
RN-08624-001_v10.4.0 | September 2024

NVIDIA TensorRT

Release Notes | NVIDIA Docs

NVIDIA TensorRT RN-08624-001_v10.4.0 | ii

Table of Contents

Chapter 1. TensorRT Release 10.x.x... 1
1.1. TensorRT Release 10.4.0...1

1.2. TensorRT Release 10.3.0...8

1.3. TensorRT Release 10.2.0.. 16

1.4. TensorRT Release 10.1.0.. 22

1.5. TensorRT Release 10.0.1.. 30

1.6. TensorRT Release 10.0.0 Early Access (EA)..41

Chapter 2. TensorRT Release 9.x.x... 53
2.1. TensorRT Release 9.3.0...53

2.2. TensorRT Release 9.2.0...61

2.3. TensorRT Release 9.1.0...71

2.4. TensorRT Release 9.0.1...85

Chapter 3. TensorRT Release 8.x.x... 99
3.1. TensorRT Release 8.6.1...99

3.2. TensorRT Release 8.5.3.. 116

3.3. TensorRT Release 8.4.3.. 123

3.4. TensorRT Release 8.2.5.. 130

3.5. TensorRT Release 8.0.3.. 134

NVIDIA TensorRT RN-08624-001_v10.4.0 | 1

Chapter 1. TensorRT Release 10.x.x

1.1. TensorRT Release 10.4.0
These are the TensorRT 10.4.0 Release Notes, which apply to x86 Linux and Windows
users Arm®-based CPU cores for Server Base System Architecture (SBSA) users on
Linux, and JetPack users. This release includes several fixes from the previous TensorRT
releases and additional changes.

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Improved engine building time for LLM models in FP16 and FP8 precisions.

‣ Improved performance of various vision transformers (including ViT,
SwinTransformers, DiT, and FasterViT) in FP8 precision on Hopper GPUs when using
TensorRT Model Optimizer onnx_ptq tool to quantize these models.

‣ Improved performance of mmDiT in StableDiffusion v3 in FP16 precision on Hopper
GPUs.

‣ Added a new Python sample aliased_io_plugin, which demonstrates a TensorRT
plugin using aliased I/O to realize in-place updates to an input tensor.

‣ Added support for BlackmanWindow, HannWindow, and HammingWindow ONNX
operators.

Compatibility

‣ TensorRT 10.4.0 has been tested with the following:

‣ TensorFlow 2.13.1

‣ PyTorch >= 2.0 (refer to the requirements.txt file for each sample)

‣ ONNX 1.16.0

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://github.com/NVIDIA/TensorRT-Model-Optimizer/tree/main/onnx_ptq
https://github.com/tensorflow/tensorflow/releases/tag/v2.13.1
https://github.com/pytorch/pytorch/releases/tag/v2.0.0
https://github.com/onnx/onnx/releases/tag/v1.16.0

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 2

‣ This TensorRT release supports CUDA®:

‣ 12.6

‣ 12.5 update 1

‣ 12.4 update 1

‣ 12.3 update 2

‣ 12.2 update 1

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 3

‣ 11.0 update 1

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, the minimum CUDA version supported by this
TensorRT release.

Limitations

‣ There are no optimized FP8 Convolutions for Group Convolutions and Depthwise
Convolutions. Therefore, INT8 is still recommended for ConvNets containing these
convolution ops.

‣ The FP8 Convolutions only support input/output channels, which are multiples of 16.
Otherwise, TensorRT will fall back to non-FP8 convolutions.

‣ The FP8 Convolutions do not support kernel sizes larger than 32, such as 7x7
convolutions, and FP16 or FP32 fallback kernels will be used with suboptimal
performance. Therefore, do not add FP8 Q/DQ ops before Convolutions with large
kernel sizes for better performance.

‣ The accumulation dtype for the batched GEMMS in the FP8 MHA must be in FP32.

‣ This can be achieved by adding Cast (to FP32) ops before the batched GEMM and
Cast (to FP16) after the batched GEMM.

‣ Alternatively, you can convert your ONNX model using TensorRT Model Optimizer,
which adds the Cast ops automatically.

https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://github.com/NVIDIA/TensorRT-Model-Optimizer

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 3

‣ There cannot be any pointwise operations between the first batched GEMM and the
softmax inside FP8 MHAs, such as having an attention mask. This will be improved in
future TensorRT releases.

‣ The FP8 MHA fusions only support head sizes being multiples of 16. If the MHA has a
head size that is not a multiple of 16, do not add Q/DQ ops in the MHA to fall back to
the FP16 MHA for better performance

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ The DLA compiler can remove identity transposes but cannot fuse multiple adjacent
transpose layers into a single transpose layer (likewise for reshaping). For example,
given a TensorRT IShuffleLayer consisting of two non-trivial transposes and an
identity reshape in between, the shuffle layer is translated into two consecutive
DLA transpose layers unless the user merges the transposes manually in the model
definition in advance.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset containing the corresponding function ops,
such as opset 17 for LayerNormalization or opset 18 GroupNormalization. Numerical
accuracy using function ops is superior to the corresponding implementation with
primitive ops for normalization layers.

‣ Weight streaming mainly supports GEMM-based networks like Transformers for now.
Convolution-based networks may have only a few weights that can be streamed.

‣ Deprecated INT8 implicit quantization and calibrator APIs including
dynamicRangeIsSet, CalibrationAlgoType, IInt8Calibrator,
IInt8EntropyCalibrator, IInt8EntropyCalibrator2, IInt8MinMaxCalibrator,
IInt8Calibrator, setInt8Calibrator, getInt8Calibrator, setCalibrationProfile,
getCalibrationProfile, setDynamicRange, getDynamicRangeMin,
getDynamicRangeMax, and getTensorsWithDynamicRange. They may not give the
optimal performance and accuracy. As a workaround, use INT8 explicit quantization
instead.

‣ When two convolutions with INT8-QDQ and residual add share the same weight,
constant weight fusion will not occur. Make a copy of the shared weight for better
performance.

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 10.4 will be retained until 9/2025.

‣ APIs deprecated in TensorRT 10.3 will be retained until 8/2025.

‣ APIs deprecated in TensorRT 10.2 will be retained until 7/2025.

‣ APIs deprecated in TensorRT 10.1 will be retained until 5/2025.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 4

‣ APIs deprecated in TensorRT 10.0 will be retained until 3/2025.

‣ APIs deprecated in TensorRT 9.3 will be retained until 1/2025.

‣ APIs deprecated in TensorRT 9.2 will be retained until 11/2024.

‣ APIs deprecated in TensorRT 9.1 will be retained until 10/2024.

Refer to the API documentation (C++, Python) for instructions on updating your code to
remove the use of deprecated features.

Deprecated and Removed Features

The following features have been deprecated or removed in TensorRT 10.4.0.

‣ Deprecated NVIDIA Volta support (GPUs with compute capability 7.0) starting with
TensorRT 10.0. Volta support will be removed in TensorRT 10.5.

‣ IPluginV2-descendent versions of the following plugins have been deprecated in
favor of IPluginV3 versions, which preserve the attributes and I/O characteristics.

Plugin Deprecated Version Superseded with Version

1 5

2 6

3 7

CustomSkipLayerNormPluginDynamic

4 8

2 4CustomEmbLayerNormPluginDynamic

3 5

Fixed Issues

‣ There was a known engine build failure if FP8-Q/DQ ops were added before a
convolution op whose input/output channels were not multiples of 16. This issue has
been fixed.

‣ A known accuracy issue existed when the network contained two consecutive GEMV
operations (MatrixMultiply with gemmM or gemmN == 1). This issue has been fixed.

‣ Fixed an up to 6% performance regression for BERT/Megatron networks with INT8
QDQ compared to TensorRT 10.2 on Ampere and Hopper GPUs.

‣ Fixed an up to 8% performance regression for PilotNet networks in FP16 precision on
Orin and H100 GPUs compared to TensorRT 10.2, and up to 560% regression in TF32/
FP32 precisions.

‣ Fixed an up to 300% performance regression for networks containing
RandomUniform ops compared to TensorRT 8.2.

‣ Fixed an up to 12% performance regression for deep recommender networks in TF32
precision on H100 GPUs compared to TensorRT 10.2.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 5

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there
was a performance drop in INT8 precision (including both explicit and implicit
quantization) compared to FP16 precision. This issue has been fixed.

‣ The BERT demo was unsupported on Python 3.11 environments. This issue has been
fixed.

‣ The Python samples non_zero_plugin and python_plugin are now supported in
Python 3.12 environments.

‣ A known accuracy issue existed in network patterns fc-xelu-bias and conv-xelu-bias
(when bias operation comes after xelu). This issue has been fixed.

‣ The libnvonnxparser_static.a static library included within AArch64 tar packages
previously contained a mix of x86_64 and AArch64 object files, which prevented the
ONNX parser static library from being used on non-x86 platforms. This issue has
been fixed and only AArch64 object files are now included.

‣ When installing TensorRT using the Python wheels hosted on PyPI, the loader could
not find the lean library while deserializing version-compatible engines. This issue has
been fixed and you no longer need to set LD_LIBRARY_PATH to the location of these
libraries.

‣ Fixed an issue where binding an INT4 tensor as a network output caused data
corruption.

‣ There was a memory leak on L4T with CUDA 12.4 due to a known driver issue. This
issue is now fixed since we now use CUDA 12.6 instead.

‣ With CUDA 12.5 on Windows, fcPlugin (CustomFCPluginDynamic) resulted in CUDA
errors on certain GPUs. This issue has been fixed.

Known Issues

Functional

‣ The supported I/O formats for the getTensorFormatDesc API is incorrect.

‣ Inputs to the IRecurrenceLayer must always have the same shape. This means
that ONNX models that have loops whose recurrence inputs change shapes will be
rejected.

‣ If TensorRT 8.6 or 9.x was installed using the Python Package Index (PyPI), you
cannot upgrade TensorRT to 10.x using PyPI. You must first uninstall TensorRT using
pip uninstall tensorrt tensorrt-libs tensorrt-bindings, and then reinstall
TensorRT using "pip install tensorrt." This will remove the previous TensorRT
version and install the latest TensorRT 10.x. This step is required because the suffix
-cuXX was added to the Python package names, which prevents the upgrade from
working properly.

‣ CUDA compute sanitizer may report racecheck hazards for some legacy kernels.
However, related kernels do not have functional issues at runtime.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 6

‣ The compute sanitizer initcheck tool may flag false positive Uninitialized
__global__ memory read errors when running TensorRT applications on NVIDIA
Hopper GPUs. These errors can be safely ignored and will be fixed in an upcoming
CUDA release.

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

‣ An occurrence of use-after-free in NVRTC has been fixed in CUDA 12.1. When using
NVRTC from CUDA 12.0 together with the TensorRT static library, you may encounter
a crash in certain scenarios. Linking the NVRTC and PTXJIT compiler from CUDA 12.1
or newer will resolve this issue.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA-enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

‣ For broadcasting elementwise layers running on DLA with GPU fallback enabled
with one NxCxHxW input and one Nx1x1x1 input, there is a known accuracy issue if
at least one of the inputs is consumed in kDLA_LINEAR format. It is recommended
to explicitly set the input formats of such elementwise layers to different tensor
formats.

‣ Exclusive padding with kAVERAGE pooling is not supported.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 7

‣ Asynchronous CUDA calls are not supported in the user-defined processDebugTensor
function for the debug tensor feature due to a bug in Windows 10.

‣ The size of the compilation cache may increase or decrease slightly for the same
network.

Performance

‣ There is an up to 10% performance regression for the TensorRT-LLM gptj_6b model
when the attention plugin is disabled compared to TensorRT 10.3. Enable the
attention plugin to work around the regression.

‣ Building engines with the same network twice using the same timing cache may
result in a size increase in the timing cache

‣ There is an up to 16% regression in context memory usage for StableDifussion XL
VAE network in FP8 precision on H100 GPUs compared to TensorRT 10.3.

‣ There is an up to 15% regressing in context memory usage for networks containing
InstanceNorm and Activation ops compared to TensorRT 10.0.

‣ There is an up to 10% inference performance regression for Temporal Fusion
Transformers compared to TensorRT 10.3 on Hopper GPUs.

‣ There is an up to 12% inference performance regression for DeBERTa networks
compared to TensorRT 10.3 on Ampere GPUs.

‣ Up to 45% build time regression for mamba_370m in FP16 precision and OOTB mode
on NVIDIA Ada Lovelace GPUs compared to TensorRT 10.2.

‣ Up to 15% CPU memory usage regression for mbart-cnn/mamba-370m in FP16
precision and OOTB mode on NVIDIA Ada Lovelace GPUs compared to TensorRT 10.2.

‣ Up to 6% performance regression for BERT/Megatron networks in FP16 precision
compared to TensorRT 10.2 for BS1 and Seq128 on H100 GPUs.

‣ Up to 6% performance regression for Bidirectional LSTM in FP16 precision on H100
GPUs compared to TensorRT 10.2.

‣ Up to 25% performance regression when running TensorRT-LLM without the
attention plugin. The current recommendation is to always enable the attention
plugin when using TensorRT-LLM.

‣ There are known performance gaps between engines built with REFIT enabled and
engines built with REFIT disabled.

‣ Up to 60 MB engine size fluctuations for the BERT-Large INT8-QDQ model on Orin
due to unstable tactic selection among tactics.

‣ Up to 16% performance regression for BasicUNet, DynUNet, and HighResNet in INT8
precision compared to TensorRT 9.3.

‣ Up to 40-second increase in engine building for BART networks on NVIDIA Hopper
GPUs.

‣ Up to 20-second increase in engine building for some large language models (LLMs)
on NVIDIA Ampere GPUs.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 8

‣ Up to 2.5x build time increase compared to TensorRT 9.0 for certain Bert-like models
due to additional tactics available for evaluation.

‣ Up to 13% performance drop for the CortanaASR model on NVIDIA Ampere GPUs
compared to TensorRT 8.5.

‣ Up to 18% performance drop for the ShuffleNet model on A30/A40 compared to
TensorRT 8.5.1.

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ Up to 5% performance drop for networks using sparsity in FP16 precision.

‣ Up to 6% performance regression compared to TensorRT 8.5 on OpenRoadNet in
FP16 precision on NVIDIA A10 GPUs.

‣ Up to 70% performance regression compared to TensorRT 8.6 on BERT networks in
INT8 precision with FP16 disabled on L4 GPUs. Enable FP16 and disable INT8 in the
builder config to work around this.

‣ In explicitly quantized networks, a group convolution with a Q/DQ pair before but no
Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision. However,
NVIDIA Hopper may fall back to FP32-IN-FP32-OUT if the input channel count is
small.

‣ The kREFIT and kREFIT_IDENTICAL have performance regressions compared with
non-refit engines where convolution layers are present within a branch or loop, and
the precision is FP16/INT8. This issue will be addressed in future releases.

1.2. TensorRT Release 10.3.0
These are the TensorRT 10.3.0 Release Notes, which apply to x86 Linux and Windows
users Arm®-based CPU cores for Server Base System Architecture (SBSA) users on
Linux, and JetPack users. This release includes several fixes from the previous TensorRT
releases and additional changes.

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements

‣ Added a new setRuntimePlatform API in IBuilderConfig to enhance cross-platform
compatibility for TensorRT engines. This API executes a TensorRT engine on a runtime
platform that is different from the one it was built on. Currently, TensorRT supports
building the engine on Linux x86_64 platforms and running the engine on Windows
x86_64 platforms. This feature is experimental, but is expected to become ready for
production in the next TensorRT release.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 9

‣ Improved engine build time when GEMMs have large weight constants.

‣ FP8 convolution was added for NVIDIA Ada Lovelace GPUs (SM 89) with the same
limitations as NVIDIA Hopper for FP8 convolutions.

‣ Improved the performance of Normalization and FP8 quantization fusion.

‣ Added capability to alias input-output pairs of TensorRT plugins implementing
IPluginV3. To use this feature, plugins must implement the IPluginV3OneBuildV2
build capability interface, and PreviewFeature::kALIASED_PLUGIN_IO_10_03 must be
enabled.

Compatibility

‣ TensorRT 10.3.0 has been tested with the following:

‣ TensorFlow 2.13.1

‣ PyTorch >= 2.0 (refer to the requirements.txt file for each sample)

‣ ONNX 1.16.0

‣ This TensorRT release supports CUDA®:

‣ 12.5 update 1

‣ 12.4 update 1

‣ 12.3 update 2

‣ 12.2 update 1

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 3

‣ 11.0 update 1

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, the minimum CUDA version supported by this
TensorRT release.

https://github.com/tensorflow/tensorflow/releases/tag/v2.13.1
https://github.com/pytorch/pytorch/releases/tag/v2.0.0
https://github.com/onnx/onnx/releases/tag/v1.16.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 10

Limitations

‣ There are no optimized FP8 Convolutions for Group Convolutions and Depthwise
Convolutions. Therefore, INT8 is still recommended for ConvNets containing these
convolution ops.

‣ The FP8 Convolutions only support input/output channels, which are multiples of 16.
Otherwise, TensorRT will fall back to non-FP8 convolutions

‣ The accumulation dtype for the batched GEMMS in the FP8 MHA must be in FP32.

‣ This can be achieved by adding Cast (to FP32) ops before the batched GEMM and
Cast (to FP16) after the batched GEMM.

‣ Alternatively, you can convert your ONNX model using TensorRT Model Optimizer,
which adds the Cast ops automatically.

‣ There cannot be any pointwise operations between the first batched GEMM and the
softmax inside FP8 MHAs, such as having an attention mask. This will be improved in
future TensorRT releases.

‣ The FP8 MHA fusions only support head sizes being multiples of 16. If the MHA has a
head size that is not a multiple of 16, do not add Q/DQ ops in the MHA to fall back to
the FP16 MHA for better performance

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ The DLA compiler can remove identity transposes but cannot fuse multiple adjacent
transpose layers into a single transpose layer (likewise for reshaping). For example,
given a TensorRT IShuffleLayer consisting of two non-trivial transposes and an
identity reshape in between, the shuffle layer is translated into two consecutive
DLA transpose layers unless the user merges the transposes manually in the model
definition in advance.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset containing the corresponding function ops,
such as opset 17 for LayerNormalization or opset 18 GroupNormalization. Numerical
accuracy using function ops is superior to the corresponding implementation with
primitive ops for normalization layers.

‣ Weight streaming mainly supports GEMM-based networks like Transformers for now.
Convolution-based networks may have only a few weights that can be streamed.

‣ Deprecated INT8 implicit quantization and calibrator APIs including
dynamicRangeIsSet, CalibrationAlgoType, IInt8Calibrator,
IInt8EntropyCalibrator, IInt8EntropyCalibrator2, IInt8MinMaxCalibrator,
IInt8Calibrator, setInt8Calibrator, getInt8Calibrator, setCalibrationProfile,
getCalibrationProfile, setDynamicRange, getDynamicRangeMin,

https://github.com/NVIDIA/TensorRT-Model-Optimizer

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 11

getDynamicRangeMax, and getTensorsWithDynamicRange. They may not give the
optimal performance and accuracy. As a workaround, use INT8 explicit quantization
instead.

‣ When two convolutions with INT8-QDQ and residual add share the same weight,
constant weight fusion will not occur. Make a copy of the shared weight for better
performance.

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 10.3 will be retained until 8/2025.

‣ APIs deprecated in TensorRT 10.2 will be retained until 7/2025.

‣ APIs deprecated in TensorRT 10.1 will be retained until 5/2025.

‣ APIs deprecated in TensorRT 10.0 will be retained until 3/2025.

‣ APIs deprecated in TensorRT 9.3 will be retained until 1/2025.

‣ APIs deprecated in TensorRT 9.2 will be retained until 11/2024.

‣ APIs deprecated in TensorRT 9.1 will be retained until 10/2024.

‣ APIs deprecated in TensorRT 9.0 will be retained until 8/2024.

Refer to the API documentation (C++, Python) for instructions on updating your code to
remove the use of deprecated features.

Deprecated and Removed Features

The following features have been deprecated or removed in TensorRT 10.3.0.

‣ Deprecated NVIDIA Volta support (GPUs with compute capability 7.0) starting with
TensorRT 10.0. Volta support may be removed after 9/2024.

‣ Deprecated version 1 of ScatterElements plugin. It is superseded by version 2, which
implements the IPluginV3 interface.

Fixed Issues

‣ Fixed an intermittent hanging issue when running multiple execution contexts in
parallel on Hopper GPUs.

‣ There was a known accuracy issue when running ResNet18/ResNet50 with FP8
convolutions. This issue has been fixed.

‣ There could have been a divide-by-zero error for TopK when K equals 0, and the
reduction dimension was large.

‣ There was a known issue that engine building might fail for Diffusion networks. The
workaround was to enable the -stronglyTyped option.

‣ There was an up to 10% performance regression for ConvNext on NVIDIA Orin
compared to TensorRT 9.3.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 12

‣ There was an up to 4x performance regression for networks containing GridSample
ops compared to TensorRT 9.2.

‣ The size of the libnvinfer_lean.so library had increased by 10 MB. This issue has
been fixed.

‣ Python 3.12 support is enabled for samples including
detectron2, efficientdet, efficientnet, engine_refit_onnx_bidaf,
introductory_parser_samples, network_api_pytorch_mnist, onnx_custom_plugin,
onnx_packnet, sample_weight_stripping, simple_progress_monitor,
tensorflow_object_detection_api, and yolo_v3_onnx.

‣ When compiling samples with static linking, if the error message /usr/bin/ld:
failed to convert GOTPCREL relocation; relink with –no-relax was shown,
the work around was to add -Wl,--no-relax to the linking steps in samples/
Makefile.config. This issue has been fixed.

‣ nvinfer1::ISliceLayer with modes nvinfer1::SampleMode::kCLAMP or
nvinfer1::SampleMode::kFILL (ONNX equivalent being a Pad op with either
constant or edge mode) could break during engine compilation if the slice input was
a constant tensor. This issue has been fixed so slice can handle constant inputs.

Known Issues

Functional

‣ There is a known engine build failure if FP8-Q/DQ ops are added before a convolution
op whose input/output channels are not multiples of 16. Remove the FP8-Q/DQ ops
for these convolutions to work around this issue.

‣ The Python sample non_zero_plugin and python_plugin does not support Python
3.12. Support will be added in 10.4. The issue is fixed in the OSS 10.3 release.

‣ If TensorRT 8.6 or 9.x was installed using the Python Package Index (PyPI), you
cannot upgrade TensorRT to 10.x using PyPI. You must first uninstall TensorRT using
pip uninstall tensorrt tensorrt-libs tensorrt-bindings, and then reinstall
TensorRT using "pip install tensorrt." This will remove the previous TensorRT
version and install the latest TensorRT 10.x. This step is required because the suffix
-cuXX was added to the Python package names, which prevents the upgrade from
working properly.

‣ CUDA compute sanitizer may report racecheck hazards for some legacy kernels.
However, related kernels do not have functional issues at runtime.

‣ The compute sanitizer initcheck tool may flag false positive Uninitialized
__global__ memory read errors when running TensorRT applications on NVIDIA
Hopper GPUs. These errors can be safely ignored and will be fixed in an upcoming
CUDA release.

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 13

‣ An occurrence of use-after-free in NVRTC has been fixed in CUDA 12.1. When using
NVRTC from CUDA 12.0 together with the TensorRT static library, you may encounter
a crash in certain scenarios. Linking the NVRTC and PTXJIT compiler from CUDA 12.1
or newer will resolve this issue.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA-enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

‣ For broadcasting elementwise layers running on DLA with GPU fallback enabled
with one NxCxHxW input and one Nx1x1x1 input, there is a known accuracy issue if
at least one of the inputs is consumed in kDLA_LINEAR format. It is recommended
to explicitly set the input formats of such elementwise layers to different tensor
formats.

‣ Exclusive padding with kAVERAGE pooling is not supported.

‣ The Valgrind tool found a memory leak on L4T with CUDA 12.4 due to a known driver
issue. This is expected to be fixed in CUDA 12.6.

‣ Asynchronous CUDA calls are not supported in the user-defined processDebugTensor
function for the debug tensor feature due to a bug in Windows 10.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 14

‣ A known accuracy issue exists when the network contains two consecutive GEMV
operations (MatrixMultiply with gemmM or gemmN == 1). To workaround this issue, try
padding the MatrixMultiply input to have dimensions greater than 1.

‣ A known accuracy issue exists when binding an INT4 tensor as a network output. To
work around this, add an IDequantizeLayer before the output.

‣ With CUDA 12.5 on Windows, fcPlugin (CustomFCPluginDynamic) may result in CUDA
errors on certain GPUs.

‣ The libnvonnxparser_static.a static library included within AArch64 tar packages,
which includes the SBSA and JetPack releases, is incorrectly constructed and
contains a mix of x86_64 and AArch64 object files. This prevents the ONNX parser
static library from being used on non-x86 platforms. This issue will be fixed in the
next release.

‣ The kREFIT and kREFIT_IDENTICAL have performance regressions compared with
non-refit engines where convolution layers are present within a branch or loop, and
the precision is FP16/INT8. This issue will be addressed in future releases.

‣ A known accuracy issue exists in network patterns fc-xelu-bias and conv-xelu-bias
(when bias operation comes after xelu).

‣ The size of the compilation cache may increase or decrease slightly for the same
network.

‣ When installing TensorRT using the Python wheels hosted on PyPI, the loader
cannot find the lean library while deserializing version-compatible engines. You can
workaround this by manually adding the wheel installation directory to your loader
path. For example, on Linux, you might run the following:
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/python3.10/dist-packages/
tensorrt_lean_libs/

Performance

‣ The BERT demo is unsupported on Python 3.11 environments. This issue will be fixed
in the TensorRT 10.5 release.

‣ Up to 45% build time regression for mamba_370m in FP16 precision and OOTB mode
on NVIDIA Ada Lovelace GPUs compared to TensorRT 10.2.

‣ Up to 15% CPU memory usage regression for mbart-cnn/mamba-370m in FP16
precision and OOTB mode on NVIDIA Ada Lovelace GPUs compared to TensorRT 10.2.

‣ Up to 6% performance regression for BERT/Megatron networks with INT8 QDQ
compared to TensorRT 10.2 on Ampere and Hopper GPUs.

‣ Up to 6% performance regression for BERT/Megatron networks in FP16 precision
compared to TensorRT 10.2 for BS1 and Seq128 on H100 GPUs.

‣ Up to 6% performance regression for Bidirectional LSTM in FP16 precision on H100
GPUs compared to TensorRT 10.2.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 15

‣ Up to 8% performance regression for PilotNet networks in FP16 precision on Orin
and H100 GPUs compared to TensorRT 10.2, and up to 560% regression in TF32/FP32
precisions.

‣ Up to 300% performance regression for networks containing RandomUniform ops
compared to TensorRT 8.2.

‣ Up to 12% performance regression for deep recommender networks in TF32
precision on H100 GPUs compared to TensorRT 10.2.

‣ Up to 25% performance regression when running TensorRT-LLM without the
attention plugin. The current recommendation is to always enable the attention
plugin when using TensorRT-LLM.

‣ There are known performance gaps between engines built with REFIT enabled and
engines built with REFIT disabled.

‣ Up to 60 MB engine size fluctuations for the BERT-Large INT8-QDQ model on Orin
due to unstable tactic selection among tactics.

‣ Up to 16% performance regression for BasicUNet, DynUNet, and HighResNet in INT8
precision compared to TensorRT 9.3.

‣ Up to 40-second increase in engine building for BART networks on NVIDIA Hopper
GPUs.

‣ Up to 20-second increase in engine building for some large language models (LLMs)
on NVIDIA Ampere GPUs.

‣ Up to 2.5x build time increase compared to TensorRT 9.0 for certain Bert-like models
due to additional tactics available for evaluation.

‣ Up to 13% performance drop for the CortanaASR model on NVIDIA Ampere GPUs
compared to TensorRT 8.5.

‣ Up to 18% performance drop for the ShuffleNet model on A30/A40 compared to
TensorRT 8.5.1.

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there is a
performance drop in INT8 precision (including both explicit and implicit quantization)
compared to FP16 precision.

‣ Up to 5% performance drop for networks using sparsity in FP16 precision.

‣ Up to 6% performance regression compared to TensorRT 8.5 on OpenRoadNet in
FP16 precision on NVIDIA A10 GPUs.

‣ Up to 70% performance regression compared to TensorRT 8.6 on BERT networks in
INT8 precision with FP16 disabled on L4 GPUs. Enable FP16 and disable INT8 in the
builder config to work around this.

‣ In explicitly quantized networks, a group convolution with a Q/DQ pair before but no
Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision. However,

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 16

NVIDIA Hopper may fall back to FP32-IN-FP32-OUT if the input channel count is
small.

1.3. TensorRT Release 10.2.0
These are the TensorRT 10.2.0 Release Notes and are applicable to x86 Linux and
Windows users, and Arm®-based CPU cores for Server Base System Architecture (SBSA)
users on Linux. This release includes several fixes from the previous TensorRT releases as
well as the following additional changes.

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added support for normal FP8 Convolutions on Hopper GPUs.

‣ Added support for FP8 MHA fusion for SeqLen>512 on Hopper GPUs.

‣ Improved InstanceNorm and GroupNorm fusions for StableDiffusion models.

‣ Improved DRAM utilization for LayerNorm, pointwise, and data movements (for
example, Concats, Slices, Reshapes, Transposes) kernels on GPUs with HBM memory.

‣ Added new APIs in INetworkDefinition for fine grained control of refittable weights:

‣ markWeightsRefittable to mark weights as refittable

‣ unmarkWeightsRefittable to unmark weights as refittable

‣ areWeightsMarkedRefittable to query if a weight is marked as refittable

This fine grained refit control is only valid when the new kREFIT_INDIVIDUAL builder
flag is used during engine build. It also works with kSTRIP_PLAN, enabling the
construction of a weight-stripped engine that can be updated from a fine-tuned
checkpoint when all weights are marked as refittable in the fine-tuned checkpoint.

