
DU-10313-001_v10.6.0 | October 2024

NVIDIA TensorRT

Quick Start Guide | NVIDIA Docs

NVIDIA TensorRT DU-10313-001_v10.6.0 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. Installing TensorRT..3
2.1. Container Installation...3

2.2. Debian Installation...3

2.3. Python Package Index Installation...5

Chapter 3. The TensorRT Ecosystem... 8
3.1. Basic TensorRT Workflow...8

3.2. Conversion and Deployment Options..8

3.2.1. Conversion...9

3.2.2. Deployment.. 10

3.3. Selecting the Correct Workflow... 10

Chapter 4. Example Deployment Using ONNX..11
4.1. Export the Model.. 11

4.2. Select a Precision..12

4.3. Convert the Model..12

4.4. Deploy the Model.. 13

Chapter 5. ONNX Conversion and Deployment.. 14
5.1. Exporting with ONNX.. 14

5.1.1. Exporting to ONNX from PyTorch..14

5.2. Converting ONNX to a TensorRT Engine...15

5.3. Deploying a TensorRT Engine to the Python Runtime API.. 16

Chapter 6. Using the TensorRT Runtime API... 17
6.1. Setting Up the Test Container and Building the TensorRT Engine.................................... 17

6.2. Running an Engine in C++...18

6.3. Running an Engine in Python.. 20

Chapter 7. Additional Resources...22
7.1. Glossary... 23

NVIDIA TensorRT DU-10313-001_v10.6.0 | iii

List of Figures

Figure 1. Typical Deep Learning Development Cycle Using TensorRT.. 1

Figure 2. Main Options Available for Conversion and Deployment.. 9

Figure 3. Deployment Process Using ONNX..11

Figure 4. Exporting ONNX from PyTorch..15

Figure 5. Test Image, Size 1282x1026... 18

Figure 6. Test Image, Size 1282x1026... 20

NVIDIA TensorRT DU-10313-001_v10.6.0 | iv

List of Tables

Table 1. Additional TensorRT Resources... 22

NVIDIA TensorRT DU-10313-001_v10.6.0 | 1

Chapter 1. Introduction

NVIDIA® TensorRT™ is an SDK for optimizing trained deep-learning models to enable high-
performance inference. TensorRT contains a deep learning inference optimizer and a
runtime for execution.

After you have trained your deep learning model in a framework of your choice, TensorRT
enables you to run it with higher throughput and lower latency.

Figure 1. Typical Deep Learning Development Cycle Using TensorRT

This guide covers the basic installation, conversion, and runtime options available in
TensorRT and when they are best applied.

Here is a quick summary of each chapter:
Installing TensorRT

We provide multiple, simple ways of installing TensorRT.
The TensorRT Ecosystem

We describe a simple flowchart to show the different types of conversion and
deployment workflows and discuss their pros and cons.

Example Deployment Using ONNX
This chapter looks at the basic steps to convert and deploy your model. It introduces
concepts used in the rest of the guide and walks you through the decisions you must
make to optimize inference execution

Introduction

NVIDIA TensorRT DU-10313-001_v10.6.0 | 2

ONNX Conversion and Deployment
We provide a broad overview of ONNX exports from PyTorch and pointers to Jupyter
notebooks that provide more detail.

Using the TensorRT Runtime API
This section provides a tutorial to illustrate the semantic segmentation of images
using the TensorRT C++ and Python API.

For a higher-level application that allows you to quickly deploy your model, refer to the
NVIDIA Triton™ Inference Server Quick Start.

https://github.com/triton-inference-server/server/blob/r20.12/docs/quickstart.md

NVIDIA TensorRT DU-10313-001_v10.6.0 | 3

Chapter 2. Installing TensorRT

There are several installation methods for TensorRT. This chapter covers the most
common options using:

‣ a container

‣ a Debian file, or

‣ a standalone pip wheel file.

For other ways to install TensorRT, refer to the NVIDIA TensorRT Installation Guide.

For advanced users who are already familiar with TensorRT and want to get their
application running quickly, who are using an NVIDIA CUDA® container with cuDNN
included, or who want to set up automation, follow the network repo installation
instructions (refer to Using The NVIDIA Machine Learning Network Repo For Debian
Installation).

2.1. Container Installation
This section introduces the customized virtual machine images (VMI) that NVIDIA
publishes and maintains regularly. NVIDIA NGC™ certified public cloud platform users can
access specific setup instructions on how to browse the NGC website and identify an
available NGC container and tag to run on their VMI.

On each of the major cloud providers, NVIDIA publishes customized GPU-optimized
VMIs with regular updates to OS and drivers. These VMIs are optimized for performance
on the latest generations of NVIDIA GPUs. Using these VMIs to deploy NGC-hosted
containers, models, and resources on cloud-hosted virtual machine instances with H100,
A100, V100, or T4 GPUs ensures optimum performance for deep learning, machine
learning, and HPC workloads.

To deploy a TensorRT container on a public cloud, follow the steps associated with your
NGC-certified public cloud platform.

2.2. Debian Installation
This section contains instructions for a developer installation. This installation method is
for new users or users who want the complete developer installation, including samples
and documentation for both the C++ and Python APIs.

https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#maclearn-net-repo-install
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#maclearn-net-repo-install
http://ngc.nvidia.com/
https://docs.nvidia.com/ngc/ngc-deploy-public-cloud/index.html

Installing TensorRT

NVIDIA TensorRT DU-10313-001_v10.6.0 | 4

For advanced users who are already familiar with TensorRT and want to get their
application running quickly, are using an NVIDIA CUDA container, or want to set
automation, follow the network repo installation instructions (refer to Using The NVIDIA
CUDA Network Repo For Debian Installation).

