
TENSORRT DEVELOPER'S GUIDE

SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | June 2020

Developer Guide

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | ii

TABLE OF CONTENTS

Chapter 1. What Is TensorRT?... 1
1.1. Benefits Of TensorRT...3

1.1.1. Who Can Benefit From TensorRT... 4
1.2. Where Does TensorRT Fit?...5
1.3. How Does TensorRT Work?.. 8
1.4. What Capabilities Does TensorRT Provide?... 9
1.5. How Do I Get TensorRT?... 10

Chapter 2. Using The C++ API... 11
2.1. Instantiating TensorRT Objects in C++... 11
2.2. Creating A Network Definition In C++... 13

2.2.1. Creating A Network Definition From Scratch Using The C++ API........................... 13
2.2.2. Importing A Model Using A Parser In C++.. 14
2.2.3. Importing A Caffe Model Using The C++ Parser API.. 15
2.2.4. Importing A TensorFlow Model Using The C++ UFF Parser API.............................. 16
2.2.5. Importing An ONNX Model Using The C++ Parser API...16

2.3. Building An Engine In C++... 17
2.3.1. Builder Layer Timing Cache.. 18

2.4. Serializing A Model In C++...18
2.5. Performing Inference In C++.. 19
2.6. Memory Management In C++.. 20
2.7. Refitting An Engine... 20
2.8. Algorithm Selection... 21

2.8.1. Determinism And Reproducibility In The Builder... 22
Chapter 3. Using The Python API... 24

3.1. Importing TensorRT Into Python.. 24
3.2. Creating A Network Definition In Python... 25

3.2.1. Creating A Network Definition From Scratch Using The Python API....................... 25
3.2.2. Importing A Model Using A Parser In Python.. 26
3.2.3. Importing From Caffe Using Python.. 26
3.2.4. Importing From TensorFlow Using Python..27
3.2.5. Importing From ONNX Using Python.. 28
3.2.6. Importing From PyTorch And Other Frameworks..29

3.3. Building An Engine In Python... 29
3.4. Serializing A Model In Python... 30
3.5. Performing Inference In Python...31

Chapter 4. Extending TensorRT With Custom Layers... 32
4.1. Adding Custom Layers Using The C++ API...32

4.1.1. Example: Adding A Custom Layer Using C++.. 35
4.1.2. Example: Adding A Custom Layer That Is Not Supported In Caffe Using C++............. 35
4.1.3. Example: Adding A Custom Layer That Is Not Supported In UFF Using C++............... 36

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | iii

4.1.4. Example: Adding A Custom Layer With Dynamic Shape Support Using C++............... 37
4.1.5. Example: Add A Custom Layer With INT8 I/O Support Using C++.......................... 39
4.1.6. Example: Implementing A GELU Operator Using The C++ API.............................. 40

4.2. Adding Custom Layers Using The Python API... 41
4.2.1. Example: Adding A Custom Layer to a TensorRT Network Using Python...................42
4.2.2. Example: Adding A Custom Layer That Is Not Supported In UFF Using Python........... 42

4.3. Using Custom Layers When Importing A Model From A Framework............................. 43
4.3.1. Example: Adding A Custom Layer To A TensorFlow Model...................................45

4.4. Plugin API Description.. 45
4.4.1. Migrating Plugins From TensorRT 6.x.x To TensorRT 7.x.x...................................45

4.4.1.1. Migrating Plugins From TensorRT 5.x.x To TensorRT 6.x.x............................. 46
4.4.2. IPluginV2 API Description... 47
4.4.3. IPluginCreator API Description...48
4.4.4. Persistent LSTM Plugin.. 49

4.5. Best Practices For Custom Layers Plugin..50
Chapter 5. Working With Mixed Precision...52

5.1. Mixed Precision Using The C++ API...52
5.1.1. Setting The Layer Precision Using C++... 52
5.1.2. Enabling FP16 Inference Using C++... 53
5.1.3. Enabling INT8 Inference Using C++... 54

5.1.3.1. Setting Per-Tensor Dynamic Range Using C++..54
5.1.3.2. INT8 Calibration Using C++... 55

5.1.4. Working With Explicit Precision Using C++...56
5.2. Mixed Precision Using The Python API... 57

5.2.1. Setting The Layer Precision Using Python... 57
5.2.2. Enabling FP16 Inference Using Python... 57
5.2.3. Enabling INT8 Inference Using Python..57

5.2.3.1. Setting Per-Tensor Dynamic Range Using Python.. 57
5.2.3.2. INT8 Calibration Using Python..58

5.2.4. Working With Explicit Precision Using Python...58
Chapter 6. Working With Reformat-Free Network I/O Tensors....................................... 59

6.1. Building An Engine With Reformat-Free Network I/O Tensors................................... 59
6.2. Supported Combination Of Data Type And Memory Layout of I/O Tensors..................... 60
6.3. Calibration For A Network With INT8 I/O Tensors... 61
6.4. Restrictions With DLA...61
6.5. FAQs..62

Chapter 7. Working With Dynamic Shapes.. 64
7.1. Specifying Runtime Dimensions... 65
7.2. Optimization Profiles... 66
7.3. Layer Extensions For Dynamic Shapes... 67
7.4. Restrictions For Dynamic Shapes... 67
7.5. Execution Tensors vs. Shape Tensors...68

7.5.1. Formal Inference Rules... 68

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | iv

7.6. Shape Tensor I/O (Advanced)... 69
7.7. INT8 Calibration With Dynamic Shapes.. 70

Chapter 8. Working With Empty Tensors.. 71
8.1. IReduceLayer And Empty Tensors...71
8.2. IMatrixMultiplyLayer, IFullyConnectedLayer, And Empty Tensors................................ 72
8.3. Plugins And Empty Tensors.. 72
8.4. IRNNLayer And Empty Tensors.. 72
8.5. IShuffleLayer And Empty Tensors... 73
8.6. ISliceLayer And Empty Tensors..73

Chapter 9. Working With Loops... 75
9.1. Defining A Loop..75
9.2. Formal Semantics... 77
9.3. Nested Loops...78
9.4. Limitations..78

Chapter 10. Working With Quantized Networks... 79
10.1. Quantization Aware Training (QAT) Using TensorFlow..79
10.2. Converting Tensorflow To ONNX Quantized Models...80
10.3. Importing Quantized ONNX Models..80

Chapter 11. Working With DLA.. 81
11.1. Running On DLA During TensorRT Inference... 81

11.1.1. Example: sampleMNIST With DLA.. 83
11.1.2. Example: Enable DLA Mode For A Layer During Network Creation....................... 83

11.2. DLA Supported Layers...84
11.3. GPU Fallback Mode.. 86

Chapter 12. Deploying A TensorRT Optimized Model... 87
12.1. Deploying In The Cloud... 87
12.2. Deploying To An Embedded System...87

Chapter 13. Working With Deep Learning Frameworks.. 89
13.1. Working With TensorFlow...89

13.1.1. Freezing A TensorFlow Graph...89
13.1.2. Freezing A Keras Model..90
13.1.3. Converting A Frozen Graph To UFF..90
13.1.4. Working With TensorFlow RNN Weights... 90

13.1.4.1. TensorFlow RNN Cells Supported In TensorRT.. 90
13.1.4.2. Maintaining Model Consistency Between TensorFlow And TensorRT................. 91
13.1.4.3. Workflow..91
13.1.4.4. Dumping The TensorFlow Weights.. 92
13.1.4.5. Loading Dumped Weights.. 92
13.1.4.6. Converting The Weights To A TensorRT Format.. 92
13.1.4.7. BasicLSTMCell Example...93
13.1.4.8. Setting The Converted Weights And Biases... 95

13.1.5. Preprocessing A TensorFlow Graph Using the Graph Surgeon API......................... 96
13.2. Working With PyTorch And Other Frameworks.. 97

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | v

Chapter 14. Working With DALI... 98
14.1. Benefits Of Integration... 98

Chapter 15. Troubleshooting... 100
15.1. FAQs...100
15.2. How Do I Report A Bug?...105
15.3. Understanding Error Messages..105
15.4. Support... 109

Appendix A. Appendix... 110
A.1. TensorRT Layers.. 110
A.2. Data Format Descriptions.. 136
A.3. Command-Line Programs... 139
A.4. ACKNOWLEDGEMENTS... 140

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | vi

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | 1

Chapter 1.
WHAT IS TENSORRT?

The core of NVIDIA® TensorRT™ is a C++ library that facilitates high-performance
inference on NVIDIA graphics processing units (GPUs). It is designed to work in a
complementary fashion with training frameworks such as TensorFlow, Caffe, PyTorch,
MXNet, etc. It focuses specifically on running an already-trained network quickly and
efficiently on a GPU for the purpose of generating a result (a process that is referred to in
various places as scoring, detecting, regression, or inference).

Some training frameworks such as TensorFlow have integrated TensorRT so that it can
be used to accelerate inference within the framework. Alternatively, TensorRT can be
used as a library within a user application. It includes parsers for importing existing
models from Caffe, ONNX, or TensorFlow, and C++ and Python APIs for building
models programmatically.

What Is TensorRT?

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | 2

Figure 1 TensorRT is a high-performance neural network inference
optimizer and runtime engine for production deployment.

TensorRT optimizes the network by combining layers and optimizing kernel selection
for improved latency, throughput, power efficiency, and memory consumption. If the
application specifies, it will additionally optimize the network to run in lower precision,
further increasing performance and reducing memory requirements.

The following figure shows TensorRT defined as part high-performance inference
optimizer and part runtime engine. It can take in neural networks trained on these
popular frameworks, optimize the neural network computation, generate a light-
weight runtime engine (which is the only thing you need to deploy to your production
environment), and it will then maximize the throughput, latency, and performance on
these GPU platforms.

What Is TensorRT?

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | 3

Figure 2 TensorRT is a programmable inference accelerator.

The TensorRT API includes implementations for the most common deep learning layers.
For more information about the layers, see TensorRT Layers. You can also use the C++
Plugin API or Python Plugin API to provide implementations for infrequently used or
more innovative layers that are not supported out-of-the-box by TensorRT.

1.1. Benefits Of TensorRT
After the neural network is trained, TensorRT enables the network to be compressed,
optimized and deployed as a runtime without the overhead of a framework.

TensorRT combines layers, optimizes kernel selection, and also performs normalization
and conversion to optimized matrix math depending on the specified precision (FP32,
FP16 or INT8) for improved latency, throughput, and efficiency.

For deep learning inference, there are 5 critical factors that are used to measure software:
Throughput

The volume of output within a given period. Often measured in inferences/second
or samples/second, per-server throughput is critical to cost-effective scaling in data
centers.

Efficiency

Amount of throughput delivered per unit-power, often expressed as performance/
watt. Efficiency is another key factor to cost-effective data center scaling, since
servers, server racks, and entire data centers must operate within fixed power
budgets.

Latency

Time to execute an inference, usually measured in milliseconds. Low latency is
critical to delivering rapidly growing, real-time inference-based services.

Accuracy

A trained neural network’s ability to deliver the correct answer. For image
classification based usages, the critical metric is expressed as a top-5 or top-1
percentage.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/pyPlugin.html

What Is TensorRT?

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | 4

Memory usage

The host and device memory that need to be reserved to do inference on a
network depend on the algorithms used. This constrains what networks and what
combinations of networks can run on a given inference platform. This is particularly
important for systems where multiple networks are needed and memory resources
are limited - such as cascading multi-class detection networks used in intelligent
video analytics and multi-camera, multi-network autonomous driving systems.

Alternatives to using TensorRT include:

‣ Using the training framework itself to perform inference.
‣ Writing a custom application that is designed specifically to execute the network

using low-level libraries and math operations.

Using the training framework to perform inference is easy, but tends to result in much
lower performance on a given GPU than would be possible with an optimized solution
like TensorRT. Training frameworks tend to implement more general purpose code
which stress generality and when they are optimized the optimizations tend to focus on
efficient training.

Higher efficiency can be obtained by writing a custom application just to execute
a neural network, however, it can be quite labor-intensive and require quite a bit
of specialized knowledge to reach a high level of performance on a modern GPU.
Furthermore, optimizations that work on one GPU may not translate fully to other GPUs
in the same family and each generation of GPU may introduce new capabilities that can
only be leveraged by writing new code.

TensorRT solves these problems by combining an API with a high level of abstraction
from the specific hardware details and an implementation that is developed and
optimized specifically for high throughput, low latency, and low device memory
footprint inference.

1.1.1. Who Can Benefit From TensorRT
TensorRT is intended for use by engineers who are responsible for building features and
applications based on new or existing deep learning models or deploying models into
production environments. These deployments might be into servers in a data center or
cloud, in an embedded device, robot or vehicle, or application software which will run
on your workstations.

TensorRT has been used successfully across a wide range of scenarios, including:
Robots

Companies sell robots using TensorRT to run various kinds of computer vision
models to autonomously guide an unmanned aerial system flying in dynamic
environments.

Autonomous Vehicles

TensorRT is used to power computer vision in the NVIDIA Drive products.

What Is TensorRT?

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | 5

Scientific and Technical Computing

A popular technical computing package embeds TensorRT to enable high throughput
execution of neural network models.

Deep Learning Training and Deployment Frameworks

TensorRT is included in several popular Deep Learning Frameworks including
TensorFlow and MXNet. For TensorFlow and MXNet container release notes, see
TensorFlow Release Notes and MXNet Release Notes.

Video Analytics

TensorRT is used in NVIDIA’s DeepStream product to power sophisticated video
analytics solutions both at the edge with 1 - 16 camera feeds and in the datacenter
where hundreds or even thousands of video feeds might come together.

Automatic Speech Recognition

TensorRT is used to power speech recognition on a small tabletop/desktop device.
A limited vocabulary is supported on the device with a larger vocabulary speech
recognition system available in the cloud.

1.2. Where Does TensorRT Fit?
Generally, the workflow for developing and deploying a deep learning model goes
through three phases.

‣ Phase 1 is training
‣ Phase 2 is developing a deployment solution, and
‣ Phase 3 is the deployment of that solution

Phase 1: Training

During the training phase, the data scientists and developers will start with a statement
of the problem they want to solve and decide on the precise inputs, outputs and loss
function they will use. They will also collect, curate, augment, and probably label the
training, test and validation data sets. Then they will design the structure of the network
and train the model. During training, they will monitor the learning process which may
provide feedback which will cause them to revise the loss function, acquire or augment
the training data. At the end of this process, they will validate the model performance
and save the trained model. Training and validation are usually done using DGX-1™ ,
Titan, or Tesla data center GPUs.

TensorRT is generally not used during any part of the training phase.

Phase 2: Developing A Deployment Solution

During the second phase, the data scientists and developers will start with the trained
model and create and validate a deployment solution using this trained model. Breaking
this phase down into steps, you get:

https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/tensorflow/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/mxnet/
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/index.html
https://docs.nvidia.com/deeplearning/dgx/mxnet-release-notes/index.html
https://developer.nvidia.com/deepstream-sdk

What Is TensorRT?

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | 6

 1. Think about how the neural network functions within the larger system of which it
is a part of and design and implement an appropriate solution. The range of systems
that might incorporate neural networks is tremendously diverse. Examples include:

‣ the autonomous driving system in a vehicle
‣ a video security system on a public venue or corporate campus
‣ the speech interface to a consumer device
‣ an industrial production line automated quality assurance system
‣ an online retail system providing product recommendations, or
‣ a consumer web service offering entertaining filters users can apply to uploaded

images.

Determine what your priorities are. Given the diversity of different systems that
you could implement, there are a lot of things that may need to be considered for
designing and implementing the deployment architecture.

‣ Do you have a single network or many networks? For example, Are you
developing a feature or system that is based on a single network (face detection),
nor will your system be comprised of a mixture or cascade of different models
or perhaps a more general facility that serves up a collection model that may be
provided by the end-user?

‣ What device or compute element will you use to run the network? CPU, GPU,
other, or a mixture? If the model is going to run on a GPU, is it a single type of
GPU, or do you need to design an application that can run on a variety of GPUs?

‣ How is data going to get to the models? What is the data pipeline? Is the data
coming in from a camera or sensor, from a series of files, or being uploaded over
a network connection?

‣ What pre-processing will be done? What format will the data come in? If it is an
image does it need to be cropped, rotated? If it is text what character set is it and
are all characters allowed as inputs to the model? Are there any special tokens?

‣ What latency and throughput requirements will you have?
‣ Will you be able to batch together multiple requests?
‣ Will you need multiple instances of a single network to achieve the required

overall system throughput and latency?
‣ What will you do with the output of the network?
‣ What post-processing steps are needed?

TensorRT provides a fast, modular, compact, robust, reliable inference engine that
can support the inference needs within the deployment architecture.

 2. After the data scientists and developers define the architecture of their inference
solution, by which they determine what their priorities are, they then build an
inference engine from the saved network using TensorRT. There are a number
of ways to do this depending on the training framework used and the network
architecture. Generally, this means you need to take the saved neural network and

What Is TensorRT?

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | 7

parse it from its saved format into TensorRT using the ONNX parser (see Figure 3),
Caffe parser, or TensorFlow/UFF parser.

Figure 3 ONNX Workflow V1
 3. After the network is being parsed, you’ll need to consider optimization options

-- batch size, workspace size, and mixed precision. These options are chosen and
specified as part of the TensorRT build step where you actually build an optimized
inference engine based on your network. Subsequent sections of this guide provide
detailed instructions and numerous examples on this part of the workflow, parsing
your model into TensorRT and choosing the optimization parameters (see Figure 4).

What Is TensorRT?

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | 8

Figure 4 TensorRT optimizes trained neural network models to
produce a deployment-ready runtime inference engine.

 4. After you’ve created an inference engine using TensorRT, you’ll want to validate
that it reproduces the results of the model as measured during the training process.
If you have chosen FP32 or FP16 it should match the results quite closely. If you
have chosen INT8 there may be a small gap between the accuracy achieved during
training and the inference accuracy.

 5. Write out the inference engine in a serialized format. This is also called a plan file.

Phase 3: Deploying A Solution

The TensorRT library will be linked to the deployment application which will call into
the library when it wants an inference result. To initialize the inference engine, the
application will first deserialize the model from the plan file into an inference engine.

TensorRT is usually used asynchronously, therefore, when the input data arrives,
the program calls an enqueue function with the input buffer and the buffer in which
TensorRT should put the result.

1.3. How Does TensorRT Work?
To optimize your model for inference, TensorRT takes your network definition,
performs optimizations including platform-specific optimizations, and generates the
inference engine. This process is referred to as the build phase. The build phase can take
considerable time, especially when running on embedded platforms. Therefore, a typical
application will build an engine once, and then serialize it as a plan file for later use.

The generated plan files are not portable across platforms or TensorRT versions. Plans
are specific to the exact GPU model they were built on (in addition to the platforms

What Is TensorRT?

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access (EA) | 9

and the TensorRT version) and must be re-targeted to the specific GPU in case you
want to run them on a different GPU.

The build phase performs the following optimizations on the layer graph:

‣ Elimination of layers whose outputs are not used
‣ Elimination of operations which are equivalent to no-op
‣ The fusion of convolution, bias and ReLU operations
‣ Aggregation of operations with sufficiently similar parameters and the same source

tensor (for example, the 1x1 convolutions in GoogleNet v5’s inception module)
‣ Merging of concatenation layers by directing layer outputs to the correct eventual

destination.

The builder also modifies the precision of weights if necessary. When generating
networks in 8-bit integer precision, it uses a process called calibration to determine the
dynamic range of intermediate activations, and hence the appropriate scaling factors for
quantization.

In addition, the build phase also runs layers on dummy data to select the fastest from
its kernel catalog and performs weight pre-formatting and memory optimization where
appropriate.

For more information, see Working With Mixed Precision.

1.4. What Capabilities Does TensorRT Provide?
TensorRT enables developers to import, calibrate, generate, and deploy optimized
networks. Networks can be imported directly from Caffe, or from other frameworks via
the UFF or ONNX formats. They may also be created programmatically by instantiating
individual layers and setting parameters and weights directly.

Users can also run custom layers through TensorRT using the Plugin interface. The
GraphSurgeon utility provides the ability to map TensorFlow nodes to custom layers in
TensorRT, thus enabling inference for many TensorFlow networks with TensorRT.

TensorRT provides a C++ implementation on all supported platforms, and a Python
implementation on x86, aarch64, and ppc64le.

The key interfaces in the TensorRT core library are:
Network Definition

The Network Definition interface provides methods for the application to specify
the definition of a network. Input and output tensors can be specified, layers can
be added, and there is an interface for configuring each supported layer type. As
well as layer types, such as convolutional and recurrent layers, and a Plugin layer
type allows the application to implement functionality not natively supported
by TensorRT. For more information about the Network Definition, see Network
Definition API.

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html

What Is TensorRT?

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 10

Optimization Profile

An optimization profile specifies constraints on dynamic dimensions. For more
information, refer to the Optimization Profile API and Working With Dynamic
Shapes sections.

Builder Configuration

The Builder Configuration interface specifies details for creating an engine. It allows
the application to specify optimization profiles, maximum workspace size, the
minimum acceptable level of precision, timing iteration counts for autotuning, and
an interface for quantizing networks to run in 8-bit precision. For more information,
refer to the Builder Config API.

Builder

The Builder interface allows the creation of an optimized engine from a network
definition and a builder configuration. For more information, refer to the Builder API.

Engine

The Engine interface allows the application to execute inference. It supports
synchronous and asynchronous execution, profiling, and enumeration and querying
of the bindings for the engine inputs and outputs. A single-engine can have multiple
execution contexts, allowing a single set of trained parameters to be used for the
simultaneous execution of multiple batches. For more information about the Engine,
see Execution API.

TensorRT provides parsers for importing trained networks to create network definitions:
Caffe Parser

This parser can be used to parse a Caffe network created in BVLC Caffe or NVCaffe
0.16. It also provides the ability to register a plugin factory for custom layers. For
more details on the C++ Caffe Parser, see NvCaffeParser or the Python Caffe Parser.

UFF Parser

This parser can be used to parse a network in UFF format. It also provides the ability
to register a plugin factory and pass field attributes for custom layers. For more
details on the C++ UFF Parser, see NvUffParser or the Python UFF Parser.

ONNX Parser

This parser can be used to parse an ONNX model. For more details on the C++ ONNX
Parser, see NvONNXParser or the Python ONNX Parser.

Additionally, some TensorRT Caffe and ONNX parsers and plugins can be found on
GitHub.

1.5. How Do I Get TensorRT?
For step-by-step instructions on how to install TensorRT, see the TensorRT Installation
Guide.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_optimization_profile.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder_config.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_cuda_engine.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvcaffeparser1_1_1_i_caffe_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Caffe/pyCaffe.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvuffparser_1_1_i_uff_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Uff/pyUff.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvonnxparser_1_1_i_o_n_n_x_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Onnx/pyOnnx.html
https://github.com/nvidia/TensorRT
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 11

Chapter 2.
USING THE C++ API

The following sections highlight the NVIDIA® TensorRT™ user goals and tasks that you
can perform using the C++ API. Further details are provided in the Samples Support
Guide and are linked to below where appropriate.

The assumption is that you are starting with a trained model. This chapter will cover the
following necessary steps in using TensorRT:

‣ Creating a TensorRT network definition from your model
‣ Invoking the TensorRT builder to create an optimized runtime engine from the

network
‣ Serializing and deserializing the engine so that it can be rapidly recreated at runtime
‣ Feeding the engine with data to perform inference

C++ API vs Python API

In essence, the C++ API and the Python API should be close to identical in supporting
your needs. The C++ API should be used in any performance-critical scenarios, as well as
in situations where safety is important, for example, in automotive.

The main benefit of the Python API is that data preprocessing and postprocessing are
easy to use because you’re able to use a variety of libraries like NumPy and SciPy. For
more information about the Python API, see Using The Python API.

2.1. Instantiating TensorRT Objects in C++
In order to run inference, use the interface IExecutionContext. In order to create an
object of type IExecutionContext, first create an object of type ICudaEngine (the
engine).

Create an engine in one of two ways:

‣ via the network definition from the user model. In this case, the engine can be
optionally serialized and saved for later use.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 12

‣ by reading a serialized engine from the disk. This can save significant time
compared to creating a network definition and building an engine from it.

Create a global object of type ILogger. It is a required argument to various methods of
TensorRT API. Here is an example demonstrating the creation of the logger:

class Logger : public ILogger
 {
 void log(Severity severity, const char* msg) override
 {
 // suppress info-level messages
 if (severity != Severity::kINFO)
 std::cout << msg << std::endl;
 }
 } gLogger;

Use the TensorRT API stand-alone function createInferBuilder(gLogger) to create
an object of type IBuilder. For more information, see IBuilder class reference.

Use method IBuilder::createNetworkV2 to create an object of type
INetworkDefinition.

Create one of the available parsers (Caffe, ONNX, or UFF) using the INetwork
definition as the input:

‣ ONNX: auto parser = nvonnxparser::createParser(*network,
gLogger);

‣ Caffe: auto parser = nvcaffeparser1::createCaffeParser();
‣ UFF: auto parser = nvuffparser::createUffParser();

Call method IParser::parse() to read the model file and populate the TensorRT
network.

Call method IBuilder::buildEngineWithConfig() to create an object of type
ICudaEngine.

The engine can be optionally serialized and dumped into the file.

Create and use an execution context to perform inference.

If the serialized engine is preserved and saved to a file, you can bypass most of the steps
described above.

Use the TensorRT API stand-alone function createInferRuntime(gLogger) to create
an object of type IRuntime.

Create an engine by calling method IRuntime::deserializeCudaEngine(). For
more information about the TensorRT runtime, see the reference IRuntime.

The rest of the inference is identical for whether the engine was directly built from a
network, or deserialized from a file.

Even though it is possible to avoid creating the CUDA context, (the default context will
be created for you), it is not advisable. It is recommended to create and configure the
CUDA context before creating a runtime or builder object.

The builder or runtime will be created with the GPU context associated with the creating
thread. Although a default context will be created if it does not already exist, it is

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_runtime.html

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 13

advisable to create and configure the CUDA context before creating a runtime or builder
object.

2.2. Creating A Network Definition In C++
The first step in performing inference with TensorRT is to create a TensorRT network
from your model.

The easiest way to achieve this is to import the model using the TensorRT parser library,
which supports serialized models in the following samples:

‣ Object Detection With A TensorFlow SSD Network (sampleMNIST), located in the
GitHub repository (both BVLC and NVCaffe)

‣ “Hello World” For TensorRT From ONNX (sampleOnnxMNIST), located in the
GitHub repository

‣ Import A TensorFlow Model And Run Inference (sampleUffMNIST), located in the
GitHub repository (used for TensorFlow)

An alternative is to define the model directly using the TensorRT API. This requires you
to make a small number of API calls to define each layer in the network graph and to
implement your own import mechanism for the model’s trained parameters.

In either case, you will explicitly need to tell TensorRT which tensors are required as
outputs of inference. Tensors which are not marked as outputs are considered to be
transient values that may be optimized away by the builder. There is no restriction on
the number of output tensors, however, marking a tensor as the output may prohibit
some optimizations on that tensor.

Inputs and output tensors must also be given names (using ITensor::setName()). At
inference time, you will supply the engine with an array of pointers to input and output
buffers. In order to determine in which order the engine expects these pointers, you can
query using the tensor names.

An important aspect of a TensorRT network definition is that it contains pointers to
model weights, which are copied into the optimized engine by the builder. If a network
was created via a parser, the parser will own the memory occupied by the weights, and
so the parser object should not be deleted until after the builder has run.

2.2.1. Creating A Network Definition From Scratch Using
The C++ API
Instead of using a parser, you can also define the network directly to TensorRT via the
network definition API. This scenario assumes that the per-layer weights are ready in
host memory to pass to TensorRT during the network creation.

In the following example, we will create a simple network with Input, Convolution,
Pooling, FullyConnected, Activation and SoftMax layers. To see the code in totality, refer
to Building A Simple MNIST Network Layer By Layer (sampleMNISTAPI) located in the
opensource/sampleMNISTAPI directory in the GitHub repository.

 1. Create the builder and the network:

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNIST
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleOnnxMNIST
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffMNIST
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNISTAPI

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 14

IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetworkV2(0U);

 2. Add the Input layer to the network, with the input dimensions. A network can have
multiple inputs, although in this sample there is only one:

auto data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{1, INPUT_H,
 INPUT_W});

 3. Add the Convolution layer with hidden layer input nodes, strides and weights for
filter and bias. In order to retrieve the tensor reference from the layer, we can use:

auto conv1 = network->addConvolution(*data->getOutput(0), 20, DimsHW{5, 5},
 weightMap["conv1filter"], weightMap["conv1bias"]);
conv1->setStride(DimsHW{1, 1});

Weights passed to TensorRT layers are in host memory.

 4. Add the Pooling layer:

auto pool1 = network->addPooling(*conv1->getOutput(0), PoolingType::kMAX,
 DimsHW{2, 2});
pool1->setStride(DimsHW{2, 2});

 5. Add the FullyConnected and Activation layers:

auto ip1 = network->addFullyConnected(*pool1->getOutput(0), 500,
 weightMap["ip1filter"], weightMap["ip1bias"]);
auto relu1 = network->addActivation(*ip1->getOutput(0),
 ActivationType::kRELU);

 6. Add the SoftMax layer to calculate the final probabilities and set it as the output:

auto prob = network->addSoftMax(*relu1->getOutput(0));
prob->getOutput(0)->setName(OUTPUT_BLOB_NAME);

 7. Mark the output:

network->markOutput(*prob->getOutput(0));

2.2.2. Importing A Model Using A Parser In C++
The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs.
Different parsers have different mechanisms for marking network outputs.

To import a model using the C++ Parser API, you will need to perform the following
high-level steps:

 1. Create the TensorRT builder and network.

IBuilder* builder = createInferBuilder(gLogger);
nvinfer1::INetworkDefinition* network = builder->createNetworkV2(0U);

For an example on how to create the logger, see Instantiating TensorRT Objects in C
++.

 2. Create the TensorRT parser for the specific format.

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 15

ONNX

auto parser = nvonnxparser::createParser(*network, gLogger);

UFF

auto parser = nvuffparser::createUffParser();

Caffe

auto parser = nvcaffeparser1::createCaffeParser();
 3. Use the parser to parse the imported model and populate the network.

parser->parse(args);

The specific args depend on what format parser is used. For more information,
refer to the parsers documented in the TensorRT API.

2.2.3. Importing A Caffe Model Using The C++ Parser API
The following steps illustrate how to import a Caffe model using the C++ Parser API.

For more information, see "Hello World" For TensorRT (sampleMNIST) located in the
GitHub repository.

 1. Create the builder and network:

IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetworkV2(0U);

 2. Create the Caffe parser:

ICaffeParser* parser = createCaffeParser();

 3. Parse the imported model:

const IBlobNameToTensor* blobNameToTensor = parser->parse("deploy_file" ,
 "modelFile", *network, DataType::kFLOAT);

This populates the TensorRT network from the Caffe model. The final argument
instructs the parser to generate a network whose weights are 32-bit floats. Using
DataType::kHALF would generate a model with 16-bit weights instead.

In addition to populating the network definition, the parser returns a dictionary that
maps from Caffe blob names to TensorRT tensors. Unlike Caffe, a TensorRT network
definition has no notion of in-place operation. When a Caffe model uses an in-place
operation, the TensorRT tensor returned in the dictionary corresponds to the last
write to that blob. For example, if a convolution writes to a blob and is followed by
an in-place ReLU, that blob’s name will map to the TensorRT tensor which is the
output of the ReLU.

 4. Specify the outputs of the network:

for (auto& s : outputs)
 network->markOutput(*blobNameToTensor->find(s.c_str()));

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNIST

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 16

2.2.4. Importing A TensorFlow Model Using The C++ UFF
Parser API
The following steps illustrate how to import a TensorFlow model using the C++ Parser
API.

For new projects, it’s recommended to use the TF-TRT integration as a method for
converting your TensorFlow network to use TensorRT for inference. For integration
instructions, see Accelerating Inference In TF-TRT User Guide.

Importing from the TensorFlow framework requires you to convert the TensorFlow
model into intermediate format UFF (Universal Framework Format). For more
information about the conversion, see Converting A Frozen Graph To UFF.

For more information about the UFF import, see Importing A TensorFlow Model And
Running Inference (sampleUffMNIST) located in the GitHub repository.

 1. Create the builder and network:

IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetworkV2(0U);

 2. Create the UFF parser:

IUFFParser* parser = createUffParser();

 3. Declare the network inputs and outputs to the UFF parser:

parser->registerInput("Input_0", DimsCHW(1, 28, 28), UffInputOrder::kNCHW);
parser->registerOutput("Binary_3");

 4. Parse the imported model to populate the network:

parser->parse(uffFile, *network, nvinfer1::DataType::kFLOAT);

2.2.5. Importing An ONNX Model Using The C++ Parser
API
The following steps illustrate how to import an ONNX model using the C++ Parser API.

