
TENSORRT

SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | June 2020

Release Notes

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | ii

TABLE OF CONTENTS

Chapter 1. TensorRT Overview..1
Chapter 2. TensorRT Release 7.x.x.. 2

2.1. TensorRT Release 7.1.0 Early Access (EA).. 2
2.2. TensorRT Release 7.0.0.. 7

Chapter 3. TensorRT Release 6.x.x...12
3.1. TensorRT Release 6.0.1...12

Chapter 4. TensorRT Release 5.x.x...18
4.1. TensorRT Release 5.1.5...18
4.2. TensorRT Release 5.1.3...19
4.3. TensorRT Release 5.1.2 Release Candidate (RC)... 22
4.4. TensorRT Release 5.1.1 Release Candidate (RC)... 25
4.5. TensorRT Release 5.1.0 Release Candidate (RC)... 26
4.6. TensorRT Release 5.0.6...29
4.7. TensorRT Release 5.0.5...30
4.8. TensorRT Release 5.0.4...31
4.9. TensorRT Release 5.0.3...33
4.10. TensorRT Release 5.0.2... 34
4.11. TensorRT Release 5.0.1 Release Candidate (RC)..41
4.12. TensorRT Release 5.0.0 Release Candidate (RC)..45

Chapter 5. TensorRT Release 4.x.x...50
5.1. TensorRT Release 4.0.1...50
5.2. TensorRT Release 4.0 Release Candidate (RC) 2... 53
5.3. TensorRT Release 4.0 Release Candidate (RC)..54

Chapter 6. TensorRT Release 3.x.x...58
6.1. TensorRT Release 3.0.4...58
6.2. TensorRT Release 3.0.3...58
6.3. TensorRT Release 3.0.2...59
6.4. TensorRT Release 3.0.1...61
6.5. TensorRT Release 3.0 Release Candidate (RC)..66
6.6. TensorRT Release 3.0 Early Access (EA)... 69

Chapter 7. TensorRT Release 2.x.x...72
7.1. TensorRT Release 2.1... 72

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | 1

Chapter 1.
TENSORRT OVERVIEW

The core of NVIDIA TensorRT is a C++ library that facilitates high-performance
inference on NVIDIA graphics processing units (GPUs). TensorRT takes a trained
network, which consists of a network definition and a set of trained parameters, and
produces a highly optimized runtime engine which performs inference for that network.

TensorRT provides API's via C++ and Python that help to express deep learning models
via the Network Definition API or load a pre-defined model via the parsers that allows
TensorRT to optimize and run them on an NVIDIA GPU. TensorRT applies graph
optimizations, layer fusion, among other optimizations, while also finding the fastest
implementation of that model leveraging a diverse collection of highly optimized
kernels. TensorRT also supplies a runtime that you can use to execute this network on all
of NVIDIA’s GPU’s from the Kepler generation onwards.

TensorRT also includes optional high speed mixed precision capabilities introduced in
the Tegra X1, and extended with:

‣ NVIDIA Turing GPU architecture
‣ NVIDIA Volta GPU architecture
‣ NVIDIA Pascal GPU architecture

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | 2

Chapter 2.
TENSORRT RELEASE 7.X.X

2.1. TensorRT Release 7.1.0 Early Access (EA)
These are the TensorRT 7.1.0 Early Access (EA) release notes and are applicable to
NVIDIA® Jetson™ Linux for Tegra™ users. This release includes several fixes from the
previous TensorRT 6.0.0 and later releases as well as the following additional changes.
These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 7.0.0.

For previous TensorRT documentation, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
Working with empty tensors

TensorRT supports empty tensors. A tensor is an empty tensor if it has one or
more dimensions with length zero. Zero-length dimensions usually get no special
treatment. If a rule works for a dimension of length L for an arbitrary positive value
of L, it usually works for L=0 too. For more information, see Working With Empty
Tensors in the TensorRT Developer Guide.

Builder layer timing cache

The layer timing cache will cache the layer profiling information during the builder
phase. If there are other layers with the same input/output tensor configuration and
layer params, then the TensorRT builder will skip profiling and reuse the cached
result for the repeated layers. Models with many repeated layers (for example, BERT,
WaveGlow, etc...) will see a significant speedup in builder time. The builder flag
kDISABLE_TIMING_CACHE can be set if you want to disable this feature. For more

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-7.html#rel_7-0-0
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-empty-tensors
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-empty-tensors

TensorRT Release 7.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | 3

information, see Builder Layer Timing Cache in the TensorRT Developer Guide and
Initializing The Engine in the Best Practices For TensorRT Performance.

Pointwise fusion based on code generation

Pointwise fusion was introduced in TensorRT 6.0.1 to fuse multiple adjacent
pointwise layers into one single layer. In this release, its implementation has been
updated to use code generation and runtime compilation to further improve
performance. The code generation and runtime compilation happen during execution
plan building. For more information, see the TensorRT Best Practices Guide.

Dilation support for deconvolution

IDeconvolutionLayer now supports a dilation parameter. This is accessible
through the C++ API, Python API, and the ONNX parser (see ConvTranspose). For
more information, IDeconvolutionLayer in the TensorRT Developer Guide.

Selecting FP16 and INT8 kernels

TensorRT supports Mixed Precision Inference with FP32, FP16, or INT8 as supported
precisions. Depending on the hardware support, you can choose to enable either of
the above precision to accelerate inference. You can also choose to execute trtexec
with the “--best” option directly, which would enable all supported precisions for
inference resulting in best performance. For more information, see Mixed Precision in
the Best Practices For TensorRT Performance.

Calibration with dynamic shapes

INT8 calibration with dynamic shapes supports the same functionality as a
standard INT8 calibrator but for networks with dynamic shapes. You will need to
provide a calibration optimization profile that would be used to set the dimensions
for calibration. If a calibration optimization profile is not set, the first network
optimization profile will be used as a calibration optimization profile. For more
information, see INT8 Calibration With Dynamic Shapes in the TensorRT Developer
Guide.

Algorithm selection

Algorithm selection provides a mechanism to select and report algorithms for
different layers in a network. This can also be used to deterministically build
TensorRT engine or to reproduce the same implementations for layers in the
engine. For more information, see the Algorithm Selection and Determinism And
Reproducibility In The Builder topics in the TensorRT Developer Guide.

New sample

sampleAlgorithmSelector shows an example of how to use the algorithm
selection API based on sampleMNIST. This sample demonstrates the usage of
IAlgorithmSelector to deterministically build TensorRT engines. It also shows
the usage of IAlgorithmSelector::selectAlgorithms to define heuristics
for selection of algorithms. For more information, see Algorithm Selection in the

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#builder-layer-timing
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#initialize-engine
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#pointwise-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ideconvolutionlayer
https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deconvolution-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#mixed-precision
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#int8-calib-dynamic-shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#algorithm-select
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deter-repro
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deter-repro
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#algorithm-select

TensorRT Release 7.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | 4

TensorRT Developer Guide, Algorithm Selection API Usage Example Based On
sampleMNIST In TensorRT in the TensorRT Samples Support Guide.

Compatibility

‣ TensorRT 7.1.0 has been tested with the following:

‣ cuDNN 8.0.0 Preview
‣ TensorFlow 1.15.2
‣ PyTorch 1.4.0
‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2.
‣ JetPack 4.4

Deprecated Features

The following features are deprecated in TensorRT 7.1.0:

‣ Python 2.7 support has been deprecated. A warning will be emitted when you
import the TensorRT bindings for Python 2.7. You should update your application
to support Python 3.x to prevent issues with future TensorRT releases. In addition,
the legacy Python bindings have been removed. You will need to migrate your
application to the new Python bindings if you haven’t done so already. Refer to the
Python Migration Guide for more information.

‣ Support for CUDA Compute Capability version 3.0 has been removed. Support
for CUDA Compute Capability versions 5.0 and lower may be removed in a future
release. Specifically:

CUDA Compute Capability Version Status

Maxwell SM 5.0 (2014-2017):

‣ GM10X - GeForce 745

‣ GM10X - GeForce 750

‣ GM10X - GeForce 830

‣ GM10X - GeForce 840

‣ Quadro K620

‣ Quadro K1200

‣ Quadro K2200

‣ M5XX

‣ M6XX

‣ M1XXX

‣ M2000

Supported

Kepler SM 3.7 (2014): Deprecated

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplealgorithmselector
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplealgorithmselector
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel-800-Preview.html#rel-800-Preview
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2
https://github.com/pytorch/pytorch/releases/tag/v1.4.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/migrationGuide.html

TensorRT Release 7.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | 5

CUDA Compute Capability Version Status

‣ GK210 - K8

Kepler SM 3.5 (2013):

‣ GK110 - K20

‣ GeForce GTX 780 family

‣ GTX Titan

Deprecated

Kepler SM 3.0 (2012):

‣ GK10X GPUs

‣ GeForce 600 series

‣ K10

‣ GRID K1/K2

‣ Quadro K series

Removed

‣ Many methods of class IBuilder have been deprecated. The following table shows
deprecated methods of class IBuilder that have replacements in IBuilder:

Deprecated IBuilder Method IBuilder Replacement

createNetwork() createNetworkV2(0)

buildCudaEngine(network) buildEngineWithConfig(network,config)

reset(network) reset()

The next table shows the deprecated methods of IBuilder that have direct
equivalents in class IBuilderConfig with the same name.

Deprecated IBuilder Methods with Direct Equivalents in IBuilderConfig

‣ setMaxWorkspaceSize

‣ getMaxWorkspaceSize

setInt8Calibrator

‣ setDeviceType

‣ getDeviceType

‣ isDeviceTypeSet

‣ resetDeviceType

‣ setDefaultDeviceType

‣ getDefaultDeviceType

canRunOnDLA

TensorRT Release 7.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | 6

Deprecated IBuilder Methods with Direct Equivalents in IBuilderConfig

‣ setDLACore

‣ getDLACore

‣ setEngineCapability

‣ getEngineCapability

Timing methods in IBuilder also have replacements in IBuilderConfig, with
new names.

Deprecated IBuilder Method Replacement In IBuilderConfig

setMinFindIterations setMinTimingIterations

getMinFindIterations getMinTimingIterations

setAverageFindIterations setAvgTimingIterations

getAverageFindIterations getAvgTimingIterations

Finally, some IBuilder methods related to boolean properties have been replaced
with methods for setting/getting flags. For example, these calls on an IBuilder:

builder.setHalf2Mode(true);
builder.setInt8Mode(false);

can be replaced with these calls on a IBuilderConfig:

config.setFlag(BuilderFlag::kFP16);
config.clearFlag(BuilderFlag::kINT8);

The following table lists the deprecated methods and the corresponding flag.

Deprecated IBuilder Method Corresponding Flag

‣ setHalf2Mode

‣ setFp16Mode

‣ getHalf2Mode

‣ getFp16Mode

BuilderFlag::kFP16

‣ setInt8Mode

‣ getInt8Mode

BuilderFlag::kINT8

setDebugSync BuilderFlag::kDEBUG

‣ setRefittable

‣ getRefittable

BuilderFlag::kREFIT

TensorRT Release 7.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | 7

Deprecated IBuilder Method Corresponding Flag

‣ setStrictTypeConstraints

‣ getStrictTypeConstraints

BuilderFlag::kSTRICT_TYPES

allowGPUFallback BuilderFlag::kGPU_FALLBACK

‣ The INvPlugin creator function has been deprecated since TensorRT 5.1.x and has
now been fully removed. We recommend that users upgrade their plugins to one of
the later plugin interfaces, refer to Extending TensorRT With Custom Layers section
in the TensorRT Developer Guide for more information.

Fixed Issues

‣ DLA has restrictions on usage that were previously undocumented. Some programs
that might have worked, but violated these restrictions, are now expected to fail
at build time. For more information, see Restrictions With DLA and FAQs in the
TensorRT Developer Guide.

Announcements

‣ NVIDIA TensorRT Inference Server has been renamed to NVIDIA Triton Inference
Server. For more information, refer to the Triton Inference Server documentation.

Known Issues

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit the weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the
activation type of the forward pass does not match the activation type of the reverse
pass in bidirectional cases.

2.2. TensorRT Release 7.0.0
These are the TensorRT 7.0.0 release notes for Linux and Windows users. This release
includes fixes from the previous TensorRT 6.0.1 release as well as the following
additional changes. These release notes are applicable to workstation, server, and JetPack
users unless appended specifically with (not applicable for Jetson platforms).

For previous TensorRT release notes, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#restrictions-with-dla
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#faqs-reformat
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html

TensorRT Release 7.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | 8

Working with loops

TensorRT supports loop-like constructs, which can be useful for recurrent networks.
TensorRT loops support scanning over input tensors, recurrent definitions of tensors,
and both “scan outputs” and “last value” outputs. For more information, see Working
With Loops in the TensorRT Developer Guide.

ONNX parser with dynamic shapes support

The ONNX parser supports full-dimensions mode only. Your network definition must
be created with the explicitBatch flag set. For more information, see Importing An
ONNX Model Using The C++ Parser API and Working With Dynamic Shapes in the
TensorRT Developer Guide for more information.