Note: When installing Python packages using this method, you must manually install
TensorRT’s Python dependencies with pip.

Ensure that you have the following dependencies installed.

‣ CUDA

‣ 12.6 update 2

‣ 12.5 update 1

‣ 12.4 update 1

‣ 12.3 update 2

‣ 12.2 update 2

‣ 12.1 update 1

‣ 12.0 update 1

‣ 11.8

‣ 11.7 update 1

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 3

‣ cuDNN 8.9.7 (Optional and not required for lean or dispatch runtime installations.)

 1. Install CUDA according to the CUDA installation instructions.
 2. Download the TensorRT local repo file that matches the Ubuntu version and CPU

architecture that you are using.
 3. Install TensorRT from the Debian local repo package. Replace ubuntuxx04, 10.x.x,

and cuda-x.x with your specific OS, TensorRT, and CUDA versions. For ARM SBSA
and JetPack users, replace amd64 with arm64. JetPack users also need to replace nv-
tensorrt-local-repo with nv-tensorrt-local-tegra-repo.
os="ubuntuxx04"
tag="10.x.x-cuda-x.x"
sudo dpkg -i nv-tensorrt-local-repo-${os}-${tag}_1.0-1_amd64.deb
sudo cp /var/nv-tensorrt-local-repo-${os}-${tag}/*-keyring.gpg /usr/share/keyrings/
sudo apt-get update

For the full C++ and Python runtimes
sudo apt-get install tensorrt

https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#maclearn-net-repo-install
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#maclearn-net-repo-install
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-897/release-notes/index.html#rel-897
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#downloading

Installing TensorRT

NVIDIA TensorRT DU-10313-001_v10.6.0 | 5

For the lean runtime only, instead of tensorrt
sudo apt-get install libnvinfer-lean10
sudo apt-get install libnvinfer-vc-plugin10

For lean runtime Python package
sudo apt-get install python3-libnvinfer-lean

For the dispatch runtime only, instead of tensorrt
sudo apt-get install libnvinfer-dispatch10
sudo apt-get install libnvinfer-vc-plugin10

For dispatch runtime Python package
sudo apt-get install python3-libnvinfer-dispatch

For all TensorRT Python packages without samples
python3 -m pip install numpy
sudo apt-get install python3-libnvinfer-dev

The following additional packages will be installed:
python3-libnvinfer
python3-libnvinfer-lean
python3-libnvinfer-dispatch

If you want to install Python packages only for the lean or dispatch runtime,
specify these individually rather than installing the dev package.

If you require Python modules for a Python version that is not the system's default
Python version, then you should instead install the *.whl files directly from the tar
package.

If you want to run samples that require onnx-graphsurgeon or use the Python
module for your project

python3 -m pip install numpy onnx onnx-graphsurgeon

 4. Verify the installation.
For the full TensorRT release

dpkg-query -W tensorrt

You should see something similar to the following:
tensorrt 10.6.0.x-1+cuda12.6

For the lean runtime or the dispatch runtime only
dpkg-query -W "*nvinfer*"

You should see all related libnvinfer* files you installed.

2.3. Python Package Index Installation
This section contains instructions for installing TensorRT from the Python Package
Index.

When installing TensorRT from the Python Package Index, you’re not required to
install TensorRT from a .tar, .deb, .rpm, or .zip package. All the necessary libraries
are included in the Python package. However, the header files, which may be needed
to access TensorRT C++ APIs or compile plugins written in C++, are not included.
Additionally, if you already have the TensorRT C++ libraries installed, using the Python
package index version will install a redundant copy of these libraries, which may not be
desirable. Refer to Tar File Installation for information on manually installing TensorRT

https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar

Installing TensorRT

NVIDIA TensorRT DU-10313-001_v10.6.0 | 6

wheels that do not bundle the C++ libraries. You can stop after this section if you only
need Python support.

The tensorrt Python wheel files currently support versions 3.8 to 3.12 and will not work
with other versions. Linux and Windows operating systems and x86_64 and ARM SBSA
CPU architectures are presently supported. The Linux x86 Python wheels are expected
to work on RHEL 8 or newer and Ubuntu 20.04 or newer. The Linux SBSA Python wheels
are expected to work on Ubuntu 20.04 or newer. The Windows x64 Python wheels are
expected to work on Windows 10 or newer.

Note: If you do not have root access, you are running outside a Python virtual environment,
or for any other reason you would prefer a user installation, then append --user to any of
the pip commands provided.

 1. Ensure the pip Python module is up-to-date and the wheel Python module is
installed before proceeding, or you may encounter issues during the TensorRT Python
installation.
python3 -m pip install --upgrade pip
python3 -m pip install wheel

 2. Install the TensorRT Python wheel.

Note: If upgrading to a newer version of TensorRT, you may need to run the command
pip cache remove "tensorrt*" to ensure the tensorrt meta packages are rebuilt
and the latest dependent packages are installed.

python3 -m pip install --upgrade tensorrt

The above pip command will pull in all the required CUDA libraries in Python wheel
format from PyPI because they are dependencies of the TensorRT Python wheel.
Also, it will upgrade tensorrt to the latest version if you have a previous version
installed.

