5. uff_custom_plugin

Samples

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 100

What Does This Sample Do?
This sample demonstrates how to use plugins written in C++ with the TensorRTPython
bindings and UFF Parser. More specifically, this sample implementsa clip layer (as a
CUDA kernel), wraps the implementation in a TensorRT plugin(with a corresponding
plugin creator) and then generates a shared library modulecontaining its code. The user
then dynamically links this library in Python,which causes plugin to be registered in
TensorRT's PluginRegistry andmakes it available for UFF parser.

Where Is This Sample Located?
The uff_custom_plugin sample is installed in the /usr/src/tensorrt/samples/
python/uff_custom_plugin directory.

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 101

Chapter 10.
TROUBLESHOOTING

The following sections help answer the most commonly asked questions regarding
typical use cases.

10.1. FAQs

Q: How do you create an engine that is optimized for several different batch sizes?
A: While TensorRT allows an engine optimized for a given batch size to run at any
smaller size, the performance for those smaller sizes may not be as well-optimized. To
optimize for multiple different batch sizes, run the builder and serialize an engine for
each batch size.

Q: Are engines and calibration tables portable across TensorRT versions?
A: No. Internal implementations and formats are continually optimized and may change
between versions. For this reason, engines and calibration tables are not guaranteed to
be binary compatible with different versions of TensorRT. Applications should build
new engines and INT8 calibration tables when using a new version of TensorRT.

Q: How do you choose the optimal workspace size?
A: Some TensorRT algorithms require additional workspace on the GPU. The method
IBuilder::setMaxWorkspaceSize() controls the maximum amount of workspace
that may be allocated, and will prevent algorithms that require more workspace from
being considered by the builder. At runtime, the space is allocated automatically
when creating an IExecutionContext. The amount allocated will be no more than
is required, even if the amount set in IBuilder::setMaxWorkspaceSize() is much
higher. Applications should therefore allow the TensorRT builder as much workspace as
they can afford; at runtime TensorRT will allocate no more than this, and typically less.

Troubleshooting

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 102

Q: How do you use TensorRT on multiple GPUs?
A: Each ICudaEngine object is bound to a specific GPU when it is instantiated, either
by the builder or on deserialization. To select the GPU, use cudaSetDevice() before
calling the builder or deserializing the engine. Each IExecutionContext is bound
to the same GPU as the engine from which it was created. When calling execute()
or enqueue(), ensure that the thread is associated with the correct device by calling
cudaSetDevice() if necessary.

Q: How do I get the version of TensorRT from the library file?
A: There is a symbol in the symbol table named tensorrt_version_#_#_#_# which
contains the TensorRT version number. One possible way to read this symbol on Linux is
to use the nm command like in the example below:

$ nm -D libnvinfer.so.4.1.0 | grep tensorrt_version
000000000c18f78c B tensorrt_version_4_0_0_7

Q: What can I do if my network is producing the wrong answer?

A: There are several reasons why your network may be generating incorrect answers.
Here are some troubleshooting approaches which may help diagnose the problem:

‣ Turn on INFO level messages from the log stream and check what TensorRT is
reporting.

‣ Check that your input preprocessing is generating exactly the input format required
by the network.

‣ If you’re using reduced precision, run the network in FP32. If it produces the correct
result, it is possible that lower precision has insufficient dynamic range for the
network.

‣ Try marking intermediate tensors in the network as outputs, and see if they
match what you are expecting. Note: Marking tensors as outputs may inhibit
optimizations, and therefore, may change the results.

Q: How do I determine how much device memory will be required by my network?
A: TensorRT uses device memory for two purposes: to hold the weights required
by the network, and to hold the intermediate activations. The size of the weights
can be closely approximated by the size of the serialized engine (in fact this
will be a slight overestimate, as the serialized engine also includes the network
definition). The size of the activation memory required can be determined by calling
ICudaEngine::getDeviceMemorySize(). The sum of these will be the amount of
device memory TensorRT allocates.

The CUDA infrastructure and device code also consume device memory. The amount
of memory will vary by platform, device, and TensorRT version. Use cudaGetMemInfo
to determine the total amount of device memory in use.

Troubleshooting

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 103

10.2. Support
Support, resources, and information about TensorRT can be found online at https://
developer.nvidia.com/tensorrt. This includes blogs, samples, and more.

In addition, you can access the NVIDIA DevTalk TensorRT forum at https://
devtalk.nvidia.com/default/board/304/tensorrt/ for all things related to TensorRT. This
forum offers the possibility of finding answers, make connections, and to get involved in
discussions with customers, developers, and TensorRT engineers.

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://devtalk.nvidia.com/default/board/304/tensorrt/
https://devtalk.nvidia.com/default/board/304/tensorrt/

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 104

Appendix A.
APPENDIX

A.1. TensorRT Layers
In TensorRT, layers represent distinct flavours of mathematical and/or programmatic
operations. The following sections describe every layer that is supported by TensorRT.
To view a list of the specific attributes that are supported by each layer, refer to the
TensorRT API documentation.

TensorRT has the ability to optimize performance by fusing layers. For information
about how to enable layer fusion optimizations, see Types Of Fusions. For information
about how to optimize layer performance, see How Do I Optimize My Layer
Performance? from the Best Practices guide.

A.1.1. Activation Layer
The Activation layer implements element-wise activation functions.

Layer Description

Apply an activation function on a input tensor A, and produce an output tensor B with
the same dimensions.

The Activation layer supports the following operations:

rectified Linear Unit (ReLU): B = ReLU(A)
Hyperbolic tangent: B = tanh(A)
“s” shaped curve (sigmoid): B = σ(A)

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addActivation(A, f)

‣ IActivationLayer::setActivationType(f)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#fusion-types
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0382282a59e3841726f6c29c4ac1f684
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_activation_layer.html#ac32f902b4b32c93cec4b7beae950f337

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 105

Usage with the Python API:

‣ NetworkDefinition::add_activation(A, f)

‣ ActivationLayer::set_activation(f)

Conditions And Limitations

None

See the C++ IActivationLayer method or the Python ActivationLayer method for further
details.

A.1.2. Concatenation Layer
The Concatenation layer links together multiple tensors of the same non-channel sizes
along the channel dimension.

Layer Description

The concatenation layer is passed in an array of m input tensors Ai and a channel axis c.

All dimensions of all input tensors must match in every axis except axis c. Let each input
tensor have dimensions ai. The concatenated output tensor will have dimensions b such
that

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addConcatenationLayer(Ai, m)

‣ IConcatenationLayer::setAxis(c)

Usage with the Python API:

‣ NetworkDefinition::add_concatenation(Ai, m)

‣ ConcatenationLayer::set_axis(c)

Conditions And Limitations

The default channel axis is assumed to be the third from last axis, or the first non-batch
axis if there are fewer than 3 non-batch axes. Concatenation cannot be done along the
batch axis. All input tensors must either be non-INT32 type or all must be INT32 type.

See the C++ IConcatenationLayer method or the Python ConcatenationLayer method for
further details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_activation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ActivationLayer.set_activation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_activation_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#activationlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a80d81ac3ebb81efbd3a29d4c9f5c3a72
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_concatenation_layer.html#a04114292e9433edc73061437b096903f
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_concatenation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConcatenationLayer.set_axis
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_concatenation_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#concatenationlayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 106

A.1.3. Constant Layer
The Constant layer outputs a tensor with values provided as parameters to this layer,
enabling the convenient use of constants in computations.

Layer Description

Given dimensions d and weight vector w, the constant layer will output a tensor B of
dimensions d with the constant values in w. This layer takes no input tensor. The number
of elements in the weight vector wis equal to the volume of d.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addConstant(d,w)

‣ IConstantLayer::setDimensions(d)

‣ IConstLayer::setWeights(w)

Usage with the Python API:

‣ NetworkDefinition::add_constant(d, w)

‣ ConstantLayer::set_dimensions(d)

‣ ConstantLayer::set_weights(w)

Conditions And Limitations

The output can be a tensor of zero to seven dimensions.

See the C++ IConstantLayer method or the Python ConstantLayer method for further
details.

A.1.4. Convolution Layer
The Convolution layer computes a 2D (channel, height, and width) convolution, with or
without bias.

The operation the Convolution layer performs is actually a correlation. Therefore, it
is a consideration if you are formatting weights to import via an API, rather than via
the NvCaffeParser library.