TensorRT container with OSS

The TensorRT monthly container release now contains pre-built binaries from the
TensorRT Open Source Repository. For more information, refer to the monthly
released TensorRT Container Release Notes starting in 19.12+.

BERT INT8 and mixed precision optimizations

Some GEMM layers are now followed by GELU activation in the BERT model.
Since TensorRT doesn’t have IMMA GEMM layers, you can implement those
GEMM layers in the BERT network with either IConvolutionLayer or
IFullyConnectedLayer layers depending on what precision you require. For
example, you can leverage IConvolutionLayer with H == W == 1 (CONV1x1)
to implement a FullyConnected operation and leverage IMMA math under INT8
mode. TensorRT supports the fusion of Convolution/FullyConnected and GELU. For
more information, refer to TensorRT Best Practices Guide and Adding Custom Layers
Using The C++ API in the TensorRT Developer Guide.

Working with Quantized Networks

TensorRT now supports quantized models trained with Quantization Aware Training.
Support is limited to symmetrically quantized models, meaning zero_point = 0
using QuantizeLinear and DequantizeLinear ONNX ops. For more information,
see Working With Quantized Networks in the TensorRT Developer Guide and QDQ
Fusions in the Best Practices For TensorRT Performance Guide.

New layers
IFillLayer

The IFillLayer is used to generate an output tensor with the specified mode. For
more information, see the C++ class IFillLayer or the Python class IFillLayer.

IIteratorLayer

The IIteratorLayer enables a loop to iterate over a tensor. A loop is defined by
loop boundary layers. For more information, see the C++ class IIteratorLayer
or the Python class IIteratorLayer and Working With Loops in the TensorRT
Developer Guide.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_onnx_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_onnx_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://github.com/NVIDIA/TensorRT
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#add_custom_layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#add_custom_layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-qat-networks
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#qdq-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#qdq-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fill_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2Ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_iterator_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IIteratorLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops

TensorRT Release 7.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access (EA) | 9

ILoopBoundaryLayer

Class ILoopBoundaryLayer defines a virtual method getLoop() that returns
a pointer to the associated ILoop. For more information, see the C++ class
ILoopBoundaryLayer or the Python class ILoopBoundaryLayer and Working
With Loops in the TensorRT Developer Guide.

ILoopOutputLayer

The ILoopOutputLayer specifies an output from the loop. For more information,
see the C++ class ILoopOutputLayer or the Python class ILoopOutputLayer and
Working With Loops in the TensorRT Developer Guide.

IParametricReluLayer

The IParametricReluLayer represents a parametric ReLU operation, meaning,
a leaky ReLU where the slopes for x < 0 can be different for each element. For
more information, see the C++ class IParametricReluLayer or the Python class
IParametricReluLayer.

IRecurrenceLayer

The IRecurrenceLayer specifies a recurrent definition. For more information,
see the C++ class IRecurrenceLayer or the Python class IRecurrenceLayer and
Working With Loops in the TensorRT Developer Guide.

ISelectLayer

The ISelectLayer returns either of the two inputs depending on the condition.
For more information, see the C++ class ISelectLayer or the Python class
ISelectLayer.

ITripLimitLayer

The ITripLimitLayer specifies how many times the loop iterates. For more
information, see the C++ class ITripLayer or the Python class ITripLayer and
Working With Loops in the TensorRT Developer Guide.

New operations

ONNX: Added ConstantOfShape, DequantizeLinear, Equal, Erf, Expand,
Greater, GRU, Less, Loop, LRN, LSTM, Not, PRelu, QuantizeLinear,
RandomUniform, RandomUniformLike, Range, RNN, Scan, Sqrt, Tile, and Where.

For more information, see the full list of Supported Ops in the Support Matrix.
Boolean tensor support

TensorRT supports boolean tensors which can be marked as network input and
output. IElementWiseLayer, IUnaryLayer (only kNOT), IShuffleLayer,
ITripLimit (only kWHILE) and ISelectLayer support the boolean datatype.
Boolean tensors can be used only with FP32 and FP16 precision networks. For more
information, refer to the Layers section in the TensorRT Developer Guide.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_boundary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_boundary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iloopboundarylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_output_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.ILoopOutputLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_parametric_re_l_u_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iparametricrelulayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iparametricrelulayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_recurrence_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IRecurrenceLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_select_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iselectlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iselectlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_trip_limit_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.ITripLimitLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#supported-ops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers

TensorRT Release 7.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 10

Compatibility

‣ TensorRT 7.0.0 has been tested with the following:

‣ cuDNN 7.6.5
‣ TensorFlow 1.14.0
‣ PyTorch 1.3.0
‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 9.0, 10.0, and 10.2.
‣ For PowerPC users, Tesla V100 and Tesla T4 GPUs are supported.

Limitations

‣ UFF samples, such as sampleUffMNIST, sampleUffSSD, sampleUffPluginV2Ext,
sampleUffMaskRCNN, sampleUffFasterRCNN, uff_custom_plugin, and
uff_ssd, support TensorFlow 1.x and not models trained with TensorFlow 2.0.

‣ Loops and DataType::kBOOL are supported on limited platforms. On platforms
without loop support, INetworkDefinition::addLoop returns nullptr.
Attempting to build an engine using operations that consume or produce
DataType::kBOOL on a platform without support, results in validation rejecting
the network. For details on which platforms are supported with loops, refer to the
Features For Platforms And Software section in the TensorRT Support Matrix.

‣ Explicit precision networks with quantized and de-quantized nodes are only
supported on devices with hardware INT8 support. Running on devices without
hardware INT8 support results in undefined behavior.

Deprecated Features

The following features are deprecated in TensorRT 7.0.0:

‣ Backward Compatibility and Deprecation Policy - When a new function, for
example foo, is first introduced, there is no explicit version in the name and the
version is assumed to be 1. When changing the API of an existing TensorRT function
foo (usually to support some new functionality), first, a new routine fooV<N> is
created where N represents the Nth version of the function and the previous version
fooV<N-1> remains untouched to ensure backward compatibility. At this point,
fooV<N-1> is considered deprecated, and should be treated as such by users of
TensorRT.

Starting with TensorRT 7, we will be eliminating deprecated API per the following
policy.

‣ APIs already marked deprecated prior to TensorRT 7 (6 and older) will be
removed in the next major release of TensorRT 8.

https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_765.html#rel_765
https://github.com/tensorflow/tensorflow/releases/tag/v1.14.0
https://github.com/pytorch/pytorch/releases/tag/v1.3.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/9.0/
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#platform-matrix

TensorRT Release 7.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 11

‣ APIs deprecated in TensorRT <M>, where M is the major version greater than
or equal to 7, will be removed in TensorRT <M+2>. This means that deprecated
APIs remain functional for two major releases before they are removed.

‣ Deprecation of Caffe Parser and UFF Parser - We are deprecating Caffe Parser
and UFF Parser in TensorRT 7. They will be tested and functional in the next
major release of TensorRT 8, but we plan to remove the support in the subsequent
major release. Plan to migrate your workflow to use tf2onnx, keras2onnx or
TensorFlow-TensorRT (TF-TRT) for deployment.

Fixed Issues

‣ You no longer have to build ONNX and TensorFlow from source in order to
workaround pybind11 compatibility issues. The TensorRT Python bindings are now
built using pybind11 version 2.4.3.

‣ Windows users are now able to build applications designed to use the TensorRT
refittable engine feature. The issue related to unresolved symbols has been resolved.

‣ A virtual destructor has been added to the IPluginFactory class.

Known Issues

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so an
attempt to refit the weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the
activation type of the forward pass does not match the activation type of the reverse
pass in bidirectional cases.

‣ The INT8 calibration does not work with dynamic shapes. To workaround this issue,
ensure there are two passes in the code:

 1. Using a fixed shape input to build the engine in the first pass, allows TensorRT
to generate the calibration cache.

 2. Then, create the engine again using the dynamic shape input and the builder
will reuse the calibration cache generated in the first pass.

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 12

Chapter 3.
TENSORRT RELEASE 6.X.X

3.1. TensorRT Release 6.0.1
This is the TensorRT 6.0.1 release notes for Linux and Windows users. This release
includes fixes from the previous TensorRT 5.x.x releases as well as the following
additional changes. These release notes are applicable to workstation, server, and JetPack
users unless appended specifically with (not applicable for Jetson platforms).

For previous TensorRT release notes, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ New layers:
IResizeLayer

The IResizeLayer implements the resize operation on an input tensor. For more
information, see IResizeLayer: TensorRT API and IResizeLayer: TensorRT
Developer Guide.

IShapeLayer

The IShapeLayer gets the shape of a tensor. For more information, see
IShapeLayer: TensorRT API and IShapeLayer: TensorRT Developer Guide.

PointWise fusion

Multiple adjacent pointwise layers can be fused into a single pointwise layer, to
improve performance. For more information, see the TensorRT Best Practices
Guide.

‣ New operators:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_resize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#resize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#resize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shape_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#shape-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#pointwise-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#pointwise-fusion

TensorRT Release 6.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 13

3-dimensional convolution

Performs a convolution operation with 3D filters on a 5D tensor. For
more information, see addConvolutionNd in the TensorRT API and
IConvolutionalLayer in the TensorRT Developer Guide.

3-dimensional deconvolution

Performs a deconvolution operation with 3D filters on a 5D tensor. For
more information, see addDeconvolutionNd in the TensorRT API and
IDeconvolutionLayer in the TensorRT Developer Guide.

3-dimensional pooling

Performs a pooling operation with a 3D sliding window on a 5D tensor. For more
information, see addPoolingNd in the TensorRT API and IPoolingLayer in the
TensorRT Developer Guide.

‣ New plugins:

Added a persistent LSTM plugin; a half precision persistent LSTM plugin that
supports variable sequence lengths. This plugin also supports bi-direction, setting
initial hidden/cell values, storing final hidden/cell values, and multi layers. You can
use it through the PluginV2 interface, achieves better performance with small batch
sizes, and is currently only supported on Linux. For more information, see Persistent
LSTM Plugin in the TensorRT Developer Guide. (not applicable for Jetson platforms)

‣ New operations:
TensorFlow

Added ResizeBilinear and ResizeNearest ops.
ONNX

Added Resize op.

For more information, see the full list of Supported Ops in the Support Matrix.
‣ New samples:

sampleDynamicReshape

Added sampleDynamicReshape which demonstrates how to use dynamic input
dimensions in TensorRT by creating an engine for resizing dynamically shaped
inputs to the correct size for an ONNX MNIST model. For more information,
see Working With Dynamic Shapes in the TensorRT Developer Guide, Digit
Recognition With Dynamic Shapes in the TensorRT Samples Support Guide and
the GitHub: sampleDynamicReshape directory.

sampleReformatFreeIO

Added sampleReformatFreeIO which uses a Caffe model that was trained on
theMNIST dataset and performs engine building and inference using TensorRT.
Specifically, it shows how to use reformat free I/O tensors APIs to explicitly
specify I/O formats to TensorFormat::kLINEAR, TensorFormat::kCHW2 and

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a8c7b60e83e453285ff85803e17a258ce
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#convolution-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0660e807ff32f1f73666d825e51de1fb
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deconvolution-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a6cbe5542f80352a630ebe8a809441ee0
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#pooling-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#persistent-lstm-plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#persistent-lstm-plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#supported-ops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape
https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md

TensorRT Release 6.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 14

TensorFormat::kHWC8 for Float16 and INT8 precision. For more information,
see Specifying I/O Formats Using The Reformat Free I/O Tensors APIs in the
TensorRT Samples Support Guide and the GitHub: sampleReformatFreeIO
directory.

sampleUffPluginV2Ext

Added sampleUffPluginV2Ext which implements the custom pooling layer
for the MNIST model (data/samples/lenet5_custom_pool.uff) and
demonstrates how to extend INT8 I/O for a plugin. For more information, see
Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT
in the TensorRT Samples Support Guide and the GitHub: sampleUffPluginV2Ext
directory.

sampleNMT

Added sampleNMT which demonstrates the implementation of Neural Machine
Translation (NMT) based on a TensorFlow seq2seq model using the TensorRT
API. The TensorFlow seq2seq model is an open sourced NMT project that uses
deep neural networks to translate text from one language to another language.
For more information, see Neural Machine Translation (NMT) Using A Sequence
To Sequence (seq2seq) Model in the TensorRT Samples Support Guide and
Importing A Model Using The C++ API For Safety in the TensorRT Developer
Guide and the GitHub: sampleNMT directory.

sampleUffMaskRCNN

This sample, sampleUffMaskRCNN, performs inference on the Mask R-
CNN network in TensorRT. Mask R-CNN is based on the Mask R-CNN paper
which performs the task of object detection and object mask predictions on a
target image. This sample’s model is based on the Keras implementation of
Mask R-CNN and its training framework can be found in the Mask R-CNN
Github repository. For more information, see sampleUffMaskRCNN in the
TensorRT Sample Support Guide. This sample is available only in GitHub:
sampleUffMaskRCNN and is not packaged with the product. (not applicable for
Jetson platforms)

sampleUffFasterRCNN

This sample, sampleUffFasterRCNN, is a UFF TensorRT sample for Faster-RCNN
in NVIDIA Transfer Learning Toolkit SDK. This sample serves as a demo of
how to use pretrained Faster-RCNN model in Transfer Learning Toolkit to do
inference with TensorRT. For more information, see sampleUffFasterRCNN in
the TensorRT Sample Support Guide. This sample is available only in GitHub:
sampleUffFasterRCNN and is not packaged with the product. (not applicable for
Jetson platforms)

‣ New optimizations:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplereformatfreeio
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleReformatFreeIO
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleUffPluginV2Ext
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffPluginV2Ext
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplenmt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplenmt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import-model-c-safety
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleNMT
https://arxiv.org/abs/1703.06870
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleuffmaskrcnn
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffMaskRCNN
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffMaskRCNN
https://developer.nvidia.com/transfer-learning-toolkit
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleufffasterrcnn
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffFasterRCNN
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffFasterRCNN

TensorRT Release 6.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 15

Dynamic shapes

The size of a tensor can vary at runtime. IShuffleLayer, ISliceLayer, and the new
IResizeLayer now have optional inputs that can specify runtime dimensions.
IShapeLayer can get the dimensions of tensors at runtime, and some layers can
compute new dimensions. For more information, see Working With Dynamic
Shapes and TensorRT Layers in the TensorRT Developer Guide, Digit Recognition
With Dynamic Shapes in the TensorRT Samples Support Guide and the GitHub:
sampleDynamicReshape directory.