In general, the newer version of the ONNX Parser is designed to be backward
compatible up to opset 7. There could be some exceptions when the changes were
not backward compatible. In this case, convert the earlier ONNX model file into a
later supported version. For more information on this subject, see ONNX Model Opset
Version Converter.

It is also possible that the user model was generated by an exporting tool supporting
later opsets than supported by the ONNX parser shipped with TensorRT. In this
case, check whether the latest version of TensorRT released to GitHub, onnx-
tensorrt, supports the required version. The supported version is defined by the

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html/index.html
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffMNIST
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffMNIST
https://github.com/onnx/onnx/blob/master/docs/VersionConverter.md
https://github.com/onnx/onnx/blob/master/docs/VersionConverter.md
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 17

BACKEND_OPSET_VERSION variable in onnx_trt_backend.cpp. Download and build
the latest version of ONNX TensorRT Parser from GitHub. The instructions for building
can be found here: TensorRT backend for ONNX.

For more information about the ONNX import, see "Hello World" For TensorRT From
ONNX (sampleOnnxMNIST) located in the GitHub repository.

In TensorRT 7.0, the ONNX parser only supports full-dimensions mode, meaning that
your network definition must be created with the explicitBatch flag set. For more
information, see Working With Dynamic Shapes.

 1. Create the builder and network.

IBuilder* builder = createInferBuilder(gLogger);
const auto explicitBatch = 1U <<
 static_cast<uint32_t>(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
INetworkDefinition* network = builder->createNetworkV2(explicitBatch);

 2. Create the ONNX parser:

nvonnxparser::IParser* parser =
nvonnxparser::createParser(*network, gLogger);

For more information, refer to the NvOnnxParser.h file.
 3. Parse the model:

parser->parseFromFile(onnx_filename, ILogger::Severity::kWARNING);
 for (int i = 0; i < parser.getNbErrors(); ++i)
 {
 std::cout << parser->getError(i)->desc() << std::endl;
 }

2.3. Building An Engine In C++
The next step is to invoke the TensorRT builder to create an optimized runtime. One
of the functions of the builder is to search through its catalog of CUDA kernels for
the fastest implementation available, and thus it is necessary to use the same GPU for
building like that on which the optimized engine will run.

The builder has many properties that you can set in order to control such things as the
precision at which the network should run, and autotuning parameters such as how
many times TensorRT should time each kernel when ascertaining which is fastest (more
iterations lead to longer runtimes, but less susceptibility to noise.) You can also query
the builder to find out what reduced precision types are natively supported by the
hardware.

Two particularly important properties are the maximum batch size and the maximum
workspace size.

‣ The maximum batch size specifies the batch size for which TensorRT will optimize.
At runtime, a smaller batch size may be chosen.

https://github.com/onnx/onnx-tensorrt/blob/master/onnx_trt_backend.cpp
https://github.com/onnx/onnx-tensorrt/blob/master/README.md
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleOnnxMNIST
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleOnnxMNIST
https://github.com/onnx/onnx-tensorrt/blob/84b5be1d6fc03564f2c0dba85a2ee75bad242c2e/NvOnnxParser.h

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 18

‣ Layer algorithms often require temporary workspace. This parameter limits the
maximum size that any layer in the network can use. If an insufficient scratch is
provided, it is possible that TensorRT may not be able to find an implementation for
a given layer.

 1. Build the engine using the builder object:

builder->setMaxBatchSize(maxBatchSize);
IBuilderConfig* config = builder->createBuilderConfig();
config->setMaxWorkspaceSize(1 << 20);
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);

When the engine is built, TensorRT makes copies of the weights.
 2. Dispense with the network, builder, and parser if using one.

parser->destroy();
network->destroy();
config->destroy();
builder->destroy();

2.3.1. Builder Layer Timing Cache
Building an engine can be time-consuming since the builder needs to time candidate
kernels for every layer. To reduce the builder time, TensorRT sets up a layer timing cache
to keep the layer profiling information during the builder phase.

If there are other layers with the same input/output tensor configuration and layer
parameters, then the TensorRT builder will skip profiling and reuse the cached result for
the repeated layers. The layer timing cache is turned on by default. It can be turned off
by setting the builder flag.

...
config->setFlag(BuilderFlag::kDISABLE_TIMING_CACHE);

2.4. Serializing A Model In C++
It is not absolutely necessary to serialize and deserialize a model before using it for
inference – if desirable, the engine object can be used for inference directly.

To serialize, you are transforming the engine into a format to store and use at a later time
for inference. To use for inference, you would simply deserialize the engine. Serializing
and deserializing are optional. Since creating an engine from the Network Definition can
be time consuming, you could avoid rebuilding the engine every time the application
reruns by serializing it once and deserializing it while running inference. Therefore, after
the engine is built, users typically want to serialize it for later use.

Serialized engines are not portable across platforms or TensorRT versions. Engines are
specific to the exact GPU model they were built on (in addition to the platforms and
the TensorRT version).

 1. Run the builder as a prior offline step and then serialize:

https://en.wikipedia.org/wiki/Serialization

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 19

IHostMemory *serializedModel = engine->serialize();
// store model to disk
// <…>
serializedModel->destroy();

 2. Create a runtime object to deserialize:

IRuntime* runtime = createInferRuntime(gLogger);
ICudaEngine* engine = runtime->deserializeCudaEngine(modelData, modelSize,
 nullptr);

The final argument is a plugin layer factory for applications using custom layers. For
more information, see Extending TensorRT With Custom Layers.

2.5. Performing Inference In C++
The following steps illustrate how to perform inference in C++ now that you have an
engine.

 1. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are
held in an execution context:

IExecutionContext *context = engine->createExecutionContext();

An engine can have multiple execution contexts, allowing one set of weights to
be used for multiple overlapping inference tasks. For example, you can process
images in parallel CUDA streams using one engine and one context per stream.
Each context will be created on the same GPU as the engine.

For more information, see setBindingDimension() and
setOptimizationProfile() for dynamic shape models.

 2. Use the input and output blob names to get the corresponding input and output
index:

int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME);
int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME);

 3. Using these indices, set up a buffer array pointing to the input and output buffers on
the GPU:

void* buffers[2];
buffers[inputIndex] = inputbuffer;
buffers[outputIndex] = outputBuffer;

 4. TensorRT execution is typically asynchronous, so enqueue the kernels on a CUDA
stream:

context->enqueue(batchSize, buffers, stream, nullptr);

It is common to enqueue asynchronous memcpy() before and after the kernels to
move data from the GPU if it is not already there. The final argument to enqueue()
is an optional CUDA event which will be signaled when the input buffers have been
consumed and their memory may be safely reused.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_execution_context.html#a9f87003474bc387e17782292cc2ea613
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_execution_context.html#aba0731b9fbc926c477010df818650b0a

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 20

To determine when the kernel (and possibly memcpy()) are complete, use standard
CUDA synchronization mechanisms such as events, or waiting on the stream.

For more information, see enqueueV2() for explicit batch networks. In the event
that asynchronous is not wanted, see execute() and executeV2().

2.6. Memory Management In C++
TensorRT provides two mechanisms to allow the application of more control over device
memory.

By default, when creating an IExecutionContext, persistent device
memory is allocated to hold activation data. To avoid this allocation, call
createExecutionContextWithoutDeviceMemory. It is then the application’s
responsibility to call IExecutionContext::setDeviceMemory() to provide the
required memory to run the network. The size of the memory block is returned by
ICudaEngine::getDeviceMemorySize().

In addition, the application can supply a custom allocator for use during build
and runtime by implementing the IGpuAllocator interface. This is useful if your
application wishes to control all GPU memory and sub allocate to TensorRT, instead of
having TensorRT allocate directly from CUDA.

Once the interface is implemented, call

setGpuAllocator(&allocator);

on the IBuilder or IRuntime interfaces. All device memory will then be allocated and
freed through this interface.

2.7. Refitting An Engine
TensorRT can refit an engine with new weights, without having to rebuild it. The engine
must be built as “refittable”. Because of the way the engine is optimized, if you change
some weights, you may have to supply some other weights too. The interface can tell
you what additional weights need to be supplied.

 1. Request a refittable engine before building it:

...
config->setFlag(BuilderFlag::kREFIT)
builder->buildEngineWithConfig(network, config);

 2. Create a refitter object:

ICudaEngine* engine = ...;
IRefitter* refitter = createInferRefitter(*engine,gLogger)

 3. Update the weights that you want to update. For example, to update the kernel
weights for a convolution layer named “MyLayer”:

Weights newWeights = ...;
refitter->setWeights("MyLayer",WeightsRole::kKERNEL,
 newWeights);

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_execution_context.html#ac7a5737264c2b7860baef0096d961f5a
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_execution_context.html#a1fba6d417077b30a270d623119d02731
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_execution_context.html#a4baca5d4e8642905d487aaf7ca01c5ea

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 21

The new weights should have the same count as the original weights used to build
the engine.

setWeights returns are false if something went wrong, such as a wrong layer name
or role, or a change in the weights count.

 4. Find out what other weights must be supplied. This typically requires two calls to
IRefitter::getMissing, first to get the number of Weights objects that must be
supplied, and second to get their layers and roles.

const int n = refitter->getMissing(0, nullptr, nullptr);
std::vector<const char*> layerNames(n);
std::vector<WeightsRole> weightsRoles(n);
refitter->getMissing(n, layerNames.data(),
 weightsRoles.data());

 5. Supply the missing weights, in any order:

for (int i = 0; i < n; ++i)
 refitter->setWeights(layerNames[i], weightsRoles[i],
 Weights{...});

Supplying only the missing weights will not generate a need for any more weights.
Supplying any additional weights may trigger the need for yet more weights.

 6. Update the engine with all the weights that are provided:

bool success = refitter->refitCudaEngine();
assert(success);

If success is false, check the log for a diagnostic, perhaps about weights that are
still missing.

 7. Destroy the refitter:

refitter->destroy();

The updated engine behaves as if it had been built from a network updated with the
new weights.

To see all refittable weights in an engine, use refitter->getAll(...); similarly to how
getMissing was used in step 3.

2.8. Algorithm Selection
TensorRT provides a mechanism to control the algorithm selection for different layers
in a network. The default behavior of TensorRT is to choose the algorithms that globally
minimize execution time of the engine. IAlgorithmSelector

The application can supply a custom algorithm selector for use during engine build by
implementing the IAlgorithmSelector interface. Once the interface is implemented,
call:

config.setAlgorithmSelector(&selector);

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 22

where config is the createBuilderConfig that will be passed to
IBuilder::createBuilderConfig to build the engine and selector is an instance
of your class derived from IAlgorithmSelector.

IAlgorithmSelector::selectAlgorithms

This method lets the application guide algorithm selection. The method is given the
algorithm context for a layer and a list of IAlgorithm choices, applicable to that context.
You can use your override of this method to indicate which choices TensorRT should
consider, based on whatever heuristic you like, or return all the choices if TensorRT
should do all the choosing.

The choices returned from selectAlgorithm restrict the range of algorithms allowed
for some layers. The builder will do global minimization with the allowed choices.
If no choice is returned, TensorRT falls back to its default behavior. You can unset
BuilderFlag::kSTRICT_TYPES, to avoid this fallback and get an error if the override
returns an empty list. If the override returns a single choice, it’s guaranteed to be used.

IAlgorithmSelector::reportAlgorithms

The override reportAlgorithms can be used to record the final choices made by
TensorRT for each layer. TensorRT invokes reportAlgorithms after all calls to
selectAlgorithms, for a given optimization profile. To replay choices from an earlier
build in a later build, make method selectAlgorithms return the same choices
that method reportAlgorithms reported for the earlier build, as described in the
Determinism And Reproducibility In The Builder section.

‣ The notion of a “layer” in Algorithm Selection is different from ILayer in
INetworkDefinition. The “layer” in the former may be equivalent to a
conglomeration of multiple ILayer due to fusion optimizations.

‣ Picking the fastest algorithm in selectAlgorithms may not get the best
performance for the overall network. TensorRT optimizes for minimum timing of
the whole network, possibly departing from locally greedy choices in exchange
for less reformatting overhead.

‣ Method reportAlgorithms doesn’t provide timing and workspace requirements
of an IAlgorithm. Method selectAlgorithms can be used to query that
information.

‣ The sequence of IAlgorithmContext and IAlgorithm, as well as the timing for
each IAlgorithm, may not be the same for each build.

2.8.1. Determinism And Reproducibility In The Builder
The default behavior of TensorRT is to choose layer implementations that globally
minimize the execution time of the engine.

Using The C++ API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 23

Trial execution times for an algorithm are almost never identical, however, if two
algorithms have similar timings, the same algorithm may not turn out to be faster every
time. As a consequence, the algorithm selected by TensorRT may be different for every
build, even if the network and build config is unchanged.

However, the Algorithm Selection API can be used to build TensorRT engines
deterministically. For more information, see Algorithm Selection. The method
IAlgorithmSelector::selectAlgorithms lets you select the algorithm for a layer
from a list of choices. By always returning the same choice, you can force deterministic
choice for that layer.

IAlgorithmSelector also lets you reproduce the same implementations.
IAlgorithmSelector::reportAlgorithms can be used to cache the
algorithm choices made by TensorRT, based on the default behavior or rule set by
selectAlgorithms. selectAlgorithms can then be used to choose the algorithms
recorded in this cache. If you return the same algorithm choice for each combination of
layerName, implementation, tactic and input/output formats, then you will always get
the same engine.

Class sampleAlgorithmSelector demonstrates how to use the algorithm selector to
achieve determinism and reproducibility in the builder.

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 24

Chapter 3.
USING THE PYTHON API

The following sections highlight the NVIDIA® TensorRT™ user goals and tasks that you
can perform using the Python API.

These sections focus on using the Python API without any frameworks. Further details
are provided in the Samples Support Guide and are linked to below where appropriate.

The assumption is that you are starting with a trained model. This chapter will cover the
following necessary steps in using TensorRT:

‣ Creating a TensorRT network definition from your model
‣ Invoking the TensorRT builder to create an optimized runtime engine from the

network
‣ Serializing and deserializing the engine so that it can be rapidly recreated at runtime
‣ Feeding the engine with data to perform inference

Python API vs C++ API

In essence, the C++ API and the Python API should be close to identical in supporting
your needs. The main benefit of the Python API is that data preprocessing and
postprocessing are easy to use because you’re able to use a variety of libraries like
NumPy and SciPy.

The C++ API should be used in situations where safety is important, for example, in
automotive. For more information about the C++ API, see Using The C++ API.

For more information about how to optimize performance using Python, see How Do I
Optimize My Python Performance? from the TensorRT Best Practices guide.

3.1. Importing TensorRT Into Python
 1. Import TensorRT:

import tensorrt as trt

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-python
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-python

Using The Python API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 25

 2. Implement a logging interface through which TensorRT reports errors, warnings,
and informational messages. The following code shows how to implement the
logging interface. In this case, we have suppressed informational messages, and
report only warnings and errors. There is a simple logger included in the TensorRT
Python bindings.

TRT_LOGGER = trt.Logger(trt.Logger.WARNING)

3.2. Creating A Network Definition In Python
The first step in performing inference with TensorRT is to create a TensorRT network
from your model.

The easiest way to achieve this is to import the model using the TensorRT parser library,
(see Importing A Model Using A Parser In Python, Importing From Caffe Using Python,
Importing From TensorFlow Using Python, and Importing From ONNX Using Python),
which supports serialized models in the following formats:

‣ Caffe (both BVLC and NVCaffe)
‣ Supports ONNX releases up to ONNX 1.6, and ONNX opsets 7 to 11, and
‣ UFF (used for TensorFlow)

An alternative is to define the model directly using the TensorRT Network API, (see
Creating A Network Definition From Scratch Using The Python API). This requires you
to make a small number of API calls to define each layer in the network graph and to
implement your own import mechanism for the model’s trained parameters.

The TensorRT Python API is not available for all platforms. For more information, see
TensorRT Support Matrix

3.2.1. Creating A Network Definition From Scratch Using
The Python API
When creating a network, you must first define the engine and create a builder object
for inference. The Python API is used to create a network and engine from the Network
APIs. The network definition reference is used to add various layers to the network.

For more information about using the Python API to create a network and
engine, see the "Hello World" For TensorRT Using PyTorch And Python
(network_api_pytorch_mnist) sample.

The following code illustrates how to create a simple network with Input, Convolution,
Pooling, FullyConnected, Activation and SoftMax layers.

Create the builder and network
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network:
 # Configure the network layers based on the weights provided. In this case, the
 weights are imported from a pytorch model.
 # Add an input layer. The name is a string, dtype is a TensorRT dtype, and the
 shape can be provided as either a list or tuple.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#network_api_pytorch_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#network_api_pytorch_mnist

Using The Python API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 26

 input_tensor = network.add_input(name=INPUT_NAME, dtype=trt.float32,
 shape=INPUT_SHAPE)

 # Add a convolution layer
 conv1_w = weights['conv1.weight'].numpy()
 conv1_b = weights['conv1.bias'].numpy()
 conv1 = network.add_convolution(input=input_tensor, num_output_maps=20,
 kernel_shape=(5, 5), kernel=conv1_w, bias=conv1_b)
 conv1.stride = (1, 1)

 pool1 = network.add_pooling(input=conv1.get_output(0),
 type=trt.PoolingType.MAX, window_size=(2, 2))
 pool1.stride = (2, 2)
 conv2_w = weights['conv2.weight'].numpy()
 conv2_b = weights['conv2.bias'].numpy()
 conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w,
 conv2_b)
 conv2.stride = (1, 1)

 pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
 pool2.stride = (2, 2)

 fc1_w = weights['fc1.weight'].numpy()
 fc1_b = weights['fc1.bias'].numpy()
 fc1 = network.add_fully_connected(input=pool2.get_output(0), num_outputs=500,
 kernel=fc1_w, bias=fc1_b)

 relu1 = network.add_activation(fc1.get_output(0), trt.ActivationType.RELU)

 fc2_w = weights['fc2.weight'].numpy()
 fc2_b = weights['fc2.bias'].numpy()
 fc2 = network.add_fully_connected(relu1.get_output(0), OUTPUT_SIZE, fc2_w,
 fc2_b)

 fc2.get_output(0).name =OUTPUT_NAME
 network.mark_output(fc2.get_output(0))

3.2.2. Importing A Model Using A Parser In Python
To import a model using a parser, you will need to perform the following high-level
steps:

 1. Create the TensorRT builder and network.
 2. Create the TensorRT parser for the specific format.
 3. Use the parser to parse the imported model and populate the network.

For step-by-step instructions, see Importing From Caffe Using Python, Importing From
TensorFlow Using Python, and Importing From ONNX Using Python.

The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs. For
more information, see the UFF Parser API, Caffe Parser API, and ONNX Parser API.

3.2.3. Importing From Caffe Using Python
The following steps illustrate how to import a Caffe model directly using the CaffeParser
and the Python API.

For more information, see the Introduction To Importing Caffe, TensorFlow And ONNX
Models Into TensorRT Using Python (introductory_parser_samples) sample.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Core/Builder.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Uff/pyUff.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Caffe/pyCaffe.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Onnx/pyOnnx.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples

Using The Python API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 27

 1. Import TensorRT.

import tensorrt as trt

 2. Define the data type. In this example, we will use float32.

datatype = trt.float32

 3. Additionally, define some paths. Change the following paths to reflect where you
placed the model included with the samples:

deploy_file = 'data/mnist/mnist.prototxt'
model_file = 'data/mnist/mnist.caffemodel'

 4. Create the builder, network, and parser:

with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as
 network, trt.CaffeParser() as parser:
model_tensors = parser.parse(deploy=deploy_file, model=model_file,
 network=network, dtype=datatype)

The parser returns the model_tensors, which is a table containing the mapping
from tensor names to ITensor objects.

3.2.4. Importing From TensorFlow Using Python
The following steps illustrate how to import a TensorFlow model directly using the
UffParser and the Python API.

This sample can be found in the <site-packages>/tensorrt/samples/python/
end_to_end_tensorflow_mnist directory. For more information, see the "Hello
World" For TensorRT Using TensorFlow And Python (end_to_end_tensorflow_mnist)
sample.

 1. Import TensorRT:

import tensorrt as trt

 2. Create a frozen TensorFlow model for the tensorflow model. The instructions on
freezing a TensorFlow model into a stream can be found in Freezing A TensorFlow
Graph.

 3. Use the UFF converter to convert a frozen tensorflow model to a UFF file.
Typically, this is as simple as:

convert-to-uff frozen_inference_graph.pb

Depending on how you installed TensorRT, the convert-to-uff utility might not
be installed in your system path. In this case, invoke the underlying Python script
directly. It should be located in the bin directory of the UFF module; for example,
~/.local/lib/python2.7/site-packages/uff/bin/convert_to_uff.py.

To find the location of the UFF module, run the python -c “import uff;
print(uff.__path__)” command.

Alternatively, you can use the UFF Parser API and convert the TensorFlow
GraphDef directly.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#end_to_end_tensorflow_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#end_to_end_tensorflow_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Uff/pyUff.html

Using The Python API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 28

 4. Define some paths. Change the following paths to reflect where you placed the
model that is included with the samples:

model_file = '/data/mnist/mnist.uff'

 5. Create the builder, network, and parser:

with builder = trt.Builder(TRT_LOGGER) as builder, builder.create_network()
 as network, trt.UffParser() as parser:
 parser.register_input("Placeholder", (1, 28, 28))
 parser.register_output("fc2/Relu")
parser.parse(model_file, network)

3.2.5. Importing From ONNX Using Python
The following steps illustrate how to import an ONNX model directly using the
OnnxParser and the Python API.

For more information, see the Introduction To Importing Caffe, TensorFlow And ONNX
Models Into TensorRT Using Python (introductory_parser_samples) sample.

In general, the newer version of the OnnxParser is designed to be backward
compatible, therefore, encountering a model file produced by an earlier version of
the ONNX exporter should not cause a problem. There could be some exceptions when
the changes were not backward compatible. In this case, convert the earlier ONNX
model file into a later supported version. For more information on this subject, see
ONNX Model Opset Version Converter.

It is also possible that the user model was generated by an exporting tool supporting
later opsets than supported by the ONNX parser shipped with TensorRT. In this case,
check whether the latest version of TensorRT released to GitHub, onnx-tensorrt,
supports the required version. For more information, see the Object Detection With
The ONNX TensorRT Backend In Python (yolov3_onnx) sample.

The supported version is defined by the BACKEND_OPSET_VERSION variable in
onnx_trt_backend.cpp. Download and build the latest version of ONNX TensorRT
Parser from GitHub. The instructions for building can be found here: TensorRT
backend for ONNX.

In TensorRT 7.0, the ONNX parser only supports full-dimensions mode, meaning that
your network definition must be created with the explicitBatch flag set. For more
information, see Working With Dynamic Shapes.

 1. Import TensorRT:

import tensorrt as trt

 2. Create the builder, network, and parser:

EXPLICIT_BATCH = 1 << (int)
(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples
https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#yolov3_onnx
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#yolov3_onnx
https://github.com/onnx/onnx-tensorrt/blob/master/onnx_trt_backend.cpp
https://github.com/onnx/onnx-tensorrt/blob/master/README.md
https://github.com/onnx/onnx-tensorrt/blob/master/README.md

Using The Python API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 29

with trt.Builder(TRT_LOGGER) as builder,
 builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(network,
 TRT_LOGGER) as parser:
with open(model_path, 'rb') as model:
if not parser.parse(model.read()):
 for error in range(parser.num_errors):
 print(parser.get_error(error))

3.2.6. Importing From PyTorch And Other Frameworks
Using TensorRT with PyTorch (or any other framework with NumPy compatible
weights) involves replicating the network architecture using the TensorRT API, (see
Creating A Network Definition From Scratch Using The Python API), and then copying
the weights from PyTorch. For more information, see Working With PyTorch And Other
Frameworks.

To perform inference, follow the instructions outlined in Performing Inference In
Python.

3.3. Building An Engine In Python
One of the functions of the builder is to search through its catalog of CUDA kernels for
the fastest implementation available, and thus it is necessary to use the same GPU for
building like that on which the optimized engine will run.

The builder has many properties that you can set in order to control such things as the
precision at which the network should run, and autotuning parameters such as how
many times TensorRT should time each kernel when ascertaining which is fastest (more
iterations lead to longer runtimes, but less susceptibility to noise.) You can also query the
builder to find out what mixed-precision types are natively supported by the hardware.

Two particularly important properties are the maximum batch size and the maximum
workspace size.

‣ The maximum batch size specifies the batch size for which TensorRT will optimize.
At runtime, a smaller batch size may be chosen.

‣ Layer algorithms often require temporary workspace. This parameter limits the
maximum size that any layer in the network can use. If an insufficient scratch is
provided, it is possible that TensorRT may not be able to find an implementation for
a given layer.

For more information about building an engine in Python, see the Introduction
To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using Python
(introductory_parser_samples) sample.

 1. Build the engine using the builder object:

with trt.Builder(TRT_LOGGER) as builder, builder.create_builder_config() as
 config:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples

Using The Python API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 30

 config.max_workspace_size = 1 << 20 # This determines the amount of
 memory available to the builder when building an optimized engine and
 should generally be set as high as possible.
 with builder.build_engine(network, config) as engine:

Do inference here.

When the engine is built, TensorRT makes copies of the weights.
 2. Perform inference. To perform inference, follow the instructions outlined in

Performing Inference In Python.

3.4. Serializing A Model In Python
From here onwards, you can either serialize the engine or you can use the engine
directly for inference. Serializing and deserializing a model is an optional step before
using it for inference - if desirable, the engine object can be used for inference directly.

When you serialize, you are transforming the engine into a format to store and use at a
later time for inference. To use for inference, you would simply deserialize the engine.
Serializing and deserializing are optional. Since creating an engine from the Network
Definition can be time-consuming, you could avoid rebuilding the engine every time the
application reruns by serializing it once and deserializing it while inferencing. Therefore,
after the engine is built, users typically want to serialize it for later use.

Serialized engines are not portable across platforms or TensorRT versions. Engines are
specific to the exact GPU model they were built on (in addition to the platforms and
the TensorRT version).

 1. Serialize the model to a modelstream:

serialized_engine = engine.serialize()

 2. Deserialize modelstream to perform inference. Deserializing requires creation of a
runtime object:

with trt.Runtime(TRT_LOGGER) as runtime: engine =
 runtime.deserialize_cuda_engine(serialized_engine)

It is also possible to save a serialized engine to a file, and read it back from the file:

 1. Serialize the engine and write to a file:

with open(“sample.engine”, “wb”) as f:
 f.write(engine.serialize())

 2. Read the engine from the file and deserialize:

with open(“sample.engine”, “rb”) as f, trt.Runtime(TRT_LOGGER) as runtime:
 engine = runtime.deserialize_cuda_engine(f.read())

https://en.wikipedia.org/wiki/Serialization

Using The Python API

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 31

3.5. Performing Inference In Python
The following steps illustrate how to perform inference in Python, now that you have an
engine.

 1. Allocate some host and device buffers for inputs and outputs:

Determine dimensions and create page-locked memory buffers (i.e. won't be
 swapped to disk) to hold host inputs/outputs.
 h_input = cuda.pagelocked_empty(trt.volume(engine.get_binding_shape(0)),
 dtype=np.float32)
 h_output = cuda.pagelocked_empty(trt.volume(engine.get_binding_shape(1)),
 dtype=np.float32)
 # Allocate device memory for inputs and outputs.
 d_input = cuda.mem_alloc(h_input.nbytes)
 d_output = cuda.mem_alloc(h_output.nbytes)
 # Create a stream in which to copy inputs/outputs and run inference.
 stream = cuda.Stream()

 2. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are
held in an execution context:

with engine.create_execution_context() as context:
 # Transfer input data to the GPU.
 cuda.memcpy_htod_async(d_input, h_input, stream)
 # Run inference.
 context.execute_async(bindings=[int(d_input), int(d_output)],
 stream_handle=stream.handle)
 # Transfer predictions back from the GPU.
 cuda.memcpy_dtoh_async(h_output, d_output, stream)
 # Synchronize the stream
 stream.synchronize()
 # Return the host output.
return h_output

An engine can have multiple execution contexts, allowing one set of weights to
be used for multiple overlapping inference tasks. For example, you can process
images in parallel CUDA streams using one engine and one context per stream.
Each context will be created on the same GPU as the engine.

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 32

Chapter 4.
EXTENDING TENSORRT WITH CUSTOM
LAYERS

NVIDIA® TensorRT™ supports many types of layers and its functionality is continually
extended; however, there may be cases in which the layers supported do not cater to the
specific needs of a model.

In this case, users can extend TensorRT functionalities by implementing custom layers
using the IPluginV2Ext class for the C++ and Python API. Custom layers, often
referred to as plugins, are implemented and instantiated by an application, and their
lifetime must span their use within a TensorRT engine.

TensorRT layers, with TopK excluded, are expected to work with zero workspace size,
however, the precision requested may be ignored if there’s no implementation that uses
zero workspaces. In the latter case, the layer will run on FP32 even if the precision is set
to something else.

4.1. Adding Custom Layers Using The C++ API
A custom layer is implemented by extending the class IPluginCreator and one of
TensorRT’s base classes for plugins.

IPluginCreator is a creator class for custom layers using which users can get plugin
name, version, and plugin field parameters. It also provides methods to create the
plugin object during the network build phase and deserialize it during inference.

You must derive your plugin class from one of the base classes for plugins. They have
varying expressive power with respect to supporting inputs/outputs with different
types/formats or networks with dynamic shapes. The table below summarizes the base
classes, ordered from least expressive to most expressive.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2Ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_creator.html

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 33

Table 1 Base classes, ordered from least expressive to most expressive

Introduced
in TensorRT
version?

Mixed input/
output formats/
types

Dynamic
shapes?

Requires
extended
runtime?

IPluginV2Ext 5.1 Limited No No

IPluginV2IOExt 6.0.1 General No No

IPluginV2DynamicExt6.0.1 General Yes Yes

All of these base classes include versioning support and help enable custom layers that
support other data formats besides NCHW and single precision.

If using either IPluginV2Ext, IPluginV2IOExt, or IPluginV2DynamicExt, you
should always provide an FP32 implementation of the plugin in order to allow the
plugin to properly operate with any network.

If writing a new custom layer, we recommend using IPluginV2IOExt if your layer
must be usable without the extended runtime or you do not need to support dynamic
shapes, otherwise use IPluginV2DynamicExt.

In versions of TensorRT prior to 6.0.1, you derived custom layers from IPluginV2
or IPluginV2Ext. While these APIs are still supported, we highly encourage you to
move to IPluginV2IOExt or IPluginV2DynamicExt to be able to use all the new
plugin functionalities.

TensorRT also provides the ability to register a plugin by calling
REGISTER_TENSORRT_PLUGIN(pluginCreator) which statically registers the Plugin
Creator to the Plugin Registry. During runtime, the Plugin Registry can be queried using
the extern function getPluginRegistry(). The Plugin Registry stores a pointer to
all the registered Plugin Creators and can be used to look up a specific Plugin Creator
based on the plugin name and version. The TensorRT library contains plugins that can
be loaded into your application. The version of all these plugins is set to 1. The names of
these plugins are:

‣ RPROI_TRT
‣ Normalize_TRT
‣ PriorBox_TRT
‣ GridAnchor_TRT
‣ NMS_TRT
‣ LReLU_TRT
‣ Reorg_TRT
‣ Region_TRT
‣ Clip_TRT

To use TensorRT registered plugins in your application, the libnvinfer_plugin.so
library must be loaded and all plugins must be registered. This can be done by calling

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_i_o_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_dynamic_ext.html

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 34

initLibNvInferPlugins(void* logger, const char* libNamespace)() in
your application code.

If you have your own plugin library, you can include a similar entry point to register
all plugins in the registry under a unique namespace. This ensures there are no plugin
name collisions during build time across different plugin libraries.

For more information about these plugins, see the NvInferPlugin.h file for reference.

Using the Plugin Creator, the IPluginCreator::createPlugin() function can be
called which returns a plugin object of type IPluginV2. This object can be added to the
TensorRT network using addPluginV2() which creates and adds a layer to a network
and then binds the layer to the given plugin. The method also returns a pointer to the
layer (of type IPluginV2Layer), which can be used to access the layer or the plugin
itself (via getPlugin()).

