
TRM-10259-001_v10.4.0 | September 2024

NVIDIA TensorRT Samples

Support Guide | NVIDIA Docs

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | ii

Table of Contents

Chapter 1. Introduction..1
1.1. Getting Started With C++ Samples...3

1.2. Getting Started With Python Samples.. 4

Chapter 2. Cross Compiling Samples...6
2.1. Prerequisites...6

2.2. Building Samples For QNX AArch64..7

2.3. Building Samples For Linux AArch64.. 7

2.4. Building Samples For Linux SBSA...7

Chapter 3. Building Samples Using Static Libraries.. 8
3.1. Limitations...8

Chapter 4. Machine Comprehension... 10
4.1. Building An RNN Network Layer By Layer.. 10

4.2. Refitting An Engine Built From An ONNX Model In Python..11

4.3. Writing a TensorRT Plugin to Use a Custom Layer in Your ONNX Model.........................11

Chapter 5. Character Recognition.. 13
5.1. “Hello World” For TensorRT From ONNX... 13

5.2. Digit Recognition With Dynamic Shapes In TensorRT...14

5.3. Specifying I/O Formats... 14

5.4. “Hello World” For TensorRT Using PyTorch And Python...15

5.5. Algorithm Selection API Usage Example Based On MNIST...16

5.6. Implementing CoordConv in TensorRT with a custom plugin using
sampleOnnxMnistCoordConvAC In TensorRT.. 17

Chapter 6. Image Classification...18
6.1. Performing Inference In INT8 Precision...18

6.2. Introduction To Importing ONNX Models Into TensorRT Using Python...........................19

6.3. TensorRT Inference Of ONNX Models With Custom Layers In Python............................ 19

6.4. Scalable And Efficient Image Classification With EfficientNet Networks In
Python... 20

Chapter 7. Object Detection...22
7.1. Object Detection With The ONNX TensorRT Backend In Python.......................................22

7.2. Scalable And Efficient Object Detection With EfficientDet Networks In Python.......23

7.3. Object Detection with TensorFlow Object Detection API Model Zoo Networks in
Python... 24

7.4. Object Detection with Detectron 2 Mask R-CNN R50-FPN 3x Network in Python.....24

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | iii

Chapter 8. Other Features... 26
8.1. Working With ONNX Models With Named Input Dimensions..26

8.2. Usage of Progress Monitor During Engine Build...26

8.3. Python-Based TensorRT Plugins...27

8.4. Building and Refitting Weight-Stripping Engines... 28

8.5. Plugin with Data-Dependent Output Shapes: NonZero..28

8.6. Python Plugin with Data-Dependent Output Shapes: NonZero..29

8.7. Using a Plugin with Aliased I/O to Realize In-Place Updates.. 30

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | iv

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 1

Chapter 1. Introduction

The following samples show how to use NVIDIA® TensorRT™ in numerous use cases while
highlighting different capabilities of the interface.

Note: The TensorRT samples are provided for illustrative purposes only and are not meant
to be used nor taken as examples of production quality code.

Title TensorRT Sample Name Description

trtexec trtexec A tool to quickly utilize
TensorRT without having to
develop your own application.

“Hello World” For TensorRT
From ONNX

sampleOnnxMNIST Converts a model trained on
the MNIST dataset in ONNX
format to a TensorRT network.

Building An RNN Network
Layer By Layer

sampleCharRNN Uses the TensorRT API to build
an RNN network layer by layer,
sets up weights and inputs/
outputs and then performs
inference.

Performing Inference In INT8
Precision

sampleINT8API Sets per tensor dynamic range
and computation precision of
a layer.

Specifying I/O Formats sampleIOFormats Uses an ONNX model that was
trained on theMNIST dataset
and performs engine building
and inference using TensorRT.
The correctness of outputs is
then compared to the golden
reference.

Digit Recognition With
Dynamic Shapes In TensorRT

sampleDynamicReshape Demonstrates how to use
dynamic input dimensions
in TensorRT by creating an
engine for resizing dynamically
shaped inputs to the correct
size for an ONNX MNIST
model.

Algorithm Selection API Usage
Example Based On MNIST

sampleAlgorithmSelector End-to-end example of how
to use the algorithm selection
API based on sampleMNIST.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#trtexec
https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md

Introduction

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 2

Title TensorRT Sample Name Description

Introduction To Importing
ONNX Models Into TensorRT
Using Python

introductory_parser_samples Uses TensorRT and its
included ONNX parser, to
perform inference with
ResNet-50 models trained
with various different
frameworks.

“Hello World” For TensorRT
Using PyTorch And Python

network_api_pytorch_mnist An end-to-end sample that
trains a model in PyTorch,
recreates the network in
TensorRT, imports weights
from the trained model, and
finally runs inference with a
TensorRT engine.

Writing a TensorRT Plugin to
Use a Custom Layer in Your
ONNX Model

onnx_custom_plugin Implements a Hardmax Layer
as a TensorRT plugin and
uses it to run a ONNX BiDAF
question answering model in
TensorRT.

Object Detection With The
ONNX TensorRT Backend In
Python

yolov3_onnx Implements a full ONNX-
based pipeline for performing
inference with the
YOLOv3-608 network,
including pre and post-
processing.

TensorRT Inference Of ONNX
Models With Custom Layers In
Python

onnx_packnet Uses TensorRT to perform
inference with a PackNet
network. This sample
demonstrates the use of
custom layers in ONNX graphs
and processing them using
ONNX-graphsurgeon API.

Refitting An Engine Built From
An ONNX Model In Python

engine_refit_onnx_bidaf Builds an engine from the
ONNX BiDAF model, refits the
TensorRT engine with weights
from the model.

Scalable And Efficient Object
Detection With EfficientDet
Networks In Python

efficientdet Sample application to
demonstrate conversion
and execution of Google®

EfficientDet models with
TensorRT.

Scalable And Efficient
Image Classification With
EfficientNet Networks In
Python

efficientnet Sample application to
demonstrate conversion
and execution of a Google
EfficientNet model with
TensorRT.

Implementing CoordConv
in TensorRT with a
custom plugin using

sampleOnnxMnistCoordConvAC Contains custom CoordConv
layers. It converts a model
trained on the MNIST dataset
in ONNX format to a TensorRT

Introduction

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 3

Title TensorRT Sample Name Description
sampleOnnxMnistCoordConvAC
In TensorRT

network and runs inference on
the network.

Object Detection with
TensorFlow Object Detection
API Model Zoo Networks in
Python

tensorflow_object_detection_apiDemonstrates the conversion
and execution of the
Tensorflow Object Detection
API Model Zoo models with
TensorRT.