Layer Description

Compute a cross-correlation with 2D filters on a 4D tensor A, of dimensions a, to
produce a 4D tensor B, of dimensions b. The dimensions of B depend on the dimensions
of A, the number of output maps m, kernel size r, symmetric padding p, stride s, dilation

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#aec3314208c6d807cb572cd7d336bf5ed
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_constant_layer.html#a7b4c5f48a64768cfa85b00fab369d618
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_constant_layer.html#ae48b52a41eaa36abc506ea94138857c8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_constant
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConstantLayer.set_dimensions
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConstantLayer.set_weights
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_constant_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#constantlayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 107

d, and dilated kernel size t = r+d(r-1), such that height and width are adjusted
accordingly as follows:

‣ b = [a0 m b2 b3]

‣ b2 = (a2+2p0-t0)/s0+1

‣ b3 = (a3+2p1-t1)/s1+1

The kernel weights w and bias weights x (optional) for the number of groups g, are such
that:

‣ w is ordered according to shape [m a1/g r0 r1]
‣ x has length m

Let tensor K with dimensions k = [m a1/g t0 t1] be defined as the zero-filled tensor,
such that:

‣ ki,j,hh,ll = wi,j,h,l
‣ hh = {0 if h = 0, h + d0(h-1) otherwise}, and ll = {0 if l = 0, l +

d1(l-1) otherwise}.

and tensor C the zero-padded copy of A with dimensions [a0 a1 a2+p1], then tensor B
is defined as:

where kk = k+t0-1, and ll = l+t1-1.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addConvolution(A, m, r, w, x)

‣ IConvolutionLayer::setKernelSize(r)

‣ IConvolutionLayer::setNbOutputMaps(m)

‣ IConvolutionLayer::setStride(s) - default s = [1 1]

‣ IConvolutionLayer::setPadding(p) - default p = [0 0]

‣ IConvolutionLayer::setNbGroups(g) - default g = 1

‣ IConvolutionLayer::setKernelWeights(w)

‣ IConvolutionLayer::setBiasWeights(x)

‣ IConvolutionLayer::setDilation(d) - default d = [0 0]

Usage with the Python API:

‣ NetworkDefinition::add_convolution(A, m, r, w, x)

‣ ConvolutionLayer::set_kernel_size(r)

‣ ConvolutionLayer::set_nb_output_maps(m)

‣ ConvolutionLayer::set_stride(s) - default s = [1 1]

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a29fb055009bb117be0e957cd1bce44a9
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html#abb50e93b6d81e0312573c2e0ced52622
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html#aff08df1fda9197e11be6b3eb9475df5a
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html#a5455636f089a7dfe2d413daa22e239f7
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html#a0b3a413960bc75818e9c1f9261f0367e
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html#a3a2beddd3ee196a18d501ca8962d17c7
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html#a42df0515a0cf41932bfc1e1a4ed3c7e3
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html#adb004ade848231a67cd0a0b6c7841eff
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html#ac753aedb2a8764a510ad7a2d081dd030
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_convolution
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConvolutionLayer.set_kernel_size
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConvolutionLayer.set_nb_output_maps
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConvolutionLayer.set_stride

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 108

‣ ConvolutionLayer::set_padding(p) - default p = [0 0]

‣ ConvolutionLayer::set_nb_groups(g) - default g = 1

‣ ConvolutionLayer::set_kernel_weights(w)

‣ ConvolutionLayer::set_bias_weights(x)

‣ ConvolutionLayer::set_dilation(d) - default d = [0 0]

Conditions And Limitations

Input and output may have more than 4 dimensions; beyond 4, all dimensions are
treated as multipliers on the batch size, and input and output are treated as 4D tensors.
If groups are specified and INT8 data type is used, then the size of the groups must be a
multiple of 4 for both input and output.

See the C++ IConvolutionLayer method or the Python ConvolutionLayer method for
further details.

A.1.5. Deconvolution Layer
The Deconvolution layer computes a 2D (channel, height, and width) deconvolution,
with or without bias.

This layer actually applies a 2D transposed convolution operator over a 2D input. It is
also known as fractionally-strided convolution or transposed convolution.

Layer Description

Compute a cross-correlation with 2D filters on a 4D tensor A, of dimensions a, to
produce a 4D tensor B, of dimensions b. The dimensions of B depend on the dimensions
of A, the number of output maps m, kernel size r, symmetric padding p, stride s, dilation
d, and dilated kernel size t = r+d(r-1), such that height and width are adjusted
accordingly as follows:

‣ b = [a0 m b2 b3]

‣ b2 = (a2-1)*s0 + t0 - 2p0
‣ b3 = (a3-1)*s1 + t1 - 2p0

The kernel weights w and bias weights x (optional) for the number of groups g, are such
that:

‣ w is ordered according to shape [a1/g m r0 r1]
‣ x has length m

Let tensor K with dimensions k = [m b1/g t0 t1] be defined as the zero-filled tensor,
such that:

‣ ki,j,hh,ll = wi,j,h,l

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConvolutionLayer.set_padding
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConvolutionLayer.set_nb_groups
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConvolutionLayer.set_kernel_weights
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConvolutionLayer.set_bias_weights
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConvolutionLayer.set_dilation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#convolutionlayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 109

‣ hh = {0 if h = 0, h + d0(h-1) otherwise}, and ll = {0 if l = 0, l +
d1(l-1) otherwise}.

and tensor C the zero-padded copy of A with dimensions [a0 a1 a2+p1], then tensor B
is defined as:

where u ranges from 0 to min(t0-1, k), and v ranges from 0 to min(t1-1, l).

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addDeconvolution(A, m, r, w, x)

‣ IDeconvolutionLayer::setKernelSize(r)

‣ IDeconvolutionLayer::setNbOutputMaps(m)

‣ IDeconvolutionLayer::setStride(s) - default s = [1 1]

‣ IDeconvolutionLayer::setPadding(p) - default p = [0 0]

‣ IDeconvolutionLayer::setNbGroups(g) - default g = 1

‣ IDeconvolutionLayer::setKernelWeights(w)

‣ IDeconvolutionLayer::setBiasWeights(x)

Usage with the Python API:

‣ NetworkDefinition::add_deconvolution(A, m, r, w, x)

‣ DeconvolutionLayer::set_kernel_size(r)

‣ DeconvolutionLayer::set_nb_output_maps(m)

‣ DeconvolutionLayer::set_stride(s) - default s = [1 1]

‣ DeconvolutionLayer::set_padding(p) - default p = [0 0]

‣ DeconvolutionLayer::set_nb_groups(g) - default g = 1

‣ DeconvolutionLayer::set_kernel_weights(w)

‣ DeconvolutionLayer::set_bias_weights(x)

Conditions And Limitations

Input and output may have more than 4 dimensions; beyond 4, all dimensions are
treated as multipliers on the batch size, and input and output are treated as 4D tensors.
If groups are specified and INT8 data type is used, then the size of the groups must be a
multiple of 4 for both input and output.

See the C++ IDeconvolutionLayer method or the Python DeconvolutionLayer method for
further details.

A.1.6. ElementWise Layer

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a80f985a0a5e5e68561ef205bf346fc33
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html#a9e34cc8468355f4a5bf64421211982a8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html#a9ffa2641b9b549750e34eb422d5adbcf
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html#a5620d1b3cc9b44822b6ac439cf5e0e1a
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html#a260108a4204551c4ac570969a26bada9
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html#ace21c2ac4308faef77ba9b99407f43c1
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html#a9beaca604dac8528c53feca574c9ba2b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html#abf917dc1f46d86009fafe750da9d4b2d
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_deconvolution
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.DeconvolutionLayer.set_kernel_size
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.DeconvolutionLayer.set_kernel_size
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.DeconvolutionLayer.set_kernel_size
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.DeconvolutionLayer.set_kernel_size
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.DeconvolutionLayer.set_kernel_size
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.DeconvolutionLayer.set_kernel_size
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.DeconvolutionLayer.set_kernel_size
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#deconvolutionlayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 110

The ElementWise layer, also known as the Eltwise layer, implements per-element
operations.

Layer Description

Compute a per-element binary operation between input tensor A and input tensor B to
produce an output tensor C. For each dimension, their lengths must match, or one of
them must be one. In the latter case, the tensor is broadcast along that axis. The output
tensor has the same number of dimensions as the inputs. For each dimension, its length
is the maximum of the lengths of the corresponding input dimension.

The ElementWise layer supports the following operations:

Sum: C = A+B
Product: C = A*B
Maximum: C = min(A, B)
Minimum: C = max(A, B)
Subtraction: C = A-B
Division: C = A/B
Power: C = A^B

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addElementWise(A, B, operation)

‣ IElementWiseLayer::setOperation(operation)

Usage with the Python API:

‣ NetworkDefinition::add_element_wise(A, B, operation)

‣ ElementWiseLayer::set_operation(operation)

Conditions And Limitations

The length of each dimension of the two input tensors A and B must be equal or equal to
one.

See the C++ IElementWiseLayer method or the Python ElementWiseLayer method for
further details.

