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Chapter 1. Introduction

NVIDIA® TensorRT™ is an SDK that facilitates high-performance machine learning
inference. It is designed to work in a complementary fashion with training frameworks
such as TensorFlow, PyTorch, and MXNet. It focuses specifically on running an already-
trained network quickly and efficiently on NVIDIA hardware.

Refer to the NVIDIA TensorRT Installation Guide for instructions on how to install
TensorRT.

The NVIDIA TensorRT Quick Start Guide is for users who want to try out TensorRT SDK;
specifically, you will learn how to construct an application to run inference on a TensorRT
engine quickly.

1.1.  Structure of This Guide
Chapter 1 provides information about how TensorRT is packaged and supported, and
how it fits into the developer ecosystem.

Chapter 2 provides a broad overview of TensorRT capabilities.

Chapters three and four contain introductions to the C++ and Python APIs respectively.

Subsequent chapters provide more detail about advanced features.

The appendix contains a layer reference and answers to FAQs.

1.2.  Samples
The NVIDIA TensorRT Sample Support Guide illustrates many of the topics discussed in
this guide. Additional samples focusing on embedded applications can be found here.

1.3.  Complementary GPU Features
Multi-Instance GPU, or MIG, is a feature of NVIDIA GPUs with NVIDIA Ampere
Architecture or later architectures that enable user-directed partitioning of a single
GPU into multiple smaller GPUs. The physical partitions provide dedicated compute and
memory slices with QoS and independent execution of parallel workloads on fractions
of the GPU. For TensorRT applications with low GPU utilization, MIG can produce

https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html
https://github.com/dusty-nv/jetson-inference
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
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higher throughput at small or no impact on latency. The optimal partitioning scheme is
application-specific.

1.4.  Complementary Software
The NVIDIA Triton™ Inference Server is a higher-level library providing optimized
inference across CPUs and GPUs. It provides capabilities for starting and managing
multiple models, and REST and gRPC endpoints for serving inference.

NVIDIA DALI® provides high-performance primitives for preprocessing image, audio, and
video data. TensorRT inference can be integrated as a custom operator in a DALI pipeline.
A working example of TensorRT inference integrated as a part of DALI can be found here.

TensorFlow-TensorRT (TF-TRT) is an integration of TensorRT directly into TensorFlow. It
selects subgraphs of TensorFlow graphs to be accelerated by TensorRT, while leaving the
rest of the graph to be executed natively by TensorFlow. The result is still a TensorFlow
graph that you can execute as usual. For TF-TRT examples, refer to Examples for
TensorRT in TensorFlow.

Torch-TensorRT (Torch-TRT) is a PyTorch-TensorRT compiler that converts PyTorch
modules into TensorRT engines. Internally, the PyTorch modules are first converted into
TorchScript/FX modules based on the Intermediate Representation (IR) selected. The
compiler selects subgraphs of the PyTorch graphs to be accelerated by TensorRT, while
leaving the rest of the graph to be executed natively by Torch. The result is still a PyTorch
module that you can execute as usual. For examples, refer to Examples for Torch-TRT.

The TensorFlow-Quantization Toolkit provides utilities for training and deploying
Tensorflow 2-based Keras models at reduced precision. This toolkit is used to quantize
different layers in the graph exclusively based on operator names, class, and pattern
matching. The quantized graph can then be converted into ONNX and then into
TensorRT engines. For examples, refer to the model zoo.

The PyTorch Quantization Toolkit provides facilities for training PyTorch models at
reduced precision, which can then be exported for optimization in TensorRT.

In addition, the PyTorch Automatic Sparsity (ASP) tool provides facilities for training
models with structured sparsity, which can then be exported and allows TensorRT to use
the faster sparse tactics on NVIDIA Ampere Architecture GPUs.

TensorRT is integrated with NVIDIA’s profiling tools, NVIDIA Nsight™ Systems and NVIDIA
Deep Learning Profiler (DLProf).

A restricted subset of TensorRT is certified for use in NVIDIA DRIVE® products. Some
APIs are marked for use only in NVIDIA DRIVE and are not supported for general use.

1.5.  ONNX
TensorRT’s primary means of importing a trained model from a framework is through
the ONNX interchange format. TensorRT ships with an ONNX parser library to assist in

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/#nvidia-dali-documentation
https://github.com/NVIDIA/DL4AGX
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://github.com/tensorflow/tensorrt
https://github.com/tensorflow/tensorrt
https://developer.nvidia.com/blog/accelerating-inference-up-to-6x-faster-in-pytorch-with-torch-tensorrt/
https://github.com/pytorch/TensorRT/tree/master/notebooks
https://github.com/NVIDIA/TensorRT/tree/main/tools/tensorflow-quantization
https://github.com/NVIDIA/TensorRT/tree/main/tools/tensorflow-quantization/examples
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/index.html
https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://developer.nvidia.com/drive
https://onnx.ai/
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importing models. Where possible, the parser is backward compatible up to opset 9; the
ONNX Model Opset Version Converter can assist in resolving incompatibilities.

The GitHub version may support later opsets than the version shipped with TensorRT.
Refer to the ONNX-TensorRT operator support matrix for the latest information on the
supported opset and operators. For TensorRT deployment, we recommend exporting to
the latest available ONNX opset.

The ONNX operator support list for TensorRT can be found here.

PyTorch natively supports ONNX export. For TensorFlow, the recommended method is
tf2onnx.

A good first step after exporting a model to ONNX is to run constant folding using
Polygraphy. This can often solve TensorRT conversion issues in the ONNX parser and
generally simplify the workflow. For details, refer to this example. In some cases, it may
be necessary to modify the ONNX model further, for example, to replace subgraphs with
plugins or reimplement unsupported operations in terms of other operations. To make
this process easier, you can use ONNX-GraphSurgeon.

1.6.  Code Analysis Tools
For guidance using the valgrind and clang sanitizer tools with TensorRT, refer to the
Troubleshooting chapter.

1.7.  API Versioning
TensorRT version number (MAJOR.MINOR.PATCH) follows Semantic Versioning 2.0.0 for
its public APIs and library ABIs. Version numbers change as follows:

 1. MAJOR version when making incompatible API or ABI changes
 2. MINOR version when adding functionality in a backward compatible manner
 3. PATCH version when making backward compatible bug fixes

Note that semantic versioning does not extend to serialized objects. To reuse plan
files, and timing caches, version numbers must match across major, minor, patch, and
build versions (with some exceptions for the safety runtime as detailed in the NVIDIA
DRIVE OS 6.0 Developer Guide). Calibration caches can typically be reused within a major
version but compatibility is not guaranteed.

1.8.  Deprecation Policy
Deprecation is used to inform developers that some APIs and tools are no longer
recommended for use. Beginning with version 8.0, TensorRT has the following
deprecation policy:

‣ Deprecation notices are communicated in the NVIDIA TensorRT Release Notes.

https://github.com/onnx/onnx/blob/master/docs/VersionConverter.md
https://github.com/onnx/onnx-tensorrt/
https://github.com/onnx/onnx-tensorrt/blob/master/docs/operators.md
https://github.com/onnx/onnx-tensorrt/blob/master/docs/operators.md
https://pytorch.org/docs/stable/onnx.html
https://github.com/onnx/tensorflow-onnx
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy/examples/cli/surgeon/02_folding_constants
https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
https://semver.org/#semantic-versioning-200
https://docs.nvidia.com/deeplearning/tensorrt/release-notes/index.html
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‣ When using the C++ API:

‣ API functions are marked with the TRT_DEPRECATED_API macro.

‣ Enums are marked with the TRT_DEPRECATED_ENUM macro.

‣ All other locations are marked with the TRT_DEPRECATED macro.

‣ Classes, functions, and objects will have a statement documenting when they
were deprecated.

‣ When using the Python API, deprecated methods and classes will issue deprecation
warnings at runtime, if they are used.

‣ TensorRT provides a 12-month migration period after the deprecation.

‣ APIs and tools continue to work during the migration period.

‣ After the migration period ends, APIs and tools are removed in a manner consistent
with semantic versioning.

For any APIs and tools specifically deprecated in TensorRT 7.x, the 12-month migration
period starts from the TensorRT 8.0 GA release date.

1.9.  Hardware Support Lifetime
TensorRT 8.5.3 was the last release supporting NVIDIA Kepler (SM 3.x) and NVIDIA
Maxwell (SM 5.x) devices. These devices are no longer supported in TensorRT 8.6. NVIDIA
Pascal (SM 6.x) devices are deprecated in TensorRT 8.6.

1.10.  Support
Support, resources, and information about TensorRT can be found online at https://
developer.nvidia.com/tensorrt. This includes blogs, samples, and more.

In addition, you can access the NVIDIA DevTalk TensorRT forum at https://
devtalk.nvidia.com/default/board/304/tensorrt/ for all things related to TensorRT.
This forum offers the possibility of finding answers, making connections, and getting
involved in discussions with customers, developers, and TensorRT engineers.

1.11.  Reporting Bugs
NVIDIA appreciates all types of feedback. If you encounter any problems, follow the
instructions in the Reporting TensorRT Issues section to report the issues.

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://devtalk.nvidia.com/default/board/304/tensorrt/
https://devtalk.nvidia.com/default/board/304/tensorrt/
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Chapter 2. TensorRT’s Capabilities

This chapter provides an overview of what you can do with TensorRT. It is intended to be
useful to all TensorRT users.

2.1.  C++ and Python APIs
TensorRT’s API has language bindings for both C++ and Python, with nearly identical
capabilities. The Python API facilitates interoperability with Python data processing
toolkits and libraries like NumPy and SciPy. The C++ API can be more efficient, and may
better meet some compliance requirements, for example in automotive applications.

Note: The Python API is not available for all platforms. For more information, refer to the
NVIDIA TensorRT Support Matrix.

2.2.  The Programming Model
TensorRT operates in two phases. In the first phase, usually performed offline, you
provide TensorRT with a model definition, and TensorRT optimizes it for a target GPU. In
the second phase, you use the optimized model to run inference.

2.2.1.  The Build Phase
The highest-level interface for the build phase of TensorRT is the Builder (C++, Python).
The builder is responsible for optimizing a model, and producing an Engine.

In order to build an engine, you must:

‣ Create a network definition.

‣ Specify a configuration for the builder.

‣ Call the builder to create the engine.

The NetworkDefinition interface (C++, Python) is used to define the model. The most
common path to transfer a model to TensorRT is to export it from a framework in ONNX
format, and use TensorRT’s ONNX parser to populate the network definition. However,

https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Builder.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_network_definition.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Network.html#inetworkdefinition
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you can also construct the definition step by step using TensorRT’s Layer (C++, Python)
and Tensor (C++, Python) interfaces.

Whichever way you choose, you must also define which tensors are the inputs and
outputs of the network. Tensors that are not marked as outputs are considered to be
transient values that can be optimized away by the builder. Input and output tensors
must be named, so that at runtime, TensorRT knows how to bind the input and output
buffers to the model.

The BuilderConfig interface (C++, Python) is used to specify how TensorRT should
optimize the model. Among the configuration options available, you can control
TensorRT’s ability to reduce the precision of calculations, control the tradeoff between
memory and runtime execution speed, and constrain the choice of CUDA® kernels.
Since the builder can take minutes or more to run, you can also control how the builder
searches for kernels, and cached search results for use in subsequent runs.

After you have a network definition and a builder configuration, you can call the builder
to create the engine. The builder eliminates dead computations, folds constants, and
reorders and combines operations to run more efficiently on the GPU. It can optionally
reduce the precision of floating-point computations, either by simply running them in
16-bit floating point, or by quantizing floating point values so that calculations can be
performed using 8-bit integers. It also times multiple implementations of each layer
with varying data formats, then computes an optimal schedule to execute the model,
minimizing the combined cost of kernel executions and format transforms.

The builder creates the engine in a serialized form called a plan, which can be deserialized
immediately, or saved to disk for later use.

Note:

‣ By default, engines created by TensorRT are specific to both the TensorRT version
with which they were created and the GPU on which they were created. Refer to the
Version Compatibility and Hardware Compatibility sections for how to configure an
engine for forward compatibility.

‣ TensorRT’s network definition does not deep-copy parameter arrays (such as the
weights for a convolution). Therefore, you must not release the memory for those
arrays until the build phase is complete. When importing a network using the ONNX
parser, the parser owns the weights, so it must not be destroyed until the build phase
is complete.

‣ The builder times algorithms to determine the fastest. Running the builder in parallel
with other GPU work may perturb the timings, resulting in poor optimization.

2.2.2.  The Runtime Phase
The highest-level interface for the execution phase of TensorRT is the Runtime (C++,
Python).

When using the runtime, you will typically carry out the following steps:

‣ Deserialize a plan to create an engine.

‣ Create an execution context from the engine.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_layer.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/LayerBase.html#ilayer
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_tensor.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/LayerBase.html#itensor
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder_config.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_runtime.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Runtime.html
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Then, repeatedly:

‣ Populate input buffers for inference.

‣ Call enqueueV3() on the execution context to run inference.

The Engine interface (C++, Python) represents an optimized model. You can query
an engine for information about the input and output tensors of the network - the
expected dimensions, data type, data format, and so on.

The ExecutionContext interface (C++, Python), created from the engine is the main
interface for invoking inference. The execution context contains all of the state
associated with a particular invocation - thus you can have multiple contexts associated
with a single engine, and run them in parallel.

When invoking inference, you must set up the input and output buffers in the
appropriate locations. Depending on the nature of the data, this may be in either CPU or
GPU memory. If not obvious based on your model, you can query the engine to determine
in which memory space to provide the buffer.

After the buffers are set up, inference can be enqueued (enqueueV3). The required
kernels are enqueued on a CUDA stream, and control is returned to the application as
soon as possible. Some networks require multiple control transfers between CPU and
GPU, so control may not return immediately. To wait for completion of asynchronous
execution, synchronize on the stream using cudaStreamSynchronize.

2.3.  Plugins
TensorRT has a Plugin interface to allow applications to provide implementations
of operations that TensorRT does not support natively. Plugins that are created and
registered with TensorRT’s PluginRegistry can be found by the ONNX parser while
translating the network.

TensorRT ships with a library of plugins, and source for many of these and some
additional plugins can be found here.

You can also write your own plugin library and serialize it with the engine.

If cuDNN or cuBLAS is needed, install the library as TensorRT no longer ships with them.
To obtain cudnnContext* or cublasContext*, the corresponding TacticSource flag must
be set using nvinfer1::IBuilderConfig::setTacticSource().

Refer to the Extending TensorRT with Custom Layers chapter for more details.

2.4.  Types and Precision

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_cuda_engine.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Engine.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_execution_context.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://github.com/NVIDIA/TensorRT/tree/main/plugin
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2.4.1.  Supported Types
TensorRT supports FP32, FP16, BF16, FP8, INT4, INT8, INT32, INT64, UINT8, and BOOL
data types. Refer to the TensorRT Operator documentation for layer I/O data type
specification.

‣ FP32, FP16, BF16: unquantized floating point types

‣ INT8: low-precision integer type

‣ Implicit quantization

‣ Interpreted as a quantized integer. A tensor with INT8 type must have an
associated scale factor (either through calibration or setDynamicRange API).

‣ Explicit quantization

‣ Interpreted as a signed integer. Conversion to/from INT8 type requires an
explicit Q/DQ layer.

‣ INT4: low-precision integer type for weight compression

‣ INT4 is used for weight-only-quantization. Requires dequantization before
compute is performed.

‣ Conversion to and from INT4 type requires an explicit Q/DQ layer.

‣ INT4 weights are expected to be serialized by packing two elements per-byte.
Refer to the Quantized Weights section for additional information.

‣ FP8: low-precision floating-point type

‣ 8-bit floating point type with 1-bit for sign, 4-bits for exponent, 3-bits for
mantissa

‣ Conversion to/from FP8 type requires an explicit Q/DQ layer.

‣ UINT8: unsigned integer I/O type

‣ Data type only usable as a network I/O type.

‣ Network level inputs in UINT8 must be converted from UINT8 to either FP32 or
FP16 using a CastLayer before the data is used in other operations.

‣ Network-level outputs in UINT8 must be produced by a CastLayer that has been
explicitly inserted into the network (will only support conversions from FP32/FP16
to UINT8).

‣ UINT8 quantization is not supported.

‣ The ConstantLayer does not support UINT8 as an output type.

‣ BOOL

‣ A boolean type used with supported layers.

2.4.2.  Strong Typing vs Weak Typing
When providing a network to TensorRT, you specify whether it is strongly or weakly
typed, with the default being weakly typed.

https://docs.nvidia.com/deeplearning/tensorrt/operators/docs
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For strongly typed networks, TensorRT’s optimizer will statically infer intermediate tensor
types based on the network input types and the operator specifications, which match
type inference semantics in frameworks. The optimizer will then adhere strictly to those
types. For more information, refer to Strongly Typed Networks.

For weakly typed networks, TensorRT’s optimizer may substitute different precisions
for tensors if it increases performance. In this mode, TensorRT defaults to FP32 for
all floating-point operations, but there are two ways to configure different levels of
precision:

‣ To control precision at the model level, BuilderFlag options (C++, Python) can
indicate to TensorRT that it may select lower-precision implementations when
searching for the fastest (and because lower precision is generally faster, if allowed
to, it typically will).

For example, by setting a single flag you can easily instruct TensorRT to use FP16
calculations for your entire model. For regularized models whose input dynamic range
is approximately one, this typically produces significant speedups with negligible
change in accuracy.

‣ For finer-grained control, where a layer must run at higher precision because part
of the network is numerically sensitive or requires high dynamic range, arithmetic
precision can be specified for that layer.

Refer to Reduced Precision in Weakly Typed Networks for more details.

2.5.  Quantization
TensorRT supports quantized floating point, where floating-point values are linearly
compressed and rounded to low precision quantized types (INT8, FP8, INT4). This
significantly increases arithmetic throughput while reducing storage requirements and
memory bandwidth. When quantizing a floating-point tensor, TensorRT must know its
dynamic range - that is, what range of values is important to represent - values outside
this range are clamped when quantizing.

Dynamic range information can be calculated by the builder (this is called calibration)
based on representative input data (this is currently supported only for INT8). Or you can
perform quantization-aware training in a framework and import the model to TensorRT
with the necessary dynamic range information.

Refer to the Working with Quantized Types chapter for more details.

2.6.  Tensors and Data Formats
When defining a network, TensorRT assumes that tensors are represented by
multidimensional C-style arrays. Each layer has a specific interpretation of its inputs:
for example, a 2D convolution will assume that the last three dimensions of its input are
in CHW format - there is no option to use, for example a WHC format. Refer to NVIDIA
TensorRT Operator's Reference for how each layer interprets its inputs.

Note that tensors are limited to at most 2^31-1 elements.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#abdc74c40fe7a0c3d05d2caeccfbc29c1
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html#tensorrt.BuilderFlag
https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
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While optimizing the network, TensorRT performs transformations internally (including
to HWC, but also more complex formats) to use the fastest possible CUDA kernels. In
general, formats are chosen to optimize performance, and applications have no control
over the choices. However, the underlying data formats are exposed at I/O boundaries
(network input and output, and passing data to and from plugins) to allow applications to
minimize unnecessary format transformations.

Refer to the I/O Formats section for more details.

2.7.  Dynamic Shapes
By default, TensorRT optimizes the model based on the input shapes (batch size, image
size, and so on) at which it was defined. However, the builder can be configured to allow
the input dimensions to be adjusted at runtime. In order to enable this, you specify one
or more instances of OptimizationProfile (C++, Python) in the builder configuration,
containing for each input a minimum and maximum shape, along with an optimization
point within that range.

TensorRT creates an optimized engine for each profile, choosing CUDA kernels that work
for all shapes within the [minimum, maximum] range and are fastest for the optimization
point - typically different kernels for each profile. You can then select among profiles at
runtime.

Refer to the Working with Dynamic Shapes chapter for more details.

2.8.  DLA
TensorRT supports NVIDIA’s Deep Learning Accelerator (DLA), a dedicated inference
processor present on many NVIDIA SoCs that supports a subset of TensorRT’s layers.
TensorRT allows you to execute part of the network on the DLA and the rest on GPU;
for layers that can be executed on either device, you can select the target device in the
builder configuration on a per-layer basis.

Refer to the Working with DLA chapter for more details.

2.9.  Updating Weights
When building an engine, you can specify that it may later have its weights updated.
This can be useful if you are frequently updating the weights of the model without
changing the structure, such as in reinforcement learning or when retraining a model
while retaining the same structure. Weight updates are performed using the Refitter (C
++, Python) interface.

Refer to the Refitting an Engine section for more details.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_optimization_profile.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/OptimizationProfile.html?highlight=optimizationprofile
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_refitter.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_refitter.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Refitter.html
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2.10.  Streaming Weights
TensorRT can be configured to stream the network’s weights from host memory to
device memory during network execution instead of placing them in device memory
at engine load time. This enables models with weights larger than free GPU memory
to run, but potentially with significantly increased latency. Weight streaming is an
opt-in feature at both build time (BuilderFlag::kWEIGHT_STREAMING) and runtime
(ICudaEngine::setWeightStreamingBudgetV2).

Note: Weight streaming is only supported with strongly typed networks. For more
information, refer to Weight Streaming.

2.11.  trtexec Tool
Included in the samples directory is a command-line wrapper tool called trtexec.
trtexec is a tool to use TensorRT without having to develop your own application. The
trtexec tool has three main purposes:

‣ benchmarking networks on random or user-provided input data.

‣ generating serialized engines from models.

‣ generating a serialized timing cache from the builder.

Refer to the trtexec section for more details.

2.12.  Polygraphy
Polygraphy is a toolkit designed to assist in running and debugging deep learning
models in TensorRT and other frameworks. It includes a Python API and a command-line
interface (CLI) built using this API.

Among other things, with Polygraphy you can:

‣ Run inference among multiple backends, like TensorRT and ONNX-Runtime, and
compare results (for example API,CLI).

‣ Convert models to various formats, for example, TensorRT engines with post-training
quantization (for example API,CLI).

‣ View information about various types of models (for example CLI)

‣ Modify ONNX models on the command line:

‣ Extract subgraphs (for example CLI).

‣ Simplify and sanitize (for example CLI).

‣ Isolate faulty tactics in TensorRT (for example CLI).

https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/polygraphy
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/polygraphy/tools
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/polygraphy/tools
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/api/01_comparing_frameworks
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/run/01_comparing_frameworks
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/api/04_int8_calibration_in_tensorrt
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/convert/01_int8_calibration_in_tensorrt
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/inspect
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/surgeon/01_isolating_subgraphs
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/surgeon/02_folding_constants
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/debug/01_debugging_flaky_trt_tactics
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For more details, refer to the Polygraphy repository.

https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
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Chapter 3. The C++ API

This chapter illustrates basic usage of the C++ API, assuming you are starting with an
ONNX model. sampleOnnxMNIST illustrates this use case in more detail.

The C++ API can be accessed through the header NvInfer.h, and is in the nvinfer1
namespace. For example, a simple application might begin with:
#include “NvInfer.h”

using namespace nvinfer1;

Interface classes in the TensorRT C++ API begin with the prefix I, for example ILogger,
IBuilder, and so on.

A CUDA context is automatically created the first time TensorRT makes a call to CUDA, if
none exists before that point. It is generally preferable to create and configure the CUDA
context yourself before the first call to TensorRT.

In order to illustrate object lifetimes, code in this chapter does not use smart pointers;
however, their use is recommended with TensorRT interfaces.

3.1.  The Build Phase
To create a builder, you first must instantiate the ILogger interface. This example
captures all warning messages but ignores informational messages:
class Logger : public ILogger           
{
    void log(Severity severity, const char* msg) noexcept override
    {
        // suppress info-level messages
        if (severity <= Severity::kWARNING)
            std::cout << msg << std::endl;
    }
} logger;

You can then create an instance of the builder:
IBuilder* builder = createInferBuilder(logger);

3.1.1.  Creating a Network Definition
After the builder has been created, the first step in optimizing a model is to create a
network definition. The network creation options are specified using a combination of
flags OR-d together.

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleOnnxMNIST
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The kEXPLICIT_BATCH flag is required in order to import models using the ONNX parser.
For more information, refer to Explicit Versus Implicit Batch.

You can also specify that the network should be considered strongly typed using the
NetworkDefinitionCreationFlag::kSTRONGLY_TYPED flag. For more information, refer
to Strongly Typed Networks.

Finally, create a network:
INetworkDefinition* network = builder->createNetworkV2(flag);

3.1.2.  Importing a Model Using the ONNX Parser
Now, the network definition must be populated from the ONNX representation. The
ONNX parser API is in the file NvOnnxParser.h, and the parser is in the nvonnxparser C+
+ namespace.
#include “NvOnnxParser.h”

using namespace nvonnxparser;

You can create an ONNX parser to populate the network as follows:
IParser* parser = createParser(*network, logger);

Then, read the model file and process any errors.
parser->parseFromFile(modelFile, 
    static_cast<int32_t>(ILogger::Severity::kWARNING));
for (int32_t i = 0; i < parser->getNbErrors(); ++i)
{
std::cout << parser->getError(i)->desc() << std::endl;
}

An important aspect of a TensorRT network definition is that it contains pointers to
model weights, which are copied into the optimized engine by the builder. Since the
network was created using the parser, the parser owns the memory occupied by the
weights, and so the parser object should not be deleted until after the builder has run.

3.1.3.  Building an Engine
The next step is to create a build configuration specifying how TensorRT should optimize
the model.
IBuilderConfig* config = builder->createBuilderConfig();

This interface has many properties that you can set in order to control how TensorRT
optimizes the network. One important property is the maximum workspace size. Layer
implementations often require a temporary workspace, and this parameter limits
the maximum size that any layer in the network can use. If insufficient workspace is
provided, it is possible that TensorRT will not be able to find an implementation for a
layer. By default the workspace is set to the total global memory size of the given device;
restrict it when necessary, for example, when multiple engines are to be built on a single
device.
config->setMemoryPoolLimit(MemoryPoolType::kWORKSPACE, 1U << 20);
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Another significant consideration is the maximum shared memory allocation for the
CUDA backend implementation. This allocation becomes pivotal in scenarios where
TensorRT needs to coexist with other applications, such as when the GPU is concurrently
utilized by both TensorRT and DirectX.
config->setMemoryPoolLimit(MemoryPoolType::kTACTIC_SHARED_MEMORY, 48 << 10);

Once the configuration has been specified, the engine can be built.
IHostMemory* serializedModel = builder->buildSerializedNetwork(*network, *config);

Since the serialized engine contains the necessary copies of the weights, the parser,
network definition, builder configuration and builder are no longer necessary and may be
safely deleted:
delete parser;
delete network;
delete config;
delete builder;

The engine can then be saved to disk, and the buffer into which it was serialized can be
deleted.
delete serializedModel

Note: Serialized engines are not portable across platforms. Engines are specific to the
exact GPU model that they were built on (in addition to the platform).

Since building engines is intended as an offline process, it can take significant time.
Refer to the Optimizing Builder Performance section for how to make the builder run
faster.

3.2.  Deserializing a Plan
Assuming you have previously serialized an optimized model and want to perform
inference, you must create an instance of the Runtime interface. Like the builder, the
runtime requires an instance of the logger:
IRuntime* runtime = createInferRuntime(logger);

After you have read the model into a buffer, you can deserialize it to obtain an engine:
ICudaEngine* engine = 
  runtime->deserializeCudaEngine(modelData, modelSize);

3.3.  Performing Inference
The engine holds the optimized model, but to perform inference you must manage
additional state for intermediate activations. This is done using the ExecutionContext
interface:
IExecutionContext *context = engine->createExecutionContext();

An engine can have multiple execution contexts, allowing one set of weights to be used
for multiple overlapping inference tasks. (A current exception to this is when using
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dynamic shapes, when each optimization profile can only have one execution context,
unless the preview feature, kPROFILE_SHARING_0806, is specified.)

To perform inference, you must pass TensorRT buffers for input and output, which
TensorRT requires you to specify with calls to setTensorAddress, which takes the name
of the tensor and the address of the buffer. You can query the engine using the names
you provided for input and output tensors to find the right positions in the array:
context->setTensorAddress(INPUT_NAME, inputBuffer);
context->setTensorAddress(OUTPUT_NAME, outputBuffer);

If the engine was built with dynamic shapes, you must also specify the input shapes:
context->setInputShape(INPUT_NAME, inputDims);

You can then call TensorRT’s method enqueueV3 to start inference using a CUDA stream:
context->enqueueV3(stream);

A network will be executed asynchronously or not depending on the structure
and features of the network. A non-exhaustive list of features that can cause
synchronous behavior are data dependent shapes, DLA usage, loops, and plugins
that are synchronous, for example. It is common to enqueue data transfers with
cudaMemcpyAsync() before and after the kernels to move data from the GPU if it is not
already there.

To determine when the kernels (and possibly cudaMemcpyAsync()) are complete, use
standard CUDA synchronization mechanisms such as events or waiting on the stream.
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Chapter 4. The Python API

This chapter illustrates basic usage of the Python API, assuming you are starting with an
ONNX model. The onnx_resnet50.py sample illustrates this use case in more detail.

The Python API can be accessed through the tensorrt module:
import tensorrt as trt

4.1.  The Build Phase
To create a builder, you must first create a logger. The Python bindings include a simple
logger implementation that logs all messages preceding a certain severity to stdout.
logger = trt.Logger(trt.Logger.WARNING)

Alternatively, it is possible to define your own implementation of the logger by deriving
from the ILogger class:
class MyLogger(trt.ILogger):
    def __init__(self):
       trt.ILogger.__init__(self)

    def log(self, severity, msg):
        pass # Your custom logging implementation here

logger = MyLogger()

You can then create a builder:
builder = trt.Builder(logger)

Since building engines is intended as an offline process, it can take significant time.
Refer to the Optimizing Builder Performance section for how to make the builder run
faster.

4.1.1.  Creating a Network Definition in Python
After the builder has been created, the first step in optimizing a model is to create a
network definition. The network definition options are specified using a combination of
flags OR-d together.

The EXPLICIT_BATCH flag is required in order to import models using the ONNX parser.
For more information, refer to Explicit Versus Implicit Batch.

https://github.com/NVIDIA/TensorRT/blob/main/samples/python/introductory_parser_samples/onnx_resnet50.py
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You can also specify that the network should be considered strongly typed using the
NetworkDefinitionCreationFlag.STRONGLY_TYPED flag. For more information, refer to
Strongly Typed Networks.

Finally, create a network:
network = builder.create_network(flag)

4.1.2.  Importing a Model Using the ONNX Parser
Now, the network definition must be populated from the ONNX representation. You can
create an ONNX parser to populate the network as follows:
parser = trt.OnnxParser(network, logger)

Then, read the model file and process any errors:
success = parser.parse_from_file(model_path)
for idx in range(parser.num_errors):
    print(parser.get_error(idx))

if not success:
    pass # Error handling code here

4.1.3.  Building an Engine
The next step is to create a build configuration specifying how TensorRT should optimize
the model:
config = builder.create_builder_config()

This interface has many properties that you can set in order to control how TensorRT
optimizes the network. One important property is the maximum workspace size. Layer
implementations often require a temporary workspace, and this parameter limits
the maximum size that any layer in the network can use. If insufficient workspace is
provided, it is possible that TensorRT will not be able to find an implementation for a
layer. By default, the workspace is set to the total global memory size of the given device;
restrict it when necessary, for example, when multiple engines are to be built on a single
device.
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) # 1 MiB

After the configuration has been specified, the engine can be built and serialized with:
serialized_engine = builder.build_serialized_network(network, config)

It may be useful to save the engine to a file for future use. You can do that like so:
with open(“sample.engine”, “wb”) as f:
    f.write(serialized_engine)

Note: Serialized engines are not portable across platforms. Engines are specific to the
exact GPU model that they were built on (in addition to the platform).
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4.2.  Deserializing a Plan
To perform inference, deserialize the engine using the Runtime interface. Like the builder,
the runtime requires an instance of the logger.
runtime = trt.Runtime(logger)

You can then deserialize the engine from a memory buffer:
engine = runtime.deserialize_cuda_engine(serialized_engine)

If you want, first load the engine from a file:
with open(“sample.engine”, “rb”) as f:
    serialized_engine = f.read()

4.3.  Performing Inference
The engine holds the optimized model, but to perform inference requires additional state
for intermediate activations. This is done using the IExecutionContext interface:
context = engine.create_execution_context()

An engine can have multiple execution contexts, allowing one set of weights to be used
for multiple overlapping inference tasks. (A current exception to this is when using
dynamic shapes, when each optimization profile can only have one execution context,
unless the preview feature, PROFILE_SHARING_0806, is specified.)

To perform inference, you must specify buffers for inputs and outputs:
context.set_tensor_address(name, ptr)

Several Python packages allow you to allocate memory on the GPU, including, but not
limited to, the official CUDA Python bindings, PyTorch, cuPy, and Numba.

After populating the input buffer, you can call TensorRT’s execute_async_v3 method
to start inference using a CUDA stream. A network will be executed asynchronously or
not depending on the structure and features of the network. A non-exhaustive list of
features that can cause synchronous behavior are data dependent shapes, DLA usage,
loops, and plugins that are synchronous, for example.

First, create the CUDA stream. If you already have a CUDA stream, you can use a
pointer to the existing stream. For example, for PyTorch CUDA streams, that is,
torch.cuda.Stream(), you can access the pointer using the cuda_stream property; for
Polygraphy CUDA streams, use the ptr attribute; or you can create a stream using CUDA
Python binding directly by calling cudaStreamCreate().

Next, start inference:
context.execute_async_v3(buffers, stream_ptr)

It is common to enqueue asynchronous transfers (cudaMemcpyAsync()) before and after
the kernels to move data from the GPU if it is not already there.

https://nvidia.github.io/cuda-python/module/cudart.html#cuda.cudart.cudaStreamCreate
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To determine when inference (and asynchronous transfers) are complete, use the
standard CUDA synchronization mechanisms such as events or waiting on the
stream. For example, with PyTorch CUDA streams or Polygraphy CUDA streams, issue
stream.synchronize(). With streams created with CUDA Python binding, issue
cudaStreamSynchronize(stream).

https://nvidia.github.io/cuda-python/module/cudart.html#cuda.cudart.cudaStreamSynchronize
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Chapter 5. How TensorRT Works

This chapter provides more detail on how TensorRT works.

5.1.  Object Lifetimes
TensorRT’s API is class-based, with some classes acting as factories for other classes.
For objects owned by the user, the lifetime of a factory object must span the lifetime of
objects it creates. For example, the NetworkDefinition and BuilderConfig classes are
created from the Builder class, and objects of those classes should be destroyed before
the builder factory object.

An important exception to this rule is creating an engine from a builder. After you have
created an engine, you may destroy the builder, network, parser, and build config and
continue using the engine.

5.2.  Error Handling and Logging
When creating TensorRT top-level interfaces (builder, runtime or refitter), you must
provide an implementation of the Logger (C++, Python) interface. The logger is used for
diagnostics and informational messages; its verbosity level is configurable. Since the
logger may be used to pass back information at any point in the lifetime of TensorRT,
its lifetime must span any use of that interface in your application. The implementation
must also be thread-safe, since TensorRT may use worker threads internally.

An API call to an object will use the logger associated with the corresponding top-level
interface. For example, in a call to ExecutionContext::enqueueV3(), the execution
context was created from an engine, which was created from a runtime, so TensorRT will
use the logger associated with that runtime.

The primary method of error handling is the ErrorRecorder (C++, Python) interface. You
can implement this interface, and attach it to an API object to receive errors associated
with that object. The recorder for an object will also be passed to any others it creates
- for example, if you attach an error recorder to an engine, and create an execution
context from that engine, it will use the same recorder. If you then attach a new error
recorder to the execution context, it will receive only errors coming from that context.
If an error is generated but no error recorder is found, it will be emitted through the
associated logger.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_logger.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Logger.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1v__1__0_1_1_i_error_recorder.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ErrorRecorder.html
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Note that CUDA errors are generally asynchronous - so when performing multiple
inferences or other streams of CUDA work asynchronously in a single CUDA context, an
asynchronous GPU error may be observed in a different execution context than the one
that generated it.

5.3.  Memory
TensorRT uses considerable amounts of device memory, (that is, memory directly
accessible by the GPU, as opposed to the host memory attached to the CPU). Since
device memory is often a constrained resource, it is important to understand how
TensorRT uses it.

5.3.1.  The Build Phase
During build, TensorRT allocates device memory for timing layer implementations. Some
implementations can consume a large amount of temporary memory, especially with
large tensors. You can control the maximum amount of temporary memory through
the memory pool limits of the builder config. The workspace size defaults to the full
size of device global memory but can be restricted when necessary. If the builder finds
applicable kernels that could not be run because of insufficient workspace, it will emit a
logging message indicating this.

Even with relatively little workspace however, timing requires creating buffers for input,
output, and weights. TensorRT is robust against the operating system (OS) returning
out-of-memory for such allocations. On some platforms the OS may successfully provide
memory, which then the out-of-memory killer process observes that the system is
low on memory, and kills TensorRT. If this happens free up as much system memory as
possible before retrying.

During the build phase, there will typically be at least two copies of the weights in host
memory: those from the original network, and those included as part of the engine as
it is built. In addition, when TensorRT combines weights (for example convolution with
batch normalization) additional temporary weight tensors will be created.

5.3.2.  The Runtime Phase
At runtime, TensorRT uses relatively little host memory, but can use considerable
amounts of device memory.

An engine, on deserialization, allocates device memory to store the model weights. Since
the serialized engine is almost all weights, its size is a good approximation to the amount
of device memory the weights require.

An ExecutionContext uses two kinds of device memory:

‣ Persistent memory required by some layer implementations - for example, some
convolution implementations use edge masks, and this state cannot be shared
between contexts as weights are, because its size depends on the layer input
shape, which may vary across contexts. This memory is allocated on creation of the
execution context, and lasts for its lifetime.
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‣ Scratch memory, used to hold intermediate results while processing the network.
This memory is used for intermediate activation tensors. It is also used for temporary
storage required by layer implementations, the bound for which is controlled by
IBuilderConfig::setMemoryPoolLimit().

You may optionally create an execution context without scratch memory using
ICudaEngine::createExecutionContextWithoutDeviceMemory() and provide that
memory yourself for the duration of network execution. This allows you to share it
between multiple contexts that are not running concurrently, or for other uses while
inference is not running. The amount of scratch memory required is returned by
ICudaEngine::getDeviceMemorySizeV2().

Information about the amount of persistent memory and scratch memory used by the
execution context is emitted by the builder when building the network, at severity kINFO.
Examining the log, the messages look similar to the following:
[08/12/2021-17:39:11] [I] [TRT] Total Host Persistent Memory: 106528
[08/12/2021-17:39:11] [I] [TRT] Total Device Persistent Memory: 29785600
[08/12/2021-17:39:11] [I] [TRT] Total Scratch Memory: 9970688

By default, TensorRT allocates device memory directly from CUDA. However, you can
attach an implementation of TensorRT’s IGpuAllocator (C++, Python) interface to
the builder or runtime and manage device memory yourself. This is useful if your
application wants to control all GPU memory and suballocate to TensorRT instead of
having TensorRT allocate directly from CUDA.

NVIDIA cuDNN and NVIDIA cuBLAS can occupy large amounts of device memory.
TensorRT allows you to control whether these libraries are used for inference by using
the TacticSources (C++, Python) attribute in the builder configuration. Some plugin
implementations require these libraries, so that when they are excluded, the network
may not be compiled successfully. The cudnnContext and cublasContext handles are
passed to the plugins using IPluginV2Ext::attachToContext() if the appropriate tactic
sources are set.

The CUDA infrastructure and TensorRT’s device code also consume device memory.
The amount of memory varies by platform, device, and TensorRT version. You can use
cudaGetMemInfo to determine the total amount of device memory in use.

TensorRT measures the amount of memory in use before and after critical operations
in builder and runtime. These memory usage statistics are printed to TensorRT’s
information logger. For example:
[MemUsageChange] Init CUDA: CPU +535, GPU +0, now: CPU 547, GPU 1293 (MiB)

It indicates the memory use change by CUDA initialization. CPU +535, GPU +0 is the
increased amount of memory after running CUDA initialization. The content after now: is
the CPU/GPU memory usage snapshot after CUDA initialization.

Note: In a multi-tenant situation, the reported memory use by cudaGetMemInfo and
TensorRT is prone to race conditions where a new allocation/free done by a different
process or a different thread. Since CUDA is not in control of memory on unified-memory
devices, the results returned by cudaGetMemInfo may not be accurate on these platforms.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_gpu_allocator.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/GpuAllocator.html
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cublas
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#a999ab7be02c9acfec0b2c9cc3673abb4
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=tactic_sources#tensorrt.IBuilderConfig.set_tactic_sources
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5.3.3.  CUDA Lazy Loading
CUDA lazy loading is a CUDA feature that can significantly reduce the peak GPU and host
memory usage of TensorRT and speed up TensorRT initialization with negligible (< 1%)
performance impact. The saving of memory usage and initialization time depends on
the model, software stack, GPU platform, etc. It is enabled by setting the environment
variable CUDA_MODULE_LOADING=LAZY. Refer to the NVIDIA CUDA documentation for more
information.

5.3.4.  L2 Persistent Cache Management
NVIDIA Ampere and later architectures support L2 cache persistence, a feature which
allows prioritization of L2 cache lines for retention when a line is chosen for eviction.
TensorRT can use this to retain activations in cache, reducing DRAM traffic, and power
consumption.

Cache allocation is per-execution context, enabled using the context’s
setPersistentCacheLimit method. The total persistent cache among all
contexts (and other components using this feature) should not exceed
cudaDeviceProp::persistingL2CacheMaxSize. Refer to the NVIDIA CUDA Best Practices
Guide for more information.

5.4.  Threading
In general, TensorRT objects are not thread safe; accesses to an object from different
threads must be serialized by the client.

The expected runtime concurrency model is that different threads will operate on
different execution contexts. The context contains the state of the network (activation
values, and so on) during execution, so using a context concurrently in different threads
results in undefined behavior.

To support this model, the following operations are thread safe:

‣ Nonmodifying operations on a runtime or engine.

‣ Deserializing an engine from a TensorRT runtime.

‣ Creating an execution context from an engine.

‣ Registering and deregistering plugins.

There are no thread-safety issues with using multiple builders in different threads;
however, the builder uses timing to determine the fastest kernel for the parameters
provided, and using multiple builders with the same GPU will perturb the timing and
TensorRT’s ability to construct optimal engines. There are no such issues using multiple
threads to build with different GPUs.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
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5.5.  Determinism
The TensorRT builder uses timing to find the fastest kernel to implement a given
operator. Timing kernels is subject to noise - other work running on the GPU, fluctuations
in GPU clock speed, and so on. Timing noise means that on successive runs of the
builder, the same implementation may not be selected.

In general, different implementations will use a different order of floating point
operations, resulting in small differences in the output. The impact of these differences
on the final result is usually very small. However, when TensorRT is configured to optimize
by tuning over multiple precisions, the difference between an FP16 and an FP32 kernel
can be more significant, particularly if the network has not been well regularized or is
otherwise sensitive to numerical drift.

Other configuration options that can result in a different kernel selection are different
input sizes (for example, batch size) or a different optimization point for an input profile
(refer to the Working with Dynamic Shapes section).

The AlgorithmSelector (C++, Python) interface allows you to force the builder to pick
a particular implementation for a given layer. You can use this to ensure that the same
kernels are picked by the builder from run to run. For more information, refer to the
Algorithm Selection and Reproducible Builds section.

After an engine has been built, except for IFillLayer and IScatterLayer, it is
deterministic: providing the same input in the same runtime environment will produce
the same output.

5.5.1.  IFillLayer Determinism
When IFillLayer is added to a network using either the RANDOM_UNIFORM or
RANDOM_NORMAL operations, the determinism guarantee above is no longer valid. On each
invocation, these operations generate tensors based on the RNG state, and then update
the RNG state. This state is stored on a per-execution context basis.

5.5.2.  IScatterLayer Determinism
If IScatterLayer is added to a network, and the input tensor indices have duplicate
entries, the determinism guarantee above is not valid for both ScatterMode::kELEMENT
and ScatterMode::kND modes. Additionally, one of the values from the input updates
tensor will be picked arbitrarily.

5.6.  Runtime Options
TensorRT provides multiple runtime libraries to meet a variety of use cases. C++
applications that run TensorRT engines should link against one of the following:

‣ The default runtime is the main library (libnvinfer.so/.dll).

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1v__1__0_1_1_i_algorithm_selector.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/AlgorithmSelector/pyAlgorithmSelector.html
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‣ The lean runtime library (libnvinfer_lean.so/.dll) is much smaller than the default
library, and contains only the code necessary to run a version-compatible engine. It
has some restrictions; primarily, it cannot refit or serialize engines.

‣ The dispatch runtime (libnvinfer_dispatch.so/.dll) is a small shim library that can
load a lean runtime, and redirect calls to it. The dispatch runtime is capable of loading
older versions of the lean runtime, and together with appropriate configuration
of the builder, can be used to provide compatibility between a newer version of
TensorRT and an older plan file. Using the dispatch runtime is almost the same as
manually loading the lean runtime, but it checks that APIs are implemented by the
lean runtime loaded, and performs some parameter mapping to support API changes
where possible.

The lean runtime contains fewer operator implementations than the default runtime.
Since TensorRT chooses operator implementations at build time, you need to specify
that the engine should be built for the lean runtime by enabling version compatibility. It
may be slightly slower than an engine built for the default runtime.

The lean runtime contains all the functionality of the dispatch runtime, and the default
runtime contains all the functionality of the lean runtime.

TensorRT provides Python packages corresponding to each of the above libraries:
tensorrt

A Python package. It is the Python interface for the default runtime.
tensorrt_lean

A Python package. It is the Python interface for the lean runtime.
tensorrt_dispatch

A Python package. It is the Python interface for the dispatch runtime.

Python applications that run TensorRT engines should import one of the above packages
to load the appropriate library for their use case.

5.7.  Compatibility
By default, serialized engines are only guaranteed to work correctly when used with the
same OS, CPU architectures, GPU models, and TensorRT versions used to serialize the
engines. Refer to the Version Compatibility and Hardware Compatibility sections for how
to relax the constraints on TensorRT versions and GPU models.
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Chapter 6. Advanced Topics

6.1.  Version Compatibility
By default, TensorRT engines are compatible only with the version of TensorRT with
which they are built. With appropriate build-time configuration, engines can be built that
are compatible with later TensorRT versions. TensorRT engines built with TensorRT 8 will
also be compatible with TensorRT 9 and TensorRT 10 runtimes, but not vice versa.

Version compatibility is supported from version 8.6; that is, the plan must be built with a
version at least 8.6 or higher, and the runtime must be 8.6 or higher.

When using version compatibility, the API supported at runtime for an engine is the
intersection of the API supported in the version with which it was built, and the API of
the version used to run it. TensorRT removes APIs only on major version boundaries so
this is not a concern within a major version. However, users wishing to use TensorRT 8
or TensorRT 9 engines with TensorRT 10 must migrate away from removed APIs, and are
advised to avoid the deprecated APIs.

The recommended approach to creating a version-compatible engine is to build as
follows:
C++

builderConfig.setFlag(BuilderFlag::kVERSION_COMPATIBLE);
IHostMemory* plan = builder->buildSerializedNetwork(network, config);

Python
builder_config.set_flag(tensorrt.BuilderFlag.VERSION_COMPATIBLE)
plan = builder.build_serialized_network(network, config)

If the network was created with TensorRT 8 or 9, it must have been created with
NetworkDefinitionCreationFlag::kEXPLICIT_BATCH. TensorRT 10 makes explicit
batch the default and impossible to turn off.

The request for a version compatible engine causes a copy of the lean runtime to be
added to the plan. When you subsequently deserialize the plan, TensorRT recognizes
that it contains a copy of the runtime. It loads the runtime, and uses it to deserialize and
execute the rest of the plan. Because this results in code being loaded and run from the
plan in the context of the owning process, you should only deserialize trusted plans this
way. To indicate to TensorRT that you trust the plan, call:
C++

runtime->setEngineHostCodeAllowed(true);
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Python
runtime.engine_host_code_allowed = True

The flag for trusted plans is also required if you are packaging plugins in the plan (refer
to Plugin Shared Libraries).

6.1.1.  Manually Loading the Runtime
The previous approach (Version Compatibility) packages a copy of the runtime with every
plan, which can be prohibitive if your application uses a large number of models. An
alternative approach is to manage the runtime loading yourself. For this approach, build
version compatible plans as explained in the previous section, but also set an additional
flag to exclude the lean runtime.