A TensorRT Python Package Index installation is split into multiple modules:

‣ TensorRT libraries (tensorrt-libs)

‣ Python bindings matching the Python version in use (tensorrt-bindings)

‣ Frontend source package, which pulls in the correct version of dependent
TensorRT modules from pypi.nvidia.com (tensorrt)

‣ You can append -cu11 or -cu12 to any Python module if you require a different
CUDA major version. When unspecified, the TensorRT Python meta-packages
default to the CUDA 12.x variants, the latest CUDA version supported by
TensorRT. For example:
python3 -m pip install tensorrt-cu11 tensorrt-lean-cu11
 tensorrt-dispatch-cu11

Optionally, install the TensorRT lean or dispatch runtime wheels, which are similarly
split into multiple Python modules. If you only use TensorRT to run pre-built version
compatible engines, you can install these wheels without the regular TensorRT wheel.
python3 -m pip install --upgrade tensorrt-lean
python3 -m pip install --upgrade tensorrt-dispatch

Installing TensorRT

NVIDIA TensorRT DU-10313-001_v10.6.0 | 7

 3. To verify that your installation is working, use the following Python commands:

‣ Import the tensorrt Python module.

‣ Confirm that the correct version of TensorRT has been installed.

‣ Create a Builder object to verify that your CUDA installation is working.

python3
>>> import tensorrt
>>> print(tensorrt.__version__)
>>> assert tensorrt.Builder(tensorrt.Logger())

Use a similar procedure to verify that the lean and dispatch modules work as
expected:
python3
>>> import tensorrt_lean as trt
>>> print(trt.__version__)
>>> assert trt.Runtime(trt.Logger())

python3
>>> import tensorrt_dispatch as trt
>>> print(trt.__version__)
>>> assert trt.Runtime(trt.Logger())

Suppose the final Python command fails with an error message similar to the error
message below. In that case, you may not have the NVIDIA driver installed, or the
NVIDIA driver may not be working properly. If you are running inside a container, try
starting from one of the nvidia/cuda:x.y-base-<os> containers.
[TensorRT] ERROR: CUDA initialization failure with error 100. Please check your CUDA
 installation: ...

If the Python commands above worked, you should now be able to run any of the
TensorRT Python samples to confirm further that your TensorRT installation is
working. For more information about TensorRT samples, refer to the NVIDIA TensorRT
Sample Support Guide.

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html

NVIDIA TensorRT DU-10313-001_v10.6.0 | 8

Chapter 3. The TensorRT Ecosystem

TensorRT is a large and flexible project. It can handle a variety of conversion and
deployment workflows, and which workflow is best for you will depend on your specific
use case and problem setting.

TensorRT provides several deployment options, but all workflows involve converting your
model to an optimized representation, which TensorRT refers to as an engine. Building a
TensorRT workflow for your model involves picking the right deployment option and the
right combination of parameters for engine creation.

3.1. Basic TensorRT Workflow
You must follow five basic steps to convert and deploy your model:

 1. Export the model
 2. Select a precision
 3. Convert the model
 4. Deploy the model

It is easiest to understand these steps in the context of a complete, end-to-end
workflow: In Example Deployment Using ONNX, we will cover a simple framework-
agnostic deployment workflow to convert and deploy a trained ResNet-50 model to
TensorRT using ONNX conversion and TensorRT’s standalone runtime.

3.2. Conversion and Deployment
Options

The TensorRT ecosystem breaks down into two parts:

 1. You can follow various paths to convert their models to optimized TensorRT engines.
 2. The various runtimes users can target with TensorRT when deploying their optimized

TensorRT engines.

The TensorRT Ecosystem

NVIDIA TensorRT DU-10313-001_v10.6.0 | 9

Figure 2. Main Options Available for Conversion and Deployment

3.2.1. Conversion
There are three main options for converting a model with TensorRT:

‣ using Torch-TensorRT

‣ automatic ONNX conversion from .onnx files

‣ manually constructing a network using the TensorRT API (either in C++ or Python)

The PyTorch integration (Torch-TensorRT) provides model conversion and a high-level
runtime API for converting PyTorch models. It can fall back to PyTorch implementations
where TensorRT does not support a particular operator. For more information about
supported operators, refer to ONNX Operator Support.

A more performant option for automatic model conversion and deployment is to
convert using ONNX. ONNX is a framework-agnostic option that works with models in
TensorFlow, PyTorch, and more. TensorRT supports automatic conversion from ONNX
files using the TensorRT API or trtexec, which we will use in this guide. ONNX conversion
is all-or-nothing, meaning all operations in your model must be supported by TensorRT
(or you must provide custom plug-ins for unsupported operations). The result of ONNX
conversion is a singular TensorRT engine that allows less overhead than using Torch-
TensorRT.

For the most performance and customizability possible, you can manually construct
TensorRT engines using the TensorRT network definition API. This essentially involves
building an identical network to your target model in TensorRT operation by operation,
using only TensorRT operations. After a TensorRT network is created, you will export
just the weights of your model from the framework and load them into your TensorRT
network. For this approach, more information about constructing the model using
TensorRT's network definition API can be found here:

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#supported-ops

The TensorRT Ecosystem

NVIDIA TensorRT DU-10313-001_v10.6.0 | 10

‣ Creating A Network Definition From Scratch Using The C++ API

‣ Creating A Network Definition From Scratch Using The Python API

3.2.2. Deployment
There are three options for deploying a model with TensorRT:

‣ deploying within PyTorch

‣ using the standalone TensorRT runtime API

‣ using NVIDIA Triton Inference Server

Your choice for deployment will determine the steps required to convert the model.