A.1.7. FullyConnected Layer
The FullyConnected layer implements a matrix-vector product, with or without bias.

Layer Description

The FullyConnected layer expects an input tensor A of three or more dimensions. Given
an input tensor A of dimensions a=[a0 ... an-1], it is first reshaped into a tensor
A’ of dimensions a’=[a0 ... an-4 (an-3*an-2*an-1)] by squeezing the last three
dimensions into one dimension.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#aa12fda7cb22a7a12f4d58701e9f3988f
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_element_wise_layer.html#a3dfe1ffd61ad8df31e53391427ee20fd
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_element_wise
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ElementWiseLayer.set_operation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_element_wise_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#elementwiselayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 111

Then, the layer performs the operation B’=WA’+X where W is the weight tensor of
dimensions w=[(an-3*an-2*an-1) k], X is the bias tensor of dimensions x=[k]
broadcasted along the other dimensions, and k is the number of output channels,
configurable via setNbOutputChannels(). If X is not specified, the value of the bias is
implicitly 0. The resulting B’ is a tensor of dimensions b’=[a0 ... an-4 k].

Finally, B’ is reshaped again into the output tensor B of dimensions b=[a0 ... an-4 k
1 1] by inserting two lower dimensions each of size 1.

In summary, for input tensor A of dimensions a=[a0 ... an-1], the output tensor B will
have dimensions b=[a0 ... an-4 k 1 1].

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addFullyConnected(A, k, W, x)

‣ IFullyConnectedLayer::setNbOutputChannels(k)

‣ IFullyConnectedLayer::setKernelWeights(W)

‣ IFullyConnectedLayer::setBiasWeights(x)

Usage with the Python API:

‣ NetworkDefinition::add_fully_connected(A, k, W, x)

‣ FullyConnectedLayer::set_nb_output_channels(k)

‣ FullyConnectedLayer::set_kernel_weights(W)

‣ FullyConnectedLayer::set_bias_weights(x)

Conditions And Limitations

A must have three dimensions or more.

See the C++ IFullyConnectedLayer method or the Python FullyConnectedLayer method
for further details.

A.1.8. Gather Layer
The Gather layer implements the gather operation on a given axis.

Layer Description

Gather elements of each data tensor A along the specified axisxusing indices tensor B of
zero dimensions or more dimensions, to produce output tensor C of dimensions c.

If B has zero dimensions and it is a scalar b, then ck={ak if k<x, and ak+1 if k>x}
and c has length equal to one less than the length of a. In this case, Ci=Aj where jk={b
if k=x, ik if k<x, and ik-1 if k>x}.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html#a7a268ddbb5c40ac1c35b872a3f08278b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a411e2cefb9a4307d99fcc442c2a708a8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html#a7a268ddbb5c40ac1c35b872a3f08278b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html#a4c6ad60d2ea052c632b8714350c8badb
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html#a22a58ed172b62aa85abb1d56a3adc3fe
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_fully_connected
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.FullyConnectedLayer.set_nb_output_channels
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.FullyConnectedLayer.set_kernel_weights
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.FullyConnectedLayer.set_nb_output_channels
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#fullyconnectedlayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 112

If B is a tensor of dimensions b (with length b), then ck={ak if k<x, bk-x if k≥x
and k<x+b, and ak-b+1 otherwise}. In this case, Ci=Aj where jk={BX(i) if k=x,
ik if k<x, and ik-b if k>x} and X(i)=ix,..,x+b-1.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addGather(A, B, axis)

‣ IGatherLayer::setGatherAxis(axis)

Usage with the Python API:

‣ NetworkDefinition:add_gather(A, B, axis)

‣ GatherLayer::set_gather_axis(axis)

Conditions And Limitations

Elements cannot be gathered along the batch size dimension. The data tensor A must
contain at least one non-batch dimension. The data tensor A must contain at least axis
+ 1 non-batch dimensions. The indices tensor B must contain only INT32 values. The
parameter axis is zero-indexed and starts at the first non-batch dimension of data tensor
A. If there are any invalid indices elements in the indices tensor, then zeros will be stored
at the appropriate locations in the output tensor.

See the C++ IGatherLayer method or the Python GatherLayer method for further details.

A.1.9. Identity Layer
The Identity layer implements the identity operation.

Layer Description

The output of the layer is mathematically identical to the input. This layer allows you to
precisely control the precision of tensors and transform from one precision to another.
If the input is at a different precision than the output, the layer will convert the input
tensor into the output precision.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addIdentity()

‣ ILayer::setPrecision(precision)

Usage with the Python API:

‣ NetworkDefinition:add_identity()

‣ Layer::precision(precision)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a81ea0b5ce4a6a24e8e4953fd0e0b3216
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_gather_layer.html#a854fed01ead86c255a73ab1614fa9272
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_gather
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.GatherLayer.set_gather_axis
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_gather_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#gatherlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a01811cfea946a80324a5538667e2a427
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_layer.html#ac66f1546a28a92c20a76718a6762ea14

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 113

Conditions And Limitations

None

See the C++ IIdentityLayer method or the Python IdentityLayer method for further
details.

A.1.10. LRN Layer
The LRN layer implements cross-channel Local Response Normalization.

Layer Description

Given an input A, the LRN layer performs a cross-channel Local Response
Normalization to produce output Bof the same dimensions.. The operation of this layer
depends on 4 constant values: w is the size of the cross-channel window over which the
normalization will occur, α, β, and k are normalization parameters. The formula below
describes the operation performed by the layer:

Where I represents the indexes of tensor elements, and j(I) the indices where the
channel dimension is replaced by j. For channel index c of Cchannels, index j ranges
from max(0, c-w) and min(C-1, c+w).

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addLRN(A, w, α, β, k)

‣ ILRNLayer::setWindowSize(w)

‣ ILRNLayer::setAlpha(α)

‣ ILRNLayer::setBeta(β)

‣ ILRNLayer::setK(k)

Usage with the Python API:

‣ NetworkDefinition::add_lrn(A, w, α, β, k)

‣ LRNLayer::set_window_size(w)

‣ LRNLayer::set_alpha(α)

‣ LRNLayer::set_beta(β)

‣ LRNLayer::set_k(k)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_identity_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#aa1c8386fd389fd74b0b48121d22abc67
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_l_r_n_layer.html#adaf850833edde4f7f7880411297718a0
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_l_r_n_layer.html#aab76b0cec339050efb16ea8de19c2065
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_l_r_n_layer.html#a1a19e7b66117b8283ab08eb4d4f5bd38
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_l_r_n_layer.html#a36f6cc8669c95c230f740ae4d8ebc858
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_lrn
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.LRNLayer.set_window_size
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.LRNLayer.set_alpha
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.LRNLayer.set_beta
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.LRNLayer.set_k

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 114

Conditions And Limitations

A must have 3 or more dimensions. The following list shows the possible values for the
parameters:

‣ w #{1, 3, 5, 7, 9, 11, 13, 15}

‣ α #[-1 x 1020, 1 x 1020]

‣ β #[0.01, 1 x 105]

‣ k #[1 x 10-5, 1 x 1010]

See the C++ ILRNLayer method or the Python LRNLayer method for further details.

A.1.11. MatrixMultiply Layer
The MatrixMultiply layer implements matrix multiplication for a collection of matrices.

Layer Description

The matrix multiply layer computes the matrix multiplication of input tensors A, of
dimensions a, and B, of dimensions b, and produces output tensor C, of dimensions c.
A, B, and C all have the same rank n≥2. If n>2, then A, B, and C are treated as collections
of matrices; A and B may be optionally transposed (the transpose is applied to the last
two dimensions). Let AI and BI be the input tensors after the optional transpose, then
Ci0,..,in-3,:,:=A

I
i0,..,in-3,:,:*B

I
i0,..,in-3,:,:.

Given the corresponding dimensions aI and bI of AI and BI, then ci={max(ai,bi) if
i<n-2,aIi if i=n-2, and bIi if i=n-1}; that is the resulting collection has the
same number of matrices as the input collections, and the rows and columns correspond
to the rows in AI and the columns in BI. Notice also the use of max in the lengths, for the
case of broadcast on a dimension.

Layer Creation And Configuration Methods

Associate parameters to names used in the description (tensors etc.)