C++
builderConfig.setFlag(BuilderFlag::kVERSION_COMPATIBLE);
builderConfig.setFlag(BuilderFlag::kEXCLUDE_LEAN_RUNTIME);
IHostMemory* plan = builder->buildSerializedNetwork(network, config);

Python
builder_config.set_flag(tensorrt.BuilderFlag.VERSION_COMPATIBLE)
builder_config.set_flag(tensorrt.BuilderFlag.EXCLUDE_LEAN_RUNTIME)
plan = builder.build_serialized_network(network, config)

To run this plan, you must have access to the lean runtime for the version with which
it was built. Suppose you have built the plan with TensorRT 8.6 and your application is
linked against TensorRT 10, you can load the plan as follows.
C++

IRuntime* v10Runtime = createInferRuntime(logger);
IRuntime* v8ShimRuntime = v10Runtime->loadRuntime(v8RuntimePath);
engine = v8ShimRuntime->deserializeCudaEngine(v8plan);

Python
v10_runtime = tensorrt.Runtime(logger)
v8_shim_runtime = v10_runtime.load_runtime(v8_runtime_path)
engine = v8_shim_runtime.deserialize_cuda_engine(v8_plan)

The runtime will translate TensorRT 10 API calls for the TensorRT 8.6 runtime, checking
to ensure that the call is supported and performing any necessary parameter remapping.

6.1.2.  Loading from Storage
On most OSs, TensorRT can load the shared runtime library directly from memory.
However, on Linux kernels prior to 3.17, a temporary directory is required. Use the
IRuntime::setTempfileControlFlags and IRuntime::setTemporaryDirectory APIs to
control TensorRT's use of these mechanisms.

6.1.3.  Using Version Compatibility with the ONNX
Parser

When building a version-compatible engine from a TensorRT network definition
generated using TensorRT's ONNX parser, you must specify that the parser must use the
native InstanceNormalization implementation instead of the plugin one.

To do this, use the IParser::setFlag() API.
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C++
auto *parser = nvonnxparser::createParser(network, logger);
parser->setFlag(nvonnxparser::OnnxParserFlag::kNATIVE_INSTANCENORM);

Python
parser = trt.OnnxParser(network, logger)
parser.set_flag(trt.OnnxParserFlag.NATIVE_INSTANCENORM)

In addition, the parser may require the use of plugins in order to fully implement all
ONNX operators used in the network. In particular, if the network is used to build a
version-compatible engine, some plugins may need to be included with the engine
(either serialized with the engine, or provided externally and loaded explicitly).

To query the list of plugin libraries needed to implement a particular parsed network, use
the IParser::getUsedVCPluginLibraries API:
C++

auto *parser = nvonnxparser::createParser(network, logger);
parser->setFlag(nvonnxparser::OnnxParserFlag::kNATIVE_INSTANCENORM);
parser->parseFromFile(filename, static_cast<int>(ILogger::Severity::kINFO));
int64_t nbPluginLibs;
char const* const* pluginLibs = parser->getUsedVCPluginLibraries(nbPluginLibs);

Python
parser = trt.OnnxParser(network, logger)
parser.set_flag(trt.OnnxParserFlag.NATIVE_INSTANCENORM)

status = parser.parse_from_file(filename)
plugin_libs = parser.get_used_vc_plugin_libraries()

Refer to Plugin Shared Libraries, for how to use the resulting library list to serialize the
plugins or package them externally.

6.2.  Hardware Compatibility
By default, TensorRT engines are only compatible with the type of device where they
were built. With build-time configuration, engines can be built that are compatible with
other types of devices. Currently, hardware compatibility is supported only for Ampere
and later device architectures and is not supported on NVIDIA DRIVE OS or JetPack.

For example, to build an engine compatible with all Ampere and newer architectures,
configure the IBuilderConfig as follows:
config->setHardwareCompatibilityLevel(nvinfer1::HardwareCompatibilityLevel::kAMPERE_PLUS);

When building in hardware compatibility mode, TensorRT excludes tactics that are
not hardware compatible, such as those that use architecture-specific instructions
or require more shared memory than is available on some devices. Thus, a hardware-
compatible engine may have lower throughput and/or higher latency than its non-
hardware-compatible counterpart. The degree of this performance impact depends on
the network architecture and input sizes.

6.3.  Compatibility Checks
TensorRT records in a plan the major, minor, patch and build versions of the library used
to create the plan. If these do not match the version of the runtime used to deserialize
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the plan, it will fail to deserialize. When using version compatibility, the check will be
performed by the lean runtime deserializing the plan data. By default, that lean runtime
is included in the plan, and the match is guaranteed to succeed.

TensorRT also records the compute capability (major and minor versions) in the plan,
and checks it against the GPU on which the plan is being loaded. If they do not match,
the plan will fail to deserialize. This ensures that kernels selected during the build phase
are present and can run. When using hardware compatibility, the check is relaxed; with
HardwareCompatibilityLevel::kAMPERE_PLUS, the check will ensure that the compute
capability is greater than or equal to 8.0 rather than checking for an exact match.

TensorRT additionally checks the following properties and will issue a warning if they do
not match, except when using hardware compatibility:

‣ Global memory bus width

‣ L2 cache size

‣ Maximum shared memory per block and per multiprocessor

‣ Texture alignment requirement

‣ Number of multiprocessors

‣ Whether the GPU device is integrated or discrete

If GPU clock speeds differ between engine serialization and runtime systems, the chosen
tactics from the serialization system may not be optimal for the runtime system and may
incur some performance degradation.

If it is not possible to build a TensorRT engine for each individual type of GPU, you can
select several GPUs to build engines with and run the engine on different GPUs with the
same architecture. For example, among the NVIDIA RTX 40xx GPUs, you can build an
engine with RTX 4090 and an engine with RTX 4070. At runtime, you can use the RTX
4090 engine on an RTX 4080 GPU, and the 4070 engine on all smaller GPUs. In most
cases, the engine will run without functional issues and with only a small performance
drop when compared to running the engine built with the same GPU.

However, if the engine requires a large amount of device memory, and if the device
memory available during deserialization is smaller than when the engine was built,
deserialization may fail. In this case, it is recommended to build the engine on a smaller
GPU or to build the engine on the larger device with limited compute resources (refer to
the Limiting Compute Resources section).

The safety runtime is able to deserialize engines generated in an environment where the
major, minor, patch, and build version of TensorRT does not match exactly in some cases.
Refer to the NVIDIA DRIVE OS 6.0 Developer Guide for more information.

6.4.  Refitting an Engine
TensorRT can refit an engine with new weights without having to rebuild it, however, the
option to do so must be specified when building:
...
config->setFlag(BuilderFlag::kREFIT) 
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builder->buildSerializedNetwork(network, config);

Later, you can create a Refitter object:
ICudaEngine* engine = ...;
IRefitter* refitter = createInferRefitter(*engine,gLogger)

Then, update the weights. For example, to update a set of weights named “Conv Layer
Kernel Weights”:
Weights newWeights = ...;
refitter->setNamedWeights("Conv Layer Kernel Weight",
                    newWeights);

The new weights should have the same count as the original weights used to build
the engine. setNamedWeights returns false if something went wrong, such as a wrong
weights name or a change in the weights count.

You can use INetworkDefinition::setWeightsName() to name weights at build time
- the ONNX parser uses this API to associate the weights with the names used in the
ONNX model. Otherwise, TensorRT will name the weights internally based on the related
layer names and weights roles.

You can also pass GPU weights to refitter via:
Weights newBiasWeights = ...;
refitter->setNamedWeights("Conv Layer Bias Weight", newBiasWeights, TensorLocation::kDEVICE);

Because of the way the engine is optimized, if you change some weights, you might have
to supply some other weights too. The interface can tell you what additional weights
must be supplied.

This typically requires two calls to IRefitter::getMissingWeights, first to get the
number of weights objects that must be supplied, and second to get their layers and
roles.
int32_t const n = refitter->getMissingWeights(0, nullptr);
std::vector<const char*> weightsNames(n);
refitter->getMissingWeights(n, weightslayerNames.data());

You can supply the missing weights, in any order:
for (int32_t i = 0; i < n; ++i)
    refitter->setNamedWeights(weightsNames[i], Weights{...});

The set of missing weights returned is complete, in the sense that supplying only the
missing weights does not generate a need for any more weights.

Once all the weights have been provided, you can update the engine:
bool success = refitter->refitCudaEngine();
assert(success);

If the refit returns false, check the log for a diagnostic; perhaps the issue is about
weights that are still missing. There is also an async version, refitCudaEngineAsync, that
can accept a stream parameter.

You can update the weights memory directly and then call refitCudaEngine/
refitCudaEngineAsync in another iteration. If weights pointers need to be changed,
call setNamedWeights to override the previous setting. Call unsetNamedWeights to unset
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previously set weights so that they will not be used in later refitting and it becomes safe
to release these weights.

After refitting is done, you can then delete the refitter:
delete refitter;

The updated engine behaves as if it had been built from a network updated with the new
weights. And the previously created execution context can continue to be used after
refitting the engine.

To view all refittable weights in an engine, use refitter->getAllWeights(...); similarly
to how getMissingWeights were used above.

6.4.1.  Weight-Stripping
When refit is enabled, all the constant weights in the network can be updated after
building the engine. However, this introduces both a cost to refit the engine with new
weights, and a potential runtime impact because the inability to constant-fold weights
may prevent the builder from performing some optimizations.

When the weights with which the engine will be refitted are unknown at build time, this
cost is unavoidable. However, in some scenarios the weights are known. For example, you
may be using TensorRT as one of multiple back ends to execute an ONNX model, and
wish to avoid an additional copy of weights in the TensorRT plan.

The weight-stripping build configuration enables this scenario, when enabled, TensorRT
enables refit only for constant weights that do not impact the builder’s ability to
optimize and produce an engine with the same runtime performance as a non-refittable
engine. Those weights are then omitted from the serialized engine, resulting in a small
plan file that can be refitted at runtime using the weights from the ONNX model.

The trtexec tool provides the --stripWeights flags that can be used to build the
weight-stripped engine. Refer to the trtexec section for more details.

The following steps show how to refit the weights for weight-stripped engines. When
working with ONNX models, the ONNX parser library can perform the refit automatically.
Refer to Refitting a Weight-Stripped Engine Directly from ONNX for more information.

 1. Set the corresponding builder flag to enable the weight-stripped build. Here, the
kSTRIP_PLAN flag works with either kREFIT or kREFIT_IDENTICAL. It defaults to
the latter. The REFIT_IDENTICAL flag instructs the TensorRT builder to optimize
under the assumption that the engine will be refitted with weights identical to those
provided at build time. The kSTRIP_PLAN flag minimizes plan size by stripping out the
refittable weights.
C++

...
config->setFlag(BuilderFlag::kSTRIP_PLAN); 
config->setFlag(BuilderFlag::kREFIT_IDENTICAL);
builder->buildSerializedNetwork(network, config);

Python
config.flags |= 1 << int(trt.BuilderFlag.STRIP_PLAN)
config.flags |= 1 << int(trt.BuilderFlag.REFIT_IDENTICAL)
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builder.build_serialized_network(network, config)

 2. After the engine is built, save the engine plan file and distribute it in the installer.
 3. On the client side, when you launch the network for the first time, update all the

weights in the engine. Here, use the getAllWeights API since all the weights in the
engine plan were removed.
C++

int32_t const n = refitter->getAllWeights(0, nullptr);

Python
all_weights = refitter.get_all()

 4. Update the weights one by one.
C++

for (int32_t i = 0; i < n; ++i)
    refitter->setNamedWeights(weightsNames[i], Weights{...});

Python
for name in wts_list:
    refitter.set_named_weights(name, weights[name])

 5. Save the full engine plan file.
C++

auto serializationConfig = SampleUniquePtr<nvinfer1::ISerializationConfig>(cudaEngine-
>createSerializationConfig());
auto serializationFlag = serializationConfig->getFlags()
serializationFlag &= ~(1<<
 static_cast<uint32_t>(nvinfer1::SerializationFlag::kEXCLUDE_WEIGHTS));
serializationConfig->setFlags(serializationFlag) 
auto hostMemory = SampleUniquePtr<nvinfer1::IHostMemory>(cudaEngine-
>serializeWithConfig(*serializationConfig));

Python
serialization_config = engine.create_serialization_config()
serialization_config.flags &= ~(1 << int(trt.SerializationFlag.EXCLUDE_WEIGHTS))
binary = engine.serialize_with_config(serialization_config)

The application can now use the new full engine plan file for future inference.

6.4.2.  Refitting a Weight-Stripped Engine Directly
from ONNX

When working with weight-stripped engines created from ONNX models, the refit
process can be done automatically with the IParserRefitter class from the ONNX
parser library. The following steps show how to create the class and run the refit process.

 1. Create your engine as described in Weight-Stripping, and create an IRefitter object.
C++

IRefitter* refitter = createInferRefitter(*engine, gLogger);

Python
refitter = trt.Refitter(engine, TRT_LOGGER)

 2. Create an IParserRefitter object.
C++

IParserRefitter* parserRefitter = createParserRefitter(*refitter, gLogger);

Python
parser_refitter = trt.OnnxParserRefitter(refitter, TRT_LOGGER)
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 3. Call the refitFromFile() function of the IParserRefitter. Ensure that the ONNX
model provided is identical to the one used to create the weight-stripped engine. This
function will return true if all the stripped-weights were found in the ONNX model,
otherwise, it will return false.
C++

bool result = parserRefitter->refitFromFile(“path_to_onnx_model”);

Python
result = parser_refitter.refit_from_file(“path_to_onnx_model”)

 4. Call the refit function of the IRefitter to complete the refit process.
C++

refitSuccess = refitter->refitCudaEngine();

Python
refit_success = refitter.refit_cuda_engine()

6.4.3.  Weight-Stripping Work with Lean Runtime
Additionally, we can leverage the lean runtime to further reduce the package size for the
weight-stripped engine. The lean runtime is the same runtime used in version compatible
engines. The original purpose is to allow you to generate a TensorRT engine with version
X and load it with an application built with version Y. The lean runtime library is relatively
small, approximately 40 MiB. Therefore, software distributors on top of TensorRT only
need to ship the weightless engine along with the 40 MiB lean runtime, when the
weights are already available on the target customer machine.

The recommended approach to build the engine is as follows:
C++

builderConfig.setFlag(BuilderFlag::kVERSION_COMPATIBLE);
builderConfig.setFlag(BuilderFlag::kEXCLUDE_LEAN_RUNTIME);
builderConfig.setFlag(BuilderFlag::kSTRIP_PLAN);
IHostMemory* plan = builder->buildSerializedNetwork(network, config);

Python
builder_config.set_flag(tensorrt.BuilderFlag.VERSION_COMPATIBLE)
builder_config.set_flag(tensorrt.BuilderFlag.EXCLUDE_LEAN_RUNTIME)
builder_config.set_flag(tensorrt.BuilderFlag.STRIP_PLAN)

plan = builder.build_serialized_network(network, config)

Load the engine with the shared lean runtime library path:
C++

runtime->loadRuntime("your_lean_runtime_full_path")

Python
runtime.load_runtime("your_lean_runtime_full_path")

For more information about the lean runtime, refer to the Version Compatibility section.

6.5.  Algorithm Selection and
Reproducible Builds

The default behavior of TensorRT’s optimizer is to choose the algorithms that globally
minimize the execution time of the engine. It does this by timing each implementation,
and sometimes, and when implementations have similar timings, it is possible that
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system noise will determine which will be chosen on any particular run of the builder.
Different implementations will typically use different order of accumulation of floating
point values, and two implementations may use different algorithms or even run at
different precisions. Thus, different invocations of the builder will typically not result in
engines that return bit-identical results.

Sometimes it is important to have a deterministic build, or to recreate the algorithm
choices of an earlier build. By providing an implementation of the IAlgorithmSelector
interface and attaching it to a builder configuration with setAlgorithmSelector, you can
guide algorithm selection manually.

The method IAlgorithmSelector::selectAlgorithms receives an AlgorithmContext
containing information about the algorithm requirements for a layer, and a set of
Algorithm choices meeting those requirements. It returns the set of algorithms which
TensorRT should consider for the layer.

The builder selects from these algorithms the one that minimizes the global runtime for
the network. If no choice is returned and BuilderFlag::kREJECT_EMPTY_ALGORITHMS
is unset, TensorRT interprets this to mean that any algorithm may be used for this
layer. To override this behavior and generate an error if an empty list is returned, set the
BuilderFlag::kREJECT_EMPTY_ALGORITHMS flag.

After TensorRT has finished optimizing the network for a given profile, it calls
reportAlgorithms, which can be used to record the final choice made for each layer.

To build a TensorRT engine deterministically, return a single choice from
selectAlgorithms. To replay choices from an earlier build, use reportAlgorithms to
record the choices in that build, and return them in selectAlgorithms.

sampleAlgorithmSelector demonstrates how to use the algorithm selector to achieve
determinism and reproducibility in the builder.

Note:

‣ The notion of a "layer" in algorithm selection is different from ILayer in
INetworkDefinition. The "layer" in the former can be equivalent to a collection of
multiple network layers due to fusion optimizations.

‣ Picking the fastest algorithm in selectAlgorithms may not produce the best
performance for the overall network, as it may increase reformatting overhead.

‣ The timing of an IAlgorithm is 0 in selectAlgorithms if TensorRT found that layer to
be a no-op.

‣ reportAlgorithms does not provide the timing and workspace information for an
IAlgorithm that are provided to selectAlgorithms.
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6.6.  Creating a Network Definition from
Scratch

Instead of using a parser, you can also define the network directly to TensorRT using the
Network Definition API. This scenario assumes that the per-layer weights are ready in
host memory to pass to TensorRT during the network creation.

The following examples create a simple network with Input, Convolution, Pooling,
MatrixMultiply, Shuffle, Activation, and SoftMax layers.

For more information regarding layers, refer to the NVIDIA TensorRT Operator’s
Reference.

6.6.1.  C++
In this example, the weights are loaded into a weightMap data structure used in the
following code.

First create the builder and network objects. Note that in the following example, the
logger is initialized using the logger.cpp file common to all C++ samples. The C++
sample helper classes and functions can be found in the common.h header file.
    auto builder =
 SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(sample::gLogger.getTRTLogger()));
    const auto explicitBatchFlag = 1U <<
 static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
    auto network = SampleUniquePtr<nvinfer1::INetworkDefinition>(builder-
>createNetworkV2(explicitBatchFlag));

Refer to the Explicit Versus Implicit Batch section for more information about the
kEXPLICIT_BATCH flag.

Add the Input layer to the network by specifying the name, datatype, and full dimensions
of the input tensor. A network can have multiple inputs, although in this sample there is
only one:
auto data = network->addInput(INPUT_BLOB_NAME, datatype, Dims4{1, 1, INPUT_H, INPUT_W});

Add the Convolution layer with hidden layer input nodes, strides, and weights for filter
and bias.
auto conv1 = network->addConvolution(
*data->getOutput(0), 20, DimsHW{5, 5}, weightMap["conv1filter"], weightMap["conv1bias"]);
conv1->setStride(DimsHW{1, 1});

Note: Weights passed to TensorRT layers are in host memory.

Add the Pooling layer; note that the output from the previous layer is passed as input.
auto pool1 = network->addPooling(*conv1->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
pool1->setStride(DimsHW{2, 2});

Add a Shuffle layer to reshape the input in preparation for a matrix multiplication:
int32_t const batch = input->getDimensions().d[0];
int32_t const mmInputs = input.getDimensions().d[1] * input.getDimensions().d[2] *
 input.getDimensions().d[3]; 
auto inputReshape = network->addShuffle(*input);

https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
https://github.com/NVIDIA/TensorRT/blob/main/samples/common/logger.cpp
https://github.com/NVIDIA/TensorRT/blob/main/samples/common/common.h
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inputReshape->setReshapeDimensions(Dims{2, {batch, mmInputs}});

Now, add a MatrixMultiply layer. Here, the model exporter provided transposed weights,
so the kTRANSPOSE option is specified for those.
IConstantLayer* filterConst = network->addConstant(Dims{2, {nbOutputs, mmInputs}},
 mWeightMap["ip1filter"]);
auto mm = network->addMatrixMultiply(*inputReshape->getOutput(0), MatrixOperation::kNONE,
 *filterConst->getOutput(0), MatrixOperation::kTRANSPOSE);

Add the bias, which will broadcast across the batch dimension.
auto biasConst = network->addConstant(Dims{2, {1, nbOutputs}}, mWeightMap["ip1bias"]);
auto biasAdd = network->addElementWise(*mm->getOutput(0), *biasConst->getOutput(0),
 ElementWiseOperation::kSUM);

Add the ReLU Activation layer:
auto relu1 = network->addActivation(*ip1->getOutput(0), ActivationType::kRELU);

Add the SoftMax layer to calculate the final probabilities:
auto prob = network->addSoftMax(*relu1->getOutput(0));

Add a name for the output of the SoftMax layer so that the tensor can be bound to a
memory buffer at inference time:
prob->getOutput(0)->setName(OUTPUT_BLOB_NAME);

Mark it as the output of the entire network:
network->markOutput(*prob->getOutput(0));

The network representing the MNIST model has now been fully constructed. Refer to
sections Building an Engine and Deserializing a Plan for how to build an engine and run
inference with this network.

6.6.2.  Python
Code corresponding to this section can be found in network_api_pytorch_mnist.

This example uses a helper class to hold some of metadata about the model:
class ModelData(object):
    INPUT_NAME = "data"
    INPUT_SHAPE = (1, 1, 28, 28)
    OUTPUT_NAME = "prob"
    OUTPUT_SIZE = 10
    DTYPE = trt.float32

In this example, the weights are imported from the PyTorch MNIST model.
weights = mnist_model.get_weights()

Create the logger, builder, and network classes.
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(TRT_LOGGER)
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(EXPLICIT_BATCH)

Refer to the Explicit Versus Implicit Batch section for more information about the
kEXPLICIT_BATCH flag.

Next, create the input tensor for the network, specifying the name, datatype, and shape
of the tensor.
input_tensor = network.add_input(name=ModelData.INPUT_NAME, dtype=ModelData.DTYPE,
 shape=ModelData.INPUT_SHAPE)

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/network_api_pytorch_mnist
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Add a convolution layer, specifying the inputs, number of output maps, kernel shape,
weights, bias, and stride:
     conv1_w = weights["conv1.weight"].cpu().numpy()
 conv1_b = weights["conv1.bias"].cpu().numpy()
 conv1 = network.add_convolution_nd(
     input=input_tensor, num_output_maps=20, kernel_shape=(5, 5), kernel=conv1_w,
 bias=conv1_b
 )
 conv1.stride_nd = (1, 1)

Add a pooling layer, specifying the inputs (the output of the previous convolution layer),
pooling type, window size, and stride:
    pool1 = network.add_pooling_nd(input=conv1.get_output(0), type=trt.PoolingType.MAX,
 window_size=(2, 2))
 pool1.stride_nd = trt.Dims2(2, 2)

Add the next pair of convolution and pooling layers:
     conv2_w = weights["conv2.weight"].cpu().numpy()
 conv2_b = weights["conv2.bias"].cpu().numpy()
 conv2 = network.add_convolution_nd(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
 conv2.stride_nd = (1, 1)

 pool2 = network.add_pooling_nd(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
 pool2.stride_nd = trt.Dims2(2, 2)

Add a Shuffle layer to reshape the input in preparation for a matrix multiplication:
batch = input.shape[0]
mm_inputs = np.prod(input.shape[1:])
input_reshape = net.add_shuffle(input)
input_reshape.reshape_dims = trt.Dims2(batch, mm_inputs)

Now, add a MatrixMultiply layer. Here, the model exporter provided transposed weights,
so the kTRANSPOSE option is specified for those.
filter_const = net.add_constant(trt.Dims2(nbOutputs, k), weights["fc1.weight"].numpy())
mm = net.add_matrix_multiply(input_reshape.get_output(0), trt.MatrixOperation.NONE,
 filter_const.get_output(0), trt.MatrixOperation.TRANSPOSE);

Add bias, which will broadcast across the batch dimension:
bias_const = net.add_constant(trt.Dims2(1, nbOutputs), weights["fc1.bias"].numpy())
bias_add = net.add_elementwise(mm.get_output(0), bias_const.get_output(0),
 trt.ElementWiseOperation.SUM)

Add the ReLU activation layer:
    relu1 = network.add_activation(input=fc1.get_output(0), type=trt.ActivationType.RELU)

Add the final fully connected layer, and mark the output of this layer as the output of the
entire network:
    fc2_w = weights['fc2.weight'].numpy()
    fc2_b = weights['fc2.bias'].numpy()
    fc2 = add_matmul_as_fc(network, relu1.get_output(0), ModelData.OUTPUT_SIZE, fc2_w, fc2_b)

    fc2.get_output(0).name = ModelData.OUTPUT_NAME
    network.mark_output(tensor=fc2.get_output(0))

The network representing the MNIST model has now been fully constructed. Refer to
sections Building an Engine and Performing Inference for how to build an engine and run
inference with this network.
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6.7.  Strongly Typed Networks
By default, TensorRT autotunes tensor types to generate the fastest engine. This
can result in accuracy loss when model accuracy requires a layer to run in a higher
precision than TensorRT chooses. One approach is to use the ILayer::setPrecision
and ILayer::setOutputType APIs to control a layer’s I/O types and hence its execution
precision. This approach works but it can be challenging to figure out which layers need
to be run at high precision to get the best accuracy.

An alternative approach is to specify low precision use in the model itself, using for
example, Automatic mixed precision training or Quantization aware training, and have
TensorRT adhere to the precision specifications. TensorRT will still autotune over
different data layouts to find an optimal set of kernels for the network.

When you specify to TensorRT that a network is strongly typed, it infers a type for
each intermediate and output tensor using the rules in the operator type specification.
Inferred types are adhered to while building the engine. As types are not autotuned,
an engine built from a strongly typed network can be slower than one where TensorRT
chooses tensor types. On the other hand, the build time may improve, as fewer kernel
alternatives are evaluated.

Strongly typed networks are not supported with DLA.

You can create a strongly typed network as follows:
C++

IBuilder* builder = ...;
INetworkDefinition* network = builder->createNetworkV2(1U <<
 static_cast<uint32_t>(NetworkDefinitionCreationFlag::kSTRONGLY_TYPED)))

Python
builder = trt.Builder(...)
builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.STRONGLY_TYPED))

For strongly typed networks, the layer APIs setPrecision and setOutputType are not
permitted, nor are the builder precision flags kFP16, kBF16, kFP8, and kINT8. The builder
flag kTF32 is permitted as it controls TF32 Tensor Core usage for FP32 types, rather than
controlling use of TF32 data types.

6.8.  Reduced Precision in Weakly Typed
Networks

6.8.1.  Network-Level Control of Precision
By default, TensorRT works in 32-bit precision, but can also execute operations using 16-
bit floating point, and 8-bit quantized floating point. Using lower precision requires less
memory and enables faster computation.

https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
https://www.tensorflow.org/model_optimization/guide/quantization/training
https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/
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Reduced precision support depends on your hardware (refer to Hardware and Precision).
You can query the builder to check the supported precision support on a platform:
C++

if (builder->platformHasFastFp16()) { … };

Python
if builder.platform_has_fp16:

Setting flags in the builder configuration informs TensorRT that it may select lower-
precision implementations:
C++

config->setFlag(BuilderFlag::kFP16);

Python
config.set_flag(trt.BuilderFlag.FP16)

There are three precision flags: FP16, INT8, and TF32, and they may be enabled
independently. Note that TensorRT will still choose a higher-precision kernel if it results
in overall lower runtime, or if no low-precision implementation exists.

When TensorRT chooses a precision for a layer, it automatically converts weights as
necessary to run the layer.

While using FP16 and TF32 precisions is relatively straightforward, there is additional
complexity when working with INT8. Refer to the Working with Quantized Types chapter
for more details.

Note that even if the precision flags are enabled, the input/output bindings of the engine
defaults to FP32. Refer to the I/O Formats section about how to set the data types and
formats of the input/output bindings.

6.8.2.  Layer-Level Control of Precision
The builder flags provide permissive, coarse-grained control. However, sometimes part of
a network requires higher dynamic range or is sensitive to numerical precision. You can
constrain the input and output types per layer:

C++
layer->setPrecision(DataType::kFP16)

Python
layer.precision = trt.fp16

This provides a preferred type (here, DataType::kFP16) for the inputs and outputs.

You may further set preferred types for the layer’s outputs:
C++

layer->setOutputType(out_tensor_index, DataType::kFLOAT)

Python
layer.set_output_type(out_tensor_index, trt.fp32)

The computation will use the same floating-point type as is preferred for the inputs.
Most TensorRT implementations have the same floating-point types for input and
output; however, Convolution, Deconvolution, and FullyConnected can support quantized
INT8 input and unquantized FP16 or FP32 output, as sometimes working with higher-
precision outputs from quantized inputs is necessary to preserve accuracy.

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#hardware-precision-matrix
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Setting the precision constraint hints to TensorRT that it should select a layer
implementation whose inputs and outputs match the preferred types, inserting reformat
operations if the outputs of the previous layer and the inputs to the next layer do
not match the requested types. Note that TensorRT will only be able to select an
implementation with these types if they are also enabled using the flags in the builder
configuration.

By default, TensorRT chooses such an implementation only if it results in a higher-
performance network. If another implementation is faster, TensorRT uses it and issues a
warning. You can override this behavior by preferring the type constraints in the builder
configuration.
C++

config->setFlag(BuilderFlag::kPREFER_PRECISION_CONSTRAINTS)

Python
config.set_flag(trt.BuilderFlag.PREFER_PRECISION_CONSTRAINTS)

If the constraints are preferred, TensorRT obeys them unless there is no implementation
with the preferred precision constraints, in which case it issues a warning and uses the
fastest available implementation.

To change the warning to an error, use OBEY instead of PREFER:
C++

config->setFlag(BuilderFlag::kOBEY_PRECISION_CONSTRAINTS);

Python
config.set_flag(trt.BuilderFlag.OBEY_PRECISION_CONSTRAINTS);

sampleINT8API illustrates the use of reduced precision with these APIs.

Precision constraints are optional - you can query to determine whether a constraint
has been set using layer->precisionIsSet() in C++ or layer.precision_is_set
in Python. If a precision constraint is not set, then the result returned from layer-
>getPrecision() in C++, or reading the precision attribute in Python, is not
meaningful. Output type constraints are similarly optional.

If no constraints are set using ILayer::setPrecision or ILayer::setOutputType
API, then BuilderFlag::kPREFER_PRECISION_CONSTRAINTS or
BuilderFlag::kOBEY_PRECISION_CONSTRAINTS are ignored. A layer is free to choose from
any precision or output types based on allowed builder precisions.

Note that the ITensor::setType() API does not set the precision constraint of a tensor,
unless it is one of the input/output tensors of the network. Also, there is a distinction
between layer->setOutputType() and layer->getOutput(i)->setType(). The former
is an optional type that constrains the implementation that TensorRT will choose for
a layer. The latter specifies the type of a network's input/output and is ignored if the
tensor is not a network input/output. If they are different, TensorRT will insert a cast to
ensure that both specifications are respected. Thus if you are calling setOutputType()
for a layer that produces a network output, you should in general also configure the
corresponding network output to have the same type.

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8API
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6.8.3.  TF32
TensorRT allows the use of TF32 Tensor Cores by default. When computing inner
products, such as during convolution or matrix multiplication, TF32 execution does the
following:

‣ Rounds the FP32 multiplicands to FP16 precision but keeps the FP32 dynamic range.

‣ Computes an exact product of the rounded multiplicands.

‣ Accumulates the products in an FP32 sum.

TF32 Tensor Cores can speed up networks using FP32, typically with no loss of accuracy.
It is more robust than FP16 for models that require an HDR (high dynamic range) for
weights or activations.

There is no guarantee that TF32 Tensor Cores are actually used, and there is no way to
force the implementation to use them - TensorRT can fall back to FP32 at any time and
always falls back if the platform does not support TF32. However you can disable their
use by clearing the TF32 builder flag.
C++

config->clearFlag(BuilderFlag::kTF32);

Python
config.clear_flag(trt.BuilderFlag.TF32)

Setting the environment variable NVIDIA_TF32_OVERRIDE=0 when building an engine
disables the use of TF32, despite setting BuilderFlag::kTF32. This environment
variable, when set to 0, overrides any defaults or programmatic configuration of NVIDIA
libraries, so they never accelerate FP32 computations with TF32 Tensor Cores. This is
meant to be a debugging tool only, and no code outside NVIDIA libraries should change
the behavior based on this environment variable. Any other setting besides 0 is reserved
for future use.

WARNING: Setting the environment variable NVIDIA_TF32_OVERRIDE to a different value
when the engine is run can cause unpredictable precision/performance effects. It is best
left unset when an engine is run.

Note: Unless your application requires the higher dynamic range provided by TF32, FP16
will be a better solution since it almost always yields faster performance.

6.8.4.  BF16
TensorRT supports the bfloat16 (brain float) floating point format on NVIDIA Ampere
and later architectures. Like other precisions, it can be enabled using the corresponding
builder flag:

C++
config->setFlag(BuilderFlag::kBF16);

Python
config.set_flag(trt.BuilderFlag.BF16)
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Note that not all layers support bfloat16. Refer to the TensorRT Operator
documentation for details.

6.9.  Control of Computational Precision
Sometimes, in addition to setting the input and output precisions for an operator,
it is desirable to control the internal precision of the computation. By default,
TensorRT selects the computational precision based on the layer input type and global
performance considerations.

There are two layers where TensorRT provides additional capabilities to control
computational precision:

The INormalizationLayer provides a setPrecision method to control precision of
accumulation. By default, to avoid overflow errors, TensorRT accumulates in FP32, even
in mixed precision mode regardless of builder flags. You can use this method to specify
FP16 accumulation instead.

For the IMatrixMultiplyLayer, TensorRT by default selects accumulation precision
based on the input types and performance considerations, although the accumulation
type is guaranteed to have a range at least as great as the input types. When using
strongly-typed mode, you can enforce the use of FP32 precision for FP16 GEMMs
by casting the inputs to FP32. TensorRT recognizes this specific pattern, and fuses
the casts with the GEMM, resulting in a single kernel with FP16 inputs and FP32
accumulation.

Figure 1. Creating a Graph for FP32 Accumulation Request

https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
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6.10.  I/O Formats
TensorRT optimizes a network using many different data formats. In order to allow
efficient passing of data between TensorRT and a client application, these underlying
data formats are exposed at network I/O boundaries, that is, for Tensors marked as
network input or output, and when passing data to and from plugins. For other tensors,
TensorRT picks formats that result in the fastest overall execution, and may insert
reformats to improve performance.

You can assemble an optimal data pipeline by profiling the available I/O formats in
combination with the formats most efficient for the operations preceding and following
TensorRT.

To specify I/O formats, you specify one or more formats in the form of a bitmask.

The following example sets the input tensor format to TensorFormat::kHWC8. Note that
this format only works for DataType::kHALF, so the data type must be set accordingly.
C++

auto formats = 1U << TensorFormat::kHWC8;
network->getInput(0)->setAllowedFormats(formats);
network->getInput(0)->setType(DataType::kHALF);

Python
formats = 1 << int(tensorrt.TensorFormat.HWC8)
network.get_input(0).allowed_formats = formats
network.get_input(0).dtype = tensorrt.DataType.HALF

Note that calling setAllowedFormats() or setType() on a tensor that is not a network
input/output, has no effect and is ignored by TensorRT.

It is possible to make TensorRT avoid inserting reformatting at the network boundaries,
by setting the builder configuration flag DIRECT_IO. This flag is generally counter-
productive for two reasons:

‣ The resulting engine might be slower than if TensorRT had been allowed to insert
reformatting. Reformatting may sound like wasted work, but it can allow coupling of
the most efficient kernels.

‣ The build will fail if TensorRT cannot build an engine without introducing such
reformatting. The failure may happen only for some target platforms, because of
what formats are supported by kernels for those platforms.

The flag exists for the sake of users who want full control over whether reformatting
happens at I/O boundaries, such as to build engines that run solely on DLA without
falling back to the GPU for reformatting.

sampleIOFormats illustrates how to specify I/O formats using C++.

The following table shows the supported formats.

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleIOFormats
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Table 1. Supported I/O Formats

Format kINT32 kFLOAT kHALF kINT8 kBOOL kUINT8 kINT64

kLINEAR Only for
GPU

Supported Supported Supported Supported Supported Supported

kCHW2 Not
Applicable

Not
Applicable

Only for
GPU

Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

kCHW4 Not
Applicable

Not
Applicable

Supported Supported Not
Applicable

Not
Applicable

Not
Applicable

kHWC8 Not
Applicable

Not
Applicable

Only for
GPU

Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

kCHW16 Not
Applicable

Not
Applicable

Supported Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

kCHW32 Not
Applicable

Only for
GPU

Only for
GPU

Supported Not
Applicable

Not
Applicable

Not
Applicable

kDHWC8 Not
Applicable

Not
Applicable

Only for
GPU

Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

kCDHW32 Not
Applicable

Not
Applicable

Only for
GPU

Only for
GPU

Not
Applicable

Not
Applicable

Not
Applicable

kHWC Not
Applicable

Only for
GPU

Not
Applicable

Not
Applicable

Not
Applicable

Supported Supported

kDLA_LINEARNot
Applicable

Not
Applicable

Only for
DLA

Only for
DLA

Not
Applicable

Not
Applicable

Not
Applicable

kDLA_HWC4 Not
Applicable

Not
Applicable

Only for
DLA

Only for
DLA

Not
Applicable

Not
Applicable

Not
Applicable

kHWC16 Not
Applicable

Not
Applicable

Only for
NVIDIA
Ampere
Architecture
GPUs and
later

Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

kDHWC Not
Applicable

Only for
GPU

Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

Note that for the vectorized formats, the channel dimension must be zero-padded
to the multiple of the vector size. For example, if an input binding has dimensions of
[16,3,224,224], kHALF data type, and kHWC8 format, then the actual-required size of the
binding buffer would be 16*8*224*224*sizeof(half) bytes, even though the engine-
>getBindingDimension() API will return tensor dimensions as [16,3,224,224]. The
values in the padded part (that is, where C=3,4,…,7 in this example) must be filled with
zeros.

Refer to Data Format Descriptions for how the data are actually laid out in memory for
these formats.
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6.11.  Explicit Versus Implicit Batch
TensorRT supports two modes for specifying a network: explicit batch and implicit batch.

In implicit batch mode, every tensor has an implicit batch dimension and all other
dimensions must have constant length. This mode was used by early versions of
TensorRT, and is now deprecated but continues to be supported for backwards
compatibility.

In explicit batch mode, all dimensions are explicit and can be dynamic, that is their length
can change at execution time. Many new features, such as dynamic shapes and loops,
are available only in this mode. It is also required by the ONNX parser.

For example, consider a network that processes N images of size HxW with 3 channels,
in NCHW format. At runtime, the input tensor has dimensions [N,3,H,W]. The two modes
differ in how the INetworkDefinition specifies the tensor's dimensions:

‣ In explicit batch mode, the network specifies [N,3,H,W].

‣ In implicit batch mode, the network specifies only [3,H,W]. The batch dimension N is
implicit.

Operations that "talk across a batch" are impossible to express in implicit batch mode
because there is no way to specify the batch dimension in the network. Examples of
inexpressible operations in implicit batch mode:

‣ reducing across the batch dimension

‣ reshaping the batch dimension

‣ transposing the batch dimension with another dimension

The exception is that a tensor can be broadcast across the entire batch, through
the ITensor::setBroadcastAcrossBatch method for network inputs, and implicit
broadcasting for other tensors.

Explicit batch mode erases the limitations - the batch axis is axis 0. A more accurate
term for explicit batch would be "batch oblivious," because in this mode, TensorRT
attaches no special semantic meaning to the leading axis, except as required by specific
operations. Indeed in explicit batch mode there might not even be a batch dimension
(such as a network that handles only a single image) or there might be multiple batch
dimensions of unrelated lengths (such as comparison of all possible pairs drawn from
two batches).

The choice of explicit versus implicit batch must be specified when creating the
INetworkDefinition, using a flag. Here is the C++ code for explicit batch mode:
IBuilder* builder = ...;
INetworkDefinition* network = builder->createNetworkV2(1U <<
 static_cast<uint32_t>(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)))

For implicit batch, use createNetwork or pass a 0 to createNetworkV2.

Here is the Python code for explicit batch mode:
builder = trt.Builder(...)
builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))



Advanced Topics

NVIDIA TensorRT PG-08540-001_v10.1.0   |   47

For implicit batch, omit the argument or pass a 0.

6.12.  Sparsity
NVIDIA Ampere Architecture GPUs support Structured Sparsity. To make use of this
feature to achieve higher inference performance, the weights must have at least 2 zeros
in every four-entry vector. For TensorRT, the requirements are:

‣ For Convolution, for each output channel and for each spatial pixel in the kernel
weights, every four input channels must have at least two zeros. In other words,
assuming that the kernel weights have the shape [K, C, R, S] and C % 4 == 0,
then the requirement is verified using the following algorithm:
hasSparseWeights = True
for k in range(0, K):
    for r in range(0, R):
        for s in range(0, S):
            for c_packed in range(0, C // 4):
                if numpy.count_nonzero(weights[k, c_packed*4:(c_packed+1)*4, r, s]) > 2 :
                    hasSparseWeights = False

‣ For MatrixMultiply of which an input is produced by Constant, every four elements of
the reduction axis (K) must have at least two zeros.

Polygraphy (polygraphy inspect sparsity) can be used to detect whether the
operation weights in an ONNX model follow the 2:4 structured sparsity pattern.

To enable the sparsity feature, set the kSPARSE_WEIGHTS flag in the builder config and
make sure that kFP16 or kINT8 modes are enabled. For example:
C++

config->setFlag(BuilderFlag::kSPARSE_WEIGHTS);
config->setFlag(BuilderFlag::kFP16);
config->setFlag(BuilderFlag::kINT8);

Python
config.set_flag(trt.BuilderFlag.SPARSE_WEIGHTS)
config.set_flag(trt.BuilderFlag.FP16)
config.set_flag(trt.BuilderFlag.INT8)

At the end of the TensorRT logs when the TensorRT engine is built, TensorRT reports
which layers contain weights that meet the structured sparsity requirement, and in
which layers TensorRT selects tactics that make use of the structured sparsity. In some
cases, tactics with structured sparsity can be slower than normal tactics and TensorRT
will choose normal tactics in these cases. The following output shows an example of
TensorRT logs showing information about sparsity:
[03/23/2021-00:14:05] [I] [TRT] (Sparsity) Found 3 layer(s) eligible to use sparse tactics:
 conv1, conv2, conv3
[03/23/2021-00:14:05] [I] [TRT] (Sparsity) Chose 2 layer(s) using sparse tactics: conv2,
 conv3

Forcing kernel weights to have structured sparsity patterns can lead to accuracy loss.
To recover lost accuracy with further fine-tuning, refer to the Automatic Sparsity tool in
PyTorch.

To measure inference performance with structured sparsity using trtexec, refer to the
trtexec section.

https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity
https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity
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6.13.  Empty Tensors
TensorRT supports empty tensors. A tensor is an empty tensor if it has one or more
dimensions with length zero. Zero-length dimensions usually get no special treatment.
If a rule works for a dimension of length L for an arbitrary positive value of L, it usually
works for L=0 too.

For example, when concatenating two tensors with dimensions [x,y,z] and [x,y,w] along
the last axis, the result has dimensions [x,y,z+w], regardless of whether x, y, z, or w is
zero.

Implicit broadcast rules remain unchanged since only unit-length dimensions are special
for broadcast. For example, given two tensors with dimensions [1,y,z] and [x,1,z], their
sum computed by IElementWiseLayer has dimensions [x,y,z], regardless of whether x, y,
or z is zero.

If an engine binding is an empty tensor, it still needs a non-null memory address, and
different tensors should have different addresses. This is consistent with the C++ rule
that every object has a unique address, for example, new float[0] returns a non-null
pointer. If using a memory allocator that might return a null pointer for zero bytes, ask
for at least one byte instead.

Refer to the NVIDIA TensorRT Operator's Reference for any per-layer special handling of
empty tensors.

6.14.  Reusing Input Buffers
TensorRT allows specifying a CUDA event to be signaled once the input buffers are free
to be reused. This allows the application to immediately start refilling the input buffer
region for the next inference in parallel with finishing the current inference. For example:

C++
context->setInputConsumedEvent(&inputReady);

Python
context.set_input_consumed_event(inputReady)

6.15.  Engine Inspector
TensorRT provides the IEngineInspector API to inspect the information inside a
TensorRT engine. Call the createEngineInspector() from a deserialized engine to create
an engine inspector, and then call getLayerInformation() or getEngineInformation()
inspector APIs to get the information of a specific layer in the engine or the entire
engine, respectively. You can print out the information of the first layer of the given
engine, as well as the overall information of the engine, as follows:

C++
auto inspector = std::unique_ptr<IEngineInspector>(engine->createEngineInspector());
inspector->setExecutionContext(context); // OPTIONAL

https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
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std::cout << inspector->getLayerInformation(0, LayerInformationFormat::kJSON); // Print
 the information of the first layer in the engine.
std::cout << inspector->getEngineInformation(LayerInformationFormat::kJSON); // Print the
 information of the entire engine.

Python
inspector = engine.create_engine_inspector()
inspector.execution_context = context # OPTIONAL
print(inspector.get_layer_information(0, LayerInformationFormat.JSON)) # Print the
 information of the first layer in the engine.
print(inspector.get_engine_information(LayerInformationFormat.JSON)) # Print the
 information of the entire engine.

Note that the level of detail in the engine/layer information depends on the
ProfilingVerbosity builder config setting when the engine is built. By default,
ProfilingVerbosity is set to kLAYER_NAMES_ONLY, so only the layer names will be
printed. If ProfilingVerbosity is set to kNONE, then no information will be printed; if it is
set to kDETAILED, then detailed information will be printed.

Below are some examples of layer information printed by getLayerInformation() API
depending on the ProfilingVerbosity setting:
kLAYER_NAMES_ONLY

"node_of_gpu_0/res4_0_branch2a_1 + node_of_gpu_0/res4_0_branch2a_bn_1 + node_of_gpu_0/
res4_0_branch2a_bn_2"

kDETAILED
{
  "Name": "node_of_gpu_0/res4_0_branch2a_1 + node_of_gpu_0/res4_0_branch2a_bn_1 +
 node_of_gpu_0/res4_0_branch2a_bn_2",
  "LayerType": "CaskConvolution",
  "Inputs": [
  {
    "Name": "gpu_0/res3_3_branch2c_bn_3",
    "Dimensions": [16,512,28,28],
    "Format/Datatype": "Thirty-two wide channel vectorized row major Int8 format."
  }],
  "Outputs": [
  {
    "Name": "gpu_0/res4_0_branch2a_bn_2",
    "Dimensions": [16,256,28,28],
    "Format/Datatype": "Thirty-two wide channel vectorized row major Int8 format."
  }],
  "ParameterType": "Convolution",
  "Kernel": [1,1],
  "PaddingMode": "kEXPLICIT_ROUND_DOWN",
  "PrePadding": [0,0],
  "PostPadding": [0,0],
  "Stride": [1,1],
  "Dilation": [1,1],
  "OutMaps": 256,
  "Groups": 1,
  "Weights": {"Type": "Int8", "Count": 131072},
  "Bias": {"Type": "Float", "Count": 256},
  "AllowSparse": 0,
  "Activation": "RELU",
  "HasBias": 1,
  "HasReLU": 1,
  "TacticName":
 "sm80_xmma_fprop_implicit_gemm_interleaved_i8i8_i8i32_f32_nchw_vect_c_32kcrs_vect_c_32_nchw_vect_c_32_tilesize256x128x64_stage4_warpsize4x2x1_g1_tensor16x8x32_simple_t1r1s1_epifadd",
  "TacticValue": "0x11bde0e1d9f2f35d"
}

In addition, when the engine is built with dynamic shapes, the dynamic dimensions
in the engine information will be shown as -1 and the tensor format information
will not be shown because these fields depend on the actual shape at inference
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phase. To get the engine information for a specific inference shape, create an
IExecutionContext, set all the input dimensions to the desired shapes, and then call
inspector->setExecutionContext(context). After the context is set, the inspector will
print the engine information for the specific shape set in the context.

The trtexec tool provides the --profilingVerbosity, --dumpLayerInfo, and --
exportLayerInfo flags that can be used to get the engine information of a given engine.
Refer to the trtexec section for more details.

Currently, only binding information and layer information, including the dimensions
of the intermediate tensors, precisions, formats, tactic indices, layer types, and layer
parameters, are included in the engine information. More information may be added into
the engine inspector output as new keys in the output JSON object in future TensorRT
versions. More specifications about the keys and the fields in the inspector output will
also be provided.