For example, to add a plugin layer to your network with plugin name set to
pluginName and version set to pluginVersion, you can issue the following:

//Use the extern function getPluginRegistry to access the global TensorRT Plugin
 Registry
auto creator = getPluginRegistry()->getPluginCreator(pluginName, pluginVersion);
const PluginFieldCollection* pluginFC = creator->getFieldNames();
//populate the field parameters (say layerFields) for the plugin layer
PluginFieldCollection *pluginData = parseAndFillFields(pluginFC, layerFields);
//create the plugin object using the layerName and the plugin meta data
IPluginV2 *pluginObj = creator->createPlugin(layerName, pluginData);
//add the plugin to the TensorRT network using the network API
auto layer = network.addPluginV2(&inputs[0], int(inputs.size()), pluginObj);
… (build rest of the network and serialize engine)
pluginObj->destroy() // Destroy the plugin object
… (destroy network, engine, builder)
… (free allocated pluginData)

pluginData should allocate the PluginField entries on the heap before passing to
createPlugin.

The createPlugin method above will create a new plugin object on the heap and
returns a pointer to it. Ensure you destroy the pluginObj, as shown above, to avoid a
memory leak.

During serialization, the TensorRT engine will internally store the plugin type,
plugin version, and namespace (if it exists) for all IPluginV2 type plugins. During
deserialization, this information is looked up by the TensorRT engine to find the Plugin
Creator from the Plugin Registry. This enables the TensorRT engine to internally call
the IPluginCreator::deserializePlugin() method. The plugin object created
during deserialization will be destroyed internally by the TensorRT engine by calling
IPluginV2::destroy() method.

In previous versions of TensorRT, you had to implement the
nvinfer1::IPluginFactory class to call the createPlugin method during
deserialization. This is no longer necessary for plugins registered with TensorRT and
added using addPluginV2.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/_nv_infer_plugin_8h.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0c6e2a0b4e1c8a4df1722a24cc7c0473

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 35

4.1.1. Example: Adding A Custom Layer Using C++
To add a custom layer in C++, derive it from one of the base classes described in Adding
Custom Layers Using The C++ API. Because this example does not need dynamic
shapes, it uses IPluginV2IOExt.

For Caffe based networks, if using the TensorRT Caffe Parser, you will also derive classes
from nvcaffeparser1::IPluginFactoryExt (for plugins of type IPluginExt) and
nvinfer1::IPluginFactory. For more information, see Using Custom Layers When
Importing A Model From A Framework.

The following sample code adds a new plugin called FooPlugin:

class FooPlugin : public IPluginV2IOExt
{
 ...override all pure virtual methods of IPluginV2IOExt with definitions for
 your plugin. Do not override the TRT_DEPRECATED methods.
};

class MyPluginFactory : public nvinfer1::IPluginFactory
{
 ...implement all factory methods for your plugin
};

If you are using plugins registered with the TensorRT plugin registry
of type IPluginV2, then you do not need to implement the class
nvinfer1::IPluginFactory.

4.1.2. Example: Adding A Custom Layer That Is Not
Supported In Caffe Using C++
If the TensorRT Caffe parser must handle your plugin, the steps are similar to Example
1, but you need to implement the nvcaffeparser1::IPluginFactoryV2 and
IPluginCreator classes instead and register them.

class FooPlugin : public IPluginV2IOExt
{
 ...implement all class methods for your plugin
};

class FooPluginFactory : public nvcaffeparser1::IPluginFactoryV2
{
 virtual nvinfer1::IPluginV2* createPlugin(...)
 {
 ...create and return plugin object of type FooPlugin
 }
 bool isPlugin(const char* name)
 {
 ...check if layer name corresponds to plugin
 }
}

class FooPluginCreator : public IPluginCreator
{
 ...implement all creator methods here
};
REGISTER_TENSORRT_PLUGIN(FooPluginCreator);

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 36

The following samples illustrate how to add a custom plugin layer using C++ for Caffe
networks:

‣ Adding A Custom Layer To Your TensorRT Network (samplePlugin), located in the
GitHub repository, has a user implemented the plugin.

‣ Object Detection With Faster R-CNN (sampleFasterRCNN), located in the GitHub
repository, uses plugins registered with the TensorRT Plugin Registry.

4.1.3. Example: Adding A Custom Layer That Is Not
Supported In UFF Using C++
In order to run TensorFlow networks with TensorRT, you must first convert it to the UFF
format.

The following steps add a custom plugin layer in C++ for TensorFlow networks:

 1. Implement the IPluginV2 and IPluginCreator classes as shown in Example:
Adding A Custom Layer Using C++.

 2. Map the TensorFlow operation to the plugin operation. You can use GraphSurgeon
for this. For example, refer to the following code snippet to map the TensorFlow
Relu6 operation to a plugin:

import graphsurgeon as gs
my_relu6 = gs.create_plugin_node(name=”MyRelu6”, op=”Clip_TRT”, clipMin=0.0,
 clipMax=6.0)
Namespace_plugin_map = { “tf_relu6” : my_relu6 }
def preprocess(dynamic_graph):
 dynamic_graph.collapse_namespaces(namespace_plugin_map)

In the above code, tf_relu6 is the name of the Relu6 node in the TensorFlow
graph. It maps the tf_relu6 node to a custom plugin node with operation
“Clip_TRT” which is the name of the plugin to be used. Save the code above to a file
called config.py. If the plugin layer expects parameters, they should be passed in
as arguments to gs.create_plugin_node. In this case, clipMin and clipMax are
the parameters expected by the clip plugin.

 3. Call the UFF converter with the preprocess -p flag set:

convert-to-uff frozen_inference_graph.pb -p config.py -t

This will generate a UFF file with the TensorFlow operations replaced by TensorRT
plugin nodes.

 4. Run the pre-processed and converted UFF file with TensorRT using the UFF parser.
For details, see Using Custom Layers When Importing A Model From A Framework.

Object Detection With A TensorFlow SSD Network (sampleUffSSD) located in the
GitHub repository, illustrates how to add a custom layer that is not supported in
UFF using C++. See config.py in the sample folder for a demonstration of how to
pre-process the graph.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/samplePlugin
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleFasterRCNN
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffSSD

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 37

4.1.4. Example: Adding A Custom Layer With Dynamic
Shape Support Using C++
To support dynamic shapes, your plugin must be derived from IPluginV2DynamicExt.
The factory/creator and registry parts are similar to Example1, therefore the steps will
not be repeated here.

BarPlugin is a plugin with two inputs and two outputs where:

‣ The first output is a copy of the second input
‣ The second output is the concatenation of both inputs, along the first dimension and

all types/formats must be the same and be linear formats

BarPlugin needs to be derived as follows:

class BarPlugin : public IPluginV2DynamicExt
{
 ...override virtual methods inherited from IPluginV2DynamicExt.
};

The inherited methods are all pure virtual methods, so the compiler will remind you if
you forget one.

The four methods that are affected by dynamic shapes are:

‣ getOutputDimensions

‣ supportsFormatCombination

‣ configurePlugin

‣ enqueue

The override for getOutputDimensions returns symbolic expressions for the output
dimensions in terms of the input dimensions. Build the expressions from the expressions
for the inputs, using the IExprBuilder passed into getOutputDimensions. In the
example, the dimensions of the second output are the same as the dimensions of the first
input, so no new expression has to be built for case 1.

DimsExprs BarPlugin::getOutputDimensions(int outputIndex,
 const DimsExprs* inputs, int nbInputs,
 IExprBuilder& exprBuilder)
{
 switch (outputIndex)
 {
 case 0:
 {
 // First dimension of output is sum of input
 // first dimensions.
 DimsExprs output(inputs[0]);
 output.d[0] =
 exprBuilder.operation(DimensionOperation::kSUM,
 inputs[0].d[0], inputs[1].d[0]);
 return output;
 }
 case 1:
 return inputs[0];

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 38

 default:
 throw std::invalid_argument(“invalid output”);
}

The override for supportsFormatCombination must indicate whether a format
combination is allowed. The interface indexes the inputs/outputs uniformly as
“connections”, starting at 0 for the first input, then the rest of the inputs in order,
followed by numbering the outputs. In the example, the inputs are connections 0 and 1,
and the outputs are connections 2 and 3.

TensorRT uses supportsFormatCombination to ask whether a given combination
of formats/types are okay for a connection, given formats/types for lesser indexed
connections. So the override can assume that lesser indexed connections have already
been vetted and focus on the connection with index pos.

bool BarPlugin::supportsFormatCombination(int pos, const PluginTensorDesc*
 inOut, int nbInputs, int nbOutputs) override
{
 assert(0 <= pos && pos < 4);
 const auto* in = inOut;
 const auto* out = inOut + nbInputs;
 switch (pos)
 {
 case 0: in[0].format == TensorFormat::kLINEAR;
 case 1: return in[1].type == in[0].type &&
 in[0].format == TensorFormat::kLINEAR;
 case 2: return out[0].type == in[0].type &&
 out[0].format == TensorFormat::kLINEAR;
 case 3: return out[1].type == in[0].type &&
 out[1].format == TensorFormat::kLINEAR;
 }
 throw std::invalid_argument(“invalid connection number”);
}

The local variables in and out here allow inspecting inOut by input or output number
instead of connection number.

Important The override may inspect the format/type for a connection with an index
less than pos, but must never inspect the format/type for a connection with an index
greater than pos. The example uses case 3 to check connection 3 against connection
0, and not use case 0 to check connection 0 against connection 3.

TensorRT uses configurePlugin to set up a plugin at runtime. Our plugin doesn’t
need configurePlugin to do anything, so it’s a no-op:

void BarPlugin::configurePlugin(
 const DynamicPluginTensorDesc* in, int nbInputs,
 const DynamicPluginTensorDesc* out, int nbOutputs) override
{
}

If the plugin needed to know the minimum or maximum dimensions it might
encounter, it can inspect the field DynamicPluginTensorDesc::min or
DynamicPluginTensorDesc::max for any input or output. Format and build-

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 39

time dimension information can be found in DynamicPluginTensorDesc::desc.
Any runtime dimensions will appear as -1. The actual dimension is supplied to
BarPlugin::enqueue.

Finally, the override BarPlugin::enqueue has to do the work. Since shapes
are dynamic, enqueue is handed a PluginTensorDesc that describes the actual
dimensions, type, and format of each input and output.

4.1.5. Example: Add A Custom Layer With INT8 I/O
Support Using C++
To support INT8 I/O, your plugin can be derived from either IPluginV2IOExt or
IPluginV2DynamicExt. However, if your application disallows extended runtime,
IPluginV2IOExt must be derived.

The general steps are similar to Example 1: Adding A Custom Layer Using C++ For
Caffe and Example 3: Adding A Custom Layer With Dynamic Shape Support Using C++,
therefore the repeated parts (factory/creator and registry) will not be presented here.

UffPoolPluginV2 is a plugin to demonstrate how to extend INT8 I/O for the custom
pooling layer. The derivation is as follows:

class UffPoolPluginV2 : public IPluginV2IOExt
{
 ...override virtual methods inherited from IPluginV2IOExt.
};

Most of the pure virtual methods are common to plugins. The main methods that affect
INT8 I/O are:

‣ supportsFormatCombination
‣ configurePlugin
‣ enqueue

The override for supportsFormatCombination must indicate which INT8 I/O
combination is allowed. The usage of this interface is similar to Example 3: Adding A
Custom Layer With Dynamic Shape Support Using C++. In this example, the supported
I/O tensor format is linear CHW while INT32 is excluded, but the I/O tensor must have
the same data type.

bool UffPoolPluginV2::supportsFormatCombination(int pos, const PluginTensorDesc*
 inOut, int nbInputs, int nbOutputs) const override
{
 assert(nbInputs == 1 && nbOutputs == 1 && pos < nbInputs + nbOutputs);
 bool condition = inOut[pos].format == TensorFormat::kLINEAR;
 condition &= inOut[pos].type != DataType::kINT32;
 condition &= inOut[pos].type == inOut[0].type;
 return condition;
}

Important

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#example1_add_custlay_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#example1_add_custlay_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#overview
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#overview
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#overview

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 40

‣ If INT8 auto-calibration must be used with a network with INT8 I/O plugins,
the FP32 I/O variant should be supported by the plugin as it is used by FP32
calibration graph.

‣ If the FP32 I/O variant is not supported, or INT8 auto-calibration is not used, all
required INT8 I/O tensors scales should be set explicitly.

‣ Auto-calibration won't generate dynamic range for plugin internal tensors. INT8
I/O plugins should calculate their own per-tensor dynamic range for internal
tensors for the purpose of quantization or dequantization.

TensorRT invokes configurePlugin method to pass the information to the plugin
through PluginTensorDesc, which are stored as member variables, serialized and
deserialized.

void UffPoolPluginV2::configurePlugin(const PluginTensorDesc* in, int nbInput,
 const PluginTensorDesc* out, int nbOutput)
{
 ...
 mPoolingParams.mC = mInputDims.d[0];
 mPoolingParams.mH = mInputDims.d[1];
 mPoolingParams.mW = mInputDims.d[2];
 mPoolingParams.mP = mOutputDims.d[1];
 mPoolingParams.mQ = mOutputDims.d[2];
 mInHostScale = in[0].scale >= 0.0f ? in[0].scale : -1.0f;
 mOutHostScale = out[0].scale >= 0.0f ? out[0].scale : -1.0f;
}

Where INT8 I/O scales per tensor can be obtained from PluginTensorDesc::scale.

Finally, the override UffPoolPluginV2::enqueue has to do the work. It includes a
collection of core algorithms to execute the custom layer at runtime by using the actual
batch size, inputs, outputs, cuDNN stream, and the information configured.

int UffPoolPluginV2::enqueue(int batchSize, const void* const* inputs, void**
 outputs, void* workspace, cudaStream_t stream)
{
 ...
 CHECK(cudnnPoolingForward(mCudnn, mPoolingDesc, &kONE, mSrcDescriptor,
 input, &kZERO, mDstDescriptor, output));
 ...
 return 0;
}

4.1.6. Example: Implementing A GELU Operator Using
The C++ API
To implement a GELU operator, we need to add a group of ElementWise and Unary
layers in the network.

The GELU equation is:

GELU(x)=0.5x(1+tanh[√2/π(x+0.044715x3)])

 1. Prepare the constant value:

const float f3 = 3.0f;
const float x3Coeff = 0.044715f;
const float sqrt2OverPi = 0.7978846f;
const float f1 = 1.0f;

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 41

const float f05 = 0.5f;
 2. Implement the GELU operator:

auto dim = nvinfer1::Dims3{1, 1, 1};
// y = x ^ 3
auto c3 = network->addConstant(dim, Weights{DataType::kFLOAT, &f3, 1});
auto pow1 = network->addElementWise(*x->getOutput(0), *c3->getOutput(0),
 ElementWiseOperation::kPOW);
// y = y * 0.044715f
auto cX3Coeff = network->addConstant(dim, Weights{DataType::kFLOAT,
 &x3Coeff, 1});
auto mul1 = network->addElementWise(
 *pow1->getOutput(0), *cX3Coeff->getOutput(0),
 ElementWiseOperation::kPROD);
// y = y + x
auto add1 = network->addElementWise(*mul1->getOutput(0), *x->getOutput(0),
 ElementWiseOperation::kSUM);
// y = y * 0.7978846f
auto cSqrt2OverPi = network->addConstant(dim, Weights{DataType::kFLOAT,
 &sqrt2OverPi, 1});
auto mul2 = network->addElementWise(*add1->getOutput(0), *cSqrt2OverPi-
>getOutput(0), ElementWiseOperation::kPROD);
// y = tanh(y)
auto tanh1 = network->addActivation(*mul2->getOutput(0),
 ActivationType::kTANH);
// y = y + 1
auto c1 = network->addConstant(dim, Weights{DataType::kFLOAT, &f1, 1});
auto add2 = network->addElementWise(*tanh1->getOutput(0), *c1->getOutput(0),
 ElementWiseOperation::kSUM);
// y = y * 0.5
auto c05 = network->addConstant(dim, Weights{DataType::kFLOAT, &f05, 1});
auto mul3 = network->addElementWise(*add2->getOutput(0), *c05->getOutput(0),
 ElementWiseOperation::kPROD);
// y = y * x
auto y = network->addElementWise(*mul3->getOutput(0), *x->getOutput(0),
 ElementWiseOperation::kPROD);

Considering that GELU is not a linear function, set the precision of every layer to
FP32 when the network is set to run in INT8 mode.

For more information about layer fusion related to GELU, see the TensorRT Best
Practices Guide.

4.2. Adding Custom Layers Using The Python API
Although the C++ API is the preferred language to implement custom layers; due to
easily accessing libraries like CUDA and cuDNN, you can also work with custom layers
in Python applications.

You can use the C++ API to create a custom layer, package the layer using pybind11
in Python, then load the plugin into a Python application. For more information, see
Creating A Network Definition In Python.

The same custom layer implementation can be used for both C++ and Python. For more
information, see the Adding A Custom Layer To Your Caffe Network In TensorRT In
Python (fc_plugin_caffe_mnist) sample.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#fusion-types
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#fusion-types
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#uff_custom_plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#uff_custom_plugin

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 42

4.2.1. Example: Adding A Custom Layer to a TensorRT
Network Using Python
Custom layers can be added to any TensorRT network in Python using plugin nodes.

The Python API has a function called add_plugin_v2 which enables you to add a
plugin node to a network. The following example illustrates this. It creates a simple
TensorRT network and adds a Leaky ReLU plugin node by looking up TensorRT Plugin
Registry.

import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger()

trt.init_libnvinfer_plugins(TRT_LOGGER, '')
PLUGIN_CREATORS = trt.get_plugin_registry().plugin_creator_list

def get_trt_plugin(plugin_name):
 plugin = None
 for plugin_creator in PLUGIN_CREATORS:
 if plugin_creator.name == plugin_name:
 lrelu_slope_field = trt.PluginField("neg_slope", np.array([0.1],
 dtype=np.float32), trt.PluginFieldType.FLOAT32)
 field_collection =
 trt.PluginFieldCollection([lrelu_slope_field])
 plugin = plugin_creator.create_plugin(name=plugin_name,
 field_collection=field_collection)
 return plugin

def main():
 with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as
 network:
 builder.max_workspace_size = 2**20
 input_layer = network.add_input(name="input_layer", dtype=trt.float32,
 shape=(1, 1))
 lrelu = network.add_plugin_v2(inputs=[input_layer],
 plugin=get_trt_plugin("LReLU_TRT"))
 lrelu.get_output(0).name = "outputs"
 network.mark_output(lrelu.get_output(0))

4.2.2. Example: Adding A Custom Layer That Is Not
Supported In UFF Using Python
TensorFlow networks can be converted to UFF format and run with TensorRT using the
Python interface.

In order to do this, we make use of the GraphSurgeon API. If you are writing your
own plugin, you need to implement it in C++ by implementing the IPluginExt and
IPluginCreator classes as shown in Example: Adding A Custom Layer Using C++.

The following steps illustrate how you can use the UFF Parser to run custom layers
using plugin nodes registered with the TensorRT Plugin Registry.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_plugin_v2
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 43

 1. Register the TensorRT plugins by calling
trt.init_libnvinfer_plugins(TRT_LOGGER, '') (or load the .so file where
you have registered your own plugin).

 2. Prepare the network and check the TensorFlow output:

tf_sess = tf.InteractiveSession()
tf_input = tf.placeholder(tf.float32, name="placeholder")
tf_lrelu = tf.nn.leaky_relu(tf_input, alpha=lrelu_alpha, name="tf_lrelu")
tf_result = tf_sess.run(tf_lrelu, feed_dict={tf_input: lrelu_args})
tf_sess.close()

 3. Prepare the namespace mappings. The op name LReLU_TRT corresponds to the
Leaky ReLU plugin shipped with TensorRT.

trt_lrelu = gs.create_plugin_node(name="trt_lrelu", op="LReLU_TRT",
 negSlope=lrelu_alpha)
namespace_plugin_map = {
 "tf_lrelu": trt_lrelu
 }

 4. Transform the TensorFlow graph using GraphSurgeon and save to UFF:

dynamic_graph = gs.DynamicGraph(tf_lrelu.graph)
dynamic_graph.collapse_namespaces(namespace_plugin_map)

 5. Run the UFF parser and compare results with TensorFlow:

uff_model = uff.from_tensorflow(dynamic_graph.as_graph_def(), ["trt_lrelu"],
 output_filename=model_path, text=True)
parser = trt.UffParser()
parser.register_input("placeholder", [lrelu_args.size])
parser.register_output("trt_lrelu")
parser.parse(model_path, trt_network)

For more information, see the Adding A Custom Layer To Your TensorFlow
Network In TensorRT In Python (uff_custom_plugin) sample.

4.3. Using Custom Layers When Importing A Model
From A Framework
TensorRT parsers use the layer operation field to identify if a particular layer in the
network is a TensorFlow supported operation.

TensorFlow

Compared to previous releases of TensorRT, there are several changes with how custom
layers in TensorFlow can be run with the TensorRT UFF parser. For TensorFlow models,
use the UFF converter to convert your graph to a UFF file. In this process, if the network
contains plugin layers it is also necessary to map the operation field of those layers to
the corresponding registered plugin names in TensorRT. These plugins can either be
plugins shipped with TensorRT or custom plugins that you have written. The plugin
field names in the network should also match the fields expected by the plugin. This can
be done using GraphSurgeon, as explained in Preprocessing A TensorFlow Graph Using
the Graph Surgeon API, and as demonstrated in Object Detection With A TensorFlow

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#uff_custom_plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#uff_custom_plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffSSD

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 44

SSD Network (sampleUffSSD), located in the GitHub repository, by using a config file
with the UFF converter.

The UFF Parser will look up the Plugin Registry for every unsupported operation.
If it finds a match with any of the registered plugin names, the parser will parse the
plugin field parameters from the input network and create a plugin object using them.
This object is then added to the network. In previous versions of TensorRT, you had to
implement the nvuffparser::IPluginFactoryExt and manually pass the plugin
parameters to the createPlugin(...) function. Although this flow can still be
exercised, it is no longer necessary with the new additions to the Plugin API. For more
information, see:

‣ IPluginV2Ext and IPluginCreator in the C++ API
‣ IPluginV2Ext and IPluginCreator in the Python API

Caffe

For Caffe models, use the nvcaffeparser1::IPluginFactoryV2 class. The
setPluginFactoryV2 method of the parser sets the factory in the parser to enable
custom layers. While parsing a model description, for each layer, the parser invokes
isPluginV2 to check with the factory if the layer name corresponds to a custom layer; if
it does, the parser instantiates the plugin invoking createPlugin with the name of the
layer (so that the factory can instantiate the corresponding plugin), a Weights array, and
the number of weights as arguments. There is no restriction on the number of plugins
that a single factory can support if they are associated with different layer names.

For the Caffe parser, if setPluginFactoryV2 and IPluginFactoryV2 are used,
the plugin object created during deserialization will be internally destroyed by the
engine by calling IPluginExt::destroy(). You are only responsible for destroying
the plugin object created during the network creation step as shown in Adding Custom
Layers Using The C++ API.

The Adding A Custom Layer To Your Network In TensorRT (samplePlugin)
sample, located in the GitHub repository, illustrates how to extend
nvcaffeparser1::IPluginFactoryExt to use custom layers, while Object Detection
With A TensorFlow SSD Network (sampleUffSSD) uses the UFF Parser to use custom
layers.

For the Python usage of custom layers with TensorRT, refer to:

‣ Adding A Custom Layer To Your Caffe Network In TensorRT In Python
(fc_plugin_caffe_mnist) sample for Caffe networks

‣ Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
(uff_custom_plugin) and Object Detection With SSD In Python (uff_ssd) samples for
UFF networks

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffSSD
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_creator.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2Ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginCreator.html
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/samplePlugin
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffSSD
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffSSD
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#fc_plugin_caffe_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#fc_plugin_caffe_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#uff_custom_plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#uff_custom_plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#uff_ssd

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 45

4.3.1. Example: Adding A Custom Layer To A TensorFlow
Model
In order to run a TensorFlow network with TensorRT, you must first convert it to the
UFF format. During the conversion process, custom layers can be marked as plugin
nodes using the graphsurgeon utility.

The UFF converter then converts the processed graph to the UFF format which is then
run by the UFF Parser. The plugin nodes are then added to the TensorRT network by the
UFF Parser.

For details using the C++ API, see Example: Adding A Custom Layer That Is Not
Supported In UFF Using C++.

For details using the Python API, see Example 2: Adding A Custom Layer That Is
Not Supported In UFF Using Python. Additionally, the Object Detection With SSD In
Python (uff_ssd) sample demonstrates an end-to-end workflow in Python for running
TensorFlow object detection networks using TensorRT.

4.4. Plugin API Description
All new plugins should derive classes from both IPluginCreator and one of the
plugin base classes described in Adding Custom Layers Using The C++ API. In addition,
new plugins should also call the REGISTER_TENSORRT_PLUGIN(...) macro to register
the plugin with the TensorRT Plugin Registry or create an init function equivalent to
initLibNvInferPlugins().

4.4.1. Migrating Plugins From TensorRT 6.x.x To
TensorRT 7.x.x
While IPluginV2 and IPluginV2Ext interfaces are still supported for backward
compatibility with TensorRT 5.1 and 6.0.x respectively, we recommend that you
write new plugins or refactor existing ones to target the IPluginV2DynamicExt or
IPluginV2IOExt interface instead, as described in section 4.1.

In order to use the most recent Plugin layer features, your custom plugin should
implement the IPluginV2DynamicExt or IPluginV2IOExt interface.

The new features in IPluginV2DynamicExt are as follows:

virtual DimsExprs getOutputDimensions(int outputIndex, const DimsExprs* inputs,
 int nbInputs, IExprBuilder& exprBuilder) = 0;

virtual bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut,
 int nbInputs, int nbOutputs) = 0;

virtual void configurePlugin(const DynamicPluginTensorDesc* in, int nbInputs,
 const DynamicPluginTensorDesc* out, int nbOutputs) = 0;

virtual size_t getWorkspaceSize(const PluginTensorDesc* inputs, int nbInputs,
 const PluginTensorDesc* outputs, int nbOutputs) const = 0;

https://docs.google.com/document/d/16ZaGnv0e4J3fogYAG3VAJDuketBzwi4wuYKW16GxRy8/edit?ts=5d420133#heading=h.bxf0jp8jj0zx
https://docs.google.com/document/d/16ZaGnv0e4J3fogYAG3VAJDuketBzwi4wuYKW16GxRy8/edit?ts=5d420133#heading=h.bxf0jp8jj0zx
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#uff_ssd
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#uff_ssd

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 46

virtual int enqueue(const PluginTensorDesc* inputDesc, const PluginTensorDesc*
 outputDesc, const void* const* inputs, void* const* outputs, void* workspace,
 cudaStream_t stream) = 0;

The new features in IPluginV2IOExt are as follows:

virtual void configurePlugin(const PluginTensorDesc* in, int nbInput, const
 PluginTensorDesc* out, int nbOutput) = 0;

virtual bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut,
 int nbInputs, int nbOutputs) const = 0;

Guidelines for migration to IPluginV2DynamicExt or IPluginV2IOExt:

‣ getOutputDimensions implements the expression for output tensor dimensions
given the inputs.

‣ supportsFormatCombination checks if the plugin supports the format and
datatype for the specified input/output.

‣ configurePlugin mimics the behavior of equivalent configurePlugin in
IPluginV2Ext but accepts tensor descriptors.

‣ getWorkspaceSize and enqueue mimic the behavior of equivalent APIs in
IPluginV2Ext but accept tensor descriptors.

See the API description in IPluginV2 API Description for more details about the API.

4.4.1.1. Migrating Plugins From TensorRT 5.x.x To TensorRT 6.x.x
The IPluginV2 interface is still supported, however, we recommend that you write
new plugins with the IPluginV2Ext interface and migrate any existing plugin
implementations to the IPluginV2Ext interface.

In order to use the most recent Plugin layer features, your custom plugin should
implement the IPluginV2Ext interface. The new features are as follows:

virtual nvinfer1::DataType getOutputDataType(int index, const
 nvinfer1::DataType* inputTypes, int nbInputs) const = 0;

virtual bool isOutputBroadcastAcrossBatch(int outputIndex, const bool*
 inputIsBroadcasted, int nbInputs) const = 0;

virtual bool canBroadcastInputAcrossBatch(int inputIndex) const = 0;

virtual void configurePlugin(const Dims* inputDims, int nbInputs, const Dims*
 outputDims,
 int nbOutputs, const DataType* inputTypes, const DataType*
 outputTypes, const bool* inputIsBroadcast, const bool* outputIsBroadcast,
 PluginFormat floatFormat, int maxBatchSize) = 0;

For the simplest migration, follow these guidelines:

‣ getOutputDataType can return the type of the input (from inputTypes) or
DataType::kFLOAT if the layer has no inputs.

‣ isOutputBroadcastAcrossBatch can return false if the plugin does not support
output broadcast.

‣ canBroadcastInputAcrossBatch can return false if the plugin cannot handle
broadcasted inputs.

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 47

‣ configurePlugin can mimic the behavior of configureWithFormat.

See the API description in IPluginV2 API Description for details about the API.

4.4.2. IPluginV2 API Description
The following section describes the functions of the IPluginV2 class. To connect a
plugin layer to neighboring layers and set up input and output data structures, the
builder checks for the number of outputs and their dimensions by calling the following
plugins methods.

getNbOutputs

Used to specify the number of output tensors.
getOutputDimensions

Used to specify the dimensions of output as a function of the input dimensions.
supportsFormat

Used to check if a plugin supports a given data format.
getOutputDataType

Used to get the data type of the output at a given index. The returned data type must
have a format that is supported by the plugin.

Plugin layers can support four data formats and layouts, for example:

‣ NCHW single (FP32), half-precision (FP16) and integer (INT32) tensors
‣ NC/2HW2 and NHWC8 half-precision (FP16) tensors

The formats are enumerated by PluginFormatType.

Plugins that do not compute all data in place and need memory space in addition to
input and output tensors can specify the additional memory requirements with the
getWorkspaceSize method, which is called by the builder to determine and pre-
allocate scratch space.

During both build and inference time, the plugin layer is configured and executed,
possibly multiple times. At build time, to discover optimal configurations, the layer is
configured, initialized, executed, and terminated. Once the optimal format is selected
for a plugin, the plugin is once again configured, and then it will be initialized once
and executed as many times as needed for the lifetime of the inference application,
and finally terminated when the engine is destroyed. These steps are controlled by the
builder and the engine using the following plugin methods:
configurePlugin

Communicates the number of inputs and outputs, dimensions and datatypes of all
inputs and outputs, broadcast information for all inputs and outputs, the chosen
plugin format, and maximum batch size. At this point, the plugin sets up its internal
state, and selects the most appropriate algorithm and data structures for the given
configuration.

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 48

initialize

The configuration is known at this time and the inference engine is being created, so
the plugin can set up its internal data structures and prepare for execution.

enqueue

Encapsulates the actual algorithm and kernel calls of the plugin, and provides the
runtime batch size, pointers to input, output, and scratch space, and the CUDA
stream to be used for kernel execution.

terminate

The engine context is destroyed and all the resources held by the plugin should be
released.

clone

This is called every time a new builder, network or engine is created which includes
this plugin layer. It should return a new plugin object with the correct parameters.

destroy

Used to destroy the plugin object and/or other memory allocated each time a new
plugin object is created. It is called whenever the builder or network or engine is
destroyed.

set/getPluginNamespace

This method is used to set the library namespace that this plugin object belongs to
(default can be ""). All plugin objects from the same plugin library should have the
same namespace.

IPluginV2Ext supports plugins that can handle broadcast inputs and outputs. The
following methods need to be implemented for this feature:
canBroadcastInputAcrossBatch

This method is called for each input whose tensor is semantically broadcast across a
batch. If canBroadcastInputAcrossBatch returns true (meaning the plugin can
support broadcast), TensorRT will not replicate the input tensor. There will be a single
copy that the plugin should share across the batch. If it returns false, TensorRT will
replicate the input tensor so that it appears like a non-broadcasted tensor.

isOutputBroadcastAcrossBatch

This is called for each output index. The plugin should return true the output at the
given index and is broadcast across the batch.

IPluginV2IOExt

This is called by the builder prior to initialize(). It provides an opportunity for
the layer to make algorithm choices on the basis of I/O PluginTensorDesc and the
maximum batch size.

4.4.3. IPluginCreator API Description
The following methods in the IPluginCreator class are used to find and create the
appropriate plugin from the Plugin Registry.

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 49

getPluginName

This returns the plugin name and should match the return value of
IPluginExt::getPluginType.

getPluginVersion

Returns the plugin version. For all internal TensorRT plugins, this defaults to 1.
getFieldNames

In order to successfully create a plugin, it is necessary to know all the field
parameters of the plugin. This method returns the PluginFieldCollection
struct with the PluginField entries populated to reflect the field name and
PluginFieldType (the data should point to nullptr).

createPlugin

This method is used to create the plugin using the PluginFieldCollection
argument. The data field of the PluginField entries should be populated to point to
the actual data for each plugin field entry.

deserializePlugin

This method is called internally by the TensorRT engine based on the plugin name
and version. It should return the plugin object to be used for inference.

set/getPluginNamespace

This method is used to set the namespace that this creator instance belongs to (default
can be "").

