TensorRT 10.11.0
|
Cnvinfer1::plugin::DetectionOutputParameters | The DetectionOutput plugin layer generates the detection output based on location and confidence predictions by doing non maximum suppression |
CDims | Structure to define the dimensions of a tensor |
▼Cnvinfer1::Dims64 | |
▼Cnvinfer1::Dims2 | Descriptor for two-dimensional data |
▼Cnvinfer1::Dims3 | Descriptor for three-dimensional data |
Cnvinfer1::Dims4 | Descriptor for four-dimensional data |
Cnvinfer1::DimsHW | Descriptor for two-dimensional spatial data |
Cnvinfer1::DimsExprs | Analog of class Dims with expressions instead of constants for the dimensions |
Cnvinfer1::DynamicPluginTensorDesc | Summarizes tensors that a plugin might see for an input or output |
Cnvinfer1::impl::EnumMaxImpl< T > | Declaration of EnumMaxImpl struct to store maximum number of elements in an enumeration type |
Cnvinfer1::impl::EnumMaxImpl< ActivationType > | |
Cnvinfer1::impl::EnumMaxImpl< AllocatorFlag > | Maximum number of elements in AllocatorFlag enum |
Cnvinfer1::impl::EnumMaxImpl< APILanguage > | Maximum number of elements in APILanguage enum |
Cnvinfer1::impl::EnumMaxImpl< CumulativeOperation > | Maximum number of elements in CumulativeOperation enum |
Cnvinfer1::impl::EnumMaxImpl< DataType > | Maximum number of elements in DataType enum |
Cnvinfer1::impl::EnumMaxImpl< ElementWiseOperation > | |
Cnvinfer1::impl::EnumMaxImpl< EngineCapability > | Maximum number of elements in EngineCapability enum |
Cnvinfer1::impl::EnumMaxImpl< ErrorCode > | Maximum number of elements in ErrorCode enum |
Cnvinfer1::impl::EnumMaxImpl< HardwareCompatibilityLevel > | |
Cnvinfer1::impl::EnumMaxImpl< ILogger::Severity > | Maximum number of elements in ILogger::Severity enum |
Cnvinfer1::impl::EnumMaxImpl< InterpolationMode > | |
Cnvinfer1::impl::EnumMaxImpl< PaddingMode > | |
Cnvinfer1::impl::EnumMaxImpl< PoolingType > | |
Cnvinfer1::impl::EnumMaxImpl< PreviewFeature > | |
Cnvinfer1::impl::EnumMaxImpl< ResizeCoordinateTransformation > | |
Cnvinfer1::impl::EnumMaxImpl< ResizeRoundMode > | |
Cnvinfer1::impl::EnumMaxImpl< ResizeSelector > | |
Cnvinfer1::impl::EnumMaxImpl< RuntimePlatform > | |
Cnvinfer1::impl::EnumMaxImpl< TensorFormat > | Maximum number of elements in TensorFormat enum |
Cnvinfer1::impl::EnumMaxImpl< TensorIOMode > | Maximum number of elements in TensorIOMode enum |
Cnvinfer1::impl::EnumMaxImpl< TensorLocation > | Maximum number of elements in TensorLocation enum |
Cnvinfer1::impl::EnumMaxImpl< TilingOptimizationLevel > | |
Cnvinfer1::plugin::GridAnchorParameters | The Anchor Generator plugin layer generates the prior boxes of designated sizes and aspect ratios across all dimensions (H x W). GridAnchorParameters defines a set of parameters for creating the plugin layer for all feature maps |
CIAlgorithmSelector | Interface implemented by application for selecting and reporting algorithms of a layer provided by the builder |
CIDebugListener | User-implemented callback for notification when value of a debug tensor is updated |
CIErrorRecorder | Reference counted application-implemented error reporting interface for TensorRT objects |
CIGpuAllocator | Application-implemented class for controlling allocation on the GPU |
CIGpuAsyncAllocator | Application-implemented class for controlling asynchronous (stream ordered) memory allocation on the GPU |
CIInt8EntropyCalibrator | Entropy calibrator |
CIInt8EntropyCalibrator2 | Entropy calibrator 2 |
CIInt8LegacyCalibrator | Legacy calibrator |
CIInt8MinMaxCalibrator | MinMax Calibrator |
Cnvinfer1::ILogger | Application-implemented logging interface for the builder, refitter and runtime |
Cnvinfer1::ILoggerFinder | A virtual base class to find a logger. Allows a plugin to find an instance of a logger if it needs to emit a log message. A pointer to an instance of this class is passed to a plugin shared library on initialization when that plugin is serialized as part of a version-compatible plan. See the plugin chapter in the developer guide for details |
▼Cnvinfer1::INoCopy | Forward declaration of IEngineInspector for use by other interfaces |
Cnvinfer1::IAlgorithm | Describes a variation of execution of a layer. An algorithm is represented by IAlgorithmVariant and the IAlgorithmIOInfo for each of its inputs and outputs. An algorithm can be selected or reproduced using AlgorithmSelector::selectAlgorithms() |