Reformat free I/O

Network I/O tensors can be different to linear FP32. Formats of network I/O
tensors now have APIs to be specified explicitly. The removal of reformatting
is beneficial to many applications and specifically saves considerable memory
traffic time. For more information, see Working With Reformat-Free Network I/O
Tensors and Example 4: Add A Custom Layer With INT8 I/O Support Using C++
in the TensorRT Developer Guide.

Layer optimizations

Shuffle operations that are equivalent to identify operations on the underlying
data will be omitted, if the input tensor is only used in the shuffle layer and the
input and output tensors of this layer are not input and output tensors of the
network. TensorRT no longer executes additional kernels or memory copies for
such operations. For more information, see How Does TensorRT Work in the
TensorRT Developer Guide.

New INT8 calibrator

MinMaxCalibrator - Preferred calibrator for NLP tasks. Supports per activation
tensor scaling. Computes scales using per tensor absolute maximum value. For
more information, see INT8 Calibration Using C++.

Explicit precision

You can manually configure a network to be an explicit precision network in
TensorRT. This feature enables users to import pre-quantized models with
explicit quantizing and dequantizing scale layers into TensorRT. Setting the
network to be an explicit precision network implies that you will set the precision
of all the network input tensors and layer output tensors in the network.
TensorRT will not quantize the weights of any layer (including those running in
lower precision). Instead, weights will simply be cast into the required precision.
For more information about explicit precision, see Working With Explicit
Precision Using C++ and Working With Explicit Precision Using Python in the
TensorRT Developer Guide.

‣ Installation:

‣ Added support for RPM and Debian packages for PowerPC users. (not applicable
for Jetson platforms)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#reformat-free-network-tensors
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#reformat-free-network-tensors
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#example4_add_custlay_int8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#optimizing_int8_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work-python

TensorRT Release 6.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 16

Compatibility

‣ TensorRT 6.0.1 has been tested with the following:

‣ cuDNN 7.6.5
‣ TensorFlow 1.14.0
‣ PyTorch 1.1.0
‣ ONNX 1.5.0

‣ This TensorRT release supports CUDA 9.0 (not applicable for Jetson platforms), 10.0,
and 10.1 update 2 (not applicable for Jetson platforms), and 10.2.

‣ For PowerPC users, Tesla V100 Volta and Turing T4 GPUs are supported.

Limitations

‣ Upgrading TensorRT to the latest version is only supported when the currently
installed TensorRT version is equal to or newer than the last two public releases. For
example, TensorRT 6.x.x supports upgrading from TensorRT 5.0.x and TensorRT
5.1.x. (not applicable for Jetson platforms)

‣ Calibration for a network with INT8 I/O tensors requires FP32 calibration data.
‣ Shape tensors cannot be network inputs or outputs. Shape tensors can be created

by IConstantLayer, IShapeLayer, or any of the following operations on
shape tensors: IConcatenationLayer, IElementWiseLayer, IGatherLayer,
IReduceLayer (kSUM, kMAX, kMIN, kPROD), IShuffleLayer, or ISliceLayer.

Deprecated Features

The following features are deprecated in TensorRT 6.0.1:
Samples changes

‣ The PGM files for the MNIST samples have been removed. A script, called
generate_pgms.py (or download_pgms.py for CUDA 10.2), has been provided
in the samples/mnist/data directory to generate the images using the dataset.

‣ --useDLACore=0 is no longer a valid option for sampleCharRNN as DLA does
not support FP32 or RNN’s, and the sample is only written to work with FP32 in
all cases.

Fixed Issues

‣ Logging level Severity::kVERBOSE is now fully supported. Log messages with
this level of severity are verbose messages with debugging information.

‣ Deconvolution layer with stride > 32 is now supported on DLA.
‣ Deconvolution layer with kernel size > 32 is now supported on DLA.

https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_765.html#rel_765
https://github.com/tensorflow/tensorflow/releases/tag/v1.14.0
https://github.com/pytorch/pytorch/releases/tag/v1.1.0
https://pypi.org/project/onnx/1.5.0/
https://docs.nvidia.com/cuda/archive/9.0/
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/archive/10.2/index.html

TensorRT Release 6.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 17

Known Issues

‣ For Ubuntu 14.04 and CentOS7, in order for ONNX, TensorFlow and TensorRT to
co-exist in the same environment, ONNX and TensorFlow must be built from source
using your system's native compilers. It’s especially important to build ONNX and
TensorFlow from source when using the IBM Anaconda channel for PowerPC to
avoid compatibility issues with pybind11 and protobuf. (not applicable for Jetson
platforms)

‣ PointWise fusions will be disabled when the SM version is lower than 7.0 due to a
performance issue. This includes all pre-Volta GPUs, for example, Pascal, Maxwell,
Kepler, TX-1, TX-2, Nano.

‣ TensorRT assumes that all resources for the device it is building on are available for
optimization purposes. Concurrent use of multiple TensorRT builders (for example,
multiple trtexec instances) to compile on different targets (DLA0, DLA1 and
GPU) may oversubscribe system resources causing undefined behavior (meaning,
inefficient plans, builder failure, or system instability).

It is recommended to use trtexec with the --saveEngine argument to compile for
different targets (DLA and GPU) separately and save their plan files. Such plan files
can then be reused for loading (using trtexec with the --loadEngine argument)
and submitting multiple inference jobs on the respective targets (DLA0, DLA1,
GPU). This two step process alleviates over-subscription of system resources during
the build phase while also allowing execution of the plan file to proceed without
interference by the builder.

‣ Windows users are currently unable to refit an engine due to some linking issues.
You will encounter undefined symbols while building an application designed to
use the TensorRT refittable engine feature. (not applicable for Jetson platforms)

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 18

Chapter 4.
TENSORRT RELEASE 5.X.X

4.1. TensorRT Release 5.1.5
This is the TensorRT 5.1.5 release notes for Linux and Windows users. This release
includes fixes from the previous TensorRT 5.1.x releases as well as the following
additional changes.

For previously released versions of TensorRT, see the TensorRT Archived
Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
TensorRT Open Source Software (OSS)

The TensorRT GitHub repository contains the Open Source Software (OSS)
components of NVIDIA TensorRT. Included are the sources for TensorRT plugins and
parsers (Caffe and ONNX) libraries, as well as sample applications demonstrating
usage and capabilities of the TensorRT platform. Refer to the README.md file
for prerequisites, steps for downloading, setting-up the build environment, and
instructions for building the TensorRT OSS components.

For more information, see the NVIDIA Developer news article NVIDIA open sources
parsers and plugins in TensorRT.

Compatibility

‣ TensorRT 5.1.5 has been tested with the following:

‣ cuDNN 7.5.0
‣ TensorFlow 1.12.0
‣ PyTorch 1.0
‣ ONNX 1.4.1

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://github.com/nvidia/TensorRT
https://github.com/nvidia/TensorRT/README.md
https://news.developer.nvidia.com/nvidia-open-sources-parsers-and-plugins-in-tensorrt/
https://news.developer.nvidia.com/nvidia-open-sources-parsers-and-plugins-in-tensorrt/
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_750.html#rel_750
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://github.com/onnx/onnx/releases/tag/v1.4.1

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 19

‣ This TensorRT release supports CUDA 9.0, CUDA 10.0, and CUDA 10.1.

Deprecated Features

The following features are deprecated in TensorRT 5.1.5:

‣ getDIGITS has been removed from the TensorRT package.

Known Issues

‣ For Ubuntu 14.04 and CentOS7, there is a known bug when trying to import
TensorRT and ONNX Python modules together due to different compiler versions
used to generate their respective Python bindings. As a work around, build the
ONNX module from source using your system's native compilers.

‣ You may see the following warning when running programs linked with TensorRT
5.1.5 and CUDA 10.1 libraries:

[W] [TRT] TensorRT was compiled against cuBLAS 10.2.0 but is linked against
 cuBLAS 10.1.0.

You can resolve this by updating your CUDA 10.1 installation to 10.1 update 1 here.
‣ There is a known issue in sample yolov3_onnx with ONNX versions > 1.4.1. To work

around this, install version 1.4.1 of ONNX through:

pip uninstall onnx; pip install onnx==1.4.1

4.2. TensorRT Release 5.1.3
This is the TensorRT 5.1.3 release notes for PowerPC users. This release includes fixes
from the previous TensorRT 5.1.x releases as well as the following additional changes.

For previously released versions of TensorRT, see the TensorRT Archived
Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
Samples

The README.md files for many samples, located within each sample source directory,
have been greatly improved. We hope this makes it easier to understand the sample
source code and successfully run the sample.

ONNX parser
The ONNX parser now converts GEMMs and MatMuls using the MatrixMultiply
layer, and adds support for scaling the results with the alpha and beta parameters.

https://docs.nvidia.com/cuda/archive/9.0/index.html
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://docs.nvidia.com/cuda/archive/10.1/index.html
https://developer.nvidia.com/cuda-downloads
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 20

Asymmetric padding

‣ IConvolutionLayer, IDeconvolutionLayer and IPoolingLayer directly
support setting asymmetric padding. You do not need to add an explicit
IPaddingLayer.

‣ The new APIs are setPaddingMode(), setPrePadding() and
setPostPadding(). The setPaddingMode() method takes precedence over
setPaddingMode() and setPrePadding() when more than one padding
method is used.

‣ The Caffe, UFF, and ONNX parsers have been updated to support the new
asymmetric padding APIs.

Precision optimization
TensorRT provides optimized kernels for mixed precision (FP32, FP16 and INT8)
workloads on Turing GPUs, and optimizations for depthwise convolution operations.
You can control the precision per-layer with the ILayer APIs.

Compatibility

‣ TensorRT 5.1.3 has been tested with the following:

‣ cuDNN 7.5.0
‣ TensorFlow 1.12.0
‣ PyTorch 1.0
‣ ONNX 1.4.1

‣ This TensorRT release supports CUDA 10.1.

‣ TensorRT will now emit a warning when the major, minor, and patch versions
of cuDNN and cuBLAS do not match the major, minor, and patch versions that
TensorRT is expecting.

Limitations

‣ For CentOS and RHEL users, when choosing Python 3:

‣ Only Python version 3.6 from EPEL is supported by the RPM installation.
‣ Only Python versions 3.4 and 3.6 from EPEL are supported by the tar

installation.
‣ In order to run the UFF converter and its related C++ and Python samples on

PowerPC, it’s necessary to install TensorFlow for PowerPC. For more information,
see Install TensorFlow on Power systems.

‣ In order to run the PyTorch samples on PowerPC, it’s necessary to install PyTorch
specifically built for PowerPC, which is not available from PyPi. For more
information, see Install PyTorch on Power systems.

https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_750.html#rel_750
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://github.com/onnx/onnx/releases/tag/v1.4.1
https://docs.nvidia.com/cuda/archive/10.1/index.html
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://developer.ibm.com/tutorials/install-tensorflow-on-power/
https://developer.ibm.com/tutorials/install-pytorch-on-power/

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 21

Deprecated Features

The following features are deprecated in TensorRT 5.1.3:

‣ sampleNMT has been removed from the TensorRT package. The public data source
files have changed and no longer work with the sample.

Fixed Issues

The following issues have been resolved in TensorRT 5.1.3:

‣ Fixed the behavior of the Caffe crop layer when the layer has an asymmetric crop
offset.