4.4.4. Persistent LSTM Plugin
The following section describes the new Persistent LSTM plugin. The Persistent
LSTM plugin supports half-precision persistent LSTM. To create a Persistent LSTM
plugin in the network, you need to call:

auto creator = getPluginRegistry()-
>getPluginCreator("CgPersistentLSTMPlugin_TRT", "1")

IPluginV2* cgPersistentLSTMPlugin = creator-
>createPlugin("CgPersistentLSTMPlugin_TRT", &fc);

fc is a PluginField array that consists of 4 parameters:

‣ hiddenSize: This is an INT32 parameter that specifies the hidden size of LSTM.
‣ numLayers: This is an INT32 parameter that specifies the number of layers in LSTM.
‣ bidirectionFactor: This is an INT32 parameter that indicates whether LSTM is

bidirectional. If LSTM is bidirectional, the value should be set to 2, otherwise, the
value is set to 1.

‣ setInitialStates: This is an INT32 parameter that indicates whether LSTM has
initial state and cell values as inputs. If it is set to 0, the initial state and cell values
will be zero. It is recommended to use this flag instead of providing zero state and
cell values as inputs for better performance.

The plugin can be added to the network by calling:

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 50

auto lstmLayer = network->addPluginV2(&inputs[0], 6, *cgPersistentLSTMPlugin);

inputs is a vector of ITensor pointers with 6 elements in the following order:

 1. input: These are the input sequences to the LSTM.
 2. seqLenTensor: This is the sequence length vector that stores the effective length of

each sequence.
 3. weight: This tensor consists of all weights needed for LSTM. Even though this

tensor is 1D, it can be viewed with the following 3D indexing [isW, layerNb,
gateType]. isW starts from false to true suggesting that the first half of weight
is recurrent weight and the second half is input weight. layerNb starts from 0 to
numLayers*bidirectionFactor such that the first layer is the forward direction
of the actual layer and the second layer is the backward direction. The gateType
follows this order: input, cell, forget and output.

 4. bias: Similar to weight, this tensor consists of all biases needed for LSTM. Even
though this tensor is 1D, it can be viewed with the following 3D indexing [layerNb,
isW, gateType]. Notice the slight difference between bias and weight.

 5. initial hidden state: The pointer should be set to null if setInitialStates
is 0. Otherwise, the tensor should consist of the initial hidden state values with
the following coordinates [batch index, layerNb, hidden index]. batch
index indicates the index within a batch and the hidden index is the index to
vectors of hiddenSize length.

 6. initial cell state: The pointer should be set to null if setInitialStates is
0. Otherwise, the tensor should consist of the initial hidden state values with the
following coordinates [batch index, layerNb, hidden index].

4.5. Best Practices For Custom Layers Plugin

Converting User-Defined Layers

To create a custom layer implementation as a TensorRT plugin, you need to implement
the IPluginV2Ext class and the IPluginCreator class for your plugin.

For more information about both API classes, see Plugin API Description.

For Caffe networks, see Example: Adding A Custom Layer Using C++. For TensorFlow
(UFF) networks, see Example: Adding A Custom Layer That Is Not Supported In UFF
Using C++.

Using The UFF Plugin API

For an example of how to use plugins with UFF in both C++ and Python, see Example:
Adding A Custom Layer Using C++ and Example: Adding A Custom Layer That Is Not
Supported In UFF Using Python.

Extending TensorRT With Custom Layers

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 51

Debugging Custom Layer Issues

Memory allocated in the plugin must be freed to ensure no memory leak. If
resources are acquired in the initialize() function, they need to be released in the
terminate() function. All other memory allocations should be freed preferably in the
plugin class destructor or in the destroy() method. Adding Custom Layers Using The
C++ API outlines this in detail and also provides some notes for best practices when
using plugins.

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 52

Chapter 5.
WORKING WITH MIXED PRECISION

Mixed precision is the combined use of different numerical precisions in a computational
method. NVIDIA® TensorRT™ can store weights and activations, and execute layers, in
32-bit floating-point, 16-bit floating-point, or quantized 8-bit integer.

Using precision lower than FP32 reduces memory usage, allowing the deployment of
larger networks. Data transfers take less time, and compute performance increases,
especially on GPUs with Tensor Core support for that precision.

By default, TensorRT uses FP32 inference, but it also supports FP16 and INT8. While
running FP16 inference, it automatically converts FP32 weights to FP16 weights.

You can check the supported precision on a platform using the following APIs:

if (builder->platformHasFastFp16()) { … };
if (builder->platformHasFastInt8()) { … };

Specifying the precision for a network defines the minimum acceptable precision for the
application. Higher precision kernels may be chosen if they are faster for some particular
set of kernel parameters, or if no lower-precision kernel exists. You can set the builder
config flag BuilderFlag::kSTRICT_TYPES to force the network or layer precision,
which may not have optimal performance. The usage of this flag is only recommended
for debugging purposes.

You can also choose to set both INT8 and FP16 mode if the platform supports it. Using
both INT8 and FP16 mode would allow TensorRT to choose from FP32, FP16, and INT8
kernels, thus resulting in the most optimal engine from inference.

5.1. Mixed Precision Using The C++ API

5.1.1. Setting The Layer Precision Using C++
If you want to run certain layers a specific precision, you can set the precision per layer
using the following API:

layer->setPrecision(nvinfer1::DataType::kINT8)

Working With Mixed Precision

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 53

This gives the layer’s inputs and outputs a preferred type (for example,
DataType::kINT8). You can choose a different preferred type for an output of a layer
using:

layer->setOutputType(out_tensor_index, nvinfer1::DataType::kFLOAT)

This method cannot be used to set the data type of the second output tensor of the
TopK layer. The data type of the second output tensor of the TopK layer is always
INT32. For more information, see ITopKLayer.

TensorRT has very few implementations that run in heterogeneous precision: in
TensorRT 5.x.x the only ones are INT8 implementations for Convolution, Deconvolution,
and FullyConnected layers that produce FP32 output.

Setting the precision, requests TensorRT to use a layer implementation whose inputs and
outputs match the preferred types, inserting reformat operations if necessary. By default,
TensorRT will choose such an implementation only if it results in a higher-performance
network. If an implementation at a higher precision is faster, TensorRT will use it and
issue a warning. Thus, you can detect whether using lower precision would result in
unexpected performance loss.

You can override this behavior by making the type constraints strict.

IBuilderConfig * config = builder->createBuilderConfig();config-
>setFlag(BuilderFlag::kSTRICT_TYPES)

If the constraints are strict, TensorRT will obey them unless there is no implementation
with the preferred precision constraints, in which case it will issue a warning and use the
fastest available implementation.

If the precision is not explicitly set, TensorRT will select the computational precision
based on performance considerations and the flags specified to the builder.

When running INT8 precision on a GPU, the dimension of the layer tensor should be
greater than or equal to 3. A layer tensor dimension less than 3 is not supported in
TensorRT 6.0.1.

See Performing Inference In INT8 Precision (sampleINT8API) located in the GitHub
repository for an example of running mixed-precision inference with these APIs.

5.1.2. Enabling FP16 Inference Using C++
Setting the builder’s Fp16Mode flag indicates that 16-bit precision is acceptable.

config->setFlag(BuilderFlag::kFP16);

This flag allows but does not guarantee that 16-bit kernels will be used when building
the engine. You can choose to force 16-bit precision by setting the following builder flag:

config->setFlag(BuilderFlag::kSTRICT_TYPES)

Weights can be specified in FP16 or FP32, and they will be converted automatically to
the appropriate precision for the computation.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8API

Working With Mixed Precision

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 54

See Building And Running GoogleNet In TensorRT (sampleGoogleNet) and "Hello
World" For TensorRT (sampleMNIST) located in the GitHub repository for running FP16
inference.

5.1.3. Enabling INT8 Inference Using C++
In order to perform INT8 inference, FP32 activation tensors and weights need to be
quantized. In order to represent 32-bit floating point values and INT 8-bit quantized
values, TensorRT needs to understand the dynamic range of each activation tensor. The
dynamic range is used to determine the appropriate quantization scale.

Setting the builder flag enables INT8 precision inference.

config->setFlag(BuilderFlag::kINT8);

TensorRT supports symmetric quantization with a quantization scale calculated using
absolute maximum dynamic range values.

TensorRT needs the dynamic range for each tensor in the network. There are two ways
in which the dynamic range can be provided to the network:

‣ manually set the dynamic range for each network tensor using setDynamicRange
API

Or

‣ use INT8 calibration to generate per tensor dynamic range using the calibration
dataset.

The dynamic range API can also be used along with INT8 calibration, such that
manually setting the range will take precedence over the calibration generated dynamic
range. Such a scenario is possible if INT8 calibration does not generate a satisfactory
dynamic range for certain tensors.

For more information, see Performing Inference In INT8 Precision (sampleINT8API)
located in the GitHub repository.

5.1.3.1. Setting Per-Tensor Dynamic Range Using C++
You can generate per tensor the dynamic range using various techniques. The basic
technique includes recording per tensor the min and max values during the last epoch of
training or using quantization aware training. TensorRT expects you to set the dynamic
range for each network tensor to perform INT8 inference.

After you have the dynamic range of information, you can set the dynamic range as
follows:

ITensor* tensor = network->getLayer(layer_index)->getOutput(output_index);
tensor->setDynamicRange(min_float, max_float);

You also need to set the dynamic range for the network input:

ITensor* input_tensor = network->getInput(input_index);
input_tensor->setDynamicRange(min_float, max_float);

One way to achieve this is to iterate through the network layers and tensors and set
per tensor the dynamic range. TensorRT only supports symmetric range currently,

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleGoogleNet
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNIST
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNIST
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8API

Working With Mixed Precision

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 55

therefore, only abs(min_float) and abs(max_float) is used for quantization. For
more information, see Performing Inference In INT8 Precision (sampleINT8API) located
in the GitHub repository.

5.1.3.2. INT8 Calibration Using C++
INT8 calibration provides an alternative to generate per activation tensor the dynamic
range. This method can be categorized as a post-training technique to generate the
appropriate quantization scale. The process of determining these scale factors is called
calibration and requires the application to pass batches of representative input for the
network (typical batches from the training set.) Experiments indicate that about 500
images are sufficient for calibrating ImageNet classification networks.

To provide calibration data to TensorRT, implement the IInt8Calibrator interface.
TensorRT provides multiple variants of IInt8Calibrator:
IEntropyCalibratorV2

This is the preferred calibrator and is required for DLA as it supports per-tensor
scaling for activations and per-channel scaling for weights.

IMinMaxCalibrator

This is the preferred calibrator for NLP tasks for all backends. It supports per-tensor
scaling for activations and per-channel scaling for weights.

IEntropyCalibrator

This is the legacy entropy calibrator that supports per-channel scaling for both
activations and weights. This is less complicated than a legacy calibrator and
produces better results.

ILegacyCalibrator

This calibrator is for compatibility with 2.0EA. It is deprecated and should not be
used.

The builder invokes the calibrator as follows:

‣ First, it calls getBatchSize() to determine the size of the input batch to expect
‣ Then, it repeatedly calls getBatch() to obtain batches of input. Batches should

be exactly the batch size by getBatchSize(). When there are no more batches,
getBatch() should return false.

Calibration can be slow, therefore, the IInt8Calibrator interface provides methods
for caching intermediate data. Using these methods effectively requires a more detailed
understanding of calibration.

When building an INT8 engine, the builder performs the following steps:

 1. Builds a 32-bit engine, runs it on the calibration set, and records a histogram for each
tensor of the distribution of activation values.

 2. Builds a calibration table from the histograms.
 3. Builds the INT8 engine from the calibration table and the network definition.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8API

Working With Mixed Precision

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 56

The calibration table can be cached. Caching is useful when building the same network
multiple times, for example, on multiple platforms. It captures data derived from the
network and the calibration set. The parameters are recorded in the table. If the network
or calibration set changes, it is the application’s responsibility to invalidate the cache.

The cache is used as follows:

‣ if a calibration table is found, calibration is skipped, otherwise:

‣ the calibration table is built from the histograms and parameters
‣ then the INT8 network is built from the network definition and the calibration table.

Cached data is passed as a pointer and length.

After you have implemented the calibrator, you can configure the builder to use it:

config->setInt8Calibrator(calibrator.get());

It is possible to cache the output of calibration using the writeCalibrationCache()
and readCalibrationCache() methods. The builder checks the cache prior to
performing calibration, and if data is found, calibration is skipped.

For more information about configuring INT8 Calibrator objects, see Performing
Inference In INT8 Using Custom Calibration (sampleINT8) located in the GitHub
repository.

5.1.4. Working With Explicit Precision Using C++
TensorRT 6.x.x supports explicit precision networks in which you can explicitly specify
the precisions of all layers and tensors in the network. This feature enables the import
of pre-quantized models with explicit quantizing and dequantizing scale layers into
TensorRT.

To create an explicit precision network, the INetworkDefinition has to be created
with createNetworkV2 as follows:

builder->createNetworkV2(1U <<
 static_cast<uint32_t>(NetworkDefinitionCreationFlag::kEXPLICIT_PRECISION)

Setting the network to be an explicit precision network implies that the precision of all
the network input tensors and layer output tensors in the network are specified. See
Setting The Layer Precision Using C++ for more information on setting the precision.

TensorRT will not quantize the weights of any layer, including those running in lower
precision if the network is marked as an explicit precision network - weights of low
precision layers will simply be rounded-to-the-nearest and cast to the required precision.

You must not set dynamic ranges of tensors in an explicit precision network. The
dynamic ranges of all tensors are [-127,127].

Conversion of activation values between higher and lower precision is performed using
scale layers. TensorRT identifies special quantizing and dequantizing scale layers for
explicit precision networks. A quantizing scale layer has FP32 input, INT8 output,
per channel or per tensor scales and no shift weights. A dequantizing scale layer has

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8

Working With Mixed Precision

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 57

INT8 input, FP32 output, per tensor scales and no shift weights. No shift weights are
allowed for quantizing and dequantizing scale layers as only symmetric quantization
is supported. Such mixed-precision scale layers are only enabled for explicit precision
networks.

For best performance, the special quantizing scale layers can be inserted immediately
following Convolution and FullyConnected layers. In these cases, the scale layer is fused
with the preceding layer.

5.2. Mixed Precision Using The Python API

5.2.1. Setting The Layer Precision Using Python
In Python, you can specify the layer precision using the precision flag:

layer.precision = trt.int8

You can set the output tensor data type to conform with the layer implementation:

layer.set_output_type(out_tensor_index, trt.int8)

Ensure that the builder understands to force the precision:

builder.strict_type_constraints = true

For more information, see the INT8 Calibration In Python (int8_caffe_mnist) sample.

5.2.2. Enabling FP16 Inference Using Python
In Python, set the fp16_mode flag as follows:

builder.fp16_mode = True

Force 16-bit precision by setting the builder flag:

builder.strict_type_constraints = True

5.2.3. Enabling INT8 Inference Using Python
Enable INT8 mode by setting the builder flag:

builder.int8_mode = True

Similar to the C++ API, you can choose per activation tensor the dynamic range either
using dynamic_range or using INT8 calibration.

INT8 calibration can be used along with the dynamic range APIs. Setting the dynamic
range manually will override the dynamic range generated from INT8 calibration.

5.2.3.1. Setting Per-Tensor Dynamic Range Using Python

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#int8_caffe_mnist

Working With Mixed Precision

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 58

In order to perform INT8 inference, you must set the dynamic range for each network
tensor. You can derive the dynamic range values using various methods including
quantization aware training or simply recording per tensor the min and max values
during the last training epoch. To set the dynamic range use:

layer = network[layer_index]
tensor = layer.get_output(output_index)
tensor.dynamic_range = (min_float, max_float)

You also need to set the dynamic range for the network input:

input_tensor = network.get_input(input_index)
input_tensor.dynamic_range = (min_float, max_float)

5.2.3.2. INT8 Calibration Using Python
INT8 calibration provides an alternative approach to generate per activation tensor the
dynamic range. This method can be categorized as a post-training technique to generate
the appropriate quantization scale. The following steps illustrate how to create an INT8
calibrator object using the Python API. By default, TensorRT supports INT8 calibration.

 1. Import TensorRT:

import tensorrt as trt

 2. Similar to test/validation files, use a set of input files as a calibration files dataset.
Make sure the calibration files are representative of the overall inference data files.
For TensorRT to use the calibration files, we need to create a batchstream object. A
batchstream object will be used to configure the calibrator.

NUM_IMAGES_PER_BATCH = 5
batchstream = ImageBatchStream(NUM_IMAGES_PER_BATCH, calibration_files)

 3. Create an Int8_calibrator object with input nodes names and batch stream:

Int8_calibrator = EntropyCalibrator(["input_node_name"], batchstream)

 4. Set INT8 mode and INT8 calibrator:

config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = Int8_calibrator

The rest of the logic for engine creation and inference is similar to Importing From
ONNX Using Python.

5.2.4. Working With Explicit Precision Using Python
To create an explicit precision network using the Python API, pass the
EXPLICIT_PRECISION flag to the builder.

network_creation_flag = 1 <<
 int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)
self.network = self.builder.create_network(network_creation_flag)

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 59

Chapter 6.
WORKING WITH REFORMAT-FREE
NETWORK I/O TENSORS

Requirements from Automotive Safety Integrity Level (ASIL) for safety flows require
that accessing GPU address spaces should be removed from the NvMedia DLA safety
path. To achieve this objective, reformat-free network I/O tensors are introduced to let
you specify I/O formats that are supported by NvMedia tensor before passing the data
to NVIDIA® TensorRT™.

On the other hand, the potential overhead of tensor reformatting can cause performance
issues because TensorRT less than 6.0.1 assumes that network I/O tensors are FP32.
In the case of multiple TensorRT sub-networks embedded into a large network,
(for example, TensorFlow), with a precision of INT8 or FP16, the unavoidable I/O
reformatting from and to FP32 could waste considerable memory traffic time. The
same issue may also happen on the user-defined plugins. Now you can explicitly
specify network I/O tensors to INT8 or FP16 formats to eliminate those unnecessary
reformatting.

6.1. Building An Engine With Reformat-Free
Network I/O Tensors
You can use the following API to specify formats of network I/O tensors.

C++ API:

network->getInput(i)->setAllowedFormats(formats);
network->getOutput(i)->setAllowedFormats(formats);

Where i is the index of network I/O tensors.

Python API:1

network.get_input(0).allowed_formats = formats
network.get_output(0).allowed_formats = formats

1 The TensorRT Safety 6.0.0 Release does not support the TensorRT 6.0.1 Python API.

Working With Reformat-Free Network I/O Tensors

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 60

Where formats is the mask form of the dense enum TensorFormat which sets the
memory layout of the tensor. For example, 1U << TensorFormat::kLINEAR or, in
Python, 1 << int(tensorrt.TensorFormat.LINEAR).

BuilderFlag::kSTRICT_TYPES or tensorrt.BuilderFlag.STRICT_TYPES in
Python can be explicitly set to generate an engine without reformatting rather than
getting the fastest path. For example:

C++ API:

builderConfig->setFlag(BuilderFlag::kSTRICT_TYPES);

Python API:

builder_config.set_flag(tensorrt.BuilderFlag.STRICT_TYPES)

The flag can also be set via a bitmask manner as follows.

C++ API:

builderConfig->setFlags(flags);

Python API:

builder_config.flags = flags

Where flags is the bit mask combination of the dense enum BuilderFlags. For
example, 1 << BuilderFlag::kFP16 | 1<< BuilderFlag::kSTRICT_TYPES or, in
Python,
1 << int(tensorrt.BuilderFlag.FP16) | 1 <<
 int(tensorrt.BuilderFlag.STRICT_TYPES)

.

If TensorRT doesn’t find any implementation of the reformat-free path, the following
warning message displays:

‘[W] [TRT] Warning: no implementation obeys reformatting-free rules ...’

As a result, the fastest path will be picked instead.

If the combination of data type and memory layout of I/O tensors is well chosen, the
overall performance of the reformat-free path should be very close to the fastest path for
most normal cases or else it is recommended to disable the reformat-free path.

For more information, see Specifying I/O Formats Using The Reformat Free I/O APIs
(sampleReformatFreeIO) for an example of setting reformat-free network I/O tensors
with these APIs using C++.

6.2. Supported Combination Of Data Type And
Memory Layout of I/O Tensors
The supported settings of I/O tensors are listed in the following table.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleReformatFreeIO
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleReformatFreeIO

Working With Reformat-Free Network I/O Tensors

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 61

Table 2 Supported combination of data types and memory layout.

Memory Layout \
Data Type kINT32 kFLOAT kHALF kINT8

kLINEAR Supported Supported Supported Supported

kCHW2 N/A N/A Supported N/A

kCHW4 N/A N/A Supported
(including DLA)

Supported

kHWC8 N/A N/A Supported N/A

kCHW16 N/A N/A Only for DLA N/A

kCHW32 N/A Supported Supported Supported
(including DLA)

6.3. Calibration For A Network With INT8 I/O
Tensors
INT8 auto-calibration is supported by INT8 I/O tensors. In this case, you will need to
provide FP32 data for calibration and INT8 I/O tensors for inference.

With an INT8 I/O network, TensorRT will expect calibration data to be in FP32 precision
to generate calibration cache. Calibration cache data will then be internally used by the
builder during inference with INT8 I/O tensors.

This limitation of INT8 I/O networks requiring FP32 calibration data will be relaxed in
future releases. For now, you can create FP32 calibration data by simply casting INT8 I/O
calibration data to FP32 precision. You should also ensure that FP32 cast calibration data
should be in the range [-128.0f, 127.0f] and can be converted to INT8 data without
any precision loss.

Setting up a calibrator for a network with INT8 I/O tensors remains exactly the same as a
network with FP32 I/O tensors.

6.4. Restrictions With DLA
Reformat-free network I/O is expected to work in all execution modes, however,
TensorRT will insert formatting layers where required for correct functionality with
DLA enabled:

‣ If the engine capability is EngineCapability::kDEFAULT, TensorRT will always
insert a reformat layer at the DLA boundary. Input reformats are inserted to
synchronize tensors from a CUDA address space to an NvMedia address space.
Output reformats are inserted after a FinishNVMRegion layer to synchronize
tensors from an NvMedia address space back to a CUDA address space. This is due
to different memory alignment requirements of the address spaces.

Working With Reformat-Free Network I/O Tensors

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 62

‣ With EngineCapability::kSAFE_DLA, reformat layers can never be inserted
for kCHW16, for FP16, and kCHW32 for FP32. However, if you only specify kCHW4,
additional requirements must be satisfied, otherwise TensorRT fails to build the
engine.

‣ C must be equal or smaller than 4.
‣ The stride must meet DLA line stride requirements. Taking a 4 dimensional

kCHW4 tensor {N, C, H, W} as an example:

stride[0] = bits_per_component >> 3;
 stride[1] = C * stride[0];
 stride[2] = (stride[0] == 1)
? Align((W*stride[1]),32)
: Align((W*stride[1]),64); /* (line stride) */
 stride[3] = H * strd[2];

where bits_per_component is equal to 8 for INT8 and 16 for FP16, and
stride is in terms of bytes.

‣ The first layer must be convolution.
‣ The convolution parameters must meet DLA requirements, for example:

‣ Dilation must be equal to 1.
‣ Group convolution is not supported.

‣ TensorRT doesn't provide native API to run EngineCapability::kSAFE_DLA
engine. Alternatively, you can use EngineCapability::kSAFE_DLA to produce a
DLA loadable (or named plan file) that is only consumable by NvMedia DLA API
directly and requires all input formats to match exactly without reformatting layers.

‣ If you specify that both kCHW4 and kCHW16/32 are allowed, TensorRT
doesn't provide native API to query which format matches input
tensors of the DLA loadable. You could use NvMedia DLA API
NvMediaDlaGetInputTensorDescriptor to get the input tensor descriptor (see
DRIVE OS Linux SDK API Reference Documentation for more details).

6.5. FAQs
This section is to help troubleshoot the most asked questions when using reformat-free
network I/O tensors.

Q: Why are reformatting layers observed although there is no warning message no
implementation obeys reformatting-free rules ...?

A: Reformat-free network I/O does not mean there are no reformatting layers inserted in
the entire network. Only that the input and output network tensors have a possibility to
not require reformatting layers. In other words, reformatting layers can be inserted by
TensorRT for internal tensors to improve performance.

Q: What is the best practice to use reformat-free network I/O tensors for DLA?

A: Firstly, you have to check if your network can run entirely on the DLA, then try to
build the network with kSAFE_DLA enabled and specify either kCHW4 or kCHW16/32

https://docs.nvidia.com/drive/drive_os_5.1.12.0L/nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/baggage/index.html

Working With Reformat-Free Network I/O Tensors

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 63

format is allowed. If both of them can work, you can profile them and choose the fastest
DLA loadable. If your network indeed performs better with kCHW4, but it doesn't work,
you have to check which requirement listed in the above section is unsatisfied. If only
an input tensor doesn’t meet line stride requirement, you can simply pad the tensor and
corresponding weights if needed.

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 64

Chapter 7.
WORKING WITH DYNAMIC SHAPES

Dynamic shapes are the ability to defer specifying some or all tensor dimensions until
runtime. Dynamic shapes can be used via both the C++ and Python interfaces in
NVIDIA® TensorRT™. They require an extended runtime.

The following sections provide greater detail; however, here’s an overview of the steps
for building an engine with dynamic shapes:

 1. The network definition must not have an implicit batch dimension.
C++

Create the INetworkDefinition by calling
IBuilder::createNetworkV2(1U <<
 static_cast<int>(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH))

.
Python

Create the tensorrt.INetworkDefinition by calling
create_network(1 <<
 int(tensorrt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

.
These calls request that the network not have an implicit batch dimension.

 2. Specify each runtime dimension of an input tensor by using -1 as a placeholder for
the dimension.

 3. Specify one or more optimization profiles at build time that specify the permitted
range of dimensions for inputs with runtime dimensions, and the dimensions for
which the auto-tuner should optimize. For more information, see Optimization
Profiles.

 4. To use the engine:

 a. Create an execution context from the engine, the same as without dynamic
shapes.

 b. Specify one of the optimization profiles from step 3 that covers the input
dimensions.

 c. Specify the input dimensions for the execution context. After setting input
dimensions, you can get the output dimensions that TensorRT computes for the
given input dimensions.

Working With Dynamic Shapes

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 65

 d. Enqueue work.

To change the runtime dimensions, repeat steps 4b and 4c, which do not have to be
repeated until the input dimensions change.

7.1. Specifying Runtime Dimensions
When building a network, use -1 to denote a runtime dimension for an input tensor. For
example, to create a 3D input tensor named foo where the last two dimensions will be
specified at runtime, and the first dimension is fixed at build time, issue the following.

C++

networkDefinition.addInput("foo", DataType::kFLOAT, Dims3(3, -1, -1))

Python

network_definition.add_input("foo", trt.float32,(3, -1, -1))

At run time, you’ll need to set the input dimensions after choosing an optimization
profile (see Optimization Profiles). Let the bindingIndex of input foo be 0, and the
input have dimensions [3,150,250]. After setting an optimization profile for the
example above, you would call:
C++

context.setBindingDimensions(0, Dims3(3, 150, 250))

Python

context.set_binding_shape(0, (3, 150, 250))

At runtime, asking the engine for binding dimensions returns the same dimensions
used to build the network, meaning, you will get a -1 for each runtime dimension. For
example:
C++

engine.getBindingDimensions(0) returns a Dims with dimensions {3, -1,
-1}.

Python
engine.get_binding_shape(0) returns (3, -1, -1).

To get the actual dimensions, which are specific to each execution context, query the
execution context:
C++

context.getBindingDimensions(0) returns a Dims with dimensions {3, 150,
250}.

Python
context.get_binding_shape(0) returns (3, 150, 250).

After setting input dimensions, you can also use similar calls to query dimensions of the
network outputs.

Working With Dynamic Shapes

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 66

7.2. Optimization Profiles
An optimization profile describes a range of dimensions for each network input and
the dimensions that the auto-tuner should use for optimization. When using runtime
dimensions, you must create at least one optimization profile at build time. Two profiles
can specify disjoint or overlapping ranges.

For example, one profile might specify a minimum size of [3,100,200], a maximum
size of [3,200,300], and optimization dimensions of [3,150,250] while another
profile might specify min, max and optimization dimensions of [3,200,100],
[3,300,400], and [3,250,250].

To create an optimization profile, first construct an IOptimizationProfile. Then set
the min, optimization, and max dimensions, and add it to the network configuration.
Here are the calls for the first profile mentioned above for an input foo:
C++

IOptimizationProfile* profile = builder.createOptimizationProfile();
profile->setDimensions("foo", OptProfileSelector::kMIN, Dims3(3,100,200);
profile->setDimensions("foo", OptProfileSelector::kOPT, Dims3(3,150,250);
profile->setDimensions("foo", OptProfileSelector::kMAX, Dims3(3,200,300);

config->addOptimizationProfile(profile)

Python

profile = builder.create_optimization_profile();
profile.set_shape("foo", (3, 100, 200), (3, 150, 250), (3, 200, 300))
config.add_optimization_profile(profile)

At runtime you need to set an optimization profile before setting input dimensions.
Profiles are numbered in the order they were added, starting at 0. To choose the first
optimization profile in the example, use:
C++

call context.setOptimizationProfile(0)
Python

set context.active_optimization_profile = 0

In an engine built from multiple profiles, there are separate binding indices for each
profile. The names of input/output tensors for the Kth profile have [profile K]
appended to them, with K written in decimal. For example, if the INetworkDefinition
had the name “foo“, and bindingIndex refers to that tensor in the optimization profile
with index 3, engine.getBindingName(bindingIndex) returns “foo [profile 3]“.

Likewise, if using ICudaEngine::getBindingIndex(name) to get the index for
a profile K beyond the first profile (K=0), append “[profile K]“ to the name used
in the INetworkDefinition. For example, if the tensor was called “foo“ in the
INetworkDefinition, then engine.getBindingIndex(“foo [profile 3]“)
returns the binding index of Tensor “foo" in optimization profile 3.

Always omit the suffix for K=0.

Working With Dynamic Shapes

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 67

7.3. Layer Extensions For Dynamic Shapes
Some layers have optional inputs that allow specifying dynamic shape information,
and there is a new layer IShapeLayer for accessing the shape of a tensor at runtime.
Furthermore, some layers allow calculating new shapes. The next section goes into
semantic details and restrictions. Here is a summary of what you might find useful in
conjunction with dynamic shapes.

IShapeLayer outputs a 1D tensor containing the dimensions of the input tensor. For
example, if the input tensor has dimensions [2,3,5,7], the output tensor will be a four-
element 1D tensor containing {2,3,5,7}. If the input tensor is a scalar, it has dimensions [],
and the output tensor will be a zero-element 1D tensor containing {}.

IResizeLayer accepts an optional second input containing the desired dimensions of
the output.

IShuffleLayer accepts an optional second input containing the reshape dimensions
before the second transpose is applied. For example, the following network reshapes a
tensor Y to have the same dimensions as X:
C++

 auto* reshape = networkDefinition.addShuffle(Y);
 reshape.setInput(1, networkDefintion.addShape(X)->getOutput(0));

Python

 reshape = network_definition.add_shuffle(y)
 reshape.set_input(1, network_definition.add_shape(X)->get_output(0))

Shuffle operations that are equivalent to identify operations on the underlying data will
be omitted, if the input tensor is only used in the shuffle layer and the input and output
tensors of this layer are not input and output tensors of the network. TensorRT no longer
executes additional kernels or memory copies for such operations.

ISliceLayer accepts an optional second, third, and fourth inputs containing the start,
size, and stride.
IConcatenationLayer, IElementWiseLayer, IGatherLayer, IIdentityLayer, and
 IReduceLayer

can be used to do calculations on shapes and create new shape tensors.

7.4. Restrictions For Dynamic Shapes
The following layer restrictions arise from the fact that the layer’s weights have a fixed
size:

‣ IConvolutionLayer and IDeconvolutionLayer require that the channel
dimension be a build-time constant.

‣ IFullyConnectedLayer requires that the last three dimensions be build-time
constants.

‣ Int8 requires that the channel dimension be a build-time constant.

Working With Dynamic Shapes

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 68

Values that must be build-time constants don’t have to be constants at the API level.
TensorRT’s shape analyzer does element-by-element constant propagation through
layers that do shape calculations. It’s sufficient that the constant propagation discovers
that a value is a build-time constant.

7.5. Execution Tensors vs. Shape Tensors
Engines using dynamic shapes employ a two-phase execution strategy.

 1. Compute the shapes of all tensors
 2. Stream work to the GPU.

Phase 1 is implicit and driven by demand, such as when output dimensions are
requested. Phase 2 is the same as in prior versions of TensorRT. The two-phase execution
puts some limits on dynamism that are important to understand.