Usage with the C++ API:

‣ INetworkDefinition::addMatrixMultiply(A, transposeA, B,
transposeB)

‣ IMatrixMultiplyLayer::setTranspose(0, transposeA) // set whether
A has to be transposed

‣ IMatrixMultiplyLayer::setTranspose(1, transposeB) // set whether
B has to be transposed

Usage with the Python API:

‣ NetworkDefinition::add_matrix_multiply(A, transposeA, B,
transposeB)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_l_r_n_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#lrnlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a434fd652b4b5d09cb2462d169d63044c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a434fd652b4b5d09cb2462d169d63044c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_matrix_multiply_layer.html#abed13b8d115f9107f4a7fb68dbb2bc7b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_matrix_multiply_layer.html#abed13b8d115f9107f4a7fb68dbb2bc7b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_matrix_multiply_layer.html#abed13b8d115f9107f4a7fb68dbb2bc7b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_matrix_multiply_layer.html#abed13b8d115f9107f4a7fb68dbb2bc7b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_matrix_multiply
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_matrix_multiply

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 115

‣ IMatrixMultiply::set_transpose(0, transposeA) // set whether A
has to be transposed

‣ IMatrixMultiply::set_transpose(1, transposeB) // set whether B
has to be transposed

Conditions And Limitations

Tensors A and B must have at least two dimensions, and agree on the number of
dimensions. The length of each dimension must be the same, assuming that dimensions
of length one are broadcast to match the corresponding length.

See the C++ IMatrixMultiplyLayer method or the Python MatrixMultiply method for
further details.

A.1.12. Padding Layer
The Padding layer implements spatial zero-padding of tensors along the two innermost
dimensions.

Layer Description

The Padding layer pads zeros to (or trims edges from) an input tensor A along each of
the two innermost dimensions and gives the output tensor B. Padding can be different
on each dimension, asymmetric, and can be either positive (resulting in expansion of the
tensor) or negative (resulting in trimming). Padding at the beginning and end of the two
dimensions is specified by 2D vectors x and y, for pre and post padding respectively.

For input tensor A of n dimensions a, the output B will have n dimensions b such
that bi={x0+an-2+y0 if i=n-2; x1+an-1+y1 if i=n-1; and ai otherwise}.
Accordingly, the values of Bw are zeros if wn-2<x0 or x0+an-2 ≤wn-2 or wn-1<x1 or
x1+an-2 ≤wn-1 . Otherwise, Bw=Az where zn-2=wn-2+x0, zn-1=wn-1+x1, and zi=wi for all
other dimensions i.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addPadding(A, pre, post)

‣ IPaddingLayer::setPrePadding(pre)

‣ IPaddingLayer::setPostPadding(post)

Usage with the Python API:

‣ NetworkDefinition::add_padding(A, pre, post)

‣ PaddingLayer::set_pre_padding(pre)

‣ PaddingLayer::set_post_padding(post)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.MatrixMultiply.set_transpose
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.MatrixMultiply.set_transpose
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.MatrixMultiply.set_transpose
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.MatrixMultiply.set_transpose
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_matrix_multiply_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#matrixmultiplylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a334d849cb8720a8a66a95fc84487b132
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_padding_layer.html#a9869d4dcfa65f3e1438ded0cfa8158b6
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_padding_layer.html#a31a86068c7739feac829f6195e745481
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_padding
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.PaddingLayer.set_pre_padding
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.PaddingLayer.set_post_padding

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 116

Conditions And Limitations

‣ A must have three dimensions or more.
‣ The padding can only be applied along the two innermost dimensions.
‣ Only zero-padding is supported.

See the C++ IPaddingLayer method or the Python PaddingLayer method for further
details.

A.1.13. Plugin Layer
Plugin layers are user-defined and provide the ability to extend the functionalities of
TensorRT. See Extending TensorRT With Custom Layers for more details.

See the C++ IPluginLayer method or the Python PluginLayer method for further details.

A.1.14. Pooling Layer
The Pooling layer implements pooling within a channel. Supported pooling types are
maximum, average and maximum-average blend.

Layer Description

Compute a pooling with 2D filters on a tensor A, of dimensions a, to produce a tensor
B, of dimensions b. The dimensions of B depend on the dimensions of A, window size r,
symmetric padding p and stride s such that:

‣ b = [a0 a1...an-3 bn-2 bn-1]

‣ bn-2 = (an-2+2p0-r0)/s0+1

‣ bn-1 = (an-1+2p1-r1)/s1+1

Let tensor C be the zero-padded copy of A with dimensions [a0 a1... an-2+2p0
an-1+2p1]then, Bj......kl= func(Cj…. k:kk l:ll) where kk = k+r0-1, and ll = l
+r1-1.

Where func is defined by one of the pooling types t:
PoolingType::kMAX

Maximum over elements in window.
PoolingType::kAVERAGE

Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND

Hybrid of maximum and average pooling. The results of the
maximum pooling and the average pooling are combined with the
blending factor as (1-blendFactor)*maximumPoolingResult +
blendFactor*averagePoolingResult to yield the result. The blendFactor can be
set to a value between 0 and 1.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_padding_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#paddinglayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#pluginlayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 117

By default, average pooling is performed on the overlap between the pooling window
and the padded input. If the exclusive parameter is set to true, the average pooling is
performed on the overlap area between the pooling window and unpadded input.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addPooling(A, t, r)

‣ IPoolingLayer::setPoolingType(t)

‣ IPoolingLayer::setWindowSize(r)

‣ IPoolingLayer::setStride(s)

‣ IPoolingLayer::setPadding(p)

‣ IPoolingLayer::setBlendFactor(blendFactor)

‣ IPoolingLayer::setAverageCountExcludesPadding(exclusive)

Usage with the Python API:

‣ NetworkDefinition::add_pooling(A, t, r)

‣ PoolingLayer::set_pooling_type(t)

‣ PoolingLayer::set_window_size(r)

‣ PoolingLayer::set_stride(s)

‣ PoolingLayer::set_padding(p)

‣ PoolingLayer::set_blend_factor(blendFactor)

‣ PoolingLayer::set_average_count_excludes_padding(exclusive)

Conditions And Limitations

Input and output tensors should have 3 or more dimensions.

See the C++ IPoolingLayer method or the Python PoolingLayer method for further
details.

A.1.15. RaggedSoftMax Layer
The Ragged SoftMax layer applies the SoftMax function on an input tensor of sequences
across the sequence lengths specified by the user.

Layer Description

This layer has two inputs: a 2D input tensor A of shape zs containing z sequences
of data and a 1D bounds tensor B of shape z containing the lengths of each of the z
sequences in A. The resulting output tensor C has the same dimensions as the input
tensor A.

The SoftMax function S is defined on every i of the z sequences of data values Ai,0:Bi
just like in the SoftMax layer.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a49459eaa7e1bbff5371365f125c2f0c5
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_pooling_layer.html#a1ec128b4cd543657aad93efa3aad9d85
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_pooling_layer.html#a67b07c8bd2bfdab984fd06d4991535f9
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_pooling_layer.html#a389230a47c089c792e642b46ac75ac9e
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_pooling_layer.html#ad73004cbb5c1fac4d53759f2efb63b9c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_pooling_layer.html#a36686e8147baf9da216d41dd2b222e57
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_pooling_layer.html#aa3da9b5bf0df930d06676497f8602b8d
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_pooling
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.PoolingLayer.set_pooling_type
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.PoolingLayer.set_window_size
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.PoolingLayer.set_stride
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.PoolingLayer.set_padding
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.PoolingLayer.set_blend_factor
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.PoolingLayer.set_average_count_excludes_padding
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_pooling_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#poolinglayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 118

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addRaggedSoftMax(A, B)

Usage with the Python API:

‣ NetworkDefinition::add_ragged_soft_max(A, B)

Conditions And Limitations

None

See the (C++ IRaggedSoftMaxLayer method or the Python RaggedSoftMaxLayer method
for further details.

A.1.16. Reduce Layer
The Reduce layer implements dimension reduction of tensors using reduce operators.

Layer Description

Compute a reduction of input tensor A, of dimensions a, to produce an output tensor B,
of dimensions b, over the set of reduction dimensions r. The reduction operator op is
one of max, min, product, sum, and average. The reduction can preserve the number
of dimensions of A or not. If the dimensions are kept, then bi={1 if i#r, and ai
otherwise}; if the dimensions are not kept, then bj-m(j)=aj where j#r and m(j) is the
number of reduction indexes in r less than or equal to j.

With the sequence of indexes i, Bi=op(Aj), where the sequence of indexes j is such that
jk={: if k#r, and ik otherwise}.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addReduce(A, op, reduceAxes, keepDimensions)

‣ IReduceLayer::setOperation(op)

‣ IReduceLayer::setReduceAxes(reduceAxes)

‣ IReduceLayer::setKeepDimensions(keepDimensions)

Usage with the Python API:

‣ NetworkDefinition::add_reduce(A, op, reduceAxes, keepDimensions)

‣ ReduceLayer::set_operation(op)

‣ ReduceLayer::set_reduce_axes(reduceAxes)

‣ ReduceLayer::set_keep_dimensions(keepDimensions)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#aea842c9f897201eb855ce164944e9110
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_ragged_soft_max
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_ragged_soft_max_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_ragged_soft_max
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a41437aa7107e61b82c5f3490984bf011
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_reduce_layer.html#a2ca0e7a48bf1bb355e5e0adb8d0b58ed
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_reduce_layer.html#a85c5ebb714158ee1fa40708ff9fce338
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_reduce_layer.html#a96a41322f4116c17e241642e220e776c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_reduce
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ReduceLayer.set_operation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ReduceLayer.set_reduce_axes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ReduceLayer.set_keep_dimensions

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 119

Conditions And Limitations

Input must have at least one non-batch dimension. The batch size dimension cannot be
reduced.