‣ ITensor::getType() and ILayer::getOutputType() now report the type
correctly. Previously, both types reported DataType::kFLOAT even if the output
type should have been DataType::kINT32. For example, the output type of
IConstantLayer with DataType::kINT32 weights is now correctly reported as
DataType::kINT32. The affected layers include:

‣ IConstantLayer (when weights have type DataType::kINT32)
‣ IConcatentationLayer (when inputs have type DataType::kINT32)
‣ IGatherLayer (when first input has type DataType::kINT32)
‣ IIdentityLayer (when input has type DataType::kINT32)
‣ IShuffleLayer (when input has type DataType::kINT32)
‣ ISliceLayer (when input has type DataType::kINT32)
‣ ITopKLayer (second output)

‣ When using INT8 mode, dynamic ranges are no longer required for INT32 tensors,
even if you’re not using automatic quantization.

‣ Using an INT32 tensor where a floating-point tensor is expected, or vice-versa,
issues an error explaining the mismatch instead of asserting failure.

‣ The ONNX TensorRT parser now attempts to downcast INT64 graph weights to
INT32.

‣ Fixed an issue where the engine would fail to build when asymmetric padding
convolutions were present in the network.

Known Issues

‣ When running ShuffleNet with small batch sizes between 1 and 4, you may
encounter performance regressions of up to 15% compared to TensorRT 5.0.

‣ When running ResNeXt101 with a batch size of 4 using INT8 precision on a Volta
GPU, you may encounter intermittent performance regressions of up to 10%
compared to TensorRT 5.0. Rebuilding the engine may resolve this issue.

‣ There is a known issue in sample yolov3_onnx with ONNX versions > 1.4.1. To work
around this, install version 1.4.1 of ONNX through:

pip uninstall onnx; pip install onnx==1.4.1

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 22

4.3. TensorRT Release 5.1.2 Release Candidate
(RC)
This is the release candidate (RC) for TensorRT 5.1.2 and is applicable to Linux and
Windows users. This RC includes several enhancements and improvements compared to
the previously released TensorRT 5.0.2.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 5.0.2.

For previously released versions of TensorRT, see the TensorRT Documentation
Archives.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
Improved performance of HMMA and IMMA convolution

The performance of Convolution, including Depthwise Separable Convolution and
Group Convolution has improved in FP16 and INT8 modes on Volta and Turing. For
example: ResNeXt-101 batch=1 INT8 3x speedup on Tesla T4.

Reload weights for an existing TensorRT engine
Engines can be refitted with new weights. For more information, see Refitting An
Engine.

New supported operations
Caffe: Added BNLL, Clip and ELU ops. Additionally, the leaky ReLU option for the
ReLU op (negative_slope != 0) was added.

UFF: Added ArgMax, ArgMin, Clip, Elu, ExpandDims, Identity,
LeakyReLU, Recip, Relu6, Sin, Cos, Tan, Asin, Acos, Atan, Sinh,
Cosh, Asinh, Acosh, Atanh, Ceil, Floor, Selu, Slice, Softplus and
Softsign ops.

ONNX: Added ArgMax, ArgMin, Clip, Cast, Elu, Selu, HardSigmoid,
Softplus, Gather, ImageScaler, LeakyReLU, ParametricSoftplus, Sin,
Cos, Tan, Asin, Acos, Atan, Sinh, Cosh, Asinh, Acosh, Atanh, Ceil,
Floor, ScaledTanh, Softsign, Slice, ThresholdedRelu and Unsqueeze
ops.

For more information, see the TensorRT Support Matrix.
NVTX support

NVIDIA Tools Extension SDK (NVTX) is a C-based API for marking events and
ranges in your applications. NVTX annotations were added in TensorRT to help
correlate the runtime engine layer execution with CUDA kernel calls. NVIDIA
Nsight Systems supports collecting and visualizing these events and ranges on the
timeline. NVIDIA Nsight Compute also supports collecting and displaying the state

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 23

of all active NVTX domains and ranges in a given thread when the application is
suspended.

New layer
Added support for the Slice layer. The Slice layer implements a slice operator for
tensors. For more information, see ISliceLayer.

RNNs
Changed RNNv1 and RNNv2 validation of hidden and cell input/output dimensions.
This affects only bidirectional RNNs.

EntropyCalibrator2
Added Entropy Calibration algorithm; which is the preferred calibrator.

Python support
Python 3 is now supported for CentOS and RHEL users. The Python 3 wheel files
have been split so that each wheel file now contains the Python bindings for only one
Python version and follows pip naming conventions.

New Python samples

‣ INT8 Calibration In Python - This sample demonstrates how to create an INT8
calibrator, build and calibrate an engine for INT8 mode, and finally run inference
in INT8 mode.

‣ Engine Refit In Python - This sample demonstrates the engine refit functionality
provided by TensorRT. The model first trains an MNIST model in PyTorch, then
recreates the network in TensorRT.

For more information, see the Samples Support Guide.
NVIDIA Machine Learning network repository installation

TensorRT 5.1 can now be directly installed from the NVIDIA Machine Learning
network repository when only the C++ libraries and headers are required. The
intermediate step of downloading and installing a local repo from the network repo
is no longer required. This simplifies the number of steps required to automate the
TensorRT installation. See the TensorRT Installation Guide for more information.

Breaking API Changes

‣ A kVERBOSE logging level was added in TensorRT 5.1, however, due to ABI
implications, kVERBOSE is not currently being used. Messages at the kVERBOSE
logging level may be emitted in a future release.

Compatibility

‣ TensorRT 5.1.2 RC has been tested with the following:

‣ cuDNN 7.5.0
‣ TensorFlow 1.12.0
‣ PyTorch 1.0

‣ This TensorRT release supports CUDA 9.0, CUDA 10.0 and CUDA 10.1.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#slice-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#int8_caffe_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#engine_refit_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-5.html#rel_5-1-0-RC
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_750.html#rel_750
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://docs.nvidia.com/cuda/archive/9.0/index.html
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://docs.nvidia.com/cuda/archive/10.1/index.html

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 24

Limitations

‣ A few optimizations are disabled when building refittable engines:

‣ IScaleLayer operations that have non-zero count of weights for shift or scale
and are mathematically the identity function will not be removed, since a refit of
the shift or scale weights could make it a non-identity function. IScaleLayer
operations where the shift and scale weights have zero count are still removed if
the power weights are unity.

‣ Optimizations for multilayer perceptrons are disabled. These
optimizations target serial compositions of IFullyConnectedLayer,
IMatrixMultiplyLayer, and IActivationLayer.

Deprecated Features

The following features are deprecated in TensorRT 5.1.2 RC:

‣ The UFF Parser which is used to parse a network in UFF format will be deprecated
in a future release. The recommended method of importing TensorFlow models
to TensorRT is using TensorFlow with TensorRT (TF-TRT). For step-by-step
instructions on how to accelerate inference in TF-TRT, see the TF-TRT User Guide
and Release Notes. For source code from GitHub, see Examples for TensorRT in
TensorFlow (TF-TRT).

‣ Deprecated --engine=<filename> option in trtexec. Use --
saveEngine=<filename> and --loadEngine=<filename> instead for clarity.

Known Issues

‣ Using the current public data sources, sampleNMT produces incorrect results which
results in a low BLEU score. This sample will be removed in the next release so that
we can update the source code to work with the latest public data.

‣ There is a known multilayer perceptron (MLP) performance regression in TensorRT
5.1.2 compared to TensorRT 5.0. During the engine build phase the GPU cache state
may lead to different tactic selections on Turing. The magnitude of the regression
depends on the batch size and the depth of the network.

‣ On sampleSSD and sampleUffSSD during INT8 calibration, you may encounter a
file read error in TensorRT-5.1.x.x/data/samples/ssd/VOC2007/list.txt.
This is due to line-ending differences on Windows vs Linux. To workaround this
problem, open list.txt in a text editor and ensure that the file is using Unix-style
line endings.

‣ Python sample yolov3_onnx is functional only for ONNX versions greater than 1.1.0
and less than 1.4.0.

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt-release-notes/index.html
https://github.com/tensorflow/tensorrt
https://github.com/tensorflow/tensorrt

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 25

4.4. TensorRT Release 5.1.1 Release Candidate
(RC)
This is the release candidate (RC) for TensorRT 5.1.1 and is applicable to automotive
users on PDK version 5.1.3. This RC includes several enhancements and improvements
compared to the previously released TensorRT 5.0.3.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 5.0.3.

For previously released versions of TensorRT, see the TensorRT Documentation
Archives.

Key Features And Enhancements
This TensorRT release includes the following key features and enhancements.

‣ CUDA 10.1 is now supported. For more information, see the CUDA 10.1 Release
Notes.

Breaking API Changes

‣ A kVERBOSE logging level was added in TensorRT 5.1.0, however, due to ABI
implications, kVERBOSE is no longer being used in TensorRT 5.1.1. It may be used
again in a future release.

Compatibility

‣ TensorRT 5.1.1 RC has been tested with the following:

‣ cuDNN 7.5.0

‣ This TensorRT release supports CUDA 10.1.

Limitations

‣ The Python API is not included in this package.

Known Issues

‣ When linking against CUDA 10.1, performance regressions may occur under Drive
5.0 QNX and Drive 5.0 Linux because of a regression in cuBLAS. This affects the
FullyConnected layers in AlexNet, VGG19, and ResNet-50 for small batch sizes
(between 1 and 4).

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/cuda/archive/10.1/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/archive/10.1/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-5.html#rel_5-1-0-RC
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/index.html
https://docs.nvidia.com/cuda/archive/10.1/index.html

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 26

‣ Performance regressions of around 10% may be seen when using group
convolutions caused by a CUDA mobile driver bug. These regressions might be seen
in networks such as ResNext and ShuffleNet.

4.5. TensorRT Release 5.1.0 Release Candidate
(RC)
This is the release candidate (RC) for TensorRT 5.1.0. It includes several enhancements
and improvements compared to the previously released TensorRT 5.0.x.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 5.0.2.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Improved performance of HMMA and IMMA convolution
The performance of Convolution, including Depthwise Separable Convolution and
Group Convolution has improved in FP16 and INT8 modes on Volta, Xavier and
Turing. For example:

‣ ResNet50 INT8 batch=8 1.2x speedup on Jetson AGX Xavier
‣ MobileNetV2 FP16 batch=8 1.2x speedup on Jetson AGX Xavier
‣ ResNeXt-101 batch=1 INT8 3x speedup on Tesla T4

Reload weights for an existing TensorRT engine
Engines can be refitted with new weights. For more information, see Refitting An
Engine.

DLA with INT8
Added support for running the AlexNet network on DLA using trtexec in INT8
mode. For more information, see Working With DLA.

New supported operations
Caffe: Added BNLL, Clip and ELU ops. Additionally, the leaky ReLU option for the
ReLU op (negative_slope != 0) was added.

UFF: Added ArgMax, ArgMin, Clip, Elu, ExpandDims, Identity,
LeakyReLU, Recip, Relu6, Sin, Cos, Tan, Asin, Acos, Atan, Sinh,
Cosh, Asinh, Acosh, Atanh, Ceil, Floor, Selu, Slice, Softplus and
Softsign ops.

ONNX: Added ArgMax, ArgMin, Clip, Cast, Elu, Selu, HardSigmoid,
Softplus, Gather, ImageScaler, LeakyReLU, ParametricSoftplus, Sin,
Cos, Tan, Asin, Acos, Atan, Sinh, Cosh, Asinh, Acosh, Atanh, Ceil,

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_5
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_topic

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 27

Floor, ScaledTanh, Softsign, Slice, ThresholdedRelu and Unsqueeze
ops.

For more information, see the TensorRT Support Matrix.
NVTX support

NVIDIA Tools Extension SDK (NVTX) is a C-based API for marking events and
ranges in your applications. NVTX annotations were added in TensorRT to help
correlate the runtime engine layer execution with CUDA kernel calls. NVIDIA
Nsight Systems supports collecting and visualizing these events and ranges on the
timeline. NVIDIA Nsight Compute also supports collecting and displaying the state
of all active NVTX domains and ranges in a given thread when the application is
suspended.

New layer
Added support for the Slice layer. The Slice layer implements a slice operator for
tensors. For more information, see ISliceLayer.

RNNs
Changed RNNv1 and RNNv2 validation of hidden and cell input/output dimensions.
This affects only bidirectional RNNs.

EntropyCalibrator2
Added Entropy Calibration algorithm; which is the preferred calibrator. This is
also the required calibrator for DLA INT8 because it supports per activation tensor
scaling.

ILogger
Added verbose severity level in ILogger for emitting debugging messages. Some
messages that were previously logged with severity level kINFO are now logged
with severity level kVERBOSE. Added new ILogger derived class in samples and
trtexec. Most messages should be categorized (using the severity level) as:
[V]

For verbose debug informational messages.
[I]

For "instructional" informational messages.
[W]

For warning messages.
[E]

For error messages.
[F]

For fatal error messages.

Python

‣ INT8 Calibration In Python - This sample demonstrates how to create an INT8
calibrator, build and calibrate an engine for INT8 mode, and finally run inference
in INT8 mode.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#slice-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#int8_caffe_mnist

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 28

‣ Engine Refit In Python - This sample demonstrates the engine refit functionality
provided by TensorRT. The model first trains an MNIST model in PyTorch, then
recreates the network in TensorRT.