The key limits are:

‣ The rank of a tensor must be determinable at build time.
‣ A tensor is either an execution tensor, shape tensor, or both. Tensors classified as shape

tensors are subject to limits discussed below.

An execution tensor is a traditional TensorRT tensor. A shape tensor is a tensor that is
related to shape calculations. It must be 0D or 1D, have type Int32, and its shape must
be determinable at build time. For example, there is an IShapeLayer whose output
is a 1D tensor containing the dimensions of the input tensor. The output is a shape
tensor. IShuffleLayer accepts an optional second input that can specify reshaping
dimensions. The second input must be a shape tensor.

Some layers are “polymorphic” with respect to the kinds of tensors they handle. For
example, IElementWiseLayer can sum two INT32 execution tensors or sum two INT32
shape tensors. The type of tensor depends on their ultimate use. If the sum is used to
reshape another tensor, then it is a “shape tensor”.

7.5.1. Formal Inference Rules
The formal inference rules used by TensorRT for classifying tensors are based on a type-
inference algebra. Let E denote an execution tensor and S denote a shape tensor.

IShapeLayer has the signature: IShapeLayer: E → S since it takes an execution
tensor as an input and a shape tensor as an output. IElementWiseLayer is
polymorphic in this respect, with two signatures: IElementWiseLayer: S × S → S,
E × E → E

For brevity, let’s adopt the convention that t is a variable denoting either class of tensor,
and all t in a signature refers to the same class of tensor. Then the two signatures above
can be written as a single polymorphic signature: IElementWiseLayer: t × t → t

The two-input IShuffleLayer has a shape tensor as the second input, and is
polymorphic with respect to the first input: IShuffleLayer (two inputs): t × S
→ t

Working With Dynamic Shapes

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 69

IConstantLayer has no inputs, but can produce a tensor of either kind, so its signature
is: IConstantLayer: → t

Here is the complete set of rules, which also serves as a reference for which layers can be
used to manipulate shape tensors:

IConcatenationLayer: t × t × ...→ t
IConstantLayer: → t
IElementWiseLayer: t × t → t
IGatherLayer: t × t → t
IIdentityLayer: t → t
IReduceLayer: t → t
IResizeLayer (one input): E → E
IResizeLayer (two inputs): E × S → E
IShapeLayer: E → S
IShuffleLayer (one input): t → t
IShuffleLayer (two inputs): t × S → t
ISliceLayer (one input): t → t
ISliceLayer (two inputs): t × S → t
ISliceLayer (three inputs): t × S × S → t
ISliceLayer (four inputs): t × S × S × S → t
all other layers: E × ... → E × ...

Because an output can be the input of more than one subsequent layer, the inferred
“types” are not exclusive. For example, an IConstantLayer might feed into a one
use that requires an execution tensor and another use that requires a shape tensor. The
output of IConstantLayer will be classified as both, and be used in both phase 1 and
phase 2 of the two-phase execution.

The requirement that the rank of a shape tensor be known at build time limits how
ISliceLayer can be used to manipulate a shape tensor. Specifically, if the third
parameter, which specifies the size of the result, is not a build-time constant, the length
of the resulting shape tensor would no longer be known at build time, breaking the
restriction of shape tensors to build-time shapes. Worse, it might be used to reshape
another tensor, breaking the restriction that tensor ranks must be known at build time.

TensorRT’s inferences can be inspected via methods ITensor::isShapeTensor(),
which returns true for a shape tensor, and ITensor::isExecutionTensor(), which
returns true for an execution tensor. Build the entire network first before calling these
methods, because their answer can change depending on what users have been added.

7.6. Shape Tensor I/O (Advanced)
Sometimes the need arises to do shape tensor I/O for a network. For example, consider
a network consisting solely of an IShuffleLayer. TensorRT will infer that the second
input is a shape tensor. ITensor::isShapeTensor will return true for it. Because it is
an input shape tensor, TensorRT will require two things for it.

‣ At build time: the optimization profile values of the shape tensor.
‣ At run time: the values of the shape tensor.

The shape of an input shape tensor is always known at build time. It’s the values that
need to be described since they can be used to specify the dimensions of execution
tensors.

Working With Dynamic Shapes

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 70

The optimization profile values can be set using
IOptimizationProfile::setShapeValues. Analogous to how min, max, and
optimization dimensions must be supplied for execution tensors with runtime
dimensions, min, max and optimization values must be provided for shape tensors at
build time.

The corresponding runtime method is
IExecutionContext::setInputShapeBinding, which sets the values of the shape
tensor at runtime.

Because the inference of “execution tensor” vs “shape tensor” is based on ultimate use,
TensorRT cannot infer whether a network output is a shape tensor. You must to tell it via
the method INetworkDefinition::markOutputForShapes.

Besides letting you output shape information for debugging, this feature is useful
for composing engines. For example, consider building three engines, one each for
subnetworks A, B, C where a connection from A to B, or B to C might involve a shape
tensor. Build the networks in reverse order: C, B, and A. After constructing network
C, you can use ITensor::isShapeTensor to determine if an input is a shape tensor,
and use INetworkDefinition::markOutputForShapes to mark the corresponding
output tensor in network B. Then check which inputs of B are shape tensors and mark
the corresponding output tensor in network A.

7.7. INT8 Calibration With Dynamic Shapes
To run INT8 calibration for a network with dynamic shapes, calibration optimization
profile must be set. Calibration is performed using kOPT values of the profile.
Calibration input data size must match this profile.

To create a calibration optimization profile, first construct an IOptimizationProfile
the same way as it is done for a general optimization profile. Then set the profile to the
configuration:
C++

config->setCalibrationProfile(profile)

Python

config.set_calibration_profile(profile)

The calibration profile must be valid or be nullptr. kMIN and kMAX values
will be overwritten by kOPT. To check the current calibration profile use
IBuilderConfig::getCalibrationProfile.

This method returns a pointer to the current calibration profile or nullptr if calibration
profile is unset. getBatchSize() calibrator method must return 1 when running
calibration for a network with dynamic shapes.

If calibration optimization profile is not set, the first network optimization profile
will be used as a calibration optimization profile.

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 71

Chapter 8.
WORKING WITH EMPTY TENSORS

NVIDIA® TensorRT™ supports empty tensors. A tensor is an empty tensor if it has one
or more dimensions with length zero. Zero-length dimensions usually get no special
treatment. If a rule works for a dimension of length L for an arbitrary positive value of L,
it usually works for L=0 too.

For example, when concatenating two tensors with dimensions [x,y,z] and [x,y,w]
along the last axis, the result has dimensions [x,y,z+w], regardless of whether x, y, z,
or w is zero.

Implicit broadcast rules remain unchanged since only unit-length dimensions are special
for broadcast. For example, given two tensors with dimensions [1,y,z] and [x,1,z],
their sum computed by IElementWiseLayer has dimensions [x,y,z], regardless of
whether x, y, or z is zero.

8.1. IReduceLayer And Empty Tensors
If all inputs to a layer are empty, the output is usually empty, but there are exceptions.
The exceptions arise from how reduction over an empty set is defined in mathematics:
Reduction over an empty set yields the identity element for the operation.

The following table shows cases relevant to TensorRT:

Reduction Operation kFLOAT & kHALF kINT32 kINT8

kSUM 0 0 0

kPROD 1 1 1

kMAX ∞ INT_MAX -128

kMIN -∞ INT_MIN 127

kAVG NaN 0 -128

The average empty set is mathematically ill-defined. The obvious definition (sum of
elements)/(number of elements) yields 0/0. It’s represented by “Not a Number” (NaN)
for floating point. The 0 for kAVG over an empty set of kINT32 has no mathematical
justification, and was chosen for compatibility with TensorFlow.

Working With Empty Tensors

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 72

TensorRT usually performs reduction for kINT8 via kFLOAT or kHALF. The kINT8
values show the quantized representations of the floating-point values, not their
dequantized values.

8.2. IMatrixMultiplyLayer,
IFullyConnectedLayer, And Empty Tensors
Multiplying matrices with dimensions [m,0] and [0,n] results in a matrix of zeros
with dimensions [m,n]. It’s zeros because each element of the result is the sum over an
empty set of products.

IFullyConnectedLayer is fundamentally a matrix multiplication, so similar rules
apply.

8.3. Plugins And Empty Tensors
Plugins that need to handle empty tensors must be written with IPluginV2Ext,
IPluginV2IOExt, or IPluginV2DynamicExt.

Empty tensors can have properties not seen for non-empty tensors:

‣ a volume of zero
‣ one or more strides equal to zero

The volume of zero can break kernel launching logic, since a common approach is to set
the the number of CUDA blocks proportional to the volume being processed. CUDA
reports an error for launching a kernel with zero blocks. Hence plugins should be careful
about avoiding such launches.

Strides should be calculated the same as for non-empty tensors. For example, given
a tensor with dimensions [N,C,H,W], the stride of the memory representation
corresponding to an increment along the C axis is H*W. It doesn’t matter if H or W is
zero. Though make sure that your code does not divide by a stride or dimension that
could be zero. For example, the assertion in the fragment below risks dividing by zero in
both divisions:

int volume = N*C*H*W;
int cStride = H*W;
...
assert(C == volume/N/cStride);

For some plugins, an effective strategy is to make the plugin’s method enqueue return
early if all outputs are empty, and thereby not complicate the rest of the logic with
consideration of zero-length dimensions.

8.4. IRNNLayer And Empty Tensors
IRNNLayer is deprecated and does not work for empty tensors. Use IRNNV2Layer
instead.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#rnnv2-layer

Working With Empty Tensors

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 73

8.5. IShuffleLayer And Empty Tensors
By default, IShuffleLayer treats a 0 in the reshape dimensions as a special
placeholder, and not meaning zero. The placeholder means “copy the corresponding input
dimension”. This default behavior has been kept for compatibility with earlier versions
of TensorRT, but is hazardous when working with empty tensors.

If you are reshaping to dimensions that might include a zero-length dimension, disable
the placeholder treatment of zero with the IShuffleLayer::setZeroIsPlaceholder
method.

IShuffleLayer* s = ...;
s->setZeroIsPlaceholder(false);

For example, consider the following code that intends to reshape a tensor input to
dimensions specified by shape tensor reshapeDims.

IShuffleLayer* s = network.addShuffle(input);
s->setInput(1, reshapeDims);
#if CORRECT
s->setZeroIsPlaceholder(false);
#endif
output = *s->getOutput(0);

Suppose at runtime, the input has dimensions [3,0] and the second input
reshapeDims contains [0,0]. If the engine was built with CORRECT==0, the zeros
in reshapeDims will be interpreted as placeholders for input dimensions, and the
output will have dimensions [3,0], not [0,0] as intended. Building the fragment with
CORRECT==1 ensures that the IShuffleLayer treats zero as zero. Unless you know
that you need the placeholder feature, it is recommended that it be turned off with
setZeroIsPlaceholder(false).

Empty tensors also introduce the possibility of a new kind of error when using the -1
wildcard in reshape dimensions. The wildcard denotes an unknown dimension x that
TensorRT solves using the equation:
x * (volume of other reshape dimension) = volume(input
 tensor)

If the volume of the other reshape dimensions is zero, one of two errors occur:

‣ The volume of the input tensor is zero. Then x is indeterminate.
‣ The volume of the input tensor is nonzero. Then x has no solution.

8.6. ISliceLayer And Empty Tensors
The behavior of ISliceLayer for empty tensors follows from a strict interpretation
of its semantics. Specifically, consider slicing a dimension of length L with parameters
start, size, and stride.

Constructing the output tensor requires subscripting the half-open interval [0,L) with
generated indices of the form start+i*stride for all i such that 0 ≤ i < size.
All the generated indices must be in bounds. However, with size=0, no indices are

Working With Empty Tensors

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 74

generated, and thus no bounds checking applies. So for size=0, the start and stride
parameters do not matter and can be any values.

Conversely, if L=0 and size≠0, then TensorRT reports an error since the half-open
interval [0,L) becomes empty and the generated indices are inherently out of bounds.

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 75

Chapter 9.
WORKING WITH LOOPS

NVIDIA® TensorRT™ supports loop-like constructs, which can be useful for recurrent
networks. TensorRT loops support scanning over input tensors, recurrent definitions of
tensors, and both “scan outputs” and “last value” outputs.

9.1. Defining A Loop
A loop is defined by loop boundary layers.

‣ ITripLimitLayer specifies how many times the loop iterates.
‣ IIteratorLayer enables a loop to iterate over a tensor.
‣ IRecurrenceLayer specifies a recurrent definition.
‣ ILoopOutputLayer specifies an output from the loop.

A loop can have multiple IIteratorLayer, IRecurrenceLayer, and
ILoopOutputLayer. A loop with no ILoopOutputLayer has no output and will be
optimized away by TensorRT.

The interior of the loop can have the following kinds of layers:

‣ IActivationLayer if the operation is one of:

‣ kRELU
‣ kSIGMOID
‣ kTANH
‣ kELU

‣ IConcatenationLayer
‣ IConstantLayer
‣ IIdentityLayer
‣ IFullyConnectedLayer
‣ IMatrixMultiplyLayer
‣ IElementWiseLayer
‣ IPluginV2Layer
‣ IScaleLayer
‣ ISliceLayer

Working With Loops

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 76

‣ ISelectLayer
‣ IShuffleLayer
‣ ISoftMaxLayer
‣ IUnaryLayer if the operation is one of:

‣ kABS
‣ kCEIL
‣ kEXP
‣ kFLOOR
‣ kLOG
‣ kNEG
‣ kNOT
‣ kRECIP
‣ kSQRT

Interior layers are free to use tensors defined inside or outside the loop. The interior may
contain other loops (see Nested Loops).

To define a loop, first create an ILoop object with method
INetworkDefinition::addLoop. Then add the boundary and interior layers. The rest
of this section describes the features of the boundary layers, using loop to denote the
ILoop* returned by INetworkDefinition::addLoop. Each of the boundary layers
inherit from ILoopBoundaryLayer, which has a method getLoop() for getting its
associated loop.

ITripLimitLayer supports both counted loops and while-loops.

‣ loop->addTripLimit(t,TripLimit::kCOUNT) creates an ITripLimitLayer
whose input t is a 0D Int32 tensor that specifies the number of loop iterations.

‣ loop->addTripLimit(t,TripLimit::kWHILE) creates an ITripLimitLayer
whose input t is a 0D Bool tensor that specifies whether an iteration should occur.
Typically t is either the output of an IRecurrenceLayer or a calculation based on
said output.

IIteratorLayer supports iterating forwards or backward over any axis.

‣ loop->addIterator(t) adds an IIteratorLayer that iterates over axis 0 of
tensor t. For example, if the input is the matrix:

2 3 5
4 6 8

the output will be the 1D tensor {2, 3, 5} on the first iteration and {4, 6, 8} for the
second iteration. It’s invalid to iterate beyond the tensor’s bounds.

‣ loop->addIterator(t,axis) is similar, but the layer iterates over the given axis.
For example, if axis=1 and the input is a matrix, each iteration delivers a column of
the matrix.

‣ loop->addIterator(t,axis,reverse) is similar, but the layer produces its
output in reverse order if reverse=true.

ILoopOutputLayer supports three forms of loop output:

Working With Loops

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 77

‣ loop->addLoopOutput(t,LoopOutput::kLAST_VALUE) outputs the last value of
t, where t must be the output of a IRecurrenceLayer.

‣ loop->addLoopOutput(t,LoopOutput::kCONCATENATE,axis) outputs the
concatenation of each iteration’s input to t. For example, if the input is a 1D tensor,
with value {a,b,c} on the first iteration and {d,e,f} on the second iteration, and
axis=0, the output is the matrix:

a b c
d e f

If axis=1, the output is:

a d
b e
c f

‣ loop->addLoopOutput(t,LoopOutput::kREVERSE,axis) is similar, but
reverses the order.

Both the kCONCATENATE and kREVERSE forms of ILoopOutputLayer require a 2nd
input, which is a 0D INT32 shape tensor specifying the length of the new output
dimension. When the length is greater than the number of iterations, the extra
elements contain arbitrary values. The second input, for example u, should be set using
ILoopOutputLayer::setInput(1,u).

Finally, there is IRecurrenceLayer. Its first input specifies the initial output value,
and its second input specifies the next output value. The first input must come from
outside the loop; the second input usually comes from inside the loop. For example, the
TensorRT analog of this C++ fragment:

for (int32_t i = j; ...; i += k) ...

could be created by these calls, where j and k are ITensor*.

ILoop* loop = n.addLoop();
IRecurrenceLayer* iRec = loop->addRecurrence(j);
ITensor* i = iRec->getOutput(0);
ITensor* iNext = addElementWise(*i, *k,
 ElementWiseOperation::kADD)->getOutput(0);
iRec->setInput(1, *iNext);

The second input to IRecurrenceLayer is the only case where TensorRT allows a
backedge. If such inputs are removed, the remaining network must be acyclic.

9.2. Formal Semantics
TensorRT has applicative semantics, meaning, there are no visible side effects other than
engine inputs and outputs. Because there are no side effects, intuitions about loops from
imperative languages do not always work. This section defines a formal semantics for
TensorRT’s loop constructs.

The formal semantics is based on lazy sequences of tensors. Each iteration of a loop
corresponds to an element in the sequence. The sequence for a tensor X inside the loop is
denoted #X0, X1, X2, ...#. Elements of the sequence are evaluated lazily, meaning,
as needed.

Working With Loops

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 78

The output from IIteratorLayer(X) is #X[0], X[1], X[2], ...# where X[i]
denotes subscripting on the axis specified for the IIteratorLayer.

The output from IRecurrenceLayer(X,Y)is #X, Y0, Y1, Y2, ...#.

The input and output from an ILoopOutputLayer depend on the kind of LoopOutput.

‣ kLAST_VALUE: Input is a single tensor X, and output is Xn for an n-trip loop.
‣ kCONCATENATE: The first input is a tensor X and second input is a scalar shape

tensor Y. The result is the concatenation of X0, X1, X2, ... Xn-1 with post
padding, if necessary, to the length specified by Y. It is a runtime error if Y < n.
Y is a build-time constant. Note the inverse relationship with IIteratorLayer.
IIteratorLayer maps a tensor to a sequence of subtensors; ILoopOutputLayer
with kCONCATENATE maps a sequence of subtensors to a tensor.

‣ kREVERSE: Similar to kCONCATENATE, but the output is in the reverse direction.

The value of n in the definitions for the output of ILoopOutputLayer is determined by
the ITripLimitLayer for the loop:

‣ For counted loops, it’s the iteration count, meaning, the input to the
ITripLimitLayer.

‣ For while loops, it’s the least n such that Xn is false, where X is the sequence for the
ITripLimitLayer’s input tensor.

The output from a non-loop layer is a sequence-wise application of the layer’s function.
For example, for a two-input non-loop layer F(X,Y) = #f(X0,Y0), f(X1,Y1),
f(X2,Y2)...#. If a tensor comes from outside the loop, i.e. is loop-invariant, then the
sequence for it is created by replicating the tensor.

9.3. Nested Loops
TensorRT infers nesting of loops from dataflow. For instance if loop B uses values
defined inside loop A, then B is considered to be nested inside of A.

TensorRT rejects networks where the loops are not cleanly nested, such as if loop A uses
values defined in the interior of loop B and vice versa.

9.4. Limitations
A loop that refers to more than one dynamic dimension may take an unexpected amount
of memory.

In a loop, memory is allocated as if all dynamic dimensions take on the maximum value
of any of those dimensions. For example, if a loop refers to two tensors with dimensions
[4,x,y] and [6,y], memory allocation for those tensors will be as if their dimensions were
[4,max(x,y),max(x,y)] and [6,max(x,y)].

The input to a LoopOutputLayer with kLAST_VALUE must be the output from an
IRecurrenceLayer.

The loop API supports only FP32 and FP16 precision.

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 79

Chapter 10.
WORKING WITH QUANTIZED NETWORKS

Quantized networks consist of explicit quantize and dequantize nodes in order to
convert tensors from FP32 to INT8 and vice-versa.

NVIDIA® TensorRT™ supports quantized ONNX models with QuantizeLinear and
DequantizeLinear nodes.
Quantize a tensor x

y = saturate((x / y_scale) + y_zero_point), where y ∈ [-128, 127]

Dequantize a tensor x
y = (x - x_zero_point) * x_scale

TensorRT only supports INT8 activations [-128, 127] and INT8 weights [-127, 127]. Thus,
zero_point must be 0.

Quantized ONNX models can be created using Quantization Aware Training (QAT)
where FakeQuantization nodes are inserted to capture dynamic range (TensorFlow) or
scale/zero-point (PyTorch).

The following sections explain how to train such a model using TensorFlow, its
conversion to canonical ONNX model, and importing to TensorRT.

10.1. Quantization Aware Training (QAT) Using
TensorFlow
As TensorRT only supports symmetric quantization for both activations and weights, a
training graph must be created using symmetric=True.

Tensorflow 1.15 supports Quantization Aware Training (QAT) for creating symmetrically
quantized models using tf.contrib.quantize.experimental_create_training_graph API.
By default, the TensorFlow training graph would create per-tensor weights and
activation dynamic range, meaning (min, max). If per-channel weights dynamic range
needs to be generated we would need to update QAT scripts.

After QAT, we can create a frozen inference graph using the following commands. We
are using TensorFlow models repo for training and creating an inference graph.

https://github.com/onnx/onnx/blob/master/docs/Operators.md#QuantizeLinear
https://github.com/onnx/onnx/blob/master/docs/Operators.md#dequantizelinear
https://github.com/tensorflow/tensorflow/tree/r1.15/tensorflow/contrib/quantize
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/quantize/experimental_create_training_graph
https://github.com/tensorflow/tensorflow/blob/r1.15/tensorflow/contrib/quantize/python/quant_ops.py
https://github.com/tensorflow/models

Working With Quantized Networks

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 80

python models/research/slim/export_inference_graph.py \
 --model_name<model> \
 --output_file=quantized_symm_eval.pb \
 --quantize \
 --symmetric

Freeze the graph with checkpoints:

python tensorflow/tensorflow/python/tools/freeze_graph.py \
 --input_graph=eval.pb \
 --input_checkpoint=model.ckpt-0000 \
 --input_binary=true \
 --output_graph=quantized_symm_frozen.pb \
 --output_node_names=<OutputNode>

10.2. Converting Tensorflow To ONNX Quantized
Models
Tensorflow quantized model with tensorflow::ops::FakeQuantWithMinMaxVars or
tensorflow::ops::FakeQuantWithMinMaxVarsPerChannel nodes can be converted
to sequence of QuantizeLinear and DequantizeLinear nodes (QDQ nodes).

Dynamic range with, meaning [min, max], values are converted to scale and zero-
point, where scale = max(abs(min, max))/127 and zero_point = 0.

We use the tf2onnx converter to convert a quantized frozen model to a quantized ONNX
model.

python -m tf2onnx.convert \
--input quantized_symm_frozen.pb \
--output quantized.onnx \
--inputs <InputNode> \
--outputs <OutputNode> \
--opset 10 \
--fold_const \
--inputs-as-nchw <InputNode>

10.3. Importing Quantized ONNX Models
In order to support importing quantized ONNX models, TensorRT needs to create a
network in explicit precision mode.

We can create an explicit precision network using the Working With Explicit Precision
Using Python or Working With Explicit Precision Using C++.

https://github.com/onnx/tensorflow-onnx

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 81

Chapter 11.
WORKING WITH DLA

NVIDIA® DLA™ (Deep Learning Accelerator) is a fixed-function accelerator engine
targeted for deep learning operations. DLA is designed to do full hardware acceleration
of convolutional neural networks. DLA supports various layers such as convolution,
deconvolution, fully-connected, activation, pooling, batch normalization, etc.

For more information about DLA support in NVIDIA® TensorRT™ layers, see DLA
Supported Layers. The trtexec tool has additional arguments to run networks on DLA,
see trtexec.

To run the AlexNet network on DLA using trtexec in FP16 mode, issue:

 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --
useDLACore=1 --fp16 --allowGPUFallback

To run the AlexNet network on DLA using trtexec in INT8 mode, issue:

 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --
useDLACore=1 --int8 --allowGPUFallback

11.1. Running On DLA During TensorRT Inference
The TensorRT builder can be configured to enable inference on DLA. DLA support is
currently limited to networks running in either FP16 or INT8 mode. The DeviceType
enumeration is used to specify the device that the network or layer will execute on.
The following API functions in the IBuilderConfig class can be used to configure the
network to use DLA,

setDeviceType(ILayer* layer, DeviceType deviceType)

This function can be used to set the deviceType that the layer must execute on.
getDeviceType(const ILayer* layer)

This function can be used to return the deviceType that this layer will execute on. If
the layer is executing on the GPU, this will return DeviceType::kGPU.

canRunOnDLA(const ILayer* layer)

This function can be used to check if a layer can run on DLA.

Working With DLA

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 82

setDefaultDeviceType(DeviceType deviceType)

This function sets the default deviceType to be used by the builder. It ensures that
all the layers that can run on DLA will run on DLA unless setDeviceType is used to
override the deviceType for a layer.

getDefaultDeviceType()

This function returns the default deviceType which was set by
setDefaultDeviceType.

isDeviceTypeSet(const ILayer* layer)

This function checks whether the deviceType has been explicitly set for this layer.
resetDeviceType(ILayer* layer)

This function resets the deviceType for this layer. The value is reset to the
deviceType that is specified by setDefaultDeviceType or DeviceType::kGPU if
none specified.

allowGPUFallback(bool setFallBackMode)

This function notifies the builder to use GPU if a layer that was supposed to run on
DLA cannot run on DLA. For more information, see GPU Fallback Mode.

reset()

This function can be used to reset the IBuilderConfig state, which sets the
deviceType for all layers to be DeviceType::kGPU. After reset, the builder can be
re-used to build another network with a different DLA config.

The following API functions in IBuilder class can be used to help configure the
network for using the DLA:
getMaxDLABatchSize()

This function returns the maximum batch size DLA can support.

For any tensor, the total volume of index dimensions combined with the requested
batch size should not exceed the value returned by this function.

getNbDLACores()

This function returns the number of DLA cores available to the user.

If the builder is not accessible, such as in the case where a plan file is being loaded online
in an inference application, then the DLA to be utilized can be specified differently by
using DLA extensions to the IRuntime. The following API functions in the IRuntime
class can be used to configure the network to use DLA:
getNbDLACores()

This function returns the number of DLA cores that are accessible to the user.
setDLACore(int dlaCore)

The DLA core to execute on. Where dlaCore is a value between 0 and
getNbDLACores() - 1. The default value is 0.

Working With DLA

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 83

getDLACore()

The DLA core the runtime execution is assigned to. The default value is 0.

11.1.1. Example: sampleMNIST With DLA
This section provides details on how to run a TensorRT sample with DLA enabled.

The "Hello World" For TensorRT (sampleMNIST) located in the GitHub repository, the
sample demonstrates how to import a trained Caffe model, build the TensorRT engine,
serialize and deserialize the engine and finally use the engine to perform inference.

The sample first creates the builder:

auto builder =
 SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(gLogger));
if (!builder) return false;
builder->setMaxBatchSize(batchSize);
config->setMaxWorkspaceSize(16_MB);

Then, enable GPUFallback mode:

config->setFlag(BuilderFlag::kGPU_FALLBACK);
config->setFlag(BuilderFlag::kFP16); or config->setFlag(BuilderFlag::kINT8);

Enable execution on DLA, where dlaCore specifies the DLA core to execute on:

config->setDefaultDeviceType(DeviceType::kDLA);
config->setDLACore(dlaCore);

With these additional changes, sampleMNIST is ready to execute on DLA. To run
sampleMNIST with DLA Core 1, use the following command:

 ./sample_mnist --useDLACore=1 [--int8|--fp16]

11.1.2. Example: Enable DLA Mode For A Layer During
Network Creation
In this example, let’s create a simple network with input, convolution and output.

 1. Create the builder and the network:

IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetworkV2(0U);

 2. Add the Input layer to the network, with the input dimensions.

auto data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{1, INPUT_H,
 INPUT_W});

 3. Add the convolution layer with hidden layer input nodes, strides, and weights for
filter and bias.

auto conv1 = network->addConvolution(*data->getOutput(0), 20, DimsHW{5, 5},
 weightMap["conv1filter"], weightMap["conv1bias"]);
conv1->setStride(DimsHW{1, 1});

 4. Set the convolution layer to run on DLA:

if(canRunOnDLA(conv1))

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNIST

Working With DLA

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 84

{
config->setFlag(BuilderFlag::kFP16); or config->setFlag(BuilderFlag::kINT8);
builder->setDeviceType(conv1, DeviceType::kDLA);

}

 5. Mark the output:

network->markOutput(*conv1->getOutput(0));

 6. Set the DLA engine to execute on:

engine->setDLACore(0)

11.2. DLA Supported Layers
This section lists the layers supported by DLA along with the constraints associated with
each layer.

Generic restrictions while running on DLA (applicable to all layers)

‣ Max batch size supported is 32.
‣ The dimensions used for building must be used at runtime.
‣ The maximum size of weights supported by the DLA is 512 MB.
‣ A DLA network can only support up to 1 GB of intermediate tensor data. Tensors

that are the input and output to the DLA graph are not counted against this limit.
TensorRT will reject networks that exceed this limit that are built without GPU
fallback enabled.

‣ DLA supports wildcard dimensions as long as the min, max, and opt values of the
profile are equal.

‣ TensorRT may split a DLA network into multiple sections if any restriction is
violated and GpuFallback is enabled. Otherwise, TensorRT may emit an error and
fallback. For more information, see GPU Fallback Mode.

Batch size for DLA is the product of all index dimensions except the CHW dimensions.
For example, if input dimensions are NPQRS, the effective batch size is N*P.

Layer specific restrictions
Convolution and Fully Connected Layers

‣ Only 2 Spatial dimension operations are supported.
‣ Both FP16 and INT8 are supported.
‣ Each dimension of the kernel must be in the range [1, 32].
‣ Padding must be in the range [0, 31].
‣ Dimensions of padding must be less than the corresponding kernel dimension.
‣ Dimensions of stride stride must be in the range [1,8].
‣ Number of output maps must be in the range [1, 8192].

Working With DLA

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 85

‣ Axis must be 1.
‣ Number of groups must be in the range [1, 8192] for operations using

the formats TensorFormat::kLINEAR, TensorFormat::kCHW16, and
TensorFormat::kCHW32.

‣ Number of groups must be in the range [1, 4] for operations using the formats
TensorFormat::kCHW4.

‣ Dilated convolution must be in the range [1, 32].

Deconvolution Layer

‣ Only 2 Spatial dimension operations are supported.
‣ Both FP16 and INT8 are supported.
‣ Dimensions of the kernel must be in the set [1-32].
‣ The stride must be the same in each dimension as the kernel dimensions.
‣ Padding must be 0.
‣ Grouped deconvolution must be 1.
‣ Dilated deconvolutions must be 1.
‣ Number of input channels must be in the range [1, 8192].
‣ Number of output channels must be in the range [1, 8192].
‣ Best performance uses kernels of [1,1-32] and [1-32,1] in addition to 1x[64,

96, 128] and [64, 96, 128]x1.
‣ Square kernels in the range of [1-22] provide the next performance tier.
‣ Square kernels in the range of [22-32] provide the lowest performance.

Pooling Layer

‣ Only 2 Spatial dimension operations are supported.
‣ Both FP16 and INT8 are supported.
‣ Operations supported: kMAX, kAVERAGE.
‣ Dimensions of the window must be in the range [1, 8].
‣ Dimensions of padding must be in the range [0, 7].
‣ Dimensions of stride must be in the range [1, 16].
‣ Exclusive pooling is not supported.
‣ With INT8 mode, input and output tensor scales must be the same.

Activation Layer

‣ Only 2 Spatial dimension operations are supported.
‣ Both FP16 and INT8 are supported.
‣ Functions supported: ReLU, Sigmoid, Hyperbolic Tangent, and Clip.

‣ Negative slope not supported for ReLU.
‣ Clip only supports values in the range [1, 127]

‣ Only ReLU operation is supported in INT8.

Working With DLA

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 86

ElementWise Layer

‣ Only 2 Spatial dimension operations are supported.
‣ Both FP16 and INT8 are supported.
‣ Operations supported: Sum, Product, Max, and Min.
‣ Only Sum operation is supported in INT8.
‣ For INT8 operation, both inputs must use the same scaling factor.

Scale Layer

‣ Only 2 Spatial dimension operations are supported.
‣ Both FP16 and INT8 are supported.
‣ Mode supported: Uniform, Per-Channel, and ElementWise.

LRN (Local Response Normalization) Layer

‣ Allowed window sizes are to 3, 5, 7, or 9.
‣ Normalization region supported is: ACROSS_CHANNELS.
‣ LRN layer is not supported in INT8.

Concatenation Layer

‣ DLA supports concatenation only along the channel axis.
‣ Concat must have at least 2 inputs.