In addition, some subgraphs are handled by a next-generation graph optimizer that is not
yet integrated with the engine inspector. Therefore, the layer information within these
layers is not currently shown. This will be improved in a future TensorRT version.

6.16.  Optimizer Callbacks
The optimizer callback API feature allows you to monitor the progress of the TensorRT
build process, for example to provide user feedback in interactive applications. To enable
progress monitoring, create an object that implements the IProgressMonitor interface,
then attach it to the IBuilderConfig, for example:

C++
builderConfig->setProgressMonitor(&monitor);

Python
context.set_progress_monitor(monitor)

Optimization is divided into hierarchically nested phases, each consisting of a number
of steps. At the start of each phase, the phaseStart()method of IProgressMonitor
is called, telling you the phase name and how many steps it has. The stepComplete()
function is called when each step completes, and phaseFinish() is called when the
phase finishes.

Returning false from stepComplete()cleanly forces the build to terminate early.

6.17.  Preview Features
The preview feature API is an extension of IBuilderConfig to allow the gradual
introduction of new features to TensorRT. Selected new features are exposed under
this API, allowing you to opt in or opt out. A preview feature remains in preview status
for one or two TensorRT release cycles, and is then either integrated as a mainstream
feature, or dropped. When a preview feature is fully integrated into TensorRT, it is no
longer controllable through the preview API.
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Preview features are defined using a 32-bit PreviewFeature enumeration. Feature
identifiers are a concatenation of the feature name and the TensorRT version.
<FEATURE_NAME>_XXYY

Where XX and YY are the TensorRT major and minor versions, respectively, of the
TensorRT release which first introduced the feature. The major and minor versions are
specified using two digits with leading-zero padding when necessary.

If the semantics of a preview feature change from one TensorRT release to another,
the older preview feature is deprecated and the revised feature is assigned a new
enumeration value and name.

Deprecated preview features are marked in accordance with the deprecation policy.

For more information about the C++ API, refer to nvinfer1::PreviewFeature,
IBuilderConfig::setPreviewFeature, and IBuilderConfig::getPreviewFeature.

The Python API has similar semantics using the PreviewFeature enum and
set_preview_feature, and get_preview_feature functions.

6.18.  Debug Tensors
The debug tensor feature allows you to inspect intermediate tensors as the network
executes. There are a few key differences between using debug tensors and marking all
required tensors as outputs:

 1. Marking all tensors as outputs requires you to provide memory to store tensors in
advance, while debug tensors can be turned off during runtime if unneeded.

 2. When debug tensors are turned off, the performance impact on execution of the
network is minimized.

 3. For a debug tensor in a loop, values are emitted every time it is written.

To enable this feature, perform the following steps:

 1. Mark the target tensors before the network is compiled.
C++

networkDefinition->markDebug(&tensor);

Python
network.mark_debug(tensor)

 2. Define a DebugListener class deriving from IDebugListener, and implement the
virtual function for processing the tensor.
C++

  virtual void processDebugTensor(
                                  void const* addr,
                                  TensorLocation location, 
                                  DataType type, 
                                  Dims const& shape,
                                  char const* name,
                                  cudaStream_t stream) = 0;

Python
process_debug_tensor(self, addr, location, type, shape, name, stream)
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When the function is invoked during execution, the debug tensor is passed via the
parameters:
location: TensorLocation of the tensor
addr: pointer to buffer
type: data Type of the tensor
shape: shape of the tensor
name: name of the tensor
stream: Cuda stream object

The data will be in linear format.
 3. Attach your listener to IExecutionContext.

C++
executionContext->setDebugListener(&debugListener);

Python
execution_context.set_debug_listener(debugListener)

Because the function is executed as part of enqueue(), you must use the stream to
synchronize reading of the data by, for example, invoking a device function on the
stream to process or copy the data.

 4. Set the debug state for the tensors of interest to on before execution of the engine.
C++

executionContext->setDebugState(tensorName, flag);

Python
execution_context.set_debug_state(tensorName, flag)

6.19.  Weight Streaming
The weight streaming feature allows you to offload some weights from device memory
to host memory. During network execution, these weights are streamed from the host
to the device as needed. This technique can free up device memory, enabling you to run
larger models or process larger batch sizes.

To enable this feature, during engine building, create network with kSTRONGLY_TYPED and
set kWEIGHT_STREAMING to builder config:
C++

…
builder->createNetworkV2(1U <<
 static_cast<uint32_t>(NetworkDefinitionCreationFlag::kSTRONGLY_TYPED));
config->setFlag(BuilderFlag::kWEIGHT_STREAMING);

Python
builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.STRONGLY_TYPED))
config.set_flag(trt.BuilderFlag.WEIGHT_STREAMING)

During runtime, deserialization allocates a host buffer to store all the weights instead of
uploading them directly to the device. This can increase the peak memory usage of the
host. You can use IStreamReader to deserialize directly from the engine file, avoiding the
need for a temporary buffer, which helps reduce the peak memory usage.

After deserializing the engine, set the device memory budget for weights by:
C++

…
engine->setWeightStreamingBudgetV2(size)
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Python
…
engine.weight_streaming_budget_v2 = size

The following APIs can help to determine the budget:

‣ getStreamableWeightsSize() returns the total size of streamable weights.

‣ getWeightStreamingScratchMemorySize() returns the extra scratch memory size for
a context when weight streaming is enabled.

‣ getDeviceMemorySizeV2() returns the total scratch memory size required
by a context. If this API is called before enabling weight streaming by
setWeightStreamingBudgetV2(), the return value will not include the extra
scratch memory size required by weight streaming, which can be obtained using
getWeightStreamingScratchMemorySize(). Otherwise, it will include this extra
memory.

Additionally, you can combine information about the current free device memory size,
context number, and other allocation needs.

TensorRT can also automatically determine a memory budget by
getWeightStreamingAutomaticBudget(). However, due to limited information about the
user's specific memory allocation requirements, this automatically determined budget
may be suboptimal and could potentially lead to out-of-memory errors.

If the budget set by setWeightStreamingBudgetV2 is larger than the total size of
streamable weights obtained by getStreamableWeightsSize(), the budget will be
clipped to the total size, effectively disabling weight streaming.

You can query the budget setted by getWeightStreamingBudgetV2().

The budget can be adjusted by set again when there is no active context of the engine.

After setting the budget, TensorRT will automatically determine which weights to retain
on the device memory to maximize the overlap between computation and weights
fetching.
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Chapter 7. Working with Quantized
Types

7.1.  Introduction to Quantization
TensorRT supports the use of low precision types to represent quantized floating
point values. The quantization scheme is symmetric quantization - quantized values
are represented in signed INT8, FP8E4M3 (FP8 for short), or signed INT4, and the
transformation from quantized to unquantized values is simply a multiplication. In the
reverse direction, dequantization uses the reciprocal scale, followed by rounding and
clamping.

TensorRT quantizes activations as well as weights to INT8 and FP8. For INT4, weight-
only-quantization is supported.

7.1.1.  Quantization Workflows
There are two workflows for creating quantized networks:

Post-training quantization (PTQ) derives scale factors after the network has been
trained. TensorRT provides a workflow for PTQ, called calibration, where it measures the
distribution of activations within each activation tensor as the network executes on
representative input data, and then uses that distribution to estimate scale values for
each tensor.

Quantization-aware training (QAT) computes the scale factors during training, using a
technique called fake-quantization which simulates the quantization and quantization
process. This allows the training process to compensate for the effects of the
quantization and dequantization operations.

TensorRT’s Quantization Toolkit is a PyTorch library that helps produce QAT models that
can be optimized by TensorRT. You can also use the toolkit’s PTQ recipe to perform PTQ
in PyTorch and export to ONNX.

7.1.2.  Explicit Versus Implicit Quantization
Quantized networks can be processed in two (mutually exclusive) ways: using either
implicit quantization or explicit quantization. The main difference between the two

https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization


Working with Quantized Types

NVIDIA TensorRT PG-08540-001_v10.1.0   |   55

processing modes is whether you require explicit control over quantization, or instead
let the TensorRT builder choose which operations and tensors to quantize (implicit).
The sections below provide more details. Implicit quantization is only supported when
quantizing for INT8 and cannot be used together with strong typing (because types are
not auto-tuned and the only method to convert activations to and from INT8 is via Q/DQ
operators).

TensorRT uses explicit quantization mode when a network has QuantizeLayer and
DequantizeLayer layers. TensorRT uses implicit quantization mode when there are no
QuantizeLayer or DequantizeLayer layers in the network and INT8 is enabled in the
builder configuration. Only INT8 is supported in implicit quantization mode.

In implicitly quantized networks, each activation tensor that is a candidate for
quantization has an associated scale that is deduced by a calibration process or assigned
by the API function setDynamicRange. TensorRT will use this scale if it decides to
quantize the tensor.

When processing implicitly quantized networks, TensorRT treats the model as a floating-
point model when applying the graph optimizations, and uses INT8 opportunistically to
optimize layer execution time. If a layer runs faster in INT8 and has assigned quantization
scales on its data inputs and outputs, then a kernel with INT8 precision is assigned
to that layer. Otherwise, a high-precision floating-point (that is, FP32, FP16 or BF16)
kernel is assigned. Where a high precision floating point is required for accuracy at the
expense of performance, this can be specified using the APIs Layer::setOutputType
and Layer::setPrecision.

In explicitly quantized networks, the quantization and dequantization operations are
represented explicitly by IQuantizeLayer (C++, Python) and IDequantizeLayer (C+
+, Python) nodes in the graph - these will henceforth be referred to as Q/DQ nodes.
By contrast with implicit quantization, the explicit form specifies exactly where
conversion to and from a quantized type is performed, and the optimizer will perform
only conversions to and from quantized types that are dictated by the semantics of the
model, even if:

‣ Adding extra conversions could increase layer precision (for example, choosing an
FP16 kernel implementation over a quantized type implementation).

‣ Adding or removing conversions results in an engine that executes faster (for
example, choosing a quantized type kernel implementation to execute a layer
specified as having high-precision, or vice versa).

ONNX uses an explicitly quantized representation: when a model in PyTorch or
TensorFlow is exported to ONNX, each fake-quantization operation in the framework’s
graph is exported as Q followed by DQ. Since TensorRT preserves the semantics of
these layers, users can expect accuracy very close to that seen in the framework. While
optimizations preserve the arithmetic semantics of quantization and dequantization
operators, they may change the order of floating-point operations in the model, so
results will not be bitwise identical.

TensorRT’s PTQ capability generates a calibration cache that is used with implicit
quantization.

By contrast, performing either QAT or PTQ in a deep learning framework and then
exporting to ONNX will result in an explicitly quantized model.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_quantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iquantizelayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_dequantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_dequantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#idequantizelayer
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Table 2. Implicit Vs Explicit Quantization

Implicit Quantization Explicit Quantization

Supported quantized data-
types

INT8 INT8, FP8, INT4

User control over precision Global builder flags and per-
layer precision APIs.

Encoded directly in the model.

API ‣ Model + Scales (dynamic
range API)

‣ Model + Calibration data

Model with Q/DQ layers.

Quantization scales Weights:

‣ Set by TensorRT (internal)

‣ Per-channel quantization

‣ INT8 range [-127, 127]

Activations:

‣ Set by calibration or
specified by the user

‣ Per-tensor quantization

‣ INT8 range [-128, 127]

Weights and activations:

‣ Specified using Q/DQ
ONNX operators

‣ INT8 range [-128, 127]

‣ FP8 range: [-448, 448]

‣ INT4 range: [-8, 7]

Activations use per-tensor
quantization.

Weights use either per-
tensor quantization, per-
channel quantization or block
quantization.

For more background on quantization, refer to the following papers:

‣ Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation

‣ FP8 Formats for Deep Learning

7.1.3.  Quantization Schemes

INT8

Given scale , we can represent quantization and dequantization operations as follows:

 where:

‣  is a high-precision floating point value to be quantized.

‣  is a quantized INT8 value in range [-128,127]. Refer to Explicit Versus Implicit
Quantization for more information.

‣  is described here.

https://arxiv.org/abs/2004.09602
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#explicit-implicit-quantization
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#explicit-implicit-quantization
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
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In explicit quantization, you are responsible for choosing all scales. In implicit
quantization mode the activation scale is configured by you or determined using one of
TensorRT’s calibration algorithms (refer to Post-Training Quantization Using Calibration).
The weight scale is computed by TensorRT according to the following formula:

 where  and  are floating point minimum and

maximum values for  of the weights tensor.

Using FP8 and INT8 in the same network is not allowed.

FP8

When using FP8 only explicit quantization is supported, and therefore you are
responsible for the values of the quantization scales.

 where:

‣  is a high-precision floating point value to be quantized.

‣  is a quantized E4M3 FP8 value in range [-448, 448].

‣  is the quantization scale expressed using a 16-bit or 32-bit floating point.

‣  is described here.

Using FP8 and INT8 in the same network is not allowed.

INT4

When using INT4 only explicit quantization is supported, and therefore you are
responsible for the values of the quantization scales.

 where:

‣  is a high-precision floating point value to be quantized.

‣  is a quantized INT4 value in range [-8, 7].

‣  is the quantization scale expressed using a 16-bit or 32-bit floating point.

‣  is described here.

TensorRT only supports INT4 for weight-only quantization (refer to Q/DQ Layer-
Placement Recommendations).

7.1.4.  Quantization Modes
There are three supported quantization scale granularities:

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#enable_int8_c
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#qdq-placement-recs
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#qdq-placement-recs
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‣ Per-tensor quantization: in which a single scale value (scalar) is used to scale the
entire tensor.

‣ Per-channel quantization: in which a scale tensor is broadcast along the given axis -
for convolutional neural networks, this is typically the channel axis.

‣ Block quantization: in which the tensor is divided to fixed-size 1-dimensional blocks
along a single dimension. A scale factor is defined for each block.

The quantization scale must consist of all positive high-precision float coefficients
(FP32, FP16 or BF16). The rounding method is round-to-nearest ties-to-even and clamps
to the valid range, which is [-128, 127] for INT8, [-448, 448] for FP8, and [-8, 7] for
INT4.

With explicit quantization, activations can only be quantized using per-tensor
quantization. Weights can be quantized in any of the quantization modes.

In implicit quantization, weights are quantized by TensorRT during engine optimization
and only per-channel quantization is used. TensorRT quantizes weights for convolution,
deconvolution, fully connected layers, and MatMul, where the second input is constant
and both input matrices are 2D.

When using per-channel quantization with Convolutions, the axis of quantization must
be the output-channel axis. For example, when the weights of 2D convolution are
described using KCRS notation, K is the output-channel axis, and the weights quantization
can be described as:
For each k in K:
    For each c in C:
        For each r in R:
            For each s in S:
                output[k,c,r,s] := clamp(round(input[k,c,r,s] / scale[k]))

The scale is a vector of coefficients and must have the same size as the quantization
axis.

Dequantization is performed similarly except for the pointwise operation that is defined
as:
output[k,c,r,s] := input[k,c,r,s] * scale[k]

Block Quantization

In block quantization, elements are grouped into 1-D blocks with all of the elements
in a block sharing a common scale factor. Block quantization is supported for only 2-D
weight-only-quantization (WoQ) with INT4.

When using block quantization, the scale tensor dimensions are equal to the data tensor
dimensions except for one dimension over which blocking is performed (the blocking
axis). For example, given a 2-D RS weights input, R (dimension 0) as the blocking axis and
B as the block size, the scale in the blocking axis is repeated according to the block size,
and can be described like this:
For each r in R:
    For each s in S:
        output[r,s] = clamp(round(input[r,s] / scale[r//B, s]))

The scale in this case is a 2D array of coefficients, with dimensions (R//B, S).

https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
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Dequantization is performed similarly, except for the pointwise operation that is defined
as:
output[r,s] = input[r,s] * scale[r//B, s]

7.2.  Setting Dynamic Range
The dynamic range API is only applicable to INT8 quantization.

TensorRT provides APIs to set dynamic range (the range that must be represented by the
quantized tensor) directly, to support implicit quantization where these values have been
calculated outside TensorRT.

The API allows setting the dynamic range for a tensor using minimum and maximum
values. Since TensorRT currently supports only symmetric range, the scale is calculated
using max(abs(min_float), abs(max_float)). Note that when abs(min_float) !=
abs(max_float), TensorRT uses a larger dynamic-range than configured, which may
increase the rounding error.

You can set the dynamic range for a tensor as follows:
C++

tensor->setDynamicRange(min_float, max_float);

Python
tensor.dynamic_range = (min_float, max_float)

sampleINT8API illustrates the use of these APIs in C++.

7.3.  Post-Training Quantization Using
Calibration

Calibration is only applicable to INT8 quantization.

In post-training quantization, TensorRT computes a scale value for each tensor in the
network. This process, called calibration, requires you to supply representative input data
on which TensorRT runs the network to collect statistics for each activation tensor.

The amount of input data required is application-dependent, but experiments indicate
that about 500 images are sufficient for calibrating ImageNet classification networks.

Given the statistics for an activation tensor, deciding on the best scale value is not an
exact science - it requires balancing two sources of error in the quantized representation:
discretization error (which increases as the range represented by each quantized
value becomes larger) and truncation error (where values are clamped to the limits of
the representable range.) Thus, TensorRT provides multiple different calibrators that
calculate the scale in different ways. Older calibrators also performed layer fusion
for GPU to optimize away unneeded Tensors before performing calibration. This can
be problematic when using DLA, where fusion patterns may be different, and can be
overridden using the kCALIBRATE_BEFORE_FUSION quantization flag.

Calibration batch size can also affect the truncation error for IInt8EntropyCalibrator2
and IInt8EntropyCalibrator. For example, calibrating using multiple small batches of

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8API
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calibration data may result in reduced histogram resolution and poor scale value. For
each calibration step, TensorRT updates the histogram distribution for each activation
tensor. If it encounters a value in the activation tensor, larger than the current histogram
max, the histogram range is increased by a power of two to accommodate the new
maximum value. This approach works well unless histogram reallocation occurs in the
last calibration step, resulting in a final histogram with half the bins empty. Such a
histogram can produce poor calibration scales. This also makes calibration susceptible
to the order of calibration batches, that is, a different order of calibration batches
can result in the histogram size being increased at different points, producing slightly
different calibration scales. To avoid this issue, calibrate with as large a single batch
as possible, and ensure that calibration batches are well randomized and have similar
distribution.

IInt8EntropyCalibrator2
Entropy calibration chooses the tensor’s scale factor to optimize the quantized
tensor’s information-theoretic content, and usually suppresses outliers in the
distribution. This is the current and recommended entropy calibrator and is required
for DLA. Calibration happens before Layer fusion by default. Calibration batch size
may impact the final result. It is recommended for CNN-based networks.

IInt8MinMaxCalibrator
This calibrator uses the entire range of the activation distribution to determine
the scale factor. It seems to work better for NLP tasks. Calibration happens before
Layer fusion by default. This is recommended for networks such as NVIDIA BERT (an
optimized version of Google's official implementation).

IInt8EntropyCalibrator
This is the original entropy calibrator. It is less complicated to use than the
LegacyCalibrator and typically produces better results. Calibration batch size may
impact the final result. Calibration happens after Layer fusion by default.

IInt8LegacyCalibrator
This calibrator is for compatibility with TensorRT 2.0 EA. This calibrator requires user
parameterization and is provided as a fallback option if the other calibrators yield
poor results. Calibration happens after Layer fusion by default. You can customize
this calibrator to implement percentile max, for example, 99.99% percentile max is
observed to have best accuracy for NVIDIA BERT and NeMo ASR model QuartzNet.

When building an INT8 engine, the builder performs the following steps:

 1. Build a 32-bit engine, run it on the calibration set, and record a histogram for each
tensor of the distribution of activation values.

 2. Build from the histograms a calibration table providing a scale value for each tensor.
 3. Build the INT8 engine from the calibration table and the network definition.

Calibration can be slow; therefore the output of step 2 (the calibration table) can be
cached and reused. This is useful when building the same network multiple times on a
given platform and is supported by all calibrators.

Before running calibration, TensorRT queries the calibrator implementation to see if it
has access to a cached table. If so, it proceeds directly to step 3. Cached data is passed
as a pointer and length.

https://github.com/google-research/bert
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The calibration cache data is portable across different devices as long as the calibration
happens before layer fusion. Specifically, the calibration cache is portable when
using the IInt8EntropyCalibrator2 or IInt8MinMaxCalibrator calibrators, or when
QuantizationFlag::kCALIBRATE_BEFORE_FUSION is set. This can simplify the workflow,
for example by building the calibration table on a machine with a discrete GPU and
then reusing it on an embedded platform. Fusions are not guaranteed to be the same
across platforms or devices, so calibrating after layer fusion may not result in a portable
calibration cache. The calibration cache is in general not portable across TensorRT
releases.

As well as quantizing activations, TensorRT must also quantize weights. It uses
symmetric quantization with a quantization scale calculated using the maximum
absolute values found in the weight tensor. For convolution, deconvolution, and fully
connected weights, scales are per-channel.

Note: When the builder is configured to use INT8 I/O, TensorRT still expects calibration
data to be in FP32. You can create FP32 calibration data by casting INT8 I/O calibration
data to FP32 precision. Also ensure that FP32 cast calibration data is in the range
[-128.0F, 127.0F] and so can be converted to INT8 data without any precision loss.

INT8 calibration can be used along with the dynamic range APIs. Setting the dynamic
range manually overrides the dynamic range generated from INT8 calibration.

Note: Calibration is deterministic - that is, if you provide TensorRT with the same input to
calibration in the same order on the same device, the scales generated will be the same
across different runs. The data in the calibration cache will be bitwise identical when
generated using the same device with the same batch size when provided with identical
calibration inputs. The exact data in the calibration cache is not guaranteed to be bitwise
identical when generated using different devices, different batch sizes, or using different
calibration inputs.

7.3.1.  INT8 Calibration Using C++
To provide calibration data to TensorRT, implement the IInt8Calibrator interface.

The builder invokes the calibrator as follows:

‣ First, it queries the interface for the batch size and calls getBatchSize() to
determine the size of the input batch to expect.

‣ Then, it repeatedly calls getBatch() to obtain batches of input. Batches must
be exactly the batch size by getBatchSize(). When there are no more batches,
getBatch() must return false.

After you have implemented the calibrator, you can configure the builder to use it:
config->setInt8Calibrator(calibrator.get());

To cache the calibration table, implement the writeCalibrationCache() and 
readCalibrationCache() methods.
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7.3.2.  Calibration Using Python
The following steps illustrate how to create an INT8 calibrator object using the Python
API.

 1. Import TensorRT:
import tensorrt as trt

 2. Similar to test/validation datasets, use a set of input files as a calibration dataset.
Make sure that the calibration files are representative of the overall inference data
files. For TensorRT to use the calibration files, you must create a batchstream object.
A batchstream object is used to configure the calibrator.
NUM_IMAGES_PER_BATCH = 5
batchstream = ImageBatchStream(NUM_IMAGES_PER_BATCH, calibration_files)

 3. Create an Int8_calibrator object with input nodes names and batch stream:
Int8_calibrator = EntropyCalibrator(["input_node_name"], batchstream)

 4. Set INT8 mode and INT8 calibrator:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = Int8_calibrator

7.3.3.  Quantization Noise Reduction
For networks with implicit quantization, TensorRT attempts to reduce quantization noise
in the output by forcing some layers near the network outputs to run in FP32, even if
INT8 implementations are available.

The heuristic attempts to ensure that INT8 quantization is smoothed out by summation
of multiple quantized values. Layers considered to be "smoothing layers" are convolution,
deconvolution, a fully connected layer, or matrix multiplication before reaching the
network output. For example, if a network consists of a series of (convolution +
activation + shuffle) subgraphs and the network output has type FP32, the last
convolution will output FP32 precision, even if INT8 is allowed and faster.

The heuristic does not apply in the following scenarios:

‣ The network output has type INT8.

‣ An operation on the path (inclusively) from the last smoothing layer to the output is
constrained by ILayer::setOutputType or ILayer::setPrecision to output INT8.

‣ There is no smoothing layer with a path to the output, or said that path has an
intervening plugin layer.

‣ The network uses explicit quantization.

7.4.  Explicit Quantization
When TensorRT detects the presence of Q/DQ layers in a network, it builds an engine
using explicit-precision processing logic and precision-control build flags are not
required.
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In explicit-quantization, network changes of representation to and from the quantized
data type are explicit, therefore INT8 and FP8 must not be used as type constraints.

For a Strongly Typed Networks, builder flags are neither required nor allowed.

7.4.1.  Quantized Weights
Weights of Q/DQ models may be specified using a high precision data type (FP32, FP16,
or BF16) or a low precision quantized type (INT8, FP8, INT4). When TensorRT builds
an engine, high-precision weights are quantized using the scale of IQuantizeLayer
that operates on the weights and the quantized (low precision) weights are stored
in the engine plan file. When using pre-quantized weights (that is, low precision) an
IDequantizeLayer is required between the weights and the linear operator using the
weights.

INT4 quantized weights are stored by packing two elements per byte. The first element
is stored in the 4 least-significant bits and the second element is stored in the 4 most-
significant bits.

7.4.2.  ONNX Support
When a model trained in PyTorch or TensorFlow using Quantization Aware Training (QAT)
is exported to ONNX, each fake-quantization operation in the framework’s graph is
exported as a pair of QuantizeLinearand DequantizeLinear ONNX operators.When
TensorRT imports ONNX models, the ONNX QuantizeLinear operator is imported as an
IQuantizeLayer instance, and the ONNX DequantizeLinear operator is imported as an
IDequantizeLayer instance.

ONNX introduced support for QuantizeLinear/DequantizeLinear in opset 10,
and a quantization-axis attribute was added in opset 13 (required for per-channel
quantization). PyTorch 1.8 introduced support for exporting PyTorch models to ONNX
using opset 13.

ONNX opset 19 added four FP8 formats, of which TensorRT supports E4M3FN (also
referred to as tensor (float8e4m3fn) in the ONNX operator schema). The latest
Pytorch version (Pytorch 2.0) does not support FP8 formats nor does it support export
to ONNX using opset 19. In order to bridge the gap, TransformerEngine exports its FP
quantization functions as custom ONNX Q/DQ operators that belong to the “trt” domain
(TRT_FP8 QuantizeLinear and TRT_FP8 DequantizeLinear). TensorRT is able to parse
both the custom operators and standard opset 19 Q/DQ operators, however, note that
opset 19 is not fully supported by TensorRT. Other tools, such as ONNX Runtime, are not
able to parse the custom operators. ONNX opset 21 added support for INT4 data type
and block quantization.

WARNING: The ONNX GEMM operator is an example that can be quantized per channel.
PyTorch torch.nn.Linear layers are exported as an ONNX GEMM operator with (K, C)
weights layout and with the transB GEMM attribute enabled (this transposes the weights
before performing the GEMM operation). TensorFlow, on the other hand, pretransposes
the weights (C, K) before ONNX export:

‣ PyTorch: 

https://github.com/onnx/onnx/blob/master/docs/Operators.md#QuantizeLinear
https://github.com/onnx/onnx/blob/master/docs/Operators.md#dequantizelinear
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‣ TensorFlow: 

PyTorch weights are therefore transposed by TensorRT. The weights are quantized by
TensorRT before they are transposed, so GEMM layers originating from ONNX QAT
models that were exported from PyTorch use dimension 0 for per-channel quantization
(axis K = 0); while models originating from TensorFlow use dimension 1 (axis K = 1).

TensorRT does not support prequantized ONNX models that use INT8/FP8 quantized
operators. Specifically, the following ONNX quantized operators are not supported and
generates an import error if they are encountered when TensorRT imports the ONNX
model:

‣ QLinearConv/QLinearMatmul

‣ ConvInteger/MatmulInteger

7.4.3.  TensorRT Processing of Q/DQ Networks
When TensorRT optimizes a network in Q/DQ-mode, the optimization process is
limited to optimizations that do not change the arithmetic correctness of the network.
Bit-level accuracy is rarely possible since the order of floating-point operations can
produce different results (for example, rewriting  as  is a valid
optimization). Allowing these differences is fundamental to backend optimization in
general, and this also applies to converting a graph with Q/DQ layers to use quantized
operations.

Q/DQ layers control the compute and data precision of a network. An IQuantizeLayer
instance converts a high-precision floating-point tensor to a quantized tensor by
employing quantization, and an IDequantizeLayer instance converts a quantized
tensor to a high-precision floating-point tensor by means of dequantization. TensorRT
expects a Q/DQ layer pair on each of the inputs of quantizable-layers. Quantizable-
layers are deep-learning layers that can be converted to quantized layers by fusing with
IQuantizeLayer and IDequantizeLayer instances. When TensorRT performs these
fusions, it replaces the quantizable-layers with quantized layers that actually operate on
quantized data using compute operations suitable for quantized types.

For the diagrams used in this chapter, green designates low precision (quantized) and
blue designates high precision. Arrows represent network activation tensors and squares
represent network layers.

https://github.com/onnx/onnx/blob/master/docs/Operators.md#QLinearConv
https://github.com/onnx/onnx/blob/master/docs/Operators.md#QLinearMatMul
https://github.com/onnx/onnx/blob/master/docs/Operators.md#ConvInteger
https://github.com/onnx/onnx/blob/master/docs/Operators.md#MatMulInteger
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Figure 2. A quantizable AveragePool layer (in blue) is fused with a
DQ layer and a Q layer. All three layers are replaced by a
quantized AveragePool layer (in green).

During network optimization, TensorRT moves Q/DQ layers in a process called Q/DQ
propagation. The goal in propagation is to maximize the proportion of the graph that
can be processed at low precision. Thus, TensorRT propagates Q nodes backwards
(so that quantization happens as early as possible) and DQ nodes forward (so that
dequantization happens as late as possible). Q-layers can swap places with layers that
commute-with-Quantization and DQ-layers can swap places with layers that commute-
with-Dequantization.

A layer  commutes with quantization if 

Similarly, a layer  commutes with dequantization if 

The following diagram illustrates DQ forward-propagation and Q backward-propagation.
These are legal rewrites of the model because Max Pooling has an INT8 implementation
and because Max Pooling commutes with DQ and with Q.

Figure 3. An illustration depicting a DQ forward-propagation and Q
backward-propagation.

Note:

To understand Max Pooling commutation, let us look at the output of the maximum-
pooling operation applied to some arbitrary input. Max Pooling is applied to groups of
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input coefficients and outputs the coefficient with the maximum value. For group i

composed of coefficients :
 

It is therefore enough to look at two arbitrary coefficients without loss of generality
(WLOG):
 

For quantization function , with
, note that (without providing proof, and using simplified notation):

 

Therefore:
 

However, by definition:
 

Function  commutes-with-quantization and so does Max Pooling.

Similarly for dequantization, function  with  we can
show that:
 

There is a distinction between how quantizable-layers and commuting-layers are
processed. Both types of layers can be computed in INT8/FP8, but quantizable-layers
also fuse with DQ input layers and a Q output layer. For example, an AveragePooling
layer (quantizable) does not commute with either Q or DQ, so it is quantized using Q/
DQ fusion as illustrated in the first diagram. This is in contrast to how Max Pooling
(commuting) is quantized.

7.4.4.  Weight-Only Quantization
Weight-only quantization (WoQ) is an optimization that is useful when memory
bandwidth limits the performance of GEMM operations or when GPU memory is scarce.
In WoQ, GEMM weights are quantized to INT4 precision while the GEMM input data and
compute operation remain in high-precision. TensorRT’s WoQ kernels read the 4-bit
weights from memory and dequantize them just before performing the dot product in
high-precision.
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Figure 4. Weight-only Quantization (WoQ)

WoQ is available only for INT4 block quantization with GEMM layers. The GEMM data
input is specified in high-precision (FP32, FP16, BF16) and the weights are quantized
using Q/DQ as usual. TensorRT creates an engine having INT4 weights and a high-
precision GEMM operation. The engine reads the low-precision weights and dequantizes
them before performing the GEMM operation in high-precision.

7.4.5.  Q/DQ Layer-Placement Recommendations
The placement of Q/DQ layers in a network affects performance and accuracy.
Aggressive quantization can lead to degradation in model accuracy because of the error
introduced by quantization. But quantization also enables latency reductions. Listed here
are some recommendations for placing Q/DQ layers in your network.

Note that older devices may not have low precision kernel implementations for all layers
and you may encounter a could not find any implementation error while building your
engine. To resolve this, remove the Q/DQ nodes which quantize the failing layers.

Quantize all inputs of weighted-operations (Convolution, Transposed Convolution, and
GEMM). Quantization of the weights and activations reduces bandwidth requirements
and also enables INT8 computation to accelerate bandwidth-limited and compute-
limited layers.
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Figure 5. Two examples of how TensorRT fuses convolutional layers.
On the left only the inputs are quantized; and on the right
both inputs and output are quantized.

By default, do not quantize the outputs of weighted-operations. It is sometimes useful
to preserve the higher-precision dequantized output. For example, if the linear operation
is followed by an activation function (SiLU, in the following diagram) that requires higher
precision input to produce acceptable accuracy.

Figure 6. Example of a linear operation followed by an activation
function.

Do not simulate batch-normalization and ReLU fusions in the training framework
because TensorRT optimizations guarantee to preserve the arithmetic semantics of
these operations.
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Figure 7. Batch normalization is fused with convolution and ReLU
while keeping the same execution order as defined in the
pre-fusion network. There is no need to simulate BN-folding
in the training network.

Quantize the residual input in skip-connections. TensorRT can fuse element-wise
addition following weighted layers, which are useful for models with skip connections like
ResNet and EfficientNet. The precision of the first input to the element-wise addition
layer determines the precision of the output of the fusion.

For example, in the following diagram, the precision of xf1 is floating point, so the output
of the fused convolution is limited to floating-point, and the trailing Q-layer cannot be
fused with the convolution.



Working with Quantized Types

NVIDIA TensorRT PG-08540-001_v10.1.0   |   70

Figure 8. The precision of xf
1 is floating point, so the output of the

fused convolution is limited to floating-point, and the
trailing Q-layer cannot be fused with the convolution.

In contrast, when xf1 is quantized to INT8, as depicted in the following diagram, the
output of the fused convolution is also INT8, and the trailing Q-layer is fused with the
convolution.

Figure 9. When xf
1 is quantized to INT8, the output of the fused

convolution is also INT8, and the trailing Q-layer is fused
with the convolution.
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For extra performance, try quantizing layers that do not commute with Q/DQ. Currently,
non-weighted layers that have INT8 inputs also require INT8 outputs, so quantize both
inputs and outputs.

Figure 10. An example of quantizing a quantizable operation. An
element-wise addition is fused with the input DQs and the
output Q.

Performance can decrease if TensorRT cannot fuse the operations with the surrounding
Q/DQ layers, so be conservative when adding Q/DQ nodes and experiment with accuracy
and TensorRT performance in mind.

The following figure is an example of suboptimal fusions (the highlighted light green
background rectangles) that can result from extra Q/DQ operations. Contrast the
following figure with Figure 9, which shows a more performant configuration. The
convolution is fused separately from the element-wise addition because each of them is
surrounded by Q/DQ pairs. The fusion of the element-wise addition is shown in Figure 10.
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Figure 11. An example of suboptimal quantization fusions: contrast the
suboptimal fusion in A and the optimal fusion in B. The extra
pair of Q/DQ operations (highlighted with a glowing-green
border) forces the separation of the convolution from the
element-wise addition.

Use per-tensor quantization for activations; and per-channel quantization for
weights.This configuration has been demonstrated empirically to lead to the best
quantization accuracy.

You can further optimize engine latency by enabling FP16. TensorRT attempts to use
FP16 instead of FP32 whenever possible (this is not currently supported for all layer
types).

7.4.6.  Q/DQ Limitations
A few of the Q/DQ graph-rewrite optimizations that TensorRT performs compare the
values of quantization scales between two or more Q/DQ layers and only perform the
graph-rewrite if the compared quantization scales are equal. When a refittable TensorRT
engine is refitted, the scales of Q/DQ nodes can be assigned new values. During the
refitting operation of Q/DQ engines, TensorRT checks if Q/DQ layers that participated
in scale-dependent optimizations are assigned new values that break the rewrite
optimizations and throws an exception if true.
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Figure 12. An example showing scales of Q1 and Q2 are compared
for equality, and if equal, they are allowed to propagate
backward. If the engine is refitted with new values for Q1
and Q2 such that Q1 != Q2, then an exception aborts the
refitting process.

7.4.7.  Q/DQ Interaction with Plugins
Plugins extend the capabilities of TensorRT by allowing the replacement of a group of
layers with a custom and proprietary implementation. You can decide what functionality
to include in the plugin and what to leave for TensorRT to handle.

The same follows for a TensorRT network with Q/DQ layers: when a plugin consumes
quantized inputs (INT8/FP8) and generates quantized quantized outputs, the input
DQ and output Q nodes must be included as part of the plugin and removed from the
network.

Consider a simple case of a sequential graph consisting of a single INT8 plugin (aptly
named MyInt8Plugin) sandwiched between two convolution layers (ignoring weights
quantization):
Input > Q -> DQ > Conv > Q -> DQ_i > MyInt8Plugin > Q_o -> DQ > Conv > Output

The > arrows indicate activation tensors with FP32 precision and the -> arrows indicate
INT8 precision.

When TensorRT optimizes this graph, it fuses the layers to the following graph (square
brackets indicate TensorRT fusions):
Input > Q -> [DQ → Conv → Q] -> DQ_i > MyInt8Plugin > Q_o -> [DQ → Conv] > Output

In the graph above, the plugin consumes and generates FP32 inputs and outputs. Since
the plugin MyInt8Plugin uses INT8 precision, the subsequent procedure involves the
manual integration of DQ_i and Q_o with the MyInt8Plugin, followed by invoking the
setOutputType(kINT8) method for this particular plugin layer; TensorRT will see a
network like this:
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Input > Q -> DQ > Conv > Q -> MyInt8Plugin -> DQ > Conv > Output

Which it will fuse to:
Input > Q -> [DQ → Conv → Q] > MyInt8Plugin -> [DQ → Conv] > Output

When "manually fusing" DQ_i, you take the input quantization scale and give it to your
plugin, so it will know how to dequantize (if needed) the input. The same follows for using
the scale from Q_o in order to quantize your plugin’s output.

7.4.8.  QAT Networks Using TensorFlow
We provide an open-source TensorFlow-Quantization Toolkit to perform QAT in
TensorFlow 2 Keras models following NVIDIA's QAT recipe. This leads to optimal model
acceleration with TensorRT on NVIDIA GPUs and hardware accelerators. More details can
be found in the NVIDIA TensorFlow-Quantization Toolkit User Guide.

TensorFlow 1 does not support per-channel quantization (PCQ). PCQ is recommended for
weights in order to preserve the accuracy of the model.

7.4.9.  QAT Networks Using PyTorch
PyTorch 1.8.0 and forward support ONNX QuantizeLinear/DequantizeLinear support per
channel scales. You can use pytorch-quantization to do INT8 calibration, run quantization
aware fine-tuning, generate ONNX and finally use TensorRT to run inference on this
ONNX model. More detail can be found in NVIDIA PyTorch-Quantization Toolkit User
Guide.

7.4.10.  QAT Networks Using TransformerEngine
We provide TransformerEngine, an open-source library for accelerating training,
inference and exporting of transformer models. It includes APIs for building a
Transformer layer as well as a framework agnostic library in C++ including structs and
kernels needed for FP8 support. Modules provided by TransformerEngine internally
maintain scaling factors and other values needed for FP8 training. You can use
TransformerEngine to train a mixed precision model, export an ONNX model, and finally
use TensorRT to run inference on this ONNX model.

7.5.  Quantized Types Rounding Modes
Weights Quantization (FP32 to INT8/FP8)

Backend

Compute Kernel
Quantization (FP32
to INT8/FP8)

Quantized Network
(QAT)

Dynamic Range
API / Calibration

GPU round-to-nearest-
with-ties-to-even

round-to-nearest-
with-ties-to-even
(INT8, FP8, INT4)

round-to-nearest-
with-ties-to-
positive-infinity
(INT8 only)

https://github.com/NVIDIA/TensorRT/tree/main/tools/tensorflow-quantization
https://docs.nvidia.com/deeplearning/tensorrt/tensorflow-quantization-toolkit/docs/index.html
https://github.com/onnx/onnx/blob/master/docs/Operators.md#QuantizeLinear
https://github.com/onnx/onnx/blob/master/docs/Operators.md#dequantizelinear
https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/index.html
https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TransformerEngine
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Weights Quantization (FP32 to INT8/FP8)

Backend

Compute Kernel
Quantization (FP32
to INT8/FP8)

Quantized Network
(QAT)

Dynamic Range
API / Calibration

DLA round-to-nearest-
with-ties-to-even

Not Applicable round-to-nearest-
with-ties-to-even
(INT8 only)
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Chapter 8. Working with Dynamic
Shapes

Dynamic Shapes is the ability to defer specifying some or all tensor dimensions until
runtime. Dynamic shapes can be used through both the C++ and Python interfaces.

The following sections provide greater detail; however, here is an overview of the steps
for building an engine with dynamic shapes:

 1. The network definition must not have an implicit batch dimension.
C++

Create the INetworkDefinition by calling
IBuilder::createNetworkV2(1U <<
        static_cast<int>(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH))

Python
Create the tensorrt.INetworkDefinition by calling
create_network(1 <<
        int(tensorrt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

These calls request that the network not have an implicit batch dimension.
 2. Specify each runtime dimension of an input tensor by using -1 as a placeholder for

the dimension.
 3. Specify one or more optimization profiles at build time that specify the permitted

range of dimensions for inputs with runtime dimensions, and the dimensions for
which the auto-tuner will optimize. For more information, refer to Optimization
Profiles.

 4. To use the engine:

 a). Create an execution context from the engine, the same as without dynamic
shapes.

 b). Specify one of the optimization profiles from step 3 that covers the input
dimensions.

 c). Specify the input dimensions for the execution context. After setting input
dimensions, you can get the output dimensions that TensorRT computes for the
given input dimensions.

 d). Enqueue work.

To change the runtime dimensions, repeat steps 4b and 4c, which do not have to be
repeated until the input dimensions change.
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When the preview features (PreviewFeature::kFASTER_DYNAMIC_SHAPES_0805) is
enabled, it can potentially, for dynamically shaped networks:

‣ reduce the engine build time,

‣ reduce runtime, and

‣ decrease device memory usage and engine size.

Models most likely to benefit from enabling kFASTER_DYNAMIC_SHAPES_0805 are
transformer-based models and models containing dynamic control flows.

8.1.  Specifying Runtime Dimensions
When building a network, use -1 to denote a runtime dimension for an input tensor.
For example, to create a 3D input tensor named foo where the last two dimensions are
specified at runtime, and the first dimension is fixed at build time, issue the following.

C++
networkDefinition.addInput("foo", DataType::kFLOAT, Dims3(3, -1, -1))

Python
network_definition.add_input("foo", trt.float32, (3, -1, -1))

At run time, you must set the input dimensions after choosing an optimization profile
(refer to Optimization Profiles). Let the input have dimensions [3,150,250]. After setting
an optimization profile for the previous example, you would call:
C++

context.setInputShape("foo", Dims{3, {3, 150, 250}})

Python
context.set_input_shape("foo", (3, 150, 250))

At runtime, asking the engine for binding dimensions returns the same dimensions used
to build the network, meaning, you get a -1 for each runtime dimension. For example:
C++

engine.getTensorShape("foo") returns a Dims with dimensions {3, -1, -1}..
Python

engine.get_tensor_shape("foo") returns (3, -1, -1).

To get the actual dimensions, which are specific to each execution context, query the
execution context:
C++

context.getTensorShape("foo") returns a Dims with dimensions {3, 150, 250}.
Python

context.get_tensor_shape(0) returns (3, 150, 250).

Note: The return value of setInputShape for an input only indicates consistency with
respect to the optimization profile set for that input. After all input binding dimensions
are specified, you can check whether the entire network is consistent with respect to the
dynamic input shapes by querying the dimensions of the output bindings of the network.
Here is an example that retrieves the dimensions of an output named bar:
nvinfer1::Dims outDims = context->getTensorShape("bar");

if (outDims.nbDims == -1) {
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    gLogError << "Invalid network output, this might be caused by inconsistent input
 shapes." << std::endl;
    // abort inference
}

If a dimension k is data-dependent, for example, it depends on the output of
INonZeroLayer, outDims.d[k] will be -1. For more information, refer to Dynamically
Shaped Output for how to deal with such outputs.

8.2.  Named Dimensions
Both constant and runtime dimensions can be named. Naming dimensions provides two
benefits:

‣ For runtime dimensions, error messages use the dimension's name. For example, if an
input tensor foo has dimensions [n,10,m], it is more helpful to get an error message
about m instead of (#2 (SHAPE foo)).

‣ Dimensions with the same name are implicitly equal, which can help the optimizer
generate a more efficient engine, and diagnoses mismatched dimensions at runtime.
For example, if two inputs have dimensions [n,10,m] and [n,13], the optimizer
knows the lead dimensions are always equal, and accidentally use of the engine with
mismatched values for n will be reported as an error.

You can use the same name for both constant and runtime dimensions as long as they
are always equal at runtime.

The following syntax examples sets the name of the third dimension of tensor to m.
C++

tensor.setDimensionName(2, "m")

Python
tensor.set_dimension_name(2, "m")

There are corresponding methods to get a dimensions name:
C++

tensor.getDimensionName(2) // returns the name of the third dimension of tensor, or
 nullptr if it does not have a name.

Python
tensor.get_dimension_name(2) # returns the name of the third dimension of tensor, or None
 if it does not have a name.

When the input network is imported from an ONNX file, the ONNX parser automatically
sets the dimension names using the names in the ONNX file. Therefore, if two dynamic
dimensions are expected to be equal at runtime, specify the same name for these
dimensions when exporting the ONNX file.
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8.3.  Dimension Constraint using
IAssertionLayer

Sometimes, two dynamic dimensions are not equal but are guaranteed to be equal at
runtime. Letting TensorRT know they are equal can help it build a more efficient engine.
There are two ways to convey the equality constraint to TensorRT:

‣ Give the dimensions the same name, as described in Named Dimensions.

‣ Use IAssertionLayer to express the constraint. This technique is more general since
it can convey trickier equalities.

For example, if the first dimension of tensor A is guaranteed to be one more than the
first dimension of tensor B, then the constraint can be established by:
C++

// Assumes A and B are  ITensor* and n is a INetworkDefinition&.
auto shapeA = n.addShape(*A)->getOutput(0);
auto firstDimOfA = n.addSlice(*shapeA, Dims{1, {0}}, Dims{1, {1}}, Dims{1, {1}})-
>getOutput(0);
auto shapeB = n.addShape(*B)->getOutput(0);
auto firstDimOfB = n.addSlice(*shapeB, Dims{1, {0}}, Dims{1, {1}}, Dims{1, {1}})-
>getOutput(0);
static int32_t const oneStorage{1};
auto one = n.addConstant(Dims{1, {1}}, Weights{DataType::kINT32, &oneStorage, 1})-
>getOutput(0);
auto firstDimOfBPlus1 = n.addElementWise(*firstDimOfB, *one, ElementWiseOperation::kSUM)-
>getOutput(0);
auto areEqual = n.addElementWise(*firstDimOfA, *firstDimOfBPlus1,
 ElementWiseOperation::kEQUAL)->getOutput(0);
n.addAssertion(*areEqual, "oops");

Python
# Assumes `a` and `b` are ITensors and `n` is an INetworkDefinition
shape_a = n.add_shape(a).get_output(0)
first_dim_of_a = n.add_slice(shape_a, (0, ), (1, ), (1, )).get_output(0)
shape_b = n.add_shape(b).get_output(0)
first_dim_of_b = n.add_slice(shape_b, (0, ), (1, ), (1, )).get_output(0)
one = n.add_constant((1, ), np.ones((1, ), dtype=np.int32)).get_output(0)
first_dim_of_b_plus_1 = n.add_elementwise(first_dim_of_b, one,
 trt.ElementWiseOperation.SUM).get_output(0)
are_equal = n.add_elementwise(first_dim_of_a, first_dim_of_b_plus_1,
 trt.ElementWiseOperation.EQUAL).get_output(0)
n.add_assertion(are_equal, “oops”)

If the dimensions violate the assertion at runtime, TensorRT will throw an error.

8.4.  Optimization Profiles
An optimization profile describes a range of dimensions for each network input and
the dimensions that the auto-tuner will use for optimization. When using runtime
dimensions, you must create at least one optimization profile at build time. Two profiles
can specify disjoint or overlapping ranges.

For example, one profile might specify a minimum size of [3,100,200], a maximum
size of [3,200,300], and optimization dimensions of [3,150,250] while another profile
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might specify min, max and optimization dimensions of [3,200,100], [3,300,400], and
[3,250,250].