Object Detection with
Detectron 2 Mask R-CNN R50-
FPN 3x Network in Python

detectron2 Demonstrates the conversion
and execution of the
Detectron 2 Model Zoo Mask
R-CNN R50-FPN 3x model with
TensorRT.

Working With ONNX Models
With Named Input Dimensions

sampleNamedDimensions An example of parsing an
ONNX model with named input
dimensions and building the
engine for it.

Usage of Progress Monitor
During Engine Build

sampleProgressMonitor (C++)

simple_progress_reporter
(Python)

C++ and Python examples for
using Progress Monitor during
engine build.

Python-Based TensorRT
Plugins

python_plugin Showcases a Python-based
plugin definition in TensorRT.

Building and Refitting Weight-
Stripping Engines

sample_weight_stripping Showcases building and
refitting weight-stripped
engines from ONNX models.

Plugin with Data-Dependent
Output Shapes: NonZero

sampleNonZeroPlugin Demonstrates a plugin with
data-dependent output
shapes.

Python Plugin with Data-
Dependent Output Shapes:
NonZero

non_zero_plugin Demonstrates a Python-based
plugin with data-dependent
output shapes.

Using a Plugin with Aliased I/O
to Realize In-Place Updates

aliased_io_plugin Demonstrates a plugin with
aliased I/O.

1.1. Getting Started With C++ Samples
You can find the C++ samples in the /usr/src/tensorrt/samples package directory as
well as on GitHub. The following C++ samples are shipped with TensorRT.

‣ “Hello World” For TensorRT From ONNX

‣ Building An RNN Network Layer By Layer

‣ Performing Inference In INT8 Precision

‣ Specifying I/O Formats

‣ Digit Recognition With Dynamic Shapes In TensorRT

https://github.com/NVIDIA/TensorRT/tree/main/samples

Introduction

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 4

‣ Algorithm Selection API Usage Example Based On MNIST1

‣ Implementing CoordConv in TensorRT with a custom plugin using
sampleOnnxMnistCoordConvAC In TensorRT

‣ Working With ONNX Models With Named Input Dimensions

‣ Usage of Progress Monitor During Engine Build

‣ Plugin with Data-Dependent Output Shapes: NonZero

Getting Started With C++ Samples

Every C++ sample includes a README.md file in GitHub that provides detailed information
about how the sample works, sample code, and step-by-step instructions on how to run
and verify its output.

Running C++ Samples on Linux

If you installed TensorRT using the Debian files, copy /usr/src/tensorrt to a new
directory first before building the C++ samples. If you installed TensorRT using the
tar file, then the samples are located in {TAR_EXTRACT_PATH}/samples. To build all the
samples and then run one of the samples, use the following commands:
$ cd <samples_dir>
$ make -j4
$ cd ../bin
$./<sample_bin>

Running C++ Samples on Windows

All of the C++ samples on Windows are provided as Visual Studio Solution files. To build
a sample, open its corresponding Visual Studio Solution file and build the solution. The
output executable will be generated in (ZIP_EXTRACT_PATH)\bin. You can then run the
executable directly or through Visual Studio.

1.2. Getting Started With Python
Samples

You can find the Python samples in the /usr/src/tensorrt/samples/python package
directory. The following Python samples are shipped with TensorRT.

‣ Introduction To Importing ONNX Models Into TensorRT Using Python

‣ “Hello World” For TensorRT Using PyTorch And Python

‣ Writing a TensorRT Plugin to Use a Custom Layer in Your ONNX Model

‣ Object Detection With The ONNX TensorRT Backend In Python

‣ TensorRT Inference Of ONNX Models With Custom Layers In Python

1 This sample is located in the release product package only.

https://github.com/NVIDIA/TensorRT/tree/main/samples

Introduction

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 5

‣ Refitting An Engine Built From An ONNX Model In Python

‣ Scalable And Efficient Object Detection With EfficientDet Networks In Python

‣ Scalable And Efficient Image Classification With EfficientNet Networks In Python

‣ Object Detection with TensorFlow Object Detection API Model Zoo Networks in
Python

‣ Object Detection with Detectron 2 Mask R-CNN R50-FPN 3x Network in Python

‣ Usage of Progress Monitor During Engine Build

‣ Python-Based TensorRT Plugins

‣ Building and Refitting Weight-Stripping Engines

‣ Python Plugin with Data-Dependent Output Shapes: NonZero

‣ Using a Plugin with Aliased I/O to Realize In-Place Updates

Getting Started With Python Samples

Every C++ sample includes a README.md file in GitHub that provides detailed information
about how the sample works, sample code, and step-by-step instructions on how to run
and verify its output.

Running Python Samples

To run one of the Python samples, the process typically involves two steps:

 1. Install the sample requirements:
python<x> -m pip install -r requirements.txt

where python<x> is either python2 or python3.

 2. Run the sample code with the data directory provided if the TensorRT sample data is
not in the default location. For example:
python<x> sample.py [-d DATA_DIR]

For more information on running samples, refer to the README.md file included with the
sample.

https://github.com/NVIDIA/TensorRT/tree/main/samples/python

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 6

Chapter 2. Cross Compiling Samples

The following sections show how to cross-compile TensorRT samples for AArch64 QNX
and Linux platforms under x86_64 Linux.

2.1. Prerequisites
This section provides step-by-step instructions to ensure you meet the minimum
requirements to cross-compile.

 1. Install the CUDA cross-platform toolkit for the corresponding target and set the
environment variable CUDA_INSTALL_DIR.

$ export CUDA_INSTALL_DIR="your cuda install dir"

Where CUDA_INSTALL_DIR is set to /usr/local/cuda by default.

Note: If you are installing TensorRT using the network repository, then it’s best if you
install the cuda-toolkit-X-Y and cuda-cross-<arch>-X-Y packages first to ensure
you have all CUDA dependencies required to build the TensorRT samples.

 2. Install the TensorRT cross-compilation Debian packages for the corresponding
target.

Note: If you are using the tar file release for the target platform, then you can safely
skip this step. The tar file release already includes the cross-compile libraries so no
additional packages are required.