11.3. GPU Fallback Mode
The GPUFallbackMode sets the builder to use GPU if a layer that was marked to run on
DLA could not run on DLA.

A layer may not run on DLA due to the following reasons:

 1. The layer operation is not supported on DLA.
 2. The parameters specified are out of the supported range for DLA.
 3. The given batch size exceeds the maximum permissible DLA batch size. For more

information, see DLA Supported Layers.
 4. A combination of layers in the network causes the internal state to exceed what the

DLA is capable of supporting.
 5. There are no DLA engines available on the platform.

If the GPUFallbackMode is set to false, a layer set to execute on DLA, that couldn't
run on DLA will result in an error. However, with GPUFallbackMode set to true, it will
continue to execute on the GPU instead, after reporting a warning.

Similarly, if defaultDeviceType is set to DeviceType::kDLA and GPUFallbackMode
is set to false, it will result in an error if any of the layers can't run on DLA. With
GPUFallbackMode set to true, it will report a warning and continue executing on the
GPU.

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 87

Chapter 12.
DEPLOYING A TENSORRT OPTIMIZED
MODEL

After you’ve created a plan file containing your optimized inference model, you can
deploy that file into your production environment. How you create and deploy the
plan file will depend on your environment. For example, you may have a dedicated
inference executable for your model that loads the plan file and then uses the NVIDIA®

TensorRT™ Execution API to pass inputs to the model, execute the model to perform
inference, and finally read outputs from the model.

This section discusses how TensorRT can be deployed in some common deployment
environments.

12.1. Deploying In The Cloud
One common cloud deployment strategy for inferencing is to expose a model through a
server that implements an HTTP REST or gRPC endpoint for the model. A remote client
can then perform inferencing by sending a properly formatted request to that endpoint.
The request will select a model, provide the necessary input tensor values required by
the model, and indicate which model outputs should be calculated.

To take advantage of TensorRT optimized models within this deployment strategy does
not require any fundamental change. The inference server must be updated to accept
models represented by TensorRT plan files and must use the TensorRT Execution APIs
to load and executes those plans. An example of an inference server that provides a
REST endpoint for inferencing can be found in the NVIDIA Triton Inference Server
Container Release Notes and NVIDIA Triton Inference Server Guide.

12.2. Deploying To An Embedded System
TensorRT can also be used to deploy trained networks to embedded systems such as
NVIDIA Drive PX. In this context, deployment means taking the network and using it
in a software application running on the embedded device, such as an object detection

http://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html
http://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html

Deploying A TensorRT Optimized Model

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 88

or mapping service. Deploying a trained network to an embedded system involves the
following steps:

 1. Export the trained network to a format such as UFF or ONNX which can be
imported into TensorRT (see Working With Deep Learning Frameworks for more
details).

 2. Write a program that uses the TensorRT C++ API to import, optimize, and serialize
the trained network to a plan file (see sections Working With Deep Learning
Frameworks, Working With Mixed Precision, and Performing Inference In C++). For
the purpose of discussion, let’s call this program make_plan.
a) Optionally, perform INT8 calibration and export a calibration cache (see Working

With Mixed Precision).
 3. Build and run make_plan on the host system to validate the trained model before

deployment to the target system.
 4. Copy the trained network (and INT8 calibration cache, if applicable) to the target

system. Re-build and re-run the make_plan program on the target system to
generate a plan file.

The make_plan program must run on the target system in order for the TensorRT
engine to be optimized correctly for that system. However, if an INT8 calibration
cache was produced on the host, the cache may be re-used by the builder on the
target when generating the engine (in other words, there is no need to do INT8
calibration on the target system itself).

After the plan file has been created on the embedded system, an embedded
application can create an engine from the plan file and perform inferencing with
the engine by using the TensorRT C++ API. For more information, see Performing
Inference In C++.

To walk through a typical use case where a TensorRT engine is deployed on an
embedded system, see:

‣ Deploying INT8 Inference For Autonomous Vehicles for DRIVE PX
‣ GitHub for Jetson and Jetpack

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://devblogs.nvidia.com/int8-inference-autonomous-vehicles-tensorrt/
https://github.com/dusty-nv/jetson-inference

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 89

Chapter 13.
WORKING WITH DEEP LEARNING
FRAMEWORKS

With the Python API, an existing model built with TensorFlow, Caffe, or an ONNX
compatible framework can be used to build a NVIDIA® TensorRT™ engine using the
provided parsers. The Python API also supports frameworks that store layer weights in
a NumPy compatible format, for example, PyTorch.

13.1. Working With TensorFlow
TensorRT can work with TensorFlow in the following ways.

TF-TRT

This method accelerates a TensorFlow graph with TensorRT even if there are
TensorFlow operators in the graph that are not supported by TensorRT (or TF-TRT).
The subgraphs that are supported by TensorRT and TF-TRT are accelerated and the
resulting graph is still a TensorFlow graph that you can execute as usual. For step-
by-step instructions on how to accelerate inference in TF-TRT, see the TF-TRT User
Guide. For TF-TRT examples, see Examples for TensorRT in TensorFlow (TF-TRT).

UFF

This method works only if the whole graph can be converted to UFF and can be
accelerated by TensorRT. For information on using TensorRT with a TensorFlow
model, see the “Hello World” For TensorRT Using TensorFlow And Python
(end_to_end_tensorflow_mnist) sample.

13.1.1. Freezing A TensorFlow Graph
In order to use the command-line UFF utility, TensorFlow graphs must be frozen and
saved as .pb files.

For more information, see:

‣ A Tool Developer's Guide to TensorFlow Model Files: Freezing
‣ Exporting trained TensorFlow models to C++ the RIGHT way!

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://github.com/tensorflow/tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#end_to_end_tensorflow_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#end_to_end_tensorflow_mnist
https://www.tensorflow.org/extend/tool_developers/#freezing
https://medium.com/@hamedmp/exporting-trained-tensorflow-models-to-c-the-right-way-cf24b609d183

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 90

13.1.2. Freezing A Keras Model
You can use the following sample code to freeze a Keras model.

from keras.models import load_model
import keras.backend as K
from tensorflow.python.framework import graph_io
from tensorflow.python.tools import freeze_graph
from tensorflow.core.protobuf import saver_pb2
from tensorflow.python.training import saver as saver_lib

def convert_keras_to_pb(keras_model, out_names, models_dir,
 model_filename):
 model = load_model(keras_model)
 K.set_learning_phase(0)
 sess = K.get_session()
 saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V2)
 checkpoint_path = saver.save(sess, 'saved_ckpt', global_step=0,
 latest_filename='checkpoint_state')
 graph_io.write_graph(sess.graph, '.', 'tmp.pb')
 freeze_graph.freeze_graph('./tmp.pb', '',
 False, checkpoint_path, out_names,
 "save/restore_all", "save/Const:0",
 models_dir+model_filename, False, "")

13.1.3. Converting A Frozen Graph To UFF
You can use the following sample code to convert the .pb frozen graph to .uff format
file.

convert-to-uff input_file [-o output_file] [-O output_node]

You can list the TensorFlow layers:

convert-to-uff input_file -l

13.1.4. Working With TensorFlow RNN Weights
This section provides information about TensorFlow weights and their stored formats.
Additionally, the following sections will guide you on how to approach and decrypt
RNN weights from TensorFlow.

13.1.4.1. TensorFlow RNN Cells Supported In TensorRT
An RNN layer in TensorRT can be thought of as a MultiRNNCell from TensorFlow. One
layer consists of sublayers with the same configurations, in other words, hidden and
embedding size. This encapsulation is done so that the internal connections between the
multiple sublayers can be abstracted away from the user. This allows for simpler code
when deeper networks are involved.

TensorRT supports four different RNN layer types. These layer types are RNN relu,
RNN tanh, LSTM, and GRU. The TensorFlow cells that match these types are:

TensorRT RNN Relu/Tanh Layer

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 91

 1. BasicRNNCell

 a. Permitted activation functions: tf.tanh and tf.nn.relu.
 b. This is a platform-independent cell.

TensorRT LSTM Layer

 1. BasicLSTMCell

 a. forget_bias must be set to 0 when creating an instance of this cell in
TensorFlow. To support a non-zero forget bias, you need to preprocess the bias
by adding the parameterized forget bias to the dumped TensorFlow forget
biases.

 b. This is a platform-independent cell.
 2. CudnnCompatibleLSTMCell

 a. Same condition for the forget bias applies to this cell as it does to the
BasicLSTMCell.

 b. TensorRT does not currently support peepholes so use_peepholes must be set
to False.

 c. This is a cuDNN compatible cell.

TensorRT GRU Layer

 1. CudnnCompatibleGRUCell

 a. This is a cuDNN compatible cell.
 b. Differs in implementation from standard, platform-independent GRU cells. Due

to this, CudnnCompatiableGRUCell is the correct cell to use with TensorRT.

13.1.4.2. Maintaining Model Consistency Between TensorFlow And
TensorRT
To maintain model consistency, one good way of doing this is to set up unit tests to
validate the output from TensorRT by using TensorFlow as the ground truth.

For any TensorFlow cell not listed in TensorFlow RNN Cells Supported In TensorRT,
consult the TensorRT API and TensorFlow API to ensure the cell is mathematically
equivalent to what TensorRT supports and the storage format is consistent with the
format that you are expecting.

13.1.4.3. Workflow
We will be using the following workflow to extract and use TensorFlow weights.

Figure 5 TensorFlow RNN Workflow

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicRNNCell
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell
https://www.tensorflow.org/api_docs/python/tf/contrib/cudnn_rnn/CudnnCompatibleLSTMCell
https://www.tensorflow.org/api_docs/python/tf/contrib/cudnn_rnn/CudnnCompatibleGRUCell
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/GRUCell
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://www.tensorflow.org/api_docs/

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 92

13.1.4.4. Dumping The TensorFlow Weights
Python script dumpTFWts.py can be used to dump all the variables and weights from
a given TensorFlow checkpoint. The script is located in the /usr/src/tensorrt/
samples/common/dumpTFWts.py directory. Issue dumpTFWts.py -h for more
information on the usage of this script.

13.1.4.5. Loading Dumped Weights
Function loadWeights() loads from the dump of the dumpTFWts.py script.

It has been provided as an example in Building An RNN Network Layer By Layer
(sampleCharRNN) located in the GitHub repository. The function signature is:

std::map<std::string, Weights> loadWeights(const std::string file,
 std::unordered_set<std::string> names);

This function loads the weights specified by the names set from the specified file and
returns them in a std::map<std::string, Weights>.

13.1.4.6. Converting The Weights To A TensorRT Format
At this point, we are ready to convert the weights.

To do this, the following steps are required:

 1. Understanding and using the TensorFlow checkpoint to get the tensor.
 2. Understanding and using the tensors to extract and reformat relevant weights and

set them to the corresponding layers in TensorRT.

13.1.4.6.1. TensorFlow Checkpoint Storage Format
There are two possible TensorFlow checkpoint storage formats.

 1. Platform independent format - separated by layer

 a. Cell_i_kernel <Weights>
 b. Cell_i_bias <Weights>

 2. cuDNN compatible format - separated by input and recurrent

 a. Cell_i_Candidate_Input_kernel <Weights>
 b. Cell_i_Candidate_Hidden_kernel <Weights>

In other words, 1.1 Cell_i_kernel <Weights> in the concatenation
of 2.1 Cell_i_Candidate_Input_kernel <Weights> and 2.2
Cell_i_Candidate_Hidden_kernel <Weights>. Therefore, storage format 2 is
simply a more fine-grain version of storage format 1.

13.1.4.6.2. TensorFlow Kernel Tensor Storage Format
Before storing the weights in the checkpoint, TensorFlow transposes and then interleaves
the rows of transposed matrices. The order of the interleaving is described in the next
section.

A figure is provided in BasicLSTMCell Example to further illustrate this format.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 93

Gate Order Based On Layer Operation Type The transposed weight matrices are
interleaved in the following order:

 1. RNN RuLU/Tanh:

 a. input gate (i)
 2. LSTM:

 a. input gate (i), cell gate (c) , forget gate (f), output gate (o)
 3. GRU:

 a. reset (r), update (u)

13.1.4.6.3. Kernel Weights Conversion To A TensorRT Format
Converting the weights from TensorFlow format can be summarized in two steps.

 1. Reshape the weights to push the interleaving down to a lower dimension.
 2. Transpose the weights to get rid of the interleaving completely and have the weight

matrices stored contiguously in memory.

Transformation Utilities To help perform these transformations correctly,
reorderSubBuffers(), transposeSubBuffers(), and reshapeWeights() are
functions that have been provided. For more information, see NvUtils.h.

13.1.4.6.4. TensorFlow Bias Weights Storage Format
If the checkpoint storage is platform-independent, then TensorFlow combines the
recurrent and input biases into a single tensor by adding them together. Otherwise, the
recurrent and input biases and stored in separate tensors.

The bias tensor is simply stored as contiguous vectors concatenated in the order
specified in TensorFlow Kernel Tensor Storage Format.

13.1.4.6.5. Bias Tensor Conversion To TensorRT Format
Since the biases are stored as contiguous vectors, there aren’t any transformations that
need to be applied to get the bias into the TensorRT format.

13.1.4.7. BasicLSTMCell Example

13.1.4.7.1. BasicLSTMCell Kernel Tensor
To understand the format in which these tensors are being stored, let us consider an
example of a BasicLSTMCell.

Figure 6 illustrates what the tensor looks like within the TensorFlow checkpoint.

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 94

Figure 6 Tensors within a TensorFlow checkpoint

DS/Data Size is distinct from Hidden Size for the first layer. For all the following
sublayers Data Size is equal to Hidden Size.

In Figure 6, W represents the input weights, R represents the hidden weights, DS
represents the data size, and HS represents the hidden size.

Since this is a platform-independent cell, the input weights and hidden weights have
been concatenated together. If we had used a CudnnCompatibleLSTMCell, then
these weights would have been split into two separate tensors.

Applying the conversion process discussed earlier will result in the converted tensor
shown in Figure 7.

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 95

Figure 7 Converted tensors

Data Size is distinct from Hidden Size for the first layer in the sequence of RNN
sublayers. For all the following sublayers Data Size is equal to Hidden Size.

13.1.4.7.2. BasicLSTMCell Bias Tensor

Figure 8 illustrates the format in which the bias tensor is stored.

Figure 8 Bias tensor stored format

Because this is a platform-independent cell, W in the image above represents the result
of ElementWise adding the input and recurrent biases together. TensorFlow does this
addition internally to save memory before it stores the tensor.

This is already in the format we require, therefore, we do not need to apply any
transformations.

13.1.4.8. Setting The Converted Weights And Biases
The converted tensors for both the weights and bias are now ready to use.

You need to iterate over the tensors in the order specified in TensorFlow
Kernel Tensor Storage Format and set the weights and bias using

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 96

IRNNv2Layer::setWeightsForGate() and IRNNv2Layer::setBiasForGate()
functions, respectively.

If you are using a platform-independent cell, you will need to set all the recurrent
biases manually using zeroed out dummy weights.

A real-world example of the training, dumping, converting, and the setting process is
described in Building An RNN Network Layer By Layer (sampleCharRNN). For more
information, consult the code in this sample.

13.1.5. Preprocessing A TensorFlow Graph Using the
Graph Surgeon API
The graph surgeon API, also known as graphsurgeon, allows you to transform
TensorFlow graphs. Its capabilities are broadly divided into two categories:
Search

The search functions allow you to find nodes in a TensorFlow graph.
Manipulation

The manipulation functions allow you to modify, add, or remove nodes.

Using graphsurgeon, you can mark certain nodes (or sets of nodes) as plugin nodes
in the graph. These plugins can either be plugins shipped with TensorRT or plugins
written by you. For more information, see Extending TensorRT With Custom Layers.

If you are writing a plugin, also refer to see Extending TensorRT With Custom Layers for
details on how to implement the IPluginExt and IPluignCreator classes in addition
to registering the plugin.

The following code snippet illustrates how to use graphsurgeon to map a TensorFlow
Leaky ReLU operation to a TensorRT Leaky ReLU plugin node.

import graphsurgeon as gs
lrelu_node = gs.create_plugin_node(name=”trt_lrelu”, op=”LReLU_TRT”,
 negSlope=0.2)
namespace_plugin_map = { “tf_lrelu” : lrelu_node }

Transform TensorFlow graph using graphsurgeon and save to UFF
dynamic_graph = gs.DynamicGraph(tf_lrelu.graph)
dynamic_graph.collapse_namespaces(namespace_plugin_map)

Run UFF converter using new graphdef
uff_model = uff.from_tensorflow(dynamic_graph.as_graph_def(), ["trt_lrelu"],
 output_filename=”test_lrelu.uff”, text=True)

In the above code, the op field in the create_plugin_node method should match the
registered plugin name. This enables the UFF parser to look up the Plugin in the Plugin
Registry using this field to insert the plugin node into the network.

For a working graphsurgeon example, see Object Detection With A TensorFlow SSD
Network (sampleUffSSD) located in the GitHub repository.

For more details about the graphsurgeon API, see the graph surgeon API.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffSSD
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffSSD
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html

Working With Deep Learning Frameworks

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 97

13.2. Working With PyTorch And Other
Frameworks
PyTorch models can be exported to ONNX which can then be consumed by TensorRT.

If ONNX export is not possible, exporting to TensorRT is possible by replicating
the network architecture using the TensorRT API, and then copying the weights
from PyTorch (or any other framework with NumPy compatible weights). For more
information on using TensorRT with a PyTorch model, see the "Hello World" For
TensorRT Using PyTorch And Python (network_api_pytorch_mnist) sample.

https://pytorch.org/docs/stable/onnx.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#network_api_pytorch_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#network_api_pytorch_mnist

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 98

Chapter 14.
WORKING WITH DALI

DALI is a highly optimized open sourced library available on GitHub for data
preprocessing. It uses an execution engine for a fast preprocessing pipeline. DALI
accelerates blocks for image loading and augmentation and also provides GPU support
for JPEG decoding and image manipulation.

NVIDIA® TensorRT™ can be integrated with NVIDIA® Data Loading Library™ (DALI);
a collection of highly optimized building blocks and an execution engine to accelerate
input data pre-processing for deep learning applications.

For more information about DALI, see the DALI data loading documentation.

14.1. Benefits Of Integration
The benefits of integrating DALI with TensorRT include the following.

‣ Running DNN models requires input data pre-processing
‣ The computational complexity of the I/O pipeline has increased. Hence, the GPU

starves for data. DALI helps to accelerate the preprocessing pipeline.
‣ DALI offsets the compute-intensive data pre-processing to GPU.
‣ Pre-processing involves decoding, resize, crop, spatial augmentation, format

conversions (NCHW and NHWC)
‣ Multi-device DNN inference could be achieved via same I/O pipeline

DALI supports:

‣ The feature to accelerate pre-processing on GPUs
‣ Configurable graphs and custom operators
‣ Multiple input formats (for example JPEG, LMDB, RecordIO, TFRecord)
‣ Serializing a whole graph (portable graph)
‣ Easily integrates with framework plugins and open-source bindings

DALI supports a custom operator library which can be loaded in runtime. TensorRT
inference can be configured as a custom operator to be a part of the DALI pipeline. A
working example of TensorRT inference integrated as a part of DALI is open-sourced
here.

https://docs.nvidia.com/deeplearning/sdk/index.html#data-loading
https://github.com/NVIDIA/DL4AGX

Working With DALI

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 99

For more information about integrating DALI with TensorRT on Xavier, see the GTC
2019 talk here.

https://on-demand.gputechconf.com/gtc/2019/video/_/S9818/

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 100

Chapter 15.
TROUBLESHOOTING

The following sections help answer the most commonly asked questions regarding
typical use cases with NVIDIA® TensorRT™.

15.1. FAQs
This section is to help troubleshoot the problem and answer our most asked questions.

Q: How do I create an engine that is optimized for several different batch sizes?

A: While TensorRT allows an engine optimized for a given batch size to run at any
smaller size, the performance for those smaller sizes may not be as well-optimized.
To optimize for multiple different batch sizes, create optimization profiles at the
dimensions that are assigned to OptProfilerSelector::kOPT.

Q: Why is TensorRT ignoring an attribute I set via IBuilder when I build using
IBuilder::buildEngineWithConfig?

A: If using IBuilder::buildEngineWithConfig, configuration attributes should
be set on the configuration, not the builder. Here’s a list of the IBuilder setters for
attributes that should instead be set via IBuilderConfig:

‣ allowGPUFallback

‣ setAverageFindIterations

‣ setDebugSync

‣ setDefaultDeviceType

‣ setDeviceType

‣ setDLACore

‣ setEngineCapability

‣ setFp16Mode

‣ setHalf2Mode

‣ setInt8Calibrator

Troubleshooting

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 101

‣ setInt8Mode

‣ setMaxWorkspaceSize

‣ setMinFindIterations

‣ setRefittable

‣ setStrictTypeConstraints

Furthermore, these methods are deprecated, so migrating code to use IBuilderConfig
and IBuilder::buildEngineWithConfig is recommended. For more information, see
the Deprecated Features section in the TensorRT Release Notes for version 7.1.0 EA.

Q: Are engines and calibration tables portable across TensorRT versions?

A: No. Internal implementations and formats are continually optimized and may change
between versions. For this reason, engines and calibration tables are not guaranteed to
be binary compatible with different versions of TensorRT. Applications should build
new engines and INT8 calibration tables when using a new version of TensorRT.

Q: How do I choose the optimal workspace size?

A: Some TensorRT algorithms require additional workspace on the GPU. The
method IBuilderConfig::setMaxWorkspaceSize() controls the maximum
amount of workspace that may be allocated, and will prevent algorithms that
require more workspace from being considered by the builder. At runtime, the
space is allocated automatically when creating an IExecutionContext. The
amount allocated will be no more than is required, even if the amount set in
IBuilderConfig::setMaxWorkspaceSize() is much higher. Applications should
therefore allow the TensorRT builder as much workspace as they can afford; at runtime
TensorRT will allocate no more than this, and typically less.

Q: How do I use TensorRT on multiple GPUs?

A: Each ICudaEngine object is bound to a specific GPU when it is instantiated, either
by the builder or on deserialization. To select the GPU, use cudaSetDevice() before
calling the builder or deserializing the engine. Each IExecutionContext is bound
to the same GPU as the engine from which it was created. When calling execute()
or enqueue(), ensure that the thread is associated with the correct device by calling
cudaSetDevice() if necessary.

Q: How do I get the version of TensorRT from the library file?

A: There is a symbol in the symbol table named tensorrt_version_#_#_#_# which
contains the TensorRT version number. One possible way to read this symbol on Linux is
to use the nm command like in the example below:

$ nm -D libnvinfer.so.4.1.0 | grep tensorrt_version
000000000c18f78c B tensorrt_version_4_0_0_7

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-7.html#rel_7-1-0-EA

Troubleshooting

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 102

Q: What can I do if my network is producing the wrong answer?

A: There are several reasons why your network may be generating incorrect answers.
Here are some troubleshooting approaches which may help diagnose the problem:

‣ Turn on INFO level messages from the log stream and check what TensorRT is
reporting.

‣ Check that your input preprocessing is generating exactly the input format required
by the network.

‣ If you’re using reduced precision, run the network in FP32. If it produces the correct
result, it is possible that lower precision has an insufficient dynamic range for the
network.

‣ Try marking intermediate tensors in the network as outputs, and see if they match
what you are expecting.

Marking tensors as outputs may inhibit optimizations, and therefore, may change
the results.

Q: How do I determine how much device memory will be required by my network?

A: TensorRT engines use device memory for two purposes: to hold the weights
required by the network, and to hold the intermediate activations required by
IExecutionContext. The size of the weights can be closely approximated by the size
of the serialized engine (in fact this will be a slight overestimate, as the serialized engine
also includes the network definition). The size of the activation memory required can be
determined by calling ICudaEngine::getDeviceMemorySize() . The sum of these
will be the amount of device memory TensorRT allocates for the engine.

IBuilder may temporarily use more device memory than what the engine requires.

‣ During a phase, it uses twice as much memory for the weights required by the
engine. During that phase, no memory is allocated for activations.

‣ The auto-tuner times each layer for FP32 operation. Timing a layer in FP32
consumes twice as much device memory as an FP16 operation, and four times as
much for an INT8 operation, both for the weights and its input/output activations.
The additional memory consumption for timing is theoretically noticeable if a single
layer dominates the overall memory consumption of a network.

The CUDA infrastructure and device code also consume device memory. The amount
of memory will vary by platform, device, and TensorRT version. Use cudaGetMemInfo
to determine the total amount of device memory in use.

On systems with unified CPU/GPU memory, the IBuilder CPU memory consumption
may further impact memory requirements. IBuilder may be holding in CPU memory

Troubleshooting

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 103

not only the original weights provided via the API but a copy of weights at a different
precision or calculated from multiple weights from the original network.

Q: If I build the engine on one GPU and run the engine on another GPU, will this
work?

A: We recommend that you don’t, however, if you do, you’ll need to follow these
guidelines:

 1. The major, minor, and patch versions of TensorRT must match between systems.
This ensures you are picking kernels that are still present and have not undergone
certain optimizations or bug fixes that would change their behavior.

 2. The CUDA compute capability major and minor versions must match between
systems. This ensures that the same hardware features are present so the kernel
will not fail to execute. An example would be mixing cards with different precision
capabilities.

 3. The following properties should match between systems:

‣ Maximum GPU graphics clock speed
‣ Maximum GPU memory clock speed
‣ GPU memory bus width
‣ Total GPU memory
‣ GPU L2 cache size
‣ SM processor count
‣ Asynchronous engine count

If any of the above properties do not match, you will receive the following warning:
Using an engine plan file across different models of devices is
not recommended and is likely to affect performance or even cause
errors.

If you still want to proceed, then you should build the engine on the smallest SKU in
the family because autotuner choices made on smaller GPUs will generalize better.

Q: How do I implement batch normalization in TensorRT?

A: Batch normalization can be implemented using a sequence of IElementWiseLayer
in TensorRT. More specifically:

adjustedScale = scale / sqrt(variance + epsilon)
batchNorm = (input + bias - (adjustedScale * mean)) * adjustedScale

Q: Why does my network run slower when using DLA compared to without DLA?

A: DLA was designed to maximize energy efficiency. Depending on the features
supported by DLA and the features supported by the GPU, either implementation
may be more performant. Which implementation to use depends on your latency

https://developer.nvidia.com/cuda-gpus

Troubleshooting

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 104

or throughput requirements and your power budget. Since all DLA engines are
independent from the GPU and each other, you could also use both implementations at
the same time to further increase the throughput of your network.

Q: Which platforms and/or layers support INT8 quantization?

A: List of Layers supporting INT8 precision:

‣ IConcatenationLayer

‣ IDeconvolutionLayer

‣ IElementWiseLayer

‣ IFullyConnectedLayer

‣ IPaddingLayer

‣ IPoolingLayer

‣ IScaleLayer

For more information, refer to the Support Matrix.

Q: Is INT4 quantization or INT16 quantization supported by TensorRT?

A: Neither INT4 nor INT16 quantization are supported by TensorRT at this time.

Q: When will TensorRT support layer XYZ required by my network in the UFF
parser?

A: UFF is deprecated and we will not be doing further development work on UFF; we
recommend users switch their workflows to ONNX. The TensorRT ONNX parser is an
open source project.

Q: Can I use multiple TensorRT builders to compile on different targets?

A: TensorRT assumes that all resources for the device it is building on are available for
optimization purposes. Concurrent use of multiple TensorRT builders (for example,
multiple trtexec instances) to compile on different targets (DLA0, DLA1 and GPU)
may oversubscribe system resources causing undefined behavior (meaning, inefficient
plans, builder failure, or system instability).

It is recommended to use trtexec with the --saveEngine argument to compile for
different targets (DLA and GPU) separately and save their plan files. Such plan files
can then be reused for loading (using trtexec with the --loadEngine argument) and
submitting multiple inference jobs on the respective targets (DLA0, DLA1, GPU). This
two step process alleviates over-subscription of system resources during the build phase
while also allowing execution of the plan file to proceed without interference by the
builder.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#hardware-precision-matrix

Troubleshooting

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 105

15.2. How Do I Report A Bug?
We appreciate all types of feedback. If you encounter any issues, please report them by
following these steps.

 1. Register for the NVIDIA Developer website.
 2. Log in to the developer site.
 3. Click on your name in the upper right corner.
 4. Click My account > My Bugs and select Submit a New Bug.
 5. Fill out the bug reporting page. Be descriptive and if possible, provide the steps that

you are following to help reproduce the problem.
 6. Click Submit a bug.

15.3. Understanding Error Messages
If an error is encountered during execution, TensorRT will report an error message that
is intended to help in debugging the problem. Some common error messages that may
be encountered by developers are discussed in the following sections.

UFF Parser Error Messages

The following table captures the common UFF parser error messages.

Error Message Description

The input to the Scale Layer is
 required to have a minimum of 3
 dimensions.

Invalid scale mode, nbWeights: <X>

kernel weights has count <X> but <Y>
 was expected

This error message can occur due to incorrect

input dimensions. In UFF, input dimensions should

always be specified with the implicit batch

dimension not included in the specification.

<NODE> Axis node has op <OP>, expected
 Const. The axis must be specified as
 a Const node.

As indicated by the error message, the axis must

be a build-time constant in order for UFF to parse

the node correctly.

ONNX Parser Error Messages

The parser may issue error messages if a constant input is used with a layer that does
not support constant inputs. Consider using a tensor input instead.

https://developer.nvidia.com/

Troubleshooting

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 106

TensorRT Core Library Error Messages

The following table captures the common TensorRT core library error messages.

Error Message Description

Installation Errors Cuda initialization
 failure with error
 <code>. Please check
 cuda installation:
 http://docs.nvidia.com/
cuda/cuda-installation-
guide-linux/index.html.

This error message can occur

if the CUDA or NVIDIA driver

installation is corrupt. Refer

to the URL for instructions on

installing CUDA and the NVIDIA

driver on your operating system.

Internal error: could not
 find any implementation
 for node <name>.
 Try increasing the
 workspace size with
 IBuilderConfig::setMaxWorkspaceSize()
 if using
 IBuilder::buildEngineWithConfig,
 or
 IBuilder::setMaxWorkspaceSize()
 if using
 IBuilder::buildCudaEngine.

This error message occurs

because there is no layer

implementation for the given

node in the network that

can operate with the given

workspace size. This usually

occurs because the workspace

size is insufficient, but could

also indicate a bug. If increasing

the workspace size as suggested

doesn’t help, report a bug (see

How Do I Report A Bug?).

<layer-name>: (kernel|
bias) weights has non-
zero count but null
 values
<layer-name>: (kernel|
bias) weights has zero
 count but non-null
 values

This error message occurs when

there is a mismatch between

the values and count fields in a

Weights data structure passed

to the builder. If the count is

0, then the values field should

contain a null pointer; otherwise

the count must be non-zero and

values should contain a device

pointer.

Builder Errors

Builder was created on
 device different from
 current device.

This error message may show up

if you:

 1. Created an IBuilder

targeting one GPU, then

 2. Called cudaSetDevice()

to target a different GPU,

then

Troubleshooting

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 107

Error Message Description

 3. Attempted to use the

IBuilder to create an

engine.

Ensure you only use the

IBuilder when targeting the

GPU that was used to create the

IBuilder.

You may encounter error messages indicating that the tensor

dimensions do not match the semantics of the given layer. Carefully

read the documentation on NvInfer.h on the usage of each layer and

the expected dimensions of the tensor inputs and outputs to the

layer.

Tensor <X> is uniformly
 zero.

This warning occurs, and should

be treated as an error, when

data distribution for a tensor is

uniformly zero. In a network,

the output tensor distribution

can be uniformly zero under the

following scenarios:

 1. Constant tensor with all

zero values; not an error.

 2. Activation (ReLU) output

with all negative inputs: not

an error.

 3. Data distribution is

forced to all zero due to

computation error in the

previous layer; emit a

warning here.2

 4. User does not provide any

calibration images; emit a

warning here.1

INT8 Calibration Errors

Could not find scales for
 tensor <X>.

This error message indicates that

a calibration failure occurred

with no scaling factors detected.

This could be due to no INT8

calibrator or insufficient custom

2 It is recommended to evaluate the calibration input or validate the previous layer outputs.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/namespacenvinfer1.html

Troubleshooting

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 108

Error Message Description

scales for network layers. For

more information, refer to

the Performing Inference In

INT8 Using Custom Calibration

(sampleINT8) located in the

/opensource/sampleINT8

directory in the GitHub

repository to setup calibration

correctly.

The engine plan file is
 not compatible with this
 version of TensorRT,
 expecting (format|
library) version <X> got
 <Y>, please rebuild.

This error message can occur

if you are running TensorRT

using an engine PLAN file that is

incompatible with the current

version of TensorRT. Ensure you

use the same version of TensorRT

when generating the engine and

running it.