Note: Based on the dimensions specified by the min, max, and opt parameters, the memory
usage for different profiles can change dramatically. There are some operations that have
tactics that only work for MIN=OPT=MAX, so when these values differ, the tactic is disabled.

To create an optimization profile, first construct an IOptimizationProfile. Then set
the min, optimization, and max dimensions, and add it to the network configuration.
The shapes defined by the optimization profile must define valid input shapes for the
network. Here are the calls for the first profile mentioned previously for an input foo:
C++

IOptimizationProfile* profile = builder.createOptimizationProfile();
profile->setDimensions("foo", OptProfileSelector::kMIN, Dims3(3,100,200);
profile->setDimensions("foo", OptProfileSelector::kOPT, Dims3(3,150,250);
profile->setDimensions("foo", OptProfileSelector::kMAX, Dims3(3,200,300);

config->addOptimizationProfile(profile)

Python
profile = builder.create_optimization_profile();
profile.set_shape("foo", (3, 100, 200), (3, 150, 250), (3, 200, 300)) 
config.add_optimization_profile(profile)

At runtime, you must set an optimization profile before setting input dimensions. Profiles
are numbered in the order that they were added, starting at 0. Note that each execution
context must use a separate optimization profile.

To choose the first optimization profile in the example, use:
C++

context.setOptimizationProfileAsync(0, stream)

Python
context.set_optimization_profile_async(0, stream)

The provided stream argument should be the same CUDA stream that will be used for
the subsequent enqueue(), enqueueV2(), or enqueueV3() invocation in this context. This
ensures that the context executions happen after the optimization profile setup is done.

If the associated CUDA engine has dynamic inputs, the optimization profile must be set
at least once with a unique profile index that is not used by other execution contexts
that are not destroyed. For the first execution context that is created for an engine,
profile 0 is chosen implicitly.

setOptimizationProfileAsync() can be called to switch between profiles. It must be
called after any enqueue(), enqueueV2(), or enqueueV3() operations finish in the current
context. When multiple execution contexts run concurrently, it is allowed to switch to a
profile that was formerly used but already released by another execution context with
different dynamic input dimensions.

setOptimizationProfileAsync() function replaces the now deprecated version of the
API setOptimizationProfile(). Using setOptimizationProfile() to switch between
optimization profiles can cause GPU memory copy operations in the subsequent
enqueue() or enqueueV2() operations. To avoid these calls during enqueue, use
setOptimizationProfileAsync() API instead.



Working with Dynamic Shapes

NVIDIA TensorRT PG-08540-001_v10.1.0   |   81

8.5.  Dynamically Shaped Output
If an output of a network has a dynamic shape, there are several strategies available to
allocate the output memory.

If the dimensions of the output are computable from the dimensions of inputs, use
IExecutionContext::getTensorShape() to get the dimensions of the output, after
providing dimensions of the input tensors and Shape Tensor I/O (Advanced). Use the
IExecutionContext::inferShapes() method to check if you forgot to supply the
necessary information.

Otherwise, or if you do not know if the dimensions of the output are computable in
advance or calling enqueueV3, associate an IOutputAllocator with the output. More
specifically:

 1. Derive your own allocator class from IOutputAllocator.
 2. Override the reallocateOutput and notifyShape methods. TensorRT calls the first

when it needs to allocate the output memory, and the second when it knows the
output dimensions. For example, the memory for the output of INonZeroLayer is
allocated before the layer runs.

Here is an example derived class:
class MyOutputAllocator : nvinfer1::IOutputAllocator
{
public:
    void* reallocateOutput(
        char const* tensorName, void* currentMemory, 
        uint64_t size, uint64_t alignment) override
    {
        // Allocate the output. Remember it for later use.
        outputPtr = ... depends on strategy, as discussed later...
       return outputPtr;
    }

    void notifyShape(char const* tensorName, Dims const& dims)
    {
        // Remember output dimensions for later use.
        outputDims = dims;
    }

    // Saved dimensions of the output
    Dims outputDims{};

    // nullptr if memory could not be allocated
    void* outputPtr{nullptr};
};

Here's an example of how it might be used:
std::unordered_map<std::string, MyOutputAllocator> allocatorMap;

for (const char* name : names of outputs)
{
    Dims extent = context->getTensorShape(name);
    void* ptr;
    if (engine->getTensorLocation(name) == TensorLocation::kDEVICE)
    {
        if (extent.d contains a -1)
        {
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            auto allocator = std::make_unique<MyOutputAllocator>();
            context->setOutputAllocator(name, allocator.get());
            allocatorMap.emplace(name, std::move(allocator));
        }
        else
        {
            ptr = allocate device memory per extent and format
                   }
    }
    else
    {
        ptr = allocate cpu memory per extent and format
    }
    context->setTensorAddress(name, ptr);
}

Several strategies can be used for implementing reallocateOutput:
A

Defer allocation until the size is known. Do not call IExecution::setTensorAddress,
or call it with a nullptr for the tensor address.

B
Preallocate enough memory, based on what IExecutionTensor::getMaxOutputSize
reports as an upper bound. That guarantees that the engine will not fail for lack of
sufficient output memory, but the upper bound may be so high as to be useless.

C
Preallocate enough memory based on experience, use
IExecution::setTensorAddress to tell TensorRT about it. Make reallocateOutput
return nullptr if the tensor does not fit, which will cause the engine to fail gracefully.

D
Preallocate memory as in C, but have reallocateOutput return a pointer to a bigger
buffer if there is a fit problem. This increases the output buffer as needed.

E
Defer allocation until the size is known, like A. Then, attempt to recycle that allocation
in subsequent calls until a bigger buffer is requested, and then increase it like in D.

Here's an example derived class that implements E:
class FancyOutputAllocator : nvinfer1::IOutputAllocator
{
public:
    void reallocateOutput(
        char const* tensorName, void* currentMemory,
        uint64_t size, uint64_t alignment) override
    {
        if (size > outputSize)
        {
            // Need to reallocate
            cudaFree(outputPtr);
            outputPtr = nullptr;
            outputSize = 0;
            if (cudaMalloc(&outputPtr, size) == cudaSuccess)
            {
                outputSize = size;
            }
        }
        // If the cudaMalloc fails, outputPtr=nullptr, and engine
        // gracefully fails.
        return outputPtr;
    }

    void notifyShape(char const* tensorName, Dims const& dims)
    {
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        // Remember output dimensions for later use.
        outputDims = dims;
    }

    // Saved dimensions of the output tensor
    Dims outputDims{};

    // nullptr if memory could not be allocated
    void* outputPtr{nullptr};

    // Size of allocation pointed to by output
    uint64_t outputSize{0};

    ~FancyOutputAllocator() override
    {
        cudaFree(outputPtr);
    }
};

8.5.1.  Looking up Binding Indices for Multiple
Optimization Profiles

You can skip this section if using enqueueV3 instead of the deprecated enqueueV2,
because the name-based methods such as IExecutionContext::setTensorAddress
expect no profile suffix.

In an engine built from multiple profiles, there are separate binding indices for each
profile. The names of I/O tensors for the Kth profile have [profile K] appended to
them, with K written in decimal. For example, if the INetworkDefinition had the name
"foo", and bindingIndex refers to that tensor in the optimization profile with index 3,
engine.getBindingName(bindingIndex) returns "foo [profile 3]".

Likewise, if using ICudaEngine::getBindingIndex(name) to get the index for a
profile K beyond the first profile (K=0), append "[profile K]" to the name used
in the INetworkDefinition. For example, if the tensor was called "foo" in the
INetworkDefinition, then engine.getBindingIndex("foo [profile 3]") returns the
binding index of Tensor "foo" in optimization profile 3.

Always omit the suffix for K=0.

8.5.2.  Bindings For Multiple Optimization Profiles
This section explains the deprecated interface enqueueV2 and its binding indices. The
newer interface enqueueV3 does away with binding indices.

Consider a network with four inputs, one output, with three optimization profiles in
the IBuilderConfig. The engine has 15 bindings, five for each optimization profile,
conceptually organized as a table:



Working with Dynamic Shapes

NVIDIA TensorRT PG-08540-001_v10.1.0   |   84

Figure 13. Optimization Profile

Each row is a profile. Numbers in the table denote binding indices. The first profile has
binding indices 0..4, the second has 5..9, and the third has 10..14.

The interfaces have an "auto-correct" for the case that the binding belongs to the first
profile, but another profile was specified. In that case, TensorRT warns about the mistake
and then chooses the correct binding index from the same column.

For the sake of backward semi-compatibility, the interfaces have an "auto-correct" in the
scenario where the binding belongs to the first profile, but another profile was specified.
In this case, TensorRT warns about the mistake and then chooses the correct binding
index from the same column.

8.6.  Layer Extensions For Dynamic
Shapes

Some layers have optional inputs that allow specifying dynamic shape information;
IShapeLayer can be used for accessing the shape of a tensor at runtime. Furthermore,
some layers allow calculating new shapes. The next section goes into semantic details
and restrictions. Here is a summary of what you might find useful in conjunction with
dynamic shapes.

IShapeLayer outputs a 1D tensor containing the dimensions of the input tensor. For
example, if the input tensor has dimensions [2,3,5,7], the output tensor is a four-
element 1D tensor containing {2,3,5,7}. If the input tensor is a scalar, it has dimensions
[], and the output tensor is a zero-element 1D tensor containing {}.

IResizeLayer accepts an optional second input containing the desired dimensions of
the output.

IShuffleLayer accepts an optional second input containing the reshape dimensions
before the second transpose is applied. For example, the following network reshapes a
tensor Y to have the same dimensions as X:
C++

    auto* reshape = networkDefinition.addShuffle(Y);
    reshape.setInput(1, networkDefintion.addShape(X)->getOutput(0));

Python
    reshape = network_definition.add_shuffle(y)
    reshape.set_input(1, network_definition.add_shape(X).get_output(0))
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ISliceLayer accepts an optional second, third, and fourth input containing the start,
size, and stride.
IConcatenationLayer, IElementWiseLayer, IGatherLayer, IIdentityLayer, and
        IReduceLayer
can be used to do calculations on shapes and create new shape tensors.

8.7.  Restrictions For Dynamic Shapes
The following layer restrictions arise because the layer’s weights have a fixed size:

‣ IConvolutionLayer and IDeconvolutionLayer require that the channel dimension be
a build time constant.

‣ IFullyConnectedLayer requires that the last three dimensions be build-time
constants.

‣ Int8 requires that the channel dimension be a build time constant.

‣ Layers accepting additional shape inputs (IResizeLayer, IShuffleLayer,
ISliceLayer) require that the additional shape inputs be compatible with the
dimensions of the minimum and maximum optimization profiles as well as with the
dimensions of the runtime data input; otherwise, it can lead to either a build-time or
runtime error.

Values that must be build-time constants do not have to be constants at the API level.
TensorRT’s shape analyzer does element by element constant propagation through
layers that do shape calculations. It is sufficient that the constant propagation discovers
that a value is a build time constant.

For more information regarding layers, refer to the NVIDIA TensorRT Operator’s
Reference.

8.8.  Execution Tensors Versus Shape
Tensors

TensorRT 8.5 largely erases the distinctions between execution tensors and shape
tensors. However, if designing a network or analyzing performance, it may help to
understand the internals and where internal synchronization is incurred.

Engines using dynamic shapes employ a ping-pong execution strategy.

 1. Compute the shapes of tensors on the CPU until a shape requiring GPU results is
reached.

 2. Stream work to the GPU until out of work or an unknown shape is reached If the
latter, synchronize and go back to step 1.

An execution tensor is a traditional TensorRT tensor. A shape tensor is a tensor that
is related to shape calculations. It must have type Int32, Int64, Float, or Bool, its
shape must be determinable at build time, and it must have no more than 64 elements.
Refer to Shape Tensor I/O (Advanced) for additional restrictions for shape tensors at

https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
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network I/O boundaries. For example, there is an IShapeLayer whose output is a 1D
tensor containing the dimensions of the input tensor. The output is a shape tensor.
IShuffleLayer accepts an optional second input that can specify reshaping dimensions.
The second input must be a shape tensor.

Some layers are “polymorphic” with respect to the kinds of tensors that they handle. For
example, IElementWiseLayer can sum two INT32 execution tensors or sum two INT32
shape tensors. The type of tensor depends on its ultimate use. If the sum is used to
reshape another tensor, then it is a “shape tensor.”

When TensorRT needs a shape tensor, but the tensor has been classified as an execution
tensor, the runtime has to copy the tensor from the GPU to the CPU, which incurs
synchronization overhead.

8.8.1.  Formal Inference Rules
The formal inference rules used by TensorRT for classifying tensors are based on a type-
inference algebra. Let E denote an execution tensor and S denote a shape tensor.

IActivationLayer has the signature:
IActivationLayer: E → E

since it takes an execution tensor as an input and an execution tensor as an output.
IElementWiseLayer is polymorphic in this respect, with two signatures:
IElementWiseLayer: S × S → S, E × E → E

For brevity, let us adopt the convention that t is a variable denoting either class of
tensor, and all t in a signature refers to the same class of tensor. Then, the two previous
signatures can be written as a single polymorphic signature:
IElementWiseLayer: t × t → t

The two-input IShuffleLayer has a shape tensor as the second input and is
polymorphic with respect to the first input:
IShuffleLayer (two inputs): t × S → t

IConstantLayer has no inputs, but can produce a tensor of either kind, so its signature
is:
IConstantLayer: → t

The signature for IShapeLayer allows all four possible combinations E→E, E→S, S→E, and
S→S, so it can be written with two independent variables:
IShapeLayer: t1 → t2

Here is the complete set of rules, which also serves as a reference for which layers can
be used to manipulate shape tensors:
IAssertionLayer: S → 
IConcatenationLayer: t × t × ...→ t
IIfConditionalInputLayer: t → t
IIfConditionalOutputLayer: t → t
IConstantLayer: → t
IActivationLayer: t → t
IElementWiseLayer: t × t → t
IFillLayer: S → t
IFillLayer: S × E × E → E 
IGatherLayer: t × t → t
IIdentityLayer: t → t
IReduceLayer: t → t
IResizeLayer (one input): E → E
IResizeLayer (two inputs): E × S → E
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ISelectLayer: t × t × t → t
IShapeLayer: t1 → t2
IShuffleLayer (one input): t → t
IShuffleLayer (two inputs): t × S → t
ISliceLayer (one input): t → t
ISliceLayer (two inputs): t × S → t
ISliceLayer (three inputs): t × S × S → t
ISliceLayer (four inputs): t × S × S × S → t
IUnaryLayer: t → t
all other layers: E × ... → E × ...

Because an output can be the input of more than one subsequent layer, the inferred
"types" are not exclusive. For example, an IConstantLayer might feed into one use that
requires an execution tensor and another use that requires a shape tensor. The output of
IConstantLayer is classified as both and can be used in both phase 1 and phase 2 of the
two-phase execution.

The requirement that the size of a shape tensor be known at build time limits how
ISliceLayer can be used to manipulate a shape tensor. Specifically, if the third
parameter, which specifies the size of the result, and is not a build-time constant,
the length of the resulting tensor is unknown at build time, breaking the restriction
that shape tensors have constant shapes. The slice will still work, but will incur
synchronization overhead at runtime because the tensor is considered an execution
tensor that has to be copied back to the CPU to do further shape calculations.

The rank of any tensor has to be known at build time. For example, if the output of
ISliceLayer is a 1D tensor of unknown length that is used as the reshape dimensions
for IShuffleLayer, the output of the shuffle would have unknown rank at build time, and
hence such a composition is prohibited.

TensorRT’s inferences can be inspected using methods ITensor::isShapeTensor(),
which returns true for a shape tensor, and ITensor::isExecutionTensor(), which
returns true for an execution tensor. Build the entire network first before calling these
methods because their answer can change depending on what uses of the tensor have
been added.

For example, if a partially built network sums two tensors, T1 and T2, to create tensor T3,
and none are yet needed as shape tensors, isShapeTensor() returns false for all three
tensors. Setting the second input of IShuffleLayer to T3 would cause all three tensors
to become shape tensors because IShuffleLayer requires that its second optional input
be a shape tensor, and if the output of IElementWiseLayer is a shape tensor, its inputs
are too.

8.9.  Shape Tensor I/O (Advanced)
Sometimes the need arises to use a shape tensor as a network I/O tensor. For example,
consider a network consisting solely of an IShuffleLayer. TensorRT infers that the
second input is a shape tensor. ITensor::isShapeTensor returns true for it. Because it is
an input shape tensor, TensorRT requires two things for it:

‣ At build time: the optimization profile values of the shape tensor.

‣ At run time: the values of the shape tensor.
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The shape of an input shape tensor is always known at build time. It is the values that
must be described since they can be used to specify the dimensions of execution
tensors.

The optimization profile values can be set using
IOptimizationProfile::setShapeValues. Analogous to how min, max, and optimization
dimensions must be supplied for execution tensors with runtime dimensions, min, max,
and optimization values must be provided for shape tensors at build time.

The corresponding runtime method is IExecutionContext::setTensorAddress, which
tells TensorRT where to look for the shape tensor values.

Because the inference of “execution tensor” vs “shape tensor” is based on ultimate use,
TensorRT cannot infer whether a network output is a shape tensor. You must tell it using
the method INetworkDefinition::markOutputForShapes.

Besides letting you output shape information for debugging, this feature is useful
for composing engines. For example, consider building three engines, one each for
sub-networks A, B, C, where a connection from A to B or B to C might involve a shape
tensor. Build the networks in reverse order: C, B, and A. After constructing network C,
you can use ITensor::isShapeTensor to determine if an input is a shape tensor, and
use INetworkDefinition::markOutputForShapes to mark the corresponding output
tensor in network B. Then check which inputs of B are shape tensors and mark the
corresponding output tensor in network A.

Shape tensors at network boundaries must have type Int32 or Int64. They cannot have
type Float or Bool. A workaround for Bool is to use Int32 for the I/O tensor, with zeros
and ones, and convert to/from Bool using IIdentityLayer.

At runtime, whether a tensor is an I/O shape tensor can be determined via method
ICudaEngine::isShapeInferenceIO().

8.10.  INT8 Calibration with Dynamic
Shapes

To run INT8 calibration for a network with dynamic shapes, a calibration optimization
profile must be set. Calibration is performed using kOPT values of the profile. Calibration
input data size must match this profile.

To create a calibration optimization profile, first, construct an IOptimizationProfile
the same way as it is done for a general optimization profile. Then set the profile to the
configuration:
C++

config->setCalibrationProfile(profile)

Python
config.set_calibration_profile(profile)

The calibration profile must be valid or be nullptr. kMIN and kMAX values
are overwritten by kOPT. To check the current calibration profile, use
IBuilderConfig::getCalibrationProfile.
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This method returns a pointer to the current calibration profile or nullptr if the
calibration profile is unset. getBatchSize() calibrator method must return 1 when
running calibration for a network with dynamic shapes.

Note: If the calibration optimization profile is not set, the first network optimization profile
is used as a calibration optimization profile.
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Chapter 9. Extending TensorRT with
Custom Layers

NVIDIA TensorRT supports many types of layers and its functionality is continually
extended; however, there can be cases in which the layers supported do not cater to the
specific needs of a model. In such cases, TensorRT can be extended by implementing
custom layers, often referred to as plugins.

TensorRT contains standard plugins that can be loaded into your application. For a list of
open-source plugins, refer to GitHub: TensorRT plugins.

To use standard TensorRT plugins in your application, the libnvinfer_plugin.so
(nvinfer_plugin.dll on Windows) library must be loaded, and all plugins must
be registered by calling initLibNvInferPlugins in your application code. For more
information about these plugins, refer to the NvInferPlugin.h file for reference.

If these plugins do not meet your needs, you can write and add your own.

9.1.  Adding Custom Layers Using the C
++ API

There are four steps to ensure that your plugin is properly recognized by TensorRT:

 1. Implement a plugin class by deriving from one of TensorRT’s plugin base classes.
Currently, the only recommended one is IPluginV3.

 2. Implement a plugin creator class, which is tied to your plugin class, by deriving from
one of TensorRT’s plugin creator base classes. Currently, the only recommended one
is IPluginCreatorV3One.

 3. Register an instance of the plugin creator class with TensorRT’s plugin registry.
 4. Add an instance of the plugin class to a TensorRT network, either by directly using

TensorRT’s network APIs, or through the loading of an ONNX model by the TensorRT
ONNX parser APIs.

The following sections explore each of these steps in detail.

https://github.com/NVIDIA/TensorRT/tree/main/plugin#tensorrt-plugins
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/_nv_infer_plugin_8h.html
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9.1.1.  Implementing a Plugin Class
You can implement a custom layer by deriving from one of TensorRT’s plugin base
classes.Starting in TensorRT 10.0, the only plugin interface recommended is IPluginV3,
as others are deprecated. Therefore, this section mostly describes plugin implementation
using IPluginV3. Refer to the Migrating V2 Plugins to IPluginV3 section for how plugins
implementing V2 plugin interfaces can be migrated to IPluginV3.

IPluginV3 is a wrapper for a set of capability interfaces that define three capabilities:
core, build, and runtime.
Core capability

Refers to plugin attributes and behaviors common to both build and runtime phases
of a plugin’s lifetime.

Build capability
Refers to plugin attributes and behaviors that the plugin must exhibit for the
TensorRT builder.

Runtime capability
Refers to plugin attributes and behaviors that the plugin must exhibit for it to be
executable, either during auto-tuning in the TensorRT build phase or inference in the
TensorRT runtime phase.

IPluginV3OneCore (C++, Python), IPluginV3OneBuild (C++, Python), and
IPluginV3OneRuntime (C++, Python) are the base classes that must be implemented by a
IPluginV3 plugin to display the core, build, and runtime capabilities, respectively.

9.1.2.  Implementing a Plugin Creator Class
In order to use a plugin in a network, you must first register it with TensorRT’s
PluginRegistry (C++, Python). Rather than registering the plugin directly, you
register an instance of a factory class for the plugin, derived from a child class of
IPluginCreatorInterface (C++, Python). The plugin creator class also provides other
information about the plugin: its name, version, and plugin field parameters.

IPluginCreatorV3One is the factory class for IPluginV3. That is,
IPluginCreatorV3One::createPlugin(), which has the signature below, returns a plugin
object of type IPluginV3.
C++

IPluginV3* createPlugin(AsciiChar const *name, PluginFieldCollection const *fc,
 TensorRTPhase phase)

Python
create_plugin(self: trt.IPluginCreatorV3, name: str, field_collection:
 trt.PluginFieldCollection, phase: trt.TensorRTPhase) -> trt.IPluginV3

IPluginCreatorV3One::createPlugin() may be called to create a plugin instance
in either the build phase of TensorRT or the runtime phase of TensorRT, which is
communicated by the phase argument of type TensorRTPhase (C++, Python).

‣ In both phases, the returned IPluginV3 object must have a valid core capability.

‣ In the build phase, the returned IPluginV3 object must have both a build and runtime
capability.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/class_i_plugin_v3_one_core.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginV3.html#tensorrt.IPluginV3OneCore
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/class_i_plugin_v3_one_build.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginV3.html#tensorrt.IPluginV3OneBuild
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/class_i_plugin_v3_one_runtime.html
http://plugin/IPluginV3.html#tensorrt.IPluginV3OneRuntime
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin_registry.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginRegistry.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/class_i_plugin_creator_interface.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginCreator.html#tensorrt.IPluginCreatorInterface
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#a6d7dc3191dc6a615798254e8a75657a1
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginV3.html#tensorrt.TensorRTPhase
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‣ In the runtime phase, the returned IPluginV3 object must have a runtime capability.
A build capability is not required, and is ignored.

9.1.3.  Registering a Plugin Creator with the
Plugin Registry

There are two ways that you can register plugins with the registry:

‣ TensorRT provides a macro REGISTER_TENSORRT_PLUGIN that statically registers
the plugin creator with the registry. Note that REGISTER_TENSORRT_PLUGIN always
registers the creator under the default namespace ("").

‣ Dynamically register by creating your own entry-point similar to
initLibNvInferPlugins and calling registerCreator on the plugin registry. This is
preferred over static registration as it allows plugins to be registered under a unique
namespace. This ensures that there are no name collisions during build time across
different plugin libraries.

During serialization, the TensorRT engine internally stores the plugin name, plugin
version, and namespace (if it exists) for all plugins, along with any plugin fields in the
PluginFieldCollection returned by IPluginV3OneRuntime::getFieldsToSerialize().
During deserialization, TensorRT looks up a plugin creator with the same
plugin name, version, and namespace from the plugin registry and invokes
IPluginCreatorV3One::createPlugin() on it – the PluginFieldCollection which was
serialized is passed back as the fc argument.

9.1.4.  Adding a Plugin Instance to a TensorRT
Network

You can add a plugin to the TensorRT network using addPluginV3(), which creates a
network layer with the given plugin.

For example, you can add a plugin layer to your network as follows:
// Look up the plugin in the registry
// Cast to appropriate child class of IPluginCreatorInterface
auto creator = static_cast<IPluginCreatorV3One*>(getPluginRegistry()->getCreator(pluginName,
 pluginVersion, pluginNamespace));
PluginFieldCollection const* pluginFC = creator->getFieldNames();
// Populate the fields parameters for the plugin layer 
// PluginFieldCollection *pluginData = parseAndFillFields(pluginFC, layerFields); 
// Create the plugin object using the layerName and the plugin meta data, for use by the
 TensorRT builder
IPluginV3 *pluginObj = creator->createPlugin(layerName, pluginData, TensorRTPhase::kBUILD);
// Add the plugin to the TensorRT network 
auto layer = network.addPluginV3(inputs.data(), int(inputs.size()),  shapeInputs.data(),
 int(shapeInputs.size()), pluginObj);
… (build rest of the network and serialize engine)
// Delete the plugin object
delete pluginObj;
… (free allocated pluginData)

Note: The createPlugin method described previously creates a new plugin object on the
heap and returns a pointer to it. Ensure you destroy the pluginObj, as shown previously, to
avoid a memory leak.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_network_definition.html#a9bfab1b5e4808d4534a96309d1f41c21
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When the engine is deleted, any clones of the plugin object, created during engine build,
are destroyed by the engine. It is your responsibility to ensure the plugin object you
created is freed after it is added to the network.

Note:

‣ Do not serialize all plugin parameters: only those required for the plugin to function
correctly at runtime. Build time parameters can be omitted.

‣ If you are an automotive safety user, you must call getSafePluginRegistry()
instead of getPluginRegistry(). You must also use the macro
REGISTER_SAFE_TENSORRT_PLUGIN instead of REGISTER_TENSORRT_PLUGIN.

9.1.5.  Example: Adding a Custom Layer with
Dynamic Shapes using Using C++

Imagine that a custom layer is needed for a padding-like operation where each image in
an input batch of images must be reshaped to 32 x 32. That is, the input tensor X would
be of shape (B, C, H, W) and the output Y would be of shape (B, C, 32, 32). A TensorRT
plugin can be written using the IPluginV3 interface to accomplish this; let us call it
PadPlugin.

Since a IPluginV3 plugin must possess multiple capabilities, each defined by a separate
interface, you could implement a plugin using the principle of composition or multiple
inheritance. For most use cases, particularly when the coupling of build and runtime
capabilities in a single class is tolerable, a multiple inheritance approach is easier.

Using multiple inheritance, PadPlugin, can be implemented as follows:
class PadPlugin : public IPluginV3, public IPluginV3OneCore, public IPluginV3OneBuild, public
 IPluginV3OneRuntime
{
 ...override inherited virtual methods.
};

The override of IPluginV3::getCapabilityInterface must return pointers to the
individual capability interfaces. For each PluginCapabilityType,it is imperative to cast
through the corresponding capability interface to remove ambiguity for the compiler.
IPluginCapability* PadPlugin::getCapabilityInterface(PluginCapabilityType type) noexcept
 override
{
    TRY
    {
        if (type == PluginCapabilityType::kBUILD)
        {
            return static_cast<IPluginV3OneBuild*>(this);
        }
        if (type == PluginCapabilityType::kRUNTIME)
        {
            return static_cast<IPluginV3OneRuntime*>(this);
        }
        ASSERT(type == PluginCapabilityType::kCORE);
        return static_cast<IPluginV3OneCore*>(this);
    }
    CATCH
    {
        // log error
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    }
    return nullptr;
}

The methods that are of importance in this particular example are:

‣ INetworkDefinition::addPluginV3

‣ IPluginV3OneBuild::getNbOutputs

‣ IPluginV3OneBuild::getOutputDataTypes

‣ IPluginV3OneBuild::getOutputShapes

‣ IPluginV3OneBuild::supportsFormatCombination

‣ IPluginV3OneBuild::configurePlugin

‣ IPluginV3OneRuntime::onShapeChange

‣ IPluginV3OneRuntime::enqueue

To add the plugin to the network, INetworkDefinition::addPluginV3 (C++, Python) can
be used.
std::vector<ITensor*> inputs{X};
    
auto pluginLayer = network->addPluginV3(inputs.data(), inputs.size(), nullptr, 0, *plugin);

You can communicate that there is a single plugin output by overriding
IPluginV3OneBuild::getNbOutputs.
int32_t PadPlugin::getNbOutputs() const noexcept override
{
    return 1;
}

The output will have the same data type as the input, and this can be communicated in
the override of IPluginV3OneBuild::getOutputDataTypes.
int32_t PadPlugin::getOutputDataTypes(
        DataType* outputTypes, int32_t nbOutputs, DataType const* inputTypes, int32_t
 nbInputs) const noexcept override
{
    outputTypes[0] = inputTypes[0];
    return 0;
}

The override for getOutputShapes returns symbolic expressions for the output
dimensions in terms of the input dimensions, except in the case of data-dependent
output shapes, which will be covered later in Example: Adding a Custom Layer with a
Data-Dependent and Shape Input-Dependent Shapes Using C++. In the current example,
the first two dimensions of the output will be equal to the first two dimensions of the
input, respectively, and the last two dimensions will be constants, each equal to 32. The
IExprBuilder passed into getOutputShapes can be used to define constant symbolic
expressions.
int32_t PadPlugin::getOutputShapes(DimsExprs const* inputs, int32_t nbInputs, DimsExprs
 const* shapeInputs, int32_t nbShapeInputs, DimsExprs* outputs, int32_t nbOutputs,
 IExprBuilder& exprBuilder) noexcept
{
    outputs[0].nbDims = 4;
    // first two output dims are equal to the first two input dims
    outputs[0].d[0] = inputs[0].d[0];
    outputs[0].d[1] = inputs[0].d[1];

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_network_definition.html#a9bfab1b5e4808d4534a96309d1f41c21
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_plugin_v3
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    // The last two output dims are equal to 32
    outputs[0].d[2] = exprBuilder.constant(32);
    outputs[0].d[3] = exprBuilder.constant(32);
    return 0;
}

TensorRT uses supportsFormatCombination to ask whether a given type and format
combination is accepted by the plugin, for a "connection" at a given position pos, given
formats/types for lesser indexed connections. The interface indexes the inputs/outputs
uniformly as "connections," starting at 0 for the first input, then the rest of the inputs in
order, followed by numbering the outputs. In the example, the input is connection 0, and
the output is connection 1.

For the sake of simplicity, the example supports only linear formats and FP32 types.
bool PadPlugin::supportsFormatCombination(
        int32_t pos, DynamicPluginTensorDesc const* inOut, int32_t nbInputs, int32_t
 nbOutputs) noexcept override
{
    assert(0 <= pos && pos < 2);
    return inOut[pos].desc.format == PluginFormat::kLINEAR && inOut[pos].desc.type ==
 DataType::kFLOAT;
}

TensorRT invokes two methods to allow the plugin to make any configuration choices
before enqueue(), both during auto-tuning (in the engine build phase), as well as when
the engine is being executed (in the runtime phase).
IPluginV3OneBuild::configurePlugin

Called when a plugin is being prepared for profiling (auto-tuning) but not for any
specific input size. The min, max, and opt value of the DynamicPluginTensorDesc
correspond to the bounds on the tensor shape and its shape for auto-tuning. The
desc.dims field corresponds to the dimensions of the plugin specified at network
creation, including any wildcards (-1) for dynamic dimensions.

IPluginV3OneRuntime::onShapeChange
Called during both the build-phase and runtime-phase before enqueue() to
communicate the actual input and output shapes for the subsequent enqueue().
The output PluginTensorDesc will contain wildcards (-1) for any data-dependent
dimensions specified through getOutputShapes().

This plugin does not need configurePlugin and onShapeChange to do anything, so they
are no-ops:
int32_t PadPlugin::configurePlugin(DynamicPluginTensorDesc const* in, int32_t nbInputs,
 DynamicPluginTensorDesc const* out, int32_t nbOutputs) noexcept override
{
    return 0;
}

int32_t PadPlugin::onShapeChange(PluginTensorDesc const* in, int32_t nbInputs,
 PluginTensorDesc const* out, int32_t nbOutputs) noexcept override
{
    return 0;
}

Finally, the override PadPlugin::enqueue has to do the work. Since shapes are dynamic,
enqueue is handed a PluginTensorDesc that describes the actual dimensions, type, and
format of each input and output.
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int32_t enqueue(PluginTensorDesc const* inputDesc, PluginTensorDesc const* outputDesc, void
 const* const* inputs,
        void* const* outputs, void* workspace, cudaStream_t stream) noexcept override
{
    // populate outputs and return status code 
}

9.1.6.  Example: Adding a Custom Layer with
a Data-Dependent and Shape Input-
Dependent Shapes Using C++

This section shows an example of a plugin with data-dependent and shape-input
dependent shapes. Note that data-dependent output shapes and adding shape inputs to
a plugin are new features not present in V2 plugins.

Data-dependent Shapes (DDS)
The shape of a plugin output could depend on the values of the input tensors.

Shape inputs
A plugin could accept shape tensor inputs, besides device tensor
inputs. These inputs are only visible to the plugin as arguments to
IPluginV3OneBuild::getOutputShapes(). Therefore, their sole purpose is to aid the
plugin in performing output shape calculations.

For example, BarPlugin is a plugin with one device input X, one shape input S, and an
output Y, where:

‣ The first dimension of Y depends on the value of S

‣ The second dimension of Y is static

‣ The third dimension of Y is data-dependent

‣ The fourth dimension of Y depends on the shape of X

Similar to PadPlugin in the prior example, BarPlugin uses multiple inheritance.

To add the plugin to the network, INetworkDefinition::addPluginV3 (C++, Python)
can be used similarly. There are two additional arguments in addPluginV3 for the
specification of the shape tensor inputs, after the device tensor inputs.
std::vector<ITensor*> inputs{X};
std::vector<ITensor*> shapeInputs{S};
    
auto pluginLayer = network->addPluginV3(inputs.data(), inputs.size(), shapeInputs.data(),
 shapeInputs.size(), *plugin);

Note: The TensorRT ONNX parser provides an inbuilt feature to pass shape inputs
to custom ops supported by IPluginV3-based plugins. The indices of the inputs
to be interpreted as shape inputs must be indicated by a node attribute named
tensorrt_plugin_shape_input_indices as a list of integers. For example, if the custom
op has four inputs and the second and fourth inputs should be passed as shape inputs to
the plugin, add a node attribute named tensorrt_plugin_shape_input_indices of type
onnx.AttributeProto.ints containing the value [1, 3].

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_network_definition.html#a9bfab1b5e4808d4534a96309d1f41c21
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_plugin_v3
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In the override for getOutputShapes, plugins must declare both the position as well as
the bounds of each data-dependent dimension of each output tensor. The bounds can
be expressed in terms of a special output called a size tensor.

A size tensor is a scalar of either INT32 or INT64 data type, expressed through a value for
auto-tuning and an upper bound; these values can either be constants or computed in
terms of device input shapes or shape inputs values using IExprBuilder.

In this case, there is a singular data-dependent dimension, which we can represent
using one size tensor. Note that any size tensor needed to express a data-dependent
dimension counts as an output of the plugin; therefore, the plugin will have two outputs
in total.
int32_t getNbOutputs() const noexcept override
{
    return 2;
}

Assume that output Y has the same type as the device input X and the size of the data-
dependent dimension fits in INT32 (that is, the size tensor has type r). Then BarPlugin
expresses the output data types like this:
int32_t getOutputDataTypes(
        DataType* outputTypes, int32_t nbOutputs, DataType const* inputTypes, int32_t
 nbInputs) const noexcept override
{
    outputTypes[0] = inputTypes[0];
    outputTypes[1] = DataType::kINT32;
    return 0;
}

The method getOutputShapes can build symbolic output shape expressions using the
IExprBuilder passed to it. In what follows, note in particular that size tensors must be
explicitly declared as 0-D.
int32_t BarPlugin::getOutputShapes(DimsExprs const* inputs, int32_t nbInputs, DimsExprs
 const* shapeInputs, int32_t nbShapeInputs, DimsExprs* outputs, int32_t nbOutputs,
 IExprBuilder& exprBuilder) noexcept
{
    outputs[0].nbDims = 4;
    // The first output dimension depends on the value of S.
    // The value of S is encoded as fictitious dimensions.
    outputs[0].d[0] = shapeInputs[0].d[0];
    // The third output dimension depends on the shape of X
    outputs[0].d[2] = inputs[0].d[0];
    // The second output dimension is static
    outputs[0].d[1] = exprBuilder.constant(3);

    auto upperBound = exprBuilder.operation(DimensionOperation::kPROD, *inputs[0].d[2],
 *inputs[0].d[3]);
    auto optValue = exprBuilder.operation(DimensionOperation::kFLOOR_DIV, *upperBound,
 *exprBuilder.constant(2));

    // output at index 1 is a size tensor
    outputs[1].nbDims = 0; // size tensors must be declared as 0-D
    auto sizeTensor = exprBuilder.declareSizeTensor(1, *optValue, *upperBound);

    // The fourth output dimension is data-dependent
    outputs[0].d[3] = sizeTensor;

    return 0;
}
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The override of supportsFormatCombination imposes the following conditions:

‣ The devices input X must have DataType::kFLOAT or DataType::kHALF

‣ The output Y must have the same type as X

‣ The size tensor output has type DataType::kINT32

Note: Shape inputs passed to the plugin through addPluginV3 (C++, Python) only show up
as arguments to getOutputShapes() and are not counted or included among plugin inputs
in any other plugin interface method.

bool BarPlugin::supportsFormatCombination(
        int32_t pos, DynamicPluginTensorDesc const* inOut, int32_t nbInputs, int32_t
 nbOutputs) noexcept override
    {
        assert(0 <= pos && pos < 3);
        auto const* in = inOut;
        auto const* out = inOut + nbInputs;

        bool typeOk{false};

        switch (pos)
        {
        case 0: typeOk = in[0].desc.type == DataType::kFLOAT || in[0].desc.type ==
 DataType::kHALF; break;
        case 1: typeOk = out[0].desc.type == in[0].desc.type; break;
        case 2: typeOk = out[1].desc.type == DataType::kINT32; break;
        }
        
        return inOut[pos].desc.format == PluginFormat::kLINEAR && typeOk;
    }

The local variables in and out here allow inspecting inOut by input or output number
instead of connection number.

Important: The override inspects the format/type for a connection with an index less than
pos, but must never inspect the format/type for a connection with an index greater than
pos. The example uses case 1 to check connection 1 against connection 0, and not use
case 0 to check connection 0 against connection 1.

configurePlugin and onShapeChange would be no ops here too; one thing to note is that
in onShapeChange, the output’s PluginTensorDesc will contain a wildcard (-1) for the
data-dependent dimension.

Implementing enqueue with data-dependent output shapes is not much different from
the static or dynamic shape cases. As with any other output, for an output with a data-
dependent dimension, the output buffer passed to enqueue is guaranteed to be large
enough to hold the corresponding output tensor (based on the upper-bound specified
through getOutputShapes).

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_network_definition.html#a9bfab1b5e4808d4534a96309d1f41c21
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_plugin_v3
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9.1.7.  Example: Adding a Custom Layer with INT8
I/O Support Using C++

PoolPlugin is a plugin to demonstrate how to addINT8 I/O for a custom pooling layer
using IPluginV3. PoolPlugin multiply inherits from IPluginV3, IPluginV3OneCore,
IPluginV3OneBuild, and IPluginV3OneRuntime similar to the PadPlugin and BarPlugin
examples above.

The main methods that affect INT8 I/O are:

‣ supportsFormatCombination

‣ configurePlugin

The override for supportsFormatCombination must indicate which INT8 I/O combination
is allowed. The usage of this interface is similar to Example: Adding a Custom Layer with
Dynamic Shapes using Using C++. In this example, the supported I/O tensor format is
linear CHW with FP32, FP16, BF16, FP8, or INT8 data type, but the I/O tensor must have
the same data type.
bool PoolPlugin::supportsFormatCombination(
        int32_t pos, DynamicPluginTensorDesc const* inOut, int32_t nbInputs, int32_t
 nbOutputs)  noexcept override
{
    assert(nbInputs == 1 && nbOutputs == 1 && pos < nbInputs + nbOutputs);
    bool condition = inOut[pos].desc.format == PluginFormat::kLINEAR;
    condition &= (inOut[pos].desc.type == DataType::kFLOAT ||
                  inOut[pos].desc.type == DataType::kHALF ||
             inOut[pos].desc.type == DataType::kBF16 ||
                   inOut[pos].desc.type == DataType::kFP8 ||
                  inOut[pos].desc.type == DataType::kINT8);
    condition &= inOut[pos].desc.type == inOut[0].desc.type;
    return condition;
}

Important:

‣ If INT8 calibration must be used with a network with INT8 I/O plugins, the plugin must
support FP32 I/O as TensorRT uses FP32 to calibrate the graph.

‣ If the FP32 I/O variant is not supported or INT8 calibration is not used, all required
INT8 I/O tensors scales must be set explicitly.

‣ Calibration cannot determine the dynamic range of a plugin internal tensors. Plugins
that operate on quantized data must calculate their own dynamic range for internal
tensors.

‣ A plugin can be designed to accept both FP8 and INT8 I/O types, although note that in
TensorRT 9.0 the builder does not allow networks that mix INT8 and FP8.

Information communicated by TensorRT through configurePlugin or onShapeChange
can be used to obtain information about the pooling parameters and the input and
output scales. These can be stored as member variables, serialized and then deserialized
to be used during inference.
int32_t PoolPlugin::configurePlugin(DynamicPluginTensorDesc const* in, int32_t nbInputs,
 DynamicPluginTensorDesc const* out, int32_t nbOutputs) noexcept override
{
    ...
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    mPoolingParams.mC = in.desc.d[1];
    mPoolingParams.mH = in.desc.d[2];
    mPoolingParams.mW = in.desc.d[3];
    mPoolingParams.mP = out.desc.d[2];
    mPoolingParams.mQ = ou.desc.d[3];
    mInHostScale = in[0].desc.scale >= 0.0F ? in[0].desc.scale : -1.0F;
    mOutHostScale = out[0].desc.scale >= 0.0F ? out[0].desc.scale : -1.0F;
}

INT8 I/O scales per tensor have been obtained from PluginTensorDesc::scale.

9.2.  Adding Custom Layers using the
Python API

Prior to TensorRT 9.0, custom layer implementations could only be done through the C
++ API; adding such a plugin to a TensorRT network in Python required loading a library
containing the plugin and accessing the plugin creator through the plugin registry. It is
now possible to implement custom layers entirely within Python, with no additional C++
code.

Implementing a plugin in Python is similar to C++ in that an implementation of
IPluginV3 and IPluginCreatorV3One is necessary. Furthermore, interface methods in
Python have mostly similar APIs to their C++ counterparts; most differences are minor
and self-explanatory.

The following list includes a few selected changes. More involved differences are
described in subsequent subsections in detail.

‣ The following plugin APIs have been omitted in favor of reading/writing to an
appropriately named attribute.

Class Method Replaced with Attribute

IPluginV3OneCore getPluginName() plugin_name[str]

IPluginV3OneCore getPluginNamespace() plugin_namespace [str]

IPluginV3OneCore getPluginVersion() plugin_version [str]

IPluginV3OneBuild getNbOutputs() num_outputs [int]

IPluginV3OneBuild getTimingCacheID() timing_cache_id [str]

IPluginV3OneBuild getMetadataString() metadata_string [str]

IPluginV3OneBuild getFormatCombinationLimit()format_combination_limit
[int]

IPluginCreatorV3One getPluginNamespace() plugin_namespace [str]

IPluginCreatorV3One getFieldNames() field_names
[PluginFieldCollection]

IPluginCreatorV3One getPluginName() name [str]

IPluginCreatorV3One getPluginVersion() plugin_version [str]

‣ Some methods have default implementations, these can be left unimplemented and
the default behaviors outlined below will take effect:
class trt.IPluginV3:
    def destroy(self):
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        pass

class trt.IPluginV3OneBuild:
    def get_valid_tactics(self):
        return []

    def get_workspace_size(self, input_desc, output_desc):
        return 0

‣ Methods that must return integer status codes in IPluginV3OneBuild and
IPluginV3OneRuntime should raise exceptions in Python instead. For example:
C++

int32_t configurePlugin(DynamicPluginTensorDesc const* in, int32_t nbInputs,
 DynamicPluginTensorDesc const* out, int32_t nbOutputs)

Python
configure_plugin(self: trt.IPluginV3OneBuild, in: List[trt.DynamicPluginTensorDesc],
 out: List[trt.DynamicPluginTensorDesc]) -> None

For example, you can raise a ValueError during enqueue if an input has an illegal
value.

‣ The Python API IPluginV3.destroy() has no direct equivalent in the C++ API.
Python plugins are expected to perform any functionality that would be performed in
a IPluginV3 C++ destructor within the IPluginV3.destroy() method.

For full examples demonstrating Python plugins, refer to the python_plugin sample.

9.2.1.  Registration of a Python Plugin
Python plugins must be dynamically registered through the
IPluginRegistry.register_creator() API. There is no analog to the
REGISTER_TENSORT_PLUGIN available for static registration.

9.2.2.  Building and Running TensorRT Engines
Containing Python Plugins

It is possible to build TensorRT engines using Python-based plugins. However, it is
currently not possible to run such engines outside of Python, since the plugin must be
available in the scope where the engine is being deserialized. For example, you cannot
use a tool like trtexec directly.

9.2.3.  Implementing enqueue of a Python Plugin
The API for IPluginV3OneRuntime::enqueue() in C++ and Python are as follows:

C++
int32_t enqueue(PluginTensorDesc const *inputDesc, PluginTensorDesc const *outputDesc,
 void const *const *inputs, void *const *outputs, void *workspace, cudaStream_t stream)

Python
enqueue(self: trt.IPluginV3OneRuntime, input_desc: List[trt.PluginTensorDesc],
 output_desc: List[trt.PluginTensorDesc], inputs: List[int], outputs: List[int],
 workspace: int, stream: int) -> None

Here inputs, outputs, and workspace are passed-in as intptr_t casts of the respective
device pointers. Similarly, stream is an intptr_t cast of a pointer to the CUDA stream

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/python_plugin
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handle. There is flexibility within Python on how to read from and write to these buffers,
and can be achieved depending on the particular use case. For example, with CUDA
Python, this is quite simple since cuda.cuLaunchKernel accepts int representing the
pointers wrapped in NumPy arrays:
d_input = np.array([inputs[0]], dtype=np.uint64)
d_output = np.array([outputs[0]], dtype=np.uint64)
stream_ptr = np.array([stream], dtype=np.uint64)
args = [d_input,  d_output]
kernel_args = np.array([arg.ctypes.data for arg in args], dtype=np.uint64)
…
checkCudaErrors(cuda.cuLaunchKernel(_float_kernel,
                                        num_blocks, 1, 1,
                                        block_size, 1, 1,
                                        0,
                                        stream_ptr,
                                        kernel_args , 0))

9.2.4.  Translating Device Buffers/CUDA Stream
Pointers in enqueue to other Frameworks

It is possible to construct CuPy arrays on top of device buffers using CuPy’s
UnownedMemory class.
def enqueue(self, input_desc, output_desc, inputs, outputs, workspace, stream):
...
inp_dtype = trt.nptype(input_desc[0].type)
inp_mem = cp.cuda.UnownedMemory(
    inputs[0], volume(input_desc[0].dims) * cp.dtype(inp_dtype).itemsize, self
)
out_mem = cp.cuda.UnownedMemory(
    outputs[0],
    volume(output_desc[0].dims) * cp.dtype(inp_dtype).itemsize,
    self,
)

inp_ptr = cp.cuda.MemoryPointer(inp_mem, 0)
out_ptr = cp.cuda.MemoryPointer(out_mem, 0)

inp = cp.ndarray((volume(input_desc[0].dims)), dtype=inp_dtype, memptr=inp_ptr)
out = cp.ndarray((volume(output_desc[0].dims)), dtype=inp_dtype, memptr=out_ptr)

If needed, torch.as_tensor() can then be used to construct a Torch array:
# inp_d = cp.ndarray(tuple(input_desc[0].dims), dtype=inp_dtype, memptr=inp_ptr)
inp_t = torch.as_tensor(inp_d, device='cuda')

Similarly, CuPy stream handles can be constructed from the passed-in stream pointer
through CuPy’s ExternalStream class.
cuda_stream = cp.cuda.ExternalStream(stream)

9.2.5.  Automatic Downcasting
TTensorRT Python bindings will do automatic downcasting for custom types written
in Python implementing interfaces like IPluginCreatorV3One or IPluginResource. For
example, take the following method from IPluginRegistry as an example:
get_creator(self: trt.IPluginRegistry, name: string, version: string, 
namespace: string = “”) -> trt.IPluginCreatorInterface

The return type is indicated as IPluginCreatorInterface. However, in practice, if you
were to write a class MyPluginCreator implementing IPluginCreatorV3One (which in

https://docs.cupy.dev/en/stable/reference/generated/cupy.cuda.UnownedMemory.html
https://pytorch.org/docs/stable/generated/torch.as_tensor.html
https://docs.cupy.dev/en/stable/reference/generated/cupy.cuda.ExternalStream.html
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turn implements IPluginCreatorInterface), the get_creator method will return an
automatically downcasted type of MyPluginCreator.