Compatibility

‣ TensorRT 10.2.0 has been tested with the following:

‣ TensorFlow 2.13.1

‣ PyTorch >= 2.0 (refer to the requirements.txt file for each sample)

‣ ONNX 1.16.0

‣ This TensorRT release supports CUDA®:

‣ 12.5

‣ 12.4 update 1

‣ 12.3 update 2

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://github.com/tensorflow/tensorflow/releases/tag/v2.13.1
https://github.com/pytorch/pytorch/releases/tag/v2.0.0
https://github.com/onnx/onnx/releases/tag/v1.16.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 17

‣ 12.2 update 1

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 3

‣ 11.0 update 1

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, which is the minimum CUDA version supported
by this TensorRT release.

Limitations

‣ There are no optimized FP8 Convolutions for Group Convolutions and Depthwise
Convolutions, therefore, INT8 is still recommended for ConvNets containing these
convolution ops.

‣ The accumulation dtype for the batched GEMMS in the FP8 MHA must be in FP32.

‣ This can be achieved by adding Cast (to FP32) ops before the batched GEMM and
a Cast (to FP16) op after the batched GEMM.

‣ Alternatively, you can convert your ONNX model using TensorRT Model Optimizer
which adds the Cast ops automatically.

‣ There cannot be any pointwise operations between the first batched GEMM and the
softmax inside FP8 MHAs, such as having an attention mask. This will be improved in
future TensorRT releases.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ The DLA compiler is capable of removing identity transposes, but it cannot fuse
multiple adjacent transpose layers into a single transpose layer (likewise for
reshape). For example, given a TensorRT IShuffleLayer consisting of two non-trivial
transposes and an identity reshapes in between. The shuffle layer is translated into
two consecutive DLA transpose layers, unless you merge the transposes together
manually in the model definition in advance.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://github.com/NVIDIA/TensorRT-Model-Optimizer

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 18

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset that contains the corresponding function
ops, for example: opset 17 for LayerNormalization or opset 18 GroupNormalization.
Numerical accuracy using function ops is superior to corresponding implementation
with primitive ops for normalization layers.

‣ The kREFIT and kREFIT_IDENTICAL have performance regressions compared with
non-refit engines where convolution layers are present within a branch or loop and
the precision is FP16/INT8. This issue will be addressed in future releases.

‣ Weight streaming mainly supports GEMM-based networks like Transformers for now.
Convolution-based networks may have only a few weights that can be streamed.

‣ Deprecated INT8 implicit quantization and calibrator APIs including
dynamicRangeIsSet, CalibrationAlgoType, IInt8Calibrator,
IInt8EntropyCalibrator, IInt8EntropyCalibrator2, IInt8MinMaxCalibrator,
IInt8Calibrator, setInt8Calibrator, getInt8Calibrator, setCalibrationProfile,
getCalibrationProfile, setDynamicRange, getDynamicRangeMin,
getDynamicRangeMax, and getTensorsWithDynamicRange. They may not give the
optimal performance and accuracy. As a workaround, use INT8 explicit quantization
instead.

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 10.2 will be retained until at least 7/2025.

‣ APIs deprecated in TensorRT 10.1 will be retained until at least 5/2025.

‣ APIs deprecated in TensorRT 10.0 will be retained until at least 3/2025.

‣ APIs deprecated in TensorRT 9.3 will be retained until at least 1/2025.

‣ APIs deprecated in TensorRT 9.2 will be retained until at least 11/2024.

‣ APIs deprecated in TensorRT 9.1 will be retained until at least 10/2024.

‣ APIs deprecated in TensorRT 9.0 will be retained until at least 8/2024.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Deprecated and Removed Features

The following features have been deprecated or removed in TensorRT 10.2.0.

‣ Deprecated NVIDIA Volta support (GPUs with compute capability 7.0) starting with
TensorRT 10.0. Volta support may be removed after 9/2024.

Fixed Issues

‣ Fixed issue where engine building with weight streaming enabled would fail when the
model size exceeds the available device memory.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 19

‣ Fixed issue of decreased weight streaming performance when creating execution
contexts with multiple optimization profiles using external device memory and call
setDeviceMemory/setDeviceMemoryV2 before setOptimizationProfileAsync.

‣ Fixed issue with header files in the include directory for Windows being encoded as
UTF-16 instead of UTF-8.

‣ In the previous 10.0 and 10.1 TensorRT releases the tensorrt Python metapackage
did not pin the version for the Python module dependency tensorrt-cu12. This
caused the latest TensorRT version to always be installed. This issue has been fixed.

‣ Fixed issue with large models where TensorRT does not free memory after an OOM
error, causing tactics that should fit in memory to also fail.

‣ If a network has a tensor of type bool with an implicitly data-dependent shape,
engine building should now work.

‣ The ONNX version in requirements.txt for sample python/efficientdet and python/
tensorflow_object_detection_api is incompatible with the samples. The workaround
was to pin the ONNX version to 1.14.0 for the samples to function correctly. This
issue has been fixed.

Known Issues

Functional

‣ nvinfer1::ISliceLayer with modes nvinfer1::SampleMode::kCLAMP or
nvinfer1::SampleMode::kFILL (ONNX equivalent being a Pad op with either
constant or edge mode) may break during engine compilation if the slice input is a
constant tensor. To workaround this issue use TensorRT 10.1. This will be addressed
in future TensorRT releases.

‣ There is a known accuracy issue when running ResNet18/ResNet50 with FP8
convolutions. This will be fixed in the next TensorRT version.

‣ The Python sample detectron2, efficientdet, efficientnet, engine_refit_onnx_bidaf,
introductory_parser_samples, network_api_pytorch_mnist, onnx_custom_plugin,
onnx_packnet, sample_weight_stripping, simple_progress_monitor,
tensorflow_object_detection_api, and yolo_v3_onnx does not support Python 3.12.
Support will be added in 10.3. The issue is fixed in OSS 10.2 release

‣ If TensorRT 8.6 or 9.x was installed using the Python Package Index (PyPI) you will
not be able to upgrade TensorRT to 10.x using PyPI. You must first uninstall TensorRT
using pip uninstall tensorrt tensorrt-libs tensorrt-bindings and then
reinstall TensorRT using “pip install tensorrt”. This will remove the previous
TensorRT version and install the latest TensorRT 10.x. This step is required because
the suffix -cuXX was added to the Python package names, which prevents the
upgrade from working properly.

‣ CUDA compute sanitizer may report racecheck hazards for some legacy kernels,
however, related kernels do not have functional issues at runtime.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 20

‣ The compute sanitizer initcheck tool may flag false positive Uninitialized
__global__ memory read errors when running TensorRT applications on NVIDIA
Hopper GPUs. These errors can be safely ignored and will be fixed in an upcoming
CUDA release.

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

‣ There is an occurrence of use-after-free in NVRTC that has been fixed in CUDA 12.1.
When using NVRTC from CUDA 12.0 together with the TensorRT static library, you
may encounter a crash in certain scenarios. Linking with the NVRTC and PTXJIT
compiler from CUDA 12.1 or newer will resolve this issue.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

‣ For broadcasting elementwise layers running on DLA with GPU fallback enabled
with one NxCxHxW input and one Nx1x1x1 input, there is a known accuracy issue if
at least one of the inputs is consumed in kDLA_LINEAR format. It is recommended
to explicitly set the input formats of such elementwise layers to different tensor
formats.

‣ Exclusive padding with kAVERAGE pooling is not supported.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 21

‣ The Valgrind tool found a memory leak on L4T with CUDA 12.4 due to a known driver
issue. This is expected to be fixed in CUDA 12.6.

‣ Asynchronous CUDA calls are not supported in the user defined processDebugTensor
function for the debug tensor feature due to a bug in Windows 10.

‣ There is a known accuracy issue when the network contains two consecutive GEMV
operations (that is, MatrixMultiply with gemmM or gemmN == 1). To workaround this
issue, try padding the MatrixMultiply input to have dimensions greater than 1.

‣ The size of the libnvinfer_lean.so library has increased by 10 MB. This issue will be
resolved in TensorRT 10.3.

‣ When compiling samples with static linking, if the error message /usr/bin/ld:
failed to convert GOTPCREL relocation; relink with –no-relax is shown, then
add -Wl,--no-relax to the linking steps in samples/Makefile.config.

‣ There is a known accuracy issue when binding an INT4 tensor as a network output. To
workaround this, add an IDequantizeLayer before the output.

‣ With CUDA 12.5 on Windows, fcPlugin (CustomFCPluginDynamic) may result in CUDA
errors on certain GPUs.

‣ There may be divide-by-zero errors for TopK when K equals to 0 and the reduction
dimension is large.

Performance

‣ There is an up to 20% CPU memory usage increase compared to TensorRT 10.1 when
building engines on A10 GPUs.

‣ There is an up to 25% performance regression when running TensorRT-LLM without
the attention plugin. The current recommendation is to always enable the attention
plugin when using TensorRT-LLM.

‣ There is an up to 24% performance regression for EfficientNets, StableDiffusion CLIP,
and StableDiffusion UNet on RTX 3070 GPU on Windows.

‣ There is an up to 10% performance regression for ConvNext on NVIDIA Orin
compared to TensorRT 9.3.

‣ There are known performance gaps between engines built with REFIT enabled and
engines built with REFIT disabled.

‣ There is an up to 4x performance regression for networks containing GridSample ops
compared to TensorRT 9.2.

‣ There are up to 60 MB engine size fluctuations for the BERT-Large INT8-QDQ model
on Orin due to unstable tactic selection among tactics.

‣ There is an up to 16% performance regression for BasicUNet, DynUNet, and
HighResNet in INT8 precision compared to TensorRT 9.3.

‣ There is an up to 40 second increase in engine building for BART networks on NVIDIA
Hopper GPUs.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 22

‣ There is an up to 20 second increase in engine building for some large language
models (LLMs) on NVIDIA Ampere GPUs.

‣ There is an up to 2.5x build time increase compared to TensorRT 9.0 for certain Bert
like models due to additional tactics available for evaluation.

‣ There is an up to 13% performance drop for the CortanaASR model on NVIDIA
Ampere GPUs compared to TensorRT 8.5.

‣ There is an up to 18% performance drop for the ShuffleNet model on A30/A40
compared to TensorRT 8.5.1.

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there is a
performance drop in INT8 precision (including both explicit and implicit quantization)
compared to FP16 precision.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ There is an up to 6% performance regression compared to TensorRT 8.5 on
OpenRoadNet in FP16 precision on NVIDIA A10 GPUs.

‣ There is an up to 70% performance regression compared to TensorRT 8.6 on BERT
networks in INT8 precision with FP16 disabled on L4 GPUs. To work around this,
enable FP16 and disable INT8 in the builder config.

‣ In explicitly quantized networks, a group convolution that has a Q/DQ pair before
but no Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision.
However, on NVIDIA Hopper, it may fall back to FP32-IN-FP32-OUT if the input
channel count is small. This will be fixed in a future release.

1.4. TensorRT Release 10.1.0
These are the TensorRT 10.1.0 Release Notes and are applicable to x86 Linux and
Windows users, Arm®-based CPU cores for Server Base System Architecture (SBSA)
users on Linux, and JetPack users. This release includes several fixes from the previous
TensorRT releases as well as the following additional changes.

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Announcements

‣ The ONNX GraphSurgeon is no longer included inside the TensorRT package. Ensure
you remove any previous Debian or RPM packages that may have been installed

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 23

by a previous release and instead install ONNX GraphSurgeon using pip. For more
information, refer to onnx-graphsurgeon.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ When using the TensorRT ONNX parser, shape inputs can now be passed to
custom ops supported by IPluginV3-based plugins. The indices of the inputs to
be interpreted as shape inputs must be indicated by a node attribute named
tensorrt_plugin_shape_input_indices containing a list of integers.

‣ Added a new sample non_zero_plugin, which is a Python version of the C++ sample
sampleNonZeroPlugin.

‣ TensorRT Python bindings natively support accessing the data attribute of a
PluginField of PluginFieldType.INT64 and PluginFieldType.UNKNOWN as NumPy
arrays. For example, the NumPy functions tobytes() and frombuffer() may
be used during storage and retrieval to embed an arbitrary NumPy array in a
PluginFieldType.UNKNOWN.

‣ Add new APIs for weight streaming including setWeightStreamingBudgetV2,
getWeightStreamingBudgetV2, getWeightStreamingAutomaticBudget, and
getWeightStreamingScratchMemorySize. Now, weight streaming supports CUDA
graph and multiple contexts of an engine running in parallel.

‣ Added new APIs for ascertaining an IExecutionContext device
memory size and setting it: ICudaEngine::getDeviceMemorySizeV2 and
IExecutionContext::setDeviceMemorySizeV2. The V1 APIs are deprecated.

‣ Added native TensorRT layer support for ONNX operator isNaN, and added TensorRT
plugin support for ONNX operator DeformConv.

‣ Internal exceptions are now contained and won’t leak through the parser API
boundaries.

‣ During IPluginV3 auto-tuning, it is guaranteed that configurePlugin() is
called with the current input/output format combination being timed before
getValidTactics() is called. Therefore, it is possible to advertise a different set of
tactics per each input/output format combination.

Compatibility

‣ TensorRT 10.1.0 has been tested with the following:

‣ TensorFlow 2.13.1

‣ PyTorch >= 2.0 (refer to the requirements.txt file for each sample)

‣ ONNX 1.16.0

‣ This TensorRT release supports CUDA®:

‣ 12.4 update 1

https://pypi.org/project/onnx-graphsurgeon/
https://github.com/tensorflow/tensorflow/releases/tag/v2.13.1
https://github.com/pytorch/pytorch/releases/tag/v2.0.0
https://github.com/onnx/onnx/releases/tag/v1.16.0
https://developer.nvidia.com/cuda-toolkit-archive

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 24

‣ 12.3 update 2

‣ 12.2 update 1

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 3

‣ 11.0 update 1

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, which is the minimum CUDA version supported
by this TensorRT release.

Limitations

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ The DLA compiler is capable of removing identity transposes, but it cannot fuse
multiple adjacent transpose layers into a single transpose layer (likewise for
reshape). For example, given a TensorRT IShuffleLayer consisting of two non-trivial
transposes and an identity reshapes in between. The shuffle layer is translated into
two consecutive DLA transpose layers, unless you merge the transposes together
manually in the model definition in advance.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset that contains the corresponding function
ops, for example: opset 17 for LayerNormalization or opset 18 GroupNormalization.
Numerical accuracy using function ops is superior to corresponding implementation
with primitive ops for normalization layers.

‣ The kREFIT and kREFIT_IDENTICAL have performance regressions compared with
non-refit engines where convolution layers are present within a branch or loop and
the precision is FP16/INT8. This issue will be addressed in future releases.

‣ Weight streaming mainly supports GEMM-based networks like Transformers for now.
Convolution-based networks may have only a few weights that can be streamed.

https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 25

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 10.1 will be retained until at least 5/2025.

‣ APIs deprecated in TensorRT 10.0 will be retained until at least 3/2025.

‣ APIs deprecated in TensorRT 9.3 will be retained until at least 1/2025.

‣ APIs deprecated in TensorRT 9.2 will be retained until at least 11/2024.

‣ APIs deprecated in TensorRT 9.1 will be retained until at least 10/2024.

‣ APIs deprecated in TensorRT 9.0 will be retained until at least 8/2024.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Deprecated and Removed Features

The following features have been deprecated or removed in TensorRT 10.1.0.

‣ Deprecated NVIDIA Volta support (GPUs with compute capability 7.0) starting with
TensorRT 10.0. Volta support may be removed after 9/2024.

‣ Version 1 of the ROIAlign plugin (ROIAlign_TRT), which implemented
IPluginV2DynamicExt, is deprecated. It is superseded by version 2, which
implements IPluginV3.

‣ The TensorRT standard plugin shared library (libnvinfer_plugin.so /
nvinfer_plugin.dll) only exports initLibNvInferPlugins. No symbols in the
nvinfer1::plugin namespace are exported anymore.

‣ Deprecated IParser::supportsModel and replaced this method
with IParser::supportsModelV2, IParser::getNbSubgraphs,
IParser::isSubgraphSupported, and IParser::getSubgraphNodes.

‣ Deprecated some weight streaming APIs including setWeightStreamingBudget,
getWeightStreamingBudget, and getMinimumWeightStreamingBudget. Replaced by
new versions of weight streaming APIs.

‣ Deprecated INT8 implicit quantization and calibrator APIs including
dynamicRangeIsSet, CalibrationAlgoType, IInt8Calibrator,
IInt8EntropyCalibrator, IInt8EntropyCalibrator2, IInt8MinMaxCalibrator,
IInt8Calibrator, setInt8Calibrator, getInt8Calibrator, setCalibrationProfile,
getCalibrationProfile, setDynamicRange, getDynamicRangeMin,
getDynamicRangeMax, and getTensorsWithDynamicRange. They may not give the
optimal performance and accuracy. As a workaround, use INT8 explicit quantization
instead.

Fixed Issues

‣ The sampleNonZeroPlugin sample failed to build when cross compiling for L4T. The
workaround was to continue building the other samples by modifying samples/

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 26

Makefile and removing the line containing sampleNonZeroPlugin. This issue has
been fixed.

‣ The sampleNonZeroPlugin sample did not guarantee CUDA minor version
compatibility. That is, if built against a newer CUDA Toolkit release, it may not
function properly on older drivers, even within the same major CUDA release family.
This issue has been fixed.

‣ IPluginRegistry::deregisterLibrary() did not work with plugin
shared libraries with the defined entry point getPluginCreators().
IPluginRegistry::loadLibrary() was not impacted. The workaround
was to deregister the plugins that were contained in such a library,
manually query the library for getPluginCreators(), and invoke
IPluginRegistry::deregisterCreator() for each creator retrieved. This issue has
been fixed.

‣ On A30, some fused MHA (multi-head attention) performance was not optimized yet.
This issue has been fixed.

‣ If building the TensorRT backend of ONNX runtime we are not able to use the prebuilt
parser. This issue has been fixed.

‣ When using the Polygraphy engine_from_network API, if we enabled both refittable
and strip_plan in the create_config, the final engine weights were not stripped.
The workaround was, only include strip_plan in the create_config. This issue has
been fixed.

‣ TensorRT did not support attention operations for tensors larger than int32_t
maximum. Plugins could be used to workaround this issue. The issue has been fixed.

‣ The API docs incorrectly stated that Cast to the INT8 format is possible but this path
is not supported. Use a QuantizeLinear node instead. This issue has been fixed in
the API docs.

‣ When using refit on multi-head attention or if/while loops with explicit
quantization, the refit process could have been slow due to the implementation's
memcpyDeviceToHost for the Q/DQ scales. This issue has been fixed.

‣ There was an up to 9% performance regression for StableDiffusion VAE networks
on A16 and A40 compared to TensorRT 9.2. The workaround was to disable the
kNATIVE_INSTANCENORM flag in ONNX parser or add the --pluginInstanceNorm flag
to trtexec. This issue has been fixed.

‣ There was a small chance that TensorRT would hang when running on H100 with
the r550 CUDA driver when CUDA graphs were used. The workaround was to use the
r535 CUDA driver instead or to avoid using CUDA graphs. This issue has been fixed.

‣ There was a known issue on H100 that may have led to a GPU hang when running
TensorRT with high persistentCache usage. The workaround was to limit the usage to
40% of L2 cache size. This issue has been fixed.

‣ There was a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA). This issue has been fixed.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 27

‣ There were some issues when running TensorRT-LLM with TensorRT 10.0 with the
StronglyTyped mode enabled. The workaround was to disable StronglyTyped mode.

‣ Running sync/race check with newer Compute Sanitizer on L4T may have hit a hang
issue. The workaround was to try an older version of Compute Sanitizer. This issue
has been fixed.

‣ Hardware forward compatibility (HFC) was broken on L4T Concord for ViT, Swin-
Transformers, and BERT networks in FP16 mode. The workaround was to only use
FP32 mode on L4T Concord or turn off HFC. This issue has been fixed.

‣ LSTM networks could fail to build with timing cache enabled. This has been observed
on one GPU platform and only when building with a cache that has pre-existing
entries. Error signature would contain
Skipping tactic 0x0000000000000000 due to exception
 [autotuner.cpp:operator():1502]
 Internal bug. Please report with reproduction steps.

The workaround was to disable the timing cache or start a fresh one. This issue has
been fixed.

Known Issues

Functional

‣ The tensorrt Python metapackage does not pin the version for the Python module
dependency tensorrt-cu12. For example, using pip install tensorrt==10.0.1 will
install tensorrt-cu12==10.1.0 rather than tensorrt-cu12==10.0.1 as expected. The
workaround is to instead specify the package name including the CUDA version, such
as pip install tensorrt-cu12==10.0.1. This issue will be fixed in TensorRT 10.2.

‣ The Python sample yolo_v3_onnx does not support Python 3.12. Support will be
added in 10.2.

‣ If TensorRT 8.6 or 9.x was installed using the Python Package Index (PyPI) you will
not be able to upgrade TensorRT to 10.x using PyPI. You must first uninstall TensorRT
using pip uninstall tensorrt tensorrt-libs tensorrt-bindings and then
reinstall TensorRT using “pip install tensorrt”. This will remove the previous
TensorRT version and install the latest TensorRT 10.x. This step is required because
the suffix -cuXX was added to the Python package names, which prevents the
upgrade from working properly.

‣ Allocated GPU memory during autotuning might not be freed correctly if allocation
failed due to inadequate resources, causing build time memory usage to be larger
than that of inference time.

‣ CUDA compute sanitizer may report racecheck hazards for some legacy kernels,
however, related kernels do not have functional issues at runtime.

‣ The compute sanitizer initcheck tool may flag false positive Uninitialized
__global__ memory read errors when running TensorRT applications on NVIDIA
Hopper GPUs. These errors can be safely ignored and will be fixed in an upcoming
CUDA release.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 28

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

‣ If a network has a tensor of type bool with an implicitly data-dependent shape,
engine building will likely fail.

‣ There is an occurrence of use-after-free in NVRTC that has been fixed in CUDA 12.1.
When using NVRTC from CUDA 12.0 together with the TensorRT static library, you
may encounter a crash in certain scenarios. Linking with the NVRTC and PTXJIT
compiler from CUDA 12.1 or newer will resolve this issue.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

‣ For broadcasting elementwise layers running on DLA with GPU fallback enabled
with one NxCxHxW input and one Nx1x1x1 input, there is a known accuracy issue if
at least one of the inputs is consumed in kDLA_LINEAR format. It is recommended
to explicitly set the input formats of such elementwise layers to different tensor
formats.

‣ Exclusive padding with kAVERAGE pooling is not supported.

‣ The Valgrind tool found a memory leak on L4T with CUDA 12.4 due to a known driver
issue. This is expected to be fixed in CUDA 12.6.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 29

‣ Asynchronous CUDA calls are not supported in the user defined processDebugTensor
function for the debug tensor feature due to a bug in Windows 10.

‣ For sample python/efficientdet and python/tensorflow_object_detection_api,
the ONNX version needs to be manually downgraded in their respective
requirements.txt file to 1.14 for the sample to function correctly.

‣ There is a known accuracy issue when the network contains two consecutive GEMV
operations (that is, MatrixMultiply with gemmM or gemmN == 1). To workaround this
issue, try padding the MatrixMultiply input to have dimensions greater than 1.

‣ Engine building with weight streaming enabled will fail when the model size is larger
than the free device memory size. This issue will be fixed in the next version.

Performance

‣ There is an up to 10% performance regression for ConvNext on NVIDIA Orin
compared to TensorRT 9.3.

‣ There are known performance gaps between engines built with REFIT enabled and
engines built with REFIT disabled.

‣ There is an up to 4x performance regression for networks containing GridSample ops
compared to TensorRT 9.2.

‣ There are up to 60 MB engine size fluctuations for the BERT-Large INT8-QDQ model
on Orin due to unstable tactic selection among tactics.

‣ There is an up to 16% performance regression for BasicUNet, DynUNet, and
HighResNet in INT8 precision compared to TensorRT 9.3.

‣ There are performance gaps for StableDiffusion networks between Windows and
Linux platforms.

‣ There is an up to 40 second increase in engine building for BART networks on NVIDIA
Hopper GPUs.

‣ There is an up to 20 second increase in engine building for some large language
models (LLMs) on NVIDIA Ampere GPUs.

‣ There is an up to 2.5x build time increase compared to TensorRT 9.0 for certain Bert
like models due to additional tactics available for evaluation.

‣ There is an up to 13% performance drop for the CortanaASR model on NVIDIA
Ampere GPUs compared to TensorRT 8.5.

‣ There is an up to 18% performance drop for the ShuffleNet model on A30/A40
compared to TensorRT 8.5.1.

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there is a
performance drop in INT8 precision (including both explicit and implicit quantization)
compared to FP16 precision.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 30

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ There is an up to 6% performance regression compared to TensorRT 8.5 on
OpenRoadNet in FP16 precision on NVIDIA A10 GPUs.

‣ There is an up to 70% performance regression compared to TensorRT 8.6 on BERT
networks in INT8 precision with FP16 disabled on L4 GPUs. To work around this,
enable FP16 and disable INT8 in the builder config.

‣ In explicitly quantized networks, a group convolution that has a Q/DQ pair before
but no Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision.
However, on NVIDIA Hopper, it may fall back to FP32-IN-FP32-OUT if the input
channel count is small. This will be fixed in a future release.

‣ Weight streaming performance may decrease when you create execution
contexts with multiple optimization profiles using external device memory and call
setDeviceMemory/setDeviceMemoryV2 before setOptimizationProfileAsync. This
issue will be fixed in the next version.

1.5. TensorRT Release 10.0.1
These are the TensorRT 10.0.1 Release Notes and are applicable to x86 Linux and
Windows users, Arm®-based CPU cores for Server Base System Architecture (SBSA)
users on Linux, and JetPack users. This release includes several fixes from the previous
TensorRT releases as well as the following additional changes.

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Announcements

‣ For TensorRT 10.0.0 EA the minimum glibc version for the Linux x86 build was 2.28.
This toolchain change was reverted for TensorRT 10.0.1 GA and will be compatible
with glibc 2.17, which was the minimum glibc version supported by TensorRT 8.6.

‣ RedHat/CentOS 7.x are no longer officially supported starting with TensorRT 10.0.

‣ RedHat/Rocky Linux 9.x are supported starting with TensorRT 10.0.

‣ Support for Python 3.6 and 3.7 has been dropped starting with TensorRT 10.0.

‣ Python 3.12 support has been added starting with TensorRT 10.0.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 10 is supported by Nsight Deep Learning Designer 2024.1 (Early Access).

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://developer.nvidia.com/nsight-dl-designer

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 31

‣ The ONNX parser returns the list of all nodes that can be statically determined
as unsupported when the call to parse() fails. The error reporting contains node
name, node type, reason for failure, as well as the local function stack if the node is
located in an ONNX local function. The number of these errors can be queried with
the getNbErrors() function, and information about individual errors can be obtained
from the getError() function.

‣ Debug Tensors: Added an API to mark tensors as debug tensors at build time. At
runtime, each time the value of the tensor is written, a user-defined callback function
is invoked with the value, type, and dimensions.

‣ Runtime Allocation: createExecutionContext now accepts an argument specifying
the allocation strategy (kSTATIC, kON_PROFILE_CHANGE, and kUSER_MANAGED) of
execution context device memory. For user-managed allocation, an additional API
updateDeviceMemorySizeForShapes is added to query the required size based on
actual input shapes.

‣ Added a new Python sample sample_weight_stripping to showcase building and
refitting weight-stripped engines from ONNX models.

‣ The new REFIT_IDENTICAL flag instructs the TensorRT builder to optimize under the
assumption that the engine will be refitted with weights identical to those provided
at build time. Using this flag in conjunction with kSTRIP_PLAN minimizes plan size
in deployment scenarios where, for example, the plan is being shipped alongside an
ONNX model containing the weights.

‣ Weight Streaming: Added a new kWEIGHT_STREAMING flag to the builder and a set of
new streaming budget APIs in the runtime to allow you to run strongly typed models
larger than device memory on the device. For example, a strongly typed model with
32 GB of weights can run on a device with less than 32 GB of VRAM.

‣ The tensorrt Debian and RPM meta-packages now install the TensorRT Python
binding packages python3-libnvinfer, python3-libnvinfer-lean, and python3-
libnvinfer-dispatch as well. Previously, installing the python3-libnvinfer-dev(el)
package was required as well to support both C++ and Python.

‣ V3 plugins: A new generation of TensorRT custom layers is now available with
plugins implementing IPluginV3, which are to be accompanied by plugin creators
implementing IPluginCreatorV3One. New features available with IPluginV3 include
data-dependent output shapes, shape tensor inputs, custom tactics, and timing
caching.

‣ A key-value store has been added to the plugin registry which allows the registration
and lookup of user-defined resources.

‣ The new kTACTIC_SHARED_MEMORY flag which allows control over the overall shared
memory budget used for TensorRT backend CUDA kernels. This is useful in scenarios
where TensorRT must share GPUs with other applications. By default, the value is set
to device max capability.

‣ QAT transformer networks now work with refit.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 32

‣ INT4 Weight Only Quantization (WoQ): Added support for weight compression using
INT4 (Hopper only). WoQ performs extra copies that increase latency and will be
further optimized in future TensorRT releases.

‣ Block Quantization: Added Block Quantization mode, allowing setting scales in high
granularity (supported by INT4 WoQ only).

Breaking API Changes

‣ ATTENTION: TensorRT 10.0 GA broke ABI compatibility relative to TensorRT 10.0 EA
on Windows by adding the TensorRT major version to the DLL filename. TensorRT
10.0 EA and prior TensorRT releases have historically named the DLL file nvinfer.dll,
while 10.0 GA renamed the DLL file nvinfer_10.dll. This same naming pattern
was also applied to the other TensorRT DLL files in the zip package. We strive not to
break backward compatibility between releases with the same major version, but this
change will allow applications to link against different TensorRT major versions at the
same time.

‣ ATTENTION: In TensorRT 9.0, due to the introduction of INT64 as a supported data
type, ONNX models with INT64 I/O require INT64 bindings. Note that prior to this
release, such models required INT32 bindings.