QNX AArch64

‣ tensorrt-dev-cross-qnx

Linux AArch64

‣ tensorrt-dev-cross-aarch64

Linux SBSA

‣ tensorrt-dev-cross-sbsa

Cross Compiling Samples

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 7

2.2. Building Samples For QNX AArch64
This section provides step-by-step instructions to build samples for QNX users.

 1. Download the QNX tool-chain and export the following environment variables.
$ export QNX_HOST=/path/to/your/qnx/toolchain/host/linux/x86_64
$ export QNX_TARGET=/path/to/your/qnx/toolchain/target/qnx7

 2. Build the samples by issuing:
$ cd /path/to/TensorRT/samples
$ make TARGET=qnx

2.3. Building Samples For Linux
AArch64

This section provides step-by-step instructions to build samples for JetPack users.

 1. Install the corresponding GCC compiler, aarch64-linux-gnu-g++. In Ubuntu, this can
be installed using:
$ sudo apt-get install g++-aarch64-linux-gnu

 2. Build the samples by issuing:
$ cd /path/to/TensorRT/samples
$ make TARGET=aarch64

2.4. Building Samples For Linux SBSA
This section provides step-by-step instructions to build samples for Linux SBSA users.

 1. Install the corresponding GCC compiler, aarch64-linux-gnu-g++. In Ubuntu, this can
be installed using:
$ sudo apt-get install g++-aarch64-linux-gnu

 2. Build the samples by issuing:
$ cd /path/to/TensorRT/samples
$ make TARGET=aarch64 ARMSERVER=1 DLSW_TRIPLE=aarch64-linux-gnu CUDA_TRIPLE=sbsa-linux
 CUDA_INSTALL_DIR=<cuda-cross-dir>

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 8

Chapter 3. Building Samples Using
Static Libraries

The following section demonstrates how to build the TensorRT samples using the
TensorRT static libraries, including other CUDA libraries that are statically linked. The
TensorRT samples can be used as a guideline for how to build your own application using
the TensorRT static libraries, if you choose.

Note: You must use the tar package if you wish to build the TensorRT samples statically
because some libraries are not included in the Debian or RPM packages including some
required dependent static libraries and linker scripts. Also, building the TensorRT samples
statically is only supported on Linux x86 platforms and not AArch64 or PowerPC at this
time.

To build the TensorRT samples using the TensorRT static libraries, you can use the
following command when you are building the samples.
$ make TRT_STATIC=1

You should append any other Make arguments you would normally include, such as
TARGET to indicate the CPU architecture or CUDA_INSTALL_DIR to indicate where CUDA
has been installed on your system. The static sample binaries created by the TRT_STATIC
make option will have the suffix _static appended to the filename in the output
directory to distinguish them from the dynamic sample binaries.

3.1. Limitations
It is required that the same major.minor.patch version of the CUDA toolkit that was used
to build TensorRT is used to build your application. Since symbols cannot be hidden or
duplicated in a static binary, like they can for dynamic libraries, using the same CUDA
toolkit version reduces the chance of symbol conflicts, incompatibilities, or undesired
behaviors.

If you are including libnvinfer_static.a and libnvinfer_plugin_static.a in your
linker command line, then consider using the following linker flags to ensure that all
CUDA kernels and TensorRT plug-ins are included in your final application.
-Wl,-whole-archive -lnvinfer_static -Wl,-no-whole-archive
-Wl,-whole-archive -lnvinfer_plugin_static -Wl,-no-whole-archive

If you are building the TensorRT samples with a GCC version less than 8.x, then you may
require the RedHat Developer Toolset 8 non-shared libstdc++ library to avoid missing C

Building Samples Using Static Libraries

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 9

++ standard library symbols during linking. You can use the following one-line command
to obtain this additional static library, assuming the programs required by this command
are already installed on your system.
$ curl -s http://mirror.centos.org/centos/7/sclo/x86_64/rh/Packages/d/devtoolset-8-libstdc++-
devel-8.3.1-3.2.el7.x86_64.rpm | rpm2cpio - | bsdtar --strip-components=10 -xf - '*/libstdc+
+_nonshared.a'

If you are building TensorRT applications with a GCC version less than 8.x, then you may
require the linker options mentioned below to ensure you are using the correct C++
standard library symbols in your application. Your application object files must come
after the TensorRT static libraries and whole-archive all TensorRT static libraries when
linking to ensure the newer C++ standard library symbols from the RedHat GCC Toolset
are used. This change is required to avoid undefined behavior within TensorRT that may
lead to a crash.
-Wl,--start-group -Wl,-whole-archive -lnvinfer_static -lnvinfer_plugin_static -
lnvparsers_static -lnvonnxparser_static -Wl,-no-whole-archive <object_files> -Wl,--end-group

You may observe relocation issues during linking if the resulting binary exceeds 2
GB. This can occur if you are linking TensorRT and all of its dependencies into your
application statically. To workaround this issue you may need to move the GPU code to
the end of the binary. This may require the linker script below and the following linker
options -mcmodel=large or -Wl,<path/to/fatbin.ld>. The contents of fatbin.ld are
listed below.
SECTIONS
{
 .nvFatBinSegment : { *(.nvFatBinSegment) }
 .nv_fatbin : { *(.nv_fatbin) }
}

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 10

Chapter 4. Machine Comprehension

Machine comprehension systems are used to translate text from one language to
another language, make predictions or answer questions based on a specific context.
Recurrent neural networks (RNN) are one of the most popular deep learning solutions for
machine comprehension.

Some examples of TensorRT machine comprehension samples include the following:

‣ Building An RNN Network Layer By Layer

‣ Refitting An Engine Built From An ONNX Model In Python

‣ Writing a TensorRT Plugin to Use a Custom Layer in Your ONNX Model

4.1. Building An RNN Network Layer By
Layer

This sample, sampleCharRNN, uses the TensorRT API to build an RNN network layer by
layer, sets up weights and inputs/outputs and then performs inference.

What does this sample do?

Specifically, this sample creates a CharRNN network that has been trained on the Tiny
Shakespeare dataset. For more information about character level modeling, refer to char-
rnn.

TensorFlow has a useful RNN Tutorial which can be used to train a word-level model.
Word level models learn a probability distribution over a set of all possible word
sequences. Since our goal is to train a char level model, which learns a probability
distribution over a set of all possible characters, a few modifications will need to be
made to get the TensorFlow sample to work. These modifications can be seen here.

Where is this sample located?

This sample is maintained under the samples/sampleCharRNN directory in the GitHub:
sampleCharRNN repository. If using the Debian or RPM package, the sample is located at
/usr/src/tensorrt/samples/sampleCharRNN. If using the tar or zip package, the sample
is at <extracted_path>/samples/sampleCharRNN.

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://github.com/karpathy/char-rnn
https://github.com/karpathy/char-rnn
https://www.tensorflow.org/text/tutorials/text_generation
http://deeplearningathome.com/2016/10/Text-generation-using-deep-recurrent-neural-networks.html
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleCharRNN
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleCharRNN

Machine Comprehension

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 11

How do I get started?