When using Torch-TensorRT, the most common deployment option is simply to deploy
within PyTorch. Torch-TensorRT conversion results in a PyTorch graph with TensorRT
operations inserted into it. This means you can run Torch-TensorRT models like any other
PyTorch model using Python.

The TensorRT runtime API allows for the lowest overhead and finest-grained control.
However, operators that TensorRT does not natively support must be implemented as
plug-ins (a library of prewritten plug-ins is available here). The most common path for
deploying with the runtime API is using ONNX export from a framework, which this guide
covers in the following section.

Last, NVIDIA Triton Inference Server is open-source inference-serving software that
enables teams to deploy trained AI models from any framework (TensorFlow, TensorRT,
PyTorch, ONNX Runtime, or a custom framework), from local storage or Google Cloud
Platform or AWS S3 on any GPU- or CPU-based infrastructure (cloud, data center, or
edge). It is a flexible project with several unique features - such as concurrent model
execution of both heterogeneous models and multiple copies of the same model
(multiple model copies can reduce latency further) as well as load balancing and model
analysis. It is a good option if you must serve your models over HTTP - such as in a cloud
inferencing solution. You can find the NVIDIA Triton Inference Server home page and the
documentation here.

3.3. Selecting the Correct Workflow
Two of the most important factors in selecting how to convert and deploy your model
are:

 1. your choice of framework.
 2. your preferred TensorRT runtime to target.

For more information on the runtime options available, refer to the Jupyter notebook
included with this guide on Understanding TensorRT Runtimes.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#create_network_c
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/#create_network_python
https://github.com/NVIDIA/TensorRT/tree/main/plugin
https://developer.nvidia.com/nvidia-triton-inference-server
https://github.com/triton-inference-server/server/blob/r22.01/README.md#documentation
https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/5.%20Understanding%20TensorRT%20Runtimes.ipynb

NVIDIA TensorRT DU-10313-001_v10.6.0 | 11

Chapter 4. Example Deployment
Using ONNX

ONNX is a framework-agnostic model format that can be exported from most major
frameworks, including TensorFlow and PyTorch. TensorRT provides a library for directly
converting ONNX into a TensorRT engine through the ONNX-TRT parser.

This section will go through the five steps to convert a pre-trained ResNet-50 model
from the ONNX model zoo into a TensorRT engine. Visually, this is the process we will
follow:

Figure 3. Deployment Process Using ONNX

After you understand the basic steps of the TensorRT workflow, you can dive into the
more in-depth Jupyter notebooks (refer to the following topics) for using TensorRT using
Torch-TensorRT or ONNX. Using the PyTorch framework, you can follow along in the
introductory Jupyter notebook here, which covers these workflow steps in more detail.

4.1. Export the Model
The main automatic path for TensorRT conversion requires different model formats to
successfully convert a model: The ONNX path requires that models be saved in ONNX.

https://github.com/onnx/onnx/blob/main/docs/IR.md
https://github.com/onnx/onnx-tensorrt
https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/0.%20Running%20This%20Guide.ipynb

Example Deployment Using ONNX

NVIDIA TensorRT DU-10313-001_v10.6.0 | 12

We are using ONNX in this example, so we need an ONNX model. We will use ResNet-50,
a basic backbone vision model that can be used for various purposes. We will perform
classification using a pre-trained ResNet-50 ONNX model included with the ONNX model
zoo.

Download a pre-trained ResNet-50 model from the ONNX model zoo using wget and
untar it.
wget https://download.onnxruntime.ai/onnx/models/resnet50.tar.gz
tar xzf resnet50.tar.gz

This will unpack a pretrained ResNet-50 .onnx file to the path resnet50/model.onnx.

You can see how we export ONNX models that will work with this same deployment
workflow in Exporting to ONNX from PyTorch.

4.2. Select a Precision
Inference typically requires less numeric precision than training. With some care, lower
precision can give you faster computation and lower memory consumption without
sacrificing any meaningful accuracy. TensorRT supports FP32, FP16, FP8, BF16, FP8,
INT64, INT32, INT8 and INT4 precisions.

TensorRT has two types of systems:

‣ Weak typing allows TensorRT’s optimizer freedom to reduce precision to improve
performance.

‣ Strong typing requires TensorRT to statically infer a type for each tensor in the
network based on the types of the inputs and then adhere strictly to those types,
which is useful if you have already reduced precision before export, and want
TensorRT to conform.

For more information, refer to Strong Typing vs Weak Typing.

This guide demonstrates the use of a weakly typed network.

FP32 is the default training precision of most frameworks, so we will start by using FP32
for inference here.
import numpy as np

PRECISION = np.float32

We set the precision that our TensorRT engine should use at runtime, which we will do in
the next section.

4.3. Convert the Model
The ONNX conversion path is one of the most universal and performant paths for
automatic TensorRT conversion. It works for TensorFlow, PyTorch, and many other
frameworks.

https://github.com/onnx/models
https://github.com/onnx/models
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#strong-vs-weak-typing

Example Deployment Using ONNX

NVIDIA TensorRT DU-10313-001_v10.6.0 | 13

There are several tools to help you convert models from ONNX to a TensorRT engine. One
common approach is to use trtexec - a command-line tool included with TensorRT that
can, among other things, convert ONNX models to TensorRT engines and profile them.