This extends to trt.IPluginRegistry.all_creators, which is a
List[trt.IPluginCreatorInterface]. If you had registered a plugin creator of type
MyPluginCreator as well as another of type MyOtherPluginCreator, both of those plugin
creators will be present as those respective types in the list.

9.2.6.  Example: Adding a Custom Layer to a
TensorRT Network Using Python

The Python API has a function called add_plugin_v3 that enables you to add a plugin
node to a network. The following example illustrates this. It creates a simple TensorRT
network and adds a leaky ReLU plugin node by looking up the TensorRT plugin registry.
import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger()

trt.init_libnvinfer_plugins(TRT_LOGGER, '')
def get_trt_plugin(plugin_name, plugin_version, plugin_namespace):
    plugin = None
    plugin_creator = trt.get_plugin_registry().get_creator(plugin_name, plugin_version,
 plugin_namespace)
    # trt will automatically downcast to IPluginCreator or IPluginCreatorInterface
    # Can inspect plugin_creator.interface_info to make sure
    if plugin_creator is not None:
        lrelu_slope_field = trt.PluginField("epsilon", np.array([0.00000001],
 dtype=np.float32), trt.PluginFieldType.FLOAT32)
        field_collection = trt.PluginFieldCollection([lrelu_slope_field])
        plugin = plugin_creator.create_plugin(name=plugin_name,
 field_collection=field_collection, phase=trt.TensorRTPhase.BUILD)
    return plugin

def main():
    builder = trt.Builder(TRT_LOGGER) 
    network = builder.create_network()
    config = builder.create_builder_config()
    config.max_workspace_size = 2**20
    input_layer = network.add_input(name="input_layer", dtype=trt.float32, shape=(1, 1))
    plugin = network.add_plugin_v3(inputs=[input_layer], shape_inputs=[],
 plugin=get_trt_plugin("MY_PLUGIN", "1", ""))
    plugin.get_output(0).name = "outputs"
    network.mark_output(plugin.get_output(0))

9.3.  Enabling Timing Caching and Using
Custom Tactics

IPluginV3 provides more control over the profiling of custom layers which were not
available with V2 plugins and earlier. One such feature is enabling timing caching. If a
TensorRT network contains multiple instances of the same plugin, identically configured
(for example, same plugin attribute values) and handling identical input output shapes
and types, then it would make sense to time (measure latency) of only one instance,
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cache the latency, and skip timing the rest of the instances. This would potentially enable
large savings in terms of engine build time.

Timing caching for IPluginV3 plugins is an opt-in feature; to opt-in, the plugin must
advertise a non-null timing cache ID.
C++

char const* FooPlugin::getTimingCacheID() noexcept override
{
    // return nullptr to disable timing caching (default behavior)
    // return non-null string to enable timing caching
}

Python
def FooPlugin(trt.IPluginV3, trt.IPluginV3OneBuild, ...):
    def __init__(self):
        # set to None to disable timing caching
        self.timing_cache_id = value

Note the following regarding the timing cache ID:

‣ The user-provided timing cache ID should be thought of as a suffix to a larger timing
cache ID; TensorRT automatically forms a prefix by considering the input/output
shape and format information of the plugin. In most cases, the user-provided timing
cache ID could consist of plugin attributes and their values.

‣ It must only reflect the creation state of the plugin. That is, it must not evolve after
the plugin has been created.

For V2 plugins, TensorRT only times the plugin for any (multiple) type/format
combinations it claims to support. With IPluginV3, plugins also have the ability to
make sure custom tactics are timed, and the fastest tactic is used by TensorRT. For
example, the plugin may have one of two kernels to compute the output, and it may not
be possible to predict which one would be fastest on a specific platform, and for specific
input/output shapes and formats. It is possible to ask TensorRT to time the plugin for
each tactic for each format combination, figure out the fastest such configuration and
use that during inference.

Note:

‣ TensorRT may choose not to time the plugin at all if it only supports one type/format
combination and either does not use custom tactics or only advertises one custom
tactic.

‣ For IPluginV3OneBuild, TensorRT times a maximum of
getFormatCombinationLimit() type/format combinations for each tactic; override
this method to increase/decrease this limit depending on need.

To get started, advertise the custom tactics to TensorRT:
C++

int32_t FooPlugin::getNbTactics() noexcept override
{
    return 2; // return 0 to disable custom tactics (default behavior)
}

int32_t FooPlugin::getValidTactics(int32_t* tactics, int32_t nbTactics) noexcept override
{
    tactics[0] = 1;
    tactics[1] = 2;
    return 0;
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}

Python
def get_valid_tactics(self):
    return [1, 2] # return empty vector to disable custom tactics (default behavior)

Any strictly positive integer could be used as a custom tactic value (0 is reserved as the
default tactic by TensorRT).

When the plugin is being timed, it is guaranteed that configurePlugin() is called with
the current input/output format combination before getValidTactics() is called.
Therefore, it is possible to advertise a different set of tactics per each input/output
format combination. For example, for a plugin which supports both FP32 and FP16,
tactic 1 may be restricted to only FP16 while supporting both tactics 1 and 2 for FP32.

During the engine build, when auto-tuning the plugin, TensorRT will
communicate the tactic to use for the subsequent enqueue() by invoking
IPluginV3OneRuntime::setTactic (C++, Python). When an engine is deserialized,
TensorRT will invoke setTactic once after the plugin has been created to communicate
to the plugin the best tactic chosen. Note that even if custom tactics are not used,
setTactic will be called with the default tactic value 0.

9.4.  Sharing Custom Resources Among
Plugins

Starting in TensorRT 10.0, a key-value store is associated with the plugin registry, which
can be used to store user-implemented IPluginResource (C++, Python) objects against
a string key. This functionality can be used to share state or some resource among
different plugins. Note that it is not tied to IPluginV3 (or even to plugin interfaces).

Let us explore an example.

9.4.1.  Example: Sharing Weights Downloaded
Over a Network Among Different Plugins

Assume that several plugins need access to the same weights W. Due to licensing
restrictions, you may prefer that these weights be downloaded when the engine is being
run. But due to the large size of W, it is also desirable that only one copy is downloaded,
and this copy shared among all plugins which need access.

 1. Implement SharedWeights class which implements IPluginResource.
 2. Each plugin that requires access to the weights requests an

instance of initialized (downloaded) SharedWeights by calling
IPluginRegistry::acquirePluginResource(...).
C++

IPluginResource* acquirePluginResource(char const* key, IPluginResource* resource)

(C++, Python)

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder_config.html#a37a53d51544307e31a274986ab6dad53
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginV3.html#tensorrt.IPluginV3OneRuntime.set_tactic
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#ab48566dd3b2d302ae26127ddedf2a687
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginRegistry.html#tensorrt.IPluginResource
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin_registry.html#ad327208d27de4161dcb7099ba37ce35b
http://infer/Plugin/IPluginRegistry.html#tensorrt.IPluginRegistry.acquire_plugin_resource
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Python
acquire_plugin_resource(self: trt.IPluginRegistry, key: str, resource:
 trt.IPluginResource) -> trt.IPluginResource

The first time acquirePluginResource is called against a particular key, TensorRT
registers a clone of the provided plugin resource instead of the object passed
as resource. That is, the object that is registered is the one obtained by invoking
resource->clone(). Therefore, it is best practice to only initialize clones – in this
case, the weight download can be done in IPluginResource::clone().

 3. After each plugin is done using the weights, it can call
IPluginRegistry::releasePluginResource() to signal that it no longer wishes to
use the weights.
C++

int32_t releasePluginResource(char const* key)

Python
release_plugin_resource(self: trt.IPluginRegistry, key: str) -> None

TensorRT performs reference counting on the acquirePluginResource and
releasePluginResource calls made against a particular key, and will call
IPluginResource::release() if and when the reference count reaches zero. In this
example, this functionality can be leveraged to free up the memory used by the
weights when all plugins have finished using it.

 4. Finally, the SharedWeights class can be implemented as follows:
class SharedWeights : public IPluginResource
{
public:
    SharedWeights(bool init = false)
    {
        if(init)
        {
            PLUGIN_CHECK(cudaMalloc((void**) &cloned->mWeights, ...));
        }
    }

    int32_t release() noexcept override
    {
        TRY
        {
            if (mWeights != nullptr)
            {
                PLUGIN_CHECK(cudaFree(mWeights));
                mWeights = nullptr;
            }
        }
        CATCH
        {
            return -1;
        }
        return 0;
    }

    IPluginResource* clone() noexcept override
    {
        TRY
        {
            auto cloned = std::make_unique<SharedWeights>(/* init */ true);
            //
            // Download the weights
            //
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            // Copy to device memory
            PLUGIN_CHECK(cudaMemcpy(cloned->mWeights, ...));
        }
        CATCH
        {
            return nullptr;
        }
        return cloned.release();
    }

    ~SharedWeights() override
    {
        if(mWeights)
        {
            release();
        }
    }

    float* mWeights{nullptr};
};

Say FooPlugin needs access to the weights. It can request the
weights when it is being made ready for inference. This can be done in
IPluginV3OneRuntime::onShapeChange, which will be called at least once for plugins
about to be enqueue() during both the build phase and runtime phase.
int32_t onShapeChange(
    PluginTensorDesc const* in, int32_t nbInputs, PluginTensorDesc const* out, int32_t
 nbOutputs) noexcept override
{
    SharedWeights w{};
    mW = static_cast<SharedWeights*>(getPluginRegistry()->acquirePluginResource("W",
 &w))->mWeights;
    return 0;
}

The acquired weights (mW) can then be used in the subsequent enqueue(). To wrap
up, the plugin can signal intent to release in its destructor (note that there is no
separate release resource routine similar to IPluginV2DynamicExt::terminate() in
IPluginV3).
~FooPlugin() override
{
    TRY
    {
        PLUGIN_CHECK(getPluginRegistry()->releasePluginResource("W"));
    }
    CATCH
    {
        // Error handling 
    }
}

Essentially the same code above can be used by all plugins requiring access to the
weights. The availability and proper freeing of the weights will be ensured by the
reference counting mechanism.
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9.5.  Using Custom Layers When
Importing a Model with a Parser

The ONNX parser automatically attempts to import unrecognized nodes as plugins. If
a plugin with the same op_type as the node is found in the plugin registry, the parser
forwards the attributes of the node to the plugin creator as plugin field parameters in
order to create the plugin. By default, the parser uses “1” as the plugin version and “” as
the plugin namespace. This behavior can be overridden by setting a plugin_version and
plugin_namespace string attribute in the corresponding ONNX node.

In some cases, you might want to modify an ONNX graph before importing it into
TensorRT. For example, to replace a set of ops with a plugin node. To accomplish this, you
can use the ONNX GraphSurgeon utility. For details on how to use ONNX-GraphSurgeon
to replace a subgraph, refer to this example.

For more examples, refer to the onnx_packnet sample.

9.6.  Plugin API Description
All new plugins should derive from both IPluginCreatorV3One and IPluginV3
classes. In addition, new plugins should also be registered in the plugin registry, either
dynamically by using IPluginRegistry::registerCreator() or statically using the
REGISTER_TENSORRT_PLUGIN(...) macro. Custom plugin libraries can also consider
implementing an init function equivalent to initLibNvInferPlugins() to perform bulk
registration.

Note: Automotive safety users must use the REGISTER_SAFE_TENSORRT_PLUGIN(...)
macro instead of REGISTER_TENSORRT_PLUGIN(...).

9.6.1.  IPluginV3 API Description
The following section describes the functions of the IPluginV3and by extension
IPluginV3OneCore, IPluginV3OneBuild and IPluginV3OneRuntime.

Since an IPluginV3 object consists of different capabilities,
IPluginV3::getCapabilityInterface may be called at anytime during its lifetime. An
IPluginV3 object added for the build phase must return a valid capability interface for all
capability types: core, build and runtime. The build capability may be omitted for objects
added for the runtime phase.

There are a few methods used to request identifying information about the plugin. They
may also be called during any stage of the plugin’s lifetime.
IPluginV3OneCore::getPluginName

Used to query for the plugin’s name.
IPluginV3OneCore::getPluginVersion

Used to query for the plugin’s version.

https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon/examples/08_replacing_a_subgraph
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/onnx_packnet
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IPluginV3OneCore::getPluginNamespace
Used to query for the plugin’s namespace.

IPluginV3OneBuild::getMetadataString
Used to query for a string representation of any metadata associated with the plugin,
such as the values of its attributes.

To connect a plugin layer to neighboring layers and set up input and output data
structures, the builder checks for the number of outputs and their shapes by calling the
following plugins methods:
IPluginV3OneBuild::getNbOutputs

Used to specify the number of output tensors.
IPluginV3OneBuild::getOutputShapes

Used to specify the shapes of output as a function of the input shapes or constants.
The exception is data-dependent shapes where an upper-bound and optimal tuning
value is specified.

IPluginV3OneBuild::supportsFormatCombination
Used to check if a plugin supports a given data type and format combination.

IPluginV3OneBuild::getOutputDataType
Used to get the data types of the output tensors. The returned data types must have
a format that is supported by the plugin.

Plugin layers can support the following data formats:

‣ LINEAR single-precision (FP32), half-precision (FP16), brain floating-point (BF16), 8-
bit floating-point E4M3 (FP8), integer (INT8), and integer (INT32) tensors

‣ CHW32 single-precision (FP32) and integer (INT8) tensors

‣ CHW2, HWC8,HWC16, and DHWC8 half-precision (FP16) tensors

‣ CHW4 half-precision (FP16), and integer (INT8) tensors

‣ HWC8, HWC4, NDHWC8, NC2HW brain floating-point (BF16) tensors

The formats are counted by PluginFormat.

Plugins that do not compute all data in place and need memory space in addition to
input and output tensors can specify the additional memory requirements with the
getWorkspaceSize method, which is called by the builder to determine and preallocate
scratch space.

At build time, to discover optimal configurations, the layer is configured, executed, and
destroyed. After the optimal configuration is selected for a plugin, during inference,
the chosen tactic and concrete shape/format information (except for data-dependent
dimensions) is communicated to the plugin, and it is executed as many times as needed
for the lifetime of the inference application, and finally destroyed when the engine is
destroyed.

These steps are controlled by the builder and runtime using the following plugin
methods. Methods also called during inference are indicated by (*) – all others are only
called by the builder.
IPluginV3OneBuild::attachToContext*

Used to request a plugin clone to be attached to an ExecutionContext and also to
provide the opportunity for the plugin to access any context-specific resources.
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IPluginV3OneBuild::getTimingCacheId
Used to query for any timing cached ID that may be used by TensorRT. Enables timing
caching if provided (disabled by default).

IPluginV3OneBuild::getValidTactics
Used to query for any custom tactics the plugin may choose to use. The
plugin will be profiled for each such tactic up to a maximum indicated by
IPluginV3OneBuild::getFormatCombinationLimit().

IPluginV3OneBuild::getFormatCombinationLimit
Used to query for the maximum number of format combinations that may be timed
for each tactic (for the default tactic 0 if no custom tactics are advertised).

IPluginV3OneRuntime::setTactic*
Communicates the tactic to be used during the subsequent enqueue(). If no custom
tactics were advertised, this would always be 0.

IPluginV3OneBuild::configurePlugin
Communicates the number of inputs and outputs, and their shapes, data types, and
formats. The min, opt, and max of each input or output’s DynamicPluginTensorDesc
correspond to the kMIN, kOPT, and kMAX value of the optimization profile that the
plugin is being currently profiled for, with the desc.dims field corresponding to the
dimensions of plugin inputs specified at network creation. Wildcard dimensions may
exist during this phase in the desc.dims field.

At this point, the plugin may set up its internal state and select the most appropriate
algorithm and data structures for the given configuration.

IPluginV3OneRuntime::onShapeChange*
Communicates the number of inputs and outputs, and their shapes, data types and
formats. The dimensions are concrete, except if data-dependent dimensions exist,
which will be indicated by wildcards.

IPluginV3OneRuntime::enqueue*
Encapsulates the actual algorithm and kernel calls of the plugin and provides pointers
to input, output, and scratch space, and the CUDA stream to be used for kernel
execution.

IPluginV3::clone
This is called every time a new builder, network, or engine is created that includes this
plugin layer. It must return a new plugin object with the correct parameters.

After the builder completes profiling, before the engine is serialized
IPluginV3OneRuntime::getFieldsToSerialize is called to query for any plugin fields
that must be serialized into the engine. These are expected to be data that the plugin
needs to properly function during the inference stage once the engine has been
deserialized.

9.6.2.  IPluginCreatorV3One API Description
The following methods in the IPluginCreatorV3One class are used to find and create the
appropriate plugin from the plugin registry:

getPluginName
This returns the plugin name and should match the return value of
IPluginV3OneCore::getPluginName.
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getPluginVersion
Returns the plugin version. For all internal TensorRT plugins, this defaults to 1.

getPluginNamespace
Returns the plugin namespace. Default can be "".

getFieldNames
To successfully create a plugin, it is necessary to know all the field parameters of the
plugin. This method returns the PluginFieldCollection struct with the PluginField
entries populated to reflect the field name and PluginFieldType (the data should
point to nullptr).

createPlugin
This method is used to create a plugin: it is passed a PluginFieldCollection and a
TensorRTPhase argument.

During engine deserialization, TensorRT calls this method with the TensorRTPhase
argument set to TensorRTPhase::kRUNTIME and the PluginFieldCollection
populated with the same PluginFields as in the one returned by
IPluginV3OneRuntime::getFieldsToSerialize(). TensorRT takes ownership of plugin
objects returned by createPlugin in this case.

You may also invoke createPlugin to produce plugin objects to add to a
TensorRT network. In this case, it is recommended to set the phase argument to
TensorRTPhase::kBUILD. The data passed with the PluginFieldCollection should be
allocated by the caller and eventually freed by the caller before the program is destroyed.
The ownership of the plugin object returned by the createPlugin function is passed to
the caller and must be destroyed as well.

9.7.  Migrating V2 Plugins to IPluginV3
IPluginV2 and IPluginV2Ext have been deprecated since TensorRT 8.5 and
IPluginV2IOExt and IPluginV2DynamicExt are deprecated in TensorRT 10.0. Therefore,
new plugins should target IPluginV3 and old ones refactored.

Keep in mind the following key points when migrating a IPluginV2DynamicExt plugin to
IPluginV3:

‣ The plugin creator associated with the plugin must be migrated to
IPluginCreatorV3One, which is the factory class for IPluginV3 (IPluginCreator
is the factory class for IPluginV2 derivatives). This simply consists of migrating
IPluginCreator::deserializePlugin. Refer to the Plugin Serialization and
Deserialization section for more information.

‣ There is no equivalent to IPluginV2::initialize(), IPluginV2::terminate()
and IPluginV2::destroy() in IPluginV3. Refer to the Plugin Initialization and
Termination section for more information.

‣ There is no equivalent to IPluginV2Ext::detachFromContext() in IPluginV3.
Refer to the Accessing Context-Specific Resources Provided by TensorRT for more
information.

‣ IPluginV3OneRuntime::attachToContext() is markedly different from
IPluginV2Ext::attachToContext(), both in terms of arguments and behavior.



Extending TensorRT with Custom Layers

NVIDIA TensorRT PG-08540-001_v10.1.0   |   112

Refer to the Accessing Context-Specific Resources Provided by TensorRT for more
information.

‣ In IPluginV3, plugin serialization is through a PluginFieldCollection that gets
passed to TensorRT by IPluginV3OneRuntime::getFieldsToSerialize() and
deserialization is through the same PluginFieldCollection that gets passed back
by TensorRT to IPluginCreatorV3One::createPlugin(...). Refer to the Plugin
Serialization and Deserialization section for more information.

‣ The IPluginV3 equivalents of void return methods in IPluginV2DynamicExt will
expect an integer status code as a return value (for example, configurePlugin).

‣ supportsFormatCombination and getWorkspaceSize get dynamic tensor descriptors
(DynamicPluginTensorDesc) instead of static descriptors (PluginTensorDesc).

‣ IPluginV2DynamicExt::getOutputDimensions() becomes
IPluginV3OneBuild::getOutputShapes(), and changes to an output
parameter signature instead of return value. Also, it shifts from a per-
output index querying to one-shot querying. A similar transition applies from
IPluginV2Ext::getOutputDataType to IPluginV3OneBuild::getOutputDataTypes.

9.7.1.  Plugin Initialization and Termination
IPluginV2 provided several APIs for plugin initialization and termination: namely,
IPluginV2::initialize(), IPluginV2::terminate(), and IPluginV2::destroy().
In IPluginV3, plugins are expected to be constructed in an initialized state; if
your V2 plugin had any lazy initialization in initialize, it can be deferred to
onShapeChange or configurePlugin. Any resource release or other termination logic
in IPluginV2::terminate() or IPluginV2::destroy() can be moved to the class
destructor. The exception to this is in the Python API; IPluginV3.destroy() is provided
as an alternative for a C++ like destructor.

9.7.2.  Accessing Context-Specific Resources
Provided by TensorRT

IPluginV2Ext::attachToContext() provided plugins access to context-
specific resources; namely the GPU allocator, and cuDNN and cuBLAS handles.
IPluginV3OneRuntime::attachToContext() is meant to provide a similar service to
plugins, but it instead provides a IPluginResourceContext, which in turn exposes
resources that plugins may request.

In a departure from IPluginV2Ext::attachToContext(), cuDNN and cuBLAS handles
are no longer provided by IPluginResourceContext; any plugins which depended on
those should migrate to initialize their own cuDNN and cuBLAS resources. If sharing
cuDNN/cuBLAS resources among plugins is preferred, you can utilize the functionality
provided by IPluginResource and the plugin registry’s key-value store to accomplish
this. Refer to the Sharing Custom Resources Among Plugins for more information.

IPluginV3OneRuntime::attachToContext(...) is a clone-and-attach operation. It is
asked to clone the entire IPluginV3 object – not just the runtime capability. Therefore,
if implemented as a separate class, the runtime capability object may need to hold a
reference to the IPluginV3 object of which it is a part of.
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Any context-specific resource obtained through IPluginResourceContext may
be used until the plugin is destroyed. Any termination logic implemented in
IPluginV2Ext::detachFromContext() may therefore be moved to the plugin destructor.

9.7.3.  Plugin Serialization and Deserialization
For V2 plugins, serialization and deserialization was determined by the
implementation of IPluginV2::serialize, IPluginV2::getSerializationSize
and IPluginCreator::deserializePlugin; these have been
replaced by IPluginV3OneRuntime::getFieldsToSerialize and
IPluginCreatorV3One::createPlugin. Note that the workflow has shifted from writing
to/reading from a raw buffer, to constructing and parsing a PluginFieldCollection.

The serialization of types defined in PluginFieldType is handled by TensorRT. Custom
types can be serialized as PluginFieldType::kUNKNOWN. For example:
struct DummyStruct
{
    int32_t a;
    float b;
};

DummyPlugin()
{
    // std::vector<nvinfer1::PluginField> mDataToSerialize;
    // int32_t mIntValue;
    // std::vector<float> mFloatVector;
    // DummyStruct mDummyStruct;
    mDataToSerialize.clear();
    mDataToSerialize.emplace_back(PluginField("intScalar", &mIntValue,
 PluginFieldType::kINT32, 1));
    mDataToSerialize.emplace_back(PluginField("floatVector", mFloatVector.data(),
 PluginFieldType::kFLOAT32, mFloatVector.size()));
    mDataToSerialize.emplace_back(PluginField("dummyStruct", &mDummyStruct,
 PluginFieldType::kUNKNOWN, sizeof(DummyStruct)));
    mFCToSerialize.nbFields = mDataToSerialize.size();
    mFCToSerialize.fields = mDataToSerialize.data();
}

nvinfer1::PluginFieldCollection const* DummyPlugin::getFieldsToSerialize() noexcept override
{
    return &mFCToSerialize;
}

9.7.4.  Migrating Older V2 Plugins to IPluginV3
If migrating from IPluginV2 or IPluginV2Ext to IPluginV3, it is easier to migrate first
to IPluginV2DynamicExt and then follow the guidelines above to migrate to IPluginV3.
The new features in IPluginV2DynamicExt are as follows:
virtual DimsExprs getOutputDimensions(int outputIndex, const DimsExprs* inputs, int nbInputs,
 IExprBuilder& exprBuilder) = 0;

virtual bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs,
 int nbOutputs) = 0;

virtual void configurePlugin(const DynamicPluginTensorDesc* in, int nbInputs, const
 DynamicPluginTensorDesc* out, int nbOutputs) = 0;

virtual size_t getWorkspaceSize(const PluginTensorDesc* inputs, int nbInputs, const
 PluginTensorDesc* outputs, int nbOutputs) const = 0;
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virtual int enqueue(const PluginTensorDesc* inputDesc, const PluginTensorDesc* outputDesc,
 const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) = 0;

Guidelines for migration to IPluginV2DynamicExt are

‣ getOutputDimensions implements the expression for output tensor dimensions
given the inputs.

‣ supportsFormatCombination checks if the plugin supports the format and datatype
for the specified I/O.

‣ configurePlugin mimics the behavior of equivalent configurePlugin in
IPluginV2Ext but accepts tensor descriptors.

‣ getWorkspaceSize and enqueue mimic the behavior of equivalent APIs in
IPluginV2Ext but accept tensor descriptors.

9.8.  Coding Guidelines for Plugins

Memory Allocation

Memory allocated in the plugin must be freed to ensure no memory leak. If resources are
acquired in the plugin constructor or at a later stage like onShapeChange, they must be
released, possibly in the plugin class destructor.

Another option is to request any additional workspace memory required through
getWorkspaceSize, which will then be available during enqueue.

Add Checks to Ensure Proper Configuration and Validate Inputs

A common source for unexpected plugin behavior is improper configuration (for example,
invalid plugin attributes) and invalid inputs. As such, it is good practice to add checks/
assertions during the initial plugin development for cases where the plugin is not
expected to work. The following are places where checks could be added:

‣ createPlugin: Plugin attributes checks

‣ configurePlugin/onShapeChange: Input dimension checks

‣ enqueue: Input value checks

Return Null at Errors for Methods That Creates a New Plugin Object

Methods like createPlugin, clone, and attachToContext may be expected to create and
return new plugin objects. In these methods, make sure a null object (nullptr in C++) is
returned in case of any error or failed check. This ensures that non-null plugin objects
are not returned when the plugin is incorrectly configured.

Avoid Device Memory Allocations in clone()

Since clone is called multiple times in the builder, device memory allocations could
be significantly expensive. One option is to do persistent memory allocations in
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the constructor, copy to device when the plugin is ready-to-use (for example, in
configurePlugin), and release during destruction.

Serializing Arbitrary Pieces of Data and Custom Types

Plugin authors can utilize PluginField of PluginFieldType::kUNKNOWN to indicate
arbitrary pieces of data to be serialized. In this case, the length of the respective
PluginField should be the number of bytes corresponding to the buffer pointed to by
data. The serialization of non-primitive types can be achieved in this way.

9.9.  Plugin Shared Libraries
TensorRT contains built-in plugins that can be loaded statically into your application.

You can explicitly register custom plugins with TensorRT using the
REGISTER_TENSORRT_PLUGIN and registerCreator interfaces (refer to Adding Custom
Layers Using the C++ API). However, you may want TensorRT to manage registration of
a plugin library, and, in particular, serialize plugin libraries with the plan file so they are
automatically loaded when the engine is created. This can be especially useful when you
want to include the plugins in a version compatible engine, so that you do not need to
manage them after building the engine. In order to take advantage of this, you can build
shared libraries with specific entry points recognized by TensorRT.

9.9.1.  Generating Plugin Shared Libraries
To create a shared library for plugins, the library must have the following public symbols
defined:
extern "C" void setLoggerFinder(ILoggerFinder& finder);
extern "C" IPluginCreator* const* getPluginCreators(int32_t& nbCreators) const;

Note extern "C" above is only used to prevent name mangling, and the methods
themselves should be implemented in C++. Consult your compiler's ABI documentation
for more details.

setLoggerFinder() should set a global pointer of ILoggerFinder in the library for
logging in the plugin code. getPluginCreators() returns a list of plugin creators your
library contains. An example of implementation of these entry points can be found in
plugin/common/vfcCommon.h/cpp.

To serialize your plugin libraries with your engine plan, provide the plugin libraries paths
to TensorRT using setPluginsToSerialize() in BuilderConfig.

When building version compatible engines, you may also want to package plugins in
the plan. The packaged plugins will have the same lifetime as the engine and will be
automatically registered/deregistered when running the engine.
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9.9.2.  Using Plugin Shared Libraries
After building your shared libraries, you can configure the builder to serialize the libraries
with the engine. Next time, when you load the engine into TensorRT, the serialized plugin
libraries will be loaded and registered automatically.

Note: IPluginRegistry’s loadLibrary() (C++, Python) functionality, demonstrated
below, is not supported for plugin shared libraries containing V3 plugin
creators (IPluginCreatorV3One). As a workaround,define the entry point
IPluginCreatorInterface* const* getCreators() in your library and then query this
to enumerate over each plugin creator and register it manually using IPluginRegistry’s
registerCreator() (C++, Python).

Load the plugins for use with the builder prior to building the engine:
C++

for (size_t i = 0; i < nbPluginLibs; ++i)
{
    builder->getPluginRegistry().loadLibrary(pluginLibs[i]);
}

Python
for plugin_lib in plugin_libs:
    builder.get_plugin_registry().load_library(plugin_lib)

Next, decide if the plugins should be included with the engine or shipped externally. You
can serialize the plugins with the plan as follows:
C++

IBuilderConfig *config = builder->createBuilderConfig();
...
config->setPluginsToSerialize(pluginLibs, nbPluginLibs);

Python
config = builder.create_builder_config()
...
config.plugins_to_serialize = plugin_libs

Alternatively, you can keep the plugins external to the engine. You will need to ship
these libraries along with the engine when it is deployed, and load them explicitly in the
runtime prior to deserializing the engine:
C++

// In this example, getExternalPluginLibs() is a user-implemented method which retrieves
 the list of libraries to use with the engine 
std::vector<std::string> pluginLibs = getExternalPluginLibs();
for (auto const &pluginLib : pluginLibs)
{
     runtime->getPluginRegistry().loadLibrary(pluginLib.c_str())
}

Python
# In this example, get_external_plugin_libs() is a user-implemented method which retrieves
 the list of libraries to use with the engine 
plugin_libs = get_external_plugin_libs()
for plugin_lib in plugin_libs:
    runtime.get_plugin_registry().load_library(plugin_lib)

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin_registry.html#a07987ec2b37532dd679a96a9317d3b5b
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginRegistry.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1safe_1_1_i_plugin_registry.html#af92972788746b5ced36fd563e6218dd4
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginRegistry.html
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Chapter 10. Working with Loops

NVIDIA TensorRT supports loop-like constructs, which can be useful for recurrent
networks. TensorRT loops support scanning over input tensors, recurrent definitions of
tensors, and both "scan outputs" and "last value" outputs.

10.1.  Defining a Loop
A loop is defined by loop boundary layers.

‣ ITripLimitLayer specifies how many times that the loop iterates.

‣ IIteratorLayer enables a loop to iterate over a tensor.

‣ IRecurrenceLayer specifies a recurrent definition.

‣ ILoopOutputLayer specifies an output from the loop.

Each of the boundary layers inherits from class ILoopBoundaryLayer, which has a
method getLoop() for getting its associated ILoop. The ILoop object identifies the loop.
All loop boundary layers with the same ILoop belong to that loop.

Figure 14 depicts the structure of a loop and data flow at the boundary. Loop-invariant
tensors can be used inside the loop directly, such as shown for FooLayer.
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Figure 14. A TensorRT loop is set by loop boundary layers. Dataflow
can leave the loop only by ILoopOutputLayer. The only back
edges allowed are the second input to IRecurrenceLayer.

A loop can have multiple IIteratorLayer, IRecurrenceLayer, and ILoopOutputLayer,
and at most two ITripLimitLayers as explained later. A loop with no ILoopOutputLayer
has no output and is optimized by TensorRT.

Layers For Flow-Control Constructs describes the TensorRT layers that may be used in
the loop interior.

Interior layers are free to use tensors defined inside or outside the loop. The interior can
contain other loops (refer to Nested Loops) and other conditional constructs (refer to
Conditionals Nesting).

To define a loop, first, create an ILoop object with the method
INetworkDefinition::addLoop. Then add the boundary and interior layers. The rest of
this section describes the features of the boundary layers, using loop to denote the
ILoop* returned by INetworkDefinition::addLoop.

ITripLimitLayer supports both counted loops and while-loops.

‣ loop->addTripLimit(t,TripLimit::kCOUNT) creates an ITripLimitLayer whose
input t is a 0D INT32 tensor that specifies the number of loop iterations.

‣ loop->addTripLimit(t,TripLimit::kWHILE) creates an ITripLimitLayer whose
input t is a 0D Bool tensor that specifies whether an iteration should occur. Typically,
t is either the output of an IRecurrenceLayer or a calculation based on said output.

A loop can have at most one of each kind of limit.

IIteratorLayer supports iterating forwards or backward over any axis.

‣ loop->addIterator(t) adds an IIteratorLayer that iterates over axis 0 of tensor t.
For example, if the input is the matrix:

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#layers-flow-control-constructs
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2 3 5
4 6 8

the output is the 1D tensor {2, 3, 5} on the first iteration and {4, 6, 8} for the
second iteration. It is invalid to iterate beyond the tensor’s bounds.

‣ loop->addIterator(t,axis) is similar, but the layer iterates over the given axis. For
example, if axis=1 and the input is a matrix, each iteration delivers a column of the
matrix.

‣ loop->addIterator(t,axis,reverse) is similar, but the layer produces its output in
reverse order if reverse=true.

ILoopOutputLayer supports three forms of loop output:

‣ loop->addLoopOutput(t,LoopOutput::kLAST_VALUE) outputs the last value of t,
where t must be the output of a IRecurrenceLayer.

‣ loop->addLoopOutput(t,LoopOutput::kCONCATENATE,axis) outputs the
concatenation of each iteration’s input to t. For example, if the input is a 1D tensor,
with value {a,b,c} on the first iteration and {d,e,f} on the second iteration, and
axis=0, the output is the matrix:
a b c
d e f

If axis=1, the output is:
a d
b e
c f

‣ loop->addLoopOutput(t,LoopOutput::kREVERSE,axis) is similar, but reverses the
order.

Both the kCONCATENATE and kREVERSE forms of ILoopOutputLayer require a second
input, which is a 0D INT32 shape tensor specifying the length of the new output
dimension. When the length is greater than the number of iterations, the extra
elements contain arbitrary values. The second input, for example u, should be set using
ILoopOutputLayer::setInput(1,u).

Finally, there is IRecurrenceLayer. Its first input specifies the initial output value, and
its second input specifies the next output value. The first input must come from outside
the loop; the second input usually comes from inside the loop. For example, the TensorRT
analog of this C++ fragment:
for (int32_t i = j; ...; i += k) ...

could be created by these calls, where j and k are ITensor*.
ILoop* loop = n.addLoop();
IRecurrenceLayer* iRec = loop->addRecurrence(j);
ITensor* i = iRec->getOutput(0);
ITensor* iNext = addElementWise(*i, *k, 
    ElementWiseOperation::kADD)->getOutput(0);
iRec->setInput(1, *iNext);

The second input to IRecurrenceLayer is the only case where TensorRT allows a back
edge. If such inputs are removed, the remaining network must be acyclic.
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10.2.  Formal Semantics
TensorRT has applicative semantics, meaning there are no visible side effects other than
engine inputs and outputs. Because there are no side effects, intuitions about loops
from imperative languages do not always work. This section defines formal semantics for
TensorRT’s loop constructs.

The formal semantics is based on lazy sequences of tensors. Each iteration of a loop
corresponds to an element in the sequence. The sequence for a tensor X inside the loop
is denoted #X0, X1, X2, ...#. Elements of the sequence are evaluated lazily, meaning,
as needed.

The output from IIteratorLayer(X) is #X[0], X[1], X[2], ...# where X[i]
denotes subscripting on the axis specified for the IIteratorLayer.

The output from IRecurrenceLayer(X,Y)is #X, Y0, Y1, Y2, ...#.

The input and output from an ILoopOutputLayer depend on the kind of LoopOutput.

‣ kLAST_VALUE: Input is a single tensor X, and output is Xn for an n-trip loop.

‣ kCONCATENATE: The first input is a tensor X, and the second input is a scalar shape
tensor Y. The result is the concatenation of X0, X1, X2, ... Xn-1 with post padding,
if necessary, to the length specified by Y. It is a runtime error if Y < n. Y is a build time
constant. Note the inverse relationship with IIteratorLayer. IIteratorLayer maps
a tensor to a sequence of subtensors; ILoopOutputLayer with kCONCATENATE maps a
sequence of sub tensors to a tensor.

‣ kREVERSE: Similar to kCONCATENATE, but the output is in the reverse direction.

The value of n in the definitions for the output of ILoopOutputLayer is determined by
the ITripLimitLayer for the loop:

‣ For counted loops, it is the iteration count, meaning the input to the
ITripLimitLayer.

‣ For while loops, it is the least n such that Xn is false, where X is the sequence for the
ITripLimitLayer’s input tensor.

The output from a non-loop layer is a sequence-wise application of the layer’s
function. For example, for a two-input non-loop layer F(X,Y) = #f(X0,Y0), f(X1,Y1),
f(X2,Y2)...#. If a tensor comes from outside the loop, that is, a loop invariant, then the
sequence for it is created by replicating the tensor.

10.3.  Nested Loops
TensorRT infers the nesting of the loops from the data flow. For instance, if loop B uses
values defined inside loop A, then B is considered to be nested inside of A.

TensorRT rejects networks where the loops are not cleanly nested, such as if loop A uses
values defined in the interior of loop B and vice versa.
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10.4.  Limitations
A loop that refers to more than one dynamic dimension can take an unexpected amount
of memory.

In a loop, memory is allocated as if all dynamic dimensions take on the maximum value
of any of those dimensions. For example, if a loop refers to two tensors with dimensions
[4,x,y] and [6,y], memory allocation for those tensors is as if their dimensions were
[4,max(x,y),max(x,y)] and [6,max(x,y)].

The input to a LoopOutputLayer with kLAST_VALUE must be the output from an
IRecurrenceLayer.

The loop API supports only FP32 and FP16 precision.

10.5.  Replacing IRNNv2Layer with Loops
IRNNv2Layer was deprecated in TensorRT 7.2.1 and will be removed in TensorRT 9.0.
Use the loop API to synthesize a recurrent sub network. For an example, refer to
sampleCharRNN, method SampleCharRNNLoop::addLSTMCell. You can express general
recurrent networks instead of being limited to the prefabricated cells in IRNNLayer and
IRNNv2Layer using the loop API.

Refer to sampleCharRNN for more information.

https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleCharRNN
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Chapter 11. Working with Conditionals

NVIDIA TensorRT supports conditional if-then-else flow control. TensorRT conditionals
are used to implement conditional execution of network subgraphs.

11.1.  Defining a Conditional
An if-conditional is defined by conditional boundary layers:

‣ IConditionLayer represents the predicate and specifies whether the conditional
should execute the true-branch (then-branch) or the false-branch (else-branch).

‣ IIfConditionalInputLayer specifies an input to one of the two conditional
branches.

‣ IIfConditionalOutputLayer specifies an output from a conditional.

Each of the boundary layers inherits from class IIfConditionalBoundaryLayer, which
has a method getConditional() for getting its associated IIfConditional. The
IIfConditional instance identifies the conditional. All conditional boundary layers with
the same IIfConditional belong to that conditional.

A conditional must have exactly one instance of IConditionLayer, zero, or
more instances of IIfConditionalInputLayer, and at least one instance of
IIfConditionalOutputLayer.

IIfConditional implements an if-then-else flow-control construct that provides
conditional-execution of a network subgraph based on a dynamic boolean input.
It is defined by a boolean scalar predicate condition, and two branch subgraphs:
a trueSubgraph which is executed when condition evaluates to true, and a
falseSubgraph which is executed when condition evaluates to false:
If condition is true then: 
 output = trueSubgraph(trueInputs);
Else
 output = falseSubgraph(falseInputs);
Emit output

Both the true-branch and the false-branch must be defined, similar to the ternary
operator in many programming languages.

To define an if-conditional, create an IIfConditional instance with the method
INetworkDefinition::addIfConditional, then add the boundary and branch layers.
IIfConditional* simpleIf = network->addIfConditional();
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The IIfConditional::setCondition method takes a single argument: the condition
tensor. This 0D boolean tensor (scalar) can be computed dynamically by earlier layers in
the network. It is used to decide which of the branches to execute. An IConditionLayer
has a single input (the condition) and no outputs since it is used internally by the
conditional implementation.
// Create a condition predicate that is also a network input.
auto cond = network->addInput("cond", DataType::kBOOL, Dims{0});
IConditionLayer* condition = simpleIf->setCondition(*cond);

TensorRT does not support a subgraph abstraction for implementing
conditional branches and instead uses IIfConditionalInputLayer and
IIfConditionalOutputLayer to define the boundaries of conditionals.

‣ An IIfConditionalInputLayerabstracts a single input to one or both
of the branch subgraphs of an IIfConditional. The output of a specific
IIfConditionalInputLayercan feed both branches.
// Create an if-conditional input.
// x is some arbitrary Network tensor.
IIfConditionalInputLayer* inputX = simpleIf->addInput(*x);

Inputs to the then-branch and the else-branch do not have to be of the same type
and shape. Each branch can independently include zero or more inputs.

IIfConditionalInputLayeris optional and is used to control which layers will be part
of the branches (refer to Conditional Execution). If all of a branch's outputs do not
depend on an IIfConditionalInputLayerinstance, that branch is empty. An empty
else-branch can be useful when there are no layers to evaluate when the condition is
false, and the network evaluation should proceed following the conditional (refer to
Conditional Examples).

‣ An IIfConditionalOutputLayerabstracts a single output of the if-conditional. It has
two inputs: an output from the true-subgraph (input index 0) and an output from the
false-subgraph (input index 1). The output of an IIfConditionalOutputLayer can
be thought of as a placeholder for the final output that will be determined during
runtime.

IIfConditionalOutputLayer serves a role similar to that of a Φ (Phi) function node
in traditional SSA control-flow graphs. Its semantics are: choose either the output of
the true-subgraph or the false-subgraph.
// trueSubgraph and falseSubgraph represent network subgraphs
IIfConditionalOutputLayer* outputLayer = simpleIf->addOutput(
    *trueSubgraph->getOutput(0), 
    *falseSubgraph->getOutput(0));

All outputs of an IIfConditional must be sourced at an
IIfConditionalOutputLayer instance.

An if-conditional without outputs has no effect on the rest of the network, therefore,
it is considered ill-formed. Each of the two branches (subgraphs) must also have at
least one output. The output of an if-conditional can be marked as the output of the
network, unless that if-conditional is nested inside another if-conditional or loop.

The diagram below provides a graphical representation of the abstract model of an if-
conditional. The green rectangle represents the interior of the conditional, which is
limited to the layer types listed in Layers For Flow-Control Constructs.

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#layers-flow-control-constructs
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Figure 15. An If-Conditional Construct Abstract Model

11.2.  Conditional Execution
Conditional execution of network layers is a network evaluation strategy in which
branch-layers (the layers belonging to a conditional subgraph) are executed only if the
values of the branch outputs are needed. In conditional-execution, either the true-
branch or the false-branch is executed and allowed to change the network state.

In contrast, in predicated-execution, both the true-branch and the false-branch are
executed and only one of these is allowed to change the network evaluation state,
depending on the value of the condition predicate (that is, only the outputs of one of the
subgraphs is fed into the following layers).

Conditional execution is sometimes called lazy evaluation, and predicated-execution is
sometimes referred to as eager evaluation.

Instances of IIfConditionalInputLayer can be used to specify which layers are
invoked eagerly and which are invoked lazily. This is done by tracing the network
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layers backwards, starting with each of the conditional outputs. Layers that are data-
dependent on the output of at least one IIfConditionalInputLayer are considered
internal to the conditional and are therefore evaluated lazily. In the extreme case that no
instances of IIfConditionalInputLayer are added to the conditional, all of the layers
are executed eagerly, similarly to ISelectLayer.

The three diagrams below depict how the choice of IIfConditionalInputLayer
placement controls execution scheduling.

Figure 16. Controlling Conditional-Execution using
IIfConditionalInputLayer Placement

In diagram A, the true-branch is composed of three layers (T1, T2, T3). These layers
execute lazily when the condition evaluates to true.

In diagram B, input-layer I1 is placed after layer T1, which moves T1 out of the true-
branch. Layer T1 executes eagerly before evaluating the if-construct.

In diagram C, input-layer I1 is removed altogether, which moves T3 outside the
conditional. T2’s input is reconfigured to create a legal network, and T2 also moves out
of the true-branch. When the condition evaluates to true, the conditional does not
compute anything since the outputs have already been eagerly computed (but it does
copy the conditional relevant inputs to its outputs).

11.3.  Nesting and Loops
Conditional branches may nest other conditionals and may also nest loops. Loops may
nest conditionals. As in loop nesting, TensorRT infers the nesting of the conditionals and
loops from the data flow. For example, if conditional B uses a value defined inside loop A,
then B is considered to be nested inside of A.



Working with Conditionals

NVIDIA TensorRT PG-08540-001_v10.1.0   |   126

There can be no cross-edges connecting layers in the true-branch to layers in the false-
branch, and vice versa. In other words, the outputs of one branch cannot depend on
layers in the other branch.

For example, refer to Conditional Examples for how nesting can be specified.

11.4.  Limitations
The number of output tensors in both true/false subgraph branches must be the same.
The type and shape of each output tensor from the branches must be the same.

Note that this is more constrained than the ONNX specification, which requires that the
true/false subgraphs have the same number of outputs and use the same output types,
but allows for different output shapes.

11.5.  Conditional Examples

11.5.1.  Simple If-Conditional
The following example shows how to implement a simple conditional that conditionally
performs an arithmetic operation on two tensors.