For more information about getting started, refer to Getting Started With C++ Samples.
For specifics about this sample, refer to the GitHub: sampleCharRNN/README.md file
for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

4.2. Refitting An Engine Built From An
ONNX Model In Python

This sample, engine_refit_onnx_bidaf, builds an engine from the ONNX BiDAF model, and
refits the TensorRT engine with weights from the model. The new refit APIs allow users
to locate the weights via names from ONNX models instead of layer names and weights
roles.

In the first pass, the weights "Parameter576_B_0" are refitted with empty values
resulting in an incorrect inference result. In the second pass, we refit the engine with the
actual weights and run inference again. With the weights now set correctly, inference
should provide correct results.

By default, the engine will be refitted using GPU weights. This behavior can be changed
using the option --weights-location CPU.

Where Is This Sample Located?

This sample is maintained under the samples/python/engine_refit_onnx_bidaf
directory in the GitHub: engine_refit_onnx_bidaf repository. If using the Debian
or RPM package, the sample is located at /usr/src/tensorrt/samples/python/
engine_refit_onnx_bidaf. If using the tar or zip package, the sample is at
<extracted_path>/samples/python/engine_refit_onnx_bidaf.

Getting Started:

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: engine_refit_onnx_bidaf/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

4.3. Writing a TensorRT Plugin to Use a
Custom Layer in Your ONNX Model

This sample, onnx_custom_plugin, demonstrates how to use plugins written in C++
to run TensorRT on ONNX models with custom or unsupported layers. This sample

https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleCharRNN/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/engine_refit_onnx_bidaf
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/engine_refit_onnx_bidaf/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/engine_refit_onnx_bidaf/README.md

Machine Comprehension

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 12

implements a Hardmax layer and uses it to run a BiDAF question-answering model using
the TensorRT ONNX Parser and Python API.

Where Is This Sample Located?

This sample is maintained under the samples/python/onnx_custom_plugin directory
in the GitHub: onnx_custom_plugin repository. If using the Debian or RPM package,
the sample is located at /usr/src/tensorrt/samples/python/onnx_custom_plugin.
If using the tar or zip package, the sample is at <extracted_path>/samples/python/
onnx_custom_plugin.

Getting Started:

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: /onnx_custom_plugin/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/onnx_custom_plugin
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/onnx_custom_plugin/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/onnx_custom_plugin/README.md

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 13

Chapter 5. Character Recognition

Character recognition, especially on the MNIST dataset, is a classic machine learning
problem. The MNIST problem involves recognizing the digit that is present in an image of
a handwritten digit.

Some examples of TensorRT character recognition samples include the following:

‣ “Hello World” For TensorRT From ONNX

‣ Digit Recognition With Dynamic Shapes In TensorRT

‣ Specifying I/O Formats

‣ “Hello World” For TensorRT Using PyTorch And Python

‣ Algorithm Selection API Usage Example Based On MNIST

‣ Implementing CoordConv in TensorRT with a custom plugin using
sampleOnnxMnistCoordConvAC In TensorRT

5.1. “Hello World” For TensorRT From
ONNX

This sample, sampleOnnxMNIST, converts a model trained on the MNIST in ONNX format
to a TensorRT network and runs inference on the network. ONNX is a standard for
representing deep learning models that enables models to be transferred between
frameworks.

Where is this sample located?

This sample is maintained under the samples/sampleOnnxMNIST directory in the GitHub:
sampleOnnxMNIST repository. If using the Debian or RPM package, the sample is located
at /usr/src/tensorrt/samples/sampleOnnxMNIST. If using the tar or zip package, the
sample is at <extracted_path>/samples/sampleOnnxMNIST.

How do I get started?

For more information about getting started, refer to Getting Started With C++ Samples.
For specifics about this sample, refer to the GitHub: sampleOnnxMNIST/README.md file

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleOnnxMNIST
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleOnnxMNIST
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleOnnxMNIST/README.md

Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 14

for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

5.2. Digit Recognition With Dynamic
Shapes In TensorRT

This sample, sampleDynamicReshape, demonstrates how to use dynamic input
dimensions in TensorRT by creating an engine for resizing dynamically shaped inputs to
the correct size for an ONNX MNIST model.

What does this sample do?

This sample creates an engine for resizing an input with dynamic dimensions to a size
that an ONNX MNIST model can consume.

Specifically, this sample demonstrates how to:

‣ Create a network with dynamic input dimensions to act as a preprocessor for the
model

‣ Parse an ONNX MNIST model to create a second network

‣ Build engines for both networks and start calibration if running in INT8

‣ Run inference using both engines

For more information, refer to Working With Dynamic Shapes.

Where is this sample located?

This sample is maintained under the samples/sampleDynamicReshape directory in the
GitHub: sampleDynamicReshape repository. If using the Debian or RPM package, the
sample is located at /usr/src/tensorrt/samples/sampleDynamicReshape. If using the
tar or zip package, the sample is at <extracted_path>/samples/sampleDynamicReshape.

How do I get started?

For more information about getting started, refer to Getting Started With C++
Samples. For specifics about this sample, refer to the GitHub: sampleDynamicReshape/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

5.3. Specifying I/O Formats
This sample, sampleIOFormats, uses an ONNX model that was trained on the MNIST
dataset and performs engine building and inference using TensorRT. The correctness of
outputs is then compared to the golden reference.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleDynamicReshape
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleDynamicReshape/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleDynamicReshape/README.md

Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 15

What does this sample do?

Specifically, it shows how to explicitly specify I/O formats for TensorFormat::kLINEAR,
TensorFormat::kCHW2 and TensorFormat::kHWC8 for Float16 and INT8 precision.

ITensor::setAllowedFormats is invoked to specify which format is used.

Where is this sample located?

This sample is maintained under the directory samples/sampleIOFormats in the GitHub:
sampleIOFormats repository. If using the Debian or RPM package, the sample is located
at /usr/src/tensorrt/samples/sampleIOFormats. If using the tar or zip package, the
sample is at <extracted_path>/samples/sampleIOFormats.

How do I get started?

For more information about getting started, refer to Getting Started With C++ Samples.
For specifics about this sample, refer to the GitHub: sampleIOFormats/README.md file
for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

5.4. “Hello World” For TensorRT Using
PyTorch And Python

This sample, network_api_pytorch_mnist, trains a convolutional model on the MNIST
dataset and runs inference with a TensorRT engine.