Cnvinfer1::IAlgorithmContext | Describes the context and requirements, that could be fulfilled by one or more instances of IAlgorithm |
Cnvinfer1::IAlgorithmIOInfo | Carries information about input or output of the algorithm. IAlgorithmIOInfo for all the input and output along with IAlgorithmVariant denotes the variation of algorithm and can be used to select or reproduce an algorithm using IAlgorithmSelector::selectAlgorithms() |
Cnvinfer1::IAlgorithmVariant | Unique 128-bit identifier, which along with the input and output information denotes the variation of algorithm and can be used to select or reproduce an algorithm, using IAlgorithmSelector::selectAlgorithms() |
Cnvinfer1::IBuilder | Builds an engine from a network definition |
Cnvinfer1::IBuilderConfig | Holds properties for configuring a builder to produce an engine |
Cnvinfer1::ICudaEngine | An engine for executing inference on a built network, with functionally unsafe features |
Cnvinfer1::IDimensionExpr | An IDimensionExpr represents an integer expression constructed from constants, input dimensions, and binary operations. These expressions are can be used in overrides of IPluginV2DynamicExt::getOutputDimensions or IPluginV3OneBuild::getOutputShapes() to define output dimensions in terms of input dimensions |
Cnvinfer1::IEngineInspector | An engine inspector which prints out the layer information of an engine or an execution context |
Cnvinfer1::IExecutionContext | Context for executing inference using an engine, with functionally unsafe features |
Cnvinfer1::IExprBuilder | Object for constructing IDimensionExpr |
Cnvinfer1::IHostMemory | Class to handle library allocated memory that is accessible to the user |
Cnvinfer1::IIfConditional | Helper for constructing conditionally-executed subgraphs |
▼Cnvinfer1::ILayer | Base class for all layer classes in a network definition |
Cnvinfer1::IActivationLayer | An Activation layer in a network definition |
Cnvinfer1::IAssertionLayer | An assertion layer in a network |
Cnvinfer1::ICastLayer | A cast layer in a network |
Cnvinfer1::IConcatenationLayer | A concatenation layer in a network definition |
Cnvinfer1::IConstantLayer | Layer that represents a constant value |
Cnvinfer1::IConvolutionLayer | A convolution layer in a network definition |
Cnvinfer1::ICumulativeLayer | Layer that represents a cumulative operation across a tensor |
Cnvinfer1::IDeconvolutionLayer | A deconvolution layer in a network definition |
Cnvinfer1::IDequantizeLayer | A Dequantize layer in a network definition |
Cnvinfer1::IDynamicQuantizeLayer | A network layer to perform dynamic quantization |
Cnvinfer1::IEinsumLayer | An Einsum layer in a network |
Cnvinfer1::IElementWiseLayer | A elementwise layer in a network definition |
Cnvinfer1::IFillLayer | Generate a tensor according to a specified mode |
Cnvinfer1::IGatherLayer | A Gather layer in a network definition. Supports several kinds of gathering |
Cnvinfer1::IGridSampleLayer | A GridSample layer in a network definition |
Cnvinfer1::IIdentityLayer | A layer that represents the identity function |
▼Cnvinfer1::IIfConditionalBoundaryLayer | This is a base class for Conditional boundary layers |
Cnvinfer1::IConditionLayer | This layer represents a condition input to an IIfConditional |
Cnvinfer1::IIfConditionalInputLayer | This layer represents an input to an IIfConditional |
Cnvinfer1::IIfConditionalOutputLayer | This layer represents an output of an IIfConditional |
Cnvinfer1::ILRNLayer | A LRN layer in a network definition |
▼Cnvinfer1::ILoopBoundaryLayer | This is a base class for Loop boundary layers |
Cnvinfer1::IIteratorLayer | A layer to do iterations |
Cnvinfer1::ILoopOutputLayer | An ILoopOutputLayer is the sole way to get output from a loop |
Cnvinfer1::IRecurrenceLayer | A recurrence layer in a network definition |
Cnvinfer1::ITripLimitLayer | A layer that represents a trip-count limiter |
Cnvinfer1::IMatrixMultiplyLayer | Layer that represents a Matrix Multiplication |
Cnvinfer1::INMSLayer | A non-maximum suppression layer in a network definition |
Cnvinfer1::INonZeroLayer | |
Cnvinfer1::INormalizationLayer | A normalization layer in a network definition |