Conditional
condition = true
If condition is true:
        output = x + y
Else:
        output = x - y

Example
ITensor* addCondition(INetworkDefinition& n, bool predicate)
{
    // The condition value is a constant int32 input that is cast to boolean because TensorRT
 doesn't support boolean constant layers.

    static const Dims scalarDims = Dims{0, {}};
    static float constexpr zero{0};
    static float constexpr one{1};

    float* const val = predicate ? &one : &zero;

    ITensor* cond = 
        n.addConstant(scalarDims, DataType::kINT32, val, 1})->getOutput(0);

    auto* cast = n.addIdentity(cond);
    cast->setOutputType(0, DataType::kBOOL);
    cast->getOutput(0)->setType(DataType::kBOOL);

    return cast->getOutput(0);
}

IBuilder* builder = createInferBuilder(gLogger);
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INetworkDefinition& n = *builder->createNetworkV2(0U);
auto x = n.addInput("x", DataType::kFLOAT, Dims{1, {5}});
auto y = n.addInput("y", DataType::kFLOAT, Dims{1, {5}});
ITensor* cond = addCondition(n, true);

auto* simpleIf = n.addIfConditional();
simpleIf->setCondition(*cond);

// Add input layers to demarcate entry into true/false branches.
x = simpleIf->addInput(*x)->getOutput(0);
y = simpleIf->addInput(*y)->getOutput(0);

auto* trueSubgraph = n.addElementWise(*x, *y, ElementWiseOperation::kSUM)->getOutput(0);
auto* falseSubgraph = n.addElementWise(*x, *y, ElementWiseOperation::kSUB)->getOutput(0);

auto* output = simpleIf->addOutput(*trueSubgraph, *falseSubgraph)->getOutput(0);
n.markOutput(*output);

11.5.2.  Exporting from PyTorch
The following example shows how to export scripted PyTorch code to ONNX. The code in
function sum_even performs an if-conditional nested in a loop.
import torch.onnx
import torch
import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)

@torch.jit.script
def sum_even(items):
    s = torch.zeros(1, dtype=torch.float)
    for c in items:
        if c % 2 == 0:
            s += c
    return s

class ExampleModel(torch.nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, items):
        return sum_even(items)

def build_engine(model_file):
    builder = trt.Builder(TRT_LOGGER)
    network = builder.create_network(EXPLICIT_BATCH)
    config = builder.create_builder_config()
    parser = trt.OnnxParser(network, TRT_LOGGER)

    with open(model_file, 'rb') as model:
        assert parser.parse(model.read())
        return builder.build_engine(network, config)

def export_to_onnx():
    items = torch.zeros(4, dtype=torch.float)
    example = ExampleModel()
    torch.onnx.export(example, (items), "example.onnx", verbose=False, opset_version=13,
 enable_onnx_checker=False, do_constant_folding=True)

export_to_onnx()
build_engine("example.onnx")
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Chapter 12. Working with DLA

NVIDIA DLA (Deep Learning Accelerator) is a fixed-function accelerator engine targeted
for deep learning operations. DLA is designed to do full hardware acceleration of
convolutional neural networks. DLA supports various layers such as convolution,
deconvolution, fully connected, activation, pooling, batch normalization, and so on. DLA
does not support Explicit Quantization. For more information about DLA support in
TensorRT layers, refer to DLA Supported Layers and Restrictions.

DLA is useful for offloading CNN processing from the iGPU, and is significantly more
power-efficient for these workloads. In addition, it can provide an independent execution
pipeline in cases where redundancy is important, for example in mission-critical or safety
applications.

For more information about DLA, refer to the DLA developer page and the DLA tutorial
Getting started with the Deep Learning Accelerator on NVIDIA Jetson Orin.

When building a model for DLA, the TensorRT builder parses the network and calls the
DLA compiler to compile the network into a DLA loadable. Refer to Using trtexec to see
how to build and run networks on DLA.

https://developer.nvidia.com/deep-learning-accelerator
https://github.com/NVIDIA-AI-IOT/jetson_dla_tutorial
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Figure 17. Workflow for the Building and Runtime Phases of DLA

12.1.  Building and Launching the
Loadable

There are several different ways to build and launch a DLA loadable, either embedded in a
TensorRT engine or in standalone form.

For generating a standalone DLA loadable to be used outside TensorRT, refer to DLA
Standalone Mode.
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12.1.1.  Using trtexec
To allow trtexec to use the DLA, you can use the –useDLACore flag. For example, to
run the ResNet-50 network on DLA core 0 in FP16 mode, with GPU Fallback Mode for
unsupported layers, issue:
 ./trtexec --onnx=data/resnet50/ResNet50.onnx --useDLACore=0 --fp16 --allowGPUFallback

The trtexec tool has additional arguments to run networks on DLA. For more
information, refer to Command-Line Programs.

12.1.2.  Using the TensorRT API
You can use the TensorRT API to build and run inference with DLA and to enable DLA at
layer level. The relevant APIs and samples are provided in the following sections.

12.1.2.1. Running on DLA during TensorRT Inference
The TensorRT builder can be configured to enable inference on DLA. DLA support
is currently limited to networks running in FP16 and INT8 mode. The DeviceType
enumeration is used to specify the device that the network or layer executes on. The
following API functions in the IBuilderConfig class can be used to configure the
network to use DLA:

setDeviceType(ILayer* layer, DeviceType deviceType)
This function can be used to set the deviceType that the layer must execute on.

getDeviceType(const ILayer* layer)
This function can be used to return the deviceType that this layer executes on. If the
layer is executing on the GPU, this returns DeviceType::kGPU.

canRunOnDLA(const ILayer* layer)
This function can be used to check if a layer can run on DLA.

setDefaultDeviceType(DeviceType deviceType)
This function sets the default deviceType to be used by the builder. It ensures that all
the layers that can run on DLA runs on DLA unless setDeviceType is used to override
the deviceType for a layer.

getDefaultDeviceType()
This function returns the default deviceType which was set by
setDefaultDeviceType.

isDeviceTypeSet(const ILayer* layer)
This function checks whether the deviceType has been explicitly set for this layer.

resetDeviceType(ILayer* layer)
This function resets the deviceType for this layer. The value is reset to the
deviceType that is specified by setDefaultDeviceType or DeviceType::kGPU if none
is specified.

allowGPUFallback(bool setFallBackMode)
This function notifies the builder to use GPU if a layer that was supposed to run on
DLA cannot run on DLA. For more information, refer to GPU Fallback Mode.
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reset()
This function can be used to reset the IBuilderConfig state, which sets the
deviceType for all layers to be DeviceType::kGPU. After reset, the builder can be
reused to build another network with a different DLA config.

The following API functions in IBuilder class can be used to help configure the network
for using the DLA:
getMaxDLABatchSize()

This function returns the maximum batch size DLA can support.

Note: For any tensor, the total volume of index dimensions combined with the
requested batch size must not exceed the value returned by this function.

getNbDLACores()
This function returns the number of DLA cores available to the user.

If the builder is not accessible, such as in the case where a plan file is being loaded online
in an inference application, then the DLA to be used can be specified differently by using
DLA extensions to the IRuntime. The following API functions in the IRuntime class can
be used to configure the network to use DLA:
getNbDLACores()

This function returns the number of DLA cores that are accessible to the user.
setDLACore(int dlaCore)

The DLA core to execute on. Where dlaCore is a value between 0 and
getNbDLACores() - 1. The default value is 0.

getDLACore()
The DLA core that the runtime execution is assigned to. The default value is 0.

12.1.2.2. Example: Run Samples with DLA
This section provides details on how to run a TensorRT sample with DLA enabled.

Create the builder:
auto builder = SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(gLogger));
if (!builder) return false;
builder->setMaxBatchSize(batchSize);
config->setMaxWorkspaceSize(16_MB);

Then, enable GPUFallback mode:
config->setFlag(BuilderFlag::kGPU_FALLBACK);
config->setFlag(BuilderFlag::kFP16); or config->setFlag(BuilderFlag::kINT8);

Enable execution on DLA, where dlaCore specifies the DLA core to execute on:
config->setDefaultDeviceType(DeviceType::kDLA);
config->setDLACore(dlaCore);

With these additional changes, sampleMNIST is ready to execute on DLA. To run samples
with DLA Core 1, append --useDLACore=0 to the sample command.

12.1.2.3. Example: Enable DLA Mode for a Layer during
Network Creation

In this example, let us create a simple network with Input, Convolution, and Output.
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 1. Create the builder, builder configuration, and the network:
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder.createBuilderConfig();
INetworkDefinition* network = builder->createNetworkV2(0U);

 2. Add the Input layer to the network, with the input dimensions.
auto data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{1, INPUT_H, INPUT_W});

 3. Add the Convolution layer with hidden layer input nodes, strides, and weights for
filter and bias.
auto conv1 = network->addConvolution(*data->getOutput(0), 20, DimsHW{5, 5},
 weightMap["conv1filter"], weightMap["conv1bias"]);
conv1->setStride(DimsHW{1, 1});

 4. Set the convolution layer to run on DLA:
if(canRunOnDLA(conv1))
{
config->setFlag(BuilderFlag::kFP16); or config->setFlag(BuilderFlag::kINT8);
builder->setDeviceType(conv1, DeviceType::kDLA); 

}

 5. Mark the output:
network->markOutput(*conv1->getOutput(0));

 6. Set the DLA core to execute on:
config->setDLACore(0)

12.1.3.  Using the cuDLA API
cuDLA is an extension of the CUDA programming model that integrates DLA runtime
software with CUDA. This integration makes it possible to launch DLA loadables using
CUDA programming constructs such as streams and graphs.

Managing shared buffers as well as synchronizing the tasks between GPU and DLA is
transparently handled by cuDLA. Refer to the NVIDIA cuDLA documentation on how the
cuDLA APIs can be used for these use cases while writing a cuDLA application.

Refer to the DLA Standalone Mode section for more information on how to use TensorRT
to build a standalone DLA loadable usable with cuDLA.

12.2.  DLA Supported Layers and
Restrictions

This section lists the layers supported by DLA along with the constraints associated with
each layer.

12.2.1.  General Restrictions
The following restrictions apply to all layers while running on DLA:

‣ The maximum supported batch size is 4096.

‣ The maximum supported size for non-batch dimensions is 8192.

https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html#cudla-intro
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‣ DLA does not support dynamic dimensions. Thus, for wildcard dimensions, the min,
max, and opt values of the profile must be equal.

‣ The runtime dimensions must be the same as the dimension used for building.

‣ TensorRT may split a network into multiple DLA loadables if any intermediate layers
cannot run on DLA and GPUFallback is enabled. Otherwise, TensorRT can emit an
error and fallback. For more information, refer to GPU Fallback Mode.

‣ At most 16 DLA loadables can be loaded concurrently, per core, due to hardware and
software memory limitations.

‣ Within a single DLA loadable, each layer must have the same batch size. If layers have
different batch sizes, they will be partitioned into separate DLA graphs.

Note: Batch size for DLA is the product of all index dimensions except the CHW dimensions.
For example, if input dimensions are NPQRS, the effective batch size is N*P.

12.2.2.  Layer Support and Restrictions
The following list provides layer support and restrictions to the specified layers while
running on DLA:

Convolution and Fully Connected layers

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Each dimension of the kernel size must be in the range [1, 32].

‣ Padding must be in the range [0, 31].

‣ Dimensions of padding must be less than the corresponding kernel dimension.

‣ Dimensions of stride must be in the range [1, 8].

‣ Number of output maps must be in the range [1, 8192].

‣ Number of input channels [1, 8192].

‣ Number of groups must be in the range [1, 8192] for operations using the formats
TensorFormat::kDLA_LINEAR, TensorFormat::kCHW16, and TensorFormat::kCHW32.

‣ Number of groups must be in the range [1, 4] for operations using the formats
TensorFormat::kDLA_HWC4.

‣ Dilated convolution must be in the range [1, 32].

‣ Operations are not supported if the CBUF size requirement wtBanksForOneKernel +
minDataBanks exceeds the numConvBufBankAllotted limitation 16, where CBUF is the
internal convolution cache that stores input weights and activation before operating
on them, wtBanksForOneKernel is the minimum banks for one kernel to store the
minimum weight/kernel elements needed for convolution, and minDataBanks is the
minimum banks to store the minimum activation data needed for convolution. When
a convolution layer fails validation due to CBUF constraints, details are displayed in
the logging output.
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Deconvolution layer

‣ Only two spatial dimensions are supported.

‣ Both FP16 and INT8 are supported.

‣ The kernel dimensions and strides must be in the range[1, 32], or must be 1x[64,
96, 128] and [64, 96, 128]x1.

‣ TensorRT has disabled deconvolution square kernels and strides in the range [23 -
32] on DLA as they significantly slow down compilation.

‣ Padding must be 0

‣ Grouped deconvolution must be 1.

‣ Dilated deconvolutions must be 1.

‣ Number of input channels must be in the range [1, 8192].

‣ Number of output channels must be in the range [1, 8192].

Pooling layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Operations supported: kMAX, kAVERAGE.

‣ Dimensions of the window must be in the range [1, 8].

‣ Dimensions of padding must be in the range [0, 7].

‣ Dimensions of stride must be in the range [1, 16].

‣ With INT8 mode, input and output tensor scales must be the same.

Activation layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Functions supported: ReLU, Sigmoid, TanH, Clipped ReLU, and Leaky ReLU.

‣ Negative slope is not supported for ReLU.

‣ Clipped ReLU only supports values in the range [1, 127].

‣ TanH, Sigmoid INT8 support is supported by auto-upgrading to FP16.

Parametric ReLU layer

‣ Slope input must be a build time constant and have the same rank as the input
tensor.

ElementWise layer

‣ Only two spatial dimension operations are supported.
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‣ Both FP16 and INT8 are supported.

‣ Operations supported: Sum, Sub, Product, Max, Min, Div, Pow, Equal, Greater, and Less
(described separately).

‣ Broadcasting is supported when one of the operands has one of the following shape
configurations:

‣ NCHW (that is, shapes equal)

‣ NC11 (that is, N and C equal, H and W are 1)

‣ N111 (that is, N equal, C, H, and W are 1)

‣ Div operation

‣ The first input (dividend) can be either INT8 or FP16 or an FP32 constant. The
second input (divisor) must be INT8 or an FP32 constant.

‣ If one of the inputs is constant, all values of its weights must be the same.
Additionally, the other input must be an INT8 non-constant.

‣ Pow operation

‣ One input must be a FP32 constant filled with the same value, the other input
must be an INT8 non-constant.

Comparison operations (Equal, Greater, Less)

‣ Only supports INT8 layer precision. Only supports INT8 inputs except when using
constants, which should be of FP32 type filled with the same value.

‣ DLA requires that the comparison operation output be FP16 or INT8 type.
Thus, the comparison layer must be immediately followed by a Cast operation
(IIdentityLayer/ICastLayer) to FP16 or INT8 and should have no direct consumers
other than this Cast operation.

‣ For both the ElementWise comparison layer and the subsequent
IIdentityLayer/ICastLayer mentioned above, explicitly set your device types to
DLA and their precisions to INT8. Otherwise, these layers will run on the GPU.

‣ Even with GPU fallback allowed, you should expect failures in engine construction
in some cases, for example, when DLA loadable compilation fails. If this is the case,
unset the device types and/or precisions of both the ElementWise comparison layer
and IIdentityLayer/ICastLayer to have both offloaded to GPU.

Scale layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Mode supported: Uniform, Per-Channel, and ElementWise.

‣ Only scale and shift operations are supported.
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LRN (Local Response Normalization) layer

‣ Allowed window sizes are 3, 5, 7, or 9.

‣ Normalization region supported is ACROSS_CHANNELS.

‣ LRN INT8 is supported by auto-upgrading to FP16.

Concatenation layer

‣ DLA supports concatenation only along the channel axis.

‣ Concat must have at least two inputs.

‣ All the inputs must have the same spatial dimensions.

‣ Both FP16 and INT8 are supported.

‣ With INT8 mode, the dynamic range of all the inputs must be the same.

‣ With INT8 mode, the dynamic range of output must be equal to each of the inputs.

Resize layer

‣ The number of scales must be exactly 4.

‣ The first two elements in scales must be exactly 1 (for unchanged batch and channel
dimensions).

‣ The last two elements in scales, representing the scale values along height and width
dimensions, respectively, must be integer values in the range of [1, 32] in nearest-
neighbor mode and [1, 4] in bilinear mode.

‣ Note that for bilinear resize INT8 mode, when the input dynamic range is larger than
the output dynamic range, the layer will be upgraded to FP16 to preserve accuracy.
This can negatively affect the latency.

Unary layer

‣ Only the ABS operation is supported.

‣ DLA supports ABS, SIN, COS, and ATAN operation types.

‣ For SIN, COS, and ATAN, input precision must be INT8.

‣ All input non-batch dimensions must be in the range [1, 8192].

Slice layer

‣ Both FP16 and INT8 are supported.

‣ Supports batch sizes up to general DLA maximum.

‣ All input non-batch dimensions must be in the range [1, 8192].

‣ Only supports 4-D inputs and slicing at CHW dimensions.
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‣ Only supports static slicing, so slice parameters have to be provided statically either
using TensorRT ISliceLayer setter APIs or as constant input tensors.

SoftMax layer

‣ Only supported on NVIDIA Orin™, not Xavier™.

‣ All input non-batch dimensions must be in the range [1, 8192].

‣ Axis must be one of the non-batch dimensions.

‣ Supports FP16 and INT8 precision.

‣ Internally, there are two modes, and the mode is selected based on the given input
tensor shape.

‣ The accurate mode is triggered when all non-batch, non-axis dimensions are 1.

‣ The optimized mode allows the non-batch, non-axis dimensions to be greater
than 1 but restricts the axis dimension to 1024 and involves an approximation
that may cause a small error in the output. The magnitude of the error increases
as the size of the axis dimension approaches 1024.

Shuffle layer

‣ Only supports 4-D input tensors.

‣ All input non-batch dimensions must be in the range [1, 8192].

‣ Note that DLA decomposes the layer into standalone transpose and reshape
operations. This means that the above restrictions apply individually to each of the
decomposed operations.

‣ Batch dimensions cannot be involved in either reshapes or transposes.

Reduce layer

‣ Only supports 4-D input tensors.

‣ All input non-batch dimensions must be in the range [1, 8192].

‣ Both FP16 and INT8 are supported.

‣ Only supports MAX operation type where any combination of the CHW axes is
reduced.

12.2.3.  Inference on NVIDIA Orin
Due to the difference in hardware specifications between NVIDIA Orin and Xavier DLA, an
increase up to 2x in latency may be observed for FP16 convolution operations on NVIDIA
Orin.

On NVIDIA Orin, DLA stores weights for non-convolution operations (FP16 and INT8)
inside a loadable as FP19 values (which use 4 byte containers). The channel dimensions
are padded to multiples of either 16 (FP16) or 32 (INT8) for those FP19 values. Especially
in the case of large per-element Scale, Add, or Sub operations, this can inflate the size
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of the DLA loadable, inflating the engine containing such a loadable. Graph optimization
may unintentionally trigger this behavior by changing the type of a layer, for example,
when an ElementWise multiplication layer with a constant layer as weights is fused into a
scale layer.

12.3.  GPU Fallback Mode
The GPUFallbackMode sets the builder to use GPU if a layer that was marked to run on
DLA could not run on DLA. A layer cannot run on DLA due to the following reasons:

 1. The layer operation is not supported on DLA.
 2. The parameters specified are out of the supported range for DLA.
 3. The given batch size exceeds the maximum permissible DLA batch size. For more

information, refer to DLA Supported Layers and Restrictions.
 4. A combination of layers in the network causes the internal state to exceed what the

DLA is capable of supporting.
 5. There are no DLA engines available on the platform.

When GPU fallback is disabled, an error is emitted if a layer could not be run on DLA.

12.4.  I/O Formats on DLA
DLA supports formats that are unique to the device and have constraints on their layout
due to vector width byte requirements.

For DLA input tensors, kDLA_LINEAR(FP16, INT8), kDLA_HWC4(FP16, INT8),
kCHW16(FP16), and kCHW32(INT8) are supported. For DLA output tensors, only
kDLA_LINEAR(FP16, INT8), kCHW16(FP16), and kCHW32(INT8) are supported. For kCHW16
and kCHW32 formats, if C is not an integer multiple, then it must be padded to the next
32-byte boundary.

For kDLA_LINEAR format, the stride along the W dimension must be padded up to
64 bytes. The memory format is equivalent to a C array with dimensions [N][C][H]
[roundUp(W, 64/elementSize)] where elementSize is 2 for FP16 and 1 for Int8, with
the tensor coordinates (n, c, h, w) mapping to array subscript [n][c][h][w].

For kDLA_HWC4 format, the stride along the W dimension must be a multiple of 32 bytes
on Xavier and 64 bytes on NVIDIA Orin.

‣ When C == 1, TensorRT maps the format to the native grayscale image format.

‣ When C == 3 or C == 4, it maps to the native color image format. If C == 3, the
stride for stepping along the W axis must be padded to 4 in elements.

In this case, the padded channel is located at the 4th-index. Ideally, the padding value
does not matter because the 4th channel in the weights is padded to zero by the DLA
compiler; however, it is safe for the application to allocate a zero-filled buffer of four
channels and populate three valid channels.
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‣ When C is {1, 3, 4}, then padded C' is {1, 4, 4} respectively, the memory layout
is equivalent to a C array with dimensions [N][H][roundUp(W, 32/C'/elementSize)]
[C'] where elementSize is 2 for FP16 and 1 for Int8. The tensor coordinates (n, c,
h, w) mapping to array subscript [n][h][w][c], roundUp calculates the smallest
multiple of 64/elementSize greater than or equal to W.

When using kDLA_HWC4 as DLA input format, it has the following requirements:

‣ C must be 1, 3, or 4

‣ The first layer must be convolution.

‣ The convolution parameters must meet DLA requirements. Refer to DLA Supported
Layers and Restrictions for more information.

When GPU fallback is enabled, TensorRT may insert reformatting layers to meet the DLA
requirements. Otherwise, the input and output formats must be compatible with DLA. In
all cases, the strides that TensorRT expects data to be formatted with can be obtained
by querying IExecutionContext::getStrides.

12.5.  DLA Standalone Mode
If you need to run inference outside of TensorRT, you can use
EngineCapability::kDLA_STANDALONE to generate a DLA loadable instead of a TensorRT
engine. This loadable can then be used with an API like Using the cuDLA API.

12.5.1.  Building A DLA Loadable Using C++
 1. Set the default device type and engine capability to DLA standalone mode.

builderConfig->setDefaultDeviceType(DeviceType::kDLA);
builderConfig->setEngineCapability(EngineCapability::kDLA_STANDALONE);

 2. Specify FP16, INT8, or both. For example:
builderConfig->setFlag(BuilderFlag::kFP16);

 3. DLA standalone mode disallows reformatting, therefore BuilderFlag::kDIRECT_IO
needs to be set.
builderConfig->setFlag(BuilderFlag::kDIRECT_IO);

 4. You must set the allowed formats for I/O tensors to one or more of those supported
by DLA. See the documentation for the TensorFormat enum for details.

 5. Finally, build as normal

12.5.1.1. Using trtexec To Generate A DLA Loadable
The trtexec tool can generate a DLA loadable instead of a TensorRT engine.
Specifying both --useDLACore and --safe parameters sets the builder capability to
EngineCapability::kDLA_STANDALONE. Additionally, specifying --inputIOFormats and --
outputIOFormats restricts I/O data type and memory layout. The DLA loadable is saved
into a file by specifying --saveEngine parameter.

For example, to generate an FP16 DLA loadable for an ONNX model using trtexec, issue:
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./trtexec --onnx=model.onnx --saveEngine=model_loadable.bin --useDLACore=0 --fp16 --
inputIOFormats=fp16:chw16 --outputIOFormats=fp16:chw16 --skipInference --safe

12.6.  Customizing DLA Memory Pools
You can customize the size of the memory pools allocated to each DLA subnetwork
in a network using the IBuilderConfig::setMemoryPoolLimit C++ API or the
IBuilderConfig.set_memory_pool_limit Python API. There are three types of DLA
memory pools (refer to the MemoryPoolType enum for details):

Managed SRAM

‣ Behaves like a cache and larger values may improve performance.

‣ If no managed SRAM is available, DLA can still run by falling back to local DRAM.

‣ On Orin, each DLA core has 1 MiB of dedicated SRAM. On Xavier, 4 MiB of SRAM is
shared across multiple cores including the 2 DLA cores.

Local DRAM

‣ Used to store intermediate tensors in the DLA subnetwork. Larger values may
allow larger subnetworks to be offloaded to DLA.

Global DRAM

‣ Used to store weights in the DLA subnetwork. Larger values may allow larger
subnetworks to be offloaded to DLA.

The amount of memory required for each subnetwork may be less than the pool size, in
which case the smaller amount will be allocated. The pool size serves only as an upper
bound.

Note that all DLA memory pools require sizes that are powers of 2, with a minimum of 4
KiB. Violating this requirement results in a DLA loadable compilation failure.

In multi-subnetwork situations, it is important to keep in mind that the pool sizes apply
per DLA subnetwork, not for the whole network, so it is necessary to be aware of the
total amount of resources being consumed. In particular, your network can consume at
most twice the managed SRAM as the pool size in aggregate.

For NVIDIA Orin, the default managed SRAM pool size is set to 0.5 MiB whereas Xavier
has 1 MiB as the default. This is because Orin has a strict per-core limit, whereas Xavier
has some flexibility. This Orin default guarantees in all situations that the aggregate
managed SRAM consumption of your engine stays below the hardware limit, but if your
engine has only a single DLA subnetwork, this would mean your engine only consumes
half the hardware limit so you may see a perf boost by increasing the pool size to 1 MiB.

12.6.1.  Determining DLA Memory Pool Usage
Upon successfully compiling loadables from the given network, the builder reports
the number of subnetwork candidates that were successfully compiled into loadables,
as well as the total amount of memory used per pool by those loadables. For each
subnetwork candidate that failed due to insufficient memory, a message will be emitted
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to point out which memory pool was insufficient. In the verbose log, the builder also
reports the memory pool requirements of each loadable.

12.7.  Sparsity on DLA
DLA on the NVIDIA Orin platform supports structured sparsity (SS) that offers the
opportunity to minimize latency and maximize throughput in production.

12.7.1.  Structured Sparsity
Structured sparsity (SS) accelerates a 2:4 sparsity pattern along the C dimension. In each
contiguous block of four values, two values must be zero along C. Generally, SS provides
the most benefit for INT8 convolutions that are math-bound, have a channel dimension
that is a multiple of 128.

Structured Sparsity has several requirements and limitations.

Requirements

‣ Only available for INT8 convolution for formats other than NHWC.

‣ Channel size must be larger than 64.

Limitations

‣ Only convolutions whose quantized INT8 weights are at most 256K can benefit from
SS–in practice, the limitation may be more restrictive.

‣ Only convolutions with K % 64 in {0, 1, 2, 4, 8, 16, 32}, where K is the number
of kernels (corresponding to the number of output channels), can benefit from SS in
this release.
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Chapter 13. Performance Best
Practices

13.1.  Performance Benchmarking using
trtexec

This section introduces how to use trtexec; a command-line tool designed for TensorRT
performance benchmarking, to get the inference performance measurements of your
deep learning models.

If you use the TensorRT NGC container, then trtexec is already installed at /opt/
tensorrt/bin/trtexec. If you manually installed TensorRT, trtexec is part of the
installation. Alternatively, you can also build trtexec from source code using the
TensorRT OSS repository.

13.1.1.  Performance Benchmarking with an ONNX
File

If your model is already in the ONNX format, the trtexec tool can measure its
performance directly. In this example, we will use the ResNet-50 v1 ONNX model from
the ONNX model zoo to showcase how to measure its performance using trtexec.

For example, the trtexec command to measure the performance of ResNet-50 with
batch size 4 is:
trtexec --onnx=resnet50-v1-12.onnx --shapes=data:4x3x224x224 --fp16 --noDataTransfers --
useCudaGraph --useSpinWait

‣ the --onnx flag specifies the path to the ONNX file

‣ the --shapes flag specifies the input tensor shapes

‣ the --fp16 flag enables FP16 tactics

‣ the other flags are added to make performance results more stable.

The value for the --shapes flag is in the format of name1:shape1,name2:shape2,....
If you do not know the input tensor names and shapes, you can get the information

https://github.com/NVIDIA/TensorRT/tree/main
https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet50-v1-12.onnx
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by visualizing the ONNX model using tools like Netron or by running Polygraphy model
inspection on the model.

For example, running polygraphy inspect model resnet50-v1-12.onnx prints out:
[I] Loading model: /home/pohanh/trt/resnet50-v1-12.onnx
[I] ==== ONNX Model ====
    Name: mxnet_converted_model | ONNX Opset: 12
    ---- 1 Graph Input(s) ----
    {data [dtype=float32, shape=('N', 3, 224, 224)]}
    ---- 1 Graph Output(s) ----
    {resnetv17_dense0_fwd [dtype=float32, shape=('N', 1000)]}
    ---- 299 Initializer(s) ----
    ---- 175 Node(s) ----

It shows that the ONNX model has a graph input tensor named data whose shape
is (‘N’, 3, 224, 224), where ‘N’ represents that the dimension can be dynamic.
Therefore, the trtexec flag to specify the input shapes with batch size 4 would be --
shapes=data:4x3x224x224.

After running the trtexec command, trtexec will parse your ONNX file, build a TensorRT
plan file, measure the performance of this plan file, and then print a performance
summary, as follows:
[04/25/2024-23:57:45] [I] === Performance summary ===
[04/25/2024-23:57:45] [I] Throughput: 507.399 qps
[04/25/2024-23:57:45] [I] Latency: min = 1.96301 ms, max = 1.97534 ms, mean = 1.96921
 ms, median = 1.96917 ms, percentile(90%) = 1.97122 ms, percentile(95%) = 1.97229 ms,
 percentile(99%) = 1.97424 ms
[04/25/2024-23:57:45] [I] Enqueue Time: min = 0.0032959 ms, max = 0.0340576 ms, mean =
 0.00421173 ms, median = 0.00415039 ms, percentile(90%) = 0.00463867 ms, percentile(95%) =
 0.00476074 ms, percentile(99%) = 0.0057373 ms
[04/25/2024-23:57:45] [I] H2D Latency: min = 0 ms, max = 0 ms, mean = 0 ms, median = 0 ms,
 percentile(90%) = 0 ms, percentile(95%) = 0 ms, percentile(99%) = 0 ms
[04/25/2024-23:57:45] [I] GPU Compute Time: min = 1.96301 ms, max = 1.97534 ms, mean =
 1.96921 ms, median = 1.96917 ms, percentile(90%) = 1.97122 ms, percentile(95%) = 1.97229 ms,
 percentile(99%) = 1.97424 ms
[04/25/2024-23:57:45] [I] D2H Latency: min = 0 ms, max = 0 ms, mean = 0 ms, median = 0 ms,
 percentile(90%) = 0 ms, percentile(95%) = 0 ms, percentile(99%) = 0 ms
[04/25/2024-23:57:45] [I] Total Host Walltime: 3.00355 s
[04/25/2024-23:57:45] [I] Total GPU Compute Time: 3.00108 s
[04/25/2024-23:57:45] [I] Explanations of the performance metrics are printed in the verbose
 logs.

It prints a lot of performance metrics, but the two most important metrics are the
Throughput and the median Latency. In this case, the ResNet-50 model with batch size
4 can run with a throughput of 507 inferences per second (which is 2028 images per
second since the batch size is 4) and median latency of 1.969 ms.

Refer to Advanced Performance Measurement Techniques for explanations about what
Throughput and Latency mean to your deep learning inference applications. Refer to
trtexec for detailed explanations about other trtexec flags and other performance
metrics that trtexec reports.

13.1.2.  Performance Benchmarking with ONNX
+Quantization

To enjoy the additional performance benefit from quantizations, Quantize/Dequantize
operations need to be inserted into the ONNX model to tell TensorRT where to quantize/
dequantize the tensors and what scaling factors to use.

https://github.com/lutzroeder/netron
https://docs.nvidia.com/deeplearning/tensorrt/polygraphy/docs/index.html
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Our recommended tool for ONNX quantization is the ModelOptimizer package. You can
install it by running:
pip3 install --no-cache-dir --extra-index-url https://pypi.nvidia.com
        nvidia-modelopt

Using the ModelOptimizer, you can get a quantized ONNX model by running:
python3 -m modelopt.onnx.quantization --onnx_path resnet50-v1-12.onnx --
quantize_mode int8
        --output_path resnet50-v1-12-quantized.onnx

It loads the original ONNX model from resnet50-v1-12.onnx, runs calibration using
random data, inserts Quantize/Dequantize ops into the graph, and then saves the ONNX
model with Quantize/Dequantize ops to resnet50-v1-12-quantized.onnx.

Now that the new ONNX model contains the INT8 Quantize/Dequantize ops, we can run
trtexec again using a similar command:
trtexec --onnx=resnet50-v1-12-quantized.onnx --shapes=data:4x3x224x224 --stronglyTyped --
noDataTransfers --useCudaGraph --useSpinWait

We are using the --stronglyTyped flag instead of the --fp16 flag to require TensorRT
to follow the data types in the quantized ONNX model strictly, including all the INT8
Quantize/Dequantize ops.

Here is an example output after running this trtexec command with the quantized
ONNX model:
[04/26/2024-00:31:43] [I] === Performance summary ===
[04/26/2024-00:31:43] [I] Throughput: 811.74 qps
[04/26/2024-00:31:43] [I] Latency: min = 1.22559 ms, max = 1.23608 ms, mean = 1.2303
 ms, median = 1.22998 ms, percentile(90%) = 1.23193 ms, percentile(95%) = 1.23291 ms,
 percentile(99%) = 1.23395 ms
[04/26/2024-00:31:43] [I] Enqueue Time: min = 0.00354004 ms, max = 0.00997925 ms, mean =
 0.00431524 ms, median = 0.00439453 ms, percentile(90%) = 0.00463867 ms, percentile(95%) =
 0.00476074 ms, percentile(99%) = 0.00512695 ms
[04/26/2024-00:31:43] [I] H2D Latency: min = 0 ms, max = 0 ms, mean = 0 ms, median = 0 ms,
 percentile(90%) = 0 ms, percentile(95%) = 0 ms, percentile(99%) = 0 ms
[04/26/2024-00:31:43] [I] GPU Compute Time: min = 1.22559 ms, max = 1.23608 ms, mean =
 1.2303 ms, median = 1.22998 ms, percentile(90%) = 1.23193 ms, percentile(95%) = 1.23291 ms,
 percentile(99%) = 1.23395 ms
[04/26/2024-00:31:43] [I] D2H Latency: min = 0 ms, max = 0 ms, mean = 0 ms, median = 0 ms,
 percentile(90%) = 0 ms, percentile(95%) = 0 ms, percentile(99%) = 0 ms
[04/26/2024-00:31:43] [I] Total Host Walltime: 3.00219 s
[04/26/2024-00:31:43] [I] Total GPU Compute Time: 2.99824 s
[04/26/2024-00:31:43] [I] Explanations of the performance metrics are printed in the verbose
 logs.

As shown here, the Throughput is now 811 inferences per second and the median
Latency is 1.23 ms. The Throughput has improved by 60% compared to FP16
performance results in the previous section.

13.1.3.  Per-Layer Runtime and Layer Information
In previous sections, we described how to use trtexec to measure the end-to-end
latency. In this section, we will show an example of per-layer runtime and per-layer
information using trtexec. This will help you to find out how much latency each layer
contributes to the end-to-end latency and in which layers the performance bottlenecks
are.

This is an example trtexec command to print per-layer runtime and per-layer
information using the quantized ResNet-50 ONNX model:
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trtexec --onnx=resnet50-v1-12-quantized.onnx --shapes=data:4x3x224x224 --stronglyTyped --
noDataTransfers --useCudaGraph --useSpinWait --profilingVerbosity=detailed --dumpLayerInfo --
dumpProfile --separateProfileRun

The --profilingVerbosity=detailed flag enables detailed layer information capturing,
--dumpLayerInfo flag shows the per-layer information in the log, and --dumpProfile --
separateProfileRun flags show the per-layer runtime latencies in the log.

The following code is an example log of the per-layer information for one of the
convolution layers in the quantized ResNet-50 model:
Name: resnetv17_stage1_conv0_weight + resnetv17_stage1_conv0_weight_QuantizeLinear
 + resnetv17_stage1_conv0_fwd, LayerType: CaskConvolution, Inputs: [ { Name:
 resnetv17_pool0_fwd_QuantizeLinear_Output_1, Location: Device, Dimensions:
 [4,64,56,56], Format/Datatype: Thirty-two wide channel vectorized row major Int8
 format }], Outputs: [ { Name: resnetv17_stage1_relu0_fwd_QuantizeLinear_Output,
 Location: Device, Dimensions: [4,64,56,56], Format/Datatype: Thirty-two wide channel
 vectorized row major Int8 format }], ParameterType: Convolution, Kernel: [1,1],
 PaddingMode: kEXPLICIT_ROUND_DOWN, PrePadding: [0,0], PostPadding: [0,0], Stride:
 [1,1], Dilation: [1,1], OutMaps: 64, Groups: 1, Weights: {"Type": "Int8", "Count":
 4096}, Bias: {"Type": "Float", "Count": 64}, HasBias: 1, HasReLU: 1, HasSparseWeights:
 0, HasDynamicFilter: 0, HasDynamicBias: 0, HasResidual: 0, ConvXAsActInputIdx:
 -1, BiasAsActInputIdx: -1, ResAsActInputIdx: -1, Activation: RELU, TacticName:
 sm80_xmma_fprop_implicit_gemm_interleaved_i8i8_i8i32_f32_nchw_vect_c_32kcrs_vect_c_32_nchw_vect_c_32_tilesize96x64x64_stage3_warpsize2x2x1_g1_tensor16x8x32_simple_t1r1s1,
 TacticValue: 0x483ad1560c6e5e27, StreamId: 0, Metadata: [ONNX Layer:
 resnetv17_stage1_conv0_fwd]

The log shows the layer name, the input and output tensor names, tensor shapes, tensor
data types, convolution parameters, tactic name, and the metadata. The Metadata field
shows which ONNX ops this layer corresponds to. Since TensorRT has graph fusion
optimizations, one engine layer may correspond to multiple ONNX ops in the original
model.

The following code is an example log of the per-layer runtime latencies for last few layers
in the quantized ResNet-50 model:
[04/26/2024-00:42:55] [I]    Time(ms)     Avg.(ms)   Median(ms)   Time(%)   Layer
[04/26/2024-00:42:55] [I]       56.57       0.0255       0.0256       1.8  
 resnetv17_stage4_conv7_weight + resnetv17_stage4_conv7_weight_QuantizeLinear +
 resnetv17_stage4_conv7_fwd
[04/26/2024-00:42:55] [I]      103.86       0.0468       0.0471       3.3  
 resnetv17_stage4_conv8_weight + resnetv17_stage4_conv8_weight_QuantizeLinear +
 resnetv17_stage4_conv8_fwd
[04/26/2024-00:42:55] [I]       46.93       0.0211       0.0215       1.5  
 resnetv17_stage4_conv9_weight + resnetv17_stage4_conv9_weight_QuantizeLinear +
 resnetv17_stage4_conv9_fwd + resnetv17_stage4__plus2 + resnetv17_stage4_activation2
[04/26/2024-00:42:55] [I]       34.64       0.0156       0.0154       1.1  
 resnetv17_pool1_fwd
[04/26/2024-00:42:55] [I]       63.21       0.0285       0.0287      
 2.0   resnetv17_dense0_weight + resnetv17_dense0_weight_QuantizeLinear +
 transpose_before_resnetv17_dense0_fwd + resnetv17_dense0_fwd + resnetv17_dense0_bias
 + ONNXTRT_Broadcast + unsqueeze_node_after_resnetv17_dense0_bias +
 ONNXTRT_Broadcast_ONNXTRT_Broadcast_output + (Unnamed Layer* 851) [ElementWise]
[04/26/2024-00:42:55] [I]     3142.40       1.4149       1.4162     100.0   Total

It shows that the median latency of the resnetv17_pool1_fwd layer is 0.0156 ms and
contributes to 1.1% of the end-to-end latency. With this log, you can identify which
layers take the largest portion of the end-to-end latency and is the performance
bottleneck.

The Total latency reported in the per-layer runtime log is the summation of the per-
layer latencies. It is typically slightly longer than the reported end-to-end latency due to
the overheads caused by measuring per-layer latencies. For example, the Total median
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latency is 1.4162 ms but the end-to-end latency shown in the previous section was 1.23
ms.

13.1.4.  Performance Benchmarking with TensorRT
Plan File

If you construct the TensorRT INetworkDefinition using TensorRT APIs and build the
plan file in a separate script, you can still use trtexec to measure the performance of
the plan file.

For example, if the plan file is saved as resnet50-v1-12-quantized.plan, then you can
run the trtexec command to measure the performance using this plan file:
trtexec --loadEngine=resnet50-v1-12-quantized.plan --shapes=data:4x3x224x224 --
noDataTransfers --useCudaGraph --useSpinWait

The performance summary output is similar to those in the previous sections.

13.1.5.  Duration and Number of Iterations
By default, trtexec warms up for at least 200 ms, runs inference for at least 10
iterations or at least 3 seconds, whichever is longer. You can modify these parameters
by adding the --warmUp=500, --iterations=100, and --duration=60 flags, which mean
running the warm-up for at least 500 ms and running the inference for at least 100
iterations or at least 60 seconds, whichever is longer.

Refer to trtexec or run trtexec --help for a detailed explanation about other trtexec
flags.

13.2.  Advanced Performance
Measurement Techniques

Before starting any optimization effort with TensorRT, it is essential to determine what
should be measured. Without measurements, it is impossible to make reliable progress
or measure whether success has been achieved.

Latency

A performance measurement for network inference is how much time elapses from an
input being presented to the network until an output is available. This is the latency of
the network for a single inference. Lower latencies are better. In some applications, low
latency is a critical safety requirement. In other applications, latency is directly visible to
users as a quality-of-service issue. For bulk processing, latency may not be important at
all.

Throughput

Another performance measurement is how many inferences can be completed in a fixed
unit of time. This is the throughput of the network. Higher throughput is better. Higher
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throughputs indicate a more efficient utilization of fixed compute resources. For bulk
processing, the total time taken will be determined by the throughput of the network.

Another way of looking at latency and throughput is to fix the maximum latency and
measure throughput at that latency. A quality-of-service measurement like this can be a
reasonable compromise between the user experience and system efficiency.

Before measuring latency and throughput, you must choose the exact points at which to
start and stop timing. Depending on the network and application, it might make sense to
choose different points.

In many applications, there is a processing pipeline, and the overall system performance
can be measured by the latency and throughput of the entire processing pipeline.
Because the pre- and post-processing steps depend so strongly on the particular
application, this section considers the latency and throughput of the network inference
only.

13.2.1.  Wall-clock Timing
Wall-clock time (the elapsed time between the start of a computation and its end) can
be useful for measuring the overall throughput and latency of the application, and for
placing inference times in context within a larger system. C++11 provides high precision
timers in the <chrono> standard library. For example, std::chrono::system_clock
represents system-wide wall-clock time, and std::chrono::high_resolution_clock
measures time in the highest precision available.

The following example code snippet shows measuring network inference host time:
C++

#include <chrono>

auto startTime = std::chrono::high_resolution_clock::now();
context->enqueueV3(stream);
cudaStreamSynchronize(stream);
auto endTime = std::chrono::high_resolution_clock::now();
float totalTime = std::chrono::duration<float, std::milli>
(endTime - startTime).count()

Python
import time
from cuda import cudart
err, stream = cudart.cudaStreamCreate()
start_time = time.time()
context.execute_async_v3(stream)
cudart.cudaStreamSynchronize(stream)
total_time = time.time() - start_time

If there is only one inference happening on the device at one time, then this can
be a simple way of profiling the time-various operations take. Inference is typically
asynchronous, so ensure you add an explicit CUDA stream or device synchronization to
wait for results to become available.

13.2.2.  CUDA Events
One problem with timing on the host exclusively is that it requires host/device
synchronization. Optimized applications may have many inferences running in parallel on
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the device with overlapping data movement. In addition, the synchronization itself adds
some amount of noise to timing measurements.

To help with these issues, CUDA provides an Event API. This API allows you to
place events into CUDA streams that will be time-stamped by the GPU as they are
encountered. Differences in timestamps can then tell you how long different operations
took.

The following example code snippet shows computing the time between two CUDA
events:
C++

cudaEvent_t start, end;
cudaEventCreate(&start);
cudaEventCreate(&end);

cudaEventRecord(start, stream);
context->(enqueueV3stream);
cudaEventRecord(end, stream);

cudaEventSynchronize(end);
float totalTime;
cudaEventElapsedTime(&totalTime, start, end);

Python
from cuda import cudart
err, stream = cudart.cudaStreamCreate()
err, start = cudart.cudaEventCreate()
err, end = cudart.cudaEventCreate()
cudart.cudaEventRecord(start, stream)
context.execute_async_v3(stream)
cudart.cudaEventRecord(end, stream)
cudart.cudaEventSynchronize(end)
err, total_time = cudart.cudaEventElapsedTime(start, end)

13.2.3.  Built-In TensorRT Profiling
Digging deeper into the performance of inference requires more fine-grained timing
measurements within the optimized network.

TensorRT has a Profiler (C++, Python) interface, which you can implement in order to
have TensorRT pass profiling information to your application. When called, the network
will run in a profiling mode. After finishing inference, the profiler object of your class
is called to report the timing for each layer in the network. These timings can be used
to locate bottlenecks, compare different versions of a serialized engine, and debug
performance issues.

The profiling information can be collected from a regular inference enqueueV3()
launch or a CUDA graph launch. Refer to IExecutionContext::setProfiler() and
IExecutionContext::reportToProfiler() (C++, Python) for more information.

Layers inside a loop compile into a single monolithic layer, therefore, separate timings
for those layers are not available. Also, some subgraphs (especially with Transformer-like
networks) are handled by a next-generation graph optimizer that is not yet integrated
with the Profiler APIs. For those networks, use CUDA Profiling Tools to profile per-layer
performance.

An example showing how to use the IProfiler interface is provided in the common
sample code (common.h).

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_profiler.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Profiler.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_execution_context.html#a0e7271a7ea69c348f64db31b96103620
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=report_to_profiler#tensorrt.IExecutionContext.report_to_profiler
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You can also use trtexec to profile a network with TensorRT given an input network or
plan file. Refer to the trtexec section for details.

13.2.4.  CUDA Profiling Tools
The recommended CUDA profiler is NVIDIA Nsight™ Systems. Some CUDA developers
may be more familiar with nvprof and nvvp, however, these are being deprecated. In any
case, these profilers can be used on any CUDA program to report timing information
about the kernels launched during execution, data movement between host and device,
and CUDA API calls used.

Nsight Systems can be configured in various ways to report timing information for only a
portion of the execution of the program or to also report traditional CPU sampling profile
information together with GPU information.

The basic usage of Nsight Systems is to first run the command nsys profile -o
<OUTPUT> <INFERENCE_COMMAND>, then, open the generated <OUTPUT>.nsys-rep file in
the Nsight Systems GUI to visualize the captured profiling results.

Profile Only the Inference Phase

When profiling a TensorRT application, you should enable profiling only after the engine
has been built. During the build phase, all possible tactics are tried and timed. Profiling
this portion of the execution will not show any meaningful performance measurements
and will include all possible kernels, not the ones actually selected for inference. One way
to limit the scope of profiling is to:

‣ First phase: Structure the application to build and then serialize the engines in one
phase.

‣ Second phase: Load the serialized engines and run inference in a second phase and
profile this second phase only.

If the application cannot serialize the engines, or if the application must run through the
two phases consecutively, you can also add cudaProfilerStart()/cudaProfilerStop()
CUDA APIs around the second phase and add -c cudaProfilerApi flag to Nsight
Systems command to profile only the part between cudaProfilerStart() and
cudaProfilerStop().

Understand Nsight Systems Timeline View

In the Nsight Systems Timeline View, the GPU activities are shown at the rows under
CUDA HW and the CPU activities are shown at the rows under Threads. By default, the
rows under CUDA HW are collapsed, therefore, you must click on it to expand the rows.

In a typical inference workflow, the application calls the context->enqueueV3() or
context->executeV3() APIs to enqueue the jobs and then synchronize on the stream to
wait until the GPU completes the jobs. It may appear as if the system is doing nothing
for a while in the cudaStreamSychronize() call if you only look at the CPU activities. In

https://developer.nvidia.com/nsight-systems
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fact, the GPU may be busy executing the enqueued jobs while the CPU is waiting. The
following figure shows an example timeline of the inference of a query.

The trtexec tool uses a slightly more complicated approach to enqueue the jobs by
enqueuing the next query while GPU is still executing the jobs from the previous query.
Refer to the trtexec section for more information.

The following image shows a typical view of the normal inference workloads in the Nsight
Systems timeline view, showing CPU and GPU activities on different rows.

Figure 18. Normal Inference Workloads in Nsight Systems Timeline
View

Use the NVTX Tracing in Nsight Systems

Enabling NVIDIA Tools Extension SDK (NVTX) tracing allows Nsight Compute and Nsight
Systems to collect data generated by TensorRT applications. NVTX is a C-based API for
marking events and ranges in your applications.

Decoding the kernel names back to layers in the original network can be complicated.
Because of this, TensorRT uses NVTX to mark a range for each layer, which then allows
the CUDA profilers to correlate each layer with the kernels called to implement it. In
TensorRT, NVTX helps to correlate the runtime engine layer execution with CUDA kernel
calls. Nsight Systems supports collecting and visualizing these events and ranges on the
timeline. Nsight Compute also supports collecting and displaying the state of all active
NVTX domains and ranges in a given thread when the application is suspended.

https://docs.nvidia.com/nsight-visual-studio-edition/2020.1/nvtx/index.html
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In TensorRT, each layer may launch one or more kernels to perform its operations. The
exact kernels launched depend on the optimized network and the hardware present.
Depending on the choices of the builder, there may be multiple additional operations
that reorder data interspersed with layer computations; these reformat operations may
be implemented as either device-to-device memory copies or as custom kernels.

For example, the following screenshots are from Nsight Systems.