See the C++ IReduceLayer method or the Python ReduceLayer method for further
details.

A.1.17. RNNv2 Layer (IRNNv2Layer) Layer
The RNNv2 layer implements recurrent layers such as Recurrent Neural Network
(RNN), Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM).
Supported types are RNN, GRU, and LSTM. It performs a recurrent operation, where
the operation is defined by one of several well-known recurrent neural network (RNN)
"cells".

Layer Description

This layer accepts an input sequence X,initial hidden state H0, and if the cell is a long
short-term memory (LSTM) cell, initial cell state C0, and produces an output Y which
represents the output of the final RNN "sub-layer" computed across T timesteps (see
below). Optionally, the layer can also produce an output hT representing the final hidden
state, and, if the cell is an LSTM cell, an output cT representing the final cell state.

Let the operation of the cell be defined as the function G(x, h, c). This function
takes vector inputs x, h, and c, and produces up to two vector outputs, h’ and c’,
representing the hidden and cell state after the cell operation has been performed.

In the default (unidirectional) configuration, the RNNv2 layer applies Gas shown in the
following diagram:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_reduce_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#reducelayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 120

G’ is a variant of G,.

Arrows leading into boxes are function inputs, and arrows leading away from boxes are
function outputs. X = [x0, x1, …, xT], Y = [y0, y1, …, yT], Hi= [hi,0, hi,1,
…, hi,L], and Ci= [ci,0, ci,1, …, ci,L].

The gray c edges are only present if the RNN is using LSTM cells for G and G’.

The above construction has L "sub-layers" (horizontal rows of G), and the matrices Hi
and Ci have dimensionality L.

Optionally, the sequence length Tmay be specified as an input to the RNNv2 layer,
allowing the client to specify a batch of input sequences with different lengths.

Bidirectional RNNs (BiRNNs): The RNN can be configured to be bidirectional. In that
case, each sub-layer consists of a "forward" layer and "backward" layer. The forward
layer iteratively applies G using xi from 0 to T, and the backward layer iteratively
applies G using xi from T to 0, as shown in the diagram below:

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 121

Black bars in the diagram above represent concatenation. The full hidden state ht is
defined by the concatenation of the forward hidden state htf and the backward hidden
state htb:

‣ ht,i = [htf,i ,htb,i]

‣ ht = [ht,0,, ht,1, …,ht,L].

Similarly, for the cell state (not shown). Each ht,i is used as input to the next sub-
layer, as shown above.

RNN operations: The RNNv2 layer supports the following cell operations:

‣ ReLU: G(x, h, c) := max(Wix + Rih + Wb + Rb, 0) (c not used)
‣ tanh: G(x, h, c) := tanh(Wix + Rih + Wb + Rb) (c not used)
‣ GRU:

‣ Z := sigmoid(Wzx + Rzh + Wbz + Rbz)

‣ M := sigmoid(Wrx + Rrh + Wbr + Rbr)

‣ G(x, h, c) := tanh(Whx + M(h + Rbh) + Wbh) (c not used)

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 122

‣ LSTM:

‣ I := sigmoid(WIx + RIh + Wbi + Rbi)

‣ F := sigmoid(Wfx + Rfh + Wbf + Rbf)

‣ O := sigmoid(Wox + Roh + Wbo + Rbo)

‣ C := tanh(WCx + RCh + Wbc + Rbc)

‣ C’ := F × C

‣ H := O x tanh(C’)

‣ G(x, h, c) := { H, C’ }

For GRU and LSTM, we refer to the intermediate computations for Z, M, I, F, etc. as
"gates".

In the unidirectional case, the dimensionality of the W matrices is HxE for the first layer
and HxH for subsequent layers (unless skip mode is set, see below). In the bidirectional
case, the dimensionality of the W matrices is HxE for the first forward/backward layer,
and Hx2H for subsequent layers.

The dimensionality of the R matrices is always HxH. The biases Wbx and Rbx have
dimensionality H.

Skip mode: The default mode used by RNNv2 is "linear mode". In this mode, the first
sub-layer of the RNNv2 layer uses the cell G’(x, h, c), which accepts a vector x of
size E (embedding size), and vectors h and c of size H (hidden state size), and is defined
by the cell operation formula. Subsequent layers use the cell G(x, h, c), where x, h,
and c are all vectors of size H, and is also defined by the cell operation formula.

Optionally, the RNN can be configured to run in "skip mode", which means the input
weight matrices for the first layer are implicitly identity matrices, and x Is expected to
be size H.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addRNNv2(X, L, H, Tmax for a batch, operation)

‣ IRNNv2Layer::setOperation(operation)

‣ IRNNv2Layer::setDirection(direction)

‣ IRNNv2Layer::setInputMode(mode (skip or linear))

‣ IRNNv2Layer::setWeightsForGate(W or R weight for a cell)

‣ IRNNv2Layer::setBiasForGate(Wb or Rb bias for a cell)

‣ IRNNv2Layer::setHiddenState(H0)

‣ IRNNv2Layer::setCellState(C0)

‣ IRNNv2Layer::setSequenceLengths(T for each batch element)

Usage with the Python API:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a6cd3869f7406f73261857987be1b18a9
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html#a5d77b757b5c39ae080892308c167b15d
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html#a9b941de0998d728accad69c61198fde7
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html#a0a7faa3f0e695ac6431bcccc12851954
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html#ac5e9205e8cb648b75bc918e92f55a2a6
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html#a278902915200ab6c6b08c8f9671d6337
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html#ab7e1566aa1466722f5206105056913a3
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html#ae84703ae97d9924ecc35aa416f471cc8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html#a8a29104927bc766971561eb8fbcbb3e8

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 123

‣ NetworkDefinition::add_rnnv2(X, L, H, Tmax for a batch, operation)

‣ RNNv2Layer::set_operation(operation)

‣ RNNv2Layer::set_direction(direction)

‣ RNNv2Layer::set_input_mode(mode (skip or linear))

‣ RNNv2Layer::set_weights_for_gate(W or R weight for a cell)

‣ RNNv2Layer::set_bias_for_gate(Wb or Rb bias for a cell)

‣ RNNv2Layer::set_hidden_state(H0)

‣ RNNv2Layer::set_cell_state(C0)

‣ RNNv2Layer::set_sequence_lengths(T for each batch element)

Conditions And Limitations

The data (X) input and initial hidden/cell state (H0 and C0) tensors have at least 2 non-
batch dimensions. Additional dimensions are considered batch dimensions.

The optional sequence length input T is 0-dimensional (scalar) when excluding batch
dimensions.

The data (Y) output and final hidden/cell state (HT and CT) tensors have at least 2 non-
batch dimensions. Additional dimensions are considered batch dimensions. If the
sequence length input is provided, each output in the batch is padded to the maximum
sequence length Tmax.

RNNv2 supports FP32 and FP16 data type for input and output, hidden, and cell
tensors. RNNv2 supports INT32 data type only for the sequence length tensor.

See the C++ IRNNv2 Layer method or the Python RNNv2Layer method for further
details.

A.1.18. RNN Layer (IRNNLayer)
This layer type is deprecated in favor of RNNv2, however, it is still available for
backwards compatibility.

Layer Description

This layer is identical to the RNNv2 layer (see below) in functionality, but contains
additional limitations as described in the Conditions and Limitations section.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addRNN(X, L, H, Tmax for a batch, operation)

‣ IRNNLayer::setOperation(operation)

‣ IRNNLayer::setDirection(direction)

‣ IRNNLayer::setInputMode(mode (skip or linear))

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_rnnv2
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNv2Layer.set_operation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNv2Layer.set_direction
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNv2Layer.set_input_mode
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNv2Layer.set_weights_for_gate
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNv2Layer.set_bias_for_gate
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNv2Layer.set_hidden_state
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNv2Layer.set_cell_state
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNv2Layer.set_sequence_lengths
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#rnnv2layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0ed8d1ed43046a041a90ad579fad5a20
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html#a0070bee842d473dd8537d9038d505dde
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html#a7459f099ef836dde040c68f7cf464c04
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html#a0a53cb23739858d9a888000c1d2b1d5e

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 124

‣ IRNNLayer::setWeights(structure containing W, R weights for all
cells)

‣ IRNNLayer::setBias(structure containing Wb or Rb biases for all
cells)

‣ IRNNLayer::setHiddenState(H0)

‣ IRNNLayer::setCellState(C0)

Usage with the Python API:

‣ NetworkDefinition::add_rnn(X, L, H, Tmax for a batch, operation)

‣ RNNLayer::set_operation(operation)

‣ RNNLayer::set_direction(direction)

‣ RNNLayer::set_input_mode(mode (skip or linear))

‣ RNNLayer::set_weights(structure containing W, R weights for all
cells)

‣ RNNLayer::set_bias(structure containing Wb or Rb biases for all
cells)

‣ RNNLayer::set_hidden_state(H0)

‣ RNNLayer::set_cell_state(C0)

Conditions And Limitations

Unlike the RNNv2 layer, the legacy RNN layer does not support specifying sequence
lengths via an input tensor.