Cnvinfer1::IOneHotLayer | A OneHot layer in a network definition |
Cnvinfer1::IPaddingLayer | Layer that represents a padding operation |
Cnvinfer1::IParametricReLULayer | Layer that represents a parametric ReLU operation |
Cnvinfer1::IPluginV2Layer | Layer type for pluginV2 |
Cnvinfer1::IPluginV3Layer | Layer type for V3 plugins |
Cnvinfer1::IPoolingLayer | A Pooling layer in a network definition |
Cnvinfer1::IQuantizeLayer | A Quantize layer in a network definition |
Cnvinfer1::IRaggedSoftMaxLayer | A RaggedSoftmax layer in a network definition |
Cnvinfer1::IReduceLayer | Layer that represents a reduction across a non-bool tensor |
Cnvinfer1::IResizeLayer | A resize layer in a network definition |
Cnvinfer1::IReverseSequenceLayer | A ReverseSequence layer in a network definition |
Cnvinfer1::IScaleLayer | A Scale layer in a network definition |
Cnvinfer1::IScatterLayer | A scatter layer in a network definition. Supports several kinds of scattering |
Cnvinfer1::ISelectLayer | Select elements from two data tensors based on a condition tensor |
Cnvinfer1::IShapeLayer | Layer type for getting shape of a tensor |
Cnvinfer1::IShuffleLayer | Layer type for shuffling data |
Cnvinfer1::ISliceLayer | Slices an input tensor into an output tensor based on the offset and strides |
Cnvinfer1::ISoftMaxLayer | A Softmax layer in a network definition |
Cnvinfer1::ISqueezeLayer | Layer that represents a squeeze operation, removing unit dimensions of the input tensor on a set of axes |
Cnvinfer1::ITopKLayer | Layer that represents a TopK reduction |
Cnvinfer1::IUnaryLayer | Layer that represents an unary operation |
Cnvinfer1::IUnsqueezeLayer | Layer that represents an unsqueeze operation, which reshapes the input tensor by inserting unit-length dimensions at specified axes of the output |
Cnvinfer1::ILoop | Helper for creating a recurrent subgraph |
Cnvinfer1::INetworkDefinition | A network definition for input to the builder |
Cnvinfer1::IOptimizationProfile | Optimization profile for dynamic input dimensions and shape tensors |
Cnvinfer1::IRefitter | Updates weights in an engine |
Cnvinfer1::IRuntime | Allows a serialized functionally unsafe engine to be deserialized |
Cnvinfer1::IRuntimeConfig | A class for runtime configuration. This class is used during execution context creation |
Cnvinfer1::ISerializationConfig | Holds properties for configuring an engine to serialize the binary |
Cnvinfer1::ITensor | A tensor in a network definition |
Cnvinfer1::ITimingCache | Class to handle tactic timing info collected from builder |
CINonZero | A NonZero layer in a network |
Cnvinfer1::InterfaceInfo | Version information associated with a TRT interface |
Cnvonnxparser::IOnnxConfig | Configuration Manager Class |
CIOutputAllocator | Callback from ExecutionContext::enqueueV3() |
Cnvonnxparser::IParser | Object for parsing ONNX models into a TensorRT network definition |
Cnvonnxparser::IParserError | Object containing information about an error |
Cnvonnxparser::IParserRefitter | An interface designed to refit weights from an ONNX model |
CIPluginCapability | Base class for plugin capability interfaces |
CIPluginCreator | Plugin creator class for user implemented layers |
CIPluginCreatorInterface | Base class for all plugin creator versions |
CIPluginCreatorV3One | A plugin creator class capable of producing IPluginV3 objects |
Cnvinfer1::IPluginRegistry | Single registration point for all plugins in an application. It is used to find plugin implementations during engine deserialization. Internally, the plugin registry is considered to be a singleton so all plugins in an application are part of the same global registry. Note that the plugin registry is only supported for plugins of type IPluginV2 and should also have a corresponding IPluginCreator implementation |
CIPluginResource | Interface for plugins to define custom resources that could be shared through the plugin registry |
Cnvinfer1::IPluginResourceContext | Interface for plugins to access per context resources provided by TensorRT |
▼Cnvinfer1::IPluginV2 | Plugin class for user-implemented layers |
▼Cnvinfer1::IPluginV2Ext | Plugin class for user-implemented layers |
Cnvinfer1::IPluginV2DynamicExt | Similar to IPluginV2Ext, but with support for dynamic shapes |
Cnvinfer1::IPluginV2IOExt | Plugin class for user-implemented layers |