Figure 19. The Layer Execution and the Kernel Being Launched on the
CPU Side

The kernels actually run on the GPU, in other words, the following image shows the
correlation between the layer execution and kernel launch on the CPU side and their
execution on the GPU side.
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Figure 20. The Kernels Run on the GPU

Control the Level of Details in NVTX Tracing

By default, TensorRT only shows layer names in the NVTX markers, while users can
control the level of details by setting the ProfilingVerbosity in the IBuilderConfig when
the engine is built. For example, to disable NVTX tracing, set the ProfilingVerbosity to
kNONE:
C++

builderConfig->setProfilingVerbosity(ProfilingVerbosity::kNONE);

Python
builder_config.profilling_verbosity = trt.ProfilingVerbosity.NONE

On the other hand, you can choose to allow TensorRT to print more detailed layer
information in the NVTX markers, including input and output dimensions, operations,
parameters, tactic numbers, and so on, by setting the ProfilingVerbosity to
kDETAILED:
C++

builderConfig->setProfilingVerbosity(ProfilingVerbosity::kDETAILED);
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Python
builder_config.profilling_verbosity = trt.ProfilingVerbosity.DETAILED

Note: Enabling detailed NVTX markers increases the latency of enqueueV3() calls
and could result in a performance drop if the performance depends on the latency of
enqueueV3() calls.

Run Nsight Systems with trtexec

Below is an example of the commands to gather Nsight Systems profiles using trtexec
tool:
trtexec --onnx=foo.onnx --profilingVerbosity=detailed --saveEngine=foo.plan
nsys profile -o foo_profile --capture-range cudaProfilerApi trtexec --
profilingVerbosity=detailed --loadEngine=foo.plan --warmUp=0 --duration=0 --iterations=50

The first command builds and serializes the engine to foo.plan, and the second
command runs the inference using foo.plan and generates a foo_profile.nsys-rep file
that can then be opened in the Nsight Systems user interface for visualization.

The --profilingVerbosity=detailed flag allows TensorRT to show more detailed layer
information in the NVTX marking, and the --warmUp=0 --duration=0 --iterations=50
flags allow you to control how many inference iterations to run. By default, trtexec runs
inference for three seconds, which may result in a very large output nsys-rep file.

If CUDA graph is enabled, add --cuda-graph-trace=node flag to the nsys command to
see the per-kernel runtime information:
nsys profile -o foo_profile --capture-range cudaProfilerApi --cuda-graph-trace=node trtexec
 --profilingVerbosity=detailed --loadEngine=foo.plan --warmUp=0 --duration=0 --iterations=50
 --useCudaGraph

(Optional) Enable GPU Metrics Sampling in Nsight Systems

On discrete GPU systems, add the --gpu-metrics-device all flag to the nsys
command to sample GPU metrics, including GPU clock frequencies, DRAM bandwidth,
Tensor Core utilization, and so on. If the flag is added, these GPU metrics appear in the
Nsight Systems web interface.

13.2.4.1. Profiling for DLA
To profile DLA, add the --accelerator-trace nvmedia flag when using the NVIDIA
Nsight Systems CLI or enable Collect other accelerators trace when using the user
interface. For example, the following command can be used with the NVIDIA Nsight
Systems CLI:
nsys profile -t cuda,nvtx,nvmedia,osrt --accelerator-trace=nvmedia  --show-output=true
 trtexec --loadEngine=alexnet_int8.plan --warmUp=0 --duration=0 --iterations=20

Below is an example report.

‣ NvMediaDLASubmit submits a DLA task for each DLA subgraph. The runtime of the
DLA task can be found in the DLA timeline under Other accelerators trace.
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‣ Because GPU fallback was allowed, some CUDA kernels were added by TensorRT
automatically, like permutationKernelPLC3 and copyPackedKernel, which are used
for data reformatting.

‣ EGLStream APIs were executed because TensorRT usesEGLStreams for data transfer
between GPU memory and DLA.

To maximize GPU utilization, trtexec enqueues the queries one batch ahead of time.

Figure 21. Sample DLA Profiling Report

The runtime of the DLA task can be found under Other accelerator API. Some CUDA
kernels and EGLStream API are called for interaction between the GPU and DLA.

Figure 22. Sample DLA Profiling report

13.2.5.  Tracking Memory
Tracking memory usage can be as important as execution performance. Usually, the
memory will be more constrained on the device than on the host. To keep track of device
memory, the recommended mechanism is to create a simple custom GPU allocator
that internally keeps some statistics then uses the regular CUDA memory allocation
functions cudaMalloc and cudaFree.

A custom GPU allocator can be set for the builder IBuilder for network optimizations,
and for IRuntime when deserializing engines using the IGpuAllocator APIs. One idea for
the custom allocator is to keep track of the current amount of memory allocated, and
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to push an allocation event with a timestamp and other information onto a global list of
allocation events. Looking through the list of allocation events allows profiling memory
usage over time.

On mobile platforms, GPU memory and CPU memory share the system memory. On
devices with very limited memory size, like Nano, system memory might run out with
large networks; even the required GPU memory is smaller than system memory. In this
case, increasing the system swap size could solve some problems. An example script is:
echo "######alloc swap######"
if [ ! -e /swapfile ];then
    sudo fallocate -l 4G /swapfile
    sudo chmod 600 /swapfile
    sudo mkswap /swapfile
    sudo /bin/sh -c 'echo  "/swapfile \t none \t swap \t defaults \t 0 \t 0" >> /etc/fstab'
    sudo swapon -a
fi

13.3.  Hardware/Software Environment
for Performance Measurements

Performance measurements are influenced by many factors, including hardware
environment differences like cooling capability of the machine and software environment
differences like GPU clock settings. This section summarizes a few items that may affect
performance measurements.

Note that the items involving nvidia-smi are only supported on dGPU systems and not on
the mobile systems.

13.3.1.  GPU Information Query and GPU
Monitoring

While measuring performance, it is recommended that you record and monitor the GPU
status in parallel to the inference workload. Having the monitoring data allows you to
identify possible root causes when you see unexpected performance measurements
results.

Before the inference starts, call the nvidia-smi -q command to get the detailed
information of the GPU, including the product name, power cap, clock settings, and so
on. Then, while the inference workload is running, run the nvidia-smi dmon -s pcu -
f <FILE> -c <COUNT> command in parallel to print out GPU clock frequencies, power
consumption, temperature, and utilization to a file. Call nvidia-smi dmon --help for
more options about the nvidia-smi device monitoring tool.

13.3.2.  GPU Clock Locking and Floating Clock
By default, the GPU clock frequency is floating, meaning that the clock frequency sits
at the idle frequency when there is no active workload, and it boosts to the boost clock
frequency when the workload starts. This is usually the desired behavior in general since
it allows the GPU to generate less heat at idle and to run at maximum speed when there
is active workload.
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Alternatively, you can lock the clock at a specific frequency by calling the sudo nvidia-
smi -lgc <freq> command (and conversely, you can let the clock float again with the
sudo nvidia-smi -rgc command). The supported clock frequencies can be found by
the sudo nvidia-smi -q -d SUPPORTED_CLOCKS command. After the clock frequency is
locked, it should stay at that frequency unless power throttling or thermal throttling take
place, which will be explained in next sections. When the throttling kicks in, the device
behaves as if the clock were floating.

Running TensorRT workloads with floating clocks or with throttling taking place can lead
to more non-determinism in tactic selections and unstable performance measurements
across inferences because every CUDA kernel may run at slightly different clock
frequencies, depending on which frequency the driver boosts or throttles the clock to at
that moment. On the other hand, running TensorRT workloads with locked clocks allows
more deterministic tactic selections and consistent performance measurements, but
the average performance will not be as good as when the clock is floating or is locked at
maximum frequency with throttling taking place.

There is no definite recommendation on whether the clock should be locked or which
clock frequency to lock the GPU at while running TensorRT workloads. It depends on
whether the deterministic and stable performance or the best average performance is
desired.

13.3.3.  GPU Power Consumption and Power
Throttling

Power throttling occurs when the average GPU power consumption reaches the power
limit, which can be set by the sudo nvidia-smi -pl <power_cap> command. When this
happens, the driver has to throttle the clock to a lower frequency to keep the average
power consumption below the limit. The constantly changing clock frequencies may lead
to unstable performance measurements if the measurements are taken within a short
period of time, such as within 20ms.

Power throttling happens by design and is a natural phenomenon when the GPU clock
is not locked or is locked at a higher frequency, especially for the GPUs with lower
power limits such as NVIDIA T4 and NVIDIA A2 GPUs. To avoid performance variations
caused by power throttling, you can lock the GPU clock at a lower frequency so that the
performance numbers become more stable. However, the average performance numbers
will be lower than the performance numbers with floating clocks or with the clock locked
at a higher frequency even though power throttling would happen in this case.

Another issue with power throttling is that it may skew the performance numbers if
there are gaps between inferences in your performance benchmarking applications. For
example, if the application synchronizes at each inference, there will be periods of time
when the GPU is idle between the inferences. The gaps cause the GPU to consume less
power on average such that the clock is throttled less and the GPU can run at higher
clock frequencies on average. However, the throughput numbers measured in this way
are not accurate because when the GPU is fully loaded with no gaps between inferences,
the actual clock frequency will be lower and the actual throughput will not reach the
throughput numbers measured using the benchmarking application.
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To avoid this, the trtexec tool is designed to maximize GPU execution by leaving nearly
no gaps between GPU kernel executions so that it can measure the true throughput of a
TensorRT workload. Therefore, if you see performance gaps between your benchmarking
application and what trtexec reports, check if the power throttling and the gaps between
inferences are the cause.

Lastly, power consumption can be dependent on the activation values, causing different
performance measurements for different inputs. For example, if all the network input
values are set to zeros or NaNs, GPU tends to consume less power than if the inputs
are normal values because of fewer bit-flips in DRAM and in L2 cache. To avoid this
discrepancy, always use the input values that best represent the actual value distribution
when measuring the performance. The trtexec tool uses random input values by default,
but you can specify the input by using the --loadInputs flag. Refer to the trtexec
section for more information.

13.3.4.  GPU Temperature and Thermal Throttling
Thermal throttling happens when the GPU temperature reaches a predefined threshold,
which is around 85 degrees Celsius for most GPUs, and the driver has to throttle the
clock to a lower frequency to prevent the GPU from overheating. You can tell this by
seeing the temperature logged by the nvidia-smi dmon command gradually increasing
while the inference workload is running, until it reaches ~85C and the clock frequency
starts to drop.

If thermal throttling happens on actively cooled GPUs like Quadro A8000, then it is
possible that the fans on the GPU are broken, or there are obstacles blocking the airflow.

If thermal throttling happens on passively cooled GPUs like NVIDIA A10, then it is likely
that the GPUs are not properly cooled. Passively cooled GPUs require external fans or
air conditioning to cool down the GPUs, and the airflow must go through the GPUs for
effective cooling. Common cooling problems include installing GPUs in a server that is
not designed for the GPUs or installing wrong numbers of GPUs into the server. In some
cases, the air flows through the “easy path” (that is, the path with the least friction)
around the GPUs instead of going through them. Fixing this requires examination of the
airflow in the server and installation of airflow guidance if necessary.

Note that higher GPU temperature also leads to more leakage current in the circuits,
which increases the power consumed by the GPU at a specific clock frequency.
Therefore, for GPUs that are more likely to be power throttled like NVIDIA T4, poor
cooling can lead to lower stabilized clock frequency with power throttling, and thus
worse performance, even if the GPU clocks have not been thermally throttled yet.

On the other hand, ambient temperature, that is, the temperature of the environment
around the server, does not usually affect GPU performance so long as the GPUs are
properly cooled, except for GPUs with lower power limit whose performance may be
slightly affected.
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13.3.5.  H2D/D2H Data Transfers and PCIe
Bandwidth

On dGPU systems, often the input data must be copied from the host memory to
the device memory (H2D) before an inference starts, and the output data must be
copied back from device memory to host memory (D2H) after the inference. These
H2D/D2H data transfers go through PCIe buses, and they can sometimes influence
the inference performance or even become the performance bottleneck. The H2D/D2H
copies can also be seen in the Nsight Systems profiles, appearing as cudaMemcpy() or
cudaMemcpyAsync() CUDA API calls.

To achieve maximum throughput, the H2D/D2H data transfers should run in parallel
to the GPU executions of other inferences so that the GPU does not sit idle when the
H2D/D2H copies take place. This can be done by running multiple inferences in different
streams in parallel, or by launching H2D/D2H copies in a different stream than the
stream used for GPU executions and using CUDA events to synchronize between the
streams. The trtexec tool shows as an example for the latter implementation.

When the H2D/D2H copies run in parallel to GPU executions, they can interfere with
the GPU executions especially if the host memory is pageable, which is the default case.
Therefore, it is recommended that you allocate pinned host memory for the input and
output data using cudaHostAlloc() or cudaMallocHost() CUDA APIs.

To check whether the PCIe bandwidth becomes the performance bottleneck, you can
check the Nsight Systems profiles and see if the H2D or D2H copies of an inference
query have longer latencies than the GPU execution part. If PCIe bandwidth becomes the
performance bottleneck, here are a few possible solutions.

First, check whether the PCIe bus configuration of the GPU is correct in terms of which
generation (for example, Gen3 or Gen4) and how many lanes (for example, x8 or x16) are
used. Next, try reducing the amount of data that must be transferred using the PCIe
bus. For example, if the input images have high resolutions and the H2D copies become
the bottleneck, then you can consider transmitting JPEG-compressed images over the
PCIe bus and decode the image on the GPUs before the inference workflow, instead of
transmitting raw pixels. Finally, you can consider using NVIDIA GPUDirect technology
to load data directly from/to the network or the filesystems without going through the
host memory.

In addition, if your system has AMD x86_64 CPUs, check the NUMA (Non-Uniform
Memory Access) configurations of the machine with numactl --hardware command.
The PCIe bandwidth between a host memory and a device memory located on two
different NUMA nodes is much more limited than the bandwidth between the host/
device memory located on the same NUMA node. Allocate the host memory on the
NUMA node on which the GPU that the data will be copied to resides. Also, pin the CPU
threads that will trigger the H2D/D2H copies on that specific NUMA node.

Note that on mobile platforms, the host, and the device share the same memory, so the
H2D/D2H data transfers are not required if the host memory is allocated using CUDA
APIs and is pinned instead of being pageable.
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By default, the trtexec tool measures the latencies of the H2D/D2H data transfers that
tell the user if the TensorRT workload may be bottlenecked by the H2D/D2H copies.
However, if the H2D/D2H copies affect the stability of the GPU Compute Time, you can
add the --noDataTransfers flag to disable H2D/D2H transfers to measure only the
latencies of the GPU execution part.

13.3.6.  TCC Mode and WDDM Mode
On Windows machines, there are two driver modes: you can configure the GPU to
be in the TCC mode and the WDDM mode. The mode can be specified by calling the
sudo nvidia-smi -dm [0|1] command, but a GPU connected to a display shall not be
configured into TCC mode Refer to the TCC mode documentation for more information
and limitations about TCC mode.

In TCC mode, the GPU is configured to focus on computation work and the graphics
support like OpenGL or monitor display are disabled. This is the recommended mode for
GPUs that run TensorRT inference workloads. On the other hand, the WDDM mode tends
to cause GPUs to have worse and unstable performance results when running inference
workloads using TensorRT.

This is not applicable to Linux-based OS.

13.3.7.  Enqueue-Bound Workloads and CUDA
Graphs

The enqueue() function of IExecutionContext is asynchronous, that is, it returns
immediately after all the CUDA kernels are launched without waiting for the completion
of CUDA kernel executions. However, in some cases, the enqueue() time can take longer
than the actual GPU executions, causing the latency of enqueue() calls to become the
performance bottleneck. We say that this type of workload is "enqueue-bound". There
are two reasons that may cause a workload to be enqueue-bound.

First, if the workload is very tiny in terms of the amount of computations, such as
containing convolutions with small I/O sizes, matrix multiplications with small GEMM
sizes, or mostly element-wise operations throughout the network, then the workload
tends to be enqueue-bound. This is because most CUDA kernels take the CPU and the
driver around 5-15 microseconds to launch per kernel, so if each CUDA kernel execution
time is only several microseconds long on average, the kernel launching time becomes
the main performance bottleneck.

To solve this, try to increase the amount of the computation per CUDA kernel, such as
by increasing the batch size. Or you can use CUDA Graphs to capture the kernel launches
into a graph and launch the graph instead of calling enqueueV3().

Second, if the workload contains operations that require device synchronizations, such
as loops or if-else conditions, then the workload is naturally enqueue-bound. In this
case, increasing the batch size may help improve the throughput without increasing the
latency much.

In trtexec, you can tell that a workload is enqueue-bound if the reported Enqueue
Time is close to or longer than the reported GPU Compute Time. In this case, it is
recommended that you add the --useCudaGraph flag to enable CUDA graphs in trtexec,

https://docs.nvidia.com/nsight-visual-studio-edition/reference/index.html#tesla-compute-cluster
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which will reduce the Enqueue Time as long as the workload does not contain any
synchronization operations.

13.3.8.  BlockingSync and SpinWait
Synchronization Modes

If the performance is measured with cudaStreamSynchronize() or
cudaEventSynchronize(), the variations in synchronization overhead may lead to
variations in performance measurements. This section describes the cause of the
variations and how to avoid them.

When cudaStreamSynchronize() is called, there are two ways in which the driver waits
until the completion of the stream. If the cudaDeviceScheduleBlockingSync flag has
been set with cudaSetDeviceFlags() calls, then the cudaStreamSynchornize() uses the
blocking-sync mechanism. Otherwise, it uses the spin-wait mechanism.

The similar idea applies to CUDA events. If a CUDA event is created with the
cudaEventDefault flag, then the cudaEventSynchronize() call uses the spin-wait
mechanism; and if a CUDA event is created with the cudaEventBlockingSync flag, then
the cudaEventSynchronize() call will use the blocking-sync mechanism.

When the blocking-sync mode is used, the host thread yields to another thread until the
device work is done. This allows the CPUs to sit idle to save power or to be used by other
CPU workloads when the device is still executing. However, the blocking-sync mode
tends to result in relatively unstable overheads in stream/event synchronizations in some
OS, which in terms lead to variations in latency measurements.

On the other hand, when the spin-wait mode is used, the host thread is constantly
polling until the device work is done. Using spin-wait makes the latency measurements
more stable due to shorter and more stable overhead in stream/event synchronizations,
but it consumes some CPU computation resources and leads to more power
consumption by the CPUs.

Therefore, if you want to reduce CPU power consumption, or if you do not want the
stream/event synchronizations to consume CPU resources (for example, you are running
other heavy CPU workloads in parallel), use the blocking-sync mode. If you care more
about stable performance measurements, use the spin-wait mode.

In trtexec, the default synchronization mechanism is blocking-sync mode. Add the --
useSpinWait flag to enable synchronizations using the spin-wait mode for more stable
latency measurements, at the cost of more CPU utilizations and power consumptions.

13.4.  Optimizing TensorRT Performance
The following sections focus on the general inference flow on GPUs and some of the
general strategies to improve performance. These ideas are applicable to most CUDA
programmers but may not be as obvious to developers coming from other backgrounds.
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13.4.1.  Batching
The most important optimization is to compute as many results in parallel as possible
using batching. In TensorRT, a batch is a collection of inputs that can all be processed
uniformly. Each instance in the batch has the same shape and flows through the network
in exactly the same way. Each instance can, therefore, be trivially computed in parallel.

Each layer of the network will have some amount of overhead and synchronization
required to compute forward inference. By computing more results in parallel, this
overhead is paid off more efficiently. In addition, many layers are performance-limited by
the smallest dimension in the input. If the batch size is one or small, this size can often
be the performance-limiting dimension. For example, the FullyConnected layer with V
inputs and K outputs can be implemented for one batch instance as a matrix multiply
of an 1xV matrix with a VxK weight matrix. If N instances are batched, this becomes an
NxV multiplied by the VxK matrix. The vector-matrix multiplier becomes a matrix-matrix
multiplier, which is much more efficient.

Larger batch sizes are almost always more efficient on the GPU. Extremely large batches,
such as N > 2^16, can sometimes require extended index computation and so should be
avoided if possible. But generally, increasing the batch size improves total throughput.
In addition, when the network contains MatrixMultiply layers or FullyConnected layers,
batch sizes of multiples of 32 tend to have the best performance for FP16 and INT8
inference because of the utilization of Tensor Cores, if the hardware supports them.

On NVIDIA Ada Lovelace GPUs or later GPUs, it is possible that decreasing the batch size
may improve the throughput significantly if the smaller batch sizes happen to help the
GPU to cache the input/output values in the L2 cache. Therefore, try various batch sizes
to get the batch size for the optimal performance.

Sometimes batching inference work is not possible due to the organization of the
application. In some common applications, such as a server that does inference per
request, it can be possible to implement opportunistic batching. For each incoming
request, wait for a time T. If other requests come in during that time, batch them
together. Otherwise, continue with a single instance inference. This type of strategy
adds fixed latency to each request but can improve the maximum throughput of the
system by orders of magnitude.

The NVIDIA Triton Inference Server provides a simple way to enable dynamic batching
with TensorRT engines.

Using batching

The batch dimension is part of the tensor dimensions, and you can specify the range
of the batch sizes and the batch size to optimize the engine for by adding optimization
profiles. Refer to the Working with Dynamic Shapes section for more details.

13.4.2.  Within-Inference Multi-Streaming
In general, CUDA programming streams are a way of organizing asynchronous work.
Asynchronous commands put into a stream are guaranteed to run in sequence but
may execute out of order with respect to other streams. In particular, asynchronous

https://developer.nvidia.com/nvidia-triton-inference-server
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commands in two streams may be scheduled to run concurrently (subject to hardware
limitations).

In the context of TensorRT and inference, each layer of the optimized final network will
require work on the GPU. However, not all layers will be able to fully use the computation
capabilities of the hardware. Scheduling requests in separate streams allows work to
be scheduled immediately as the hardware becomes available without unnecessary
synchronization. Even if only some layers can be overlapped, overall performance will
improve.

Starting in TensorRT 8.6, you can use the IBuilderConfig::setMaxAuxStreams() API
to set the maximum number of auxiliary streams that TensorRT is allowed to use to
run multiple layers in parallel. The auxiliary streams are in contrast to the “main stream”
provided in the enqueueV3() call, and if enabled, TensorRT will run some layers on the
auxiliary streams in parallel to the layers running on the mainstream.

For example, to run the inference on at most eight streams (that is, seven auxiliary
streams and one mainstream) in total:
C++

config->setMaxAuxStreams(7)

Python
config.max_aux_streams = 7

Note that this only sets the maximum number of auxiliary streams, however, TensorRT
may end up using fewer auxiliary streams than this number if it determines that using
more streams does not help.

To get the actual number of auxiliary streams that TensorRT uses for an engine, run:
C++

int32_t nbAuxStreams = engine->getNbAuxStreams()

Python
num_aux_streams = engine.num_aux_streams

When an execution context is created from the engine, TensorRT automatically creates
the auxiliary streams needed to run the inference. However, you can also specify the
auxiliary streams you would like TensorRT to use:
C++

int32_t nbAuxStreams = engine->getNbAuxStreams();
std::vector<cudaStream_t> streams(nbAuxStreams);
for (int32_t i = 0; i < nbAuxStreams; ++i)
{
    cudaStreamCreate(&streams[i]);
}
context->setAuxStreams(streams.data(), nbAuxStreams);

Python
from cuda import cudart
num_aux_streams = engine.num_aux_streams
streams = []
for i in range(num_aux_streams):
    err, stream = cudart.cudaStreamCreate()
    streams.append(stream)
context.set_aux_streams(streams)

TensorRT will always insert event synchronizations between the main stream provided
using enqueueV3() call and the auxiliary streams:
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‣ At the beginning of the enqueueV3() call, TensorRT will make sure that all the
auxiliary streams wait on the activities on the mainstream.

‣ At the end of the enqueueV3() call, TensorRT will make sure that the main stream
waits on the activities on all the auxiliary streams.

Note that enabling auxiliary streams may increase the memory consumption because
some activation buffers will no longer be able to be reused.

13.4.3.  Cross-Inference Multi-Streaming
In addition to the within-inference streaming, you can also enable streaming between
multiple execution contexts. For example, you can build an engine with multiple
optimization profiles and create an execution context per profile. Then, call the
enqueueV3() function of the execution contexts on different streams to allow them to
run in parallel.

Running multiple concurrent streams often leads to situations where several streams
share compute resources at the same time. This means that the network may have
less compute resources available during inference than when the TensorRT engine was
being optimized. This difference in resource availability can cause TensorRT to choose
a kernel that is suboptimal for the actual runtime conditions. In order to mitigate this
effect, you can limit the amount of available compute resources during engine creation
to more closely resemble actual runtime conditions. This approach generally promotes
throughput at the expense of latency. For more information, refer to Limiting Compute
Resources.

It is also possible to use multiple host threads with streams. A common pattern is
incoming requests dispatched to a pool of waiting for worker threads. In this case,
the pool of worker threads will each have one execution context and CUDA stream.
Each thread will request work in its own stream as the work becomes available. Each
thread will synchronize with its stream to wait for results without blocking other worker
threads.

13.4.4.  CUDA Graphs
CUDA graphs are a way to represent a sequence (or more generally a graph) of kernels
in a way that allows their scheduling to be optimized by CUDA. This can be particularly
useful when your application performance is sensitive to the CPU time taken to enqueue
the kernels.

TensorRT’s enqueuev3() method supports CUDA graph capture for models that require
no CPU interaction mid-pipeline. For example:
C++

// Call enqueueV3() once after an input shape change to update internal state.
context->enqueueV3(stream);

// Capture a CUDA graph instance
cudaGraph_t graph;
cudaGraphExec_t instance;
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
context->enqueueV3(stream);
cudaStreamEndCapture(stream, &graph);
cudaGraphInstantiate(&instance, graph, 0);

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
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// To run inferences, launch the graph instead of calling enqueueV3().
for (int i = 0; i < iterations; ++i) { 
    cudaGraphLaunch(instance, stream);
    cudaStreamSynchronize(stream);
}

Python
from cuda import cudart
err, stream = cudart.cudaStreamCreate()

# Call execute_async_v3() once after an input shape change to update internal state.
context.execute_async_v3(stream);

# Capture a CUDA graph instance
cudaStreamBeginCapture(stream, cudart.cudaStreamCaptureModeGlobal)
context.execute_async_v3(stream)
err, graph = cudart.cudaStreamEndCapture(stream)
err, instance = cudart.cudaGraphInstantiate(graph, 0)

# To run inferences, launch the graph instead of calling execute_async_v3().
for i in range(iterations):
    cudart.cudaGraphLaunch(instance, stream)
    cudart.cudaStreamSynchronize(stream)

Models for which graphs are not supported include those with loops or conditionals.
In this case, cudaStreamEndCapture() will return cudaErrorStreamCapture* errors,
indicating that the graph capturing has failed, but the context can continue to be used
for normal inference without CUDA graphs.

When capturing a graph, it is important to account for the two-phase execution strategy
used in the presence of dynamic shapes.

 1. Update internal state of the model to account for any changes in input size.
 2. Stream work to the GPU

For models where input size is fixed at build time, the first phase requires no per-
invocation work. Otherwise, if the input sizes have changed since the last invocation,
some work may be required to update derived properties.

The first phase of work is not designed to be captured, and even if the capture is
successful may increase model execution time. Therefore, after changing the shapes of
inputs or the values of shape tensors, call enqueueV3() once to flush deferred updates
before capturing the graph.

Graphs captured with TensorRT are specific to the input size for which they were
captured, and also to the state of the execution context. Modifying the context from
which the graph was captured will result in undefined behavior when executing the
graph - in particular, if the application is providing its own memory for activations using
createExecutionContextWithoutDeviceMemory(), the memory address is also captured
as part of the graph. Binding locations are also captured as part of the graph.

Therefore, the best practice is to use one execution context per
captured graph, and to share memory across the contexts with
createExecutionContextWithoutDeviceMemory().

trtexec allows you to check whether the built TensorRT engine is compatible with CUDA
graph capture. Refer to the trtexec section for more information.
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13.4.5.  Enabling Fusion

13.4.5.1. Layer Fusion
TensorRT attempts to perform many different types of optimizations in a network during
the build phase. In the first phase, layers are fused together whenever possible. Fusions
transform the network into a simpler form but preserve the same overall behavior.
Internally, many layer implementations have extra parameters and options that are not
directly accessible when creating the network. Instead, the fusion optimization step
detects supported patterns of operations and fuses multiple layers into one layer with
internal options set.

Consider the common case of a convolution followed by ReLU activation. To
create a network with these operations, it involves adding a Convolution layer with
addConvolution, following it with an Activation layer using addActivation with an
ActivationType of kRELU. The unoptimized graph will contain separate layers for
convolution and activation. The internal implementation of convolution supports
computing the ReLU function on the output in one step directly from the convolution
kernel without requiring a second kernel call. The fusion optimization step will detect
the convolution followed by ReLU. Verify that the operations are supported by the
implementation, then fuse them into one layer.

To investigate which fusions have happened, or have not happened, the builder logs its
operations to the logger object provided during construction. Optimization steps are at
the kINFO log level. To see these messages, ensure you log them in the ILogger callback.

Fusions are normally handled by creating a new layer with a name containing the names
of both of the layers, which were fused. For example, in MNIST, a FullyConnected layer
(InnerProduct) named ip1 is fused with a ReLU Activation layer named relu1 to create a
new layer named ip1 + relu1.

13.4.5.2. Types of Fusions
The following list describes the types of supported fusions.

Supported Layer Fusions
ReLU Activation

An Activation layer performing ReLU followed by an activation performing ReLU will be
replaced by a single activation layer.

Convolution and ReLU Activation
The Convolution layer can be of any type and there are no restrictions on values. The
Activation layer must be ReLU type.

Convolution and GELU Activation
The precision of input and output should be the same; with both of them FP16 or
INT8. The Activation layer must be GELU type. TensorRT should be running on an
NVIDIA Turing or later device with CUDA version 10.0 or later.
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Convolution and Clip Activation
The Convolution layer can be any type and there are no restrictions on values. The
Activation layer must be Clip type.

Scale and Activation
The Scale layer followed by an Activation layer can be fused into a single Activation
layer.

Convolution and ElementWise Operation
A Convolution layer followed by a simple sum, min, or max in an ElementWise layer can
be fused into the Convolution layer. The sum must not use broadcasting, unless the
broadcasting is across the batch size.

Padding and Convolution/Deconvolution
Padding followed by a Convolution or Deconvolution can be fused into a single
Convolution/Deconvolution layer if all the padding sizes are non-negative.

Shuffle and Reduce
A Shuffle layer without reshape, followed by a Reduce layer can be fused into a single
Reduce layer. The Shuffle layer can perform permutations but cannot perform any
reshape operation. The Reduce layer must have a keepDimensions set of dimensions.

Shuffle and Shuffle
Each Shuffle layer consists of a transpose, a reshape, and a second transpose. A
Shuffle layer followed by another Shuffle layer can be replaced by a single Shuffle (or
nothing). If both Shuffle layers perform reshape operations, this fusion is only allowed
if the second transpose of the first shuffle is the inverse of the first transpose of the
second shuffle.

Scale
A Scale layer that adds 0, multiplied by 1, or computes powers to the 1 can be erased.

Convolution and Scale
A Convolution layer followed by a Scale layer that is kUNIFORM or kCHANNEL can be
fused into a single convolution by adjusting the convolution weights. This fusion is
disabled if the scale has a non-constant power parameter.

Convolution and Generic Activation
This fusion happens after the pointwise fusion mentioned below. A pointwise with one
input and one output can be called as a generic activation layer. A convolution layer
followed by a generic activation layer can be fused into a single convolution layer.

Reduce
A Reduce layer that performs average pooling will be replaced by a Pooling layer. The
Reduce layer must have a keepDimensions set, reduced across H and W dimensions
from CHW input format before batching, using the kAVG operation.

Convolution and Pooling
The Convolution and Pooling layers must have the same precision. The Convolution
layer may already have a fused activation operation from a previous fusion.

Depthwise Separable Convolution
A depthwise convolution with activation followed by a convolution with activation may
sometimes be fused into a single optimized DepSepConvolution layer. The precision of
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both convolutions must be INT8 and the device's computes capability must be 7.2 or
later.

SoftMax and Log
It can be fused into a single SoftMax layer if the SoftMax has not already been fused
with a previous log operation.

SoftMax and TopK
Can be fused into a single layer. The SoftMax may or may not include a Log operation.

FullyConnected
The FullyConnected layer will be converted into the Convolution layer. All fusions for
convolution will take effect.

Supported Reduction Operation Fusions
GELU

A group of Unary layer and ElementWise layer that represents the following equations
can be fused into a single GELU reduction operation.
 

Or the alternative representation:
 

L1Norm
A Unary layer kABS operation followed by a Reduce layer kSUM operation can be fused
into a single L1Norm reduction operation.

Sum of Squares
A product ElementWise layer with the same input (square operation) followed by a
kSUM reduction can be fused into a single square Sum reduction operation.

L2Norm
A sum of squares operation followed by a kSQRT UnaryOperation can be fused into a
single L2Norm reduction operation.

LogSum
A Reduce layer kSUM followed by a kLOG UnaryOperation can be fused into a single
LogSum reduction operation.

LogSumExp
A Unary kEXP ElementWise operation followed by a LogSum fusion can be fused into a
single LogSumExp reduction.

13.4.5.3. PointWise Fusion
Multiple adjacent PointWise layers can be fused into a single PointWise layer, to improve
performance.

The following types of PointWise layers are supported, with some limitations:
Activation

Every ActivationType is supported.
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Constant
Only constant with a single value (size == 1).

ElementWise
Every ElementWiseOperation is supported.

PointWise
PointWise itself is also a PointWise layer.

Scale
Only support ScaleMode::kUNIFORM.

Unary
Every UnaryOperation is supported.

The size of the fused PointWise layer is not unlimited, therefore, some PointWise layers
may not be fused.

Fusion creates a new layer with a name consisting of both of the layers, which were
fused. For example, an ElementWise layer named add1 is fused with a ReLU Activation
layer named relu1  with a new layer name: fusedPointwiseNode(add1, relu1).

13.4.5.4. Q/DQ Fusion
For an explanation and suggestions on optimizations of INT8 and FP8 networks
containing QuantizeLinear and DequantizeLinear layers, refer to Explicit Quantization.

13.4.5.5. Multi-Head Attention Fusion
Multi-head attention (MHA) computes softmax(Q * K^T / scale + mask) * V where Q
is query embeddings, K is key embeddings, and V is value embeddings. The shape of Q is
[B, N, S_q, H] and the shapes of K and V are [B, N, S_kv, H] where B is batch size, N
is number of attention heads, H is the head/hidden size, S_q and S_kv are the sequence
lengths of query and key/value respectively.

The following is a list of restrictions for MHA to be fused into a single kernel.

‣ SM version must be >= 75.

‣ The input types of the two batched matrix multiplications must be the same and
must be FP16, INT8 (refer to the following regarding quantize and dequantize layer
placement), or BF16.

‣ Head size H must satisfy the constraints 16 <= H <= 256 and H % 8 == 0 for FP16 and
BF16.

‣ Head size must be 16, 32, or 64 and sequence lengths (S_q, S_kv) must be <= 512 for
INT8.

‣ INT8 fused MHA will be generated only if quantize and dequantize layers are placed
before the first batched matrix multiplication, after softmax, and after the second
batched matrix multiplication.

‣ TensorRT may decide not to fuse an MHA graph into a single kernel based on
performance evaluation or other constraints.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-qat-networks
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13.4.6.  Limiting Compute Resources
Limiting the number of compute resources available to TensorRT during engine creation
is beneficial when the reduced amount better represents the expected conditions during
runtime. For example, when the GPU is expected to be performing additional work in
parallel to the TensorRT engine or when the engine is expected to be run on a different
GPU with less resources (note that the recommended approach is to build the engine on
the GPU that will be used for inference, but this may not always be feasible).

You can limit the number of available compute resources with the following steps:

 1. Start the CUDA MPS control daemon.
nvidia-cuda-mps-control -d

 2. Set the number of compute resources to use with the
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE environment variable. For example, export
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=50.

 3. Build the network engine.
 4. Stop the CUDA MPS control daemon.

echo quit | nvidia-cuda-mps-control

The resulting engine is optimized to the reduced number of compute cores (50% in this
example) and provides better throughput when using similar conditions during inference.
You are encouraged to experiment with different amounts of streams and different MPS
values to determine the best performance for your network.

For more details about nvidia-cuda-mps-control, refer to the nvidia-cuda-mps-control
documentation and the relevant GPU requirements here.

13.4.7.  Deterministic Tactic Selection
In the engine building phase, TensorRT runs through all the possible tactics and selects
the fastest ones. Since the selection is based on the latency measurements of the
tactics, TensorRT may end up selecting different tactics across different runs if some
tactics have very similar latencies. Therefore, different engines built from the same
INetworkDefinition may behave slightly differently in terms of output values and
performance. You can inspect the selected tactics of an engine by using the Engine
Inspector or by turning on verbose logging while building the engine.

If deterministic tactic selection is desired, the following lists a few suggestions that may
help improve the determinism of tactic selection.

Locking GPU Clock Frequency

By default, the clock frequency of the GPU is not locked, meaning that the GPU normally
sits at the idle clock frequency and only boosts to the max clock frequency when there
are active GPU workloads. However, there is a latency for the clock to be boosted from
the idle frequency and that may cause performance variations while TensorRT is running
through the tactics and selecting the best ones, resulting in non-deterministic tactic
selections.

https://docs.nvidia.com/deploy/mps/index.html#topic_5_1_1
https://docs.nvidia.com/deploy/mps/index.html#topic_3_3_1_1
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Therefore, locking the GPU clock frequency before starting to build a TensorRT engine
may improve the determinism of tactic selection. You can lock the GPU clock frequency
by calling the sudo nvidia-smi -lgc <freq> command, where <freq> is the desired
frequency to lock at. You can call nvidia-smi -q -d SUPPORTED_CLOCKS to find the
supported clock frequencies by the GPU.

Therefore, locking the GPU clock frequency before starting to build a TensorRT engine
may improve the determinism of tactic selection. Refer to the Hardware/Software
Environment for Performance Measurements section for more information about how to
lock and monitor the GPU clock and the factors that may affect GPU clock frequencies.

Increasing Average Timing Iterations

By default, TensorRT runs each tactic for at least four iterations and takes
the average latency. You can increase the number of iterations by calling the
setAvgTimingIterations() API:
C++

builderConfig->setAvgTimingIterations(8);

Python
Builder_config.avg_timing_iterations = 8

Increasing the number of average timing iterations may improve the determinism of
tactic selections, but the required engine building time will become longer.

Using Timing Cache

Timing Cache records the latencies of each tactic for a specific layer configuration.
The tactic latencies are reused if TensorRT encounters another layer with an identical
configuration. Therefore, by reusing the same timing cache across multiple engine
buildings runs with the same INetworkDefinition and builder config, you can make
TensorRT select an identical set of tactics in the resulting engines.

Refer to the Timing Cache section for more information.

13.4.8.  Overhead of Shape Change and
Optimization Profile Switching

After the IExecutionContext switches to a new optimization profile, or the shapes of
the input bindings change, TensorRT must recompute the tensor shapes throughout
the network and recompute the resources needed by some tactics for the new shapes
before the next inference can start. That means, the first enqueue() call after a shape/
profile change may be longer than the subsequent enqueue() calls.

Optimizing the cost of shape/profile switching is an active area of development.
However, there are still a few cases where the overhead can influence the performance
of the inference applications. For example, some convolution tactics for NVIDIA Volta
GPUs or older GPUs have much longer shape/profile switching overhead, even if their
inference performance is the best among all the available tactics. In this case, disabling
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kEDGE_MASK_CONVOLUTIONS tactics from tactic sources when building the engine may
help reduce the overhead of shape/profile switching.

13.5.  Optimizing Layer Performance
The following descriptions detail how you can optimize the listed layers.
Gather Layer

To get the maximum performance out of a Gather layer, use an axis of 0. There are no
fusions available for a Gather layer.

Reduce Layer
To get the maximum performance out of a Reduce layer, perform the reduction across
the last dimensions (tail reduce). This allows optimal memory to read/write patterns
through sequential memory locations. If doing common reduction operations, express
the reduction in a way that will be fused to a single operation if possible.

RNN Layer

If possible, opt to use the newer RNNv2 interface in preference to the legacy RNN
interface. The newer interface supports variable sequence lengths and variable batch
sizes, as well as having a more consistent interface. To get maximum performance,
larger batch sizes are better. In general, sizes that are multiples of 64 achieve highest
performance. Bidirectional RNN-mode prevents wavefront propagation because of the
added dependency, therefore, it tends to be slower.

In addition, the newly introduced Loop-based API provides a much more flexible
mechanism to use general layers within recurrence without being limited to a small
set of predefined RNNv2 interface. The ILoopLayer recurrence enables a rich set
of automatic loop optimizations, including loop fusion, unrolling, and loop-invariant
code motion, to name a few. For example, significant performance gains are often
obtained when multiple instances of the same MatrixMultiply or FullyConnected
layer are properly combined to maximize machine utilization after loop unrolling
along the sequence dimension. This works best if you can avoid a MatrixMultiply
or FullyConnected layer with a recurrent data dependence along the sequence
dimension.

Shuffle
Shuffle operations that are equivalent to identity operations on the underlying
data are omitted if the input tensor is only used in the shuffle layer and the input
and output tensors of this layer are not input and output tensors of the network.
TensorRT does not execute additional kernels or memory copies for such operations.

TopK
To get the maximum performance out of a TopK layer, use small values of K reducing
the last dimension of data to allow optimal sequential memory accesses. Reductions
along multiple dimensions at once can be simulated by using a Shuffle layer to
reshape the data, then reinterpreting the index values appropriately.

For more information about layers, refer to the NVIDIA TensorRT Operator's Reference.

https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
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13.6.  Optimizing for Tensor Cores
Tensor Core is a key technology to deliver high-performance inference on NVIDIA GPUs.
In TensorRT, Tensor Core operations are supported by all compute-intensive layers -
MatrixMultiply, FullyConnected, Convolution, and Deconvolution.

Tensor Core layers tend to achieve better performance if the I/O tensor dimensions are
aligned to a certain minimum granularity:

‣ In Convolution and Deconvolution layers the alignment requirement is on I/O channel
dimension.

‣ In MatrixMultiply and FullyConnected layers the alignment requirement is on matrix
dimensions K and N in a MatrixMultiply that is M x K times K x N.

The following table captures the suggested tensor dimension alignment for better
Tensor Core performance.

Table 3. Types of Tensor Cores

Tensor Core Operation Type
Suggested Tensor Dimension Alignment
in Elements

TF32 4

FP16 8 for dense math, 16 for sparse math

INT8 32

When using Tensor Core implementations in cases where these requirements are not
met, TensorRT implicitly pads the tensors to the nearest multiple of alignment rounding
up the dimensions in the model definition instead to allow for extra capacity in the
model without increasing computation or memory traffic.

TensorRT always uses the fastest implementation for a layer, and thus in some cases
may not use a Tensor Core implementation even if available.

To check if Tensor Core is used for a layer, run Nsight Systems with the --gpu-metrics-
device all flag while profiling the TensorRT application. The Tensor Core usage rate
can be found in the profiling result in the Nsight Systems user interface under the SM
instructions/Tensor Active row. Refer to the CUDA Profiling Tools for more information
about how to use Nsight Systems to profile TensorRT applications.

Note that it is not practical to expect a CUDA kernel to reach 100% Tensor Core usage
since there are other overheads such as DRAM reads/writes, instruction stalls, other
computation units, and so on. In general, the more computation-intensive an operation
is, the higher the Tensor Core usage rate the CUDA kernel can achieve.

The following image is an example of Nsight Systems profiling.



Performance Best Practices

NVIDIA TensorRT PG-08540-001_v10.1.0   |   173

Figure 23. Tensor Core Activities on an A100 GPU Running ResNet-50
with FP16 Enabled

13.7.  Optimizing Plugins
TensorRT provides a mechanism for registering custom plugins that perform layer
operations. After a plugin creator is registered, you can look up the registry to find the
creator and add the corresponding plugin object to the network during serialization/
deserialization.

All TensorRT plugins are automatically registered once the plugin library is loaded. For
more information about custom plugins, refer to Extending TensorRT with Custom
Layers.

The performance of plugins depends on the CUDA code performing the plugin operation.
Standard CUDA best practices apply. When developing plugins, it can be helpful to
start with simple standalone CUDA applications that perform the plugin operation
and verify correctness. The plugin program can then be extended with performance
measurements, more unit testing, and alternate implementations. After the code is
working and optimized, it can be integrated as a plugin into TensorRT.

To get the best performance possible, it is important to support as many formats as
possible in the plugin. This removes the need for internal reformat operations during the
execution of the network. Refer to the Extending TensorRT with Custom Layers section
for examples.

13.8.  Optimizing Python Performance
When using the Python API, most of the same performance considerations apply.
When building engines, the builder optimization phase will normally be the performance

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
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bottleneck; not API calls to construct the network. Inference time should be nearly
identical between the Python API and C++ API.

Setting up the input buffers in the Python API involves using pycuda or another CUDA
Python library, like cupy, to transfer the data from the host to device memory. The
details of how this works will depend on where the host data is coming from. Internally,
pycuda supports the Python Buffer Protocol which allows efficient access to memory
regions. This means that if the input data is available in a suitable format in numpy arrays
or another type that also has support for the buffer protocol, this allows efficient access
and transfer to the GPU. For even better performance, ensure that you allocate a page-
locked buffer using pycuda and write your final preprocessed input there.

For more information about using the Python API, refer to The Python API.

13.9.  Improving Model Accuracy
TensorRT can execute a layer in FP32, FP16, BF16, FP8 or INT8 precision depending on
the builder configuration. By default, TensorRT chooses to run a layer in a precision that
results in optimal performance. Sometimes this can result in poor accuracy. Generally,
running a layer in higher precision helps improve accuracy with some performance hit.

There are several steps that we can take to improve model accuracy:

 1. Validate layer outputs:

 a). Use Polygraphy to dump layer outputs and verify that there are no NaNs or Infs.
The --validate option can check for NaNs and Infs. Also, we can compare layer
outputs with golden values from, for example, ONNX runtime.

 b). For FP16 and BF16, it is possible that a model might require retraining to ensure
that intermediate layer output can be represented in FP16/BF16 precision
without overflow/underflow.

 c). For INT8, consider recalibrating with a more representative calibration data set.
If your model comes from PyTorch, we also provide NVIDIA's Quantization Toolkit
for PyTorch for QAT in the framework besides PTQ in TensorRT. You can try both
approaches and choose the one with more accuracy.

 2. Manipulate layer precision:

 a). Sometimes running a layer in certain precision results in incorrect output. This
can be due to inherent layer constraints (for example, LayerNorm output should
not be INT8), model constraints (output gets diverged resulting in poor accuracy),
or report a TensorRT bug.

 b). You can control layer execution precision and output precision.
 c). An experimental debug precision tool can help automatically find layers to run in

high precision.
 3. Use an Algorithm Selection and Reproducible Builds to disable flaky tactics:

 a). When accuracy changes between build+run to build+run, it might be due to a
selection of a bad tactic for a layer.

https://docs.python.org/3/c-api/buffer.html
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization
https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy/polygraphy/tools/debug
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 b). Use an algorithm selector to dump tactics from both good and bad runs.
Configure the algorithm selector to allow only a subset of tactics (that is, just
allow tactics from a good run, and so on).

 c). You can use Polygraphy to automate this process.

Accuracy from run-to-run variation should not change; once the engine is built for
a specific GPU, it should result in bit accurate outputs in multiple runs. If not, file a
TensorRT bug.

13.10. Optimizing Builder Performance
For each layer, the TensorRT builder profiles all the available tactics to search for the
fastest inference engine plan. The builder time can be long if the model has a large
number of layers or complicated topology. The following sections provide options to
reduce builder time.

13.10.1. Timing Cache
To reduce builder time, TensorRT creates a layer timing cache to keep the layer-
profiling information. The information it contains is specific to the targeted device,
CUDA, TensorRT versions, and BuilderConfig parameters that can change the layer
implementation such as BuilderFlag::kTF32 or BuilderFlag::kREFIT.

If there are other layers with the same IO tensor configuration and layer parameters, the
TensorRT builder skips profiling and reuses the cached result for the repeated layers. If a
timing query misses in the cache, the builder times the layer and updates the cache.

The timing cache can be serialized and deserialized. You can load a serialized cache from
a buffer using IBuilderConfig::createTimingCache:.
ITimingCache* cache = 
 config->createTimingCache(cacheFile.data(), cacheFile.size());

Setting the buffer size to 0 creates a new empty timing cache.