For more information, see the Samples Support Guide.

Python bindings
Added Python bindings to the aarch64-gnu release package (debian and tar).

RPM installation
Provided installation support for Red Hat Enterprise Linux (RHEL) and CentOS users
to upgrade from TensorRT 5.0.x to TensorRT 5.1.x. For more information, see the
upgrading instructions in the Installation Guide.

Breaking API Changes

‣ A new logging level, kVERBOSE, was added in TensorRT 5.1.0. Messages are being
emitted by the TensorRT builder and/or engine using this new logging level. Since
the logging level did not exist in TensorRT 5.0.x, some applications might not handle
the new logging level properly and in some cases the application may crash. In the
next release, more descriptive messages will appear when using the kINFO logging
level because the kVERBOSE messages will be produced using kINFO. However, the
kVERBOSE logging level will remain in the API and kVERBOSE messages may be
emitted in a future TensorRT release.

Compatibility

‣ TensorRT 5.1.0 RC has been tested with cuDNN 7.3.1.

‣ TensorRT 5.1.0 RC has been tested with TensorFlow 1.12.0.

‣ TensorRT 5.1.0 RC has been tested with PyTorch 1.0.

‣ This TensorRT release supports CUDA 10.0.

Limitations

‣ A few optimizations are disabled when building refittable engines.

‣ IScaleLayer operations that have non-zero count of weights for shift or scale
and are mathematically the identity function will not be removed, since a refit of
the shift or scale weights could make it a non-identity function. IScaleLayer
operations where the shift and scale weights have zero count are still removed if
the power weights are unity.

‣ Optimizations for multilayer perceptrons are disabled. These
optimizations target serial compositions of IFullyConnectedLayer,
IMatrixMultiplyLayer, and IActivationLayer.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#engine_refit_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html#upgrading-50x-51x-redhat

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 29

‣ DLA limitations

‣ FP16 LRN is supported with the following parameters:

‣ local_size = 5
‣ alpha = 0.0001
‣ beta = 0.75

‣ INT8 LRN, Sigmoid, and Tanh are not supported.

For more information, see DLA Supported Layers.

Deprecated Features

The following features are deprecated in TensorRT 5.1.0 RC:

‣ Deprecated --engine=<filename> option in trtexec. Use --
saveEngine=<filename> and --loadEngine=<filename> instead for clarity.

Known Issues

‣ When the tensor size is too large, such as a single tensor that has more than
4G elements, overflow may occur which will cause TensorRT to crash. As a
workaround, you may need to reduce the batch size.

4.6. TensorRT Release 5.0.6
This is the release for TensorRT 5.0.6 and is applicable to JetPack 4.2.0 users.

This release includes several enhancements and improvements compared to the
previously released TensorRT Release 5.0.5.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements for JetPack
users.

‣ Python support for AArch64 Linux is included as an early access release. All
features are expected to be available, however, some aspects of functionality and
performance will likely be limited compared to a non-EA release.

‣ The UFF parser’s memory usage was significantly reduced to better accommodate
boards with small amounts of memory.

Compatibility

‣ TensorRT 5.0.6 has been tested with the following:

‣ cuDNN 7.3.1

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_731.html#rel_731

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 30

‣ TensorFlow 1.12
‣ PyTorch 1.0

‣ This TensorRT release supports CUDA 10.0.

Known Issues

‣ The default workspace size for sampleUffSSD is 1 GB. This may be too large for the
Jetson TX1 NANO, therefore, change the workspace for the builder in the source file
via the following code:

builder->setMaxWorkspaceSize(16_MB);

‣ In order to run larger networks or larger batch sizes with TensorRT, it may be
necessary to free memory on the board. This can be accomplished by running in
headless mode or killing processes with high memory consumption.

‣ Due to limited system memory on the Jetson TX1 NANO, which is shared
between the CPU and GPU, you may not be able run some samples, for example,
sampleFasterRCNN.

‣ Python sample yolov3_onnx is functional only for ONNX versions greater than
1.1.0 and less than 1.4.0.

4.7. TensorRT Release 5.0.5
This is the TensorRT 5.0.5 release notes for Android users. This release includes fixes
from the previous TensorRT 5.0.x releases as well as the following additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements for
Android users.

‣ TensorRT 5.0.5 has two sub-releases:

‣ TensorRT 5.0.5.0 (without DLA support)
‣ TensorRT 5.0.5.1 (with DLA support)

Compatibility

‣ TensorRT 5.0.5 supports CUDA 10.0
‣ TensorRT 5.0.5 supports cuDNN 7.3.1
‣ TensorRT 5.0.5 supports the Android platform with API level 26 or higher

https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 31

Limitations In 5.0.5

‣ TensorRT 5.0.5.1 supports DLA while TensorRT 5.0.5.0 does not.

Known Issues

‣ For TensorRT 5.0.5.0, some sample programs have --useDLACore in their command
line arguments, however, do not use it because this release does not support DLA.

‣ When running trtexec from a saved engine, the --output and --input
command line arguments are mandatory. For example:

./trtexec --onnx=data/mnist/mnist.onnx --fp16 --engine=./
mnist_onnx_fp16.engine
./trtexec --engine=./mnist_onnx_fp16.engine --input=Input3 --
output=Plus214_Output_0

‣ When running applications that use DLA on Xavier based platforms that also
contain a discrete GPU (dGPU), you may be required to select the integrated GPU
(iGPU). This can be done using the following command:

export CUDA_VISIBLE_DEVICES=1

4.8. TensorRT Release 5.0.4
This is the TensorRT 5.0.4 release notes for Windows users. This release includes fixes
from the previous TensorRT 5.0.x releases as well as the following additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements for the
Windows platform.

‣ ONNX model parsing support has been added.

‣ Two new samples showcasing ONNX model parsing functionality have been added:

‣ sampleOnnxMNIST
‣ sampleINT8API

‣ CUDA 9.0 support has been added.

Compatibility

‣ TensorRT 5.0.4 supports Windows 10
‣ TensorRT 5.0.4 supports CUDA 10.0 and CUDA 9.0
‣ TensorRT 5.0.4 supports CUDNN 7.3.1

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 32

‣ TensorRT 5.0.4 supports Visual Studio 2017

Limitations In 5.0.4

‣ TensorRT 5.0.4 does not support Python API on Windows.

Known Issues

‣ NVIDIA’s Windows display driver sets timeout detection recovery to 2 seconds by
default. This can cause some timeouts within TensorRT’s builder and cause crashes.
For more information, see Timeout Detection & Recovery (TDR) to increase the
default timeout threshold if you encounter this problem.

‣ TensorRT Windows performance is slower than Linux due to the operating system
and driver differences. There are two driver modes:

‣ WDDM (around 15% slower than Linux)
‣ TCC (around 10% slower than Linux.) TCC mode is generally not supported for

GeForce GPUs, however, we recommend it for Quadro or Tesla GPUs. Detailed
instructions on setting TCC mode can be found here: Tesla Compute Cluster
(TCC).

‣ Volta FP16 performance on CUDA 9.0 may be up to 2x slower than on CUDA
10.0. We expect to mitigate this issue in a future release.

‣ Most README files that are included with the samples assume that you
are working on a Linux workstation. If you are using Windows and do not
have access to a Linux system with an NVIDIA GPU, then you can try using
VirtualBox to create a virtual machine based on Ubuntu. You may also want to
consider using a Docker container for Ubuntu. Many samples do not require
any training, therefore the CPU versions of TensorFlow and PyTorch are enough
to complete the samples.

‣ For sample_ssd and sample_uff_ssd, the INT8 calibration script is not
supported natively on Windows. You can generate the INT8 batches on a Linux
machine and copy them over in order to run sample_ssd in INT8 mode.

‣ For sample_uff_ssd, the Python script convert-to-uff is not packaged
within the .zip. You can generate the required .uff file on a Linux machine
and copy it over in order to run sample_uff_ssd. During INT8 calibration,
you may encounter a file reading error in TensorRT/data/samples/ssd/
VOC2007/list.txt. This is due to line-ending differences on Windows. To
work around this, open list.txt in a text editor and ensure that the file is
using Unix-style line endings.

‣ For sample_int8_api,the legacy runtime option is not supported on
Windows.

http://developer.download.nvidia.com/NsightVisualStudio/2.2/Documentation/UserGuide/HTML/Content/Timeout_Detection_Recovery.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm
https://www.virtualbox.org/
https://www.ubuntu.com/
https://store.docker.com/editions/community/docker-ce-desktop-windows

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 33

‣ When issuing -h for sampleINT8API, the --write_tensors option is missing.
The --write_tensors option generates a file that contains a list of network
tensor names. By default, it writes to the network_tensors.txt file. For
information about additional options, issue --tensors.

4.9. TensorRT Release 5.0.3
This is the TensorRT 5.0.3 release notes for Automotive and L4T users. This release
includes fixes from the previous TensorRT 5.0.x releases as well as the following
additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ For this TensorRT release, JetPack L4T and Drive D5L are supported by a single
package.

See the TensorRT Developer Guide for details.

Compatibility

TensorRT 5.0.3 supports the following product versions:

‣ CUDA 10.0
‣ cuDNN 7.3.1
‣ NvMedia DLA version 2.2
‣ NvMedia VPI Version 2.3

Known Issues

‣ For multi-process execution, and specifically when executing multiple inference
sessions in parallel (for example, of trtexec) target different accelerators, you may
observe a performance degradation if cudaEventBlockingSync is used for stream
synchronization.

One way to work around this performance degradation is to use the
cudaEventDefault flag when creating the events which internally uses the spin-
wait synchronization mechanism. In trtexec, the default behavior is to use blocking
events, but this can be overridden with the --useSpinWait option to specify spin-
wait based synchronization.

The spin-wait mechanism can increase CPU utilization on the system.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 34

For more information about CUDA blocking sync semantics, refer to Event
Management.

‣ There is a known issue when attempting to cross compile samples for mobile
platforms on an x86_64 host machine. As cross-platform CUDA packages
are structured differently, the following changes are required for samples/
Makefile.config when compiling cross platform.
Line 80

Add:

-L"$(CUDA_INSTALL_DIR)/targets/$(TRIPLE)/$(CUDA_LIBDIR)/stubs"

Line 109
Remove:

-lnvToolsExt

4.10. TensorRT Release 5.0.2
This is the TensorRT 5.0.2 release notes for Desktop users. This release includes fixes
from the previous TensorRT 5.0.x releases as well as the following additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Platforms
Added support for CentOS 7.5, Ubuntu 18.04, and Windows 10.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution,
Deconvolution, ElementWise, FullyConnected, LRN, Pooling, and Scale. For layer
specific constraints, see DLA Supported Layers. AlexNet, GoogleNet, ResNet-50, and
LeNet for MNIST networks have been validated on DLA. Since DLA support is new
to this release, it is possible that other CNN networks that have not been validated
will not work. Report any failing CNN networks that satisfy the layer constraints by
submitting a bug via the NVIDIA Developer website. Ensure you log-in, click on your
name in the upper right corner, click My account > My Bugs and select Submit a
New Bug.

The trtexec tool can be used to run on DLA with the --useDLACore=N where N is 0
or 1, and --fp16 options. To run the MNIST network on DLA using trtexec, issue:

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers
https://developer.nvidia.com/

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 35

 ./trtexec --deploy=data/mnist/mnist.prototxt --output=prob --useDLACore=0 --
fp16 --allowGPUFallback

trtexec does not support ONNX models on DLA.

Redesigned Python API
The Python API has gone through a thorough redesign to bring the API up to modern
Python standards. This fixed multiple issues, including making it possible to support
serialization via the Python API. Python samples using the new API include parser
samples for ResNet-50, a Network API sample for MNIST, a plugin sample using
Caffe, and an end-to-end sample using TensorFlow.

INT8
Support has been added for user-defined INT8 scales, using the new
ITensor::setDynamicRange function. This makes it possible to define dynamic
range for INT8 tensors without the need for a calibration data set. setDynamicRange
currently supports only symmetric quantization. A user must either supply a
dynamic range for each tensor or use the calibrator interface to take advantage of
INT8 support.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, is a single registration point
for all plugins in an application and is used to find plugin implementations during
deserialization.

