SimNet
A Neural Network Based Partial Differential Equation Solver

Release Notes
Release v21.06 | June 7, 2021
Notice

The information provided in this specification is believed to be accurate and reliable as of the date provided. However, NVIDIA Corporation ("NVIDIA") does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This publication supersedes and replaces all other specifications for the product that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this specification, at any time and/or to discontinue any product or service without notice. Customer should obtain the latest relevant specification before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general terms and conditions with regard to the purchase of the NVIDIA product referenced in this specification.

NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this specification. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this specification. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com
CONFIGURATION:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>• Ubuntu 18.04 or Linux 4.18 kernel</th>
</tr>
</thead>
</table>

| Driver & GPU Requirements | • Bare Metal version: NVIDIA driver 465.19 required only if SDF library is used
 • Docker container: NVIDIA driver 465.19 or higher driver must be used. If using a Tesla (for example, T4 or any other Tesla board), you may use NVIDIA driver release 440.30 or 418.xx however any drivers older than 465 will not support the SDF library. (https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html) |
|--------------------------|--|

| Required installations for Bare Metal version | • Python 3.6
 • Tensorflow 1.15
 • Horovod 0.21.0 |
|---|---|

| Supported Processors | • 64-bit x86
 (this dependency is only when the SDF library is used since the SDF library is compiled on x86. If you need the SDF compiled on Power9 architecture then please e-mail us at: simnet-team@nvidia.com)
 • NVIDIA GPU based on the following architectures:
 o Nvidia Ampere GPU Architecture (A100)
 o Volta (V100, Titan V, Quadro GV100)
 o Turing (T4, Quadro RTX series)
 o Pascal (P100, P40, P4, Titan Xp, Titan X) |
|---------------------|---|

All studies in the User Guide are done using V100 on DGX-1. A100 has also been tested.

NOTE: To get the benefits of all the performance improvements (e.g. AMP, multi-GPU scaling, etc.), use the NVIDIA Tensorflow container for SimNet. This container comes with all the prerequisites and dependencies and allows you to get started efficiently with SimNet.
KEY FEATURES – version 21.06 marked as [NEW]:

1. Improved performance with XLA enabled for Tensorflow models and multi-GPU/multi-Node runs:
 a. XLA extensions for Fourier Networks (axis, partial, random & full spectrum)
 b. Strong scaling with learning rate adjustments
2. Improved stability in multi-GPU/multi-Node implementations using linear-exponential learning rate and utilization of TF32 precision for A100 GPUs
3. Physics types:
 a. Linear Elasticity (plane stress, plane strain and 3D)
 b. Fluid Mechanics
 c. Heat Transfer
 d. Coupled Fluid-Thermal [NEW]
 e. Electromagnetics [NEW]
 f. 2D wave propagation [NEW]
4. Solution of differential equations:
 a. Ordinary Differential Equations
 b. Partial Differential Equations
 i. Differential (strong) Form
 ii. Integral (weak) form of the PDEs
5. Several neural network architectures to choose from –
 a. Fully connected Network
 b. Fourier Feature Network
 c. Sinusoidal Representation Network
 d. Modified Fourier Network
 e. Deep Galerkin Method Network
 f. Modified Highway Network
 g. Multiplicative Filter Networks [NEW]
6. Features include –
 a. Global mass balance constraints
 b. SDF (Signed Distance Function) weighting of PDEs in flow problems for rapid convergence
 c. Exact mass balance constraints
 d. Global and local learning rate annealing
 e. Global adaptive activation functions
 f. Halton sequences for low-discrepancy point cloud creation
 g. Gradient Accumulation [NEW]
 h. Time-stepping schemes for transient problems [NEW]
 i. Temporal loss weighting and time marching for the continuous time approach [NEW]
 j. Importance sampling [NEW]
 k. Homoscedastic task uncertainty quantification for loss weighting [NEW]
7. Parameterized system representation that solves several configurations concurrently for analytical geometry using SimNet CSG module
8. Transfer learning for efficient surrogate-based parameterization of STL and constructive solid geometries [NEW]
9. Polynomial Chaos Expansion method for assessing how uncertainties in a model input manifest in its output [NEW]

10. APIs to automatically generate point clouds from Boolean compositions of geometry primitives or import point cloud for complex geometry (e.g., STL files)

11. Geometry library to either construct point cloud using simple primitives or from an STL using superfast ray tracing method with uniformly emanating rays using Fibonacci sphere. Point categorized as inside, outside or on-the-surface, SDF and its derivative calculation. Implementation of new technique for more accurate and faster SDF calculation

12. Logically separate APIs for physics, boundary conditions and geometry consistent with traditional solver datasets

13. Step by step tutorials for getting started with:
 a. computational fluid dynamics
 b. zero-equation turbulence model
 c. heat transfer
 d. inverse problems and multi-physics problems

Known issues:
1. It is known that sometimes Horovod prints numerous warning messages of this type:
   ```
   Read -1, expected xyz, errno = 1
   ```
 These messages are harmless and can be filtered out by using the below command:
   ```
   horovodrun <#GPUs> python <script.py> |& grep -v "Read -1"
   ```

2. It is known that sometimes Horovod gives multiple stalled or missing rank warnings, and in most cases these prevent the training to start. We have observed that by reducing the GPU memory usage (e.g., reducing the batch size), this issue can be fixed.