‣ Release 10.0 GA enforces the restriction that NvInferRuntimeBase.h should not be
directly included. The restriction was merely documented when 8.6 introduced the
header.

‣ In TensorRT 9.0, we removed ICaffeParser, IUffParser, and related classes and
functions. The following APIs are removed:

‣ nvcaffeparser1::IBlobNameToTensor

‣ nvcaffeparser1::IBinaryProtoBlob

‣ nvcaffeparser1::IPluginFactoryV2

‣ nvcaffeparser1::ICaffeParser

‣ nvcaffeparser1::createCaffeParser

‣ nvcaffeparser1::shutdownProtobufLibrary

‣ createNvCaffeParser_INTERNAL

‣ nvinfer1::utils::reshapeWeights

‣ nvinfer1::utils::reorderSubBuffers

‣ nvinfer1::utils::ransposeSubBuffers

‣ nvuffparser::UffInputOrder

‣ nvuffparser::FieldType

‣ nvuffparser::FieldMap

‣ nvuffparser::FieldCollection

‣ nvuffparser::IUffParser

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 33

‣ nvuffparser::createUffParser

‣ nvuffparser::shutdownProtobufLibrary

‣ createNvUffParser_INTERNAL

‣ With removal of ICaffeParser and IUffParsers, the libnvparsers library is
removed.

‣ uff, graphsurgeon, and related networks are removed from TensorRT packages.

‣ TacticSource::kCUDNN and TacticSource::kCUBLAS are disabled by
default. The cudnnContext* and cublasContext* parameters of the
nvinfer1::IPluginV2Ext::attachToContext function are set to nullptrs when the
corresponding TacticSource flags are unset.

‣ IPluginCreatorInterface has been added as a base class to IPluginCreator.

‣ Overloads have been added to the methods IPluginRegistry::deregisterCreator
and IPluginRegistry::registerCreator that take in IPluginCreatorInterface
references.

Compatibility

‣ TensorRT 10.0.1 has been tested with the following:

‣ TensorFlow 2.12.0

‣ PyTorch >= 2.0 (refer to the requirements.txt file for each sample)

‣ ONNX 1.15.0

‣ This TensorRT release supports CUDA®:

‣ 12.4 update 1

‣ 12.3 update 2

‣ 12.2 update 1

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 3

‣ 11.0 update 1

https://github.com/tensorflow/tensorflow/releases/tag/v2.12.0
https://github.com/pytorch/pytorch/releases/tag/v2.0.0
https://github.com/onnx/onnx/releases/tag/v1.15.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 34

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, which is the minimum CUDA version supported
by this TensorRT release.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all nonbatch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to DLA Supported Layers for
more information.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ The DLA compiler is capable of removing identity transposes, but it cannot fuse
multiple adjacent transpose layers into a single transpose layer (likewise for
reshape). For example, given a TensorRT IShuffleLayer consisting of two non-trivial
transposes and an identity reshapes in between. The shuffle layer is translated into
two consecutive DLA transpose layers, unless you merge the transposes together
manually in the model definition in advance.

‣ In explicitly quantized networks, a group convolution that has a Q/DQ pair before
but no Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision.
However, on NVIDIA Hopper™ it may fall back to FP32-IN-FP32-OUT if the input
channel count is small. This will be fixed in a future release.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset that contains the corresponding function
ops, for example: opset 17 for LayerNormalization or opset 18 GroupNormalization.
Numerical accuracy using function ops is superior to corresponding implementation
with primitive ops for normalization layers.

‣ QuantizeLayer and DequantizeLayer only support FP32 scale and data, even when
using ONNX opset 19. If the input is not FP32, you must add a Cast to FP32 on the
input to QuantizeLayer, and a Cast from FP32 at the output of DequantizeLayer.

‣ EngineInspector::getLayerInformation may return incomplete JSON data for
some engines produced by TensorRT 9.0. When this happens, TensorRT Engine
Explorer cannot be used to analyze the engine or generate a graph of the engine
layers.

https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers
https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer
https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 35

‣ The kREFIT and kREFIT_IDENTICAL have performance regressions where convolution
layers are present within a branch or loop and the precision is FP16/INT8. This issue
will be addressed in future releases.

‣ The new kTACTIC_SHARED_MEMORY flag cannot restrict shared memory usage for
depthwise convolution, depth separate convolution, and certain corner case conv
activation fused kernels. You need to run Nsight to verify the shared memory usage
of the result engine. This issue will be addressed in a future release.

‣ Shape tensor inputs will not be added to TensorRT plugins implementing IPluginV3
by the TensorRT ONNX parser. All inputs will be passed as regular device inputs. This
is in contrast to the addPluginV3 API which allows the specification of shape tensor
inputs to be passed to the plugin.

‣ Weight streaming currently does not work with CUDA Graph.

‣ Multiple contexts for one engine with Weight Streaming enabled cannot run parallel
on devices and will be serialized automatically.

‣ Weight streaming mainly supports GEMM-based networks like Transformers for now.
Convolution-based networks may have only a few weights that can be streamed.

‣ IPluginRegistry’s loadLibrary() and deregisterLibrary() functionality
is not supported for plugin shared libraries containing V3 plugin creators
(IPluginCreatorV3One). This limitation will be removed in a future release.

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 10.0 will be retained until at least 3/2025.

‣ APIs deprecated in TensorRT 9.3 will be retained until at least 1/2025.

‣ APIs deprecated in TensorRT 9.2 will be retained until at least 11/2024.

‣ APIs deprecated in TensorRT 9.1 will be retained until at least 10/2024.

‣ APIs deprecated in TensorRT 9.0 will be retained until at least 8/2024.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Deprecated and Removed Features

The following features have been deprecated or removed in TensorRT 10.0.1.

‣ Deprecated NVIDIA Volta support (GPUs with compute capability 7.0). Volta support
will be removed starting with TensorRT 10.2.

‣ Deprecated the kWEIGHTLESS builder flag. Superseded by the kSTRIP_PLAN builder
flag. kSTRIP_PLAN works with either the kREFIT flag or the new kREFIT_IDENTICAL
flag, defaulting to the latter if neither is set.

‣ In 10.0, we removed deprecated APIs compared to 9.3 and earlier releases. These
removed APIs were deprecated before March 2023. We ensured that Version
Compatibility is expected between 8.6, 9.x, and 10.0 versions. Note that version

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 36

compatibility is not supported for implicit batch mode, which was removed in 10.0.
If you are unfamiliar with these changes, refer to our sample code for clarification.
In light of the changes to the API in TensorRT 10.0, we've prepared an API Migration
Guide to highlight the API modifications.

‣ We removed implicit batch support and worked with networks as they always have an
explicit batch.

‣ Deprecated TacticSource::kCUDNN and TacticSource::kCUBLAS flags.

‣ Deprecated IPluginV2DynamicExt, implement IPluginV3 instead. Refer to the
Migrating V2 Plugins to IPluginV3 for how existing IPluginV2DynamicExt plugins can
be migrated to IPluginV3.

‣ IPluginCreator::getTensorRTVersion() has been removed.

‣ Deprecated IPluginV2IOExt; implement IPluginV3 instead.

‣ Deprecated IPluginCreator. There is no alternative factory class for IPluginV2-
derivative plugin base classes, as they are all deprecated as well. Implement
IPluginV3 and its corresponding factory class IPluginV3CreatorOne.

‣ Deprecated the following APIs in IPluginRegistry:

‣ IPluginRegistry::registerCreator(IPluginCreator&). Use its overload
IPluginRegistry::registerCreator(IPluginCreatorInterface&) instead.

‣ IPluginRegistry::deregisterCreator(IPluginCreator const&). Use its
overload IPluginRegistry::deregisterCreator(IPluginCreatorInterface
const&) instead.

‣ IPluginRegistry::getPluginCreator. Use IPluginRegistry::getCreator
instead.

‣ IPluginRegistry::getPluginCreatorList. Use
IPluginRegistry::getAllCreators instead.

Fixed Issues

‣ The nvinfer_plugin.lib library within the Windows package was incorrectly
distributed as a static linking library starting with TensorRT 9.0. TensorRT 10.0
reverts this library to a dynamic linking library matching the behavior of TensorRT 8.6.

‣ There was an up to 9% performance drop for BERT networks with gelu_erf
activation in BF16 precision compared to TensorRT 9.1 on NVIDIA Ampere GPUs.

‣ There was an up to 11% performance drop for ViT networks in TF32 precision
compared to TensorRT 9.0 on NVIDIA Ampere GPUs.

‣ There was an up to 23% performance regression compared to TensorRT 8.5 on
Temporal Fusion Transformers in FP32 precision on NVIDIA Turing and NVIDIA
Ampere GPUs.

‣ A higher builder optimization level did not always give a better performance when
compared to a lower builder optimization level; which could happen on all platforms

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#migrating-plugins

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 37

and up to 27%. The workaround was to build an engine using a lower builder
optimization level.

‣ If an ONNX model contained a Range operator and its limit input was a data-
dependent tensor, engine building would likely fail.

‣ There was an up to 15% performance regression for SegResNet and StableDiffusion
VAE in FP16 precision compared to TensorRT 9.3.

‣ TensorRT did not clean temporary DLL files automatically on Windows when running
in vc mode. The TensorRT library was internally holding open file references when the
application finished.

‣ TensorRT may have crashed when building transformer based networks on Windows
10 and H100.

‣ There was a performance drop on QDQ-Gemm pattern on RTX-Titan in weightless
mode.

‣ There was a known issue with the compute sanitizer in CUDA Toolkit 12.3 that might
cause the target application to crash. This has been fixed in CUDA Toolkit 12.4.

‣ Indexing for layer information (--dumpLayer) and its profiling information (--
dumpProfile) has been added; the layer names reported by IEngineInspector now
match the layer names reported by IProfiler.

‣ Multihead attention fusion now works with refit enabled.

‣ There was an up to 144 MB peak GPU memory usage increase compared to TensorRT
8.6 when building engines for ResNet-50 in INT8 precision on the L4T Orin platform.

‣ Hardware compatible engines built with CUDA versions older than 11.5 will no longer
crash during inference when run on a GPU with a compute capability lower than that
of the GPU where the engine was built.

‣ Some networks fail at the engine building phase on Windows and H100, but can
execute on Linux. The root cause is a builder issue, where fusion compilation fails.

‣ Using FP16 scales for Q/DQ ops may have resulted in numerical overflow. The
workaround was to use FP32 scales for Q/DQ ops instead. This issue has been fixed.

‣ UNets with tensors containing >2^31 elements may have failed during the engine
building step.

‣ Running TensorRT-LLM with TensorRT 10.0 with INT8 kv-cache would result in
engine build failure due to insufficient custom scales. The workaround was to enable
StronglyTyped mode. This issue has been fixed.

‣ There were up to 21% peak GPU memory usage fluctuations when building the
engine for the same network back to back due to different tactics being selected.

‣ The ONNX Parser Refitter could not refit weights defined in nested ONNX structures
such as If, Loop, or Scan operations. This issue has been fixed.

‣ When the _gemm_mha_v2 operation was used, the outputs mismatched the output of
PyTorch or the CPU executor (onnxRT). This problem showed up only when building

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 38

engines with FP16 precision, as _gemm_mha_v2 has an implementation only for FP16.
This issue has been fixed.

‣ Compute Sanitizer from CUDA Toolkit 12.0/12.1 may report a false alarm about
invalid memory access in generatedNativePointwise kernels. This issue was fixed in
CUDA Toolkit 12.2.

‣ There were up to 14% context memory usage fluctuations compared to TensorRT
9.1 when building the engine for 3DUnet networks due to different tactics being
selected. This issue has been fixed.

Known Issues

Functional

‣ When using the polygraphy engine_from_network API, if we enable both refittable
and strip_plan in the create_config, the final engine weights are not stripped. To
workaround this, only include strip_plan in the create_config.

‣ TensorRT does not support attention operations for tensors larger than int32_t
maximum. Plugins can be used to workaround this issue. The issue will be fixed in a
future release.

‣ The API docs incorrectly state that Cast to the INT8 format is possible but this path
is not supported. Use a QuantizeLinear node instead.

‣ Allocated GPU memory during autotuning might not be freed correctly if allocation
failed due to inadequate resources, causing build time memory usage to be larger
than that of inference time.

‣ When using refit on multi-head attention or if/while loops with explicit quantization,
the refit process might be slow due to the implementation's memcpyDeviceToHost for
the Q/DQ scales. This issue will be addressed in a future release.

‣ There are some issues when running TensorRT-LLM with TensorRT 10.0 with
the StronglyTyped mode enabled. This can be worked around by disabling the
StronglyTyped mode.

‣ CUDA compute sanitizer may report racecheck hazards for some legacy kernels,
however, related kernels do not have functional issues at runtime.

‣ The compute sanitizer initcheck tool may flag false positive Uninitialized
__global__ memory read errors when running TensorRT applications on NVIDIA
Hopper GPUs. These errors can be safely ignored and will be fixed in an upcoming
CUDA release.

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

‣ Hardware forward compatibility (HFC) is broken on L4T Concord for ViT, Swin-
Transformers, and BERT networks in FP16 mode. A workaround is to only use FP32
mode on L4T Concord or turn off HFC.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 39

‣ If a network has a tensor of type bool with an implicitly data-dependent shape,
engine building will likely fail.

‣ There is an occurrence of use-after-free in NVRTC that has been fixed in CUDA 12.1.
When using NVRTC from CUDA 12.0 together with the TensorRT static library, you
may encounter a crash in certain scenarios. Linking with the NVRTC and PTXJIT
compiler from CUDA 12.1 or newer will resolve this issue.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

‣ For broadcasting elementwise layers running on DLA with GPU fallback enabled
with one NxCxHxW input and one Nx1x1x1 input, there is a known accuracy issue if
at least one of the inputs is consumed in kDLA_LINEAR format. It is recommended
to explicitly set the input formats of such elementwise layers to different tensor
formats.

‣ Exclusive padding with kAVERAGE pooling is not supported.

‣ Running sync/race check with newer Compute Sanitizer on L4T may hit a hang issue.
The workaround is to try an older version of Compute Sanitizer.

‣ The Valgrind tool found a memory leak on L4T with CUDA 12.4 due to a known driver
issue. This is expected to be fixed in CUDA 12.6.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 40

‣ Asynchronous CUDA calls are not supported in the user defined processDebugTensor
function for the debug tensor feature due to a bug in Windows 10.

‣ The sample sampleNonZeroPlugin fails to build when cross compiling for L4T. You
can workaround this issue and continue building the other samples by modifying
samples/Makefile and removing the line containing sampleNonZeroPlugin. This
issue will be fixed in the next release.

‣ The sample sampleNonZeroPlugin does not guarantee CUDA minor version
compatibility. That is, if built against a newer CUDA Toolkit release, it may not
function properly on older drivers, even within the same major CUDA release family.

‣ LSTM networks may fail to build with timing cache enabled. This has been observed
on one GPU platform and only when building with a cache that has pre-existing
entries. Error signature will contain
Skipping tactic 0x0000000000000000 due to exception
 [autotuner.cpp:operator():1502]
 Internal bug. Please report with reproduction steps.

You can work around this issue by disabling the timing cache or starting a fresh one.

‣ IPluginRegistry::deregisterLibrary() will not work with plugin
shared libraries with the defined entry point getPluginCreators().
IPluginRegistry::loadLibrary() is not impacted. To deregister plugins contained
in such a library, manually query the library for getPluginCreators(), and invoke
IPluginRegistry::deregisterCreator() for each creator retrieved.

Performance

‣ There is an up to 9% performance regression for StableDiffusion VAE networks on
A16 and A40 compared to TensorRT 9.2. This can be worked around by disabling the
kNATIVE_INSTANCENORM flag in ONNX parser or adding the --pluginInstanceNorm
flag to trtexec.

‣ There is an up to 4x performance regression for networks containing GridSample ops
compared to TensorRT 9.2.

‣ There are up to 60 MB engine size fluctuations for the BERT-Large INT8-QDQ model
on Orin due to unstable tactic selection among tactics.

‣ There is a small chance that TensorRT will hang when running on H100 with the r550
CUDA driver when CUDA graphs are used. A workaround is to use the r535 CUDA
driver instead or to avoid using CUDA graphs.

‣ There is an up to 16% performance regression for BasicUNet, DynUNet, and
HighResNet in INT8 and FP16 precision compared to TensorRT 9.3.

‣ There are performance gaps for StableDiffusion networks between Windows and
Linux platforms.

‣ On A30, some fused MHA (multi-head attention) performance is not optimized yet.
This will be improved upon in future TensorRT versions.

‣ There is an up to 40 second increase in engine building for BART networks on NVIDIA
Hopper GPUs.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 41

‣ There is an up to 20 second increase in engine building for some large language
models (LLMs) on NVIDIA Ampere GPUs.

‣ There is an up to 2.5x build time increase compared to TensorRT 9.0 for certain Bert
like models due to additional tactics available for evaluation.

‣ There is an up to 13% performance drop for the CortanaASR model on NVIDIA
Ampere GPUs compared to TensorRT 8.5.

‣ There is an up to 18% performance drop for the ShuffleNet model on A30/A40
compared to TensorRT 8.5.1.

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there is a
performance drop in INT8 precision (including both explicit and implicit quantization)
compared to FP16 precision.

‣ There is a known issue on H100 that may lead to GPU hang when running TensorRT
with high persistentCache usage. Limit the usage to 40% of L2 cache size as a
workaround.

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ H100 performance for some LSTMs in FP16 precision is not fully optimized. This will
be improved in future TensorRT versions.

‣ There is an up to 6% performance regression compared to TensorRT 8.5 on
OpenRoadNet in FP16 precision on NVIDIA A10 GPUs.

‣ There is an up to 70% performance regression compared to TensorRT 8.6 on BERT
networks in INT8 precision with FP16 disabled on L4 GPUs. To work around this,
enable FP16 and disable INT8 in the builder config.

1.6. TensorRT Release 10.0.0 Early
Access (EA)

These are the TensorRT 10.0.0 Early Access (EA) Release Notes and are applicable to x86
Linux and Windows users, Arm®-based CPU cores for Server Base System Architecture
(SBSA) users on Linux, and JetPack users. This release includes several fixes from the
previous TensorRT releases as well as the following additional changes. Continue to use
TensorRT 8.6.1 for production use.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 42

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Announcements

‣ For TensorRT 10.0.0 EA the minimum glibc version for the Linux x86 build is 2.28.
TensorRT 10.0.0 EA is expected to be compatible with RedHat 8.x (and derivatives)
and newer RedHat distributions. TensorRT 10.0.0 EA is expected to also be
compatible with Ubuntu 20.04 and newer Ubuntu distributions. This toolchain change
will be reverted for TensorRT 10.0 GA and will be compatible with glibc 2.17, which
was the minimum glibc version supported by TensorRT 8.6.

‣ RedHat/CentOS 7.x are no longer officially supported starting with TensorRT 10.0.

‣ RedHat/Rocky Linux 9.x are supported starting with TensorRT 10.0.

‣ Support for Python 3.6 and 3.7 has been dropped starting with TensorRT 10.0.

‣ Python 3.12 support has been added starting with TensorRT 10.0.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 10 is supported by Nsight Deep Learning Designer 2024.1 (Early Access).

‣ INT4 Weight Only Quantization: Added support for weight compression using INT4
(hardware agnostic).

‣ Block Quantization: Added Block Quantization mode, allowing setting scales in high
granularity.

‣ The ONNX parser returns the list of all nodes that can be statically determined
as unsupported when the call to parse() fails. The error reporting contains node
name, node type, reason for failure, as well as the local function stack if the node is
located in an ONNX local function. The number of these errors can be queried with
the getNbErrors() function, and information about individual errors can be obtained
from the getError() function.

‣ Debug Tensors: Added an API to mark tensors as debug tensors at build time. At
runtime, each time the value of the tensor is written, a user-defined callback function
is invoked with the value, type, and dimensions.

‣ Runtime Allocation: createExecutionContext now accepts an argument specifying
the allocation strategy (kSTATIC, kON_PROFILE_CHANGE, and kUSER_MANAGED) of
execution context device memory. For user-managed allocation, an additional API
updateDeviceMemorySizeForShapes is added to query the required size based on
actual input shapes.

‣ Added a new Python sample sample_weight_stripping to showcase building and
refitting weight-stripped engines from ONNX models.

‣ The new REFIT_IDENTICAL flag instructs the TensorRT builder to optimize under the
assumption that the engine will be refitted with weights identical to those provided

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://developer.nvidia.com/nsight-dl-designer

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 43

at build time. Using this flag in conjunction with kSTRIP_PLAN minimizes plan size
in deployment scenarios where, for example, the plan is being shipped alongside an
ONNX model containing the weights.

‣ Weight Streaming: Added a new kWEIGHT_STREAMING flag to the builder and a set of
new streaming budget APIs in the runtime to allow you to run strongly typed models
larger than device memory on the device. For example, a strongly typed model with
32 GB of weights can run on a device with less than 32 GB of VRAM.

‣ The tensorrt Debian and RPM meta-packages now install the TensorRT Python
binding packages python3-libnvinfer, python3-libnvinfer-lean, and python3-
libnvinfer-dispatch as well. Previously, installing the python3-libnvinfer-dev(el)
package was required as well to support both C++ and Python.

‣ V3 plugins: A new generation of TensorRT custom layers is now available with
plugins implementing IPluginV3, which are to be accompanied by plugin creators
implementing IPluginCreatorV3One. New features available with IPluginV3 include
data-dependent output shapes, shape tensor inputs, custom tactics, and timing
caching.

‣ A key-value store has been added to the plugin registry which allows the registration
and lookup of user-defined resources.

‣ The new kTACTIC_SHARED_MEMORY flag which allows control over the overall shared
memory budget used for TensorRT backend CUDA kernels. This is useful in scenarios
where TensorRT must share GPUs with other applications. By default, the value is set
to device max capability.

Breaking API Changes

‣ ATTENTION: TensorRT 10.0 GA will break ABI compatibility relative to TensorRT 10.0
EA on Windows by adding the TensorRT major version to the DLL filename. TensorRT
10.0 EA and prior TensorRT releases have historically named the DLL file nvinfer.dll,
while 10.0 GA will rename the DLL file nvinfer_10.dll. This same naming pattern
will also apply to the other TensorRT DLL files in the zip package. We strive not to
break backward compatibility between releases with the same major version, but this
change will allow applications to link against different TensorRT major versions at the
same time.

‣ ATTENTION: In TensorRT 9.0, due to the introduction of INT64 as a supported data
type, ONNX models with INT64 I/O require INT64 bindings. Note that prior to this
release, such models required INT32 bindings.

‣ In 10.0, we removed deprecated APIs compared to 9.3 and earlier releases. These
removed APIs were deprecated before March 2023. We ensured that Version
Compatibility is expected between 8.6, 9.x, and 10.0 versions. If you are unfamiliar
with these changes, refer to our sample code for clarification. In light of the changes

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 44

to the API in TensorRT 10.0, we've prepared an API Migration Guide to highlight the
API modifications.

‣ In TensorRT 9.0, we removed ICaffeParser, IUffParser, and related classes and
functions. The following APIs are removed:

‣ nvcaffeparser1::IBlobNameToTensor

‣ nvcaffeparser1::IBinaryProtoBlob

‣ nvcaffeparser1::IPluginFactoryV2

‣ nvcaffeparser1::ICaffeParser

‣ nvcaffeparser1::createCaffeParser

‣ nvcaffeparser1::shutdownProtobufLibrary

‣ createNvCaffeParser_INTERNAL

‣ nvinfer1::utils::reshapeWeights

‣ nvinfer1::utils::reorderSubBuffers

‣ nvinfer1::utils::ransposeSubBuffers

‣ nvuffparser::UffInputOrder

‣ nvuffparser::FieldType

‣ nvuffparser::FieldMap

‣ nvuffparser::FieldCollection

‣ nvuffparser::IUffParser

‣ nvuffparser::createUffParser

‣ nvuffparser::shutdownProtobufLibrary

‣ createNvUffParser_INTERNAL

‣ With removal of ICaffeParser and IUffParsers, the libnvparsers library is
removed.

‣ uff, graphsurgeon, and related networks are removed from TensorRT packages.

‣ TacticSource::kCUDNN and TacticSource::kCUBLAS are disabled by
default. The cudnnContext* and cublasContext* parameters of the
nvinfer1::IPluginV2Ext::attachToContext function are set to nullptrs when the
corresponding TacticSource flags are unset.

‣ IPluginCreatorInterface has been added as a base class to IPluginCreator.

‣ Overloads have been added to the methods IPluginRegistry::deregisterCreator
and IPluginRegistry::registerCreator that take in IPluginCreatorInterface
references.

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 10.0 will be retained until at least 3/2025.

‣ APIs deprecated in TensorRT 9.3 will be retained until at least 1/2025.

https://docs.nvidia.com/deeplearning/tensorrt/migration-guide/index.html

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 45

‣ APIs deprecated in TensorRT 9.2 will be retained until at least 11/2024.

‣ APIs deprecated in TensorRT 9.1 will be retained until at least 10/2024.

‣ APIs deprecated in TensorRT 9.0 will be retained until at least 8/2024.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 10.0.0 has been tested with the following:

‣ TensorFlow 2.12.0

‣ PyTorch >= 2.0 (refer to the requirements.txt file for each sample)

‣ ONNX 1.15.0

‣ This TensorRT release supports CUDA®:

‣ 12.4

‣ 12.3 update 2

‣ 12.2 update 1

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 3

‣ 11.0 update 1

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, which is the minimum CUDA version supported
by this TensorRT release.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all nonbatch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://github.com/tensorflow/tensorflow/releases/tag/v2.12.0
https://github.com/pytorch/pytorch/releases/tag/v2.0.0
https://github.com/onnx/onnx/releases/tag/v1.15.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 46

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to DLA Supported Layers for
more information.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ The DLA compiler is capable of removing identity transposes, but it cannot fuse
multiple adjacent transpose layers into a single transpose layer (likewise for
reshape). For example, given a TensorRT IShuffleLayer consisting of two non-trivial
transposes and an identity reshapes in between. The shuffle layer is translated into
two consecutive DLA transpose layers, unless you merge the transposes together
manually in the model definition in advance.

‣ In explicitly quantized networks, a group convolution that has a Q/DQ pair before
but no Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision.
However, on NVIDIA Hopper™ it may fall back to FP32-IN-FP32-OUT if the input
channel count is small. This will be fixed in a future release.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset that contains the corresponding function
ops, for example: opset 17 for LayerNormalization or opset 18 GroupNormalization.
Numerical accuracy using function ops is superior to corresponding implementation
with primitive ops for normalization layers.

‣ QuantizeLayer and DequantizeLayer only support FP32 scale and data, even when
using ONNX opset 19. If the input is not FP32, you must add a Cast to FP32 on the
input to QuantizeLayer, and a Cast from FP32 at the output of DequantizeLayer.

‣ EngineInspector::getLayerInformation may return incomplete JSON data for
some engines produced by TensorRT 9.0. When this happens, TensorRT Engine
Explorer cannot be used to analyze the engine or generate a graph of the engine
layers.

‣ The kREFIT and kREFIT_IDENTICAL have performance regressions where convolution
layers are present within a branch or loop and the precision is FP16/INT8. This issue
will be addressed in future releases.

‣ The new kTACTIC_SHARED_MEMORY flag cannot restrict shared memory usage for
depthwise convolution, depth separate convolution, and certain corner case conv
activation fused kernels. You need to run Nsight to verify the shared memory usage
of the result engine. This issue will be addressed in a future release.

‣ Shape tensor inputs will not be added to TensorRT plugins implementing IPluginV3
by the TensorRT ONNX parser. All inputs will be passed as regular device inputs. This
is in contrast to the addPluginV3 API which allows the specification of shape tensor
inputs to be passed to the plugin.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers
https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer
https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 47

‣ Weight streaming currently does not work with CUDA Graph.

‣ Multiple contexts for one engine with Weight Streaming enabled cannot run parallel
on devices and will be serialized automatically.

‣ Weight streaming mainly supports GEMM-based networks like Transformers for now.
Convolution-based networks may have only a few weights that can be streamed.

Deprecated and Removed Features

The following features have been deprecated or removed in TensorRT 10.0.0.

‣ Deprecated the kWEIGHTLESS builder flag. Superseded by the kSTRIP_PLAN builder
flag. kSTRIP_PLAN works with either the kREFIT flag or the new kREFIT_IDENTICAL
flag, defaulting to the latter if neither is set.

‣ In 10.0, we removed deprecated APIs compared to 9.3 and earlier releases. These
removed APIs were deprecated before March 2023. We ensured that Version
Compatibility is expected between 8.6, 9.x, and 10.0 versions. If you are unfamiliar
with these changes, refer to our sample code for clarification. In light of the changes
to the API in TensorRT 10.0, we've prepared an API Migration Guide to highlight the
API modifications.

‣ We removed implicit batch support and worked with networks as they always have an
explicit batch.

‣ Deprecated TacticSource::kCUDNN and TacticSource::kCUBLAS flags.

‣ Deprecated IPluginV2DynamicExt, implement IPluginV3 instead. Refer to the
Migrating V2 Plugins to IPluginV3 for how existing IPluginV2DynamicExt plugins can
be migrated to IPluginV3.

‣ IPluginCreator::getTensorRTVersion() has been removed.

‣ Deprecated IPluginV2IOExt; implement IPluginV3 instead.

‣ Deprecated IPluginCreator. There is no alternative factory class for IPluginV2-
derivative plugin base classes, as they are all deprecated as well. Implement
IPluginV3 and its corresponding factory class IPluginV3CreatorOne.

‣ Deprecated the following APIs in IPluginRegistry:

‣ IPluginRegistry::registerCreator(IPluginCreator&). Use its overload
IPluginRegistry::registerCreator(IPluginCreatorInterface&) instead.

‣ IPluginRegistry::deregisterCreator(IPluginCreator const&). Use its
overload IPluginRegistry::deregisterCreator(IPluginCreatorInterface
const&) instead.

‣ IPluginRegistry::getPluginCreator. Use IPluginRegistry::getCreator
instead.