Where Is This Sample Located?

This sample is maintained under the samples/python/network_api_pytorch_mnist
directory in the GitHub: network_api_pytorch_mnist repository. If using the
Debian or RPM package, the sample is located at /usr/src/tensorrt/samples/
python/network_api_pytorch. If using the tar or zip package, the sample is at
<extracted_path>/samples/python/network_api_pytorch.

Getting Started:

For more information about getting started, refer to Getting Started With
Python Samples. For specifics about this sample, refer to the GitHub: /
network_api_pytorch_mnist/README.md file for detailed information about how this
sample works, sample code, and step-by-step instructions on how to run and verify its
output.

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleIOFormats
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleIOFormats
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleIOFormats#readme
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/network_api_pytorch_mnist
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/network_api_pytorch_mnist/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/network_api_pytorch_mnist/README.md

Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 16

5.5. Algorithm Selection API Usage
Example Based On MNIST

This sample, sampleAlgorithmSelector, shows an example of how to use the algorithm
selection API based on MNIST.

What does this sample do?

This sample demonstrates the usage of IAlgorithmSelector to deterministically build
TensorRT engines. It also shows the usage of IAlgorithmSelector::selectAlgorithms
to define heuristics for selection of algorithms.

This sample uses a Caffe model that was trained on the MNIST dataset.

To verify whether the engine is operating correctly, this sample picks a 28x28 image of
a digit at random and runs inference on it using the engine it created. The output of the
network is a probability distribution on the digit, showing which digit is likely to be that in
the image.

Where is this sample located?

This sample is maintained under the samples/sampleAlgorithmSelector directory in
the GitHub: sampleAlgorithmSelector repository. If using the Debian or RPM package,
the sample is located at /usr/src/tensorrt/samples/sampleAlgorithmSelector.
If using the tar or zip package, the sample is at <extracted_path>/samples/
sampleAlgorithmSelector.

How do I get started?

For more information about getting started, refer to Getting Started With C++ Samples.
For specifics about this sample, refer to the GitHub: /uff_custom_plugin/README.md file
for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleAlgorithmSelector
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleAlgorithmSelector/README.md

Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 17

5.6. Implementing CoordConv
in TensorRT with a
custom plugin using
sampleOnnxMnistCoordConvAC In
TensorRT

This sample, sampleOnnxMnistCoordConvAC, converts a model trained on the MNIST
dataset in Open Neural Network Exchange (ONNX) format to a TensorRT network and
runs inference on the network. This model was trained in PyTorch and it contains custom
CoordConv layers instead of Conv layers.

The model with the CoordConvAC layers training script and code of the CoordConv layers
in PyTorch are here. The original model with the Conv layers is here.

This sample creates and runs a TensorRT engine on an ONNX model of MNIST trained
with CoordConv layers. It demonstrates how TensorRT can parse and import ONNX
models, as well as use plugins to run custom layers in neural networks.

Where is this sample located?

This sample is maintained under the samples/sampleOnnxMnistCoordConvAC
directory in the GitHub:sampleOnnxMnistCoordConvAC repository. If using the
Debian or RPM package, the sample is located at /usr/src/tensorrt/samples/
sampleOnnxMnistCoordConvAC. If using the tar or zip package, the sample is at
<extracted_path>/samples/sampleOnnxMnistCoordConvAC.

How do I get started?

For more information about getting started, refer to Getting Started With C++ Samples.
For specifics about this sample, refer to the GitHub:/sampleOnnxMnistCoordConvAC/
README.mdfile for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

https://github.com/denti/mnist-coordconv-pytorch/blob/master/main_coord_conv.py
https://github.com/pytorch/examples/tree/main/mnist
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleOnnxMnistCoordConvAC
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleOnnxMnistCoordConvAC/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleOnnxMnistCoordConvAC/README.md

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 18

Chapter 6. Image Classification

Image classification is the problem of identifying one or more objects present in
an image. Convolutional neural networks (CNN) are a popular choice for solving this
problem. They are typically composed of convolution and pooling layers.

Some examples of TensorRT image classification samples include the following:

‣ Performing Inference In INT8 Precision

‣ Introduction To Importing ONNX Models Into TensorRT Using Python

‣ TensorRT Inference Of ONNX Models With Custom Layers In Python

‣ Scalable And Efficient Image Classification With EfficientNet Networks In Python

6.1. Performing Inference In INT8
Precision

This sample, sampleINT8API, performs INT8 inference without using the INT8 calibrator;
using the user-provided per activation tensor dynamic range. INT8 inference is available
only on GPUs with compute capability 6.1 or 7.x and supports Image Classification ONNX
models such as ResNet-50, VGG19, and MobileNet.

What does this sample do?

Specifically, this sample demonstrates how to:

‣ Use nvinfer1::ITensor::setDynamicRange to set per tensor dynamic range

‣ Use nvinfer1::ILayer::setPrecison to set computation precision of a layer

‣ Use nvinfer1::ILayer::setOutputType to set output tensor data type of a layer

‣ Perform INT8 inference without using INT8 calibration

Where is this sample located?

This sample is maintained under the samples/sampleINT8API directory in the GitHub:
sampleINT8API repository. If using the Debian or RPM package, the sample is located at
/usr/src/tensorrt/samples/sampleINT8API. If using the tar or zip package, the sample
is at <extracted_path>/samples/sampleINT8API.

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8API
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8API

Image Classification

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 19

How do I get started?

For more information about getting started, refer to Getting Started With C++ Samples.
For specifics about this sample, refer to the GitHub: sampleINT8API/README.md file
for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

6.2. Introduction To Importing ONNX
Models Into TensorRT Using Python

This sample, introductory_parser_samples, is a Python sample that uses TensorRT and
its included ONNX parser, to perform inference with ResNet-50 models trained with
various different frameworks.

Where Is This Sample Located?

This sample is maintained under the samples/python/introductory_parser_samples
directory in the GitHub: introductory_parser_samples repository. If using the Debian
or RPM package, the sample is located at /usr/src/tensorrt/samples/python/
introductory_parser_samples. If using the tar or zip package, the sample is at
<extracted_path>/samples/python/introductory_parser_samples.

Getting Started:

For more information about getting started, refer to Getting Started With
Python Samples. For specifics about this sample, refer to the GitHub:
introductory_parser_samples/README.md file for detailed information about how this
sample works, sample code, and step-by-step instructions on how to run and verify its
output.

6.3. TensorRT Inference Of ONNX
Models With Custom Layers In
Python

This sample, onnx_packnet, uses TensorRT to perform inference with the PackNet
network. PackNet is a self-supervised monocular depth estimation network used in
autonomous driving.