C++ Samples
sampleSSD

This sample demonstrates how to perform inference on the Caffe SSD network
in TensorRT, use TensorRT plugins to speed up inference, and perform INT8
calibration on an SSD network. To generate the required prototxt file for this
sample, perform the following steps:

 1. Download models_VGGNet_VOC0712_SSD_300x300.tar.gz from: https://
drive.google.com/file/d/0BzKzrI_SkD1_WVVTSmQxU0dVRzA/view

 2. Extract the contents of the tar file;
tar xvf
 ~/Downloads/models_VGGNet_VOC0712_SSD_300x300.tar.gz

 3. Edit the deploy.prototxt file and change all the Flatten layers to Reshape
operations with the following parameters:

reshape_param {
 shape {
 dim: 0
 dim: -1
 dim: 1
 dim: 1
 }

 4. Update the detection_out layer by adding the keep_count output, for
example, add:

https://drive.google.com/file/d/0BzKzrI_SkD1_WVVTSmQxU0dVRzA/view
https://drive.google.com/file/d/0BzKzrI_SkD1_WVVTSmQxU0dVRzA/view

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 36

top: "keep_count"

 5. Rename the deploy.prototxt file to ssd.prototxt and run the sample.
 6. To run the sample in INT8 mode, install Pillow first by issuing the $ pip

install Pillow command, then follow the instructions from the README.

sampleINT8API
This sample demonstrates how to perform INT8 Inference using per-tensor
dynamic range. To generate the required input data files for this sample, perform
the following steps:

Running the sample:

 1. Download the Model files from GitHub, for example:

wget https://s3.amazonaws.com/download.onnx/models/opset_3/
resnet50.tar.gz

 2. Unzip the tar file:

tar -xvzf resnet50.tar.gz

 3. Rename resnet50/model.onnx to resnet50/resnet50.onnx, then copy
the resnet50.onnx file to the data/int8_api directory.

 4. Run the sample:

./sample_int8_api [-v or --verbose]

Running the sample with a custom configuration:

 1. Download the Model files from GitHub.
 2. Create an input image with a PPM extension. Resize it with the dimensions of

224x224x3.
 3. Create a file called reference_labels.txt. Ensure each line corresponds

to a single imagenet label. You can download the imagenet 1000 class human
readable labels from here. The reference label file contains only a single label
name per line, for example, 0:'tench, Tinca tinca' is represented as
tench.

 4. Create a file called dynamic_ranges.txt. Ensure each line corresponds
to the tensor name and floating point dynamic range, for example
<tensor_name> : <float dynamic range>. In order to generate tensor
names, iterate over the network and generate the tensor names. The dynamic
range can either be obtained from training (by measuring the min/max
value of activation tensors in each epoch) or using custom post processing
techniques (similar to TensorRT calibration). You can also choose to use a
dummy per tensor dynamic range to run the sample.

https://github.com/onnx/models/tree/master/models/image_classification
https://github.com/onnx/models/tree/master/models/image_classification
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 37

Python Samples
yolov3_onnx

This sample demonstrates a full ONNX-based pipeline for inference with the
network YOLOv3-608, including pre- and post-processing.

uff_ssd
This sample demonstrates a full UFF-based inference pipeline for performing
inference with an SSD (InceptionV2 feature extractor) network.

IPluginV2
A plugin class IPluginV2 has been added together with a corresponding IPluginV2
layer. The IPluginV2 class includes similar methods to IPlugin and IPluginExt,
so if your plugin implemented IPluginExt previously, you will change the class
name to IPluginV2. The IPlugin and IPluginExt interfaces are to be deprecated
in the future, therefore, moving to the IPluginV2 interface for this release is strongly
recommended.

See the TensorRT Developer Guide for details.

Breaking API Changes

‣ The choice of which DLA core to run a layer on is now made at runtime. You can
select the device type at build time, using the following methods:

IBuilder::setDeviceType(ILayer* layer, DeviceType deviceType)
IBuilder::setDefaultDeviceType(DeviceType deviceType)

where DeviceType is:
{
 kGPU, //!< GPU Device
 kDLA, //!< DLA Core
};

The specific DLA core to execute the engine on can be set by the following methods:

IBuilder::setDLACore(int dlaCore)
IRuntime::setDLACore(int dlaCore)

The following methods have been added to get the DLA core set on IBuilder or
IRuntime objects:

int IBuilder::getDLACore()
int IRuntime::getDLACore()

Another API has been added to query the number of accessible DLA cores as
follows:

int IBuilder::getNbDLACores()
Int IRuntime::getNbDLACores()

‣ The --useDLA=<int> on trtexec tool has been changed to --
useDLACore=<int>, the value can range from 0 to N-1, N being the number of DLA

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 38

cores. Similarly, to run any sample on DLA, use --useDLACore=<int> instead
of --useDLA=<int>.

Compatibility

‣ TensorRT 5.0.2 has been tested with cuDNN 7.3.1.

‣ TensorRT 5.0.2 has been tested with TensorFlow 1.9.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA
9.2 are no longer supported. On Windows only, CUDA 10.0 is supported for
TensorRT 5.0.1 RC.

Limitations In 5.0.2

‣ TensorRT 5.0.2 does not include support for DLA with the INT8 data type. Only
DLA with the FP16 data type is supported by TensorRT at this time. DLA with INT8
support is planned for a future TensorRT release.

‣ Android is not supported in TensorRT 5.0.2.

‣ The Python API is only supported on x86-based Linux platforms.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python
bindings.

‣ ONNX models are not supported on DLA in TensorRT 5.0.2.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do
not support FP16 mode. This is because some of the weights fall outside the range of
FP16.

‣ The ONNX parser is not supported on Windows 10. This includes all samples which
depend on the ONNX parser. ONNX support will be added in a future release.

‣ Tensor Cores supporting INT4 were first introduced with Turing GPUs. This release
of TensorRT 5.0 does not support INT4.

‣ The yolov3_onnx Python sample is not supported on Ubuntu 14.04 and earlier.

‣ The uff_ssd sample requires tensorflow-gpu for performing validation only.
Other parts of the sample can use the CPU version of tensorflow.

‣ The Leaky ReLU plugin (LReLU_TRT) allows for only a parameterized slope on a per
tensor basis.

Deprecated Features

The following features are deprecated in TensorRT 5.0.2:

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 39

‣ The majority of the old Python API, including the Lite and Utils API, are deprecated.
It is currently still accessible in the tensorrt.legacy package, but will be removed
in a future release.

‣ The following Python examples are deprecated:

‣ caffe_to_trt
‣ pytorch_to_trt
‣ tf_to_trt
‣ onnx_mnist
‣ uff_mnist
‣ mnist_api
‣ sample_onnx
‣ googlenet
‣ custom_layers
‣ lite_examples
‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the
open-source ONNX parser.

‣ The DimensionTypes class is deprecated.

‣ The plugin APIs that return INvPlugin are being deprecated and they now
return IPluginV2. These APIs will be removed in a future release. Refer to
NvInferPlugin.h inside the TensorRT package.

‣ The nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt plugins are still available for backward
compatibility. However, it is still recommended to use the Plugin Registry and
implement IPluginCreator for all new plugins.

‣ The libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a libraries
have been renamed to libnvinfer_static.a, libnvinfer_plugin_static.a,
and libnvparsers_static.a respectively. This makes TensorRT consistent
with CUDA, cuDNN, and other NVIDIA software libraries. It also avoids some
ambiguity between dynamic and static libraries during linking.

Known Issues

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA.
Other networks may work, but they have not been extensively tested.

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 40

‣ For this TensorRT release, there are separate JetPack L4T and Drive D5L packages
due to differences in the DLA library dependencies. In a future release, this should
become unified.

‣ The static library libnvparsers_static.a requires a special build of protobuf
to complete static linking. Due to filename conflicts with the official protobuf
packages, these additional libraries are only included in the tar file at this time. The
two additional libraries that you will need to link against are libprotobuf.a and
libprotobuf-lite.a from the tar file.

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are
missing from the package in order to complete static linking. The two static
libraries that are required to complete linking are libonnx_proto.a and
libnvonnxparser_plugin.a, as well as the protobuf libraries mentioned earlier.
You will need to build these two missing static libraries from the open source ONNX
project. This issue will be resolved in a future release.

‣ The C++ API documentation is not included in the TensorRT zip file. Refer to the
online documentation if you want to view the TensorRT C++ API.

‣ Most README files that are included with the samples assume that you are
working on a Linux workstation. If you are using Windows and do not have access
to a Linux system with an NVIDIA GPU, then you can try using VirtualBox to create
a virtual machine based on Ubuntu. Many samples do not require any training,
therefore the CPU versions of TensorFlow and PyTorch are enough to complete the
samples.

‣ The TensorRT Developer Guide has been written with Linux users in mind.
Windows specific instructions, where possible, will be added in a future revision of
the document.

‣ If sampleMovieLensMPS crashes before completing execution, an artifact (/dev/
shm/sem.engine_built) will not be properly destroyed. If the sample complains
about being unable to create a semaphore, remove the artifact by running rm /dev/
shm/sem.engine_built.

‣ To create a valid UFF file for sampleMovieLensMPS, the correct command is:

python convert_to_uff.py sampleMovieLens.pb -p preprocess.py

where preprocess.py is a script that is shipped with sampleMovieLens. Do not
use the command specified by the README.

‣ The trtexec tool does not currently validate command-line arguments. If you
encounter failures, double check the command-line parameters that you provided.

https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://www.virtualbox.org/
https://www.ubuntu.com/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 41

4.11. TensorRT Release 5.0.1 Release Candidate
(RC)
This is the release candidate (RC) for TensorRT 5.0.1 release notes. This release is for
Windows users only. It includes several enhancements and improvements compared to
the previously released TensorRT 4.0.1.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 4.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Platforms
Added support for CentOS 7.5, Ubuntu 18.04, and Windows 10.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution,
Deconvolution, ElementWise, FullyConnected, LRN, Pooling, and Scale. For
layer specific constraints, see DLA Supported Layers. Networks such as AlexNet,
GoogleNet, ResNet-50, and MNIST work with DLA. Other CNN networks may
work, but they have not been extensively tested and may result in failures including
segfaults.

The trtexec tool can be used to run on DLA with the --useDLA=N and --fp16
options. To run the AlexNet network on DLA using trtexec, issue:

 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLA=1
 --fp16 --allowGPUFallback

trtexec does not support ONNX models to run on DLA.

Redesigned Python API
The Python API has been rewritten from scratch and includes various improvements.
In addition to several bug fixes, it is now possible to serialize and deserialize an
engine to and from a file using the Python API. Python samples using the new API
include parser samples for ResNet-50, a Network API sample for MNIST, a plugin
sample using Caffe, and an end-to-end sample using TensorFlow.

INT8
Support for user-defined INT8 scales, using the new ITensor::setDynamicRange
function. This makes it possible to provide custom INT8 calibration without the need
for a calibration data set. setDynamicRange currently supports only symmetric

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_4
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 42

quantization. Furthermore, if no calibration table is provided, calibration scales must
be provided for each layer.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, that is a single registration
point for all plugins in an application and is used to find plugin implementations
during deserialization.

sampleSSD
This sample demonstrates how to preprocess the input to the SSD network, perform
inference on the SSD network in TensorRT, use TensorRT plugins to speed up
inference, and perform INT8 calibration on an SSD network.

See the TensorRT Developer Guide for details.

Breaking API Changes

‣ The IPluginExt API has 4 new methods, getPluginType, getPluginVersion,
destroy and clone. All plugins of type IPluginExt will have to implement
these new methods and re-compile. This is a temporary issue; we expect to restore
compatibility with the 4.0 API in the GA release. For more information, see
Migrating Plugins From TensorRT 5.0.0 RC To TensorRT 5.0.x for guidance on
migration.

Compatibility

‣ TensorRT 5.0.1 RC has been tested with cuDNN 7.3.0.

‣ TensorRT 5.0.1 RC has been tested with TensorFlow 1.9.

‣ TensorRT 5.0.1 RC for Windows has been tested with Visual Studio 2017.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA
9.2 are no longer supported. On Windows only, CUDA 10.0 is supported for
TensorRT 5.0.1 RC.

Limitations In 5.0.1 RC

‣ For this release, there are separate JetPack L4T and Drive D5L packages due to
differences in the DLA library dependencies. In a future release, this should become
unified.

‣ Android is not supported in TensorRT 5.0.1 RC.

‣ The Python API does not support DLA.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python
bindings.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins-50rc-50ga

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 43

‣ The choice of which DLA device to run on is currently made at build time. In GA, it
will be selectable at runtime.

‣ ONNX models are not supported on DLA in TensorRT 5.0.1 RC.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do
not support FP16 mode. This is because some of the weights fall outside the range of
FP16.

‣ Python is not supported on Windows 10. This includes the graphsurgeon and UFF
Python modules.

‣ The ONNX parser is not supported on Windows 10. This includes all samples which
depend on the ONNX parser. ONNX support will be added in a future release.

Deprecated Features

The following features are deprecated in TensorRT 5.0.1 RC:

‣ Majority of the old Python API, including the Lite and Utils API, is deprecated. It is
currently still accessible in the tensorrt.legacy package, but will be removed in a
future release.

‣ The following Python examples:

‣ caffe_to_trt
‣ pytorch_to_trt
‣ tf_to_trt
‣ onnx_mnist
‣ uff_mnist
‣ mnist_api
‣ sample_onnx
‣ googlenet
‣ custom_layers
‣ lite_examples
‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the
open-source ONNX parser.

‣ The DimensionTypes class.

‣ The plugin APIs that return IPlugin are being deprecated and they now return
IPluginExt. These APIs will be removed in a future release. Refer to the
NvInferPlugin.h file inside the package.