We can run this conversion as follows:
trtexec --onnx=resnet50/model.onnx --saveEngine=resnet_engine_intro.engine

This will convert our resnet50/model.onnx to a TensorRT engine named
resnet_engine_intro.engine.

Note:

‣ To tell trtexec where to find our ONNX model, run:
--onnx=resnet50/model.onnx

‣ To tell trtexec where to save our optimized TensorRT engine, run:
--saveEngine=resnet_engine_intro.engine

4.4. Deploy the Model
After we have our TensorRT engine created successfully, we must decide how to run it
with TensorRT.

There are two types of TensorRT runtimes: a standalone runtime that has C++ and
Python bindings, and a native integration into PyTorch. In this section, we will use a
simplified wrapper (ONNXClassifierWrapper) which calls the standalone runtime. We will
generate a batch of randomized "dummy" data and use our ONNXClassifierWrapper to
run inference on that batch. For more information on TensorRT runtimes, refer to the
Understanding TensorRT Runtimes Jupyter notebook.

 1. Set up the ONNXClassifierWrapper (using the precision we determined in Select a
Precision).
from onnx_helper import ONNXClassifierWrapper
trt_model = ONNXClassifierWrapper("resnet_engine.trt", target_dtype = PRECISION)

 2. Generate a dummy batch.
input_shape = (1, 3, 224, 224)
dummy_input_batch = np.zeros(input_shape , dtype = PRECISION)

 3. Feed a batch of data into our engine and get our predictions.
predictions = trt_model.predict(dummy_input_batch)

Note that the wrapper does not load and initialize the engine until running the first
batch, so this batch will generally take a while. For more information about batching,
refer to Batching.

For more information about TensorRT APIs, refer to the NVIDIA TensorRT API
Documentation. For more information on the ONNXClassifierWrapper, see its
implementation on GitHub here.

https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/5.%20Understanding%20TensorRT%20Runtimes.ipynb
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#batching
https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://github.com/NVIDIA/TensorRT/blob/HEAD/quickstart/IntroNotebooks/onnx_helper.py

NVIDIA TensorRT DU-10313-001_v10.6.0 | 14

Chapter 5. ONNX Conversion and
Deployment

The ONNX interchange format provides a way to export models from many frameworks,
including PyTorch, TensorFlow, and TensorFlow 2, for use with the TensorRT runtime.
Importing models using ONNX requires the operators in your model to be supported by
ONNX, and for you to supply plug-in implementations of any operators TensorRT does
not support. (A library of plug-ins for TensorRT can be found here).

5.1. Exporting with ONNX
ONNX models can be easily generated from PyTorch models using PyTorch export.

This notebook shows how to generate ONNX models from a PyTorch ResNet-50 model,
how to convert those ONNX models to TensorRT engines using trtexec, and how to use
the TensorRT runtime to feed input to the TensorRT engine at inference time.

5.1.1. Exporting to ONNX from PyTorch
One approach to converting a PyTorch model to TensorRT is to export a PyTorch model
to ONNX and then convert it into a TensorRT engine. For more details, refer to Using
PyTorch with TensorRT through ONNX. The notebook will walk you through this path,
starting from the below export steps:

https://github.com/NVIDIA/TensorRT/tree/main/plugin
https://pytorch.org/tutorials/beginner/onnx/export_simple_model_to_onnx_tutorial.html
https://github.com/NVIDIA/TensorRT/blob/HEAD/quickstart/IntroNotebooks/2.%20Using%20PyTorch%20through%20ONNX.ipynb
https://github.com/NVIDIA/TensorRT/blob/HEAD/quickstart/IntroNotebooks/2.%20Using%20PyTorch%20through%20ONNX.ipynb
https://github.com/NVIDIA/TensorRT/blob/HEAD/quickstart/IntroNotebooks/2.%20Using%20PyTorch%20through%20ONNX.ipynb

ONNX Conversion and Deployment

NVIDIA TensorRT DU-10313-001_v10.6.0 | 15

Figure 4. Exporting ONNX from PyTorch

 1. Import a ResNet-50 model from torchvision. This will load a copy of ResNet-50 with
pre-trained weights.
import torchvision.models as models

resnet50 = models.resnet50(pretrained=True, progress=False).eval()
)

 2. Save the ONNX file from PyTorch.

Note: We need a batch of data to save our ONNX file from PyTorch. We will use a
dummy batch.

import torch

BATCH_SIZE = 32
dummy_input=torch.randn(BATCH_SIZE, 3, 224, 224)

 3. Save the ONNX file.
import torch.onnx
torch.onnx.export(resnet50, dummy_input, "resnet50_pytorch.onnx", verbose=False)
)

5.2. Converting ONNX to a TensorRT
Engine

There are two main ways of converting ONNX files to TensorRT engines:

‣ using trtexec

‣ using the TensorRT API

In this guide, we will focus on using trtexec. To convert one of the preceding ONNX
models to a TensorRT engine using trtexec, we can run this conversion as follows:
trtexec --onnx=resnet50_pytorch.onnx --saveEngine=resnet_engine_pytorch.trt

ONNX Conversion and Deployment

NVIDIA TensorRT DU-10313-001_v10.6.0 | 16

This will convert our resnet50_onnx_model.onnx to a TensorRT engine named
resnet_engine.trt.