‣ IPluginRegistry::getPluginCreatorList. Use
IPluginRegistry::getAllCreators instead.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#migrating-plugins

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 48

Fixed Issues

‣ The nvinfer_plugin.lib library within the Windows package was incorrectly
distributed as a static linking library starting with TensorRT 9.0. TensorRT 10.0
reverts this library to a dynamic linking library matching the behavior of TensorRT 8.6.

‣ There was an up to 9% performance drop for BERT networks with gelu_erf
activation in BF16 precision compared to TensorRT 9.1 on NVIDIA Ampere GPUs.

‣ There was an up to 11% performance drop for ViT networks in TF32 precision
compared to TensorRT 9.0 on NVIDIA Ampere GPUs.

‣ There was an up to 23% performance regression compared to TensorRT 8.5 on
Temporal Fusion Transformers in FP32 precision on NVIDIA Turing and NVIDIA
Ampere GPUs.

‣ A higher builder optimization level did not always give a better performance when
compared to a lower builder optimization level; which could happen on all platforms
and up to 27%. The workaround was to build an engine using a lower builder
optimization level.

‣ If an ONNX model contained a Range operator and its limit input was a data-
dependent tensor, engine building would likely fail.

Known Issues

Functional

‣ Indexing for layer information (--dumpLayer) and its profiling information (--
dumpProfile) will be added in the GA release. Currently, you may see duplicating layer
names if the layer consists of identical components.

‣ CUDA compute sanitizer may report racecheck hazards for some legacy kernels,
however, related kernels do not have functional issues at runtime.

‣ There is a known issue that the compute sanitizer in CUDA Toolkit 12.3 might cause
target application crash.

‣ The compute sanitizer initcheck tool may flag false positive Uninitialized
__global__ memory read errors when running TensorRT applications on NVIDIA
Hopper GPUs. These errors can be safely ignored and will be fixed in an upcoming
CUDA release.

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

‣ Hardware forward compatibility (HFC) is broken on L4T Concord for ViT, Swin-
Transformers, and BERT networks in FP16 mode. A workaround is to only use FP32
mode on L4T Concord or turn off HFC.

‣ Compute Sanitizer from CUDA Toolkit 12.0/12.1 may report a false alarm about
invalid memory access in generatedNativePointwise kernels.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 49

‣ If a network has a tensor of type bool with an implicitly data-dependent shape,
engine building will likely fail.

‣ There is an occurance of use-after-free in NVRTC that has been fixed in CUDA 12.1.
When using NVRTC from CUDA 12.0 together with the TensorRT static library, you
may encounter a crash in certain scenarios. Linking with the NVRTC and PTXJIT
compiler from CUDA 12.1 or newer will resolve this issue.

‣ Although the version compatible runtime is optimized for efficiency, it may result
in slower performance than the full runtime in certain use cases. Most networks
can expect no more than a 10% slowdown when using a version-compatible engine
compared to a version-locked engine. However, in some cases, a larger performance
drop may occur. For example:

‣ When running ResNet50_v2 with QAT, there may be up to a 11% decrease in
performance.

‣ When running DynUNet in FP16 precision, there may be up to a 32% decrease in
performance.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 50

‣ Hardware compatible engines built with CUDA versions older than 11.5 may crash
during inference when run on a GPU with a compute capability lower than that of the
GPU where the engine was built. A workaround is to build on the GPU with the lowest
compute capability.

‣ For broadcasting elementwise layers running on DLA with GPU fallback enabled
with one NxCxHxW input and one Nx1x1x1 input, there is a known accuracy issue if
at least one of the inputs is consumed in kDLA_LINEAR format. It is recommended
to explicitly set the input formats of such elementwise layers to different tensor
formats.

‣ The ONNX Parser Refitter cannot refit weights defined in nested ONNX structures
such as If, Loop, or Scan operations. In these cases it’s recommended to perform the
refit directly through the TensorRT APIs.

‣ BERT-like networks with QAT may not build engines successfully with refit on.

‣ The OnnxParserRefitter Python API documentation is missing. Refer to Refitting a
Weight-Stripped Engine Directly from ONNX on how to use this class in Python.

‣ Exclusive padding with kAVERAGE pooling is not supported.

‣ If the _gemm_mha_v2 operation is used, the outputs will mismatch the output of
PyTorch or the CPU executor. This problem may show up only when building engines
with FP16 precision, as _gemm_mha_v2 has an implementation only for FP16.

‣ The layer names reported by IEngineInspector may not match the layer names
reported by IProfiler.

‣ TensorRT does not clean temporary DLL files automatically on Windows when
running in vc mode.

‣ TensorRT may crash when building transformer based networks on Windows 10 and
H100.

‣ Running sync/race check with newer Compute Sanitizer on L4T may hit a hang issue.
The workaround is to try an older version of Compute Sanitizer.

‣ There is an accuracy drop running DINO-FAN-base models compared to TensorRT
8.6.1.6.

‣ The Valgrind tool found a memory leak on L4T with CUDA 12.4 due to a known driver
issue. This is expected to be fixed in CUDA 12.6.

‣ Some networks fail at the engine building phase on Windows + H100, but can
execute on Linux. The root cause is a builder issue, where fusion compilation fails.

‣ While running some networks on Windows in version compatible mode (--vc), you
may see an error Unable to remove temporary DLL file when an application,
such as trtexec, is finished. The TensorRT library internally is still holding open file
references when the application finishes. This issue does not have an impact on
model performance and it should be fixed in the next release.

Performance

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#refit-weight-stripped-engine
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#refit-weight-stripped-engine

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 51

‣ Using FP16 scales for Q/DQ ops may result in numerical overflow. If this happens, use
FP32 scales for Q/DQ ops instead.

‣ There is an up to 15% performance regression for SegResNet and StableDiffusion
VAE in FP16 precision compared to TensorRT 9.3.

‣ There is an up to 16% performance regression for BasicUNet, DynUNet, and
HighResNet in INT8 and FP16 precision compared to TensorRT 9.3.

‣ There is an up to 144 MB peak GPU memory usage increase compared to TensorRT
8.6 when building engines for ResNet-50 in INT8 precision on the L4T Orin platform.

‣ There is a performance drop on QDQ-Gemm pattern on RTX-Titan in weightless
mode.

‣ There are performance gaps for StableDiffusion networks between Windows and
Linux platforms.

‣ UNets with tensors containing >2^31 elements may fail during the engine building
step.

‣ On A30, some fused MHA (multi-head attention) performance is not optimized yet.
This will be improved upon in future TensorRT versions.

‣ There is up to 100% engine size increase for Transformer networks on Windows in
FP16 precision.

‣ Enabling refit breaks multihead attention fusions.

‣ Running TensorRT-LLM with TensorRT 10.0 with INT8 kv-cache results in engine build
failure due to insufficient custom scales. This workaround is to enable StronglyTyped
mode.

‣ There is an up to 40 second increase in engine building for BART networks on NVIDIA
Hopper GPUs.

‣ There is an accuracy drop running OSS HuggingFace Demo gptj-6b model when
batch size > 1.

‣ There is an up to 14% context memory usage fluctuations compared to TensorRT
9.1 when building the engine for 3DUnet networks due to different tactics being
selected.

‣ There is an up to 20 second increase in engine building for some large language
models (LLMs) on NVIDIA Ampere GPUs.

‣ There are up to 21% peak GPU memory usage fluctuations when building the engine
for the same network back to back due to different tactics being selected.

‣ There is an up to 2.5x build time increase compared to TensorRT 9.0 for certain Bert
like models due to additional tactics available for evaluation.

‣ There is an up to 13% performance drop for the CortanaASR model on NVIDIA
Ampere GPUs compared to TensorRT 8.5.

‣ There is an up to 18% performance drop for the ShuffleNet model on A30/A40
compared to TensorRT 8.5.1.

TensorRT Release 10.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 52

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there is a
performance drop in INT8 precision (including both explicit and implicit quantization)
compared to FP16 precision.

‣ There is a known issue on H100 that may lead to GPU hang when running TensorRT
with high persistentCache usage. Limit the usage to 40% of L2 cache size as a
workaround.

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ H100 performance for some LSTMs in FP16 precision is not fully optimized. This will
be improved in future TensorRT versions.

‣ There is an up to 6% performance regression compared to TensorRT 8.5 on
OpenRoadNet in FP16 precision on NVIDIA A10 GPUs.

‣ There is an up to 70% performance regression compared to TensorRT 8.6 on BERT
networks in INT8 precision with FP16 disabled on L4 GPUs. To work around this,
enable FP16 and disable INT8 in the builder config.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary

NVIDIA TensorRT RN-08624-001_v10.4.0 | 53

Chapter 2. TensorRT Release 9.x.x

2.1. TensorRT Release 9.3.0
These are the TensorRT 9.3.0 Release Notes and are applicable to x86 Linux users and
Arm®-based CPU cores for Server Base System Architecture (SBSA) users on Linux.
This release includes several fixes from the previous TensorRT releases as well as the
following additional changes.

This GA release is for Large Language Models (LLMs) on NVIDIA A100, A10G, L4, L40,
L40S, H100 GPUs, and NVIDIA GH200 Grace Hopper™ Superchip only. For applications
other than LLMs, or other GPU platforms, continue to use TensorRT 8.6.1 for production
use.

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ A new getDeviceMemorySizeForProfile API was added, allowing users to
query the device memory requirement for a certain profile. Combined with
createExecutionContextWithoutDeviceMemory, it allows you to reallocate memory
after switching a profile, avoiding wasting memory. Previously, you could only allocate
a max size across all profiles.

‣ Improved builder speed for Large Language Models (LLMs).

Breaking API Changes

‣ ATTENTION: In TensorRT 9.0, due to the introduction of INT64 as a supported data
type, ONNX models with INT64 I/O require INT64 bindings. Note that prior to this
release, such models required INT32 bindings.

‣ In TensorRT 9.0, we removed ICaffeParser, IUffParser, and related classes and
functions. The following APIs are removed:

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 54

‣ nvcaffeparser1::IBlobNameToTensor

‣ nvcaffeparser1::IBinaryProtoBlob

‣ nvcaffeparser1::IPluginFactoryV2

‣ nvcaffeparser1::ICaffeParser

‣ nvcaffeparser1::createCaffeParser

‣ nvcaffeparser1::shutdownProtobufLibrary

‣ createNvCaffeParser_INTERNAL

‣ nvinfer1::utils::reshapeWeights

‣ nvinfer1::utils::reorderSubBuffers

‣ nvinfer1::utils::ransposeSubBuffers

‣ nvuffparser::UffInputOrder

‣ nvuffparser::FieldType

‣ nvuffparser::FieldMap

‣ nvuffparser::FieldCollection

‣ nvuffparser::IUffParser

‣ nvuffparser::createUffParser

‣ nvuffparser::shutdownProtobufLibrary

‣ createNvUffParser_INTERNAL

‣ With removal of ICaffeParser and IUffParsers, the libnvparsers library is
removed.

‣ uff, graphsurgeon, and related networks are removed from TensorRT packages.

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 9.3 will be retained until at least 1/2025.

‣ APIs deprecated in TensorRT 9.2 will be retained until at least 11/2024.

‣ APIs deprecated in TensorRT 9.1 will be retained until at least 10/2024.

‣ APIs deprecated in TensorRT 9.0 will be retained until at least 8/2024.

‣ APIs deprecated in TensorRT 8.6 will be retained until at least 2/2024.

‣ APIs deprecated in TensorRT 8.4 or before will be removed in TensorRT 10.0.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 9.3.0 has been tested with the following:

‣ cuDNN 8.9.7

‣ TensorFlow 2.12.0

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-897/release-notes/index.html#rel-897
https://github.com/tensorflow/tensorflow/releases/tag/v2.12.0

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 55

‣ PyTorch >= 2.0 (refer to the requirements.txt file for each sample)

‣ ONNX 1.14.1

‣ This TensorRT release supports CUDA®:

‣ 12.3 update 2

‣ 12.2 update 1

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, which is the minimum CUDA version supported
by this TensorRT release.

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used; however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all nonbatch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to DLA Supported Layers for
more information.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

https://github.com/pytorch/pytorch/releases/tag/v2.0.0
https://github.com/onnx/onnx/releases/tag/v1.14.1
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 56

‣ You may encounter an error such as, "Unable to load library:
nvinfer_builder_resource.dll", if using Python 3.9.10 on Windows. You can
workaround this issue by downgrading to an earlier version of Python 3.9.

‣ The DLA compiler is capable of removing identity transposes, but it cannot fuse
multiple adjacent transpose layers into a single transpose layer (likewise for
reshape). For example, given a TensorRT IShuffleLayer consisting of two non-trivial
transposes and an identity reshapes in between. The shuffle layer is translated into
two consecutive DLA transpose layers, unless you merge the transposes together
manually in the model definition in advance.

‣ In explicitly quantized networks, a group convolution that has a Q/DQ pair before
but no Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision.
However, on NVIDIA Hopper™ it may fall back to FP32-IN-FP32-OUT if the input
channel count is small. This will be fixed in a future release.

‣ On PowerPC platforms, samples that depend on TensorFlow, ONNX Runtime,
and PyTorch are unable to run due to missing Python module dependencies.
These frameworks have not been built for PowerPC and/or published to standard
repositories.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset that contains the corresponding function
ops, for example: opset 17 for LayerNormalization or opset 18 GroupNormalization.
Numerical accuracy using function ops is superior to corresponding implementation
with primitive ops for normalization layers.

‣ QuantizeLayer and DequantizeLayer only support FP32 scale and data, even when
using ONNX opset 19. If the input is not FP32, you must add a Cast to FP32 on the
input to QuantizeLayer, and a Cast from FP32 at the output of DequantizeLayer.

‣ EngineInspector::getLayerInformation may return incomplete JSON data for
some engines produced by TensorRT 9.0. When this happens, TensorRT Engine
Explorer cannot be used to analyze the engine or generate a graph of the engine
layers.

‣ The released Windows DLLs are built with the MT_Static flag. TensorRT will switch
back to the MT_Dynamic flag in the next major release.

Deprecated and Removed Features

The following features have been deprecated or removed in TensorRT 9.0. Some
deprecations that were planned to be removed in 9.0, but have not yet been removed,
may be removed in TensorRT 10.0.

‣ TensorRT samples and open source demos are no longer supported on Python < 3.8.

‣ Ubuntu 18.04 has reached end of life and is no longer supported by TensorRT
starting with TensorRT 9.0.

https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer
https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 57

‣ The following plugins were deprecated:

‣ BatchedNMS_TRT

‣ BatchedNMSDynamic_TRT

‣ BatchTilePlugin_TRT

‣ Clip_TRT

‣ CoordConvAC

‣ CropAndResize

‣ EfficientNMS_ONNX_TRT

‣ CustomGeluPluginDynamic

‣ LReLU_TRT

‣ NMSDynamic_TRT

‣ NMS_TRT

‣ Normalize_TRT

‣ Proposal

‣ SingleStepLSTMPlugin

‣ SpecialSlice_TRT

‣ Split

‣ The following C++ API classes were deprecated:

‣ NvUtils

‣ The following C++ API methods were deprecated:

‣ nvinfer1::INetworkDefinition::addFill(nvinfer1::Dims dimensions,
 nvinfer1::FillOperation
 op)

- Only the 2-parameter version of this function is deprecated.

‣ nvinfer1::INetworkDefinition::addDequantize(nvinfer1::ITensor &input,
 nvinfer1::ITensor
 &scale)

- Only the 2-parameter version of this function is deprecated.

‣ nvinfer1::INetworkDefinition::addQuantize(nvinfer1::ITensor &input,
 nvinfer1::ITensor
 &scale)

- Only the 2-parameter version of this function is deprecated.

‣ The following C++ API enums were deprecated:

‣ nvinfer1::TacticSource::kCUBLAS_LT

‣ nvonnxparser::OnnxParserFlag::kNATIVE_INSTANCENORM

‣ The following Python API methods were deprecated:

‣ INetworkDefinition.add_fill(shape, op)

‣ INetworkDefinition.add_dequantize(input, scale)

‣ The following Python API enums were deprecated:

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 58

‣ TacticSource.CUBLAS_LT

‣ OnnxParserFlag.NATIVE_INSTANCENORM

Known Issues

Functional

‣ CUDA compute sanitizer may report racecheck hazards for some legacy kernels,
however, related kernels do not have functional issues at runtime.

‣ There is a known issue that the compute sanitizer in CUDA Toolkit 12.3 might cause
target application crash.

‣ The compute sanitizer initcheck tool may flag false positive Uninitialized
__global__ memory read errors when running TensorRT applications on NVIDIA
Hopper GPUs. These errors can be safely ignored and will be fixed in an upcoming
CUDA release.

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

‣ If a ONNX model contains a Range operator and its limit input is a data-dependent
tensor, engine building will likely fail.

‣ Hardware forward compatibility (HFC) is broken on L4T Concord for ViT, Swin-
Transformers, and BERT networks in FP16 mode. A workaround is to only use FP32
mode on L4T Concord or turn off HFC.

‣ Compute Sanitizer from CUDA Toolkit 12.0/12.1 may report a false alarm about
invalid memory access in generatedNativePointwise kernels.

‣ If a network has a tensor of type bool with an implicitly data-dependent shape,
engine building will likely fail.

‣ There is an occurance of use-after-free in NVRTC that has been fixed in CUDA 12.1.
When using NVRTC from CUDA 12.0 together with the TensorRT static library, you
may encounter a crash in certain scenarios. Linking with the NVRTC and PTXJIT
compiler from CUDA 12.1 or newer will resolve this issue.

‣ Although the version compatible runtime is optimized for efficiency, it may result
in slower performance than the full runtime in certain use cases. Most networks
can expect no more than a 10% slowdown when using a version-compatible engine
compared to a version-locked engine. However, in some cases, a larger performance
drop may occur. For example:

‣ When running ResNet50_v2 with QAT, there may be up to a 22% decrease in
performance.

‣ When running DynUNet in FP16 precision, there may be up to a 32% decrease in
performance.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 59

to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

‣ Hardware compatible engines built with CUDA versions older than 11.5 may crash
during inference when run on a GPU with a compute capability lower than that of the
GPU where the engine was built. A workaround is to build on the GPU with the lowest
compute capability.

‣ For broadcasting elementwise layers running on DLA with GPU fallback enabled
with one NxCxHxW input and one Nx1x1x1 input, there is a known accuracy issue if
at least one of the inputs is consumed in kDLA_LINEAR format. It is recommended
to explicitly set the input formats of such elementwise layers to different tensor
formats.

Performance

‣ There is an up to 9% performance drop for BERT networks with gelu_erf activation
in BF16 precision compared to TensorRT 9.1 on NVIDIA Ampere GPUs.

‣ There is an up to 40 second increase in engine building for BART networks on NVIDIA
Hopper GPUs.

‣ There is an accuracy drop running OSS HuggingFace Demo gptj-6b model when
batch size > 1.

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 60

‣ There is an up to 14% context memory usage fluctuations compared to TensorRT
9.1 when building the engine for 3DUnet networks due to different tactics being
selected.

‣ There is an up to 20 second increase in engine building for some large language
models (LLMs) on NVIDIA Ampere GPUs.

‣ There is an up to 6% performance drop for BERT networks in FP32 precision
compared to TensorRT 9.0 on NVIDIA Volta GPUs.

‣ There are up to 21% peak GPU memory usage fluctuations when building the engine
for the same network back to back due to different tactics being selected.

‣ There is an up to 11% performance drop for ViT networks in TF32 precision compared
to TensorRT 9.0 on NVIDIA Ampere GPUs.

‣ There is an up to 12% performance drop for BERT networks in FP16 precision
compared to TensorRT 9.0 on NVIDIA Ada Lovelace GPUs.

‣ There is an up to 2.5x build time increase compared to TensorRT 9.0 for certain Bert
like models due to additional tactics available for evaluation.

‣ There is an up to 13% performance drop for the CortanaASR model on NVIDIA
Ampere GPUs compared to TensorRT 8.5.

‣ There is a known performance regression in the grouped deconvolution layer due to
disabling cuDNN tactics. In TensorRT 8.6, performance can be recovered by unsetting
nvinfer1::PreviewFeature::kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805.
We will close the performance gap in a future release.

‣ There is an up to 27% performance drop for the SegResNet model on Ampere
GPUs compared to TensorRT 8.6 EA. This drop can be avoided by enabling the
kVERSION_COMPATIBLE flag in the ONNX parser.

‣ There is an up to 18% performance drop for the ShuffleNet model on A30/A40
compared to TensorRT 8.5.1.

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there is a
performance drop in INT8 precision (including both explicit and implicit quantization)
compared to FP16 precision.

‣ There is an up to 30% performance regression for LSTM variants with dynamic
shapes. This issue can be resolved by disabling the kFASTER_DYNAMIC_SHAPES_0805
preview feature in TensorRT 8.6.

‣ There is a known issue on H100 that may lead to GPU hang when running TensorRT
with high persistentCache usage. Limit the usage to 40% of L2 cache size as a
workaround.

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 61

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ H100 performance for some LSTMs in FP16 precision is not fully optimized. This will
be improved in future TensorRT versions.

‣ There is an up to 6% performance regression compared to TensorRT 8.5 on
OpenRoadNet in FP16 precision on NVIDIA A10 GPUs.

‣ There is an up to 23% performance regression compared to TensorRT 8.5 on LSTMs
in FP32 precision when dynamic shapes are used on NVIDIA Turing GPUs. Set the
kFASTER_DYNAMIC_SHAPES_0805 preview flag to false as a workaround.

‣ There is an up to 23% performance regression compared to TensorRT 8.5 on
Temporal Fusion Transformers in FP32 precision on NVIDIA Turing and NVIDIA
Ampere GPUs.

‣ A higher builder optimization level does not always give a better performance
when compared to a lower builder optimization level; which may happen on all
platforms and up to 27%. The workaround is to build an engine using a lower builder
optimization level.

‣ There is an up to 70% performance regression compared to TensorRT 8.6 on BERT
networks in INT8 precision with FP16 disabled on L4 GPUs. To work around this,
enable FP16 and disable INT8 in the builder config.

2.2. TensorRT Release 9.2.0
These are the TensorRT 9.2.0 Release Notes and are applicable to x86 Linux users and
Arm®-based CPU cores for Server Base System Architecture (SBSA) users on Linux.
This release includes several fixes from the previous TensorRT releases as well as the
following additional changes.

This GA release is for Large Language Models (LLMs) on NVIDIA A100, A10G, L4, L40,
L40S, H100 GPUs, and NVIDIA GH200 Grace Hopper™ Superchip only. For applications
other than LLMs, or other GPU platforms, continue to use TensorRT 8.6.1 for production
use.

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 62

Announcements

‣ Added support for NVIDIA GH200 Grace Hopper Superchip.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 9.2 provides enhanced support for Large Language Models (LLMs). Refer to
TensorRT-LLM for a list of supported LLMs.

‣ The following C++ API classes were added:

‣ ISerializationConfig

‣ The following C++ API methods were added:

‣ ICudaEngine::createSerializationConfig()

‣ ICudaEngine::serializeWithConfig(ISerializationConfig& config)

‣ The following C++ API enums were added:

‣ SerializationFlag::kEXCLUDE_WEIGHTS

‣ SerializationFlag::kEXCLUDE_LEAN_RUNTIME

‣ The following Python API classes were added:

‣ ISerializationConfig

‣ The following Python API methods were added:

‣ ICudaEngine::create_serialization_config()

‣ ICudaEngine::serialize_with_config(config)

‣ The following Python API enums were added:

‣ SerializationFlag.EXCLUDE_WEIGHTS

‣ SerializationFlag.EXCLUDE_LEAN_RUNTIME

‣ Added a new kWEIGHTLESS builder flag to build the engine without saving weights
with no impact on runtime performance. You need to use the refit API to pull those
weights back before inference.

‣ Added a new serializeWithConfig API to serialize the engine with optional new
flags kEXCLUDE_WEIGHTS and kEXCLUDE_LEAN_RUNTIME.

‣ Added support for FP32 accumulation (single precision) for inputs/outs in FP16 (half
precision) format.

https://github.com/NVIDIA/TensorRT-LLM

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 63

Breaking API Changes

‣ ATTENTION: In TensorRT 9.0, due to the introduction of INT64 as a supported data
type, ONNX models with INT64 I/O require INT64 bindings. Note that prior to this
release, such models required INT32 bindings.

‣ In TensorRT 9.0, we removed ICaffeParser, IUffParser, and related classes and
functions. The following APIs are removed:

‣ nvcaffeparser1::IBlobNameToTensor

‣ nvcaffeparser1::IBinaryProtoBlob

‣ nvcaffeparser1::IPluginFactoryV2

‣ nvcaffeparser1::ICaffeParser

‣ nvcaffeparser1::createCaffeParser

‣ nvcaffeparser1::shutdownProtobufLibrary

‣ createNvCaffeParser_INTERNAL

‣ nvinfer1::utils::reshapeWeights

‣ nvinfer1::utils::reorderSubBuffers

‣ nvinfer1::utils::ransposeSubBuffers

‣ nvuffparser::UffInputOrder

‣ nvuffparser::FieldType

‣ nvuffparser::FieldMap

‣ nvuffparser::FieldCollection

‣ nvuffparser::IUffParser

‣ nvuffparser::createUffParser

‣ nvuffparser::shutdownProtobufLibrary

‣ createNvUffParser_INTERNAL

‣ With removal of ICaffeParser and IUffParsers, the libnvparsers library is
removed.

‣ uff, graphsurgeon, and related networks are removed from TensorRT packages.

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 9.2 will be retained until at least 11/2024.

‣ APIs deprecated in TensorRT 9.1 will be retained until at least 10/2024.

‣ APIs deprecated in TensorRT 9.0 will be retained until at least 8/2024.

‣ APIs deprecated in TensorRT 8.6 will be retained until at least 2/2024.

‣ APIs deprecated in TensorRT 8.5 will be retained until at least 9/2023.

‣ APIs deprecated in TensorRT 8.4 or before will be removed in TensorRT 10.0.

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 64

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 9.2.0 has been tested with the following:

‣ cuDNN 8.9.6

‣ TensorFlow 2.12.0

‣ PyTorch >= 2.0 (refer to the requirements.txt file for each sample)

‣ ONNX 1.14.1

‣ This TensorRT release supports CUDA®:

‣ 12.3 update 1

‣ 12.2 update 1

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, which is the minimum CUDA version supported
by this TensorRT release.

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used; however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all nonbatch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-896/release-notes/index.html#rel-896
https://github.com/tensorflow/tensorflow/releases/tag/v2.12.0
https://github.com/pytorch/pytorch/releases/tag/v2.0.0
https://github.com/onnx/onnx/releases/tag/v1.14.1
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 65

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to DLA Supported Layers for
more information.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ You may encounter an error such as, "Unable to load library:
nvinfer_builder_resource.dll", if using Python 3.9.10 on Windows. You can
workaround this issue by downgrading to an earlier version of Python 3.9.

‣ The DLA compiler is capable of removing identity transposes, but it cannot fuse
multiple adjacent transpose layers into a single transpose layer (likewise for
reshape). For example, given a TensorRT IShuffleLayer consisting of two non-trivial
transposes and an identity reshapes in between. The shuffle layer is translated into
two consecutive DLA transpose layers, unless you merge the transposes together
manually in the model definition in advance.

‣ In explicitly quantized networks, a group convolution that has a Q/DQ pair before
but no Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision.
However, on NVIDIA Hopper™ it may fall back to FP32-IN-FP32-OUT if the input
channel count is small. This will be fixed in a future release.

‣ On PowerPC platforms, samples that depend on TensorFlow, ONNX Runtime,
and PyTorch are unable to run due to missing Python module dependencies.
These frameworks have not been built for PowerPC and/or published to standard
repositories.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset that contains the corresponding function
ops, for example: opset 17 for LayerNormalization or opset 18 GroupNormalization.
Numerical accuracy using function ops is superior to corresponding implementation
with primitive ops for normalization layers.

‣ QuantizeLayer and DequantizeLayer only support FP32 scale and data, even when
using ONNX opset 19. If the input is not FP32, you must add a Cast to FP32 on the
input to QuantizeLayer, and a Cast from FP32 at the output of DequantizeLayer.

‣ EngineInspector::getLayerInformation may return incomplete JSON data for
some engines produced by TensorRT 9.0. When this happens, TensorRT Engine
Explorer cannot be used to analyze the engine or generate a graph of the engine
layers.

‣ The released Windows DLLs are built with the MT_Static flag. TensorRT will switch
back to the MT_Dynamic flag in the next major release.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers
https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer
https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 66

Deprecated and Removed Features

The following features have been deprecated or removed in TensorRT 9.0. Some
deprecations that were planned to be removed in 9.0, but have not yet been removed,
may be removed in TensorRT 10.0.

‣ TensorRT samples and open source demos are no longer supported on Python < 3.8.

‣ Ubuntu 18.04 has reached end of life and is no longer supported by TensorRT
starting with TensorRT 9.0.

‣ The following plugins were deprecated:

‣ BatchedNMS_TRT

‣ BatchedNMSDynamic_TRT

‣ BatchTilePlugin_TRT

‣ Clip_TRT

‣ CoordConvAC

‣ CropAndResize

‣ EfficientNMS_ONNX_TRT

‣ CustomGeluPluginDynamic

‣ LReLU_TRT

‣ NMSDynamic_TRT

‣ NMS_TRT

‣ Normalize_TRT

‣ Proposal

‣ SingleStepLSTMPlugin

‣ SpecialSlice_TRT

‣ Split

‣ The following C++ API classes were deprecated:

‣ NvUtils

‣ The following C++ API methods were deprecated:

‣ nvinfer1::INetworkDefinition::addFill(nvinfer1::Dims dimensions,
 nvinfer1::FillOperation
 op)

- Only the 2-parameter version of this function is deprecated.

‣ nvinfer1::INetworkDefinition::addDequantize(nvinfer1::ITensor &input,
 nvinfer1::ITensor
 &scale)

- Only the 2-parameter version of this function is deprecated.