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 44

‣ nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt (still available for backward compatibility).
Instead, use the Plugin Registry and implement IPluginCreator for all new
plugins.

‣ libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a have been
renamed to libnvinfer_static.a, libnvinfer_plugin_static.a, and
libnvparsers_static.a respectively. This makes TensorRT consistent with
CUDA, cuDNN, and other NVIDIA software libraries. It also avoids some
ambiguity between dynamic and static libraries during linking.

Known Issues

‣ The Plugin Registry will only register plugins with a unique {name, version}
tuple. The API for this is likely to change in future versions to support multiple
plugins with same name and version.

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA.
Other networks may work, but they have not been extensively tested.

‣ The static library libnvparsers_static.a requires a special build of protobuf
to complete static linking. Due to filename conflicts with the official protobuf
packages, these additional libraries are only included in the tar file at this time. The
two additional libraries that you will need to link against are libprotobuf.a and
libprotobuf-lite.a from the tar file.

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are
missing from the package in order to complete static linking. The two static
libraries that are required to complete linking are libonnx_proto.a and
libnvonnxparser_plugin.a, as well as the protobuf libraries mentioned earlier.
You will need to build these two missing static libraries from the open source ONNX
project. This issue will be resolved in a future release.

‣ If you upgrade only uff-converter-tf, for example using apt-get install
uff-converter-tf, then it will not upgrade graphsurgeon-tf due to
inexact dependencies between these two packages. You will need to specify both
packages on the command line, such as apt-get install uff-converter-tf
graphsurgeon-tf in order to upgrade both packages. This will be fixed in a future
release.

‣ The fc_plugin_caffe_mnist python sample cannot be executed if the sample
is built using pybind11 v2.2.4. We suggest that you instead clone pybind11 v2.2.3
using the following command:

git clone -b v2.2.3 https://github.com/pybind/pybind11.git

https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 45

‣ The C++ API documentation is not included in the TensorRT zip file. Refer to the
online documentation if you want to view the TensorRT C++ API.

‣ Most README files that are included with the samples assume that you are
working on a Linux workstation. If you are using Windows and do not have access
to a Linux system with an NVIDIA GPU, then you can try using VirtualBox to create
a virtual machine based on Ubuntu. Many samples do not require any training,
therefore the CPU versions of TensorFlow and PyTorch are enough to complete the
samples.

‣ The TensorRT Developer Guide has been written with Linux users in mind.
Windows specific instructions, where possible, will be added in a future revision of
the document.

4.12. TensorRT Release 5.0.0 Release Candidate
(RC)
This is the release candidate (RC) for TensorRT 5.0.0. It includes several enhancements
and improvements compared to the previously released TensorRT 4.0.1.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 4.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Platforms
Added support for CentOS 7.5 and Ubuntu 18.04.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution,
Deconvolution, ElementWise, FullyConnected, LRN, Pooling, and Scale. For
layer specific constraints, see DLA Supported Layers. Networks such as AlexNet,
GoogleNet, ResNet-50, and MNIST work with DLA. Other CNN networks may
work, but they have not been extensively tested and may result in failures including
segfaults.

The trtexec tool can be used to run on DLA with the --useDLA=N and --fp16
options. To run the AlexNet network on DLA using trtexec, issue:

 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLA=1
 --fp16 --allowGPUFallback

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://www.virtualbox.org/
https://www.ubuntu.com/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_4
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 46

trtexec does not support ONNX models to run on DLA.

Redesigned Python API
The Python API has been rewritten from scratch and includes various improvements.
In addition to several bug fixes, it is now possible to serialize and deserialize an
engine to and from a file using the Python API. Python samples using the new API
include parser samples for ResNet-50, a Network API sample for MNIST, a plugin
sample using Caffe, and an end-to-end sample using TensorFlow.

INT8
Support for user-defined INT8 scales, using the new ITensor::setDynamicRange
function. This makes it possible to provide custom INT8 calibration without the need
for a calibration data set. setDynamicRange currently supports only symmetric
quantization. Furthermore, if no calibration table is provided, calibration scales must
be provided for each layer.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, that is a single registration
point for all plugins in an application and is used to find plugin implementations
during deserialization.

See the TensorRT Developer Guide for details.

Breaking API Changes

‣ The IPluginExt API has 4 new methods, getPluginType, getPluginVersion,
destroy and clone. All plugins of type IPluginExt will have to implement
these new methods and re-compile. This is a temporary issue; we expect to
restore compatibility with the 4.0 API in the GA release. For more information,
see Migrating Plugins From TensorRT 4.0.x To TensorRT 5.0 RC for guidance on
migration.

‣ Upcoming changes in TensorRT 5.0 GA for plugins

‣ A new plugin class IPluginV2 and a corresponding IPluginV2 layer will be
introduced. The IPluginV2 class includes similar methods to IPlugin and
IPluginExt, so if your plugin implemented IPluginExt previously, you will
change the class name to IPluginV2.

‣ The IPluginCreator class will create and deserialize plugins of type
IPluginV2 as opposed to IPluginExt.

‣ The create*Plugin() methods in NvInferPlugin.h will return plugin
objects of type IPluginV2 as opposed to IPluginExt.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 47

Compatibility

‣ TensorRT 5.0.0 RC has been tested with cuDNN 7.3.0.

‣ TensorRT 5.0.0 RC has been tested with TensorFlow 1.9.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA
9.2 are no longer supported.

Limitations In 5.0.0 RC

‣ For this release, there are separate JetPack L4T and Drive D5L packages due to
differences in the DLA library dependencies. In a future release, this should become
unified.

‣ Android is not supported in TensorRT 5.0.0 RC.

‣ The Python API does not support DLA.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python
bindings.

‣ The choice of which DLA device to run on is currently made at build time. In GA, it
will be selectable at runtime.

‣ ONNX models are not supported on DLA in TensorRT 5.0 RC.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do
not support FP16 mode. This is because some of the weights fall outside the range of
FP16.

Deprecated Features

The following features are deprecated in TensorRT 5.0.0:

‣ Majority of the old Python API, including the Lite and Utils API, is deprecated. It is
currently still accessible in the tensorrt.legacy package, but will be removed in a
future release.

‣ The following Python examples:

‣ caffe_to_trt
‣ pytorch_to_trt
‣ tf_to_trt
‣ onnx_mnist
‣ uff_mnist
‣ mnist_api
‣ sample_onnx
‣ googlenet

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 48

‣ custom_layers
‣ lite_examples
‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the
open-source ONNX parser.

‣ The DimensionTypes class.

‣ The plugin APIs that return IPlugin are being deprecated and they now return
IPluginExt. These APIs will be removed in a future release. Refer to the
NvInferPlugin.h file inside the package.

‣ nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt (still available for backward compatibility).
Instead, use the Plugin Registry and implement IPluginCreator for all new
plugins.

‣ libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a have been
renamed to libnvinfer_static.a, libnvinfer_plugin_static.a, and
libnvparsers_static.a respectively. This makes TensorRT consistent with
CUDA, cuDNN, and other NVIDIA software libraries. It also avoids some
ambiguity between dynamic and static libraries during linking.

Known Issues

‣ The Plugin Registry will only register plugins with a unique {name, version}
tuple. The API for this is likely to change in future versions to support multiple
plugins with same name and version.

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA.
Other networks may work, but they have not been extensively tested.

‣ The static library libnvparsers_static.a requires a special build of protobuf
to complete static linking. Due to filename conflicts with the official protobuf
packages, these additional libraries are only included in the tar file at this time. The
two additional libraries that you will need to link against are libprotobuf.a and
libprotobuf-lite.a from the tar file.

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are
missing from the package in order to complete static linking. The two static
libraries that are required to complete linking are libonnx_proto.a and
libnvonnxparser_plugin.a, as well as the protobuf libraries mentioned earlier.

TensorRT Release 5.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 49

You will need to build these two missing static libraries from the open source ONNX
project. This issue will be resolved in a future release.

‣ If you upgrade only uff-converter-tf, for example using apt-get install
uff-converter-tf, then it will not upgrade graphsurgeon-tf due to
inexact dependencies between these two packages. You will need to specify both
packages on the command line, such as apt-get install uff-converter-tf
graphsurgeon-tf in order to upgrade both packages. This will be fixed in a future
release.

‣ The fc_plugin_caffe_mnist python sample cannot be executed if the sample
is built using pybind11 v2.2.4. We suggest that you instead clone pybind11 v2.2.3
using the following command:

git clone -b v2.2.3 https://github.com/pybind/pybind11.git

https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 50

Chapter 5.
TENSORRT RELEASE 4.X.X

5.1. TensorRT Release 4.0.1
This TensorRT 4.0.1 General Availability release includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 4.0.1 GA has been tested with cuDNN 7.1.3 and now requires cuDNN
7.1.x.

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented.
ONNX is a standard for representing deep learning models that enable models to be
transferred between frameworks. TensorRT can now parse the network definitions
in ONNX format, in addition to NVCaffe and UFF formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or
FP16, inputs and return FP16 outputs.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce,
RNNv2 and TopK layers (for K up to 25).

‣ This release has optimizations which target recommender systems like Neural
Collaborative Filtering.

‣ Many layers now support the ability to broadcast across the batch dimension.

‣ In TensorRT 3.0, INT8 had issues with rounding and striding in the Activation layer.
This may have caused INT8 accuracy to be low. Those issues have been fixed.

‣ The C++ samples and Python examples were tested with TensorFlow 1.8 and
PyTorch 0.4.0 where applicable.

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 51

‣ Added sampleOnnxMNIST. This sample shows the conversion of an MNIST
network in ONNX format to a TensorRT network.

‣ Added sampleNMT. Neural Machine Translation (NMT) using sequence to sequence
(seq2seq) models has garnered a lot of attention and is used in various NMT
frameworks. sampleNMT is a highly modular sample for inferencing using C++ and
TensorRT API so that you can consider using it as a reference point in your projects.

‣ Updated sampleCharRNN to use RNNv2 and converting weights from TensorFlow
to TensorRT.

‣ Added sampleUffSSD. This sample converts the TensorFlow Single Shot MultiBox
Detector (SSD) network to a UFF format and runs it on TensorRT using plugins. This
sample also demonstrates how other TensorFlow networks can be preprocessed and
converted to UFF format with support of custom plugin nodes.

‣ Memory management improvements (see the Memory Management section in the
Developer Guide for details.)

‣ Applications may now provide their own memory for activations and
workspace during inference, which is used only while the pipeline is running.

‣ An allocator callback is available for all memory allocated on the GPU. In
addition, model deserialization is significantly faster (from system memory, up
to 10x faster on large models).

Using TensorRT 4.0.1

Ensure you are familiar with the following notes when using this release.

‣ The builder methods setHalf2Mode and getHalf2Mode have been superseded by
setFp16Mode and getFp16Mode which better represent their intended usage.

‣ The sample utility giexec has been renamed to trtexec to be consistent with the
product name, TensorRT, which is often shortened to TRT. A compatibility script for
users of giexec has been included to help users make the transition.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available
for backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were
NV_GIE_MAJOR, NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct
alternatives are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH,
and NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension types are now ignored in the API, however, they are still available for
backwards compatibility.

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 52

Known Issues

‣ If the ONNX parser included with TensorRT is unable to parse your model, then try
updating to the latest open source ONNX parser, which may resolve your issue.

‣ PyTorch no longer supports Python 3.4 with their current release (0.4.0). Therefore,
the TensorRT PyTorch examples will not work when using Python 3 on Ubuntu
14.04.

‣ Reshape to a tensor that has a larger number of dimensions than the input tensor is
not supported.

‣ Reformat has a known memory overwrite issue on Volta when FP16 is used with the
Concatenation layer and the Reformat layer.

‣ If you have two different CUDA versions of TensorRT installed, such as CUDA 8.0
and CUDA 9.0, or CUDA 9.2 using local repos, then you will need to execute an
additional command to install the CUDA 8.0 version of TensorRT and prevent it
from upgrading to the CUDA 9.0 or CUDA 9.2 versions of TensorRT.

sudo apt-get install libnvinfer4=4.1.2-1+cuda8.0 \
 libnvinfer-dev=4.1.2-1+cuda8.0
sudo apt-mark hold libnvinfer4 libnvinfer-dev

‣ sampleNMT

‣ Performance is not fully optimized

‣ sampleUffSSD

‣ Some precision loss was observed while running the network in INT8 mode,
causing some objects to go undetected in the image. Our general observation is
that having at least 500 images for calibration is a good starting point.

‣ Performance regressions

‣ Compared to earlier TensorRT versions, a 5% slowdown was observed
on AlexNet when running on GP102 devices with batch size 2 using the
NvCaffeParser.

‣ Compared to earlier TensorRT versions, a 5% to 10% slowdown was observed
on variants of inception and some instances of ResNet when using the
NvUffParser.

‣ The NvUffParser returns the output tensor in the shape specified by the user, and
not in NCHW shape as in earlier versions of TensorRT. In other words, the output
tensor shape will match the shape of the tensor returned by TensorFlow, for the
same network.