5.3. Deploying a TensorRT Engine to the
Python Runtime API

There are several runtimes available to target with TensorRT. When performance is
important, the TensorRT API is a great way of running ONNX models. We will go into the
deployment of a more complex ONNX model using the TensorRT runtime API in both C++
and Python in the following section.

For the preceding model, you can see how to deploy it in Jupyter with the Python
runtime API in the notebooks Using PyTorch through ONNX. Another simple option is to
use the ONNXClassifierWrapper provided with this guide, as demonstrated in Deploy the
Model.

https://github.com/NVIDIA/TensorRT/blob/HEAD/quickstart/IntroNotebooks/2.%20Using%20PyTorch%20through%20ONNX.ipynb

NVIDIA TensorRT DU-10313-001_v10.6.0 | 17

Chapter 6. Using the TensorRT
Runtime API

One of the most performant and customizable options for both model conversion and
deployment is to use the TensorRT API, which has both C++ and Python bindings.

TensorRT includes a standalone runtime with C++ and Python bindings, which are
generally more performant and more customizable than using the TF-TRT integration
and running in TensorFlow. The C++ API has lower overhead, but the Python API works
well with Python data loaders and libraries like NumPy and SciPy and is easier to use for
prototyping, debugging, and testing.

The following tutorial illustrates the semantic segmentation of images using the
TensorRT C++ and Python API. A fully convolutional model with a ResNet-101 backbone
is used for this task. The model accepts images of arbitrary sizes and produces per-pixel
predictions.

The tutorial consists of the following steps:

 1. Setup–launch the test container, and generate the TensorRT engine from a PyTorch
model exported to ONNX and converted using trtexec

 2. C++ runtime API–run inference using engine and TensorRT’s C++ API
 3. Python runtime AP–run inference using engine and TensorRT’s Python API

6.1. Setting Up the Test Container and
Building the TensorRT Engine

 1. Download the source code for this quick start tutorial from the TensorRT Open
Source Software repository.
$ git clone https://github.com/NVIDIA/TensorRT.git
$ cd TensorRT/quickstart

 2. Convert a pre-trained FCN-ResNet-101 model to ONNX.

Here we use the export script that is included with the tutorial to generate an ONNX
model and save it to fcn-resnet101.onnx. For details on ONNX conversion refer to
ONNX Conversion and Deployment. The script also generates a test image of size
1282x1026 and saves it to input.ppm.

http://github.com/NVIDIA/TensorRT
http://github.com/NVIDIA/TensorRT
https://pytorch.org/hub/pytorch_vision_fcn_resnet101/
https://pytorch.org/assets/images/deeplab1.png

Using the TensorRT Runtime API

NVIDIA TensorRT DU-10313-001_v10.6.0 | 18

Figure 5. Test Image, Size 1282x1026

 a). Launch the NVIDIA PyTorch container for running the export script.
$ docker run --rm -it --gpus all -p 8888:8888 -v `pwd`:/workspace -w /workspace/
SemanticSegmentation nvcr.io/nvidia/pytorch:20.12-py3 bash

 b). Run the export script to convert the pre-trained model to ONNX.
$ python3 export.py

Note: FCN-ResNet-101 has one input of dimension [batch, 3, height, width]
and one output of dimension [batch, 21, height, weight] containing
unnormalized probabilities corresponding to predictions for 21 class labels.
When exporting the model to ONNX, we append an argmax layer at the output to
produce per-pixel class labels of the highest probability.

 3. Build a TensorRT engine from ONNX using the trtexec tool.

trtexec can generate a TensorRT engine from an ONNX model that can then be
deployed using the TensorRT runtime API. It leverages the TensorRT ONNX parser to
load the ONNX model into a TensorRT network graph, and the TensorRT Builder API
to generate an optimized engine. Building an engine can be time-consuming, and is
usually performed offline.

Building an engine can be time-consuming, and is usually performed offline.
trtexec --onnx=fcn-resnet101.onnx --saveEngine=fcn-resnet101.engine --
optShapes=input:1x3x1026x1282

Successful execution should result in an engine file being generated and something
similar to Successful in the command output.

trtexec can build TensorRT engines with the build configuration options as described
in the NVIDIA TensorRT Developer Guide.

6.2. Running an Engine in C++

https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec
https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#build_engine_c
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#trtexec-flags

Using the TensorRT Runtime API

NVIDIA TensorRT DU-10313-001_v10.6.0 | 19

Compile and run the C++ segmentation tutorial within the test container.
$ make
$./bin/segmentation_tutorial

The following steps show how to use the Deserializing A Plan for inference.

 1. Deserialize the TensorRT engine from a file. The file contents are read into a buffer
and deserialized in memory.
std::vector<char> engineData(fsize);
engineFile.read(engineData.data(), fsize);

std::unique_ptr<nvinfer1::IRuntime>
 mRuntime{nvinfer1::createInferRuntime(sample::gLogger.getTRTLogger())};

std::unique_ptr<nvinfer1::ICudaEngine> mEngine(runtime-
>deserializeCudaEngine(engineData.data(), fsize));

 2. A TensorRT execution context encapsulates execution state such as persistent
device memory for holding intermediate activation tensors during inference.