‣ nvinfer1::INetworkDefinition::addQuantize(nvinfer1::ITensor &input,
 nvinfer1::ITensor
 &scale)

- Only the 2-parameter version of this function is deprecated.

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 67

‣ The following C++ API enums were deprecated:

‣ nvinfer1::TacticSource::kCUBLAS_LT

‣ nvonnxparser::OnnxParserFlag::kNATIVE_INSTANCENORM

‣ The following Python API methods were deprecated:

‣ INetworkDefinition.add_fill(shape, op)

‣ INetworkDefinition.add_dequantize(input, scale)

‣ The following Python API enums were deprecated:

‣ TacticSource.CUBLAS_LT

‣ OnnxParserFlag.NATIVE_INSTANCENORM

Fixed Issues

‣ There was an 1x FP32 model CPU memory leak from onnx.export tracked in issue
106976 for the TensorRT open source software HuggingFace demo. You may have
encountered higher peak CPU memory usage for fresh runs, but will drop for cached-
ONNX runs. This issue has been fixed.

‣ The compute sanitizer synccheck tool may have reported a false alarm when running
conv and GEMM kernels with CGA size >= 4 on NVIDIA Hopper GPUs. This issue has
been fixed.

‣ When using cuDNN 8.9.2.26 and the TensorRT RNNv2 API, the compute sanitizer
from CUDA Toolkit 12.2 may have reported race conditions in CUTLASS kernels. This
issue has been fixed.

‣ There was a known floating point exception when running BERT networks on H100
multi-instance GPU (MIG). This issue has been fixed.

‣ TensorRT did not preserve precision for operations that are imported from ONNX
models if using weakly typed networks. The fix for the issue is to import networks as
strongly typed which preserve precision for operations.

Known Issues

Functional

‣ CUDA compute sanitizer may report racecheck hazards for some legacy kernels
written directly in SASS, however, related kernels do not have functional issues at
runtime.

‣ There is a known issue that the compute sanitizer in CUDA Toolkit 12.3 might cause
target application crash.

‣ The compute sanitizer initcheck tool may flag false positive Uninitialized
__global__ memory read errors when running TensorRT applications on NVIDIA
Hopper GPUs. These errors can be safely ignored and will be fixed in an upcoming
CUDA release.

https://github.com/pytorch/pytorch/issues/106976
https://github.com/pytorch/pytorch/issues/106976

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 68

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

‣ If a ONNX model contains a Range operator and its limit input is a data-dependent
tensor, engine building will likely fail.

‣ Hardware forward compatibility (HFC) is broken on L4T Concord for ViT, Swin-
Transformers, and BERT networks in FP16 mode. A workaround is to only use FP32
mode on L4T Concord or turn off HFC.

‣ Compute Sanitizer from CUDA Toolkit 12.0/12.1 may report a false alarm about
invalid memory access in generatedNativePointwise kernels.

‣ If a network has a tensor of type bool with an implicitly data-dependent shape,
engine building will likely fail.

‣ There is an occurance of use-after-free in NVRTC that has been fixed in CUDA 12.1.
When using NVRTC from CUDA 12.0 together with the TensorRT static library, you
may encounter a crash in certain scenarios. Linking with the NVRTC and PTXJIT
compiler from CUDA 12.1 or newer will resolve this issue.

‣ Although the version compatible runtime is optimized for efficiency, it may result
in slower performance than the full runtime in certain use cases. Most networks
can expect no more than a 10% slowdown when using a version-compatible engine
compared to a version-locked engine. However, in some cases, a larger performance
drop may occur. For example:

‣ When running ResNet50_v2 with QAT, there may be up to a 22% decrease in
performance.

‣ When running DynUNet in FP16 precision, there may be up to a 32% decrease in
performance.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 69

error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

‣ Hardware compatible engines built with CUDA versions older than 11.5 may crash
during inference when run on a GPU with a compute capability lower than that of the
GPU where the engine was built. A workaround is to build on the GPU with the lowest
compute capability.

‣ For broadcasting elementwise layers running on DLA with GPU fallback enabled
with one NxCxHxW input and one Nx1x1x1 input, there is a known accuracy issue if
at least one of the inputs is consumed in kDLA_LINEAR format. It is recommended
to explicitly set the input formats of such elementwise layers to different tensor
formats.

Performance

‣ There is an up to 9% performance drop for BERT networks with gelu_erf activation
in BF16 precision compared to TensorRT 9.1 on NVIDIA Ampere GPUs.

‣ There is an up to 40 second increase in engine building for BART networks on NVIDIA
Hopper GPUs.

‣ There is an accuracy drop running OSS HuggingFace Demo gptj-6b model when
batch size > 1.

‣ There is an up to 14% context memory usage fluctuations compared to TensorRT
9.1 when building the engine for 3DUnet networks due to different tactics being
selected.

‣ There is an up to 20 second increase in engine building for some large language
models (LLMs) on NVIDIA Ampere GPUs.

‣ There is an up to 6% performance drop for BERT networks in FP32 precision
compared to TensorRT 9.0 on NVIDIA Volta GPUs.

‣ There are up to 21% peak GPU memory usage fluctuations when building the engine
for the same network back to back due to different tactics being selected.

‣ There is an up to 11% performance drop for ViT networks in TF32 precision compared
to TensorRT 9.0 on NVIDIA Ampere GPUs.

‣ There is an up to 12% performance drop for BERT networks in FP16 precision
compared to TensorRT 9.0 on NVIDIA Ada Lovelace GPUs.

‣ There is an up to 2.5x build time increase compared to TensorRT 9.0 for certain Bert
like models due to additional tactics available for evaluation.

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 70

‣ There is an up to 13% performance drop for the CortanaASR model on NVIDIA
Ampere GPUs compared to TensorRT 8.5.

‣ There is a known performance regression in the grouped deconvolution layer due to
disabling cuDNN tactics. In TensorRT 8.6, performance can be recovered by unsetting
nvinfer1::PreviewFeature::kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805.
We will close the performance gap in a future release.

‣ There is an up to 27% performance drop for the SegResNet model on Ampere
GPUs compared to TensorRT 8.6 EA. This drop can be avoided by enabling the
kVERSION_COMPATIBLE flag in the ONNX parser.

‣ There is an up to 18% performance drop for the ShuffleNet model on A30/A40
compared to TensorRT 8.5.1.

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there is a
performance drop in INT8 precision (including both explicit and implicit quantization)
compared to FP16 precision.

‣ There is an up to 30% performance regression for LSTM variants with dynamic
shapes. This issue can be resolved by disabling the kFASTER_DYNAMIC_SHAPES_0805
preview feature in TensorRT 8.6.

‣ There is a known issue on H100 that may lead to GPU hang when running TensorRT
with high persistentCache usage. Limit the usage to 40% of L2 cache size as a
workaround.

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ H100 performance for some LSTMs in FP16 precision is not fully optimized. This will
be improved in future TensorRT versions.

‣ There is an up to 6% performance regression compared to TensorRT 8.5 on
OpenRoadNet in FP16 precision on NVIDIA A10 GPUs.

‣ There is an up to 23% performance regression compared to TensorRT 8.5 on LSTMs
in FP32 precision when dynamic shapes are used on NVIDIA Turing GPUs. Set the
kFASTER_DYNAMIC_SHAPES_0805 preview flag to false as a workaround.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 71

‣ There is an up to 23% performance regression compared to TensorRT 8.5 on
Temporal Fusion Transformers in FP32 precision on NVIDIA Turing and NVIDIA
Ampere GPUs.

‣ A higher builder optimization level does not always give a better performance
when compared to a lower builder optimization level; which may happen on all
platforms and up to 27%. The workaround is to build an engine using a lower builder
optimization level.

‣ There is an up to 70% performance regression compared to TensorRT 8.6 on BERT
networks in INT8 precision with FP16 disabled on L4 GPUs. To work around this,
enable FP16 and disable INT8 in the builder config.

2.3. TensorRT Release 9.1.0
These are the TensorRT 9.1.0 Release Notes and are applicable to x86 Linux users and
Arm®-based CPU cores for Server Base System Architecture (SBSA) users on Linux.
This release includes several fixes from the previous TensorRT releases as well as the
following additional changes.

This GA release is for Large Language Models (LLMs) on NVIDIA A100, A10G, L4, L40,
L40S, H100 GPUs, and NVIDIA GH200 Grace Hopper™ Superchip only. For applications
other than LLMs, or other GPU platforms, continue to use TensorRT 8.6.1 for production
use.

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Announcements

‣ Added support for NVIDIA GH200 Grace Hopper Superchip.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 9.1 provides enhanced support for Large Language Models (LLMs),
including the following networks:

‣ GPT

‣ GPT-J

‣ GPT-Neo

‣ GPT-NeoX

‣ BART

‣ Bloom

‣ Bloomz

‣ OPT

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 72

‣ T5

‣ FLAN-T5

‣ Added support for bfloat16 data types on NVIDIA Ampere GPUs and newer
architectures.

‣ Added support for E4M3 FP8 data type on NVIDIA Hopper GPUs using explicit
quantization. This allows utilizing TensorRT with TransformerEngine based FP8
models.

‣ Added the NeMo demo into the TensorRT OSS repository to demonstrate the
performance benefit of using E4M3 FP8 data type with the GPT models trained with
the NVIDIA NeMo Toolkit and TransformerEngine.

‣ Added bfloat16 and FP8 I/O datatypes in plugins.

‣ Added support of networks running in INT8 precision where Smooth Quantization is
used. Smooth Quantization is an approach that allows to improve accuracy of INT8
compute for LLM.

‣ Added support for INT64 data type. The ONNX parser no longer automatically casts
INT64 to INT32.

‣ Added support for ONNX local functions when parsing ONNX models with the ONNX
parser.

‣ Added support for caching JIT-compiled code. It can be disabled by setting
BuilderFlag::DISABLE_COMPILATION_CACHE. The compilation cache is part of the
timing cache, caches JIT-compiled code, and will be serialized as part of the timing
cache by default, which may significantly increase the cache size.

‣ Added NetworkDefinitionCreationFlag::kSTRONGLY_TYPED. A strongly typed
network faithfully translates the type specification of the network definition to the
built engine.

‣ Added new refit APIs to accept weights from GPU and refit engines asynchronously.
Execution contexts become reusable after refitting.

‣ Added two new TensorRT samples; sampleProgressMonitor (C++) and
simple_progress_reporter (Python) that are examples for using Progress Monitor
during engine build. For more information, refer to the NVIDIA TensorRT Samples
Support Guide.

‣ Added support for Python-based TensorRT plugin definitions. The TensorRT sample
python_plugin has been added with a few examples demonstrating Python-based
plugins. For more information, refer to the Adding Custom Layers using the Python
API section in the NVIDIA TensorRT Developer Guide.

‣ The following C++ API classes were added:

‣ IProgressMonitor

https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TensorRT/tree/release/9.0/demo/NeMo
https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/TransformerEngine
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#add_custom_layer_python
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#add_custom_layer_python

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 73

‣ The following C++ API methods were added:

‣ INetworkDefinition::IFillLayer* addFill(Dims dimensions, FillOperation op,
 DataType outputType)

‣ INetworkDefinition::IQuantizeLayer* addQuantize(ITensor& input, ITensor&
 scale, DataType
 outputType)

‣ INetworkDefinition::IDequantizeLayer* addDequantize(ITensor& input, ITensor&
 scale,
 DataType outputType)

‣ IBuilder::setProgressMonitor(IProgressMonitor* monitor)

‣ IBuilder::getProgressMonitor()

‣ IFillLayer::setAlphaInt64(int64_t alpha)

‣ IFillLayer::getAlphaInt64()

‣ IFillLayer::setBetaInt64(int64_t beta)

‣ IFillLayer::getBetaInt64()

‣ IFillLayer::isAlphaBetaInt64()

‣ IFillLayer::getToType()

‣ IFillLayer::setToType(DataType toType)

‣ IQuantizeLayer::getToType()

‣ IQuantizeLayer::setToType(DataType toType)

‣ IDequantizeLayer::getToType()

‣ IDequantizeLayer::setToType(DataType toType)

‣ INetworkDefinition::getFlags()

‣ INetworkDefinition::getFlag(NetworkDefinitionCreationFlag
 networkDefinitionCreationFlag)

‣ IRefitter::setNamedWeights(char const* name, Weights weights, TensorLocation
 location)

‣ IRefitter::getNamedWeights(char const* weightsName)

‣ IRefitter::getWeightsLocation(char const* weightsName)

‣ IRefitter::unsetNamedWeights(char const* weightsName)

‣ IRefitter::setWeightsValidation(bool weightsValidation)

‣ IRefitter::getWeightsValidation()

‣ IRefitter::refitCudaEngineAsync(cudaStream_t stream)

‣ nvonnxparser::IParserError::nodeName()

‣ nvonnxparser::IParserError::nodeOperator()

‣ The following C++ API enums were added:

‣ IBuilderFlag::kFP8

‣ IBuilderFlag::kERROR_ON_TIMING_CACHE_MISS

‣ IBuilderFlag::kBF16

‣ IBuilderFlag::kDISABLE_COMPILATION_CACHE

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 74

‣ DataType::kBF16

‣ DataType::kINT64

‣ NetworkDefinitionCreationFlag::kSTRONGLY_TYPED

‣ nvonnxparser::ErrorCode::kUNSUPPORTED_NODE_ATTR

‣ nvonnxparser::ErrorCode::kUNSUPPORTED_NODE_INPUT

‣ nvonnxparser::ErrorCode::kUNSUPPORTED_NODE_DATATYPE

‣ nvonnxparser::ErrorCode::kUNSUPPORTED_NODE_DYNAMIC

‣ nvonnxparser::ErrorCode::kUNSUPPORTED_NODE_SHAPE

‣ The following Python API classes were added:

‣ IProgressMonitor

‣ The following Python API methods were added:

‣ INetworkDefinition.add_fill(shape, op, output_type)

‣ INetworkDefinition.add_dequantize(input, scale, output_type)

‣ INetworkDefinition.add_quantize(input, scale, output_type)

‣ INetworkDefinition.get_flag

‣ IRefitter.set_named_weights(name, weights, location)

‣ IRefitter.get_named_weights(weights_name)

‣ IRefitter.get_weights_location(weights_name)

‣ IRefitter.unset_named_weights(weights_name)

‣ IRefitter.refit_cuda_engine_async(stream_handle)

‣ The following Python API attributes were added:

‣ IBuilder.progress_monitor

‣ IFillLayer.is_alpha_beta_int64

‣ IFillLayer.to_type

‣ IQuantizeLayer.to_type

‣ IDequantizeLayer.to_type

‣ INetworkDefinition.flags

‣ IRefitter.weights_validation

‣ IParserError.node_name

‣ IParserError.node_operator

‣ The following Python API enums were added:

‣ IBuilderFlag.FP8

‣ IBuilderFlag.ERROR_ON_TIMING_CACHE_MISS

‣ IBuilderFlag.BF16

‣ IBuilderFlag.DISABLE_COMPILATION_CACHE

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 75

‣ DataType.BF16

‣ DataType.INT64

‣ NetworkDefinitionCreationFlag.STRONGLY_TYPED

‣ ErrorCode.UNSUPPORTED_NODE_ATTR

‣ ErrorCode.UNSUPPORTED_NODE_INPUT

‣ ErrorCode.UNSUPPORTED_NODE_DATATYPE

‣ ErrorCode.UNSUPPORTED_NODE_DYNAMIC

‣ ErrorCode.kUNSUPPORTED_NODE_SHAPE

‣ The IEngineInspector now prints more detailed layer information for LSTMs and
Transformers networks.

Breaking API Changes

‣ ATTENTION: In TensorRT 9.0, due to the introduction of INT64 as a supported data
type, ONNX models with INT64 I/O require INT64 bindings. Note that prior to this
release, such models required INT32 bindings.

‣ In TensorRT 9.0, we removed ICaffeParser, IUffParser, and related classes and
functions. The following APIs are removed:

‣ nvcaffeparser1::IBlobNameToTensor

‣ nvcaffeparser1::IBinaryProtoBlob

‣ nvcaffeparser1::IPluginFactoryV2

‣ nvcaffeparser1::ICaffeParser

‣ nvcaffeparser1::createCaffeParser

‣ nvcaffeparser1::shutdownProtobufLibrary

‣ createNvCaffeParser_INTERNAL

‣ nvinfer1::utils::reshapeWeights

‣ nvinfer1::utils::reorderSubBuffers

‣ nvinfer1::utils::ransposeSubBuffers

‣ nvuffparser::UffInputOrder

‣ nvuffparser::FieldType

‣ nvuffparser::FieldMap

‣ nvuffparser::FieldCollection

‣ nvuffparser::IUffParser

‣ nvuffparser::createUffParser

‣ nvuffparser::shutdownProtobufLibrary

‣ createNvUffParser_INTERNAL

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 76

‣ With removal of ICaffeParser and IUffParsers, the libnvparsers library is
removed.

‣ uff, graphsurgeon, and related networks are removed from TensorRT packages.

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 9.1 will be retained until at least 10/2024.

‣ APIs deprecated in TensorRT 9.0 will be retained until at least 8/2024.

‣ APIs deprecated in TensorRT 8.6 will be retained until at least 2/2024.

‣ APIs deprecated in TensorRT 8.5 will be retained until at least 9/2023.

‣ APIs deprecated in TensorRT 8.4 or before will be removed in TensorRT 10.0.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 9.1.0 has been tested with the following:

‣ cuDNN 8.9.5

‣ TensorFlow 2.12.0

‣ PyTorch >= 2.0 (refer to the requirements.txt file for each sample)

‣ ONNX 1.14.0

‣ This TensorRT release supports CUDA®:

‣ 12.2 update 1

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, which is the minimum CUDA version supported
by this TensorRT release.

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-895/release-notes/index.html#rel-895
https://github.com/tensorflow/tensorflow/releases/tag/v2.12.0
https://github.com/pytorch/pytorch/releases/tag/v2.0.0
https://github.com/onnx/onnx/releases/tag/v1.14.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 77

And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used; however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all nonbatch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to DLA Supported Layers for
more information.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ You may encounter an error such as, "Unable to load library:
nvinfer_builder_resource.dll", if using Python 3.9.10 on Windows. You can
workaround this issue by downgrading to an earlier version of Python 3.9.

‣ The DLA compiler is capable of removing identity transposes, but it cannot fuse
multiple adjacent transpose layers into a single transpose layer (likewise for
reshape). For example, given a TensorRT IShuffleLayer consisting of two non-trivial
transposes and an identity reshapes in between. The shuffle layer is translated into
two consecutive DLA transpose layers, unless you merge the transposes together
manually in the model definition in advance.

‣ In explicitly quantized networks, a group convolution that has a Q/DQ pair before
but no Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision.
However, on NVIDIA Hopper™ it may fall back to FP32-IN-FP32-OUT if the input
channel count is small. This will be fixed in a future release.

‣ On PowerPC platforms, samples that depend on TensorFlow, ONNX Runtime,
and PyTorch are unable to run due to missing Python module dependencies.
These frameworks have not been built for PowerPC and/or published to standard
repositories.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset that contains the corresponding function
ops, for example: opset 17 for LayerNormalization or opset 18 GroupNormalization.
Numerical accuracy using function ops is superior to corresponding implementation
with primitive ops for normalization layers.

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 78

‣ QuantizeLayer and DequantizeLayer only support FP32 scale and data, even when
using ONNX opset 19. If the input is not FP32, you must add a Cast to FP32 on the
input to QuantizeLayer, and a Cast from FP32 at the output of DequantizeLayer.

‣ EngineInspector::getLayerInformation may return incomplete JSON data for
some engines produced by TensorRT 9.0. When this happens, TensorRT Engine
Explorer cannot be used to analyze the engine or generate a graph of the engine
layers.

Deprecated and Removed Features

The following features have been deprecated or removed in TensorRT 9.0. Some
deprecations that were planned to be removed in 9.0, but have not yet been removed,
may be removed in TensorRT 10.0.

‣ TensorRT samples and open source demos are no longer supported on Python < 3.8.

‣ Ubuntu 18.04 has reached end of life and is no longer supported by TensorRT
starting with TensorRT 9.0.

‣ The following plugins were deprecated:

‣ BatchedNMS_TRT

‣ BatchedNMSDynamic_TRT

‣ BatchTilePlugin_TRT

‣ Clip_TRT

‣ CoordConvAC

‣ CropAndResize

‣ EfficientNMS_ONNX_TRT

‣ CustomGeluPluginDynamic

‣ LReLU_TRT

‣ NMSDynamic_TRT

‣ NMS_TRT

‣ Normalize_TRT

‣ Proposal

‣ SingleStepLSTMPlugin

‣ SpecialSlice_TRT

‣ Split

‣ The following C++ API classes were deprecated:

‣ NvUtils

‣ The following C++ API methods were deprecated:

‣ nvinfer1::INetworkDefinition::addFill(nvinfer1::Dims dimensions,
 nvinfer1::FillOperation
 op)

https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer
https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 79

- Only the 2-parameter version of this function is deprecated.

‣ nvinfer1::INetworkDefinition::addDequantize(nvinfer1::ITensor &input,
 nvinfer1::ITensor
 &scale)

- Only the 2-parameter version of this function is deprecated.

‣ nvinfer1::INetworkDefinition::addQuantize(nvinfer1::ITensor &input,
 nvinfer1::ITensor
 &scale)

- Only the 2-parameter version of this function is deprecated.

‣ The following C++ API enums were deprecated:

‣ nvinfer1::TacticSource::kCUBLAS_LT

‣ nvonnxparser::OnnxParserFlag::kNATIVE_INSTANCENORM

‣ The following Python API methods were deprecated:

‣ INetworkDefinition.add_fill(shape, op)

‣ INetworkDefinition.add_dequantize(input, scale)

‣ The following Python API enums were deprecated:

‣ TacticSource.CUBLAS_LT

‣ OnnxParserFlag.NATIVE_INSTANCENORM

Fixed Issues

‣ There was an up to 9% performance regression compared to TensorRT 8.5 on Yolov3
batch size 1 in FP32 precision on NVIDIA Ada Lovelace GPUs. This issue has been
fixed.

‣ There was an up to 13% performance regression compared to TensorRT 8.5
on GPT2 without kv-cache in FP16 precision when dynamic shapes are used
on NVIDIA Volta and NVIDIA Ampere GPUs. The workaround was to set the
kFASTER_DYNAMIC_SHAPES_0805 preview flag to false. This issue has been fixed.

‣ For transformer-based networks such as BERT and GPT, TensorRT could consume
CPU memory up to 2 times the model size during compilation plus any additional
formats timed. This issue has been fixed.

‣ In some cases, when using the OBEY_PRECISION_CONSTRAINTS builder flag and the
required type was set to FP32, the network could fail with a missing tactic due to an
incorrect optimization converting the output of an operation to FP16. This could be
resolved by removing the OBEY_PRECISION_CONSTRAINTS option. This issue has been
fixed.

‣ TensorRT could fail on devices with small RAM and swap space. This could be resolved
by ensuring the RAM and swap space is at least 7 times the size of the network. For
example, at least 21 GB of combined CPU memory for a 3 GB network. This issue has
been fixed.

‣ If an IShapeLayer was used to get the output shape of an INonZeroLayer, engine
building would likely fail. This issue has been fixed.

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 80

‣ If a one-dimension INT8 input was used for a Unary or ElementWise operation, engine
building would throw an internal error “Could not find any implementation for
node”. This issue has been fixed.

‣ Using the compute sanitizer racecheck tool could cause the process to be terminated
unexpectedly. The root cause was a wrong false alarm. The issue could be bypassed
with --kernel-regex-exclude kns=scudnn_winograd. This issue has been fixed.

‣ TensorRT in FP16 mode did not perform cast operations correctly when only the
output types were set, but not the layer precisions. This issue has been fixed.

‣ There was a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform. This issue has been fixed.

‣ When using DLA, INT8 convolutions followed by FP16 layers could cause accuracy
degradation. In such cases, you could either change the convolution to FP16 or the
subsequent layer to INT8. This issue has been fixed.

‣ Using the compute sanitizer tool from CUDA 12.0 could report a
cudaErrorIllegalInstruction error on Hopper GPUs in unusual scenarios. This
could be ignored. This issue has been fixed.

‣ There was an up to 53% engine build time increase for ViT networks in FP16 precision
compared to TensorRT 8.6 on NVIDIA Ampere GPUs. This issue has been fixed.

‣ There was an up to 93% engine build time increase for BERT networks in FP16
precision compared to TensorRT 8.6 on NVIDIA Ampere GPUs. This issue has been
fixed.

‣ There was an up to 22% performance drop for GPT2 networks in FP16 precision with
kv-cache stacked together compared to TensorRT 8.6 on NVIDIA Ampere GPUs. This
issue has been fixed.

‣ There was an up to 28% performance regression compared to TensorRT
8.5 on Transformer networks in FP16 precision on NVIDIA Volta GPUs, and
up to 85% performance regression on NVIDIA Pascal GPUs. Disabling the
kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805 preview flag was a
workaround. This issue has been fixed.

‣ There was an issue on NVIDIA A2 GPUs due to a known hang that can impact multiple
networks. This issue has been fixed.

‣ When using hardware compatibility features, TensorRT would potentially fail while
compiling transformer based networks such as BERT. This issue has been fixed.

‣ The ONNX parser incorrectly used the InstanceNormalization plugin when processing
ONNX InstanceNormalization layers with FP16 scale and bias inputs, which led to
unexpected NaN and infinite outputs. This issue has been fixed.

‣ There was an up to 12% performance drop for WaveRNN networks in TF32 precision
compared to TensorRT 8.6 on NVIDIA Ampere GPUs.

‣ There was an up to 6% performance regression compared to TensorRT 8.6 on BART
networks with kv-cache stacked together in FP16 precision on H100 GPUs.

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 81

‣ A RHEL/CentOS 7 RPM package built with CUDA 12.2 for cuDNN 8.9.4 was not
published to the CUDA network repo at the time of the TensorRT 9.0 release. When
installing TensorRT on RHEL/CentOS 7 using the CUDA network repo, the cuDNN
8.9.4 RPM package built with CUDA 11.8 was installed instead. This has been resolved
and the missing cuDNN 8.9.4 RPM package for RHEL/CentOS 7 and CUDA 12.2 has
been published.

‣ There was an up to 25% CPU memory usage increase for ViT networks when building
the engine in FP16 precision compared to TensorRT 8.6 on NVIDIA Ampere GPUs. This
issue has been fixed.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there
was a performance drop in INT8 precision (including both explicit and implicit
quantization) compared to FP16 precision. This issue has been fixed.

‣ There was an up to 10% performance drop for the SegResNet network compared to
TensorRT 8.2 when running in FP16 precision on NVIDIA Ampere Architecture GPUs
due to a cuDNN regression in the InstanceNormalization plug-in. This issue has
been fixed.

‣ There was an up to 7% performance regression compared to TensorRT 8.5 on
CortanaASR networks in FP16 precision on NVIDIA Volta GPUs. This issue has been
fixed.

‣ For enqueue-bound workloads, the latency of the workloads could have been longer
in Windows than in Linux operating systems. This issue has been fixed.

‣ Compared to TensorRT 8.6, TensorRT 9.0 had more aggressive multi-head attention
(MHA) fusions. While this is beneficial in most cases, it caused up to 7% performance
regression when the workload was too small. This issue has been fixed.

‣ There may have been minor performance regressions when running ONNX models
with InstanceNormalization operators in version compatible mode. This issue has
been fixed.

‣ There was an up to 8% performance regression compared to TensorRT 8.6 on
PilotNet4 network on H100 GPUs. This issue has been fixed.

‣ There was an up to 6% performance regression compared to TensorRT 8.6 on the
SqueezeNet network in TF32 precision on H100 GPUs. This issue has been fixed.

‣ TensorRT preserves precision for operations that are imported from ONNX models if
using strongly typed networks.

‣ When running ONNX networks with InstanceNormalization operations, there could
have been up to a 50% decrease in performance. This issue has been fixed.

Known Issues

Functional

‣ There is a known floating point exception when running BERT networks on H100
multi-instance GPU (MIG).

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 82

‣ TensorRT does not preserve precision for operations that are imported from ONNX
models if using weakly typed networks.

‣ The compute sanitizer synccheck tool may report a false alarm when running conv
and GEMM kernels with CGA size >= 4 on NVIDIA Hopper GPUs.

‣ The compute sanitizer initcheck tool may flag false positive Uninitialized
__global__ memory read errors when running TensorRT applications on NVIDIA
Hopper GPUs. These errors can be safely ignored and will be fixed in an upcoming
CUDA release.

‣ When using cuDNN 8.9.2.26 and the TensorRT RNNv2 API, the compute sanitizer
from CUDA Toolkit 12.2 may report race conditions in CUTLASS kernels.

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

‣ If a ONNX model contains a Range operator and its limit input is a data-dependent
tensor, engine building will likely fail.

‣ Hardware forward compatibility (HFC) is broken on L4T Concord for ViT, Swin-
Transformers, and BERT networks in FP16 mode. A workaround is to only use FP32
mode on L4T Concord or turn off HFC.

‣ Compute Sanitizer from CUDA Toolkit 12.0/12.1 may report a false alarm about
invalid memory access in generatedNativePointwise kernels.

‣ If a network has a tensor of type bool with an implicitly data-dependent shape,
engine building will likely fail.

‣ There is an occurance of use-after-free in NVRTC that has been fixed in CUDA 12.1.
When using NVRTC from CUDA 12.0 together with the TensorRT static library, you
may encounter a crash in certain scenarios. Linking with the NVRTC and PTXJIT
compiler from CUDA 12.1 or newer will resolve this issue.

‣ Although the version compatible runtime is optimized for efficiency, it may result
in slower performance than the full runtime in certain use cases. Most networks
can expect no more than a 10% slowdown when using a version-compatible engine
compared to a version-locked engine. However, in some cases, a larger performance
drop may occur. For example:

‣ When running ResNet50_v2 with QAT, there may be up to a 22% decrease in
performance.

‣ When running DynUNet in FP16 precision, there may be up to a 32% decrease in
performance.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 83

 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

‣ Hardware compatible engines built with CUDA versions older than 11.5 may crash
during inference when run on a GPU with a compute capability lower than that of the
GPU where the engine was built. A workaround is to build on the GPU with the lowest
compute capability.