What does this sample do?

This sample converts the PyTorch graph into ONNX and uses an ONNX-parser included in
TensorRT to parse the ONNX graph. The sample also demonstrates how to:

https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleINT8API/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/introductory_parser_samples
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/introductory_parser_samples/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/introductory_parser_samples/README.md

Image Classification

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 20

‣ Use custom layers (plugins) in an ONNX graph. These plugins can be automatically
registered in TensorRT by using REGISTER_TENSORRT_PLUGIN API.

‣ Use the ONNX GraphSurgeon (ONNX-GS) API to modify layers or subgraphs in the
ONNX graph. For this network, we transform Group Normalization, upsample and pad
layers to remove unnecessary nodes for inference with TensorRT.

Where is this sample located?

This sample is maintained under the samples/python/onnx_packnet directory in the
GitHub: onnx_packnet repository. If using the Debian or RPM package, the sample is
located at /usr/src/tensorrt/samples/python/onnx_packnet. If using the tar or zip
package, the sample is at <extracted_path>/samples/python/onnx_packnet.

How do I get started?

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: onnx_packnet/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

6.4. Scalable And Efficient Image
Classification With EfficientNet
Networks In Python

This sample, efficientnet, shows how to convert and execute a Google EfficientNet model
with TensorRT.

What does this sample do?

The sample supports models from the original EfficientNet implementation, as well as
newer EfficientNet V2 models. The sample code converts a TensorFlow saved model to
ONNX and then builds a TensorRT engine with it. Inference and accuracy validation can
also be performed with the helper scripts provided in the sample.

Where is this sample located?

This sample is maintained under the samples/python/efficientnet directory in the
GitHub: efficientnet repository. If using the Debian or RPM package, the sample is
located at /usr/src/tensorrt/samples/python/efficientnet. If using the tar or zip
package, the sample is at <extracted_path>/samples/python/efficientnet.

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/onnx_packnet
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/onnx_packnet/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/onnx_packnet/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/efficientnet

Image Classification

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 21

How do I get started?

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: efficientnet/README.md
file for detailed information about how this sample works, sample code, and step-by-
step instructions on how to run and verify its output.

https://github.com/NVIDIA/TensorRT/blob/main/samples/python/efficientnet/README.md

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 22

Chapter 7. Object Detection

Object detection is one of the classic computer vision problems. The task, for a given
image, is to detect, classify and localize all objects of interest. For example, imagine
that you are developing a self-driving car and you need to do pedestrian detection -
the object detection algorithm would then, for a given image, return bounding box
coordinates for each pedestrian in an image.

There have been many advances in recent years in designing models for object detection.

Some examples of TensorRT object detection samples include the following:

‣ Object Detection With The ONNX TensorRT Backend In Python

‣ Scalable And Efficient Object Detection With EfficientDet Networks In Python

‣ Object Detection with TensorFlow Object Detection API Model Zoo Networks in
Python

‣ Object Detection with Detectron 2 Mask R-CNN R50-FPN 3x Network in Python

7.1. Object Detection With The ONNX
TensorRT Backend In Python

This sample, yolov3_onnx, implements a full ONNX-based pipeline for performing
inference with the YOLOv3 network, with an input size of 608x608 pixels, including pre
and post-processing.

What Does This Sample Do?
This sample is based on the YOLOv3-608 paper.

Note: This sample is not supported on Ubuntu 14.04 and older. Additionally, the
yolov3_to_onnx.py script does not support Python 3.

Where Is This Sample Located?

This sample is maintained under the samples/python/yolov3_onnx directory in the
GitHub: yolov3_onnx repository. If using the Debian or RPM package, the sample is

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/yolov3_onnx

Object Detection

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 23

located at /usr/src/tensorrt/samples/python/yolov3_onnx. If using the tar or zip
package, the sample is at <extracted_path>/samples/python/yolov2_onnx.

Getting Started:

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: yolov3_onnx/README.md
file for detailed information about how this sample works, sample code, and step-by-
step instructions on how to run and verify its output.

7.2. Scalable And Efficient Object
Detection With EfficientDet
Networks In Python

This sample, efficientdet, demonstrates the conversion and execution of Google
EfficientDet models with TensorRT.

What does this sample do?

The code converts a TensorFlow checkpoint or saved model to ONNX, adapts the ONNX
graph for TensorRT compatibility, and then builds a TensorRT engine with it. Inference
and accuracy validation can then be performed using the corresponding scripts provided
in the sample.

Where is this sample located?

This sample is maintained under the samples/python/efficientdet directory in the
GitHub: efficientdet repository. If using the Debian or RPM package, the sample is
located at /usr/src/tensorrt/samples/python/efficientdet. If using the tar or zip
package, the sample is at <extracted_path>/samples/python/efficientdet

How do I get started?

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: efficientdet/README.md
file for detailed information about how this sample works, sample code, and step-by-
step instructions on how to run and verify its output.

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/yolov3_onnx
https://github.com/google/automl/tree/master/efficientdet
https://github.com/google/automl/tree/master/efficientdet
https://developer.nvidia.com/tensorrt
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/efficientdet
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/efficientdet/README.md

Object Detection

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 24

7.3. Object Detection with TensorFlow
Object Detection API Model Zoo
Networks in Python

This sample, tensorflow_object_detection_api, demonstrates the conversion and
execution of the Tensorflow Object Detection API Model Zoo models with TensorRT.

What does this sample do?

The code converts a TensorFlow checkpoint or saved model to ONNX, adapts the ONNX
graph for TensorRT compatibility, and then builds a TensorRT engine with it. Inference
and accuracy validation can then be performed using the corresponding scripts provided
in the sample.

Where is this sample located?

This sample is maintained under the samples/python/
tensorflow_object_detection_api directory in the GitHub:
tensorflow_object_detection_api repository. If using the Debian or RPM
package, the sample is located at /usr/src/tensorrt/samples/python/
tensorflow_object_detection_api. If using the tar or zip package, the sample is at
<extracted_path>/samples/python/tensorflow_object_detection_api.

How do I get started?

For more information about getting started, refer to Getting Started With
Python Samples. For specifics about this sample, refer to the GitHub:
tensorflow_object_detection_api/README.md file for detailed information about how
this sample works, sample code, and step-by-step instructions on how to run and verify
its output.