Since the segmentation model was built with dynamic shapes enabled, the shape of
the input must be specified for inference execution. The network output shape may
be queried to determine the corresponding dimensions of the output buffer.
char const* input_name = "input";
assert(mEngine->getTensorDataType(input_name) == nvinfer1::DataType::kFLOAT);
auto input_dims = nvinfer1::Dims4{1, /* channels */ 3, height, width};
context->setInputShape(input_name, input_dims);
auto input_size = util::getMemorySize(input_dims, sizeof(float));
char const* output_name = "output";
assert(mEngine->getTensorDataType(output_name) == nvinfer1::DataType::kINT64);
auto output_dims = context->getTensorShape(output_name);
auto output_size = util::getMemorySize(output_dims, sizeof(int64_t));

 3. In preparation for inference, CUDA device memory is allocated for all inputs and
outputs, image data is processed and copied into input memory, and a list of engine
bindings is generated.

For semantic segmentation, input image data is processed by fitting into a range
of [0, 1] and normalized using mean [0.485, 0.456, 0.406] and std deviation
[0.229, 0.224, 0.225]. Refer to the input-preprocessing requirements for
the torchvision models here. This operation is abstracted by the utility class
RGBImageReader.
void* input_mem{nullptr};
cudaMalloc(&input_mem, input_size);
void* output_mem{nullptr};
cudaMalloc(&output_mem, output_size);
const std::vector<float> mean{0.485f, 0.456f, 0.406f};
const std::vector<float> stddev{0.229f, 0.224f, 0.225f};
auto input_image{util::RGBImageReader(input_filename, input_dims, mean, stddev)};
input_image.read();
cudaStream_t stream;
auto input_buffer = input_image.process();
cudaMemcpyAsync(input_mem, input_buffer.get(), input_size, cudaMemcpyHostToDevice,
 stream);

 4. Inference execution is kicked off using the context’s executeV2 or enqueueV3
methods. After the execution is complete, we copy the results back to a host buffer
and release all device memory allocations.
context->setTensorAddress(input_name, input_mem);
context->setTensorAddress(output_name, output_mem);
bool status = context->enqueueV3(stream);

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#perform_inference_c
https://github.com/pytorch/vision/blob/main/docs/source/models.rst

Using the TensorRT Runtime API

NVIDIA TensorRT DU-10313-001_v10.6.0 | 20

auto output_buffer = std::unique_ptr<int64_t>{new int64_t[output_size]};
cudaMemcpyAsync(output_buffer.get(), output_mem, output_size, cudaMemcpyDeviceToHost,
 stream);
cudaStreamSynchronize(stream);

cudaFree(input_mem);
cudaFree(output_mem);

 5. To visualize the results, a pseudo-color plot of per-pixel class predictions is written
out to output.ppm. This is abstracted by the utility class ArgmaxImageWriter.
const int num_classes{21};
const std::vector<int> palette{
 (0x1 << 25) - 1, (0x1 << 15) - 1, (0x1 << 21) - 1};
auto output_image{util::ArgmaxImageWriter(output_filename, output_dims, palette,
 num_classes)};
int64_t* output_ptr = output_buffer.get();
std::vector<int32_t> output_buffer_casted(output_size);
for (size_t i = 0; i < output_size; ++i) {
 output_buffer_casted[i] = static_cast<int32_t>(output_ptr[i]);
}
output_image.process(output_buffer_casted.get());
output_image.write();

For the test image, the expected output is as follows:

Figure 6. Test Image, Size 1282x1026

6.3. Running an Engine in Python
 1. Install the required Python packages.

$ pip install pycuda

 2. Launch Jupyter and use the provided token to log in using a browser http://<host-
ip-address>:8888.
$ jupyter notebook --port=8888 --no-browser --ip=0.0.0.0 --allow-root

 3. Open the tutorial-runtime.ipynb notebook and follow its steps.

https://github.com/NVIDIA/TensorRT/blob/main/quickstart/SemanticSegmentation/tutorial-runtime.ipynb

Using the TensorRT Runtime API

NVIDIA TensorRT DU-10313-001_v10.6.0 | 21

The TensorRT Python runtime APIs map directly to the C++ API described in Running an
Engine in C++.

NVIDIA TensorRT DU-10313-001_v10.6.0 | 22

Chapter 7. Additional Resources

Table 1. Additional TensorRT Resources

Resource Description

Layer builder API documentation - for manual
TensorRT engine construction:

Creating a Network Definition in Python

Creating a Network Definition in C++

The manual layer builder API is useful when
you need the maximum flexibility possible in
building a TensorRT engine.

The Layer Builder API lets you construct a
network by hand in TensorRT and gives you
tools to load in weights from your model.

When using the layer builder API, your goal is
to essentially build an identical network to your
training model using TensorRT layer by layer,
and then load in the weights from your model.

ONNX-TensorRT GitHub The ONNX-TensorRT integration is a simple
high-level interface for ONNX conversion
with a Python runtime. It is useful for early
prototyping of TensorRT workflows using the
ONNX path.

Torch-TensorRT GitHub Torch-TensorRT brings the power of TensorRT
to PyTorch. Accelerate inference latency by up
to 5x compared to eager execution in just one
line of code.

TensorRT is integrated with NVIDIA’s profiling
tools, NVIDIA Nsight™ Systems, and NVIDIA
Deep Learning Profiler (DLProf).