Performance

‣ There is an up to 20 second increase in engine building for some large language
models (LLMs) on NVIDIA Ampere GPUs.

‣ There is an up to 6% performance drop for BERT networks in FP32 precision
compared to TensorRT 9.0 on NVIDIA Volta GPUs.

‣ There are up to 21% peak GPU memory usage fluctuations when building the engine
for the same network back to back due to different tactics being selected.

‣ There is an up to 11% performance drop for ViT networks in TF32 precision compared
to TensorRT 9.0 on NVIDIA Ampere GPUs.

‣ There is an up to 12% performance drop for BERT networks in FP16 precision
compared to TensorRT 9.0 on NVIDIA Ada Lovelace GPUs.

‣ There is an up to 2.5x build time increase compared to TensorRT 9.0 for certain Bert
like models due to additional tactics available for evaluation.

‣ There is an up to 13% performance drop for the CortanaASR model on NVIDIA
Ampere GPUs compared to TensorRT 8.5.

‣ There is a known performance regression in the grouped deconvolution layer due to
disabling cuDNN tactics. In TensorRT 8.6, performance can be recovered by unsetting

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 84

nvinfer1::PreviewFeature::kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805.
We will close the performance gap in a future release.

‣ There is an up to 27% performance drop for the SegResNet model on Ampere
GPUs compared to TensorRT 8.6 EA. This drop can be avoided by enabling the
kVERSION_COMPATIBLE flag in the ONNX parser.

‣ There is an up to 18% performance drop for the ShuffleNet model on A30/A40
compared to TensorRT 8.5.1.

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there is a
performance drop in INT8 precision (including both explicit and implicit quantization)
compared to FP16 precision.

‣ There is an up to 30% performance regression for LSTM variants with dynamic
shapes. This issue can be resolved by disabling the kFASTER_DYNAMIC_SHAPES_0805
preview feature in TensorRT 8.6.

‣ There is a known issue on H100 that may lead to GPU hang when running TensorRT
with high persistentCache usage. Limit the usage to 40% of L2 cache size as a
workaround.

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ H100 performance for some LSTMs in FP16 precision is not fully optimized. This will
be improved in future TensorRT versions.

‣ There is an up to 6% performance regression compared to TensorRT 8.5 on
OpenRoadNet in FP16 precision on NVIDIA A10 GPUs.

‣ There is an up to 23% performance regression compared to TensorRT 8.5 on LSTMs
in FP32 precision when dynamic shapes are used on NVIDIA Turing GPUs. Set the
kFASTER_DYNAMIC_SHAPES_0805 preview flag to false as a workaround.

‣ There is an up to 23% performance regression compared to TensorRT 8.5 on
Temporal Fusion Transformers in FP32 precision on NVIDIA Turing and NVIDIA
Ampere GPUs.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 85

‣ A higher builder optimization level does not always give a better performance
when compared to a lower builder optimization level; which may happen on all
platforms and up to 27%. The workaround is to build an engine using a lower builder
optimization level.

‣ There is an up to 8% performance regression compared to TensorRT 8.6 on PilotNet4
network on H100 GPUs. The regression will be fixed in a future TensorRT release.

‣ There is an 1x FP32 model CPU memory leak from onnx.export tracked in issue
106976 for the TensorRT open source software HuggingFace demo. You may
encounter higher peak CPU memory usage for fresh runs, but will drop for cached-
ONNX runs.

‣ There is an up to 6% performance regression compared to TensorRT 8.6 on the
SqueezeNet network in TF32 precision on H100 GPUs.

‣ There is an up to 70% performance regression compared to TensorRT 8.6 on BERT
networks in INT8 precision with FP16 disabled on L4 GPUs. To work around this,
enable FP16 and disable INT8 in the builder config.

‣ Compared to TensorRT 8.6, TensorRT 9.0 has more aggressive multi-head attention
(MHA) fusions. While this is beneficial in most cases, it causes up to 7% performance
regression when the workload is too small. Increasing batch size would help improve
the performance.

2.4. TensorRT Release 9.0.1
These are the TensorRT 9.0.1 Release Notes and are applicable to x86 Linux users.
This release includes several fixes from the previous TensorRT releases as well as the
following additional changes.

This GA release is for Large Language Models (LLMs) on A100, A10G, L4, L40, and H100
GPUs only. For applications other than LLMs, or other GPU platforms, continue to use
TensorRT 8.6.1 for production use.

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 9.0 provides enhanced support for Large Language Models (LLMs),
including the following networks:

‣ GPT

‣ GPT-J

‣ GPT-Neo

‣ GPT-NeoX

https://github.com/pytorch/pytorch/issues/106976
https://github.com/pytorch/pytorch/issues/106976
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 86

‣ BART

‣ Bloom

‣ Bloomz

‣ OPT

‣ T5

‣ FLAN-T5

‣ Added support for bfloat16 data types on NVIDIA Ampere GPUs and newer
architectures.

‣ Added support for E4M3 FP8 data type on NVIDIA Hopper GPUs using explicit
quantization. This allows utilizing TensorRT with TransformerEngine based FP8
models.

‣ Added the NeMo demo into the TensorRT OSS repository to demonstrate the
performance benefit of using E4M3 FP8 data type with the GPT models trained with
the NVIDIA NeMo Toolkit and TransformerEngine.

‣ Added bfloat16 and FP8 I/O datatypes in plugins.

‣ Added support of networks running in INT8 precision where Smooth Quantization is
used. Smooth Quantization is an approach that allows to improve accuracy of INT8
compute for LLM.

‣ Added support for INT64 data type. The ONNX parser no longer automatically casts
INT64 to INT32.

‣ Added support for ONNX local functions when parsing ONNX models with the ONNX
parser.

‣ Added support for caching JIT-compiled code. It can be disabled by setting
BuilderFlag::DISABLE_COMPILATION_CACHE. The compilation cache is part of the
timing cache, caches JIT-compiled code, and will be serialized as part of the timing
cache by default, which may significantly increase the cache size.

‣ Added NetworkDefinitionCreationFlag::kSTRONGLY_TYPED. A strongly typed
network faithfully translates the type specification of the network definition to the
built engine.

‣ Added two new TensorRT samples; sampleProgressMonitor (C++) and
simple_progress_reporter (Python) that are examples for using Progress Monitor
during engine build.

‣ The following C++ API classes were added:

‣ IProgressMonitor

‣ The following C++ API methods were added:

‣ INetworkDefinition::IFillLayer* addFill(Dims dimensions, FillOperation op,
 DataType outputType)

‣ INetworkDefinition::IQuantizeLayer* addQuantize(ITensor& input, ITensor&
 scale, DataType

https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TensorRT/tree/release/9.0/demo/NeMo
https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/TransformerEngine

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 87

 outputType)

‣ INetworkDefinition::IDequantizeLayer* addDequantize(ITensor& input, ITensor&
 scale,
 DataType outputType)

‣ IBuilder::setProgressMonitor(IProgressMonitor* monitor)

‣ IBuilder::getProgressMonitor()

‣ IFillLayer::setAlphaInt64(int64_t alpha)

‣ IFillLayer::getAlphaInt64()

‣ IFillLayer::setBetaInt64(int64_t beta)

‣ IFillLayer::getBetaInt64()

‣ IFillLayer::isAlphaBetaInt64()

‣ IFillLayer::getToType()

‣ IFillLayer::setToType(DataType toType)

‣ IQuantizeLayer::getToType()

‣ IQuantizeLayer::setToType(DataType toType)

‣ IDequantizeLayer::getToType()

‣ IDequantizeLayer::setToType(DataType toType)

‣ INetworkDefinition::getFlags()

‣ INetworkDefinition::getFlag(NetworkDefinitionCreationFlag
 networkDefinitionCreationFlag)

‣ The following C++ API enums were added:

‣ IBuilderFlag::kFP8

‣ IBuilderFlag::kERROR_ON_TIMING_CACHE_MISS

‣ IBuilderFlag::kBF16

‣ IBuilderFlag::kDISABLE_COMPILATION_CACHE

‣ DataType::kBF16

‣ DataType::kINT64

‣ NetworkDefinitionCreationFlag::kSTRONGLY_TYPED

‣ The following Python API classes were added:

‣ IProgressMonitor

‣ The following Python API methods were added:

‣ INetworkDefinition.add_fill(shape, op, output_type)

‣ INetworkDefinition.add_dequantize(input, scale, output_type)

‣ INetworkDefinition.add_quantize(input, scale, output_type)

‣ INetworkDefinition.get_flag

‣ The following Python API attributes were added:

‣ IBuilder.progress_monitor

‣ IFillLayer.is_alpha_beta_int64

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 88

‣ IFillLayer.to_type

‣ IQuantizeLayer.to_type

‣ IDequantizeLayer.to_type

‣ INetworkDefinition.flags

‣ The following Python API enums were added:

‣ IBuilderFlag.FP8

‣ IBuilderFlag.ERROR_ON_TIMING_CACHE_MISS

‣ IBuilderFlag.BF16

‣ IBuilderFlag.DISABLE_COMPILATION_CACHE

‣ DataType.BF16

‣ DataType.INT64

‣ NetworkDefinitionCreationFlag.STRONGLY_TYPED

‣ The IEngineInspector now prints more detailed layer information for LSTMs and
Transformers networks.

Breaking API Changes

‣ ATTENTION: In TensorRT 9.0, due to the introduction of INT64 as a supported data
type, ONNX models with INT64 I/O require INT64 bindings. Note that prior to this
release, such models required INT32 bindings.

‣ In TensorRT 9.0 we are removing ICaffeParser, IUffParser, and related classes and
functions. The following APIs are removed:

‣ nvcaffeparser1::IBlobNameToTensor

‣ nvcaffeparser1::IBinaryProtoBlob

‣ nvcaffeparser1::IPluginFactoryV2

‣ nvcaffeparser1::ICaffeParser

‣ nvcaffeparser1::createCaffeParser

‣ nvcaffeparser1::shutdownProtobufLibrary

‣ createNvCaffeParser_INTERNAL

‣ nvinfer1::utils::reshapeWeights

‣ nvinfer1::utils::reorderSubBuffers

‣ nvinfer1::utils::ransposeSubBuffers

‣ nvuffparser::UffInputOrder

‣ nvuffparser::FieldType

‣ nvuffparser::FieldMap

‣ nvuffparser::FieldCollection

‣ nvuffparser::IUffParser

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 89

‣ nvuffparser::createUffParser

‣ nvuffparser::shutdownProtobufLibrary

‣ createNvUffParser_INTERNAL

‣ With removal of ICaffeParser and IUffParsers, the libnvparsers library is
removed.

‣ uff, graphsurgeon, and related networks are removed from TensorRT packages.

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 9.0 will be retained until at least 8/2024.

‣ APIs deprecated in TensorRT 8.6 will be retained until at least 2/2024.

‣ APIs deprecated in TensorRT 8.5 will be retained until at least 9/2023.

‣ APIs deprecated in TensorRT 8.4 or before will be removed in TensorRT 10.0.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 9.0.1 has been tested with the following:

‣ cuDNN 8.9.4

‣ TensorFlow 2.12.0

‣ PyTorch >= 2.0 (refer to the requirements.txt file for each sample)

‣ ONNX 1.14.0

‣ This TensorRT release supports CUDA®:

‣ 12.2 update 1

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-894/release-notes/index.html#rel-894
https://github.com/tensorflow/tensorflow/releases/tag/v2.12.0
https://github.com/pytorch/pytorch/releases/tag/v2.0.0
https://github.com/onnx/onnx/releases/tag/v1.14.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 90

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, which is the minimum CUDA version supported
by this TensorRT release.

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used; however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all nonbatch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to DLA Supported Layers for
more information.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ You may encounter an error such as, "Unable to load library:
nvinfer_builder_resource.dll", if using Python 3.9.10 on Windows. You can
workaround this issue by downgrading to an earlier version of Python 3.9.

‣ The DLA compiler is capable of removing identity transposes, but it cannot fuse
multiple adjacent transpose layers into a single transpose layer (likewise for
reshape). For example, given a TensorRT IShuffleLayer consisting of two non-trivial
transposes and an identity reshapes in between. The shuffle layer is translated into
two consecutive DLA transpose layers, unless you merge the transposes together
manually in the model definition in advance.

‣ In explicitly quantized networks, a group convolution that has a Q/DQ pair before
but no Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision.
However, on NVIDIA Hopper™ it may fall back to FP32-IN-FP32-OUT if the input
channel count is small. This will be fixed in a future release.

‣ On PowerPC platforms, samples that depend on TensorFlow, ONNX Runtime,
and PyTorch are unable to run due to missing Python module dependencies.
These frameworks have not been built for PowerPC and/or published to standard
repositories.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 91

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset that contains the corresponding function
ops, for example: opset 17 for LayerNormalization or opset 18 GroupNormalization.
Numerical accuracy using function ops is superior to corresponding implementation
with primitive ops for normalization layers.

‣ QuantizeLayer and DequantizeLayer only support FP32 scale and data, even when
using ONNX opset 19. If the input is not FP32, you must add a Cast to FP32 on the
input to QuantizeLayer, and a Cast from FP32 at the output of DequantizeLayer.

‣ EngineInspector::getLayerInformation may return incomplete JSON data for
some engines produced by TensorRT 9.0. When this happens, TensorRT Engine
Explorer cannot be used to analyze the engine or generate a graph of the engine
layers.

Deprecated and Removed Features

The following features have been deprecated or removed in TensorRT 9.0. Some
deprecations that were planned to be removed in 9.0, but have not yet been removed,
may be removed in TensorRT 10.0.

‣ Ubuntu 18.04 has reached end of life and is no longer supported by TensorRT
starting with 9.0.

‣ The following plugins were deprecated:

‣ BatchedNMS_TRT

‣ BatchedNMSDynamic_TRT

‣ BatchTilePlugin_TRT

‣ Clip_TRT

‣ CoordConvAC

‣ CropAndResize

‣ EfficientNMS_ONNX_TRT

‣ CustomGeluPluginDynamic

‣ LReLU_TRT

‣ NMSDynamic_TRT

‣ NMS_TRT

‣ Normalize_TRT

‣ Proposal

‣ SingleStepLSTMPlugin

‣ SpecialSlice_TRT

‣ Split

‣ The following C++ API classes were deprecated:

‣ NvUtils

https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer
https://github.com/NVIDIA/TensorRT/tree/main/tools/experimental/trt-engine-explorer

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 92

‣ The following C++ API methods were deprecated:

‣ nvinfer1::INetworkDefinition::addFill(nvinfer1::Dims dimensions,
 nvinfer1::FillOperation
 op)

- Only the 2-parameter version of this function is deprecated.

‣ nvinfer1::INetworkDefinition::addDequantize(nvinfer1::ITensor &input,
 nvinfer1::ITensor
 &scale)

- Only the 2-parameter version of this function is deprecated.

‣ nvinfer1::INetworkDefinition::addQuantize(nvinfer1::ITensor &input,
 nvinfer1::ITensor
 &scale)

- Only the 2-parameter version of this function is deprecated.

‣ The following C++ API enums were deprecated:

‣ nvinfer1::TacticSource::kCUBLAS_LT

‣ nvonnxparser::OnnxParserFlag::kNATIVE_INSTANCENORM

‣ The following Python API methods were deprecated:

‣ INetworkDefinition.add_fill(shape, op)

‣ INetworkDefinition.add_dequantize(input, scale)

‣ The following Python API enums were deprecated:

‣ TacticSource.CUBLAS_LT

‣ OnnxParserFlag.NATIVE_INSTANCENORM

Fixed Issues

‣ There was an up to 9% performance regression compared to TensorRT 8.5 on Yolov3
batch size 1 in FP32 precision on NVIDIA Ada Lovelace GPUs. This issue has been
fixed.

‣ There was an up to 13% performance regression compared to TensorRT 8.5
on GPT2 without kv-cache in FP16 precision when dynamic shapes are used
on NVIDIA Volta and NVIDIA Ampere GPUs. The workaround was to set the
kFASTER_DYNAMIC_SHAPES_0805 preview flag to false. This issue has been fixed.

‣ For transformer-based networks such as BERT and GPT, TensorRT could consume
CPU memory up to 2 times the model size during compilation plus any additional
formats timed. This issue has been fixed.

‣ In some cases, when using the OBEY_PRECISION_CONSTRAINTS builder flag and the
required type was set to FP32, the network could fail with a missing tactic due to an
incorrect optimization converting the output of an operation to FP16. This could be
resolved by removing the OBEY_PRECISION_CONSTRAINTS option. This issue has been
fixed.

‣ TensorRT could fail on devices with small RAM and swap space. This could be resolved
by ensuring the RAM and swap space is at least 7 times the size of the network. For

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 93

example, at least 21 GB of combined CPU memory for a 3 GB network. This issue has
been fixed.

‣ If an IShapeLayer was used to get the output shape of an INonZeroLayer, engine
building would likely fail. This issue has been fixed.

‣ If a one-dimension INT8 input was used for a Unary or ElementWise operation, engine
building would throw an internal error “Could not find any implementation for
node”. This issue has been fixed.

‣ Using the compute sanitizer racecheck tool could cause the process to be terminated
unexpectedly. The root cause was a wrong false alarm. The issue could be bypassed
with --kernel-regex-exclude kns=scudnn_winograd. This issue has been fixed.

‣ TensorRT in FP16 mode did not perform cast operations correctly when only the
output types were set, but not the layer precisions. This issue has been fixed.

‣ There was a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform. This issue has been fixed.

‣ When using DLA, INT8 convolutions followed by FP16 layers could cause accuracy
degradation. In such cases, you could either change the convolution to FP16 or the
subsequent layer to INT8. This issue has been fixed.

‣ Using the compute sanitizer tool from CUDA 12.0 could report a
cudaErrorIllegalInstruction error on Hopper GPUs in unusual scenarios. This
could be ignored. This issue has been fixed.

‣ There was an up to 53% engine build time increase for ViT networks in FP16 precision
compared to TensorRT 8.6 on NVIDIA Ampere GPUs. This issue has been fixed.

‣ There was an up to 93% engine build time increase for BERT networks in FP16
precision compared to TensorRT 8.6 on NVIDIA Ampere GPUs. This issue has been
fixed.

‣ There was an up to 22% performance drop for GPT2 networks in FP16 precision with
kv-cache stacked together compared to TensorRT 8.6 on NVIDIA Ampere GPUs. This
issue has been fixed.

‣ There was an up to 28% performance regression compared to TensorRT
8.5 on Transformer networks in FP16 precision on NVIDIA Volta GPUs, and
up to 85% performance regression on NVIDIA Pascal GPUs. Disabling the
kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805 preview flag was a
workaround. This issue has been fixed.

‣ There was an issue on NVIDIA A2 GPUs due to a known hang that can impact multiple
networks. This issue has been fixed.

‣ When using hardware compatibility features, TensorRT would potentially fail while
compiling transformer based networks such as BERT. This issue has been fixed.

‣ The ONNX parser incorrectly used the InstanceNormalization plugin when processing
ONNX InstanceNormalization layers with FP16 scale and bias inputs, which led to
unexpected NaN and infinite outputs. This issue has been fixed.

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 94

Known Issues

Functional

‣ A RHEL/CentOS 7 RPM package built with CUDA 12.2 for cuDNN 8.9.4 has not been
published to the CUDA network repo. When installing TensorRT 9.0 on RHEL/CentOS
7 using the CUDA network repo, the cuDNN 8.9.4 RPM package built with CUDA 11.8
will be installed instead. Often, this scenario remains functional, but it’s undefined
behavior to mix libraries with different CUDA major versions. This will be resolved
soon once the missing cuDNN 8.9.4 RPM package for RHEL/CentOS 7 and CUDA 12.2
has been published.

‣ The compute sanitizer synccheck tool may report a false alarm when running conv
and GEMM kernels with CGA size >= 4 on NVIDIA Hopper GPUs.

‣ The compute sanitizer initcheck tool may flag false positive Uninitialized
__global__ memory read errors when running TensorRT applications on NVIDIA
Hopper GPUs. These errors can be safely ignored and will be fixed in an upcoming
CUDA release.

‣ When using cuDNN 8.9.2.26 and the TensorRT RNNv2 API, the compute sanitizer
from CUDA Toolkit 12.2 may report race conditions in CUTLASS kernels.

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

‣ If a ONNX model contains a Range operator and its limit input is a data-dependent
tensor, engine building will likely fail.

‣ Hardware forward compatibility (HFC) is broken on L4T Concord for ViT, Swin-
Transformers, and BERT networks in FP16 mode. A workaround is to only use FP32
mode on L4T Concord or turn off HFC.

‣ Compute Sanitizer from CUDA Toolkit 12.0/12.1 may report a false alarm about
invalid memory access in generatedNativePointwise kernels.

‣ If a network has a tensor of type bool with an implicitly data-dependent shape,
engine building will likely fail.

‣ There is an occurance of use-after-free in NVRTC that has been fixed in CUDA 12.1.
When using NVRTC from CUDA 12.0 together with the TensorRT static library, you
may encounter a crash in certain scenarios. Linking with the NVRTC and PTXJIT
compiler from CUDA 12.1 or newer will resolve this issue.

‣ Although the version compatible runtime is optimized for efficiency, it may result
in slower performance than the full runtime in certain use cases. Most networks
can expect no more than a 10% slowdown when using a version-compatible engine
compared to a version-locked engine. However, in some cases, a larger performance
drop may occur. For example:

‣ When running ResNet50_v2 with QAT, there may be up to a 22% decrease in
performance.

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 95

‣ When running DynUNet in FP16 precision, there may be up to a 32% decrease in
performance.

‣ When running ONNX networks with InstanceNormalization operations, there
may be up to a 50% decrease in performance.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ TensorRT does not preserve precision for operations that are imported from ONNX
models in FP16 mode.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

‣ Hardware compatible engines built with CUDA versions older than 11.5 may crash
during inference when run on a GPU with a compute capability lower than that of the
GPU where the engine was built. A workaround is to build on the GPU with the lowest
compute capability.

‣ When enabling the cuDNN tactic source manually, there is a potential memory leak
from the cuDNN library. This issue will be fixed in a future cuDNN release.

Performance

‣ There is an up to 12% performance drop for WaveRNN networks in TF32 precision
compared to TensorRT 8.6 on NVIDIA Ampere GPUs.

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 96

‣ There is an up to 25% CPU memory usage increase for ViT networks when building
the engine in FP16 precision compared to TensorRT 8.6 on NVIDIA Ampere GPUs.

‣ There is an up to 13% performance drop for the CortanaASR model on NVIDIA
Ampere GPUs compared to TensorRT 8.5.

‣ There is a known performance regression in the grouped deconvolution layer due to
disabling cuDNN tactics. In TensorRT 8.6, performance can be recovered by unsetting
nvinfer1::PreviewFeature::kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805.
We will close the performance gap in a future release.

‣ There is an up to 27% performance drop for the SegResNet model on Ampere
GPUs compared to TensorRT 8.6 EA. This drop can be avoided by enabling the
kVERSION_COMPATIBLE flag in the ONNX parser.

‣ There is an up to 18% performance drop for the ShuffleNet model on A30/A40
compared to TensorRT 8.5.1.

‣ There may be minor performance regressions when running ONNX models with
InstanceNormalization operators in version compatible mode. Refer to the NVIDIA
TensorRT Developer Guide for more information.

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there is a
performance drop in INT8 precision (including both explicit and implicit quantization)
compared to FP16 precision.

‣ There is an up to 30% performance regression for LSTM variants with dynamic
shapes. This issue can be resolved by disabling the kFASTER_DYNAMIC_SHAPES_0805
preview feature in TensorRT 8.6.

‣ There is a known issue on H100 that may lead to GPU hang when running TensorRT
with high persistentCache usage. Limit the usage to 40% of L2 cache size as a
workaround.

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is an up to 10% performance drop for the SegResNet network compared to
TensorRT 8.2 when running in FP16 precision on NVIDIA Ampere architecture GPUs
due to a cuDNN regression in the InstanceNormalization plug-in. This will be fixed
in a future TensorRT release. You can work around the regression by reverting the
cuDNN version to cuDNN 8.2.1.

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#version-compat-onnx-parser
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#version-compat-onnx-parser
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 97

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ H100 performance for some LSTMs in FP16 precision is not fully optimized. This will
be improved in future TensorRT versions.

‣ There is an up to 6% performance regression compared to TensorRT 8.5 on
OpenRoadNet in FP16 precision on NVIDIA A10 GPUs.

‣ There is an up to 7% performance regression compared to TensorRT 8.5 on
CortanaASR networks in FP16 precision on NVIDIA Volta GPUs. Disable the
kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805 preview flag as a workaround.

‣ There is an up to 23% performance regression compared to TensorRT 8.5 on LSTMs
in FP32 precision when dynamic shapes are used on NVIDIA Turing GPUs. Set the
kFASTER_DYNAMIC_SHAPES_0805 preview flag to false as a workaround.

‣ There is an up to 23% performance regression compared to TensorRT 8.5 on
Temporal Fusion Transformers in FP32 precision on NVIDIA Turing and NVIDIA
Ampere GPUs.

‣ A higher builder optimization level does not always give a better performance
when compared to a lower builder optimization level; which may happen on all
platforms and up to 27%. The workaround is to build an engine using a lower builder
optimization level.

‣ There is an up to 8% performance regression compared to TensorRT 8.6 on PilotNet4
network on H100 GPUs. The regression will be fixed in a future TensorRT release.

‣ There is an 1x FP32 model CPU memory leak from onnx.export tracked in issue
106976 for the TensorRT open source software HuggingFace demo. You may
encounter higher peak CPU memory usage for fresh runs, but will drop for cached-
ONNX runs.

‣ For enqueue-bound workloads, the latency of the workloads may be longer in
Windows than in Linux operating systems. Upgrade the driver or use CUDA graph to
work around the issue. Refer to the documentation about enqueue-bound workloads
for more detailed information.

‣ There is an up to 6% performance regression compared to TensorRT 8.6 on the
SqueezeNet network in TF32 precision on H100 GPUs.

‣ There is an up to 6% performance regression compared to TensorRT 8.6 on BART
networks with kv-cache stacked together in FP16 precision on H100 GPUs.

‣ There is an up to 70% performance regression compared to TensorRT 8.6 on BERT
networks in INT8 precision with FP16 disabled on L4 GPUs. To work around this,
enable FP16 and disable INT8 in the builder config.

‣ Compared to TensorRT 8.6, TensorRT 9.0 has more aggressive multi-head attention
(MHA) fusions. While this is beneficial in most cases, it causes up to 7% performance

https://github.com/pytorch/pytorch/issues/106976
https://github.com/pytorch/pytorch/issues/106976
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#enqueue-bound-workload

TensorRT Release 9.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 98

regression when the workload is too small. Increasing batch size would help improve
the performance.

NVIDIA TensorRT RN-08624-001_v10.4.0 | 99

Chapter 3. TensorRT Release 8.x.x

3.1. TensorRT Release 8.6.1
These are the TensorRT 8.6.1 Release Notes and are applicable to x86 Linux and
Windows users. This release incorporates Arm®-based CPU cores for Server Base System
Architecture (SBSA) users on Linux only. This release includes several fixes from the
previous TensorRT releases as well as the following additional changes.

These Release Notes are applicable to workstation, server, and NVIDIA JetPack™ users
unless appended specifically with (not applicable for Jetson platforms).

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Announcements

‣ In TensorRT 8.6, cuDNN, cuBLAS, and cuBLASLt tactic sources are turned off by
default in builder profiling. TensorRT plans to remove the cuDNN, cuBLAS, and
cuBLASLt dependency in future releases. If there are critical regressions, set the
PreviewFeature flag kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805 to false
to re-enable cuDNN, cuBLAS, and cuBLASLt.

‣ Stubbed static libraries for cuDNN, cuBLAS, and cuBLASLt are provided in
$(TRT_LIB_DIR)/stubs. When statically linking TensorRT with no requirement for
cuDNN, cuBLAS, or cuBLASLt, the stubbed library can be used to reduce CPU and
GPU memory usage.

‣ Debian and RPM packages are now using 4-component versioning instead of 3 to
better identify differences between TensorRT builds.

‣ The tar and zip filenames no longer contain the cuDNN version due to cuDNN no
longer being a primary tactic source for TensorRT. cuDNN has a lesser impact on
TensorRT’s performance than in previous releases where the cuDNN version was
prominent in the package filename.

‣ The TensorRT Python Package Index installation has been split into multiple modules:

‣ TensorRT libraries (tensorrt_libs)

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 100

‣ Python bindings matching the Python version in use (tensorrt_bindings)

‣ Frontend source package, which pulls in the correct version of dependent
TensorRT modules from pypi.nvidia.com (tensorrt)

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Python 3.11 is now supported starting with TensorRT 8.6 GA.

‣ CUDA 12.x is now supported starting with the TensorRT 8.6 release. CUDA 11.x
builds from this release or a previous release are not compatible with libraries or
applications compiled with CUDA 12.x and may lead to unexpected behavior.

‣ Added support for hardware compatibility. This allows an engine built on one
GPU architecture to work on GPUs of other architectures. This feature is only
supported for NVIDIA Ampere and newer architectures. Note that enabling hardware
compatibility may result in a degradation in latency/throughput, and is therefore
intended to be used primarily to ease the process of upgrading to new hardware. This
feature is not supported on JetPack.

‣ Added the following layers:

‣ IReverseSequence layer has been added to support the ReverseSequence
operator in ONNX.

‣ INormalization layer has been added to support InstanceNormalization,
GroupNormalization, and LayerNormalization operations in ONNX.

‣ A new nvinfer1::ICastLayer interface was introduced, which provides a conversion
of the data type of the input tensor between FP32, FP16, INT32, INT8, UINT8, and
BOOL. The ONNX parser was updated to use ICastLayer instead of IIdentityLayer
to implement cast.

‣ Introduced restricted runtime installation options when memory consumption is a
high priority for deployment: lean or dispatch runtime mode.