The legacy RNN layer does not support arbitrary batch dimensions, and requires that
input tensor data be specified using the dimension ordering: sequence length T, batch
size N, embedding size E. In contrast, the RNNv2 layer requires that tensor data be
specified using the dimension ordering: batch size N, sequence length T, embedding size
E.

All limitations that apply to the RNNv2 layer also apply to the legacy RNN layer.

See the C++ IRNNLayer method or the Python RNNLayer method for further details.

A.1.19. Scale Layer
The Scale layer implements a per-tensor, per-channel, or per-element affine
transformation and/or exponentiation by constant values.

Layer Description

Given an input tensor A, the scale layer performs a per-tensor, per-channel or per-
element transformation to produce an output tensor B of the same dimensions. The
transformations corresponding to each mode are:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html#a9333d560e68d49cbf60ba34d8872abf1
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html#a9333d560e68d49cbf60ba34d8872abf1
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html#ae1a1d9599294c990d281a80ca684f1f0
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html#ae1a1d9599294c990d281a80ca684f1f0
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html#af8f86367ccabbc715b2e09228395d5d2
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html#aba574e847929f0d6060b8c80f41358f7
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_rnn
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNLayer.set_operation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNLayer.set_direction
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNLayer.set_input_mode
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNLayer.set_weights
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNLayer.set_weights
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNLayer.set_bias
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNLayer.set_bias
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNLayer.set_hidden_state
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.RNNLayer.set_cell_state
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#rnnlayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 125

ScaleMode::kUNIFORM tensor-wise transformation
B = (A * scale + shift)power

ScaleMode::kCHANNEL channel-wise transformation
BI = (AI * scalec(I) + shiftc(I))

powerc(I)

ScaleMode::kELEMENTWISE element-wise transformation
BI = (AI * scale1 + shift1)

power1

Where I represents the indexes of tensor elements and c(I) is the channel dimension in
I.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addScale(A, mode, shift, scale, power)

‣ IScaleLayer::setMode(mode)

‣ IScaleLayer::setShift(shift)

‣ IScaleLayer::setScale(scale)

‣ IScaleLayer::setPower(power)

Usage with the Python API:

‣ NetworkDefinition::add_scale(A, mode, shift, scale, power)

‣ ScaleLayer::set_mode(mode)

‣ ScaleLayer::set_shift(shift)

‣ ScaleLayer::set_scale(scale)

‣ ScaleLayer::set_power(power)

Conditions And Limitations

A must have 3 or more dimensions.

If an empty weight object is provided for scale, shift, or power, then a default value
is used. By default, scale has a value of 1.0, shift has a value of 0.0, and power has a
value of 1.0.

See the C++ IScaleLayer method or the Python ScaleLayer method for further details.

A.1.20. Shuffle Layer
The Shuffle layer implements a reshape and transpose operator for tensors.

Layer Description

The shuffle layer implements reshuffling of tensors to permute the tensor and/or reshape
it. An input tensor A of dimensions a is transformed by applying a transpose, followed
by a reshape operation with reshape dimensions r, and then followed by another
transpose operation to produce an output data tensor B of dimensions b.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a37cf24c7c620aa661de167f302559289
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_scale_layer.html#af5fb4c3b63aeb3ab5f83f7761923dd32
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_scale_layer.html#ad591a4f36d314313a58932261f676b54
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_scale_layer.html#a77d0f85699ac28790f8a9d57df918434
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_scale_layer.html#ad521d7fbe41b637db16a5bd8f9af4033
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_scale
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ScaleLayer.set_mode
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ScaleLayer.set_shift
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ScaleLayer.set_scale
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ScaleLayer.set_power
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_scale_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#scalelayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 126

To apply the transpose operation to A, the permutation order needs to be specified.
The specified permutation p1 is used to permute the elements of A in the following
manner to produce output C of dimensions c, such that ci=ap1(i) and CI=Ap1(I)
for a sequence of indexes I. By default, the permutation is assumed to be an identity (no
change to the input tensor).

The reshape operation does not alter the order of the elements, and reshapes tensor C
into tensor R of shape rI, such that rIi={ri if ri>0, ci if ri=0, inferred if
ri=-1}. Only one dimension can be inferred, such that ∏rIi=∏ai.

The second transpose operation is applied after the reshape operation. It follows the
same rules as the first transpose operation and requires a permutation (say p2) to be
specified. This permutation produces an output tensor B of dimensions b, such that
bi=rp2(i) and Bp2(I)=RI for a sequence of indexes I.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addShuffle(A)

‣ IShuffleLayer::setFirstTranspose(p1)

‣ IShuffleLayer::setReshapeDimensions(b)

‣ IShuffleLayer::setSecondTranspose(p2)

Usage with the Python API:

‣ NetworkDefinition::add_shuffle(A)

‣ ShuffleLayer::set_first_transpose(p1)

‣ ShuffleLayer::set_reshape_dimensions(b)

‣ ShuffleLayer::set_second_transpose(p2)

Conditions And Limitations

Product of dimensions rI must be equal to the product of input dimensions a.

See the C++ IShuffleLayer method or the Python ShuffleLayer method for further details.

A.1.21. SoftMax Layer
The SoftMax layer applies the SoftMax function on the input tensor along an input
dimension specified by the user.

Layer Description

Given an input tensor A of shape a and an input dimension i, this layer applies the
SoftMax function on every slice Aa0, …, ai-1, :, ai+1, …, an-1 along dimension i of A.
The resulting output tensor C has the same dimensions as the input tensor A.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a2628a97544b7802076246069321e2bf9
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shuffle_layer.html#a7b1e977ca23dd478855653a12246206c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shuffle_layer.html#a5fbca804e6da5b4cf89795ea83909fb6
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shuffle_layer.html#a39ec993b591bbac5c07fcf5744534310
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_shuffle
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ShuffleLayer.set_first_transpose
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ShuffleLayer.set_reshape_dimensions
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ShuffleLayer.set_second_transpose
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shuffle_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#shufflelayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 127

The SoftMax function S for a slice x is defined as:

The SoftMax function rescales the input such that every value in the output lies in
the range [0, 1] and the values of every slice Ca0, …, ai-1, :, ai+1, …, an-1 along
dimension i of C sum up to 1.

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addSoftMax(A)

‣ ISoftMaxLayer::setAxes(i)

Usage with the Python API:

‣ NetworkDefinition::add_softmax(A)

‣ SoftmaxLayer::set_axis(i)

Conditions And Limitations

For n being the length of a, the input dimension i should be i#[0,n-1]. If the user does
not provide an input dimension, then i=max(0,n-3).

See the C++ ISoftMaxLayer method or the Python SoftmaxLayer method for further
details.

A.1.22. TopK Layer
The TopK layer finds the top K maximum (or minimum) elements along a dimension,
returning a reduced tensor and a tensor of index positions.

Layer Description

For an input tensor A of dimensions a, given an axis i, an operator that is either max
or min, and a value for k, produces a tensor of values V and a tensor of indices I of
dimensions v such that vj={k if i≠j, and ai otherwise}.

The output values are:

‣ Va0, …, ai-1, :, ai+1, …,an = sort(Aa0, …, ai-1, :, ai+1, …,an):K
‣ Ia0, …, ai-1, :, ai+1, …,an = argsort(Aa0, …, ai-1, :, ai+1, …,an):K

where sort is in descending order for operator max and ascending order for operator
min.