Engine Compatibility Errors

The engine plan file
 is generated on an
 incompatible device,
 expecting compute <X>
 got compute <Y>, please
 rebuild.

This error message can occur if

you build an engine on a device

of a different compute capability

than the device that is used to

run the engine. If you build an

engine on a device with the same

compute capability but is not

identical to the device that is

used to run the engine, you will

see the following warning:

Using an engine plan
 file across different
 models of devices is
 not recommended and
 is likely to affect
 performance or even
 cause errors.

As indicated by the warning,

it is highly recommended

to use a device of the same

model when generating the

engine and deploying it to avoid

compatibility issues.

Out Of Memory Errors GPU memory allocation
 failed during

These error messages can occur

if there is insufficient GPU

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8

Troubleshooting

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 109

Error Message Description

 initialization of
 (tensor|layer): <name>
GPU memory

Allocation failed during
 deserialization of
 weights.

GPU does not meet
 the minimum memory
 requirements to run this
 engine …

memory available to instantiate

a given TensorRT engine. Verify

that the GPU has sufficient

available memory to contain

the required layer weights and

activation tensors.

FP16 Errors Network needs native FP16
 and platform does not
 have native FP16

This error message can occur if

you attempt to deserialize an

engine that uses FP16 arithmetic

on a GPU that does not support

FP16 arithmetic. You will either

need to rebuild the engine

without FP16 precision inference

or upgrade your GPU to a model

that supports FP16 precision

inference.

Plugin Errors Custom layer <name>
 returned non-zero
 initialization

This error message can occur

if the initialize() method

of a given plugin layer returns

a non-zero value. Refer to the

implementation of that layer

to debug this error further. For

more information, see TensorRT

Layers.

15.4. Support
Support, resources, and information about TensorRT can be found online at https://
developer.nvidia.com/tensorrt. This includes blogs, samples, and more.

In addition, you can access the NVIDIA DevTalk TensorRT forum at https://
devtalk.nvidia.com/default/board/304/tensorrt/ for all things related to TensorRT. This
forum offers the possibility of finding answers, making connections, and to get involved
in discussions with customers, developers, and TensorRT engineers.

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://devtalk.nvidia.com/default/board/304/tensorrt/
https://devtalk.nvidia.com/default/board/304/tensorrt/

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 110

Appendix A.
APPENDIX

A.1. TensorRT Layers
In NVIDIA® TensorRT™, layers represent distinct flavours of mathematical and/or
programmatic operations. The following sections describe every layer that is supported
by TensorRT. TensorRT layers and packaged plugins are expected to work with
zero workspace size, however, the precision requested may be ignored if there’s no
implementation that used zero workspace. In the latter case, the layer will run on FP32
even if the precision is set to something else.

To view a list of the specific attributes that are supported by each layer, refer to the
TensorRT API documentation.

TensorRT has the ability to optimize performance by fusing layers. For information
about how to enable layer fusion optimizations, see Types Of Fusions. For information
about how to optimize layer performance, see How Do I Optimize My Layer
Performance? from the TensorRT Best Practices guide.

For details about the types of precision and features that are supported per layer, see the
TensorRT Support Matrix.

A.1.1. IActivationLayer
The IActivationLayer implements element-wise activation functions.

Layer Description

Apply an activation function on an input tensor A, and produce an output tensor B with
the same dimensions.

The Activation layer supports the following operations:

rectified Linear Unit (ReLU): B = ReLU(A)
Hyperbolic tangent: B = tanh(A)
“s” shaped curve (sigmoid): B = σ(A)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#fusion-types
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 111

Conditions And Limitations

None

See the C++ class IActivationLayer or the Python class IActivationLayer for
further details.

A.1.2. IConcatenationLayer
The IConcatenationLayer links together multiple tensors of the same non-channel
sizes along the channel dimension.

Layer Description

The concatenation layer is passed in an array of m input tensors Ai and a channel axis c.

All dimensions of all input tensors must match in every axis except axis c. Let each input
tensor have dimensions ai. The concatenated output tensor will have dimensions b such
that

Conditions And Limitations

The default channel axis is assumed to be the third from last axis, or the first non-batch
axis if there are fewer than 3 non-batch axes. Concatenation cannot be done along the
batch axis. All input tensors must either be non-INT32 type or all must be INT32 type.

See the C++ class IConcatenationLayer or the Python class IConcatenationLayer
for further details.

A.1.3. IConstantLayer
The IConstantLayer outputs a tensor with values provided as parameters to this layer,
enabling the convenient use of constants in computations.

Layer Description

Given dimensions d and weight vector w, the constant layer will output a tensor B of
dimensions d with the constant values in w. This layer takes no input tensor. The number
of elements in the weight vector w is equal to the volume of d.

Conditions And Limitations

The output can be a tensor of zero to seven dimensions.

See the C++ class IConstantLayer or the Python class IConstantLayer for further
details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_activation_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iactivationlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_concatenation_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iconcatenationlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_constant_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iconstantlayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 112

A.1.4. IConvolutionLayer
The IConvolutionLayer computes a 2D (channel, height, and width) convolution or
3D (channel, depth, height and width) convolution, with or without bias.

The operation that the IConvolutionLayer performs is actually a correlation.
Therefore, it is a consideration if you are formatting weights to import via an API,
rather than via the NvCaffeParser library.

Layer Description: 2D convolution

Compute a cross-correlation with 2D filters on a 4D tensor A, of dimensions a, to
produce a 4D tensor B, of dimensions b. The dimensions of B depend on the dimensions
of A, the number of output maps m, kernel size r, symmetric padding p, stride s, dilation
d, and dilated kernel size t = r+d(r-1), such that height and width are adjusted
accordingly as follows:

‣ b = [a0 m b2 b3]

‣ b2 = (a2+2p0-t0)/s0+1

‣ b3 = (a3+2p1-t1)/s1+1

The kernel weights w and bias weights x (optional) for the number of groups g, are such
that:

‣ w is ordered according to shape [m a1/g r0 r1]
‣ x has length m

Let tensor K with dimensions k = [m a1/g t0 t1] be defined as the zero-filled tensor,
such that:

‣ ki,j,hh,ll = wi,j,h,l
‣ hh = {0 if h = 0, h + d0(h-1) otherwise}, and ll = {0 if l = 0, l +

d1(l-1) otherwise}.

and tensor C the zero-padded copy of A with dimensions [a0 a1 a2+p1], then tensor B
is defined as:

where kk = k+t0-1, and ll = l+t1-1.

Layer Description: 3D convolution

Compute a cross-correlation with 3D filters on a 5D tensor A, of dimensions a, to
produce a 5D tensor B, of dimensions b. The dimensions of B depend on the dimensions
of A, the number of output maps m, kernel size r, symmetric padding p, stride s, dilation

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 113

d, and dilated kernel size t = r+d(r-1), such that height and width are adjusted
accordingly as follows:

‣ b = [a0 m b2 b3 b4]

‣ b2 = (a2+2p0-t0)/s0+1

‣ b3 = (a3+2p1-t1)/s1+1

‣ b4 = (a4+2p2-t2)/s2+1

The kernel weights w and bias weights x (optional) for the number of groups g, are such
that:

‣ w is ordered according to shape [m a1/g r0 r1 r2]
‣ x has length m

Let tensor K with dimensions k = [m a1/g t0 t1 t2] be defined as the zero-filled
tensor, such that:

‣ ki,j,dd,hh,ll = wi,j,d,h,l
‣ dd = {0 if d = 0, d + d0(d-1) otherwise}, hh = {0 if h = 0, h +

d1(h-1) otherwise}, and ll = {0 if l = 0, l + d2(l-1) otherwise}.

and tensor C the zero-padded copy of A with dimensions [a0 a1 a2+p0 a3+p1 a4+p2],
then tensor B is defined as:

where dd = d+t0-1, kk = k+t1-1, and ll = l+t2-1.

Conditions And Limitations

2D or 3D is determined by the number of input kernel dimensions. For 2D convolution,
input and output may have more than 4 dimensions; beyond 4, all dimensions are
treated as multipliers on the batch size, and input and output are treated as 4D tensors.
For 3D convolution, similar to 2D convolution, if input or output has more than 5
dimensions, all dimensions beyond 5 are treated as multipliers on the batch size. If
groups are specified and INT8 data type is used, then the size of the groups must be a
multiple of 4 for both input and output.

See the C++ class IConvolutionLayer or the Python class IConvolutionLayer for
further details.

A.1.5. IDeconvolutionLayer
The IDeconvolutionLayer computes a 2D (channel, height, and width) or 3D
(channel, depth, height and width) deconvolution, with or without bias.

This layer actually applies a 2D/3D transposed convolution operator over a 2D/3D
input. It is also known as fractionally-strided convolution or transposed convolution.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iconvolutionlayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 114

Layer Description: 2D deconvolution

Compute a cross-correlation with 2D filters on a 4D tensor A, of dimensions a, to
produce a 4D tensor B, of dimensions b. The dimensions of B depend on the dimensions
of A, the number of output maps m, kernel size r, symmetric padding p, stride s, dilation
d, and dilated kernel size t = r+d(r-1), such that height and width are adjusted
accordingly as follows:

‣ b = [a0 m b2 b3]

‣ b2 = (a2-1)*s0 + t0 - 2p0
‣ b3 = (a3-1)*s1 + t1 - 2p1

The kernel weights w and bias weights x (optional) for the number of groups g, are such
that:

‣ w is ordered according to shape [a1/g m r0 r1]
‣ x has length m

Let tensor K with dimensions k = [m b1/g t0 t1] be defined as the zero-filled tensor,
such that:

‣ ki,j,hh,ll = wi,j,h,l
‣ hh = {0 if h = 0, h + d0(h-1) otherwise}, and ll = {0 if l = 0, l +

d1(l-1) otherwise}.

and tensor C the zero-padded copy of A with dimensions [a0 a1 a2+p1], then tensor B
is defined as:

where u ranges from 0 to min(t0-1, k), and v ranges from 0 to min(t1-1, l).

Layer Description: 3D deconvolution

Compute a cross-correlation with 3D filters on a 5D tensor A, of dimensions a, to
produce a 5D tensor B, of dimensions b. The dimensions of B depend on the dimensions
of A, the number of output maps m, kernel size r, symmetric padding p, stride s, dilation
d, and dilated kernel size t = r+d(r-1), such that height and width are adjusted
accordingly as follows:

‣ b = [a0 m b2 b3]

‣ b2 = (a2-1)*s0 + t0 - 2p0
‣ b3 = (a3-1)*s1 + t1 - 2p1
‣ b4 = (a4-1)*s2 + t2 - 2p2

The kernel weights w and bias weights x (optional) for the number of groups g, are such
that:

‣ w is ordered according to shape [a1/g m r0 r1 r2]

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 115

‣ x has length m

Let tensor K with dimensions k = [m b1/g t0 t1 t2] be defined as the zero-filled
tensor, such that:

‣ ki,j,dd,hh,ll = wi,j,d,h,l
‣ dd = {0 if d = 0, d + d0(d-1) otherwise}, hh = {0 if h = 0, h +

d1(h-1) otherwise}, and ll = {0 if l = 0, l + d2(l-1) otherwise}.

and tensor C the zero-padded copy of A with dimensions [a0 a1 a2+p0 a3+p1 a4+p2],
then tensor B is defined as:

where u ranges from 0 to min(t0-1, k), and v ranges from 0 to min(t1-1, l), and w
ranges from 0 to min(t2-1, m).

Conditions And Limitations

2D or 3D is determined by the number of input kernel dimensions. For 2D
deconvolution, input and output may have more than 4 dimensions; beyond 4, all
dimensions are treated as multipliers on the batch size, and input and output are treated
as 4D tensors. For 3D deconvolution, similar with 2D deconvolution, dimensions beyond
5 are treated as multipliers on the batch size. If groups are specified and INT8 data type
is used, then the size of the groups must be a multiple of 4 for both input and output.

See the C++ class IDeconvolutionLayer or the Python class IDeconvolutionLayer
for further details.

A.1.6. IElementWiseLayer
The IElementWiseLayer, also known as the Eltwise layer, implements per-element
operations.

Layer Description

This layer computes a per-element binary operation between input tensor A and input
tensor B to produce an output tensor C. For each dimension, their lengths must match,
or one of them must be one. In the latter case, the tensor is broadcast along that axis. The
output tensor has the same number of dimensions as the inputs. For each dimension, its
length is the maximum of the lengths of the corresponding input dimension.

The IElementWiseLayer supports the following operations:

Sum: C = A+B
Product: C = A*B
Minimum: C = min(A, B)
Maximum: C = max(A, B)
Subtraction: C = A-B
Division: C = A/B

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ideconvolutionlayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 116

Power: C = A^B
Floor division : C = floor(A/B)
And : C = A & B
Or : C = A | B
Xor : C = A xor B
Equal : C = (A == B)
Greater : C = A > B
Less: C = A < B

Conditions And Limitations

The length of each dimension of the two input tensors A and B must be equal or equal to
one.

See the C++ class IElementWiseLayer or the Python class IElementWiseLayer for
further details.

A.1.6.1. ElementWise Layer Setup
The ElementWise layer is used to execute the second step of the functionality provided
by a FullyConnected layer. The output of the fcbias Constant layer and Matrix
Multiplication layer are used as inputs to the ElementWise layer. The output from this
layer is then supplied to the TopK layer.

The code below demonstrates how to setup the layer:
C++ code snippet

auto fcbias = network->addConstant(Dims2(VOCAB_SIZE, 1),
 weightMap[FCB_NAME]);
auto addBiasLayer = network->addElementWise(
*matrixMultLayer->getOutput(0),
*fcbias->getOutput(0), ElementWiseOperation::kSUM);
assert(addBiasLayer != nullptr);
addBiasLayer->getOutput(0)->setName("Add Bias output");

Python code snippet

fc_bias = network.add_constant((VOCAB_SIZE, 1), weightMap[FCB_NAME])
add_bias_layer = network.add_elementwise(
matrix_mult_layer.get_output(0),
fc_bias.get_output(0), trt.ElementWiseOperation.SUM)
assert add_bias_layer != None
add_bias_layer.get_output(0).name = "Add Bias output"

For more information, see the TensorRT API documentation.

A.1.7. IFillLayer
The IFillLayer is used to generate an output tensor with the specified mode.

Layer Description

Given an output tensor size, the layer will generate data with the specified mode and fill
the tensor. The alpha and beta performs as different parameters for different modes.

The IFillLayer supports the following operations:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_element_wise_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ielementwiselayer
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 117

‣ LINSPACE: Output = alpha(scalar) + beta(different on each axis) *
element_index

‣ RANDOM_UNIFORM: Output = Random(min = alpha, max = beta)

Conditions And Limitations

The layer can only generate 1D tensor if using static tensor size. When using the
dynamic tensor size, the alpha and beta’s dimensions should match each mode’s
requirement.

See the C++ class IFillLayer or the Python class IFillLayer for further details.

A.1.8. IFullyConnectedLayer
The IFullyConnectedLayer implements a matrix-vector product, with or without
bias.

Layer Description

The IFullyConnectedLayer expects an input tensor A of three or more dimensions.
Given an input tensor A of dimensions a=[a0 ... an-1], it is first reshaped into a
tensor A’ of dimensions a’=[a0 ... an-4 (an-3*an-2*an-1)] by squeezing the last
three dimensions into one dimension.

Then, the layer performs the operation B’=WA’+X where W is the weight tensor of
dimensions w=[(an-3*an-2*an-1) k], X is the bias tensor of dimensions x=[k]
broadcasted along the other dimensions, and k is the number of output channels,
configured via setNbOutputChannels(). If X is not specified, the value of the bias is
implicitly 0. The resulting B’ is a tensor of dimensions b’=[a0 ... an-4 k].

Finally, B’ is reshaped again into the output tensor B of dimensions b=[a0 ... an-4 k
1 1] by inserting two lower dimensions each of size 1.

In summary, for input tensor A of dimensions a=[a0 ... an-1], the output tensor B will
have dimensions b=[a0 ... an-4 k 1 1].

Conditions And Limitations

A must have three dimensions or more.

See the C++ class IFullyConnectedLayer or the Python class
IFullyConnectedLayer for further details.

A.1.9. IGatherLayer
The IGatherLayer implements the gather operation on a given axis.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fill_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2Ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html#a7a268ddbb5c40ac1c35b872a3f08278b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ifullyconnectedlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ifullyconnectedlayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 118

Layer Description

The IGatherLayer gathers elements of each data tensor A along the specified
axisxusing indices tensor B of zero dimensions or more dimensions, to produce output
tensor C of dimensions c.

If B has zero dimensions and it is a scalar b, then ck={ak if k<x, and ak+1 if k>x}
and c has length equal to one less than the length of a. In this case, Ci=Aj where jk={b
if k=x, ik if k<x, and ik-1 if k>x}.

If B is a tensor of dimensions b (with length b), then ck={ak if k<x, bk-x if k≥x
and k<x+b, and ak-b+1 otherwise}. In this case, Ci=Aj where jk={BX(i) if k=x,
ik if k<x, and ik-b if k>x} and X(i)=ix,..,x+b-1.

Conditions And Limitations

Elements cannot be gathered along the batch size dimension. The data tensor A must
contain at least one non-batch dimension. The data tensor A must contain at least axis
+ 1 non-batch dimensions. The indices tensor B must contain only INT32 values. The
parameter axis is zero-indexed and starts at the first non-batch dimension of data tensor
A. If there are any invalid indices elements in the indices tensor, then zeros will be stored
at the appropriate locations in the output tensor.

See the C++ class IGatherLayer or the Python class IGatherLayer for further details.

A.1.10. IIdentityLayer
The IIdentityLayer implements the identity operation.

Layer Description

The output of the layer is mathematically identical to the input. This layer allows you to
precisely control the precision of tensors and transform from one precision to another.
If the input is at a different precision than the output, the layer will convert the input
tensor into the output precision.

Conditions And Limitations

None

See the C++ class IIdentityLayer or the Python class IIdentityLayer for further
details.

A.1.11. IIteratorLayer
The IIteratorLayer enables a loop to iterate over a tensor. A loop is defined by loop
boundary layers.

For more information about the IIteratorLayer, including how loops work and its
limitations, see Working With Loops.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_gather_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#igatherlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_identity_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iidentitylayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 119

See the C++ class IIteratorLayer or the Python class IIteratorLayer for further
details.

A.1.12. ILoopBoundaryLayer
Class ILoopBoundaryLayer, derived from class ILayer, is the base class for
the loop-related layers, specifically ITripLimitLayer, ILoopIteratorLayer,
IRecurrenceLayer, and ILoopOutputLayer. Class ILoopBoundaryLayer defines a
virtual method getLoop() that returns a pointer to the associated ILoop.

For more information about the ILoopBoundaryLayer, including how loops work and
its limitations, see Working With Loops.

See the C++ class ILoopBoundaryLayer or the Python class ILoopBoundaryLayer for
further details.

A.1.13. ILoopOutputLayer
The ILoopOutputLayer specifies an output from the loop. A loop is defined by loop
boundary layers.

For more information about the ILoopOutputLayer, including how loops work and its
limitations, see Working With Loops.

See the C++ class ILoopOutputLayer or the Python class ILoopOutputLayer for
further details.

A.1.14. IIdentityLayer
The IIdentityLayer implements the identity operation.

Layer Description

The output of the layer is mathematically identical to the input. This layer allows you to
precisely control the precision of tensors and transform from one precision to another.
If the input is at a different precision than the output, the layer will convert the input
tensor into the output precision.

Conditions And Limitations

None

See the C++ class IIdentityLayer or the Python class IIdentityLayer for further
details.

A.1.15. ILRNLayer
The ILRNLayer implements cross-channel Local Response Normalization (LRN).

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_iterator_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iiteratorlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_boundary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iloopboundarylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_output_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iloopoutputlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_identity_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iidentitylayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 120

Layer Description

Given an input A, the LRN layer performs a cross-channel LRN to produce output Bof
the same dimensions. The operation of this layer depends on 4 constant values: w is the
size of the cross-channel window over which the normalization will occur, α, β, and k
are normalization parameters. The formula below describes the operation performed by
the layer:

Where I represents the indexes of tensor elements, and j(I) the indices where the
channel dimension is replaced by j. For channel index c of Cchannels, index j ranges
from max(0, c-w) and min(C-1, c+w).

Conditions And Limitations

A must have 3 or more dimensions. The following list shows the possible values for the
parameters:

‣ w #{1, 3, 5, 7, 9, 11, 13, 15}

‣ α #[-1 x 1020, 1 x 1020]

‣ β #[0.01, 1 x 105]

‣ k #[1 x 10-5, 1 x 1010]

See the C++ class ILRNLayer or the Python class ILRNLayer for further details.

A.1.16. IMatrixMultiplyLayer
The IMatrixMultiplyLayer implements matrix multiplication for a collection of
matrices.

Layer Description

The IMatrixMultiplyLayer computes the matrix multiplication of input tensors A, of
dimensions a, and B, of dimensions b, and produces output tensor C, of dimensions c.
A, B, and C all have the same rank n≥2. If n>2, then A, B, and C are treated as collections
of matrices; A and B may be optionally transposed (the transpose is applied to the last
two dimensions). Let AI and BI be the input tensors after the optional transpose, then
Ci0,..,in-3,:,:=A

I
i0,..,in-3,:,:*B

I
i0,..,in-3,:,:.

Given the corresponding dimensions aI and bI of AI and BI, then ci={max(ai,bi) if
i<n-2,aIi if i=n-2, and bIi if i=n-1}; that is the resulting collection has the
same number of matrices as the input collections, and the rows and columns correspond
to the rows in AI and the columns in BI. Notice also the use of max in lengths, for the
case of broadcast on a dimension.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_l_r_n_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ilrnlayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 121

Conditions And Limitations

Tensors A and B must have at least two dimensions, and agree on the number of
dimensions. The length of each dimension must be the same, assuming that dimensions
of length one are broadcast to match the corresponding length.

See the C++ class IMatrixMultiplyLayer or the Python class
IMatrixMultiplyLayer for further details.

A.1.16.1. MatrixMultiply Layer Setup
The Matrix Multiplication layer is used to execute the first step of the functionality
provided by a FullyConnected layer. As shown in the code below, a Constant layer
will need to be used so that the FullyConnected weights can be stored in the engine.
The output of the Constant and RNN layers are then used as inputs to the Matrix
Multiplication layer. The RNN output is transposed so that the dimensions for the
MatrixMultiply are valid.

C++ code snippet

weightMap["trt_fcw"] = transposeFCWeights(weightMap[FCW_NAME]);
auto fcwts = network->addConstant(Dims2(VOCAB_SIZE, HIDDEN_SIZE),
 weightMap["trt_fcw"]);
auto matrixMultLayer = network->addMatrixMultiply(
*fcwts->getOutput(0), false, *rnn->getOutput(0), true);
assert(matrixMultLayer != nullptr);
matrixMultLayer->getOutput(0)->setName("Matrix Multiplication output");

Python code snippet

weight_map["trt_fcw"] = transpose_fc_weights(weight_map[FCW_NAME])
fc_wts = network.add_constant((VOCAB_SIZE, HIDDEN_SIZE),
 weight_map["trt_fcw"])
matrix_mult_layer = network.add_matrix_multiply(
fc_wts.get_output(0), trt.MatrixOperation.NONE, rnn.get_output(0),
 trt.MatrixOperation.TRANSPOSE)
assert matrix_mult_layer != None
matrix_mult_layer.get_output(0).name =
"Matrix Multiplication output"

For more information, see the TensorRT API documentation.

A.1.17. IParametricReluLayer
The IParametricReluLayer represents a parametric ReLU operation, meaning, a leaky
ReLU where the slopes for x < 0 can be different for each element.

Layer Description

Users provide a data tensor X and a slopes tensor S. At each element, the layer computes
y = x if x ≥ 0 and y = x∙s if x < 0. The slopes tensor may be broadcast to the size of
the data tensor and vice versa.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_matrix_multiply_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#imatrixmultiplylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#imatrixmultiplylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 122

Conditions And Limitations

Parametric ReLU is not supported in many fusions, therefore the performance may be
worse than with standard ReLU.

See the C++ class IParametricReluLayer or the Python class
IParametricReluLayer for further details.

A.1.18. IPaddingLayer
The IPaddingLayer implements spatial zero-padding of tensors along the two
innermost dimensions.

Layer Description

The IPaddingLayer pads zeros to (or trims edges from) an input tensor A along each of
the two innermost dimensions and gives the output tensor B. Padding can be different
on each dimension, asymmetric, and can be either positive (resulting in expansion of the
tensor) or negative (resulting in trimming). Padding at the beginning and end of the two
dimensions is specified by 2D vectors x and y, for pre and post padding respectively.

For input tensor A of n dimensions a, the output B will have n dimensions b such
that bi={x0+an-2+y0 if i=n-2; x1+an-1+y1 if i=n-1; and ai otherwise}.
Accordingly, the values of Bw are zeros if wn-2<x0 or x0+an-2 ≤wn-2 or wn-1<x1 or
x1+an-2 ≤wn-1 . Otherwise, Bw=Az where zn-2=wn-2+x0, zn-1=wn-1+x1, and zi=wi for all
other dimensions i.

Conditions And Limitations

‣ A must have three dimensions or more.
‣ The padding can only be applied along the two innermost dimensions.
‣ Only zero-padding is supported.

See the C++ class IPaddingLayer or the Python class IPaddingLayer for further
details.

A.1.19. IPluginLayer
The IPluginLayer is user-defined and provides the ability to extend the functionalities
of TensorRT.

See Extending TensorRT With Custom Layers for more details.

See the C++ class IPluginLayer or the Python class IPluginLayer for further details.

A.1.20. IPluginV2Layer
The IPluginV2Layer provides the ability to extend the functionalities of TensorRT by
using custom implementations for unsupported layers.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_parametric_re_l_u_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iparametricrelulayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iparametricrelulayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_padding_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ipaddinglayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ipluginlayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 123

Layer Description

The IPluginV2Layer is used to set-up and configure the plugin. See IPluginV2 API
Description for more details on the API. TensorRT also has support for a Plugin Registry;
a single registration point for all plugins in the network. In order to register plugins with
the registry, implement the IPluginV2 class and the IPluginCreator class for your
plugin.

Conditions And Limitations

None

See the C++ class IPluginV2Layer or the Python class IPluginV2Layer for further
details.

A.1.21. IPoolingLayer
The IPoolingLayer implements pooling within a channel. Supported pooling types are
maximum, average and maximum-average blend.

Layer Description: 2D pooling

Compute a pooling with 2D filters on a tensor A, of dimensions a, to produce a tensor
B, of dimensions b. The dimensions of B depend on the dimensions of A, window size r,
symmetric padding p and stride s such that:

‣ b = [a0 a1...an-3 bn-2 bn-1]

‣ bn-2 = (an-2+2p0-r0)/s0+1

‣ bn-1 = (an-1+2p1-r1)/s1+1

Let tensor C be the zero-padded copy of A with dimensions [a0 a1... an-2+2p0
an-1+2p1]then, Bj......kl= func(Cj…. k:kk l:ll) where kk = k+r0-1, and ll = l
+r1-1.

Where func is defined by one of the pooling types t:
PoolingType::kMAX

Maximum over elements in window.
PoolingType::kAVERAGE

Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND

Hybrid of maximum and average pooling. The results of the
maximum pooling and the average pooling are combined with the
blending factor as (1-blendFactor)*maximumPoolingResult +
blendFactor*averagePoolingResult to yield the result. The blendFactor can be
set to a value between 0 and 1.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ipluginv2layer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 124

By default, average pooling is performed on the overlap between the pooling window
and the padded input. If the exclusive parameter is set to true, the average pooling is
performed on the overlap area between the pooling window and unpadded input.

Layer Description: 3D pooling

Compute a pooling with 3D filters on a tensor A, of dimensions a, to produce a tensor
B, of dimensions b. The dimensions of B depend on the dimensions of A, window size r,
symmetric padding p and stride s such that:

‣ b = [a0 a1...an-4 bn-3 bn-2 bn-1]

‣ bn-3 = (an-3+2p0-r0)/s0+1

‣ bn-2 = (an-2+2p1-r1)/s1+1

‣ bn-1 = (an-1+2p2-r2)/s2+1

Let tensor C be the zero-padded copy of A with dimensions [a0 a1... an-3+2p0
an-2+2p1 an-1+2p2]then, Bj......klm= func(Cj…. k:kk l:ll m:mm) where kk = k
+r0-1, ll = l+r1-1, and mm = m+r2-1.

Where func is defined by one of the pooling types t:
PoolingType::kMAX

Maximum over elements in window.
PoolingType::kAVERAGE

Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND

Hybrid of maximum and average pooling. The results of the
maximum pooling and the average pooling are combined with the
blending factor as (1-blendFactor)*maximumPoolingResult +
blendFactor*averagePoolingResult to yield the result. The blendFactor can be
set to a value between 0 and 1.

By default, average pooling is performed on the overlap between the pooling window
and the padded input. If the exclusive parameter is set to true, the average pooling is
performed on the overlap area between the pooling window and unpadded input.

Conditions And Limitations

2D or 3D is determined by the number of input kernel dimensions. For 2D pooling,
input and output tensors should have 3 or more dimensions. For 3D pooling, input and
output tensors should have 4 or more dimensions.

See the C++ class IPoolingLayer or the Python class IPoolingLayer for further
details.

A.1.22. IRaggedSoftMaxLayer
The IRaggedSoftMaxLayer applies the SoftMax function on an input tensor of
sequences across the sequence lengths specified by the user.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_pooling_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ipoolinglayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 125

Layer Description

This layer has two inputs: a 2D input tensor A of shape zs containing z sequences
of data and a 1D bounds tensor B of shape z containing the lengths of each of the z
sequences in A. The resulting output tensor C has the same dimensions as the input
tensor A.

The SoftMax function S is defined on every i of the z sequences of data values Ai,0:Bi
just like in the SoftMax layer.

Conditions And Limitations

None

See the C++ class IRaggedSoftMaxLayer or the Python class IRaggedSoftMaxLayer
for further details.

A.1.23. IRecurrenceLayer
The IRecurrenceLayer specifies a recurrent definition. A loop is defined by loop
boundary layers.

For more information about the IRecurrenceLayer, including how loops work and its
limitations, see Working With Loops.

See the C++ class IRecurrenceLayer or the Python class IRecurrenceLayer for
further details.

A.1.24. IReduceLayer
The IReduceLayer implements dimension reduction of tensors using reduce operators.

Layer Description

The IReduceLayer computes a reduction of input tensor A, of dimensions a, to produce
an output tensor B, of dimensions b, over the set of reduction dimensions r. The
reduction operator op is one of max, min, product, sum, and average. The reduction
can preserve the number of dimensions of A or not. If the dimensions are kept, then
bi={1 if i#r, and ai otherwise}; if the dimensions are not kept, then bj-m(j)=aj
where j#r and m(j) is the number of reduction indexes in r less than or equal to j.

With the sequence of indexes i, Bi=op(Aj), where the sequence of indexes j is such that
jk={: if k#r, and ik otherwise}.

Conditions And Limitations

The input must have at least one non-batch dimension. The batch size dimension cannot
be reduced.

See the C++ class IReduceLayer or the Python class IReduceLayer for further details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_ragged_soft_max_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iraggedsoftmaxlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_recurrence_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#irecurrencelayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_reduce_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ireducelayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 126

A.1.25. IResizeLayer
The IResizeLayer implements the resize operation on an input tensor.

Layer Description

The IResizeLayer resizes input tensor A, of dimension a, to produce an output
tensor B, of dimensions b, using a given resize mode m. Output dimension b can either
be provided directly or can be computed using resize scales s. If resize scales s are
provided, bi={floor(ai * si)}.

Interpolation mode such as Nearest and Linear are supported for the resize operation.
The nearest mode resizes innermost d dimensions of N-D tensors, where d# (0,
min(8, N) and N > 0. The linear mode resizes innermost d dimensions of N-D tensors,
where d # (0, min(3, N) and N > 0. The resize operation can also be configured to
align corners while interpolating.

Conditions And Limitations

Either output dimension b or resize scales s must be known and valid. Number of scales
must be equal to the number of input dimensions. Number of output dimensions must
be equal to the number of input dimensions.

See the C++ class IResizeLayer or the Python class IResizeLayer for further details.

A.1.26. IRNNLayer
This layer is identical to the IRNNv2Layer in functionality, but contains additional
limitations as described in the Conditions And Limitations section.

The IRNNLayer is deprecated in favor of IRNNv2Layer, however, it is still available for
backwards compatibility.

Conditions And Limitations

Unlike the IRNNv2Layer, the legacy IRNNLayer does not support specifying sequence
lengths via an input tensor.

The legacy IRNNLayer does not support arbitrary batch dimensions, and requires that
input tensor data be specified using the dimension ordering: sequence length T, batch
size N, embedding size E. In contrast, the IRNNv2Layer requires that tensor data be
specified using the dimension ordering: batch size N, sequence length T, embedding size
E.