This is a great next step for further optimizing
and debugging models that you are working on
productionizing.

TensorRT product documentation Product documentation page for the ONNX,
layer builder, C++, and legacy APIs.

TensorRT OSS GitHub Contains OSS TensorRT components, sample
applications, and plug-in examples.

TensorRT developer page Contains downloads, posts, and quick
reference code samples.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#network_python
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#create_network_c
https://github.com/onnx/onnx-tensorrt
https://github.com/pytorch/TensorRT
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://github.com/NVIDIA/TensorRT
https://developer.nvidia.com/tensorrt

Additional Resources

NVIDIA TensorRT DU-10313-001_v10.6.0 | 23

7.1. Glossary
B
Batch

A batch is a collection of inputs that can all be processed uniformly. Each instance in
the batch has the same shape and flows through the network in exactly the same way.
All instances can therefore be computed in parallel.

Builder
TensorRT’s model optimizer. The builder takes as input a network definition, performs
device-independent and device-specific optimizations, and creates an engine. For
more information about the builder, refer to the Builder API.

D
Dynamic batch

A mode of inference deployment where the batch size is not known until runtime.
Historically, TensorRT treated batch size as a special dimension and the only
dimension that was configurable at runtime. TensorRT 6 and later allow engines to be
built such that all dimensions of inputs can be adjusted at runtime.

E
Engine

A representation of a model that has been optimized by the TensorRT builder. For
more information about the engine, refer to the Execution API.

Explicit batch
An indication to the TensorRT builder that the model includes the batch size as one of
the dimensions of the input tensors. TensorRT’s implicit batch mode allows the batch
size to be omitted from the network definition and provided by the user at runtime,
but this mode has been deprecated and is not supported by the ONNX parser.

F
Framework integration

An integration of TensorRT into a framework such as TensorFlow, which allows model
optimization and inference to be performed within the framework.

N
Network definition

A representation of a model in TensorRT. A network definition is a graph of tensors
and operators.

O
ONNX

Open Neural Network eXchange. A framework-independent standard for representing
machine learning models. For more information about ONNX, refer to onnx.ai.

ONNX parser
A parser for creating a TensorRT network definition from an ONNX model. For more
details on the C++ ONNX Parser, refer to the NvONNXParser or the Python ONNX
Parser.

P

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_cuda_engine.html
https://onnx.ai/
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvonnxparser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Onnx/pyOnnx.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Onnx/pyOnnx.html

Additional Resources

NVIDIA TensorRT DU-10313-001_v10.6.0 | 24

Plan
An optimized inference engine in a serialized format. To initialize the inference engine,
the application will first deserialize the model from the plan file. A typical application
will build an engine once, and then serialize it as a plan file for later use.

Precision
Refers to the numerical format used to represent values in a computational method.
This option is specified as part of the TensorRT build step. TensorRT supports mixed
precision inference with FP32, TF32, FP16, or INT8 precisions. Devices before NVIDIA
Ampere Architecture default to FP32. NVIDIA Ampere Architecture and later devices
default to TF32, a fast format using FP32 storage with lower-precision math.

R
Runtime

The component of TensorRT that performs inference on a TensorRT engine.
The runtime API supports synchronous and asynchronous execution, profiling,
enumeration, and querying of the bindings for engine inputs and outputs.

T
TF-TRT

TensorFlow integration with TensorRT. Optimizes and executes compatible subgraphs,
allowing TensorFlow to execute the remaining graph.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of
such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Arm

Arm, AMBA and Arm Powered are registered trademarks of Arm Limited. Cortex, MPCore and Mali are trademarks of Arm Limited. "Arm" is used to represent
Arm Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France
SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS and Arm Sweden AB.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Blackberry/QNX

Copyright © 2020 BlackBerry Limited. All rights reserved.

Trademarks, including but not limited to BLACKBERRY, EMBLEM Design, QNX, AVIAGE, MOMENTICS, NEUTRINO and QNX CAR are the trademarks or
registered trademarks of BlackBerry Limited, used under license, and the exclusive rights to such trademarks are expressly reserved.

Google

Android, Android TV, Google Play and the Google Play logo are trademarks of Google, Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and BlueField, CUDA, DALI, DRIVE, Hopper, JetPack, Jetson AGX Xavier, Jetson Nano, Maxwell, NGC, Nsight, Orin, Pascal, Quadro,
Tegra, TensorRT, Triton, Turing and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2021-2024 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Installing TensorRT
	2.1. Container Installation
	2.2. Debian Installation
	2.3. Python Package Index Installation

	The TensorRT Ecosystem
	3.1. Basic TensorRT Workflow
	3.2. Conversion and Deployment Options
	3.2.1. Conversion
	3.2.2. Deployment

	3.3. Selecting the Correct Workflow

	Example Deployment Using ONNX
	4.1. Export the Model
	4.2. Select a Precision
	4.3. Convert the Model
	4.4. Deploy the Model

	ONNX Conversion and Deployment
	5.1. Exporting with ONNX
	5.1.1. Exporting to ONNX from PyTorch

	5.2. Converting ONNX to a TensorRT Engine
	5.3. Deploying a TensorRT Engine to the Python Runtime API

	Using the TensorRT Runtime API
	6.1. Setting Up the Test Container and Building the TensorRT Engine
	6.2. Running an Engine in C++
	6.3. Running an Engine in Python

	Additional Resources
	7.1. Glossary