‣ Lean runtime installation: This installation is significantly smaller than the full
installation and allows you to load and run engines that were built with a version
compatible builder flag. This installation will not provide the functionality to build
a TensorRT plan file.

‣ Dispatch runtime installation: This installation allows for deployments with the
minimum memory consumption and allows you to load and run engines that were
built with a version compatible builder flag and include the lean runtime. This
installation does not provide the functionality to build a TensorRT plan file.

‣ Added version compatibility support to trtexec. Refer to the NVIDIA TensorRT
Developer Guide for more information on the trtexec flags.

For more information, refer to the NVIDIA TensorRT Installation Guide.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 101

‣ By default, TensorRT engines are compatible only with the version of TensorRT
with which they are built. Starting in TensorRT 8.6, with the appropriate build-time
configuration, engines can be built that are compatible with other TensorRT minor
versions within a major version. For more information, refer to Version Compatibility.

Note: Use of certain version compatibility features requires explicit configuration of
the TensorRT runtime to allow host executable code. For more information, refer to
Runtime Options.

‣ Implemented the following performance enhancements:

‣ Improved the Multi-Head Attention (MHA) fusions, speeding up Transformer-like
networks.

‣ Improved the engine building time and the performance of Transformer-like
networks with dynamic shapes.

‣ Avoided unnecessary cuStreamSynchronize() calls in enqueueV2() and
enqueueV3() when running LSTMs or Transformer-like networks.

‣ Improved the performance of various networks on NVIDIA Hopper GPUs.

‣ Added an optimization level builder flag, which allows TensorRT to spend more engine
building time searching for better tactics, or to build the engine much faster by
reducing the searching scope. For more information, refer to Builder Optimization
Level.

‣ Added the multi-stream APIs, which allows users to control how many streams
TensorRT can use to run different parts of the network in parallel, potentially
resulting in better performance. For more information, refer to Within-Inference
Multi-Streaming.

‣ Experimental. Extended DLA so that IElementWiseLayer now supports equal
operation (ElementWiseOperation::kEQUAL). This is the first ElementWise logical
operation that DLA supports. There are several restrictions and requirements
imposed when adopting this operation in DLA. Refer to DLA Supported Layers for
more information.

‣ One such requirement is that you must explicitly set the device type of the
ElementWise equal layer to DLA. To enable this feature on trtexec, it now
supports a flag --layerDeviceTypes to let you explicitly specify the device type
for individual layers. Refer to Commonly Used Command-line Flags for more
information on the new flag.

‣ Added a new sample called onnx_custom_plugin, which demonstrates how to use
plugins written in C++ to run TensorRT on ONNX models with custom or unsupported
layers. For specifics about this sample, refer to the GitHub: /onnx_custom_plugin/
README.md file for detailed information about how this sample works, sample code,
and step-by-step instructions on how to run and verify its output.

‣ Made the following C++ API changes:

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#version-compat
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#runtime-options
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#opt-builder-optimization-level
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#opt-builder-optimization-level
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#within-inference-multi-streaming
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#within-inference-multi-streaming
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#trtexec-flags
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/onnx_custom_plugin/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/onnx_custom_plugin/README.md

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 102

‣ Added classes:

‣ IReverseSequenceLayer

‣ INormalizationLayer

‣ ILoggerFinder

‣ Added macros:

‣ NV_TENSORRT_RELEASE_TYPE

‣ NV_TENSORRT_RELEASE_TYPE_EARLY_ACCESS

‣ NV_TENSORRT_RELEASE_TYPE_RELEASE_CANDIDATE

‣ NV_TENSORRT_RELEASE_TYPE_GENERAL_AVAILABILITY

‣ Added functions:

‣ getBuilderSafePluginRegistry()

‣ IAlgorithmIOInfo::getVectorizedDim()

‣ IAlgorithmIOInfo::getComponentsPerElement()

‣ IBuilderConfig::setBuilderOptimizationLevel()

‣ IBuilderConfig::getBuilderOptimizationLevel()

‣ IBuilderConfig::setHardwareCompatibilityLevel()

‣ IBuilderConfig::getHardwareCompatibilityLevel()

‣ IBuilderCOnfig::setPluginsToSerialize()

‣ IBuilderConfig::getPluginToSerialize()

‣ IBuilderConfig::getNbPluginsToSerialize()

‣ IBuilderConfig::getMaxAuxStreams()

‣ IBuilderConfig::setMaxAuxStreams()

‣ IBuilder::getPluginRegistry()

‣ ICudaEngine::getHardwareCompatibilityLevel()

‣ ICudaEngine::getNbAuxStreams()

‣ IExecutionContext::setAuxStreams()

‣ ILayer::setMetadata()

‣ ILayer::getMetadata()

‣ INetworkDefinition::addCast()

‣ INetworkDefinition::addNormalization()

‣ INetworkDefinition::addReverseSequence()

‣ INetworkDefinition::getBuilder()

‣ IPluginRegistry::isParentSearchEnabled()

‣ IPluginRegistry::setParentSearchEnabled()

‣ IPluginRegistry::loadLibrary()

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 103

‣ IPluginRegistry::deregisterLibrary()

‣ IRuntime::setTemporaryDirectory()

‣ IRuntime::getTemporaryDirectory()

‣ IRuntime::setTempfileControlFlags()

‣ IRuntime::getTempfileControlFlags()

‣ IRuntime::getPluginRegistry()

‣ IRuntime::setPluginRegistryParent()

‣ IRuntime::loadRuntime()

‣ IRuntime::setEngineHostCodeAllowed()

‣ IRuntime::getEngineHostCodeAllowed()

‣ ITopKLayer::setInput()

‣ Added enums:

‣ HardwareCompatibilityLevel

‣ TempfileControlFlag

‣ Added enum values:

‣ BuilderFLag::kVERSION_COMPATIBLE

‣ BuilderFlag::kEXCLUDE_LEAN_RUNTIME

‣ DataType::kFP8

‣ LayerType::kREVERSE_SEQUENCE

‣ LayerType::kNORMALIZATION

‣ LayerType::kCAST

‣ MemoryPoolType::kTACTIC_DRAM

‣ PreviewFeature::kPROFILE_SHARING_0806

‣ TensorFormat::kDHWC

‣ UnaryOperation::kISINF

‣ Deprecated enums:

‣ PreviewFeature::kFASTER_DYNAMIC_SHAPES

‣ Deprecated macros:

‣ NV_TENSORRT_SONAME_MAJOR

‣ NV_TENSORRT_SONAME_MINOR

‣ NV_TENSORRT_SONAME_PATCH

‣ Deprecated funtions:

‣ FieldMap::FieldMap()

‣ IAlgorithmIOInfo::getTensorFormat()

‣ Made the following Python API changes:

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 104

‣ Added classes:

‣ ICastLayer

‣ IReverseSequenceLayer

‣ INormalizationLayer

‣ Added functions:

‣ IExecutionContext.set_aux_streams()

‣ INetworkDefinition.add_cast()

‣ INetworkDefinition.add_normalization()

‣ INetworkDefinition.add_reverse_sequence()

‣ IPluginRegistry.load_library()

‣ IPluginRegistry.deregister_library()

‣ IRuntime.load_runtime()

‣ ITopKLayer.set_input()

‣ Added properties:

‣ BuilderFlag.EXCLUDE_LEAN_RUNTIME

‣ BuilderFlag.FP8

‣ BuilderFlag.VERSION_COMPATIBLE

‣ DataType.FP8

‣ HardwareCompatibilityLevel.AMPERE_PLUS

‣ HardwareCompatibilityLevel.NONE

‣ IAlgorithmIOInfo.components_per_element

‣ IAlgorithmIOInfo.vectorized_dim

‣ IBuilder.get_plugin_registry

‣ IBuilderConfig.builder_optimization_level

‣ IBuilderConfig.hardware_compatibility_level

‣ IBuilderConfig.max_aux_streams

‣ IBuilderConfig.plugins_to_serialize

‣ ICudaEngine.hardware_compatibility_level

‣ ICudaEngine.num_aux_streams

‣ ILayer.metadata

‣ INetworkDefinition.builder

‣ INormalizationLayer.axes

‣ INormalizationLayer.compute_precision

‣ INormalizationLayer.epsilon

‣ INormalizationLayer.num_groups

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 105

‣ IPluginRegistry.parent_search_enabled

‣ IReverseSequenceLayer.batch_axis

‣ IReverseSequenceLayer.sequence_axis

‣ IRuntime.engine_host_code_allowed

‣ IRuntime.load_runtime

‣ IRuntime.tempfile_control_flags

‣ IRuntime.temporary_directory

‣ LayerType.CAST

‣ LayerType.NORMALIZATION

‣ LayerType.REVERSE_SEQUENCE

‣ MemoryPoolType.TACTIC_DRAM

‣ PreviewFeature.PROFILE_SHARING_0806

‣ TempfileControlFlag.ALLOW_IN_MEMORY_FILES

‣ TempfileControlFlag.ALLOW_TEMPORARY_FILES

‣ TensorFormat.DHWC

‣ Added enums:

‣ HardwareCompatibilityLevel

‣ TempfileControlFlag

‣ Added enum values:

‣ UnaryOperation.ISINF

‣ Deprecated enums:

‣ PreviewFeature.FASTER_DYNAMIC_SHAPES

‣ Deprecated properties:

‣ IAlgorithmIOInfo.tensor_format

Deprecated API Lifetime

‣ APIs deprecated in TensorRT 8.6 will be retained until at least 2/2024.

‣ APIs deprecated in TensorRT 8.5 will be retained until at least 9/2023.

‣ APIs deprecated in TensorRT 8.4 will be retained until at least 2/2023.

‣ APIs deprecated before TensorRT 8.4 will be removed in TensorRT 9.0.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.6.1 has been tested with the following:

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 106

‣ cuDNN 8.9.0

‣ TensorFlow 1.15.5

‣ PyTorch 1.13.1

‣ ONNX 1.12.0

‣ This TensorRT release supports CUDA®:

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ This TensorRT release requires at least NVIDIA driver r450 on Linux or r452 on
Windows as required by CUDA 11.0, which is the minimum CUDA version supported
by this TensorRT release.

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used; however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all nonbatch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to DLA Supported Layers for
more information.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-890/release-notes/index.html#rel-890
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.13.1
https://github.com/onnx/onnx/releases/tag/v1.12.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 107

‣ You may encounter an error such as, "Unable to load library:
nvinfer_builder_resource.dll", if using Python 3.9.10 on Windows. You can
workaround this issue by downgrading to an earlier version of Python 3.9.

‣ The DLA compiler is capable of removing identity transposes, but it cannot fuse
multiple adjacent transpose layers into a single transpose layer (likewise for
reshape). For example, given a TensorRT IShuffleLayer consisting of two non-trivial
transposes and an identity reshapes in between. The shuffle layer is translated into
two consecutive DLA transpose layers, unless you merge the transposes together
manually in the model definition in advance.

‣ In explicitly quantized networks, a group convolution that has a Q/DQ pair before
but no Q/DQ pair after is expected to run with INT8-IN-FP32-OUT mixed precision.
However, on NVIDIA Hopper™ it may fall back to FP32-IN-FP32-OUT if the input
channel count is small. This will be fixed in a future release.

‣ On PowerPC platforms, samples that depend on TensorFlow, ONNX Runtime,
and PyTorch are unable to run due to missing Python module dependencies.
These frameworks have not been built for PowerPC and/or published to standard
repositories.

‣ TensorRT 8.6 adds nvinfer1::BuilderFlag::kFP8 and nvinfer1::DataType::kFP8
to the public API as preparation for the introduction of FP8 support in future
TensorRT releases. Despite these, FP8 (8-bit floating point) is not supported by
TensorRT and attempting to use FP8 will result in an error or undefined behavior.

‣ nvinfer1::UnaryOperation::kROUND or nvinfer1::UnaryOperation::kSIGN
operations of IUnaryLayer are not supported in the implicit batch mode.

‣ For networks containing normalization layers, particularly if deploying with mixed
precision, target the latest ONNX opset that contains the corresponding function
ops, for example: opset 17 for LayerNormalization or opset 18 GroupNormalization.
Numerical accuracy using function ops is superior to corresponding implementation
with primitive ops for normalization layers.

Deprecated and Removed Features

The following features are deprecated in TensorRT 8.6.1:

‣ Support for CUDA Toolkit 10.2 has been dropped.

‣ TensorRT 8.5.3 was the last release supporting NVIDIA Kepler (SM 3.x) and NVIDIA
Maxwell (SM 5.x) devices. These devices are no longer supported in TensorRT 8.6.
NVIDIA Pascal (SM 6.x) devices are deprecated in TensorRT 8.6.

‣ The NvInferRuntimeCommon.h file is being deprecated starting in TensorRT 8.6.0,
and will be dropped in TensorRT 9.0. Instead, automotive safety users should include
NvInferSafeRuntime.h. All other users should include NvInferRuntime.h.

‣ Removed the following samples:

‣ C++ samples:

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 108

‣ sampleSSD

‣ sampleUffFasterRCNN

‣ sampleUffMNIST

‣ sampleUffMaskRCNN

‣ sampleUffPluginV2Ext

‣ sampleUffSSD

‣ sampleMNIST

‣ sampleFasterRCNN

‣ sampleGoogleNet

‣ sampleINT8

‣ sampleMNISTAPI

‣ Python samples:

‣ uff_ssd

‣ uff_custom_plugin

‣ end_to_end_tensorflow_mnist

‣ engine_refit_mnist

‣ int8_caffe_mnist

‣ introductory_parser_samples - removed from UFF and Caffe options

‣ The trtexec argument --buildOnly has been deprecated and was replaced by
the argument --skipInference. The argument was renamed to better clarify the
intention behind the argument.

Fixed Issues

‣ Fixed an up to 20% performance variation between different engines built from the
same network for some LSTM networks due to unstable tactic selections. The tactic
selection stability has been improved in this release.

‣ The r525 or later drivers contain the fix for an up to 11% performance variation for
some LSTM networks during inference, depending on the order of CUDA stream
creation on NVIDIA Turing GPUs.

‣ Fixed the issue that TensorRT might output wrong results when there are GEMM,
Conv, and MatMul ops followed by a Reshape op.

‣ Improved the H100 performance for some ConvNets in TF32 precision.

‣ Improved the H100 performance for some Transformers in FP16 precision.

‣ Improved the H100 performance for some 3DUNets.

‣ Fixed an up to 6% performance drop for OpenRoadNet networks in TF32 precision
compared to TensorRT 8.4 on NVIDIA Ampere architecture GPUs.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 109

‣ Fixed an up to 5% performance drop for UNet networks in INT8 precision with explicit
quantization on CUDA 11.x compared to CUDA 10.2 on NVIDIA Turing GPUs.

‣ Fixed an up to 16% performance drop for LSTM networks in FP32 precision compared
to TensorRT 8.4 on NVIDIA Pascal GPUs.

‣ Fixed an up to 6% performance drop for ResNeXt-50 QAT networks in INT8, FP16, and
FP32 precision at batch-size = 1 compared to TensorRT 8.4 on NVIDIA Volta GPUs.

‣ H100 performance for some ConvNets containing depthwise convolutions (like
QuartzNets and EfficientDet-D0) in INT8 precision was not fully optimized. This issue
has been fixed in this release.

‣ There was a ~12% performance drop on NVIDIA Ampere architecture GPUs for the
BERT network on Windows systems. This issue has been fixed in this release.

‣ There was an up to 17% performance regression for DeepASR networks at BS=1 on
NVIDIA Turing GPUs. This issue has been fixed in this release.

‣ There was an up to 6% performance drop for WaveRNN networks in FP16 precision
compared to TensorRT 8.4 on CUDA 11.8 on NVIDIA Volta GPUs. This issue has been
fixed in this release.

‣ There was an up to 13% performance drop for Megatron networks in FP16 precision
on V100 T4 GPUs when disableExternalTacticSourcesForCore0805 was enabled.
This issue has been fixed in this release.

‣ Fixed the issue that for some QAT models, when FP16 is enabled and a foreign node
is created, if a tensor is the output of the foreign node and also serves as input to
another node inside the subgraph of the foreign node, TensorRT may report an error
with the following message for the node:
[W] [TRT] Skipping tactic 0x0000000000000000 due to Myelin error: Concat operation "XXX"
 has different types of operands.

‣ Resolved an issue with printing Unicode escape sequences while writing JSON files.
This fix addresses previous parsing issues with JSON files in the TREx tool.

‣ The DqQFusion would sometimes generate a broken fused node with an empty scale
parameter, which violated the following PointWiseFusion’s assertion. This issue has
been fixed in this release

‣ Explicit quantization on convolution with dynamic weights would fail to build on some
platforms like Windows. This issue has been fixed in this release.

‣ There was an up to 10% performance regression for WaveRNN on Turing GPUs in
FP16 precision. This issue has been fixed in this release.

‣ There was an up to 72% increase in GPU memory usage on H100 for various
networks. This issue has been fixed in this release.

‣ There was an up to 31% performance drop for DeepASR on Turing GPUs in FP16
precision compared to TensorRT 8.5.1. This issue has been fixed in this release.

‣ There was an up to 12% performance drop for BERT on H100 in FP16 precision
compared to TensorRT 8.5.0 EA. This issue has been fixed in this release.

https://developer.nvidia.com/blog/exploring-tensorrt-engines-with-trex/

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 110

‣ There was an up to 11% performance regression compared to TensorRT 8.5 on LSTM
networks in FP16 precision on NVIDIA Ampere GPUs. This issue has been fixed in this
release.

‣ The TensorRT engine might fail to build under QAT mode if paired Quantization and
Dequantization layers were not adjacent to each other. This issue has been fixed in
this release.

‣ The computation to determine the required number of resize dimensions has been
improved; resolving an issue with missing quantized resize implementation where
support for the number of resize dimensions is limited to 2.

‣ When using the algorithm selector API, the HWC1 and HWC4 DLA formats were both
reported as TensorFormat::kDLA_HWC4. This issue has been fixed in this release.

‣ For some networks, containing matrix multiplication operations on A100, using TF32
could cause accuracy degradation. Disabling TF32 was the workaround. This issue has
been fixed in this release.

‣ TensorRT engine building could fail if the users added an unnamed layer. This is
because TensorRT could generate duplicated layer/tensor names for the unnamed
layer. This issue has been fixed in this release.

‣ HuggingFace demos could fail if the system CUDA version is older than the CUDA
version used to build PyTorch. This is because the environment was using the
cublasLT.so from the system CUDA installation instead of the one distributed by
PyTorch. This issue has been fixed in this release.

‣ There was a small accuracy drop for CortanaASR networks in TF32 precision. This
issue has been fixed in this release.

‣ Using the compute sanitizer racecheck tool from CUDA 12.0 could report read-after-
write hazards in unusual scenarios. This issue has been fixed in this release.

‣ There was a known issue with huge graphs that cause out of memory errors with
specific input shapes even though a larger input shape can be run. This issue has
been fixed in this release.

‣ The Python sample yolov3_onnx had a known issue when installing the requirements
with Python 3.10. The recommendation was to use a Python version < 3.10 when
running the sample. This issue has been fixed in this release.

‣ There was a known functionality issue when cross compiling TensorRT samples. The
workaround was to set the TRT_LIB_DIR environment manually. This issue has been
fixed in this release.

‣ For networks such as Tacotron 2 decoder, where there was a Convolution operation
within a loop body, TensorRT could potentially fail during compilation. This issue has
been fixed in this release.

‣ There was a known functional issue with thread safety when using multiple TensorRT
builders concurrently. This issue has been fixed in this release.

‣ TensorRT compiled for CUDA 11.4 could fail to compile a graph when there were
GEMM ops followed by a gelu_erf op. This issue has been fixed in this release.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 111

‣ For transformer decoder-based models (such as GPT2) with sequence length as
dynamic, TensorRT 8.5 required additional workspace (up to 2x) as compared to
previous releases. This issue has been fixed in this release.

‣ There was an up to 27% performance drop for BART compared to TensorRT 8.2 when
running with both FP16 and INT8 precisions enabled on T4. This issue has been fixed
in this release.

‣ With the kFASTER_DYNAMIC_SHAPES_0805 preview feature enabled on the GPT style
decoder models, there could be an up to 20% performance regression for odd
sequence lengths only compared to TensorRT without the use of the preview feature.
This issue has been fixed in this release.

‣ The auto-tuner assumed that the number of indices returned by INonZeroLayer
was half of the number of input elements. Thus, networks that depended on tighter
assumptions for correctness could fail to build. This issue has been fixed in this
release.

‣ There was an up to 15% performance drop for the CTFM model on V100 compared to
TensorRT 8.5.1. This issue has been fixed in this release.

‣ The tactic optimizer would sometimes still choose a builder that cannot stride
according to the timing results when there was a builder for this layer that can
stride. If the adjacent reformat node was eliminated in this case, this layer would give
outputs with wrong strides. This issue has been fixed in this release.

‣ For some QAT models, if convolution and pointwise fusion resulted in a multi-output
layer with some output tensors quantized and others not, the building of the engine
could fail with the following error message:
[E] Error[2]: [optimizer.cpp::filterQDQFormats::4422] Error Code 2: Internal Error
 (Assertion !n->candidateRequirements.empty() failed. All of the candidates were removed,
 which points to the node being incorrectly marked as an int8 node.

One workaround was to disable the kJIT_CONVOLUTIONS tactic source. This issue has
been fixed in this release.

Known Issues

Functional

‣ In some cases, when using the OBEY_PRECISION_CONSTRAINTS builder flag and the
required type is set to FP32, the network can fail with a missing tactic due to an
incorrect optimization converting the output of an operation to FP16. This can be
resolved by removing the OBEY_PRECISION_CONSTRAINTS option.

‣ TensorRT may fail on devices with small RAM and swap space. This can be resolved
by ensuring the RAM and swap space is at least 7 times the size of the network. For
example, at least 21 GB of combined CPU memory for a 3 GB network.

‣ If an IShapeLayer is used to get the output shape of an INonZeroLayer, engine
building will likely fail.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 112

‣ ONNX models containing a large number of "Pad" layers have a potential for error
accumulation. This can result in accuracy differences in inference between TensorRT
and ONNX runtime.

‣ In rare cases, when using optimization level 5, you may see build failures with the
error message
“Skipping tactic 0x* due to exception Assertion index <= signedSize(shaders)
 failed”

. A workaround solution is to use optimization level 4 instead.

‣ If a one-dimension INT8 input is used for a Unary or ElementWise operation, engine
building may throw an internal error “Could not find any implementation for
node”.

‣ Multihead attention fusion might not happen and affect performance if the number
of heads is small.

‣ If a ONNX model contains a Range operator and its limit input is a data-dependent
tensor, engine building will likely fail.

‣ Hardware forward compatibility (HFC) is broken on L4T Concord for ViT, Swin-
Transformers, and BERT networks in FP16 mode. A workaround is to only use FP32
mode on L4T Concord or turn off HFC.

‣ Compute Sanitizer from CUDA Toolkit 12.0/12.1 may report a false alarm about
invalid memory access in generatedNativePointwise kernels.

‣ Using the compute sanitizer racecheck tool may cause the process to be terminated
unexpectedly. The root cause is a wrong false alarm. The issue can be bypassed with
--kernel-regex-exclude kns=scudnn_winograd.

‣ If a network has a tensor of type bool with an implicitly data-dependent shape,
engine building will likely fail.

‣ When using hardware compatibility features, TensorRT can potentially fail while
compiling transformer based networks such as BERT. This issue will be fixed in the
8.6.1 release.

‣ There is an occurance of use-after-free in NVRTC that has been fixed in CUDA 12.1.
When using NVRTC from CUDA 12.0 together with the TensorRT static library, you
may encounter a crash in certain scenarios. Linking with the NVRTC and PTXJIT
compiler from CUDA 12.1 or newer will resolve this issue.

‣ Although the version compatible runtime is optimized for efficiency, it may result
in slower performance than the full runtime in certain use cases. Most networks
can expect no more than a 10% slowdown when using a version-compatible engine
compared to a version-locked engine. However, in some cases, a larger performance
drop may occur. For example:

‣ When running ResNet50_v2 with QAT, there may be up to a 22% decrease in
performance.

‣ When running DynUNet in FP16 precision, there may be up to a 32% decrease in
performance.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 113

‣ When running ONNX networks with InstanceNormalization operations, there
may be up to a 50% decrease in performance.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following
contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ TensorRT in FP16 mode does not perform cast operations correctly when only the
output types are set, but not the layer precisions.

‣ TensorRT does not preserve precision for operations that are imported from ONNX
models in FP16 mode.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9 or newer. Any Python samples that
depend on TensorFlow 1.x cannot be run with Python 3.9 or newer.

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

‣ When using DLA, INT8 convolutions followed by FP16 layers may cause accuracy
degradation. In such cases, either change the convolution to FP16 or the subsequent
layer to INT8.

‣ Using the compute sanitizer tool from CUDA 12.0 may report a
cudaErrorIllegalInstruction error on Hopper GPUs in unusual scenarios. This can
be ignored, and will be fixed in a future CUDA release.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 114

‣ Hardware compatible engines built with CUDA versions older than 11.5 may crash
during inference when run on a GPU with a compute capability lower than that of the
GPU where the engine was built. A workaround is to build on the GPU with the lowest
compute capability.

‣ When enabling the cuDNN tactic source manually, there is a potential memory leak
from the cuDNN library. This issue will be fixed in a future cuDNN release.

Performance

‣ There is an up to 28% performance regression compared to TensorRT 8.5
on Transformer networks in FP16 precision on NVIDIA Volta GPUs, and
up to 85% performance regression on NVIDIA Pascal GPUs. Disable the
kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805 preview flag as a workaround.

‣ There may be higher peak GPU memory usage when building the engine on NVIDIA
Ampere GPUs compared to TensorRT 8.5.

‣ There is an up to 13% performance drop for the CortanaASR model on NVIDIA
Ampere GPUs compared to TensorRT 8.5.

‣ There is a known performance regression in the grouped deconvolution layer due to
disabling cuDNN tactics. In TensorRT 8.6, performance can be recovered by unsetting
nvinfer1::PreviewFeature::kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805.
We will close the performance gap in a future release.

‣ There is an up to 27% performance drop for the SegResNet model on Ampere
GPUs compared to TensorRT 8.6 EA. This drop can be avoided by enabling the
kVERSION_COMPATIBLE flag in the ONNX parser.

‣ There is an up to 18% performance drop for the ShuffleNet model on A30/A40
compared to TensorRT 8.5.1.

‣ There may be minor performance regressions when running ONNX models with
InstanceNormalization operators in version compatible mode. Refer to the NVIDIA
TensorRT Developer Guide for more information.

‣ Convolution on a tensor with an implicitly data-dependent shape may run
significantly slower than on other tensors of the same size. Refer to the Glossary for
the definition of implicitly data-dependent shapes.

‣ For some Transformer models, including ViT, Swin-Transformer, and DETR, there is a
performance drop in INT8 precision (including both explicit and implicit quantization)
compared to FP16 precision.

‣ There is an up to 30% performance regression for LSTM variants with dynamic
shapes. This issue can be resolved by disabling the kFASTER_DYNAMIC_SHAPES_0805
preview feature in TensorRT 8.6.

‣ There is a known issue on H100 that may lead to GPU hang when running TensorRT
with high persistentCache usage. Limit the usage to 40% of L2 cache size as a
workaround.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#version-compat-onnx-parser
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#version-compat-onnx-parser
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#glossary

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 115

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is an up to 10% performance drop for the SegResNet network compared to
TensorRT 8.2 when running in FP16 precision on NVIDIA Ampere architecture GPUs
due to a cuDNN regression in the InstanceNormalization plug-in. This will be fixed
in a future TensorRT release. You can work around the regression by reverting the
cuDNN version to cuDNN 8.2.1.

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ For transformer-based networks such as BERT and GPT, TensorRT can consume CPU
memory up to 7 times the model size during compilation.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ H100 performance for some LSTMs in FP16 precision is not fully optimized. This will
be improved in future TensorRT versions.

‣ There is an up to 6% performance drop for T5 networks in FP32 precision compared
to TensorRT 8.4 on NVIDIA Volta GPUs due to a functionality fix.

‣ There is an up to 17% performance drop for LSTM on Windows in FP16 precision
compared to TensorRT 8.4 on NVIDIA Volta GPUs.

‣ There is an up to 7% performance drop for Artifact Reduction networks involving
Deconvolution ops in INT8 precision compared to TensorRT 8.4 on NVIDIA Volta GPUs.

‣ There is an up to 16% performance regression on GPT2, T5, and Temporal-Fusion
Transformers on NVIDIA Turing GPUs in FP32 precision due to a necessary accuracy
fix. To recover the performance, enable FP16 precision.

‣ There is an up to 9% performance regression compared to TensorRT 8.5 on Yolov3
batch size 1 in FP32 precision on NVIDIA Ada Lovelace GPUs.

‣ There is an up to 6% performance regression compared to TensorRT 8.5 on
OpenRoadNet in FP16 precision on NVIDIA A10 GPUs.

‣ There is an up to 13% performance regression compared to TensorRT 8.5 on GPT2
without kv-cache in FP16 precision when dynamic shapes are used on NVIDIA Volta
and NVIDIA Ampere GPUs. Set the kFASTER_DYNAMIC_SHAPES_0805 preview flag to
false as a workaround.

‣ There is an up to 7% performance regression compared to TensorRT 8.5 on
CortanaASR networks in FP16 precision on NVIDIA Volta GPUs. Disable the
kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805 preview flag as a workaround.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 116

‣ There is an up to 23% performance regression compared to TensorRT 8.5 on LSTMs
in FP32 precision when dynamic shapes are used on NVIDIA Turing GPUs. Set the
kFASTER_DYNAMIC_SHAPES_0805 preview flag to false as a workaround.

‣ There is an up to 23% performance regression compared to TensorRT 8.5 on
Temporal Fusion Transformers in FP32 precision on NVIDIA Turing and NVIDIA
Ampere GPUs.

‣ There is an up to 13% performance regression compared to TensorRT 8.5 on Multi-
Layer Perceptron networks in FP16 precision on NVIDIA Ampere GPUs. Set the
kDISABLE_EXTERNAL_TACTIC_SORCES_FOR_CORE_0805 preview flag to false as a
workaround.