All limitations that apply to the IRNNv2Layer also apply to the legacy RNN layer.

See the C++ class IRNNLayer or the Python class IRNNLayer for further details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_resize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IResizeLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_n_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#irnnlayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 127

A.1.27. IRNNv2Layer
The IRNNv2Layer implements recurrent layers such as Recurrent Neural Network
(RNN), Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM).
Supported types are RNN, GRU, and LSTM. It performs a recurrent operation, where
the operation is defined by one of several well-known recurrent neural network (RNN)
"cells".

Layer Description

This layer accepts an input sequence X,initial hidden state H0, and if the cell is a long
short-term memory (LSTM) cell, initial cell state C0, and produces an output Y which
represents the output of the final RNN "sub-layer" computed across T timesteps (see
below). Optionally, the layer can also produce an output hT representing the final hidden
state, and, if the cell is an LSTM cell, an output cT representing the final cell state.

Let the operation of the cell be defined as the function G(x, h, c). This function
takes vector inputs x, h, and c, and produces up to two vector outputs, h’ and c’,
representing the hidden and cell state after the cell operation has been performed.

In the default (unidirectional) configuration, the RNNv2 layer applies Gas shown in the
following diagram:

G’ is a variant of G,.

Arrows leading into boxes are function inputs, and arrows leading away from boxes are
function outputs. X = [x0, x1, …, xT], Y = [y0, y1, …, yT], Hi= [hi,0, hi,1,
…, hi,L], and Ci= [ci,0, ci,1, …, ci,L].

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 128

The gray c edges are only present if the RNN is using LSTM cells for G and G’.

The above construction has L "sub-layers" (horizontal rows of G), and the matrices Hi
and Ci have dimensionality L.

Optionally, the sequence length Tmay be specified as an input to the RNNv2 layer,
allowing the client to specify a batch of input sequences with different lengths.

Bidirectional RNNs (BiRNNs): The RNN can be configured to be bidirectional. In that
case, each sub-layer consists of a "forward" layer and "backward" layer. The forward
layer iteratively applies G using xi from 0 to T, and the backward layer iteratively
applies G using xi from T to 0, as shown in the diagram below:

Black bars in the diagram above represent concatenation. The full hidden state ht is
defined by the concatenation of the forward hidden state htf and the backward hidden
state htb:

‣ ht,i = [htf,i ,htb,i]

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 129

‣ ht = [ht,0,, ht,1, …,ht,L].

Similarly, for the cell state (not shown). Each ht,i is used as input to the next sub-
layer, as shown above.

RNN operations: The RNNv2 layer supports the following cell operations:

‣ ReLU: G(x, h, c) := max(Wix + Rih + Wb + Rb, 0) (c not used)
‣ tanh: G(x, h, c) := tanh(Wix + Rih + Wb + Rb) (c not used)
‣ GRU:

‣ Z := sigmoid(Wzx + Rzh + Wbz + Rbz)

‣ M := sigmoid(Wrx + Rrh + Wbr + Rbr)

‣ G(x, h, c) := tanh(Whx + M(h + Rbh) + Wbh) (c not used)
‣ LSTM:

‣ I := sigmoid(WIx + RIh + Wbi + Rbi)

‣ F := sigmoid(Wfx + Rfh + Wbf + Rbf)

‣ O := sigmoid(Wox + Roh + Wbo + Rbo)

‣ C := tanh(WCx + RCh + Wbc + Rbc)

‣ C’ := F × C

‣ H := O x tanh(C’)

‣ G(x, h, c) := { H, C’ }

For GRU and LSTM, we refer to the intermediate computations for Z, M, I, F, etc. as
"gates".

In the unidirectional case, the dimensionality of the W matrices is HxE for the first layer
and HxH for subsequent layers (unless skip mode is set, see below). In the bidirectional
case, the dimensionality of the W matrices is HxE for the first forward/backward layer,
and Hx2H for subsequent layers.

The dimensionality of the R matrices is always HxH. The biases Wbx and Rbx have
dimensionality H.

Skip mode: The default mode used by RNNv2 is "linear mode". In this mode, the first
sub-layer of the RNNv2 layer uses the cell G’(x, h, c), which accepts a vector x of
size E (embedding size), and vectors h and c of size H (hidden state size), and is defined
by the cell operation formula. Subsequent layers use the cell G(x, h, c), where x, h,
and c are all vectors of size H, and is also defined by the cell operation formula.

Optionally, the RNN can be configured to run in "skip mode", which means the input
weight matrices for the first layer are implicitly identity matrices, and x Is expected to be
size H.

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 130

Conditions And Limitations

The data (X) input and initial hidden/cell state (H0 and C0) tensors have at least 2 non-
batch dimensions. Additional dimensions are considered batch dimensions.

The optional sequence length input T is 0-dimensional (scalar) when excluding batch
dimensions.

The data (Y) output and final hidden/cell state (HT and CT) tensors have at least 2 non-
batch dimensions. Additional dimensions are considered batch dimensions. If the
sequence length input is provided, each output in the batch is padded to the maximum
sequence length Tmax.

The IRNNv2Layer supports:

‣ FP32 and FP16 data type for input and output, hidden, and cell tensors.
‣ INT32 data type only for the sequence length tensor.

After the network is defined, you can mark the required outputs. RNNv2 output tensors
that are not marked as network outputs or used as inputs to another layer are dropped.

network->markOutput(*pred->getOutput(1));
pred->getOutput(1)->setType(DataType::kINT32);
rnn->getOutput(1)->setName(HIDDEN_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(1));
if (rnn->getOperation() == RNNOperation::kLSTM)
{
rnn->getOutput(2)->setName(CELL_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(2));
};

See the C++ class IRNNv2Layer or the Python class IRNNv2Layer for further details.

A.1.27.1. RNNv2 Layer Setup
The first layer in the network is an RNN layer. This is added and configured in the
addRNNv2Layer() function. This layer consists of the following configuration
parameters.

Operation
This defines the operation of the RNN cell. Supported operations are currently relu,
LSTM, GRU, and tanh.

Direction
This defines whether the RNN is unidirectional or bidirectional (BiRNN).

Input mode
This defines whether the first layer of the RNN carries out a matrix multiply (linear
mode), or the matrix multiply is skipped (skip mode).

For example, in the network used in sampleCharRNN, we used a linear, unidirectional
LSTM cell containing LAYER_COUNT number of stacked layers. The code below shows
how to create this RNNv2 layer.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#irnnv2layer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 131

auto rnn = network->addRNNv2(*data, LAYER_COUNT, HIDDEN_SIZE, SEQ_SIZE,
 RNNOperation::kLSTM);

For the RNNv2 layer, weights and bias need to be set separately. For more
information, see RNNv2 Layer - Optional Inputs.

For more information, see the TensorRT API documentation.

A.1.27.2. RNNv2 Layer - Optional Inputs
If there are cases where the hidden and cell states need to be pre-initialized to a non-zero
value, then you can pre-initialize them via the setHiddenState and setCellState
calls. These are optional inputs to the RNN.

C++ code snippet

rnn->setHiddenState(*hiddenIn);
if (rnn->getOperation() == RNNOperation::kLSTM)
 rnn->setCellState(*cellIn);

Python code snippet

rnn.hidden_state = hidden_in
if rnn.op == trt.RNNOperation.LSTM:
rnn.cell_state = cell_in

A.1.28. IScaleLayer
The IScaleLayer implements a per-tensor, per-channel, or per-element affine
transformation and/or exponentiation by constant values.

Layer Description

Given an input tensor A, the IScaleLayer performs a per-tensor, per-channel or per-
element transformation to produce an output tensor B of the same dimensions. The
transformations corresponding to each mode are:
ScaleMode::kUNIFORM tensor-wise transformation

B = (A * scale + shift)power

ScaleMode::kCHANNEL channel-wise transformation
BI = (AI * scalec(I) + shiftc(I))

powerc(I)

ScaleMode::kELEMENTWISE element-wise transformation
BI = (AI * scale1 + shift1)

power1

Where I represents the indexes of tensor elements and c(I) is the channel dimension in
I.

Conditions And Limitations

A must have 3 or more dimensions.

If an empty weight object is provided for scale, shift, or power, then a default value
is used. By default, scale has a value of 1.0, shift has a value of 0.0, and power has a
value of 1.0.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 132

See the C++ class IScaleLayer or the Python class IScaleLayer for further details.

A.1.29. ISelectLayer
The ISelectLayer returns either of the two inputs depending on the condition.

Layer Description

This layer returns the elements chosen from input tensor B(thenInput) or
C(elseInput) depending on the condition tensor A.

Conditions And Limitations

The length of each dimension of the three input tensors A, B and C must be equal or
equal to one. The condition tensor is required to be of boolean type.

ISelectLayer supports only FP32 and FP16 precision.

See the C++ class ISelectLayer or the Python class ISelectLayer for further details.

A.1.30. IShapeLayer
The IShapeLayer gets the shape of a tensor.

Layer Description

The IShapeLayer outputs the dimensions of its input tensor. The output is a 1D tensor
of type INT32.

Conditions And Limitations

The input tensor must have at least one dimension. The output tensor is a “shape
tensor”, which can be used as an input only for layers that handle shape tensors. See
Execution Tensors vs. Shape Tensors for more information.

See the C++ class IShapeLayer or the Python class IShapeLayer for further details.

A.1.31. IShuffleLayer
The IShuffleLayer implements a reshape and transpose operator for tensors.

Layer Description

The IShuffleLayer implements reshuffling of tensors to permute the tensor and/or
reshape it. An input tensor A of dimensions a is transformed by applying a transpose,
followed by a reshape operation with reshape dimensions r, and then followed by
another transpose operation to produce an output data tensor B of dimensions b.

To apply the transpose operation to A, the permutation order must be specified. The
specified permutation p1 is used to permute the elements of A in the following manner
to produce output C of dimensions c, such that ci=ap1(i) and CI=Ap1(I) for a

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_scale_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iscalelayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_select_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iselectlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shape_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IShapeLayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 133

sequence of indexes I. By default, the permutation is assumed to be an identity (no
change to the input tensor).

The reshape operation does not alter the order of the elements, and reshapes tensor C
into tensor R of shape rI, such that rIi={ri if ri>0, ci if ri=0, inferred if
ri=-1}. Only one dimension can be inferred, such that ∏rIi=∏ai.

The reshape dimensions can be specified as build-time constants in the layer or as
runtime values by supplying a second input to the layer, which must be a 1D tensor of
type INT32.

The second transpose operation is applied after the reshape operation. It follows the
same rules as the first transpose operation and requires a permutation (say p2) to be
specified. This permutation produces an output tensor B of dimensions b, such that
bi=rp2(i) and Bp2(I)=RI for a sequence of indexes I.

Conditions And Limitations

Product of dimensions rI must be equal to the product of input dimensions a.

See the C++ class IShuffleLayer or the Python class IShuffleLayer for further
details.

A.1.32. ISliceLayer
The ISliceLayer implements a slice operator for tensors.

Layer Description

Giving an input n-dimension (excluding batch dimension) tensor A, the Slice layer
generates an output tensor B with elements extracted from A. The correspondence
between element coordinates in A and B is given by: ai = bi*si+oi (0 ≤ i < n),
where a, b, s, o are element coordinates in A, element coordinates in B, stride and
starting offset, respectively. The stride can be positive, negative or zero.

Conditions And Limitations

The corresponding A coordinates for every element in B must not be out-of-bounds.

See the C++ class ISliceLayer or the Python class ISliceLayer for further details.

A.1.33. ISoftMaxLayer
The ISoftMaxLayer applies the SoftMax function on the input tensor along an input
dimension specified by the user.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shuffle_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ishufflelayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_slice_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#islicelayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 134

Layer Description

Given an input tensor A of shape a and an input dimension i, this layer applies the
SoftMax function on every slice Aa0, …, ai-1, :, ai+1, …, an-1 along dimension i of A.
The resulting output tensor C has the same dimensions as the input tensor A.

The SoftMax function S for a slice x is defined as:

The SoftMax function rescales the input such that every value in the output lies in
the range [0, 1] and the values of every slice Ca0, …, ai-1, :, ai+1, …, an-1 along
dimension i of C sum up to 1.

Conditions And Limitations

For n being the length of a, the input dimension i should be i#[0,n-1]. If the user does
not provide an input dimension, then i=max(0,n-3).

See the C++ class ISoftMaxLayer or the Python class ISoftMaxLayer for further
details.

A.1.34. ITopKLayer
The ITopKLayer finds the top K maximum (or minimum) elements along a dimension,
returning a reduced tensor and a tensor of index positions.

Layer Description

For an input tensor A of dimensions a, given an axis i, an operator that is either max
or min, and a value for k, produces a tensor of values V and a tensor of indices I of
dimensions v such that vj={k if i≠j, and ai otherwise}.

The output values are:

‣ Va0, …, ai-1, :, ai+1, …,an = sort(Aa0, …, ai-1, :, ai+1, …,an):K
‣ Ia0, …, ai-1, :, ai+1, …,an = argsort(Aa0, …, ai-1, :, ai+1, …,an):K

where sort is in descending order for operator max and ascending order for operator
min.

Ties are broken during sorting with lower index considered to be larger for operator
max, and lower index considered to be smaller for operator min.

Conditions And Limitations

The K value must be 3840 or less. Only one axis can be searched to find the top K
minimum or maximum values; this axis cannot be the batch dimension.

See the C++ class ITopKLayer or the Python class ITopKLayer for further details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_soft_max_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#isoftmaxlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_top_k_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#itopklayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 135

A.1.34.1. TopK Layer Setup
The TopK layer is used to identify the character that has the maximum probability of
appearing next.

The layer has two outputs. The first output is an array of the top K values. The
second, which is of more interest to us, is the index at which these maximum values
appear.

The code below sets up the TopK layer and assigns the OUTPUT_BLOB_NAME to the
second output of the layer.
C++ code snippet

auto pred = network->addTopK(*addBiasLayer->getOutput(0),
 nvinfer1::TopKOperation::kMAX, 1, reduceAxis);
assert(pred != nullptr);
pred->getOutput(1)->setName(OUTPUT_BLOB_NAME);

Python code snippet

pred = network.add_topk(add_bias_layer.get_output(0),
 trt.TopKOperation.MAX, 1, reduce_axis)
assert pred != None
pred.get_output(1).name = OUTPUT_BLOB_NAME

For more information, see the TensorRT API documentation.

A.1.35. ITripLimitLayer
The ITripLimitLayer specifies how many times the loop iterates. A loop is defined by
loop boundary layers.

For more information about the ITripLimitLayer, including how loops work and its
limitations, see Working With Loops.

See the C++ class ITripLayer or the Python class ITripLayer for further details.

A.1.36. IUnaryLayer
The IUnaryLayer supports PointWise unary operations.

Layer Description

The IUnaryLayer performs PointWise operations on input tensor A resulting in output
tensor B of the same dimensions. The following functions are supported:

‣ exp: B = e^A

‣ abs: B = |A|

‣ log: B = ln(A)

‣ sqrt: B = √A (rounded to nearest even mode)

‣ neg: B = -A

‣ recip: B = 1 / A (reciprocal) in rounded to nearest even mode

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_trip_limit_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#itriplimitlayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 136

‣ sine : B = sin(A)

‣ Cos : B = cos(A)

‣ Tan : B = tan(A)

‣ Tanh : B = tanh(A)

‣ Sinh : B = sinh(A)

‣ Cosh : B = cosh(A)

‣ Asin : B = asin(A)

‣ Acos : B = acos(A)

‣ Atan : B = tan(A)

‣ Asinh : B = asinh(A)

‣ Acosh : B = acosh(A)

‣ Atanh : B = atanh(A)

‣ Ceil : B = ceil(A)

‣ Floor : B = floor(A)

‣ ERF : B = erf(A)

‣ NOT : B = ~A

Conditions And Limitations

Input and output can be zero to 7 dimensional tensors.

See the C++ class IUnaryLayer or the Python class IUnaryLayer for further details.

A.2. Data Format Descriptions
NVIDIA® TensorRT™ supports different data formats. There are two aspects to consider:
data type and layout.

Data type format

The data type is the representation of each individual value. Its size determines the
range of values and the precision of the representation; which are FP32 (32-bit floating
point, or single precision), FP16 (16-bit floating point, or half precision), INT32 (32-bit
integer representation) and INT8 (8-bit representation).

Layout format

The layout format determines the ordering in which values are stored. Typically,
batch dimensions are the leftmost dimensions, and the other dimensions refer to
aspects of each data item such as C is channel, H is height, and W is width, in images.
Ignoring batch sizes, which are always preceding these, C, H, and W are typically
sorted as CHW #unique_186/unique_186_Connect_42_fig1 or HWC #unique_186/
unique_186_Connect_42_fig2.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_unary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iunarylayer

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 137

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 138

To enable faster computations, more formats are defined to pack together channel values
and use reduced precision. For this reason, TensorRT also supports formats NC/2HW2 and
NHWC8.

In NC/2HW2, pairs of channel values are packed together in each HxW matrix (with
an empty value in the case of an odd number of channels). The result is a format in
which the values of #C/2#HxW matrices are pairs of values of two consecutive channels
#unique_186/unique_186_Connect_42_fig3; notice that this ordering interleaves
dimensions as values of channels that have stride 1 if they are in the same pair and
stride 2xHxW otherwise.

In NHWC8, the entries of an HxW matrix include the values of all the channels
#unique_186/unique_186_Connect_42_fig4. In addition, these values are packed together
in #C/8# 8-tuples and C is rounded up to the nearest multiple of 8.

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 139

A.3. Command-Line Programs

A.3.1. trtexec
Included in the samples directory is a command line wrapper tool, called trtexec.
trtexec is a tool to quickly utilize TensorRT without having to develop your own
application.

The trtexec tool has two main purposes:

‣ It’s useful for benchmarking networks on random data.
‣ It’s useful for generating serialized engines from models.

Benchmarking network: If you have a model saved as a UFF file, ONNX file, or if
you have a network description in a Caffe prototxt format, you can use the trtexec
tool to test the performance of running inference on your network using TensorRT.
The trtexec tool has many options for specifying inputs and outputs, iterations for
performance timing, precision allowed, and other options.

Serialized engine generation: If you generate a saved serialized engine file, you can pull
it into another application that runs inference. For example, you can use the TensorRT

https://github.com/NVIDIA/tensorrt-laboratory

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 140

Laboratory to run the engine with multiple execution contexts from multiple threads
in a fully pipelined asynchronous way to test parallel inference performance. There are
some caveats, for example, if you used a Caffe prototxt file and a model is not supplied,
random weights are generated. Also, in INT8 mode, random weights are used, meaning
trtexec does not provide calibration capability.

Refer to GitHub: trtexec/README.md file for detailed information about how to build
this tool and examples of its usage.

A.4. ACKNOWLEDGEMENTS
TensorRT uses elements from the following software, whose licenses are reproduced
below.

Google Protobuf

This license applies to all parts of Protocol Buffers except the following:

‣ Atomicops support for generic gcc, located in src/google/protobuf/stubs/
atomicops_internals_generic_gcc.h. This file is copyrighted by Red Hat Inc.

‣ Atomicops support for AIX/POWER, located in src/google/protobuf/stubs/
atomicops_internals_power.h. This file is copyrighted by Bloomberg Finance
LP.

Copyright 2014, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

‣ Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

‣ Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

‣ Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

https://github.com/NVIDIA/tensorrt-laboratory
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/trtexec

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 141

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner of the input file
used when generating it. This code is not standalone and requires a support library to be
linked with it. This support library is itself covered by the above license.

Google Flatbuffers

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not

http://www.apache.org/licenses/

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 142

include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed by,
or on behalf of, the Licensor for the purpose of discussing and improving the Work,
but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works
of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor that
are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or
Object form, provided that You meet the following conditions:

 a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

 b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

 c. You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 143

of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and

 d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute,
alongside or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such Derivative
Works as a whole, provided Your use, reproduction, and distribution of the
Work otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions)
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 144

incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has been
advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights
consistent with this License. However, in accepting such obligations, You may act
only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor
by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2014 Google Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at: http://
www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

BVLC Caffe

COPYRIGHT

All contributions by the University of California:

Copyright (c) 2014, 2015, The Regents of the University of California (Regents) All rights
reserved.

All other contributions:

Copyright (c) 2014, 2015, the respective contributors All rights reserved.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 145

Caffe uses a shared copyright model: each contributor holds copyright over their
contributions to Caffe. The project versioning records all such contribution and
copyright details. If a contributor wants to further mark their specific copyright on
a particular contribution, they should indicate their copyright solely in the commit
message of the change when it is committed.

LICENSE

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/Caffe repository through pull-request, comment, or
otherwise, the contributor releases their content to the license and copyright terms
herein.

half.h

Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 146

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

jQuery.js

jQuery.js is generated automatically under doxygen.

In all cases TensorRT uses the functions under the MIT license.

CRC

policies, either expressed or implied, of the Regents of the University of California.

The copyright of UC Berkeley's Berkeley Software Distribution ("BSD") source has
been updated. The copyright addendum may be found at ftp://ftp.cs.berkeley.edu/
pub/4bsd/README.Impt.License.Change and is

William Hoskins

Director, Office of Technology Licensing

University of California, Berkeley

getopt.c

Copyright (c) 2002 Todd C. Miller <Todd.Miller@courtesan.com>

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS
ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Appendix

www.nvidia.com
TensorRT Developer's Guide SWE-SWDOCTRT-001-DEVG_vTensorRT 7.1.0 Early Access

(EA) | 147

Sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement
number F39502-99-1-0512.

Copyright (c) 2000 The NetBSD Foundation, Inc.

All rights reserved.

This code is derived from software contributed to The NetBSD Foundation by Dieter
Baron and Thomas Klausner.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain

functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations

or warranties, expressed or implied, as to the accuracy or completeness of the information contained in

this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability

for the consequences or use of such information or for any infringement of patents or other rights of third

parties that may result from its use. This document is not a commitment to develop, release, or deliver any

Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other

changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such

information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time

of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized

representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any

customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in

this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,

aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA

product can reasonably be expected to result in personal injury, death, or property or environmental

damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or

applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for

any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is

customer’s sole responsibility to evaluate and determine the applicability of any information contained in

this document, ensure the product is suitable and fit for the application planned by customer, and perform

the necessary testing for the application in order to avoid a default of the application or the product.

Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product

and may result in additional or different conditions and/or requirements beyond those contained in this

document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based

on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or

(ii) customer product designs.

www.nvidia.com

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other

NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-

party products or services does not constitute a license from NVIDIA to use such products or services or a

warranty or endorsement thereof. Use of such information may require a license from a third party under the

patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents

or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing,

reproduced without alteration and in full compliance with all applicable export laws and regulations, and

accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,

DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING

PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH

RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,

MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN

NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT,

SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE

THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason

whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein

shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and

DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards

Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of

HDMI Licensing LLC.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are

trademarks of ARM Limited. All other brands or product names are the property of their respective

holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional

subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting

(Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM

Sweden AB.

www.nvidia.com

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX

Station, DLProf, GPU, JetPack, Jetson, Kepler, Maxwell, NCCL, Nsight Compute, Nsight Systems, NVCaffe,

NVIDIA Ampere GPU architecture, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud,

NVLink, NVSHMEM, PerfWorks, Pascal, SDK Manager, T4, Tegra, TensorRT, TensorRT Inference Server, Tesla,

TF-TRT, Triton Inference Server, Turing, and Volta are trademarks and/or registered trademarks of NVIDIA

Corporation in the United States and other countries. Other company and product names may be trademarks

of the respective companies with which they are associated.

Copyright

© 2020 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	What Is TensorRT?
	1.1. Benefits Of TensorRT
	1.1.1. Who Can Benefit From TensorRT

	1.2. Where Does TensorRT Fit?
	1.3. How Does TensorRT Work?
	1.4. What Capabilities Does TensorRT Provide?
	1.5. How Do I Get TensorRT?

	Using The C++ API
	2.1. Instantiating TensorRT Objects in C++
	2.2. Creating A Network Definition In C++
	2.2.1. Creating A Network Definition From Scratch Using The C++ API
	2.2.2. Importing A Model Using A Parser In C++
	2.2.3. Importing A Caffe Model Using The C++ Parser API
	2.2.4. Importing A TensorFlow Model Using The C++ UFF Parser API
	2.2.5. Importing An ONNX Model Using The C++ Parser API

	2.3. Building An Engine In C++
	2.3.1. Builder Layer Timing Cache

	2.4. Serializing A Model In C++
	2.5. Performing Inference In C++
	2.6. Memory Management In C++
	2.7. Refitting An Engine
	2.8. Algorithm Selection
	2.8.1. Determinism And Reproducibility In The Builder

	Using The Python API
	3.1. Importing TensorRT Into Python
	3.2. Creating A Network Definition In Python
	3.2.1. Creating A Network Definition From Scratch Using The Python API
	3.2.2. Importing A Model Using A Parser In Python
	3.2.3. Importing From Caffe Using Python
	3.2.4. Importing From TensorFlow Using Python
	3.2.5. Importing From ONNX Using Python
	3.2.6. Importing From PyTorch And Other Frameworks

	3.3. Building An Engine In Python
	3.4. Serializing A Model In Python
	3.5. Performing Inference In Python

	Extending TensorRT With Custom Layers
	4.1. Adding Custom Layers Using The C++ API
	4.1.1. Example: Adding A Custom Layer Using C++
	4.1.2. Example: Adding A Custom Layer That Is Not Supported In Caffe Using C++
	4.1.3. Example: Adding A Custom Layer That Is Not Supported In UFF Using C++
	4.1.4. Example: Adding A Custom Layer With Dynamic Shape Support Using C++
	4.1.5. Example: Add A Custom Layer With INT8 I/O Support Using C++
	4.1.6. Example: Implementing A GELU Operator Using The C++ API

	4.2. Adding Custom Layers Using The Python API
	4.2.1. Example: Adding A Custom Layer to a TensorRT Network Using Python
	4.2.2. Example: Adding A Custom Layer That Is Not Supported In UFF Using Python

	4.3. Using Custom Layers When Importing A Model From A Framework
	4.3.1. Example: Adding A Custom Layer To A TensorFlow Model

	4.4. Plugin API Description
	4.4.1. Migrating Plugins From TensorRT 6.x.x To TensorRT 7.x.x
	4.4.1.1. Migrating Plugins From TensorRT 5.x.x To TensorRT 6.x.x

	4.4.2. IPluginV2 API Description
	4.4.3. IPluginCreator API Description
	4.4.4. Persistent LSTM Plugin

	4.5. Best Practices For Custom Layers Plugin

	Working With Mixed Precision
	5.1. Mixed Precision Using The C++ API
	5.1.1. Setting The Layer Precision Using C++
	5.1.2. Enabling FP16 Inference Using C++
	5.1.3. Enabling INT8 Inference Using C++
	5.1.3.1. Setting Per-Tensor Dynamic Range Using C++
	5.1.3.2. INT8 Calibration Using C++

	5.1.4. Working With Explicit Precision Using C++

	5.2. Mixed Precision Using The Python API
	5.2.1. Setting The Layer Precision Using Python
	5.2.2. Enabling FP16 Inference Using Python
	5.2.3. Enabling INT8 Inference Using Python
	5.2.3.1. Setting Per-Tensor Dynamic Range Using Python
	5.2.3.2. INT8 Calibration Using Python

	5.2.4. Working With Explicit Precision Using Python

	Working With Reformat-Free Network I/O Tensors
	6.1. Building An Engine With Reformat-Free Network I/O Tensors
	6.2. Supported Combination Of Data Type And Memory Layout of I/O Tensors
	6.3. Calibration For A Network With INT8 I/O Tensors
	6.4. Restrictions With DLA
	6.5. FAQs

	Working With Dynamic Shapes
	7.1. Specifying Runtime Dimensions
	7.2. Optimization Profiles
	7.3. Layer Extensions For Dynamic Shapes
	7.4. Restrictions For Dynamic Shapes
	7.5. Execution Tensors vs. Shape Tensors
	7.5.1. Formal Inference Rules

	7.6. Shape Tensor I/O (Advanced)
	7.7. INT8 Calibration With Dynamic Shapes

	Working With Empty Tensors
	8.1. IReduceLayer And Empty Tensors
	8.2. IMatrixMultiplyLayer, IFullyConnectedLayer, And Empty Tensors
	8.3. Plugins And Empty Tensors
	8.4. IRNNLayer And Empty Tensors
	8.5. IShuffleLayer And Empty Tensors
	8.6. ISliceLayer And Empty Tensors

	Working With Loops
	9.1. Defining A Loop
	9.2. Formal Semantics
	9.3. Nested Loops
	9.4. Limitations

	Working With Quantized Networks
	10.1. Quantization Aware Training (QAT) Using TensorFlow
	10.2. Converting Tensorflow To ONNX Quantized Models
	10.3. Importing Quantized ONNX Models

	Working With DLA
	11.1. Running On DLA During TensorRT Inference
	11.1.1. Example: sampleMNIST With DLA
	11.1.2. Example: Enable DLA Mode For A Layer During Network Creation

	11.2. DLA Supported Layers
	11.3. GPU Fallback Mode

	Deploying A TensorRT Optimized Model
	12.1. Deploying In The Cloud
	12.2. Deploying To An Embedded System

	Working With Deep Learning Frameworks
	13.1. Working With TensorFlow
	13.1.1. Freezing A TensorFlow Graph
	13.1.2. Freezing A Keras Model
	13.1.3. Converting A Frozen Graph To UFF
	13.1.4. Working With TensorFlow RNN Weights
	13.1.4.1. TensorFlow RNN Cells Supported In TensorRT
	13.1.4.2. Maintaining Model Consistency Between TensorFlow And TensorRT
	13.1.4.3. Workflow
	13.1.4.4. Dumping The TensorFlow Weights
	13.1.4.5. Loading Dumped Weights
	13.1.4.6. Converting The Weights To A TensorRT Format
	13.1.4.6.1. TensorFlow Checkpoint Storage Format
	13.1.4.6.2. TensorFlow Kernel Tensor Storage Format
	13.1.4.6.3. Kernel Weights Conversion To A TensorRT Format
	13.1.4.6.4. TensorFlow Bias Weights Storage Format
	13.1.4.6.5. Bias Tensor Conversion To TensorRT Format

	13.1.4.7. BasicLSTMCell Example
	13.1.4.7.1. BasicLSTMCell Kernel Tensor
	13.1.4.7.2. BasicLSTMCell Bias Tensor

	13.1.4.8. Setting The Converted Weights And Biases

	13.1.5. Preprocessing A TensorFlow Graph Using the Graph Surgeon API

	13.2. Working With PyTorch And Other Frameworks

	Working With DALI
	14.1. Benefits Of Integration

	Troubleshooting
	15.1. FAQs
	15.2. How Do I Report A Bug?
	15.3. Understanding Error Messages
	15.4. Support

	Appendix
	A.1. TensorRT Layers
	A.1.1. IActivationLayer
	A.1.2. IConcatenationLayer
	A.1.3. IConstantLayer
	A.1.4. IConvolutionLayer
	A.1.5. IDeconvolutionLayer
	A.1.6. IElementWiseLayer
	A.1.6.1. ElementWise Layer Setup

	A.1.7. IFillLayer
	A.1.8. IFullyConnectedLayer
	A.1.9. IGatherLayer
	A.1.10. IIdentityLayer
	A.1.11. IIteratorLayer
	A.1.12. ILoopBoundaryLayer
	A.1.13. ILoopOutputLayer
	A.1.14. IIdentityLayer
	A.1.15. ILRNLayer
	A.1.16. IMatrixMultiplyLayer
	A.1.16.1. MatrixMultiply Layer Setup

	A.1.17. IParametricReluLayer
	A.1.18. IPaddingLayer
	A.1.19. IPluginLayer
	A.1.20. IPluginV2Layer
	A.1.21. IPoolingLayer
	A.1.22. IRaggedSoftMaxLayer
	A.1.23. IRecurrenceLayer
	A.1.24. IReduceLayer
	A.1.25. IResizeLayer
	A.1.26. IRNNLayer
	A.1.27. IRNNv2Layer
	A.1.27.1. RNNv2 Layer Setup
	A.1.27.2. RNNv2 Layer - Optional Inputs

	A.1.28. IScaleLayer
	A.1.29. ISelectLayer
	A.1.30. IShapeLayer
	A.1.31. IShuffleLayer
	A.1.32. ISliceLayer
	A.1.33. ISoftMaxLayer
	A.1.34. ITopKLayer
	A.1.34.1. TopK Layer Setup

	A.1.35. ITripLimitLayer
	A.1.36. IUnaryLayer

	A.2. Data Format Descriptions
	A.3. Command-Line Programs
	A.3.1. trtexec

	A.4. ACKNOWLEDGEMENTS