7.4. Object Detection with Detectron 2
Mask R-CNN R50-FPN 3x Network
in Python

This sample, detectron2, demonstrates the conversion and execution of Detectron 2
Model Zoo Mask R-CNN R50-FPN 3x model with TensorRT.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://developer.nvidia.com/tensorrt
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/tensorflow_object_detection_api
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/tensorflow_object_detection_api
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/tensorflow_object_detection_api/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/tensorflow_object_detection_api/README.md
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md#coco-instance-segmentation-baselines-with-mask-r-cnn
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md#coco-instance-segmentation-baselines-with-mask-r-cnn
https://developer.nvidia.com/tensorrt

Object Detection

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 25

What does this sample do?

The project provides steps to export Detectron 2 model to ONNX, code adapts the ONNX
graph for TensorRT compatibility, and then builds a TensorRT engine with it. Inference
and accuracy validation can then be performed using the corresponding scripts provided
in the sample.

Where is this sample located?

This sample is maintained under the samples/python/detectron2 directory in the
GitHub: detectron2 repository. If using the Debian or RPM package, the sample is located
at /usr/src/tensorrt/samples/python/detectron2. If using the tar or zip package, the
sample is at <extracted_path>/samples/python/detectron2.

How do I get started?

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: detectron2/README.md
file for detailed information about how this sample works, sample code, and step-by-
step instructions on how to run and verify its output.

Note: This sample cannot be run on Jetson platforms as torch.distributed is not
available. To check whether your platform supports torch.distributed, open a Python
shell and confirm that torch.distributed.is_available() returns True.

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/detectron2
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/detectron2/README.md

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 26

Chapter 8. Other Features

8.1. Working With ONNX Models With
Named Input Dimensions

This sample, sampleNamedDimensions, illustrates the feature of named input
dimensions.

What does this sample do?

Specifically, a simple one-layer ONNX model with named dimension parameters in the
model input is generated and then passed to TensorRT for parsing and engine building.

Where is this sample located?

This sample is maintained under the samples/sampleNamedDimensions directory in
the GitHub: sampleNamedDimensions repository. If using the Debian or RPM package,
the sample is located at /usr/src/tensorrt/samples/sampleNamedDimensions.
If using the tar or zip package, the sample is at <extracted_path>/samples/
sampleNamedDimensions.

How do I get started?

For more information about getting started, refer to Getting Started With C++ Samples.
For specifics about this sample, refer to the GitHub: sampleNamedDimensions/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

8.2. Usage of Progress Monitor During
Engine Build

sampleProgressMonitor and simple_progress_reporter use the Progress Monitor during
engine build.

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleNamedDimensions
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleNamedDimensions/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleNamedDimensions/README.md

Other Features

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 27

What do these samples do?

sampleProgressMonitor is a C++ sample that shows an example of how to use the
progress monitor API. This sample demonstrates the usage of IProgressMonitor to
report the status of TensorRT engine-building operations.

simple_progress_reporter is a Python sample that uses TensorRT and its included ONNX
parser, to perform inference with ResNet-50 models saved in ONNX format. It displays
animated progress bars while TensorRT builds the engine.

Where are these samples located?

sampleProgressMonitor is maintained under the samples/sampleProgressMonitor
directory in the GitHub: sampleProgressMonitor repository. If using the Debian
or RPM package, the sample is located at /usr/src/tensorrt/samples/
sampleProgressMonitor. If using the tar or zip package, the sample is at
<extracted_path>/samples/sampleProgressMonitor.

simple_progress_reporter sample is maintained under the samples/python/
simple_progress_reporter directory in the GitHub: simple_progress_reporter
repository. If using the Debian or RPM package, the sample is located at /usr/src/
tensorrt/samples/python/simple_progress_reporter. If using the tar or zip package,
the sample is at <extracted_path>/samples/python/simple_progress_reporter.

How do I get started?

For more information about getting started, refer to Getting Started With C++ Samples
and Getting Started With Python Samples. For specifics about these samples, refer to
the GitHub: sampleProgressMonitor/README.md and GitHub: simple_progress_reporter/
README.md file for detailed information about how these samples work, sample code,
and step-by-step instructions on how to run them.

8.3. Python-Based TensorRT Plugins

What does this sample do?

python_plugin showcases the Python-based plugin definitions in TensorRT. No changes
to existing TensorRT APIs have been made to deliver this feature, so using the updated
bindings should not break any existing code.

circ_pad_plugin_multi_tactic.py demonstrates the custom tactic functionality and
timing caching functionality provided by IPluginV3.

https://github.com/NVIDIA/TensorRT/tree/release/9.1/samples/sampleProgressMonitor
https://github.com/NVIDIA/TensorRT/tree/release/9.1/samples/python/simple_progress_monitor
https://github.com/NVIDIA/TensorRT/blob/release/9.1/samples/sampleProgressMonitor/README.md
https://github.com/NVIDIA/TensorRT/blob/release/9.1/samples/python/simple_progress_monitor/README.md
https://github.com/NVIDIA/TensorRT/blob/release/9.1/samples/python/simple_progress_monitor/README.md

Other Features

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 28

Where is this sample located?

This sample is maintained under the samples/python/python_plugin directory in the
GitHub: python_plugin repository. If using the Debian or RPM package, the sample is
located at /usr/src/tensorrt/samples/python/python_plugin. If using the tar or zip
package, the sample is at <extracted_path>/samples/python/python_plugin.

How do I get started?

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: python_plugin/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

8.4. Building and Refitting Weight-
Stripping Engines

This sample, sample_weight_stripping, is a Python sample that showcases building and
refitting weight-stripping engines from ONNX models in TensorRT.

Where is this sample located?

This sample is maintained under the samples/python/sample_weight_stripping
directory in the GitHub: sample_weight_stripping repository. If using the Debian
or RPM package, the sample is located at /usr/src/tensorrt/samples/python/
sample_weight_stripping. If using the tar or zip package, the sample is at
<extracted_path>/samples/python/sample_weight_stripping.

How do I get started?

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: sample_weight_stripping/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

8.5. Plugin with Data-Dependent
Output Shapes: NonZero

This sample, sampleNonZeroPlugin, is a C++ sample that showcases, by taking the
NonZero operator as an example, how to implement a TensorRT plugin with data-
dependent output shapes, using the IPluginV3 interface.

https://github.com/NVIDIA/TensorRT/tree/release/9.1/samples/python/python_plugin
https://github.com/NVIDIA/TensorRT/blob/release/9.1/samples/python/python_plugin/README.md
https://github.com/NVIDIA/TensorRT/blob/release/9.1/samples/python/python_plugin/README.md
https://github.com/NVIDIA/TensorRT/blob/release/10.0/samples/python/sample_weight_stripping
https://github.com/NVIDIA/TensorRT/blob/release/10.0/samples/python/sample_weight_stripping/README.md
https://github.com/NVIDIA/TensorRT/blob/release/10.0/samples/python/sample_weight_stripping/README.md

Other Features

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 29

Where is this sample located?