3.2. TensorRT Release 8.5.3
These are the TensorRT 8.5.3 Release Notes and are applicable to x86 Linux, Windows,
and JetPack users. This release incorporates Arm® based CPU cores for Server Base
System Architecture (SBSA) users on Linux only. This release includes several fixes from
the previous TensorRT releases as well as the following additional changes.

These Release Notes are applicable to workstation, server, and NVIDIA JetPack™ users
unless appended specifically with (not applicable for Jetson platforms).

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

‣ APIs deprecated in TensorRT 8.4 will be retained until at least 2/2023.

‣ APIs deprecated in TensorRT 8.5 will be retained until at least 9/2023.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.5.3 has been tested with the following:

‣ cuDNN 8.6.0

‣ TensorFlow 1.15.5

‣ PyTorch 1.11.0

‣ ONNX 1.12.0

‣ This TensorRT release supports CUDA®:

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-860/release-notes/rel_8.html#rel-860
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.11.0
https://github.com/onnx/onnx/releases/tag/v1.12.0

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 117

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used; however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all nonbatch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to DLA Supported Layers for
more information.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ You may encounter an error such as, "Unable to load library:
nvinfer_builder_resource.dll", if using Python 3.9.10 on Windows. You can
workaround this issue by downgrading to an earlier version of Python 3.9.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or later).

‣ The DLA compiler is capable of removing identity transposes, but it cannot fuse
multiple adjacent transpose layers into a single transpose layer (likewise for
reshape). For example, given a TensorRT IShuffleLayer consisting of two non-trivial

https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 118

transposes and an identity reshapes in between. The shuffle layer is translated into
two consecutive DLA transpose layers, unless you merge the transposes together
manually in the model definition in advance.

‣ In QAT networks, for group convolution that has a Q/DQ pair before but no Q/DQ
pair after, we can run in INT8-IN-FP32-OUT mix precision before. However, GPU
kernels may be missed and fall back to FP32-IN-FP32-OUT in the NVIDIA Hopper™

architecture GPUs if the input channel is small. This will be fixed in the future release.

‣ On PowerPC platforms, samples that depend on TensorFlow, ONNX Runtime,
and PyTorch are unable to run due to missing Python module dependencies.
These frameworks have not been built for PowerPC and/or published to standard
repositories.

Deprecated and Removed Features

The following features are deprecated in TensorRT 8.5.3:

‣ TensorRT 8.5.3 will be the last release supporting NVIDIA Kepler (SM 3.x) and NVIDIA
Maxwell (SM 5.x) devices. These devices will no longer be supported in TensorRT 8.6.
NVIDIA Pascal (SM 6.x) devices will be deprecated in TensorRT 8.6.

‣ In the next TensorRT release, CUDA Toolkit 10.2 support will be dropped.

Fixed Issues

‣ For INT8 fused MHA plugins, support for sequence length 64 and 96 has been added.

‣ There was an issue on the PyTorch container where some ONNX models would fail
with the error message SSA validation FAIL. This issue has now been fixed.

‣ When using IExecutionContext::enqueueV3, a non-null address must be set
for every input tensor, using IExecutionContext::setInputTensorAddress or
IExecutionContext::setTensorAddress, even if nothing is computed from the input
tensor.

‣ ISliceLayer with SampleMode::kWRAP sometimes caused engine build failures when
one of the strides was 0.This issue has been fixed.

‣ There was an issue when a network used implicit batch and was captured using
cudaGraph. This issue has now been fixed.

‣ When the PreviewFeature kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805 is
used, some plugins that use cuBLAS reported an CUBLAS_STATUS_NOT_INITIALIZED
error (with CUDA version 11.8). This issue has now been fixed.

‣ For some encoder based transformer networks, if there was a forced precision on
some layers, TensorRT reports the error (Mismatched type for tensor) during
compilation. This issue has now been fixed.

‣ For some networks with branches, if there was a forced precision on some layers
on one side, TensorRT reports the error Mismatched type for tensor during
compilation. This issue has now been fixed.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 119

‣ An assertion was triggered when multiple profiles were utilized and the profiles
ended up causing different optimizations to occur, thus resulting in an error on the
amount of slots being insufficient. This has been fixed to properly initialize the slots
used internally.

‣ When a Matrix Multiply horizontal fusion pass fuses two layers with bias, the bias
fusion didn't handle correctly which led to accuracy issues. This issue has now been
fixed.

‣ There was an accuracy issue when a network contains an Exp operator and the Exp
operator has a constant input. This issue has now been fixed.

‣ There was an up to 16% performance drop for LSTM networks in FP32 precision
compared to TensorRT 8.4 on Pascal GPUs. This issue has now been fixed.

‣ TensorRT might output wrong results when there were GEMM/Conv/MatMul ops
followed by a Reshape op. This issue has now been fixed.

Announcements

‣ In the next TensorRT release, cuDNN, cuBLAS, and cuBLASLt tactic sources will
be turned off by default in builder profiling. TensorRT plans to remove the cuDNN,
cuBLAS, and cuBLASLt dependency in future releases. Use the PreviewFeature flag
kDISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805 to evaluate the functional and
performance impact of disabling cuBLAS and cuDNN and report back to TensorRT if
there are critical regressions in your use cases.

‣ TensorRT Python wheel files before TensorRT 8.5, such as TensorRT 8.4, were
published to the NGC PyPI repo. Starting with TensorRT 8.5, Python wheels will
instead be published to upstream PyPI. This will make it easier to install TensorRT
because it requires no prerequisite steps. Also, the name of the Python package for
installation has changed from nvidia-tensorrt to just tensorrt.

‣ The C++ and Python API documentation in previous releases was included inside
the tar file packaging. This release no longer bundles the documentation inside
the tar file since the online documentation can be updated post release and avoids
encountering mistakes found in stale documentation inside the packages.

Known Issues

Functional

‣ TensorRT compiled for CUDA 11.4 may fail to compile a graph when there are GEMM
ops followed by a gelu_erf op.

‣ There is a known issue with huge graphs that cause out of memory errors with
specific input shapes even though a larger input shape can be run.

‣ There are known issues reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommendation
to suppress the issues is to provide a Valgrind suppression file with the following

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 120

contents when running the Valgrind memory leak check tool. Add the option --keep-
debuginfo=yes to the Valgrind command line to suppress these errors.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}
{
 Memory leak errors with nvrtc
 Memcheck:Leak
 match-leak-kinds: definite
 fun:malloc
 obj:*libnvrtc.so*
 ...
}

‣ The Python sample yolov3_onnx has a known issue when installing the requirements
with Python 3.10. The recommendation is to use a Python version < 3.10 when
running the sample.

‣ The auto-tuner assumes that the number of indices returned by INonZeroLayer
is half of the number of input elements. Thus, networks that depend on tighter
assumptions for correctness may fail to build.

‣ SM 7.5 and earlier devices may not have INT8 implementations for all layers with Q/
DQ nodes. In this case, you will encounter a could not find any implementation
error while building your engine. To resolve this, remove the Q/DQ nodes, which
quantize the failing layers.

‣ One of the deconvolution algorithms sourced from cuDNN exhibits non-deterministic
execution. Disabling cuDNN tactics will prevent this algorithm from being chosen
(refer to IBuilderConfig::setTacticSources).

‣ TensorRT in FP16 mode does not perform cast operations correctly when only the
output types are set, but not the layer precisions.

‣ TensorRT does not preserve precision for operations that are imported from ONNX
models in FP16 mode.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fall back to using cuBLAS. (not applicable for Jetson platforms)

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9 or newer. Any Python samples that
depend on TensorFlow 1.x cannot be run with Python 3.9 or newer.

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 121

‣ When using DLA, an elementwise, unary, or activation layer immediately followed by
a scale layer may lead to accuracy degradation in INT8 mode. Note that this is a pre-
existing issue also found in previous releases rather than a regression.

‣ When using DLA, INT8 convolutions followed by FP16 layers may cause accuracy
degradation. In such cases, either change the convolution to FP16 or the subsequent
layer to INT8.

‣ When using the algorithm selector API, the HWC1 and HWC4 DLA formats are both
reported as TensorFormat::kDLA_HWC4.

‣ For transformer decoder based models (such as GPT2) with sequence length as
dynamic, TensorRT 8.5 requires additional workspace (up to 2x) as compared to
previous releases.

‣ For some QAT models, if convolution and pointwise fusion results in a multi-output
layer with some output tensors quantized and others not, the building of the engine
may fail with the following error message:
[E] Error[2]: [optimizer.cpp::filterQDQFormats::4422] Error Code 2: Internal Error
 (Assertion !n->candidateRequirements.empty() failed. All of the candidates were removed,
 which points to the node being incorrectly marked as an int8 node.

One workaround is to disable the kJIT_CONVOLUTIONS tactic source.

‣ For some QAT models, when FP16 is enabled and a foreign node is created, if a tensor
is the output of the foreign node and also serves as input to another node inside
the subgraph of the foreign node, TensorRT may report an error with the following
message for the node:
[W] [TRT] Skipping tactic 0x0000000000000000 due to Myelin error: Concat operation "XXX"
 has different types of operands.

One workaround is insert a cast node between the tensor and the node inside the
foreign node.

Performance

‣ There is a ~12% performance drop on NVIDIA Ampere architecture GPUs for the
BERT network on Windows systems.

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is an up to 22% performance drop for Jasper networks compared to TensorRT
8.2 when running in FP32 precision on NVIDIA Volta or NVIDIA Turing GPUs with
CUDA 10.2. This performance drop can be avoided if CUDA 11.x is used instead.

‣ There is an up to 5% performance drop for the InceptionV4 network compared to
TensorRT 8.2 when running in FP32 precision on NVIDIA Volta GPUs with CUDA 10.2.
This performance drop can be avoided if CUDA 11.x is used instead.

‣ There is an up to 27% performance drop for BART compared to TensorRT 8.2 when
running with both FP16 and INT8 precisions enabled on T4. This performance drop
can be fixed by disabling the INT8 precision flag.

‣ There is an up to 10% performance drop for the SegResNet network compared to
TensorRT 8.2 when running in FP16 precision on NVIDIA Ampere architecture GPUs

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 122

due to a cuDNN regression in the InstanceNormalization plug-in. This will be fixed
in a future TensorRT release. You can work around the regression by reverting the
cuDNN version to cuDNN 8.2.1.

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

‣ There is an up to 20% performance variation between different engines built from
the same network for some LSTM networks due to unstable tactic selections.

‣ Due to the difference in DLA hardware specification between NVIDIA Orin and
Xavier, a relative increase in latency is expected when running DLA FP16 operations
involving convolution (which includes deconvolution, fully-connected, and concat) on
NVIDIA Orin as compared to running on Xavier. At the same DLA clocks and memory
bandwidth, INT8 convolution operations on NVIDIA Orin are expected to be about
4x faster than on Xavier, whereas FP16 convolution operations on NVIDIA Orin are
expected to be about 40% slower than on Xavier.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ For transformer-based networks such as BERT and GPT, TensorRT can consume CPU
memory up to 10 times the model size during compilation.

‣ There is an up to 17% performance regression for DeepASR networks at BS=1 on
NVIDIA Turing GPUs.

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is an up to 10-11% performance regression on Xavier compared to TensorRT
7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ On Xavier, DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve
accuracy. Thus, latency may be worse compared to an equivalent network using a
different activation like ReLU. To mitigate this, you can disable LeakyReLU layers from
running on DLA.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ There is an up to 5% performance drop for Megatron networks in FP32 precision
at batch-size = 1 between CUDA 11.8 and CUDA 10.2 on Volta GPUs. This
performance drop does not happen on Turing or later GPUs.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 123

‣ H100 performance for some ConvNets in TF32 precision is not fully optimized. This
will be improved in future TensorRT versions.

‣ There is an up to 6% performance drop for ResNeXt-50 QAT networks in INT8, FP16,
and FP32 precision at batch-size = 1 compared to TensorRT 8.4 on NVIDIA Volta
GPUs.

‣ H100 performance for some Transformers in FP16 precision is not fully optimized.
This will be improved in future TensorRT versions.

‣ H100 performance for some ConvNets containering depthwise convolutions (like
QuartzNets and EfficientDet-D0) in INT8 precision is not fully optimized. This will be
improved in future TensorRT versions.

‣ H100 performance for some LSTMs in FP16 precision is not fully optimized. This will
be improved in future TensorRT versions.

‣ H100 performance for some 3DUnets is not fully optimized. This will be improved in
future TensorRT versions.

‣ There is an up to 6% performance drop for OpenRoadNet networks in TF32 precision
compared to TensorRT 8.4 on NVIDIA Ampere architecture GPUs.

‣ There is an up to 6% performance drop for T5 networks in FP32 precision compared
to TensorRT 8.4 on NVIDIA Volta GPUs due to a functionality fix.

‣ There is an up to 5% performance drop for UNet networks in INT8 precision with
explicit quantization on CUDA 11.x compared to CUDA 10.2 on Turing GPUs.

‣ There is an up to 6% performance drop for WaveRNN networks in FP16 precision
compared to TensorRT 8.4 on CUDA 11.8 on Volta GPUs. Downgrading CUDA to CUDA
11.6 fixes the issue.

‣ There is an up to 13% performance drop for Megatron networks in FP16 precision on
Tesla T4 GPUs when disableExternalTacticSourcesForCore0805 is enabled.

‣ There is an up to 17% performance drop for LSTM on Windows in FP16 precision
compared to TensorRT 8.4 on Volta GPUs.

‣ There is an up to 7% performance drop for Artifact Reduction networks involving
Deconvolution ops in INT8 precision compared to TensorRT 8.4 on Volta GPUs.

‣ With the kFASTER_DYNAMIC_SHAPES_0805 preview feature enabled on the GPT
style decoder models, there can be an up to 20% performance regression for odd
sequence lengths only compared to TensorRT without the use of the preview feature.

3.3. TensorRT Release 8.4.3
These are the TensorRT 8.4.3 Release Notes and is applicable to x86 Linux and Windows
users. This release incorporates Arm® based CPU cores for Server Base System
Architecture (SBSA) users on Linux only. This release includes several fixes from the
previous TensorRT releases as well as the following additional changes.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 124

These Release Notes are applicable to workstation, server, and NVIDIA JetPack™ users
unless appended specifically with (not applicable for Jetson platforms).

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

‣ APIs deprecated in TensorRT 8.4 will be retained until at least 2/2023.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.4.3 has been tested with the following:

‣ cuDNN 8.4.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in Features For Platforms And
Software. Other semantically compatible releases of cuDNN and cuBLAS can be used;
however, other versions may have performance improvements as well as regressions.
In rare cases, functional regressions might also be observed.

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-841/release-notes/rel_8.html#rel-841
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 125

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all non-batch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to DLA Supported Layers for
more information.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ You may encounter an error such as, "Unable to load library:
nvinfer_builder_resource.dll", if using Python 3.9.10 on Windows. You can
workaround this issue by downgrading to an earlier version of Python 3.9.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ The builder may require up to 60% more memory to build an engine.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or later).

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in NVIDIA
JetPack 4.5 for ResNet-like networks on NVIDIA DLA on Xavier platforms when the
dynamic ranges of the inputs of the ElementWise ADD layers are different. This is due
to a fix for a bug in DLA where it ignored the dynamic range of the second input of
the ElementWise ADD layers and caused some accuracy issues. NVIDIA Orin platforms
are not affected by this.

Fixed Issues

‣ When parsing networks with ONNX operand expand on scalar input. TensorRT would
error out. This issue has been fixed in this release.

‣ The custom ClipPlugin used in the uff_custom_plugin sample had an issue with a
plugin parameter not being serialized, leading to a failure when the plugin needed to
be deserialized. This issue has been fixed with proper serialization/deserialization.

‣ When working with transformer based networks with multiple dynamic dimensions,
if the network had shuffle operations which caused one or more dimensions to be
a coalesced dimension (combination of multiple dynamic dimensions) and if this
shuffle was further used in a reduction operation such as MatrixMultiply layer, it can
potentially lead to corruption of results. This issue has been fixed in this release.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 126

‣ When working with recurrent networks containing Loops and Fill layers, it was
possible that the engine may have failed to build. This issue has been fixed in this
release.

‣ In some rare cases when converting a MatrixMultiply layer to a Convolution layer for
optimization purposes, the shapes may fail to inference. This issue has been fixed in
this release.

‣ In some cases, Tensor memory was not zero initialized for vectorized dimensions. This
resulted in NaN in the output tensor during engine execution. This issue has been
fixed in this release.

‣ For the HuggingFace demos, the T5-3B model had only been verified on A100, and
was not expected to work on A10, T4, and so on. This issue has been fixed in this
release.

‣ Certain spatial dimensions may have caused crashes during DLA optimization for
models using single-channel inputs. This issue has been fixed in this release.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can be
horizontally fused before a Concat layer may have created an internal error causing
the application to crash while building the engine. This issue has been fixed in this
release.

‣ For some networks using sparsity, TensorRT may have produced inaccurate results.
This issue has been fixed in this release.

Announcements

‣ CUDA 11.7 added a feature called Lazy loading, however, this feature is not supported
by TensorRT 8.4 because the CUDA 11.x binaries were built with CUDA Toolkit 11.6.

Known Issues

Functional

‣ When performing an L2_Normalization in float16 precision, there is undefined
behavior occurring from a fusion. This fusion can be disabled by marking the input to
the L2_Normalization as a network output.

‣ When performing PTQ with TensorRT with tensors rank > 4, some layers may cause
an assertion about invalid Region Dims. This can be worked around by fusing the
index layers into the 4th dimension to have the tensor have a rank 4.

‣ SM75 and earlier devices may not have INT8 implementations for all layers with Q/DQ
nodes. In this case, you will encounter a could not find any implementation error
while building your engine. To resolve this, remove the Q/DQ nodes which quantize
the failing layers.

‣ When the TensorRT static library is used to build engines and the NVPTXCompiler
static library is also used outside of the TensorRT core library at the same time, it is
possible to trigger a crash of the process in rare cases.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 127

‣ TensorRT should only allow up to a total of 16 I/O tensors for a single subnetwork
offloaded to DLA. However, there is a leak in the logic that incorrectly allows > 16 I/O
tensors. You may need to manually specify the per layer device to avoid the creation
of subnetworks with over 16 I/O tensors, for successful engine construction. This
restriction will be properly reinstated in a future release.

‣ One of the deconvolution algorithms sourced from cuDNN exhibits non-deterministic
execution. Disabling cuDNN tactics will prevent this algorithm from being chosen
(refer to IBuilderConfig::setTacticSources).

‣ Due to ABI compatibility issues, static builds are not supported on SBSA platforms.

‣ TensorRT in FP16 mode does not perform cast operations correctly when only the
output types are set, but not the layer precisions.

‣ TensorRT does not preserve precision for operations that are imported from ONNX
models in FP16 mode.

‣ There is a known issue when ProfilingVerbosity is set to kDETAILED, the
enqueueV2() call may take up to 2ms compared to ProfilingVerbosity=kNONE or
kLAYER_NAMES_ONLY.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fall back to using cuBLAS. (not applicable for Jetson platforms)

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9 or newer. Any Python samples that
depend on TensorFlow 1.x cannot be run with Python 3.9 or newer.

‣ The Debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

‣ You may see the following error:
"Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared
 object file: No such file or directory"

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 128

search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF
model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

Performance

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is an up to 22% performance drop for Jasper networks compared to TensorRT
8.2 when running in FP32 precision on NVIDIA Volta or NVIDIA Turing GPUs with
CUDA 10.2. This performance drop can be avoided if CUDA 11.x is used instead.

‣ There is an up to 5% performance drop for the InceptionV4 network compared to
TensorRT 8.2 when running in FP32 precision on NVIDIA Volta GPUs with CUDA 10.2.
This performance drop can be avoided if CUDA 11.x is used instead.

‣ There is an up to 27% performance drop for BART compared to TensorRT 8.2 when
running with both FP16 and INT8 precisions enabled on T4. This performance drop
can be fixed by disabling the INT8 precision flag.

‣ There is an up to 5% performance drop for the ShuffleNet network compared to
TensorRT 8.2 when running in INT8 precision on NVIDIA Ampere Architecture GPUs.
This will be fixed in a future TensorRT release.

‣ There is an up to 10% performance drop for the SegResNet network compared to
TensorRT 8.2 when running in FP16 precision on NVIDIA Ampere Architecture GPUs
due to a cuDNN regression in the InstanceNormalization plug-in. This will be fixed
in a future TensorRT release. You can work around the regression by reverting the
cuDNN version to cuDNN 8.2.1.

‣ There is an up to 10% performance difference for the WaveRNN network between
different operating systems when running in FP16 precision on NVIDIA Ampere
Architecture GPUs. This will be fixed in a future TensorRT release.

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

‣ There is an up to 7% performance regression for the 3D-UNet networks compared to
TensorRT 8.4 EA when running in INT8 precision on NVIDIA Orin due to a functionality
fix.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 129

‣ There is an up to 20% performance variation between different engines built from
the same network for some LSTM networks when running on Windows due to
unstable tactic selections.

‣ Some networks may see a small increase in deserialization time.

‣ Due to the difference in DLA hardware specification between NVIDIA Orin and
Xavier, a relative increase in latency is expected when running DLA FP16 operations
involving convolution (which includes deconvolution, fully-connected, and concat) on
NVIDIA Orin as compared to running on Xavier. At the same DLA clocks and memory
bandwidth, INT8 convolution operations on NVIDIA Orin are expected to be about
4x faster than on Xavier, whereas FP16 convolution operations on NVIDIA Orin are
expected to be about 40% slower than on Xavier.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ For transformer-based networks such as BERT and GPT, TensorRT can consume CPU
memory up to 10 times the model size during compilation.

‣ There is an up to 17% performance regression for DeepASR networks at BS=1 on
NVIDIA Turing GPUs.

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and NVIDIA Pascal GPUs.

‣ There is an up to 10-11% performance regression on Xavier compared to TensorRT
7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ On Xavier, DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve
accuracy. Thus, latency may be worse compared to an equivalent network using a
different activation like ReLU. To mitigate this, you can disable LeakyReLU layers from
running on DLA.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 130

3.4. TensorRT Release 8.2.5
These are the TensorRT 8.2.5 Release Notes and are applicable to x86 Linux and
Windows users. This release incorporates ARM® based CPU cores for Server Base System
Architecture (SBSA) users on Linux only. This release includes several fixes from the
previous TensorRT release as well as the following additional changes.

These Release Notes are also applicable to workstation, server, and NVIDIA JetPack™

users unless appended specifically with (not applicable for Jetson platforms).

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.2.5 has been tested with the following:

‣ cuDNN 8.2.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

‣ 11.5 update 2

‣ 11.4 update 3

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in Features For Platforms And
Software. Other semantically compatible releases of cuDNN and cuBLAS can be used,

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-821/release-notes/rel_8.html#rel-821
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 131

however, other versions may have performance improvements as well as regressions.
In rare cases, functional regressions might also be observed.

Fixed Issues

‣ There is a fast configuration for the SoftMax kernel which was not enabled previously
when porting it from cuDNN. This performance regression has been fixed in this
release.

‣ The Scale kernel had previously incorrectly supported strides (due to concat and slice
elision). This issue has been fixed with this release.

Known Issues

Functional

‣ TensorRT attempts to catch GPU memory allocation failure and avoid profiling tactics
whose memory requirements would trigger Out of Memory. However, GPU memory
allocation failure cannot be handled by CUDA gracefully on some platforms and
would lead to an unrecoverable application status. If this happens, consider lowering
the specified workspace size if a large size is set, or using the IAlgorithmSelector
interface to avoid tactics that require a lot of GPU memory.

‣ TensorRT may experience some instabilities when running networks containing TopK
layers on T4 under Azure VM.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ When running ONNX models with dynamic shapes, there is a potential accuracy issue
if the dimension names of the inputs that are expected to be the same are not. For
example, if a model has two 2D inputs of which the dimension semantics are both
batch and seqlen, and in the ONNX model, the dimension name of the two inputs
are different, there is a potential accuracy issue when running with dynamic shapes.
Ensure you the dimension semantics match when exporting ONNX models from
frameworks.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fallback to using cuBLAS. (not applicable for Jetson platforms)

‣ For some networks with large amounts of weights and activation data, DLA may fail
compiling a subgraph, and that subgraph will fallback to GPU.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 132

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or above).

‣ On integrated GPUs, a memory tracking issue in TensorRT 8.0 that was artificially
restricting the amount of available memory has been fixed. A side effect is that the
TensorRT optimizer is able to choose layer implementations that use more memory,
which can cause the OOM Killer to trigger for networks where it previously didn't.
To work around this problem, use the IAlgorithmSelector interface to avoid layer
implementations that require a lot of memory, or use the layer precision API to reduce
precision of large tensors and use STRICT_TYPES, or reduce the size of the input
tensors to the builder by reducing batch or other higher dimensions.

‣ TensorRT bundles a version of libnvptxcompiler_static.a inside
libnvinfer_static.a. If an application links with a different version of PTXJIT than
the version used to build TensorRT, it may lead to symbol conflicts or undesired
behavior.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9. Any Python samples that depend on
TensorFlow 1.x cannot be run with Python 3.9.

‣ TensorRT has limited support for fusing IConstantLayer and IShuffleLayer. In
explicit-quantization mode, the weights of Convolutions and Fully-Connected layers
must be fused. Therefore, if a weights-shuffle is not supported, it may lead to failure
to quantize the layer.

‣ For DLA networks where a convolution layer consumes an NHWC network input, the
compute precision of the convolution layer must match the data type of the input
tensor.

‣ Hybrid precision is not supported with the Pooling layer. Data type of input and
output tensors should be the same as the layer precision.

‣ When running the Python engine_refit_mnist, network_api_pytorch_mnist, or
onnx_packnet samples, you may encounter Illegal instruction (core dumped)
when using the CPU version of PyTorch on Jetson TX2. The workaround is to install a
GPU enabled version of PyTorch as per the instructions in the sample READMEs.

‣ Intermittent accuracy issues are observed in sample_mnist with INT8 precision on
WSL2.

‣ The Debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

‣ You may see the following error:
"Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 133

 object file: No such file or directory"

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library
search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF
model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

Performance

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and Pascal GPUs.

‣ There is an up to 8% performance regression compared to TensorRT 7.1 for some
networks with heavy FullyConnected operation like VGG16 on NVIDIA Jetson Nano™.

‣ There is an up to 10-11% performance regression on Xavier:

‣ compared to TensorRT 7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ compared to TensorRT 6 for ResNeXt networks with small batch (1 or 2) in FP32.

‣ For networks that use deconv with large kernel size, the engine build time can
increase a lot for this layer on Xavier. It can also lead to the launch timed out and
was terminated error message on Jetson Nano/TX1.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in
JetPack 4.5 for ResNet-like networks on NVIDIA DLA when the dynamic ranges of
the inputs of the ElementWise ADD layers are different. This is due to a fix for a bug in
DLA where it ignored the dynamic range of the second input of the ElementWise ADD
layers and caused some accuracy issues.

‣ DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve accuracy.
Thus, latency may be worse compared to an equivalent network using a different
activation like ReLU. To mitigate this, you can disable LeakyReLU layers from running
on DLA.

‣ The builder may require up to 60% more memory to build an engine.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v10.4.0 | 134

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 21% performance drop compared to TensorRT 8.0 for SSD-
Inception2 networks on NVIDIA Volta GPUs.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ There is an up to 25% performance drop for networks using the InstanceNorm plugin.
This issue is being investigated.

‣ The engine building time for the networks using 3D convolution, like 3d_unet, is up
to 500% longer compared to TensorRT 8.0 due to many fast kernels being added in,
which enlarges the profiling time.

3.5. TensorRT Release 8.0.3
This is the TensorRT 8.0.3 release notes. This is a bug fix release supporting Linux x86
and Windows users.

These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 8.x.x release as well as the
following additional changes. For previous TensorRT documentation, refer to the NVIDIA
TensorRT Archived Documentation.

Fixed Issues

‣ Fixed an invalid fusion assertion problem in the fusion optimization pass.

‣ Fixed other miscellaneous issues seen in proprietary networks.

‣ Fixed a CUDA 11.4 NVRTC issue during kernel generation on Windows.

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of
such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Arm

Arm, AMBA and Arm Powered are registered trademarks of Arm Limited. Cortex, MPCore and Mali are trademarks of Arm Limited. "Arm" is used to represent
Arm Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France
SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS and Arm Sweden AB.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Blackberry/QNX

Copyright © 2020 BlackBerry Limited. All rights reserved.

Trademarks, including but not limited to BLACKBERRY, EMBLEM Design, QNX, AVIAGE, MOMENTICS, NEUTRINO and QNX CAR are the trademarks or
registered trademarks of BlackBerry Limited, used under license, and the exclusive rights to such trademarks are expressly reserved.

Google

Android, Android TV, Google Play and the Google Play logo are trademarks of Google, Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and BlueField, CUDA, DALI, DRIVE, Hopper, JetPack, Jetson AGX Xavier, Jetson Nano, Maxwell, NGC, Nsight, Orin, Pascal, Quadro,
Tegra, TensorRT, Triton, Turing and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2017-2024 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	TensorRT Release 10.x.x
	1.1. TensorRT Release 10.4.0
	1.2. TensorRT Release 10.3.0
	1.3. TensorRT Release 10.2.0
	1.4. TensorRT Release 10.1.0
	1.5. TensorRT Release 10.0.1
	1.6. TensorRT Release 10.0.0 Early Access (EA)

	TensorRT Release 9.x.x
	2.1. TensorRT Release 9.3.0
	2.2. TensorRT Release 9.2.0
	2.3. TensorRT Release 9.1.0
	2.4. TensorRT Release 9.0.1

	TensorRT Release 8.x.x
	3.1. TensorRT Release 8.6.1
	3.2. TensorRT Release 8.5.3
	3.3. TensorRT Release 8.4.3
	3.4. TensorRT Release 8.2.5
	3.5. TensorRT Release 8.0.3