CIPluginV3 | Plugin class for the V3 generation of user-implemented layers |
CIPluginV3OneBuild | A plugin capability interface that enables the build capability (PluginCapabilityType::kBUILD). Exposes methods that allow the expression of the build time properties and behavior of a plugin |
CIPluginV3OneBuildV2 | A plugin capability interface that extends IPluginV3OneBuild by providing I/O aliasing functionality |
CIPluginV3OneCore | A plugin capability interface that enables the core capability (PluginCapabilityType::kCORE) |
CIPluginV3OneRuntime | A plugin capability interface that enables the runtime capability (PluginCapabilityType::kRUNTIME). Exposes methods that allow the expression of the runtime properties and behavior of a plugin |
CIProfiler | Application-implemented interface for profiling |
Cnvinfer1::v_1_0::IProfiler | |
CIProgressMonitor | Application-implemented progress reporting interface for TensorRT |
▼Cnvinfer2::safe::ISafeRecorder | |
Cparser::ParserSafeRecorder | The ParserSafeRecorder implementation of the ISafeRecorder interface |
CIStreamReader | Application-implemented class for reading data in a stream-based manner |
CIStreamReaderV2 | Application-implemented class for reading data in a stream-based manner asynchronously. Intended for use with the GDS API for optimizing load times |
▼Cnvinfer1::IVersionedInterface | An Interface class for version control |
▼Cnvinfer1::IInt8Calibrator | Application-implemented interface for calibration |
Cnvinfer1::v_1_0::IInt8EntropyCalibrator | |
Cnvinfer1::v_1_0::IInt8EntropyCalibrator2 | |
Cnvinfer1::v_1_0::IInt8LegacyCalibrator | |
Cnvinfer1::v_1_0::IInt8MinMaxCalibrator | |
Cnvinfer1::v_1_0::IAlgorithmSelector | |
Cnvinfer1::v_1_0::IDebugListener | |
Cnvinfer1::v_1_0::IErrorRecorder | |
▼Cnvinfer1::v_1_0::IGpuAllocator | |
Cnvinfer1::v_1_0::IGpuAsyncAllocator | |
Cnvinfer1::v_1_0::IOutputAllocator | |
▼Cnvinfer1::v_1_0::IPluginCapability | |
▼Cnvinfer1::v_1_0::IPluginV3OneBuild | |
Cnvinfer1::v_2_0::IPluginV3OneBuild | |
Cnvinfer1::v_1_0::IPluginV3OneCore | |
Cnvinfer1::v_1_0::IPluginV3OneRuntime | |
▼Cnvinfer1::v_1_0::IPluginCreatorInterface | |
Cnvinfer1::v_1_0::IPluginCreator | |
Cnvinfer1::v_1_0::IPluginCreatorV3One | |
Cnvinfer1::v_1_0::IPluginResource | |
Cnvinfer1::v_1_0::IPluginV3 | |
Cnvinfer1::v_1_0::IProgressMonitor | |
Cnvinfer1::v_1_0::IStreamReader | |
Cnvinfer1::v_1_0::IStreamReaderV2 | |
Cnvinfer1::plugin::NMSParameters | The NMSParameters are used by the BatchedNMSPlugin for performing the non_max_suppression operation over boxes for object detection networks |
Cnvinfer1::Permutation | Represents a permutation of dimensions |
Cnvinfer1::PluginField | Structure containing plugin attribute field names and associated data This information can be parsed to decode necessary plugin metadata |
Cnvinfer1::PluginFieldCollection | Plugin field collection struct |
Cnvinfer1::PluginRegistrar< T > | Register the plugin creator to the registry The static registry object will be instantiated when the plugin library is loaded. This static object will register all creators available in the library to the registry |
Cnvinfer1::PluginTensorDesc | Fields that a plugin might see for an input or output |
CPluginVersion | Definition of plugin versions |
Cnvinfer1::plugin::PriorBoxParameters | The PriorBox plugin layer generates the prior boxes of designated sizes and aspect ratios across all dimensions (H x W) |
Cnvinfer1::plugin::RegionParameters | The Region plugin layer performs region proposal calculation |
Cnvinfer1::plugin::RPROIParams | RPROIParams is used to create the RPROIPlugin instance |
Cnvinfer1::plugin::softmaxTree | When performing yolo9000, softmaxTree is helping to do softmax on confidence scores, for element to get the precise classification through word-tree structured classification definition |
Cnvinfer1::v_1_0::TimingCacheKey | The key to retrieve timing cache entries |
Cnvinfer1::v_1_0::TimingCacheValue | |
CValue | The values in the cache entry |
Cnvinfer1::Weights | An array of weights used as a layer parameter |
Copyright © 2024 NVIDIA Corporation
Privacy Policy |
Manage My Privacy |
Do Not Sell or Share My Data |
Terms of Service |
Accessibility |
Corporate Policies |
Product Security |
Contact