This sample is maintained under the samples/sampleNonZeroPlugin directory in the
GitHub: sampleNonZeroPlugin repository. If using the Debian or RPM package, the
sample is located at /usr/src/tensorrt/samples/sampleNonZeroPlugin. If using the tar
or zip package, the sample is at <extracted_path>/samples/sampleNonZeroPlugin.

How do I get started?

For more information about getting started, refer to Getting Started With C++ Samples.
For specifics about this sample, refer to the GitHub: sampleNonZeroPlugin/README.md
file for detailed information about how this sample works, sample code, and step-by-
step instructions on how to run and verify its output.

8.6. Python Plugin with Data-
Dependent Output Shapes:
NonZero

This sample, non_zero_plugin, is a Python sample that showcases, by taking the NonZero
operator as an example, how to implement a TensorRT plugin with data-dependent
output shapes, using the IPluginV3 interface.

What does this sample do?

It is a Python-based version of the C++ sample sampleNonZeroPlugin.

Where is this sample located?

This sample is maintained under the samples/python/non_zero_plugin directory in the
GitHub: non_zero_plugin repository. If using the Debian or RPM package, the sample is
located at /usr/src/tensorrt/samples/python/non_zero_plugin. If using the tar or zip
package, the sample is at <extracted_path>/samples/python/non_zero_plugin.

How do I get started?

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: non_zero_plugin/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

https://github.com/NVIDIA/TensorRT/blob/release/10.0/samples/sampleNonZeroPlugin
https://github.com/NVIDIA/TensorRT/blob/release/10.0/samples/sampleNonZeroPlugin/README.md
https://github.com/NVIDIA/TensorRT/tree/release/10.1/samples/python/non_zero_plugin
https://github.com/NVIDIA/TensorRT/tree/release/10.1/samples/python/non_zero_plugin/README.md
https://github.com/NVIDIA/TensorRT/tree/release/10.1/samples/python/non_zero_plugin/README.md

Other Features

NVIDIA TensorRT Samples TRM-10259-001_v10.4.0 | 30

8.7. Using a Plugin with Aliased I/O to
Realize In-Place Updates

This sample, aliased_io_plugin, is a Python sample that showcases, by taking a plugin for
an in-place scatter-add operation as an example, how to use aliased I/O with TensorRT
plugins.

Where is this sample located?

This sample is maintained under the samples/python/aliased_io_plugin directory
in the GitHub: aliased_io_plugin repository. If using the Debian or RPM package, the
sample is located at /usr/src/tensorrt/samples/python/aliased_io_plugin. If
using the tar or zip package, the sample is at <extracted_path>/samples/python/
aliased_io_plugin.

How do I get started?

For more information about getting started, refer to Getting Started With Python
Samples. For specifics about this sample, refer to the GitHub: aliased_io_plugin/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

https://github.com/NVIDIA/TensorRT/tree/release/10.4/samples/python/aliased_io_plugin
https://github.com/NVIDIA/TensorRT/tree/release/10.4/samples/python/aliased_io_plugin/README.md
https://github.com/NVIDIA/TensorRT/tree/release/10.4/samples/python/aliased_io_plugin/README.md

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of
such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Arm

Arm, AMBA and Arm Powered are registered trademarks of Arm Limited. Cortex, MPCore and Mali are trademarks of Arm Limited. "Arm" is used to represent
Arm Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France
SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS and Arm Sweden AB.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Blackberry/QNX

Copyright © 2020 BlackBerry Limited. All rights reserved.

Trademarks, including but not limited to BLACKBERRY, EMBLEM Design, QNX, AVIAGE, MOMENTICS, NEUTRINO and QNX CAR are the trademarks or
registered trademarks of BlackBerry Limited, used under license, and the exclusive rights to such trademarks are expressly reserved.

Google

Android, Android TV, Google Play and the Google Play logo are trademarks of Google, Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and BlueField, CUDA, DALI, DRIVE, Hopper, JetPack, Jetson AGX Xavier, Jetson Nano, Maxwell, NGC, Nsight, Orin, Pascal, Quadro,
Tegra, TensorRT, Triton, Turing and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018-2024 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	1.1. Getting Started With C++ Samples
	1.2. Getting Started With Python Samples

	Cross Compiling Samples
	2.1. Prerequisites
	2.2. Building Samples For QNX AArch64
	2.3. Building Samples For Linux AArch64
	2.4. Building Samples For Linux SBSA

	Building Samples Using Static Libraries
	3.1. Limitations

	Machine Comprehension
	4.1. Building An RNN Network Layer By Layer
	4.2. Refitting An Engine Built From An ONNX Model In Python
	4.3. Writing a TensorRT Plugin to Use a Custom Layer in Your ONNX Model

	Character Recognition
	5.1. “Hello World” For TensorRT From ONNX
	5.2. Digit Recognition With Dynamic Shapes In TensorRT
	5.3. Specifying I/O Formats
	5.4. “Hello World” For TensorRT Using PyTorch And Python
	5.5. Algorithm Selection API Usage Example Based On MNIST
	5.6. Implementing CoordConv in TensorRT with a custom plugin using sampleOnnxMnistCoordConvAC In TensorRT

	Image Classification
	6.1. Performing Inference In INT8 Precision
	6.2. Introduction To Importing ONNX Models Into TensorRT Using Python
	6.3. TensorRT Inference Of ONNX Models With Custom Layers In Python
	6.4. Scalable And Efficient Image Classification With EfficientNet Networks In Python

	Object Detection
	7.1. Object Detection With The ONNX TensorRT Backend In Python
	7.2. Scalable And Efficient Object Detection With EfficientDet Networks In Python
	7.3. Object Detection with TensorFlow Object Detection API Model Zoo Networks in Python
	7.4. Object Detection with Detectron 2 Mask R-CNN R50-FPN 3x Network in Python

	Other Features
	8.1. Working With ONNX Models With Named Input Dimensions
	8.2. Usage of Progress Monitor During Engine Build
	8.3. Python-Based TensorRT Plugins
	8.4. Building and Refitting Weight-Stripping Engines
	8.5. Plugin with Data-Dependent Output Shapes: NonZero
	8.6. Python Plugin with Data-Dependent Output Shapes: NonZero
	8.7. Using a Plugin with Aliased I/O to Realize In-Place Updates