Ties are broken during sorting with lower index considered to be larger for operator
max, and lower index considered to be smaller for operator min.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a595af67528bf0664afa9815114933320
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_soft_max_layer.html#a380b0747f1cea810bff7a0086f431f1b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_softmax
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.ConcatenationLayer.set_axis
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_soft_max_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#softmaxlayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 128

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addTopK(A, operation, K, 2i)

‣ ITopKLayer::setOperation(operation)

‣ ITopKLayer::setK(K)

‣ ITopKLayer::setReduceAxes(2i)

Usage with the Python API:

‣ NetworkDefinition::add_top_k(A, operation, K, 2i)

‣ TopKLayer::set_operation(operation)

‣ TopKLayer::set_k(K)

‣ TopKLayer::set_reduce_axes(2i)

Conditions And Limitations

The K value must be 1024 or less. Only one axis can be searched to find the top K
minimum or maximum values; this axis cannot be the batch dimension.

See the C++ ITopKLayer method or the Python TopKLayer method for further details.

A.1.23. Unary Layer
The Unary layer supports pointwise unary operations.

Layer Description

The unary layer performs pointwise operations on input tensor Aresulting in output
tensor Bof the same dimensions. The following functions are supported:

‣ exp: B = e^A

‣ abs: B = |A|

‣ log: B = ln(A)

‣ sqrt: B = √A (rounded to nearest even mode)

‣ neg: B = -A

‣ recip: B = 1 / A (reciprocal) in rounded to nearest even mode

Layer Creation And Configuration Methods

Usage with the C++ API:

‣ INetworkDefinition::addUnary(A, operation)

‣ IUnaryLayer::setOperation(operation)

Usage with the Python API:

‣ NetworkDefinition::add_unary(A, operation)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a384a409318bf416be3aa4442f2b0ce76
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_top_k_layer.html#a5e5d93b48b78646439dd0307a1c1ef6c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_top_k_layer.html#abab2c02652dfacb19297e978b82cfcb2
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_top_k_layer.html#a5ff11d57f1a87bbfb6266e23b6a3d0d8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_top_k
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.TopKLayer.set_operation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.TopKLayer.set_k
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.TopKLayer.set_reduce_axes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_top_k_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#topklayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a4b85bd3f05c234fcc1118f827d7c0720
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_unary_layer.html#a622f5651c1579c01dc8f0051ef81551b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.NetworkDefinition.add_unary

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 129

‣ UnaryLayer::set_operation(operation)

Conditions And Limitations

Input and output can be zero to 7 dimensional tensors.

See the C++ IUnaryLayer method or the Python UnaryLayer method for further details.

A.2. Data Format Descriptions
TensorRT supports different data formats. There are two aspects to consider: data type
and layout.

Data type format

The data type is the representation of each individual value. Its size determines the
range of values and the precision of the representation; which are FP32 (32-bit floating
point, or single precision), FP16 (16-bit floating point, or half precision), INT32 (32-bit
integer representation) and INT8 (8-bit representation).

Layout format

The layout format determines the ordering in which values are stored. Typically,
batch dimensions are the leftmost dimensions, and the other dimensions refer to
aspects of each data item such as C is channel, H is height, and W is width, in images.
Ignoring batch sizes, which are always preceding these, C, H, and W are typically
sorted as CHW #unique_193/unique_193_Connect_42_fig1 or HWC #unique_193/
unique_193_Connect_42_fig2.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#tensorrt.infer.UnaryLayer.set_operation
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_unary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/pkg_ref/infer.html#unarylayer

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 130

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 131

To enable faster computations, more formats are defined to pack together channel values
and use reduced precision. For this reason, TensorRT also supports formats NC/2HW2 and
NHWC8.

In NC/2HW2, pairs of channel values are packed together in each HxW matrix (with
an empty value in the case of an odd number of channels). The result is a format in
which the values of #C/2#HxW matrices are pairs of values of two consecutive channels
#unique_193/unique_193_Connect_42_fig3; notice that this ordering interleaves
dimensions as values of channels that have stride 1 if they are in the same pair and
stride 2xHxW otherwise.

In NHWC8, the entries of an HxW matrix include the values of all the channels
#unique_193/unique_193_Connect_42_fig4. In addition, these values are packed together
in #C/8# 8-tuples and C is rounded up to the nearest multiple of 8.

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 132

A.3. Command Line Wrapper
Included in the samples directory is a command line wrapper, called trtexec, for
TensorRT. It is useful for benchmarking networks on random data and for generating
serialized engines from such models.

The command line arguments are as follows:

Mandatory params:
 --deploy=<file> Caffe deploy file
 OR --uff=<file> UFF file
 --output=<name> Output blob name (can be specified
 multiple times)

Mandatory params for onnx:
 --onnx=<file> ONNX Model file

Optional params:
 --uffInput=<name>,C,H,W Input blob names along with their
 dimensions for UFF parser
 --model=<file> Caffe model file (default = no model,
 random weights used)

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 133

 --batch=N Set batch size (default = 1)
 --device=N Set cuda device to N (default = 0)
 --iterations=N Run N iterations (default = 10)
 --avgRuns=N Set avgRuns to N - perf is measured as an
 average of avgRuns (default=10)
 --percentile=P For each iteration, report the percentile
 time at P percentage (0<P<=100, default = 99.0%)
 --workspace=N Set workspace size in megabytes (default =
 16)
 --fp16 Run in fp16 mode (default = false).
 Permits 16-bit kernels
 --int8 Run in int8 mode (default = false).
 Currently no support for ONNX model.
 --verbose Use verbose logging (default = false)
 --hostTime Measure host time rather than GPU time
 (default = false)
 --engine=<file> Generate a serialized TensorRT engine
 --calib=<file> Read INT8 calibration cache file.
 Currently no support for ONNX model.
 --useDLA=N Enable execution on DLA for all layers that
 support DLA. Value can range from 1 to N, where N is the number
 of DLA engines on the platform. Set the --fp16 flag as well for
 DLA
 --allowGPUFallback If --useDLA flag is present and if a layer
 cannot run on DLA, then run it on GPU.

For example:

trtexec --deploy=/path/to/mnist.prototxt
--model=/path/to/mnist.caffemodel --output=prob

If no model is supplied, random weights are generated.

A.4. ACKNOWLEDGEMENTS
TensorRT uses elements from the following software, whose licenses are reproduced
below:

Google Protobuf

This license applies to all parts of Protocol Buffers except the following:

‣ Atomicops support for generic gcc, located in src/google/protobuf/stubs/
atomicops_internals_generic_gcc.h. This file is copyrighted by Red Hat Inc.

‣ Atomicops support for AIX/POWER, located in src/google/protobuf/stubs/
atomicops_internals_power.h. This file is copyrighted by Bloomberg Finance
LP.

Copyright 2014, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 134

‣ Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

‣ Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

‣ Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner of the input file
used when generating it. This code is not standalone and requires a support library to be
linked with it. This support library is itself covered by the above license.

Google Flatbuffers

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

http://www.apache.org/licenses/

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 135

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed by,
or on behalf of, the Licensor for the purpose of discussing and improving the Work,
but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works
of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 136

such license applies only to those patent claims licensable by such Contributor that
are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or
Object form, provided that You meet the following conditions:

 a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

 b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

 c. You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form
of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and

 d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute,
alongside or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such Derivative
Works as a whole, provided Your use, reproduction, and distribution of the
Work otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 137

supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions)
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has been
advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights
consistent with this License. However, in accepting such obligations, You may act
only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor
by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2014 Google Inc.

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 138

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at: http://
www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

BVLC Caffe

COPYRIGHT

All contributions by the University of California:

Copyright (c) 2014, 2015, The Regents of the University of California (Regents) All rights
reserved.

All other contributions:

Copyright (c) 2014, 2015, the respective contributors All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over their
contributions to Caffe. The project versioning records all such contribution and
copyright details. If a contributor wants to further mark their specific copyright on
a particular contribution, they should indicate their copyright solely in the commit
message of the change when it is committed.

LICENSE

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Appendix

www.nvidia.com
TensorRT DU-08602-001_v5.0 RC | 139

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/Caffe repository through pull-request, comment, or
otherwise, the contributor releases their content to the license and copyright terms
herein.

half.h

The MIT License

Copyright (c) 2012-2013 Christian Rau

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

jQuery.js

jQuery.js is generated automatically under doxygen. In all cases TensorRT uses the
functions under the MIT license.

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,

Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered

trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	What Is TensorRT?
	1.1. Benefits Of TensorRT
	1.2. Where Does TensorRT Fit?
	1.3. How Does TensorRT Work?
	1.4. What Capabilities Does TensorRT Provide?
	1.5. How Do I Get TensorRT?