You then attach the cache to a builder configuration before building.
config->setTimingCache(*cache, false);

During the build, the timing cache can be augmented with more information as a result
of cache misses. After the build, it can be serialized for use with another builder.
IHostMemory* serializedCache = cache->serialize();

If there is no timing cache attached to a builder, the builder creates its own temporary
local cache and destroys it when it is done.

The compilation cache is part of the timing cache, which caches JIT-compiled code and
will be serialized as part of the timing cache by default. It can be disabled by setting the
BuildFlag.
config->setFlag(BuilderFlag::kDISABLE_COMPILATION_CACHE);

The cache is incompatible with algorithm selection (refer to the Algorithm Selection and
Reproducible Builds section). It can be disabled by setting the BuilderFlag.

https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy/examples/cli/debug/01_debugging_flaky_trt_tactics


Performance Best Practices

NVIDIA TensorRT PG-08540-001_v10.1.0   |   176

config->setFlag(BuilderFlag::kDISABLE_TIMING_CACHE);

Note: The timing cache supports the most frequently used layer types: Convolution,
Deconvolution, Pooling, SoftMax, MatrixMultiply, ElementWise, Shuffle, and tensor
memory layout conversion. More layer types will be added in future releases.

13.10.2. Tactic Selection Heuristic
TensorRT allows heuristic-based tactic selection to minimize the builder time in the layer
profiling stage. The builder predicts the tactic timing for the given problem size and
prunes the tactics that are not likely to be fast prior to the layer profiling stage. In cases
where the prediction is wrong, the engine will not be as performant as when built with a
profiling-based builder. This feature can be enabled by setting the BuilderFlag.
config->setFlag(BuilderFlag::kENABLE_TACTIC_HEURISTIC);

Note: The tactic selection heuristic feature is only supported by the NVIDIA Ampere
architecture and newer GPUs.

13.11. Builder Optimization Level
Set the optimization level in builder config to adjust how long TensorRT should spend
searching for tactics with potentially better performance. By default, the optimization
level is 3. Setting it to a smaller value results in much faster engine building time, but
the performance of the engine may be worse. On the other hand, setting it to a larger
value will increase the engine building time, but the resulting engine may perform better
if TensorRT is able to find better tactics.

For example, to set the optimization level to 0 (the fastest):
C++

config->setOptimizationLevel(0);

Python
config.optimization_level = 0
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Chapter 14. Troubleshooting

The following sections help answer the most commonly asked questions regarding
typical use cases.

14.1.  FAQs
This section is to help troubleshoot the problem and answer our most asked questions.

Q: How do I create an engine that is optimized for several different batch
sizes?

A: While TensorRT allows an engine optimized for a given batch size to run at any smaller
size, the performance for those smaller sizes cannot be as well optimized. To optimize
for multiple different batch sizes, create optimization profiles at the dimensions that are
assigned to OptProfilerSelector::kOPT.

Q: Are calibration tables portable across TensorRT versions?

A: No. Internal implementations are continually optimized and can change between
versions. For this reason, calibration tables are not guaranteed to be binary compatible
with different versions of TensorRT. Applications must build new INT8 calibration tables
when using a new version of TensorRT.

Q: Are engines portable across TensorRT versions?

A: By default, no. Refer to Version Compatibility for how to configure engines for forward
compatibility.

Q: How do I choose the optimal workspace size?

A: Some TensorRT algorithms require additional workspace on the GPU. The method
IBuilderConfig::setMemoryPoolLimit() controls the maximum amount of workspace
that can be allocated and prevents algorithms that require more workspace from being
considered by the builder. At runtime, the space is allocated automatically when creating
an IExecutionContext. The amount allocated is no more than is required, even if the
amount set in IBuilderConfig::setMemoryPoolLimit() is much higher. Applications
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should therefore allow the TensorRT builder as much workspace as they can afford; at
runtime, TensorRT allocates no more than this and typically less.

Q: How do I use TensorRT on multiple GPUs?

A: Each ICudaEngine object is bound to a specific GPU when it is instantiated, either by
the builder or on deserialization. To select the GPU, use cudaSetDevice() before calling
the builder or deserializing the engine. Each IExecutionContext is bound to the same
GPU as the engine from which it was created. When calling execute() or enqueue(),
ensure that the thread is associated with the correct device by calling cudaSetDevice()
if necessary.

Q: How do I get the version of TensorRT from the library file?

A: There is a symbol in the symbol table named tensorrt_version_#_#_#_# which
contains the TensorRT version number. One possible way to read this symbol on Linux is
to use the nm command like in the following example:
$ nm -D libnvinfer.so.* | grep tensorrt_version
00000000abcd1234 B tensorrt_version_#_#_#_#

Q: What can I do if my network is producing the wrong answer?

A: There are several reasons why your network can be generating incorrect answers. Here
are some troubleshooting approaches that can help diagnose the problem:

‣ Turn on VERBOSE level messages from the log stream and check what TensorRT is
reporting.

‣ Check that your input preprocessing is generating exactly the input format required
by the network.

‣ If you are using reduced precision, run the network in FP32. If it produces the correct
result, it is possible that lower precision has an insufficient dynamic range for the
network.

‣ Try marking intermediate tensors in the network as outputs, and verify if they match
what you are expecting.

Note: Marking tensors as outputs can inhibit optimizations, and therefore, can change
the results.

You can use NVIDIA Polygraphy to assist you with debugging and diagnosis.

Q: How do I implement batch normalization in TensorRT?

A: Batch normalization can be implemented using a sequence of IElementWiseLayer in
TensorRT. More specifically:
adjustedScale = scale / sqrt(variance + epsilon) 
batchNorm = (input + bias - (adjustedScale * mean)) * adjustedScale

https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
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Q: Why does my network run slower when using DLA compared to without
DLA?

A: DLA was designed to maximize energy efficiency. Depending on the features
supported by DLA and the features supported by the GPU, either implementation can be
more performant. Which implementation to use depends on your latency or throughput
requirements and your power budget. Since all DLA engines are independent of the GPU
and each other, you could also use both implementations at the same time to further
increase the throughput of your network.

Q: Is INT4 quantization or INT16 quantization supported by TensorRT?

A: TensorRT supports INT4 quantization for GEMM weight-only quantization. TensorRT
does not support INT16 quantization.

Q: When will TensorRT support layer XYZ required by my network in the UFF
parser?

A: UFF is deprecated. We recommend users switch their workflows to ONNX. The
TensorRT ONNX parser is an open source project.

Q: Can I use multiple TensorRT builders to compile on different targets?

A: TensorRT assumes that all resources for the device it is building on are available for
optimization purposes. Concurrent use of multiple TensorRT builders (for example,
multiple trtexec instances) to compile on different targets (DLA0, DLA1 and GPU) can
oversubscribe system resources causing undefined behavior (meaning, inefficient plans,
builder failure, or system instability).

It is recommended to use trtexec with the --saveEngine argument to compile for
different targets (DLA and GPU) separately and save their plan files. Such plan files
can then be reused for loading (using trtexec with the --loadEngine argument) and
submitting multiple inference jobs on the respective targets (DLA0, DLA1, GPU). This
two-step process alleviates over-subscription of system resources during the build
phase while also allowing execution of the plan file to proceed without interference by
the builder.

Q: Which layers are accelerated by Tensor Cores?

A: Most math-bound operations will be accelerated with tensor cores - convolution,
deconvolution, fully connected, and matrix multiply. In some cases, particularly for small
channel counts or small group sizes, another implementation may be faster and be
selected instead of a tensor core implementation.
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Q: Why are reformatting layers observed although there is no warning
message no implementation obeys reformatting-free rules ...?

A: Reformat-free network I/O does not mean that there are no reformatting layers
inserted in the entire network. Only that the input and output network tensors have a
possibility not to require reformatting layers. In other words, reformatting layers can be
inserted by TensorRT for internal tensors to improve performance.

14.2.  Understanding Error Messages
If an error is encountered during execution, TensorRT reports an error message that is
intended to help in debugging the problem. Some common error messages that can be
encountered by developers are discussed in the following sections.

ONNX Parser Error Messages

The following table captures the common ONNX parser error messages. For more
information on specific ONNX node support, refer to the operators support document.

Error Message Description
<X> must be an initializer!

!inputs.at(X).is_weights()
These error messages signify that an ONNX
node input tensor is expected to be an
initializer in TensorRT. A possible fix is to
run constant folding on the model using
TensorRT’s Polygraphy tool:
polygraphy surgeon sanitize model.onnx --
fold-constants --output model_folded.onnx

getPluginCreator() could not find Plugin
 <operator name> version
    1

This is an error stating that the ONNX parser
does not have an import function defined
for a particular operator, and did not find a
corresponding plugin in the loaded registry for
the operator.

TensorRT Core Library Error Messages

The following table captures the common TensorRT core library error messages.

Error Message Description

Installation Errors Cuda initialization
 failure with error
 <code>. Please check cuda
 installation: http://
docs.nvidia.com/cuda/cuda-
installation-guide-linux/
index.html.

This error message can occur
if the CUDA or NVIDIA driver
installation is corrupt. Refer
to the URL for instructions

https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
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Error Message Description
on installing CUDA and the
NVIDIA driver on your OS.

Internal error: could not
 find any implementation for
 node <name>. Try increasing
 the workspace size with
 IBuilderConfig::setMemoryPoolLimit().

This error message occurs
because there is no layer
implementation for the
given node in the network
that can operate with the
given workspace size. This
usually occurs because the
workspace size is insufficient
but could also indicate a bug.
If increasing the workspace
size as suggested does not
help, report a bug (refer to
Reporting TensorRT Issues).

<layer-name>: (kernel|bias)
 weights has non-zero count
 but null values
<layer-name>: (kernel|bias)
 weights has zero count but
 non-null values

This error message occurs
when there is a mismatch
between the values and
count fields in a Weights
data structure passed to the
builder. If the count is 0, then
the values field must contain
a null pointer; otherwise, the
count must be non-zero, and
values must contain a non-null
pointer.

Builder Errors

Builder was created on device
 different from current
 device.

This error message can show
up if you:

 1. Created an IBuilder
targeting one GPU, then

 2. Called cudaSetDevice()
to target a different GPU,
then

 3. Attempted to use the
IBuilder to create an
engine.

Ensure you only use the
IBuilder when targeting the
GPU that was used to create
the IBuilder.
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Error Message Description

You can encounter error messages indicating that the tensor
dimensions do not match the semantics of the given layer.
Carefully read the documentation on NvInfer.h on the usage
of each layer and the expected dimensions of the tensor inputs
and outputs to the layer.

Tensor <X> is uniformly zero. This warning occurs and
should be treated as an error
when data distribution for a
tensor is uniformly zero. In a
network, the output tensor
distribution can be uniformly
zero under the following
scenarios:

 1. Constant tensor with all
zero values; not an error.

 2. Activation (ReLU) output
with all negative inputs:
not an error.

 3. Data distribution is
forced to all zero due to
computation error in the
previous layer; emit a
warning here.1

 4. User does not provide any
calibration images; emit a
warning here.2

INT8 Calibration Errors

Could not find scales for
 tensor <X>.

This error message indicates
that a calibration failure
occurred with no scaling
factors detected. This could
be due to no INT8 calibrator or
insufficient custom scales for
network layers.

Engine Compatibility Errors The engine plan file is not
 compatible with this version
 of TensorRT, expecting
 (format|library) version <X>
 got <Y>, please rebuild.

This error message can occur
if you are running TensorRT
using an engine PLAN file
that is incompatible with the

1 It is recommended to evaluate the calibration input or validate the previous layer outputs.
2 It is recommended to evaluate the calibration input or validate the previous layer outputs.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/namespacenvinfer1.html
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Error Message Description
current version of TensorRT.
Ensure you use the same
version of TensorRT when
generating the engine and
running it.

The engine plan file is
 generated on an incompatible
 device, expecting compute
 <X> got compute <Y>, please
 rebuild.

This error message can occur
if you build an engine on a
device of a different compute
capability than the device that
is used to run the engine.

Using an engine plan file
 across different models of
 devices is not recommended
 and is likely to affect
 performance or even cause
 errors.

This warning message can
occur if you build an engine
on a device with the same
compute capability but is not
identical to the device that is
used to run the engine.

As indicated by the warning,
it is highly recommended
to use a device of the same
model when generating the
engine and deploying it to
avoid compatibility issues.

GPU memory allocation failed
 during initialization of
 (tensor|layer): <name>
GPU memory

Allocation failed during
 deserialization of weights.

Out Of Memory Errors

GPU does not meet the minimum
 memory requirements to run
 this engine …

These error messages can
occur if there is insufficient
GPU memory available to
instantiate a given TensorRT
engine. Verify that the GPU
has sufficient available
memory to contain the
required layer weights and
activation tensors.

FP16 Errors Network needs native FP16
 and platform does not have
 native FP16

This error message can occur
if you attempt to deserialize
an engine that uses FP16
arithmetic on a GPU that does
not support FP16 arithmetic.
You either must rebuild the
engine without FP16 precision
inference or upgrade your GPU
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Error Message Description
to a model that supports FP16
precision inference.

Plugin Errors Custom layer <name> returned
 non-zero initialization

This error message can occur
if the initialize() method
of a given plugin layer returns
a non-zero value. Refer to the
implementation of that layer
to debug this error further. For
more information, refer to the
NVIDIA TensorRT Operator's
Reference.

14.3.  Code Analysis Tools

14.3.1.  Compiler Sanitizers
Google sanitizers are a set of code analysis tools.

14.3.1.1. Issues with dlopen and Address Sanitizer
There is a known issue with sanitizers, documented here. When using dlopen on
TensorRT under a sanitizer, there will be reports of memory leaks unless one of two
solutions is adopted:

 1. Do not call dlclose when running under the sanitizers.
 2. Pass the flag RTLD_NODELETE to dlopen when running under sanitizers.

14.3.1.2. Issues with dlopen and Thread Sanitizer
The thread sanitizer can list errors when using dlopen from multiple threads. In order to
suppress this warning, create a file called tsan.supp and add the following to the file:
race::dlopen

When running applications under thread sanitizer, set the environment variable using:
export TSAN_OPTIONS=”suppressions=tsan.supp”

14.3.1.3. Issues with CUDA and Address Sanitizer
The address sanitizer has a known issue with CUDA applications documented here. In
order to successfully run CUDA libraries such as TensorRT under the address sanitizer,
add the option protect_shadow_gap=0 to the ASAN_OPTIONS environment variable.

On CUDA 11.4, there is a known bug that can trigger mismatched allocation-and-free
errors in the address sanitizer. Add alloc_dealloc_mismatch=0 to ASAN_OPTIONS to
disable these errors.

https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/operators/docs/index.html
https://github.com/google/sanitizers
https://github.com/google/sanitizers/issues/89
https://github.com/google/sanitizers/issues/629
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14.3.1.4. Issues with Undefined Behavior Sanitizer
UndefinedBehaviorSanitizer (UBSan) reports false positives with the -
fvisibility=hidden option as documented here. Add the -fno-sanitize=vptr option
to avoid UBSan reporting such false positives.

14.3.2.  Valgrind
Valgrind is a framework for dynamic analysis tools that can be used to automatically
detect memory management and threading bugs in applications.

Some versions of valgrind and glibc are affected by a bug, which causes false memory
leaks to be reported when dlopen is used, which can generate spurious errors when
running a TensorRT application under valgrind's memcheck tool. To work around this, add
the following to a valgrind suppressions file as documented here:
{
   Memory leak errors with dlopen
   Memcheck:Leak
   match-leak-kinds: definite
   ...
   fun:*dlopen*
   ...
}

On CUDA 11.4, there is a known bug that can trigger mismatched allocation-and-
free errors in valgrind. Add the option --show-mismatched-frees=no to the valgrind
command line to suppress these errors.

14.3.3.  Compute Sanitizer
When running a TensorRT application under compute-sanitizer, cuGetProcAddress
can fail with error code 500 due to missing functions. This error can be ignored or
suppressed with --report-api-errors no option. This is due to CUDA backward
compatibility checking if a function is usable on the CUDA toolkit/driver combination.
The functions are introduced in a later version of CUDA but are not available on the
current platform.

14.4.  Understanding Formats Printed in
Logs

In logs from TensorRT, formats are printed as a type followed by stride and vectorization
information. For example:
Half(60,1:8,12,3)

The Half indicates that the element type is DataType::kHALF, that is, 16-bit floating
point. The :8 indicates the format packs eight elements per vector, and that
vectorization is along the second axis. The rest of the numbers are strides in units of
vectors. For this tensor, the mapping of a coordinate (n,c,h,w) to an address is:
((half*)base_address) + (60*n + 1*floor(c/8) + 12*h + 3*w) * 8 + (c mod 8)

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80963
https://www.valgrind.org/
https://stackoverflow.com/questions/1542457/memory-leak-reported-by-valgrind-in-dlopen
https://valgrind.org/docs/manual/manual-core.html#manual-core.suppress
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The 1: is common to NHWC formats. For example, here is another example for an NCHW
format:
Int8(105,15:4,3,1)

The INT8 indicates that the element type is DataType::kINT8, and the :4 indicates a
vector size of 4. For this tensor, the mapping of a coordinate (n,c,h,w) to an address is:
(int8_t*)base_address + (105*n + 15*floor(c/4) + 3*h + w) * 4 + (c mod 4)

Scalar formats have a vector size of 1. For brevity, printing omits the :1.

In general, the coordinates to address mappings have the following form:
(type*)base_address + (vec_coordinate · strides) * vec_size + vec_mod

Where:

‣ the dot denotes an inner product

‣ strides are the printed strides, that is, strides in units of vectors

‣ vec_size is the number of elements per vectors

‣ vec_coordinate is the original coordinate with the coordinate along the vectorized
axis divided by vec_size

‣ vec_mod is the original coordinate along the vectorized axis modulo vec_size

14.5.  Reporting TensorRT Issues
If you encounter issues when using TensorRT, first confirm that you have followed
the instructions in this Developer Guide. Also, check the FAQs and the Understanding
Error Messages sections to look for similar failing patterns. For example, many engine
building failures can be solved by sanitizing and constant-folding the ONNX model using
Polygraphy with the following command:
polygraphy surgeon sanitize model.onnx --fold-constants --output
        model_folded.onnx

In addition, it is highly recommended that you first try our latest TensorRT release before
filing an issue if you have not done so, since your issue may have been fixed in the latest
release.

14.5.1.  Channels for TensorRT Issue Reporting
If none of the FAQs or the Understanding Error Messages work, there are two main
channels where you can report the issue: NVIDIA Developer Forum or TensorRT GitHub
Issue page. These channels are constantly monitored to provide feedback to the issues
you encountered.

Here are the steps to report an issue on the NVIDIA Developer Forum:

 1. Register for the NVIDIA Developer website.
 2. Log in to the developer site.
 3. Click on your name in the upper right corner.
 4. Click My account > My Bugs and select Submit a New Bug.

https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
https://forums.developer.nvidia.com/c/ai-data-science/deep-learning/tensorrt/92
https://github.com/NVIDIA/TensorRT/issues
https://github.com/NVIDIA/TensorRT/issues
https://developer.nvidia.com/
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 5. Fill out the bug reporting page. Be descriptive and if possible, provide the steps to
reproduce the problem.

 6. Click Submit a bug.

When reporting an issue, provide setup details and include the following information:

‣ Environment information:

‣ OS or Linux distro and version

‣ GPU type

‣ NVIDIA driver version

‣ CUDA version

‣ cuDNN version

‣ Python version (if Python is used).

‣ TensorFlow, PyTorch, and ONNX version (if any of them is used).

‣ TensorRT version

‣ NGC TensorRT container version (if TensorRT container is used).

‣ Jetson (if used), include OS and hardware versions

‣ Thorough description of the issue.

‣ Steps to reproduce the issue:

‣ ONNX file (if ONNX is used).

‣ Minimal commands or scripts to trigger the issue

‣ Verbose logs by enabling kVERBOSE in ILogger

Depending on the type of the issue, providing more information listed below can
expedite the response and debugging process.

14.5.2.  Reporting a Functional Issue
When reporting functional issues, such as linker errors, segmentation faults, engine
building failures, inference failures, and so on, provide the scripts and the commands to
reproduce the issue as well as the detailed description of the environment. Having more
details helps us in debugging the functional issue faster.

Since the TensorRT engine is specific to a specific TensorRT version and a specific
GPU type, do not build the engine in one environment and use it to run it in another
environment with different GPUs or dependency software stack, such as TensorRT
version, CUDA version, cuDNN version, and so on. Also, ensure that the application
is linked to the correct TensorRT and cuDNN shared object files by checking the
environment variable LD_LIBRARY_PATH (or %PATH% on Windows).

14.5.3.  Reporting an Accuracy Issue
When reporting an accuracy issue, provide the scripts and the commands used to
calculate the accuracy metrics. Describe what the expected accuracy level is and, if
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possible, share the steps to get the expected results using other frameworks like ONNX-
Runtime.

The Polygraphy tool can be used to debug the accuracy issue and produce a minimal
failing case. Refer to the Debugging TensorRT Accuracy Issues documentation for the
instructions. Having a Polygraphy command that shows the accuracy issue or having the
minimal failing case expedites the time it takes for us to debug your accuracy issue.

Note that it is not practical to expect bitwise identical results between TensorRT and
other frameworks like PyTorch, TensorFlow, or ONNX-Runtime even in FP32 precision
since the order of the computations on the floating-point numbers can result in
slight differences in output values. In practice, small numeric differences should not
significantly affect the accuracy metric of the application, such as the mAP score for
object-detection networks or the BLEU score for translation networks. If you do see
a significant drop in the accuracy metric between using TensorRT and using other
frameworks such as PyTorch, TensorFlow, or ONNX-Runtime, it may be a genuine
TensorRT bug.

If you are seeing NaNs or infinite values in TensorRT engine output when FP16/BF16
precision is enabled, it is possible that intermediate layer outputs in the network
overflow in FP16/BF16. Some approaches to help mitigate this include:

‣ Ensuring that network weights and inputs are restricted to a reasonably narrow
range (such as [-1, 1] instead of [-100, 100]). This may require making changes to the
network and retraining.

‣ Consider pre-processing input by scaling or clipping it to the restricted range
before passing it to the network for inference.

‣ Overriding precision for individual layers vulnerable to overflows (for example, Reduce
and Element-Wise Power ops) to FP32.

Polygraphy can help you diagnose common problems with using reduced precision. Refer
to Polygraphy's Working with Reduced Precision how-to guide for more details.

Refer to the Improving Model Accuracy section for some possible solutions to accuracy
issues, and the Working with Quantized Types section for instructions about using INT8/
FP8 precision.

14.5.4.  Reporting a Performance Issue
If you are reporting a performance issue, share the full trtexec logs using this command:
trtexec --onnx=<onnx_file> <precision_and_shape_flags> --verbose --
profilingVerbosity=detailed --dumpLayerInfo --dumpProfile --separateProfileRun --useCudaGraph
 --noDataTransfers --useSpinWait --duration=60

The verbose logs help us to identify the performance issue. If possible, also share the
Nsight Systems profiling files using these commands:
trtexec --onnx=<onnx_file> <precision_and_shape_flags> --verbose --
profilingVerbosity=detailed --dumpLayerInfo --saveEngine=<engine_path>
nsys profile --cuda-graph-trace=node -o <output_profile> trtexec --loadEngine=<engine_path>
 <precision_and_shape_flags> --useCudaGraph --noDataTransfers --useSpinWait --warmUp=0 --
duration=0 --iterations=20

Refer to the trtexec section for more instructions about how to use the trtexec tool and
the meaning of these flags.

https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/how-to/debug_accuracy.md
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/how-to/work_with_reduced_precision.md
https://developer.nvidia.com/nsight-systems
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If you do not use trtexec to measure performance, provide the scripts and the
commands that you use to measure the performance. If possible, compare the
performance measurement from your script with that from the trtexec tool. If the
two numbers differ, there may be some issues about the performance measurement
methodology in your scripts.

Refer to the Hardware/Software Environment for Performance Measurements section
for some environment factors that may affect the performance.
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Appendix A. Appendix

A.1.  Data Format Descriptions
TensorRT supports different data formats. There are two aspects to consider: data type
and layout.

Data Type Format

The data type is the representation of each individual value. Its size determines the range
of values and the precision of the representation, which are:

‣ FP32 (32-bit floating point, or single precision)

‣ FP16 (16-bit floating point, or half precision)

‣ BF16 (1-bit sign, 8-bit exponent, 7-bit mantissa)

‣ FP8 (1-bit sign, 4-bit exponent, 3-bit mantissa)

‣ INT64 (64-bit integer)

‣ INT32 (32-bit integer)

‣ INT8 (8-bit integer)

‣ UINT8 (unsigned 8-bit integer)

‣ INT4 (4-bit integer)

Layout Format

The layout format determines the ordering in which values are stored. Typically, batch
dimensions are the leftmost dimensions, and the other dimensions refer to aspects of
each data item, such as C is channel, H is height, and W is width, in images. Ignoring batch
sizes, which are always preceding these, C, H, and W are typically sorted as CHW (refer to
Figure 24) or HWC (refer to Figure 25).

The following image is divided into HxW matrices, one per channel, and the matrices are
stored in sequence; all the values of a channel are stored contiguously.
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Figure 24. Layout Format for CHW

The image is stored as a single HxW matrix, whose value is actually C-tuple, with a value
per channel; all the values of a point (pixel) are stored contiguously.
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Figure 25. Layout format for HWC

To enable faster computations, more formats are defined to pack together channel
values and use reduced precision. For this reason, TensorRT also supports formats like
NC, 2HW2 and NHWC8.

In NC, 2HW2 (TensorFormat::kCHW2), pairs of channel values are packed together in
each HxW matrix (with an empty value in the case of an odd number of channels). The
result is a format in which the values of #C/2# HxW matrices are pairs of values of two
consecutive channels (refer to Figure 26); notice that this ordering interleaves dimension
as values of channels that have stride 1 if they are in the same pair and stride 2xHxW
otherwise.

A pair of channel values is packed together in each HxW matrix. The result is a format in
which the values of #C/2# HxW matrices are pairs of values of two consecutive channels.
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Figure 26. Values of #C/2# HxW Matrices are Pairs of Values of Two
Consecutive Channels

In NHWC8 (TensorFormat::kHWC8), the entries of an HxW matrix include the values of all
the channels (refer to Figure 27). In addition, these values are packed together in #C/8#
8-tuples, and C is rounded up to the nearest multiple of 8.

In this NHWC8 format, the entries of an HxW matrix include the values of all the channels.
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Figure 27. In NHWC8 Format, the Entries of an HxW Matrix Include the
Values of all the Channels

Other TensorFormat follow similar rules to TensorFormat::kCHW2 and
TensorFormat::kHWC8 mentioned previously.

A.2.  Command-Line Programs

A.2.1.  trtexec
Included in the samples directory is a command-line wrapper tool called trtexec.
trtexec is a tool to quickly utilize TensorRT without having to develop your own
application. The trtexec tool has three main purposes:

‣ It is useful for benchmarking networks on random or user-provided input data.

‣ It is useful for generating serialized engines from models.

‣ It is useful for generating serialized timing cache from the builder.
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A.2.1.1.  Benchmarking Network
If you have a model saved as an ONNX file, you can use the trtexec tool to test the
performance of running inference on your network using TensorRT. The trtexec tool
has many options for specifying inputs and outputs, iterations for performance timing,
precision allowed, and other options.

To maximize GPU utilization, trtexec enqueues the inferences one batch ahead of time.
In other words, it does the following:
enqueue batch 0 -> enqueue batch 1 -> wait until batch 0 is done -> enqueue batch 2 -> wait
 until batch 1 is done -> enqueue batch 3 -> wait until batch 2 is done -> enqueue batch 4 -
> ...

If cross-inference multi-stream (--infStreams=N flag) is used, then trtexec follows this
pattern on each stream separately.

The trtexec tool prints the following performance metrics. The following figure shows
an example Nsight System profile of a trtexec run with markers showing what each
performance metric means.
Throughput

The observed throughput is computed by dividing the number of inferences by the
Total Host Walltime. If this is significantly lower than the reciprocal of GPU Compute
Time, the GPU may be underutilized because of host-side overheads or data transfers.
Using CUDA graphs (with --useCudaGraph) or disabling H2D/D2H transfers (with --
noDataTransfer) may improve GPU utilization. The output log provides guidance on
which flag to use when trtexec detects that the GPU is underutilized.

Host Latency
The summation of H2D Latency, GPU Compute Time, and D2H Latency. This is the
latency to infer a single inference.

Enqueue Time
The host latency to enqueue an inference, including calling H2D/D2H CUDA APIs,
running host-side heuristics, and launching CUDA kernels. If this is longer than GPU
Compute Time, the GPU may be underutilized and the throughput may be dominated
by host-side overhead. Using CUDA graphs (with --useCudaGraph) may reduce
enqueue time.

H2D Latency
The latency for host-to-device data transfers for input tensors of a single inference.
Add --noDataTransfer to disable H2D/D2H data transfers.

D2H Latency
The latency for device-to-host data transfers for output tensors of a single inference.
Add --noDataTransfer to disable H2D/D2H data transfers.

GPU Compute Time
The GPU latency to execute the CUDA kernels for an inference.

Total Host Walltime
The host walltime from when the first inference (after warm-ups) is enqueued to
when the last inference was completed.

Total GPU Compute Time
The summation of the GPU Compute Time of all the inferences. If this is significantly
shorter than Total Host Walltime, the GPU may be under utilized because of host-side
overheads or data transfers.
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Performance metrics in a normal trtexec run under Nsight Systems (ShuffleNet, BS=16,
best, TitanRTX at 1200 MHz).

Note: In the latest Nsight Systems, the GPU rows appear above the CPU rows rather than
beneath the CPU rows.

Figure 28. Performance Metrics in a Normal trtexec Run under Nsight
Systems

Add the --dumpProfile flag to trtexec to show per-layer performance profiles, which
allows users to understand which layers in the network take the most time in GPU
execution. The per-layer performance profiling works with launching inference as a CUDA
graph as well. In addition, build the engine with the --profilingVerbosity=detailed
flag and add the --dumpLayerInfo flag to show detailed engine information, including
per-layer detail and binding information. This allows you to understand which operation
each layer in the engine corresponds to and their parameters.

A.2.1.2.  Serialized Engine Generation
If you generate a saved serialized engine file, you can pull it into another application
that runs inference. For example, you can use the NVIDIA Triton Inference Server to run
the engine with multiple execution contexts from multiple threads in a fully pipelined
asynchronous way to test parallel inference performance. There are some caveats; for

https://github.com/triton-inference-server/server
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example, in INT8 mode, trtexec sets random dynamic ranges for tensors unless the
calibration cache file is provided with the --calib=<file> flag, so the resulting accuracy
will not be as expected.

A.2.1.3.  Serialized Timing Cache Generation
If you provide a timing cache file to the --timingCacheFile option, the builder can load
existing profiling data from it and add new profiling data entries during layer profiling.
The timing cache file can be reused in other builder instances to improve the builder
execution time. It is suggested to reuse this cache only in the same hardware/software
configurations (for example, CUDA/cuDNN/TensorRT versions, device model, and clock
frequency); otherwise, functional or performance issues may occur.

A.2.1.4.  Commonly Used Command-line Flags
The section lists the commonly used trtexec command-line flags.

Flags for the Build Phase

‣ --onnx=<model>: Specify the input ONNX model.

‣ If the input model is in ONNX format, use the --minShapes, --optShapes, and --
maxShapes flags to control the range of input shapes including batch size.

‣ --minShapes=<shapes>, --optShapes=<shapes>, and --maxShapes=<shapes>: Specify
the range of the input shapes to build the engine with. Only required if the input
model is in ONNX format.

‣ –-memPoolSize=<pool_spec>: Specify the maximum size of the workspace that
tactics are allowed to use, as well as the sizes of the memory pools that DLA
will allocate per loadable. Supported pool types include workspace, dlaSRAM,
dlaLocalDRAM, dlaGlobalDRAM, and tacticSharedMem.

‣ --saveEngine=<file>: Specify the path to save the engine to.

‣ --fp16, --bf16,--int8, --fp8,--noTF32, and --best: Specify network-level precision.

‣ --stronglyTyped: Create a strongly typed network.

‣ --sparsity=[disable|enable|force]: Specify whether to use tactics that support
structured sparsity.

‣ disable: Disable all tactics using structured sparsity. This is the default.

‣ enable: Enable tactics using structured sparsity. Tactics will only be used if the
weights in the ONNX file meet the requirements for structured sparsity.

‣ force: Enable tactics using structured sparsity and allow trtexec to overwrite the
weights in the ONNX file to enforce them to have structured sparsity patterns.
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Note that the accuracy is not preserved, so this is to get inference performance
only.

Note: This has been deprecated. Use Polygraphy (polygraphy surgeon prune) to
rewrite the weights of ONNX models to structured-sparsity pattern and then run
with --sparsity=enable.

‣ --timingCacheFile=<file>: Specify the timing cache to load from and save to.

‣ --noCompilationCache: Disable compilation cache in builder, and the cache is part of
timing cache (default is to enable compilation cache).

‣ --verbose: Turn on verbose logging.

‣ --skipInference: Build and save the engine without running inference.

‣ --profilingVerbosity=[layer_names_only|detailed|none]: Specify the profiling
verbosity to build the engine with.

‣ --dumpLayerInfo, --exportLayerInfo=<file>: Print/Save the layer information of
the engine.

‣ --precisionConstraints=spec: Control precision constraint setting.

‣ none: No constraints.

‣ prefer: Meet precision constraints set by --layerPrecisions/--
layerOutputTypes if possible.

‣ obey: Meet precision constraints set by --layerPrecisions/--layerOutputTypes
or fail otherwise.

‣ --layerPrecisions=spec: Control per-layer precision constraints. Effective only
when precisionConstraints is set to obey or prefer. The specs are read left to
right, and later ones override earlier ones. "*" can be used as a layerName to specify
the default precision for all the unspecified layers.

‣ For example: --layerPrecisions=*:fp16,layer_1:fp32 sets the precision of all
layers to FP16 except for layer_1, which will be set to FP32.

‣ --layerOutputTypes=spec: Control per-layer output type constraints. Effective only
when precisionConstraints is set to obey or prefer. The specs are read left to
right, and later ones override earlier ones. "*" can be used as a layerName to specify
the default precision for all the unspecified layers. If a layer has more than one
output, then multiple types separated by "+" can be provided for this layer.

‣ For example: --layerOutputTypes=*:fp16,layer_1:fp32+fp16 sets the precision
of all layer outputs to FP16 except for layer_1, whose first output will be set to
FP32 and whose second output will be set to FP16.

‣ --layerDeviceTypes=spec: Explicitly set per-layer device type to either GPU or DLA.
The specs are read left to right, and later ones override earlier ones.

‣ -–useDLACore=N: Use the specified DLA core for layers that support DLA.

‣ -–allowGPUFallback: Allow layers unsupported on DLA to run on GPU instead.

https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
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‣ --versionCompatible, --vc: Enable version compatible mode for engine build and
inference. Any engine built with this flag enabled is compatible with newer versions
of TensorRT on the same host OS when run with TensorRT's dispatch and lean
runtimes. Only supported with explicit batch mode.

‣ --excludeLeanRuntime: When --versionCompatible is enabled, this flag indicates
that the generated engine should not include an embedded lean runtime. If this is
set, you must explicitly specify a valid lean runtime to use when loading the engine.
Only supported with explicit batch and weights within the engine.

‣ --tempdir=<dir>: Overrides the default temporary directory TensorRT will use
when creating temporary files. Refer to the IRuntime::setTemporaryDirectory API
documentation for more information.

‣ --tempfileControls=controls: Controls what TensorRT is allowed to use when
creating temporary executable files. Should be a comma-separated list with entries in
the format [in_memory|temporary]:[allow|deny].

‣ Options include:

‣ in_memory: Controls whether TensorRT is allowed to create temporary in-
memory executable files.

‣ temporary: Controls whether TensorRT is allowed to create temporary
executable files in the filesystem (in the directory given by --tempdir).

‣ Example usage: --tempfileControls=in_memory:allow,temporary:deny

‣ --dynamicPlugins=<file>: Load the plugin library dynamically and serialize it
with the engine when it is included in --setPluginsToSerialize (can be specified
multiple times).

‣ --setPluginsToSerialize=<file>: Set the plugin library to be serialized with the
engine (can be specified multiple times).

‣ --builderOptimizationLevel=N: Set the builder optimization level to build the
engine with. Higher level allows TensorRT to spend more building time for more
optimization options.

‣ --maxAuxStreams=N: Set maximum number of auxiliary streams per inference stream
that TRT is allowed to use to run kernels in parallel if the network contains ops that
can run in parallel, with the cost of more memory usage. Set this to 0 for optimal
memory usage. Refer to the Within-Inference Multi-Streaming section for more
information.

‣ --stripWeights: Strip weights from plan. This flag works with either refit or refit
with identical weights. Defaults to refit with identical weights, however, you can
switch to refit by enabling both --stripWeights and --refit at the same time.

‣ --markDebug: Specify a list of tensor names to be marked as debug tensors. Separate
names with a comma.

‣ --allowWeightStreaming: Enables an engine that can stream its weights. Must be
specified with --stronglyTyped. TensorRT will automatically choose the appropriate
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weight streaming budget at runtime to ensure model execution. A specific amount
can be set with --weightStreamingBudget.

Flags for the Inference Phase

‣ --loadEngine=<file>: Load the engine from a serialized plan file instead of building
it from the input ONNX model.

‣ If the input model is in ONNX format or if the engine is built with explicit batch
dimension, use --shapes instead.

‣ --shapes=<shapes>: Specify the input shapes to run the inference with.

‣ --loadInputs=<specs>: Load input values from files. Default is to generate random
inputs.

‣ --warmUp=<duration in ms>, --duration=<duration in seconds>, --
iterations=<N>: Specify the minimum duration of the warm-up runs, the minimum
duration for the inference runs, and the minimum iterations of the inference runs. For
example, setting --warmUp=0 --duration=0 --iterations=N allows you to control
exactly how many iterations to run the inference for.

‣ --useCudaGraph: Capture the inference to a CUDA graph and run inference by
launching the graph. This argument may be ignored when the built TensorRT engine
contains operations that are not permitted under CUDA graph capture mode.

‣ --noDataTransfers: Turn off host to device and device-to-host data transfers.

‣ --useSpinWait: Actively synchronize on GPU events. This option makes latency
measurement more stable but increases CPU usage and power.

‣ --infStreams=<N>: Run inference with multiple cross-inference streams in parallel.
Refer to the Cross-Inference Multi-Streaming section for more information.

‣ --verbose: Turn on verbose logging.

‣ --dumpProfile, --exportProfile=<file>: Print/Save the per-layer performance
profile.

‣ --dumpLayerInfo, --exportLayerInfo=<file>: Print layer information of the
engine.

‣ --profilingVerbosity=[layer_names_only|detailed|none]: Specify the profiling
verbosity to run the inference with.

‣ --useRuntime=[full|lean|dispatch]: TensorRT runtime to execute engine. lean
and dispatch require --versionCompatible to be enabled and are used to load a VC
engine. All engines (VC or not) must be built with full runtime.

‣ --leanDLLPath=<file>: External lean runtime DLL to use in version compatible
mode. Requires --useRuntime=[lean|dispatch].

‣ --dynamicPlugins=<file>: Load the plugin library dynamically when the library is not
included in the engine plan file (can be specified multiple times).
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‣ --getPlanVersionOnly: Print TensorRT version when loaded plan was created. Works
without deserialization of the plan. Use together with --loadEngine. Supported only
for engines created with 8.6 and later.

‣ --saveDebugTensors: Specify list of tensor names to turn on the debug state and
filename to save raw outputs to. These tensors must be specified as debug tensors
during build time.

‣ --allocationStrategy: Specify how the internal device memory for inference is
allocated. You can choose from static, profile, and runtime. The first option is the
default behavior that pre-allocates enough size for all profiles and input shapes. The
second option enables trtexec to only allocate what’s required for the profile to use.
The third option enables trtexec to only allocate what’s required for the actual input
shapes.

‣ --weightStreamingBudget: Manually set the weight streaming budget. Base-2 unit
suffixes are supported: B (Bytes), G (Gibibytes), K (Kibibytes), M (Mebibytes). A value
of 0 will choose the minimum possible budget if the weights don’t fit on the device. A
value of -1 will disable weight streaming at runtime.

Refer to trtexec --help for all the supported flags and detailed explanations.

Refer to the GitHub: trtexec/README.md file for detailed information about how to build
this tool and examples of its usage.

A.3.  Glossary
Data-Dependent Shape

A tensor shape with a dynamic dimension that is not calculated solely from network
input dimensions and network input shape tensors.

Device
A specific GPU. Two GPUs are considered identical devices if they have the same
model name and same configuration.

Explicitly Data-Dependent Shape
A tensor shape that depends on the dimensions of an output of INonZeroLayer or
INMSLayer.

Implicitly Data-Dependent Shape
A tensor shape with a dynamic dimension that is calculated from data other than
network input dimensions, network input shape tensors, and INonZeroLayer or
INMSLayer. For example, a shape with a dimension calculated from data output by a
convolution.

Platform
A combination of architecture and OS. Example platforms are Linux on x86 and QNX
Standard on Aarch64. Platforms with different architectures or different OS are
considered different platforms.

https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec
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A.4.  ACKNOWLEDGEMENTS
TensorRT uses elements from the following software, whose licenses are reproduced
below.

Google Protobuf

This license applies to all parts of Protocol Buffers except the following:

‣ Atomicops support for generic gcc, located in src/google/protobuf/stubs/
atomicops_internals_generic_gcc.h. This file is copyrighted by Red Hat Inc.

‣ Atomicops support for AIX/POWER, located in src/google/protobuf/stubs/
atomicops_internals_power.h. This file is copyrighted by Bloomberg Finance LP.

Copyright 2014, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

‣ Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

‣ Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

‣ Neither the name of Google Inc. nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner of the input file
used when generating it. This code is not standalone and requires a support library to be
linked with it. This support library is itself covered by the above license.



Appendix

NVIDIA TensorRT PG-08540-001_v10.1.0   |   203

Google Flatbuffers

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution
as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including but
not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing

http://www.apache.org/licenses/
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lists, source code control systems, and issue tracking systems that are managed by,
or on behalf of, the Licensor for the purpose of discussing and improving the Work,
but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works
of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor that
are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that You meet the following conditions:

 a). You must give any other recipients of the Work or Derivative Works a copy of this
License; and

 b). You must cause any modified files to carry prominent notices stating that You
changed the files; and

 c). You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form of
the Work, excluding those notices that do not pertain to any part of the Derivative
Works; and

 d). If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
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Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute,
alongside or as an addendum to the NOTICE text from the Work, provided that
such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding such
Contributions.

 6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You
are solely responsible for determining the appropriateness of using or redistributing
the Work and assume any risks associated with Your exercise of permissions under
this License.

 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as
deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor
be liable to You for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this License or out of
the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only on Your own behalf
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and on Your sole responsibility, not on behalf of any other Contributor, and only if
You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting
any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2014 Google Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at: http://
www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

BVLC caffe

COPYRIGHT

All contributions by the University of California:

Copyright (c) 2014, 2015, The Regents of the University of California (Regents)

All rights reserved.

All other contributions:

Copyright (c) 2014, 2015, the respective contributors

All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over their
contributions to Caffe. The project versioning records all such contribution and copyright
details. If a contributor wants to further mark their specific copyright on a particular
contribution, they should indicate their copyright solely in the commit message of the
change when it is committed.

LICENSE

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
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Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/caffe repository through pull-request, comment, or
otherwise, the contributor releases their content to the license and copyright terms
herein.

half.h

Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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jQuery.js

jQuery.js is generated automatically under doxygen.

In all cases TensorRT uses the functions under the MIT license.

CRC

TensorRT includes CRC routines from FreeBSD.

⌈ $FreeBSD: head/COPYRIGHT 260125 2013-12-31 12:18:10Z gjb $

⌈ @(⌈)COPYRIGHT 8.2 (Berkeley) 3/21/94

The compilation of software known as FreeBSD is distributed under the following terms:

Copyright (c) 1992-2014 The FreeBSD Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The 4.4BSD and 4.4BSD-Lite software is distributed under the following terms:

All of the documentation and software included in the 4.4BSD and 4.4BSD-Lite Releases
is copyrighted by The Regents of the University of California.

Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of
the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
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 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

 3. All advertising materials mentioning features or use of this software must display
the following acknowledgement: This product includes software developed by the
University of California, Berkeley and its contributors.

 4. Neither the name of the University nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The Institute of Electrical and Electronics Engineers and the American National
Standards Committee X3, on Information Processing Systems have given us permission
to reprint portions of their documentation.

In the following statement, the phrase ``this text'' refers to portions of the system
documentation.

Portions of this text are reprinted and reproduced in electronic form in the second
BSD Networking Software Release, from IEEE Std 1003.1-1988, IEEE Standard Portable
Operating System Interface for Computer Environments (POSIX), copyright C 1988 by
the Institute of Electrical and Electronics Engineers, Inc. In the event of any discrepancy
between these versions and the original IEEE Standard, the original IEEE Standard is the
referee document.

In the following statement, the phrase ``This material'' refers to portions of the system
documentation.

This material is reproduced with permission from American National Standards
Committee X3, on Information Processing Systems. Computer and Business Equipment
Manufacturers Association (CBEMA), 311 First St., NW, Suite 500, Washington, DC
20001-2178. The developmental work of Programming Language C was completed by
the X3J11 Technical Committee.
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The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies, either
expressed or implied, of the Regents of the University of California.

Note: The copyright of UC Berkeley's Berkeley Software Distribution ("BSD") source
has been updated. The copyright addendum may be found at ftp://ftp.cs.berkeley.edu/
pub/4bsd/README.Impt.License.Change and is included below.

July 22, 1999

To All Licensees, Distributors of Any Version of BSD:

As you know, certain of the Berkeley Software Distribution ("BSD") source code files
require that further distributions of products containing all or portions of the software,
acknowledge within their advertising materials that such products contain software
developed by UC Berkeley and its contributors.

Specifically, the provision reads:

" * 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* This product includes software developed by the University of

* California, Berkeley and its contributors."

Effective immediately, licensees and distributors are no longer required to include the
acknowledgement within advertising materials. Accordingly, the foregoing paragraph of
those BSD Unix files containing it is hereby deleted in its entirety.

William Hoskins

Director, Office of Technology Licensing

University of California, Berkeley

getopt.c

$OpenBSD: getopt_long.c,v 1.23 2007/10/31 12:34:57 chl Exp $

$NetBSD: getopt_long.c,v 1.15 2002/01/31 22:43:40 tv Exp $

Copyright (c) 2002 Todd C. Miller <Todd.Miller@courtesan.com>

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
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WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement
number F39502-99-1-0512.

Copyright (c) 2000 The NetBSD Foundation, Inc.

All rights reserved.

This code is derived from software contributed to The NetBSD Foundation by Dieter
Baron and Thomas Klausner.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

ONNX Model Zoo

MIT License

Copyright (c) ONNX Project Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
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THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE

RESNET-50 Caffe models

The MIT License (MIT)

Copyright (c) 2016 Shaoqing Ren

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

OpenSSL

Apache License Version 2.0

Copyright (c) OpenSSL Project Contributors

Apache License

Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution
as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

https://www.apache.org/licenses/
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"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including but
not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed by,
or on behalf of, the Licensor for the purpose of discussing and improving the Work,
but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works
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of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor that
are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that You meet the following conditions:

 a). You must give any other recipients of the Work or Derivative Works a copy of this
License; and

 b). You must cause any modified files to carry prominent notices stating that You
changed the files; and

 c). You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form of
the Work, excluding those notices that do not pertain to any part of the Derivative
Works; and

 d). If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute,
alongside or as an addendum to the NOTICE text from the Work, provided that
such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.
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 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding such
Contributions.

 6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You
are solely responsible for determining the appropriateness of using or redistributing
the Work and assume any risks associated with Your exercise of permissions under
this License.

 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as
deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor
be liable to You for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this License or out of
the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only on Your own behalf
and on Your sole responsibility, not on behalf of any other Contributor, and only if
You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting
any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Boost Beast

Copyright (c) 2016-2017 Vinnie Falco (vinnie dot falco at gmail dot com)

Boost Software License - Version 1.0 - August 17th, 2003
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Permission is hereby granted, free of charge, to any person or organization obtaining
a copy of the software and accompanying documentation covered by this license (the
"Software") to use, reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit third-parties to whom the
Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above
license grant, this restriction and the following disclaimer, must be included in all copies
of the Software, in whole or in part, and all derivative works of the Software, unless such
copies or derivative works are solely in the form of machine-executable object code
generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE
LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.
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