	Working With TensorRT Using The C++ API
	2.1. Instantiating TensorRT Objects in C++
	2.2. Creating A Network Definition In C++
	2.2.1. Creating A Network Definition From Scratch Using The C++ API
	2.2.2. Importing A Model Using A Parser In C++
	2.2.3. Importing A Caffe Model Using The C++ Parser API
	2.2.4. Importing A TensorFlow Model Using The C++ UFF Parser API
	2.2.5. Importing An ONNX Model Using The C++ Parser API

	2.3. Building An Engine In C++
	2.4. Serializing A Model In C++
	2.5. Performing Inference In C++
	2.6. Memory Management In C++

	Working With TensorRT Using The Python API
	3.1. Importing TensorRT Into Python
	3.2. Creating A Network Definition In Python
	3.2.1. Creating A Network Definition From Scratch Using The Python API
	3.2.2. Importing A Model Using A Parser In Python
	3.2.3. Importing From Caffe Using Python
	3.2.4. Importing From TensorFlow Using Python
	3.2.5. Importing From ONNX Using Python
	3.2.6. Importing From PyTorch And Other Frameworks

	3.3. Building An Engine In Python
	3.4. Serializing A Model In Python
	3.5. Performing Inference In Python

	Extending TensorRT With Custom Layers
	4.1. Adding Custom Layers Using The C++ API
	4.1.1. Example 1: Adding A Custom Layer Using C++ For Caffe
	4.1.2. Example 2: Adding A Custom Layer That Is Not Supported In UFF Using C++

	4.2. Adding Custom Layers Using The Python API
	4.2.1. Example 1: Adding A Custom Layer to a TensorRT Network Using Python
	4.2.2. Example 2: Adding A Custom Layer That Is Not Supported In UFF Using Python

	4.3. Using Custom Layers When Importing A Model From A Framework
	4.3.1. Example 1: Adding A Custom Layer To A TensorFlow Model

	4.4. Plugin API Description
	4.4.1. Migrating Plugins From TensorRT 4.0.x To TensorRT 5.0 RC
	4.4.2. IPluginExt API Description
	4.4.3. IPluginCreator API Description

	4.5. Best Practices For Custom Layers

	Working With Mixed Precision
	5.1. Enabling FP16 Inference Using C++
	5.2. Enabling FP16 Inference Using Python
	5.3. Optimizing INT8 Calibration Using C++ API
	5.4. Optimizing INT8 Calibration Using Python

	Working With DLA
	6.1. Running On DLA During TensorRT Inference
	6.1.1. Example 1: sampleMNIST With DLA
	6.1.2. Example 2: Enable DLA Mode For A Layer During Network Creation

	6.2. DLA Supported Layers
	6.3. GPU Fallback Mode

	Deploying A TensorRT Optimized Model
	7.1. Deploying In The Cloud
	7.2. Deploying To An Embedded System

	Working With Deep Learning Frameworks
	8.1. Supported Operations By Framework
	8.2. Working With TensorFlow
	8.2.1. Freezing A TensorFlow Graph
	8.2.2. Freezing A Keras Model
	8.2.3. Converting A Frozen Graph To UFF
	8.2.4. Working With TensorFlow RNN Weights
	8.2.4.1. TensorFlow RNN Cells Supported In TensorRT
	8.2.4.2. Maintaining Model Consistency Between TensorFlow And TensorRT
	8.2.4.3. Workflow
	8.2.4.4. Dumping The TensorFlow Weights
	8.2.4.5. Loading Dumped Weights
	8.2.4.6. Converting The Weights To A TensorRT Format
	8.2.4.6.1. TensorFlow Checkpoint Storage Format
	8.2.4.6.2. TensorFlow Kernel Tensor Storage Format
	8.2.4.6.3. Kernel Weights Conversion To A TensorRT Format
	8.2.4.6.4. TensorFlow Bias Weights Storage Format
	8.2.4.6.5. Bias Tensor Conversion To TensorRT Format

	8.2.4.7. BasicLSTMCell Example
	8.2.4.7.1. BasicLSTMCell Kernel Tensor
	8.2.4.7.2. BasicLSTMCell Bias Tensor

	8.2.4.8. Setting The Converted Weights And Biases

	8.2.5. Preprocessing A TensorFlow Graph Using the Graph Surgeon API

	8.3. Working With PyTorch And Other Frameworks

	Samples
	9.1. C++ Samples
	9.1.1. sampleMNIST
	9.1.2. sampleMNISTAPI
	9.1.3. sampleUffMNIST
	9.1.4. sampleOnnxMNIST
	9.1.4.1. Configuring The ONNX Parser
	9.1.4.2. Converting The ONNX Model To A TensorRT Network
	9.1.4.3. Building The Engine And Running Inference

	9.1.5. sampleGoogleNet
	9.1.5.1. Configuring The Builder
	9.1.5.2. Profiling

	9.1.6. sampleCharRNN
	9.1.6.1. Network Configuration
	9.1.6.1.1. RNNv2 Layer Setup
	9.1.6.1.2. RNNv2 Layer - Optional Inputs
	9.1.6.1.3. MatrixMultiply Layer Setup
	9.1.6.1.4. ElementWise Layer Setup
	9.1.6.1.5. TopK Layer Setup
	9.1.6.1.6. Marking The Network Outputs

	9.1.6.2. RNNv2 Workflow - From TensorFlow To TensorRT
	9.1.6.2.1. Training A CharRNN Model With TensorFlow
	9.1.6.2.2. Exporting Weights From A TensorFlow Model Checkpoint
	9.1.6.2.3. Loading And Converting Weights Format
	9.1.6.2.4. RNNv2: Setting Weights And Bias

	9.1.6.3. Seeding The Network
	9.1.6.4. Generating Data

	9.1.7. sampleINT8
	9.1.7.1. Defining The Network
	9.1.7.2. Building The Engine
	9.1.7.2.1. Calibrating The Network
	9.1.7.2.2. Calibration Set
	9.1.7.2.3. Loading A Calibration File

	9.1.7.3. Configuring The Builder
	9.1.7.4. Running The Engine
	9.1.7.5. Verifying The Output
	9.1.7.6. Batch Files For Calibration
	9.1.7.6.1. Generating Batch Files For Caffe Users
	9.1.7.6.2. Generating Batch Files For Non-Caffe Users

	9.1.8. samplePlugin
	9.1.8.1. Defining The Network
	9.1.8.2. Enabling Custom Layers In NvCaffeParser
	9.1.8.3. Building The Engine
	9.1.8.4. Serializing And Deserializing
	9.1.8.5. Resource Management And Execution

	9.1.9. sampleNMT
	9.1.9.1. Overview
	9.1.9.2. Preparing The Data
	9.1.9.3. Running The Sample
	9.1.9.4. Training The Model
	9.1.9.5. Importing Weights From A Checkpoint

	9.1.10. sampleFasterRCNN
	9.1.10.1. Overview
	9.1.10.2. Preprocessing The Input
	9.1.10.3. Defining The Network
	9.1.10.4. Building The Engine
	9.1.10.5. Running The Engine
	9.1.10.6. Verifying The Output

	9.1.11. sampleUffSSD
	9.1.11.1. API Overview
	9.1.11.2. Processing The Input Graph
	9.1.11.3. Preparing The Data
	9.1.11.4. Defining The Network And Plugins
	9.1.11.5. Verifying The Output

	9.1.12. sampleMovieLens
	9.1.12.1. Importing Network To TensorRT
	9.1.12.2. Running With MPS
	9.1.12.3. Verifying The Output

	9.1.13. sampleSSD
	9.1.13.1. Overview
	9.1.13.2. Preprocessing The Input
	9.1.13.3. Defining The Network
	9.1.13.4. Building The Engine
	9.1.13.5. Verifying The Output

	9.2. Python Samples
	9.2.1. introductory_parser_samples
	9.2.2. end_to_end_tensorflow_mnist
	9.2.3. network_api_pytorch_mnist
	9.2.4. fc_plugin_caffe_mnist
	9.2.5. uff_custom_plugin

	Troubleshooting
	10.1. FAQs
	10.2. Support

	Appendix
	A.1. TensorRT Layers
	A.1.1. Activation Layer
	A.1.2. Concatenation Layer
	A.1.3. Constant Layer
	A.1.4. Convolution Layer
	A.1.5. Deconvolution Layer
	A.1.6. ElementWise Layer
	A.1.7. FullyConnected Layer
	A.1.8. Gather Layer
	A.1.9. Identity Layer
	A.1.10. LRN Layer
	A.1.11. MatrixMultiply Layer
	A.1.12. Padding Layer
	A.1.13. Plugin Layer
	A.1.14. Pooling Layer
	A.1.15. RaggedSoftMax Layer
	A.1.16. Reduce Layer
	A.1.17. RNNv2 Layer (IRNNv2Layer) Layer
	A.1.18. RNN Layer (IRNNLayer)
	A.1.19. Scale Layer
	A.1.20. Shuffle Layer
	A.1.21. SoftMax Layer
	A.1.22. TopK Layer
	A.1.23. Unary Layer

	A.2. Data Format Descriptions
	A.3. Command Line Wrapper
	A.4. ACKNOWLEDGEMENTS