‣ The Python 3.4 documentation is missing from the Ubuntu 14.04 packages. Refer
to the Python 2.7 documentation or view the online Python documentation as an
alternative.

https://github.com/onnx/onnx-tensorrt

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 53

‣ Some samples do not provide a -h argument to print the sample usage. You can
refer to the README.txt file in the sample directory for usage examples. Also, if the
data files for some samples cannot be found it will sometimes raise an exception and
abort instead of exiting normally.

‣ If you have more than one version of the CUDA toolkit installed on your system and
the CUDA version for TensorRT is not the latest version of the CUDA toolkit, then
you will need to provide an additional argument when compiling the samples. For
example, you have CUDA 9.0 and CUDA 9.2 installed and you are using TensorRT
for CUDA 9.0.

make CUDA_INSTALL_DIR=/usr/local/cuda-9.0

‣ When you pip uninstall the tensorrtplugins Python package, you may see
the following error which can be ignored.

OSError: [Errno 2] No such file or directory: '/usr/local/lib/python2.7/
dist-packages/tensorrtplugins-4.0.1.0-py2.7-linux-x86_64.egg'

‣ Due to a bug in cuDNN 7.1.3, which is the version of cuDNN TensorRT has been
validated against, using RNNs with half precision on Kepler GPUs will cause
TensorRT to abort. FP16 support is non-native on Kepler GPUs, therefore, using any
precision other than FP32 is discouraged except for testing.

‣ sampleMovieLens is currently limited to running a maximum of 8 concurrent
processes on a Titan V and may result in suboptimal engines during parallel
execution. The sample will be enhanced in the near future to support a greater
degree of concurrency. Additionally, to ensure compatibility with TensorRT, use
TensorFlow <= 1.7.0 to train the model. There may be a conflict between the versions
of CUDA and/or cuDNN used by TensorRT and TensorFlow 1.7. We suggest that
you install TensorFlow 1.7 CPU in order to complete the sample.

python -m pip install tensorflow==1.7.0

5.2. TensorRT Release 4.0 Release Candidate (RC)
2
This TensorRT 4.0 Release Candidate (RC) 2 includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4. TensorRT 4.0 RC2
supports desktop and Tegra platforms. This release candidate is for early testing and
feedback, for production use of TensorRT, continue to use 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 4.0 RC2 for mobile supports cuDNN 7.1.2.

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 54

‣ TensorRT 4.0 RC2 for desktop supports cuDNN 7.1.3.

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented.
TensorRT can now parse the network definitions in ONNX format, in addition to
NVCaffe and UFF formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or
FP16, inputs and return FP16 tensors.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce,
RNNv2 and TopK layers (for K up to 25).

‣ Added SampleONNXMNIST sample. Open Neural Network Exchange (ONNX) is a
standard for representing deep learning models that enable models to be transferred
between frameworks. This sample shows the conversion of an MNIST network in
ONNX format to a TensorRT network.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available
for backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were
NV_GIE_MAJOR, NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct
alternatives are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH,
and NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension Types are now ignored in the API, however, they are still available for
backwards compatibility.

Known Issues
SampleMLP and SampleNMT are included in this release, however, they are beta
samples. They are currently not optimized for mobile platforms.

5.3. TensorRT Release 4.0 Release Candidate (RC)
This TensorRT 4.0 Release Candidate (RC) includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4. TensorRT 4.0 RC
supports x86 desktop platforms only. This release candidate is for early testing and
feedback, for production use of TensorRT, continue to use 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 55

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented.
TensorRT can now parse the network definitions in ONNX format, in addition to
NVCaffe and UFF formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or
FP16, inputs and return FP16 tensors.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce,
RNNv2 and TopK layers (for K up to 25).

‣ The samples were tested with TensorFlow 1.6. You must be using cuDNN 7.0.x in
order to use both TensorRT and TensorFlow at the same time since TensorFlow 1.6
does not support cuDNN 7.1.x yet.

‣ Added SampleMLP sample for multi-layer perceptrons.

‣ Added SampleONNXMNIST sample. Open Neural Network Exchange (ONNX) is a
standard for representing deep learning models that enable models to be transferred
between frameworks. This sample shows the conversion of an MNIST network in
ONNX format to a TensorRT network.

‣ Added SampleNMT sample. Neural Machine Translation (NMT) using sequence
to sequence (seq2seq) models has garnered a lot of attention and is used in various
NMT frameworks. SampleNMT is a highly modular sample for inferencing using C
++ and TensorRT API so that you can consider using it as a reference point in your
projects.

‣ Updated SampleCharRNN sample to use RNNv2 and converting weights from
TensorFlow to TensorRT.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available
for backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were
NV_GIE_MAJOR, NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct
alternatives are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH,
and NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension Types are now ignored in the API, however, they are still available for
backwards compatibility.

Known Issues

‣ If you were previously using the machine learning debian repository, then it will
conflict with the version of libcudnn7 that is contained within the local repository
for TensorRT. The following commands will downgrade libcudnn7 to version
7.0.5.15, which is supported and tested with TensorRT, and hold the package at

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 56

this version. If you are using CUDA 8.0 for your application, ensure you replace
cuda9.0 with cuda8.0.

sudo apt-get install libcudnn7=7.0.5.15-1+cuda9.0 libcudnn7-
dev=7.0.5.15-1+cuda9.0
sudo apt-mark hold libcudnn7 libcudnn7-dev

If you would like to later upgrade libcudnn7 to the latest version, then you can use
the following commands to remove the hold.

sudo apt-mark unhold libcudnn7 libcudnn7-dev
sudo apt-get dist-upgrade

‣ If you have both the CUDA 8.0 and CUDA 9.0 local repos installed for TensorRT,
then you will need to execute an additional command to install the CUDA 8.0
version of TensorRT and prevent it from upgrading to the CUDA 9.0 version of
TensorRT.

sudo apt-get install libnvinfer4=4.1.0-1+cuda8.0 libnvinfer-
dev=4.1.0-1+cuda8.0
sudo apt-mark hold libnvinfer4 libnvinfer-dev

‣ If you installed the dependencies for the TensorRT python examples using pip
install tensorrt[examples] then it could replace the GPU accelerated version
of TensorFlow with the CPU accelerated version of TensorFlow. You will need to
remove the version of TensorFlow installed as a TensorRT dependency and install
the GPU accelerated version in its place.

pip uninstall tensorflow
pip install tensorflow-gpu

‣ SampleNMT

‣ Performance is not fully optimized
‣ SampleNMT does not support FP16
‣ The vocabulary files are expected to be in the ../../../../data/samples/

nmt/deen directory from the executable. The sample doesn’t print usage
if vocabulary files are not present in the above mentioned path. For more
information, see the README.txt file for usage details.

‣ SampleMLP

‣ Performance is not fully optimized
‣ SampleMLP does not support FP16
‣ The accuracy of MLPs for handwritten digit recognition is lower than CNNs,

therefore, the sample may give an incorrect prediction in some cases.
‣ SampleMLP usage has incorrect details on the -a parameter. It should be -a <#>.

The activation to use on the layers, defaults to 1. Valid values are 1[ReLU],
2[Sigmoid], and 3[TanH]; instead of -a <#>. The activation to use in on the
layers, defaults to 1. Valid values are 0[ReLU], 1[Sigmoid], and 2[TanH].

‣ The timing information printed by the sample may not be accurate.

TensorRT Release 4.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 57

‣ Performance regressions

‣ A 5% slowdown was observed on AlexNet when running on GP102 devices
with batch size 2 using the Caffe parser.

‣ A 5% to 10% slowdown was observed on variants of inception, some instances
of ResNet, and some instances of SSD when using the UFF parser.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 58

Chapter 6.
TENSORRT RELEASE 3.X.X

6.1. TensorRT Release 3.0.4
This TensorRT 3.0.4 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.2.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Fixed an issue with INT8 deconvolution bias. If you have seen an issue with
deconvolution INT8 accuracy especially regarding TensorRT. 2.1, then this fix
should solve the issue.

‣ Fixed an accuracy issue in FP16 mode for NVCaffe models.

Using TensorRT 3.0.4

Ensure you are familiar with the following notes when using this release.

‣ The UFF converter script is packaged only for x86 users. If you are not an x86 user,
and you want to convert TensorFlow models into UFF, you need to obtain the
conversion script from the x86 package of TensorRT.

6.2. TensorRT Release 3.0.3
This TensorRT 3.0.3 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.2. This
release is for AArch64 only.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 59

‣ Added support for Xavier

Using TensorRT 3.0.3

Ensure you are familiar with the following notes when using this release.

‣ When building the samples in this release, it is necessary to specify
CUDA_INSTALL_DIR as an argument to the Makefile.

‣ This release does not support TensorRT Python bindings.

Known Issues

‣ When building the samples on aarch64 natively, there is an issue in the
Makefile.config file that requires you to provide an additional option to make,
namely CUDA_LIBDIR.

‣ The infer_caffe_static test fails on D5L Parker dGPU. This is a regression from
the previous release.

‣ QnX has known performance issues with the mmap and malloc() operating system
memory allocation routines. These issues can affect the performance of TensorRT; up
to 10X.

6.3. TensorRT Release 3.0.2
This TensorRT 3.0.2 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Fixed a bug in one of the INT8 deconvolution kernels that was generating
incorrect results. This fixed accuracy regression from 2.1 for networks that use
deconvolutions.

‣ Fixed a bug where the builder would report out-of-memory when compiling a low
precision network, in the case that a low-precision version of the kernel could not
be found. The builder now correctly falls back to a higher precision version of the
kernel.

‣ Fixed a bug where the existence of some low-precision kernels were being
incorrectly reported to the builder.

Using TensorRT 3.0.2

Ensure you are familiar with the following notes when using this release.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 60

‣ When working with large networks and large batch sizes on the Jetson TX1 you
may see failures that are the result of CUDA error 4. This error generally means a
CUDA kernel failed to execute properly, but sometimes this can mean the CUDA
kernel actually timed out. The CPU and GPU share memory on the Jetson TX1 and
reducing the memory used by the CPU would help the situation. If you are not
using the graphical display on L4T you can stop the X11 server to free up CPU and
GPU memory. This can be done using:

$ sudo systemctl stop lightdm.service

Known Issues

‣ INT8 deconvolutions with biases have the bias scaled incorrectly. U-Net based
segmentation networks typically have non-zero bias.

‣ For TensorRT Android 32-bit, if your memory usage is high, then you may see
TensorRT failures. The issue is related to the CUDA allocated buffer address being
higher or equal to 0x80000000 and it is hard to know the exact memory usage after
which this issue is hit.

‣ If you are installing TensorRT from a tar package (instead of using the .deb
packages and apt-get), you will need to update the custom_plugins example
to point to the location that the tar package was installed into. For example,
in the <PYTHON_INSTALL_PATH>/tensorrt/examples/custom_layers/
tensorrtplugins/setup.py file change the following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include
directory.

‣ Change TENSORRT_LIB_DIR to point to <TAR_INSTALL_ROOT>/lib directory.
‣ If you were previously using the machine learning debian repository, then it will

conflict with the version of libcudnn7 that is contained within the local repository
for TensorRT. The following commands will downgrad libcudnn7 to the CUDA 9.0
version, which is supported by TensorRT, and hold the package at this version.

sudo apt-get install libcudnn7=7.0.5.15-1+cuda9.0
libcudnn7-dev=7.0.5.15-1+cuda9.0
sudo apt-mark hold libcudnn7 libcudnn7-dev

If you would like to later upgrade libcudnn7 to the latest version, then you can use
the following commands to remove the hold.

sudo apt-mark unhold libcudnn7 libcudnn7-dev
sudo apt-get dist-upgrade

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 61

6.4. TensorRT Release 3.0.1
This TensorRT 3.0.1 General Availability release includes several enhancements and
improvements compared to the previously released TensorRT 2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

NvCaffeParser
NVCaffe 0.16 is now supported.

New deep learning layers or algorithms

‣ The TensorRT deconvolution layer previously did not support non-zero padding,
or stride values that were distinct from kernel size. These restrictions have now
been lifted.

‣ The TensorRT deconvolution layer now supports groups.
‣ Non-determinism in the deconvolution layer implementation has been

eliminated.
‣ The TensorRT convolution layer API now supports dilated convolutions.
‣ The TensorRT API now supports these new layers (but they are not supported via

the NvCaffeParser):

‣ unary
‣ shuffle
‣ padding

‣ The Elementwise (eltwise) layer now supports broadcasting of input dimensions.
‣ The Flatten layer flattens the input while maintaining the batch_size. This layer

was added in the UFF converter and NvUffParser.
‣ The Squeeze layer removes dimensions of size 1 from the shape of a tensor. This

layer was added in the UFF converter and NvUffParser.

Universal Framework Format 0.2
UFF format is designed to encapsulate trained neural networks so that they can be
parsed by TensorRT. It’s also designed in a way of storing the information about a
neural network that is needed to create an inference engine based on that neural
network.

Performance

‣ Performance regressions seen from v2.1 to 3.0.1 Release Candidate for INT8 and
FP16 are now fixed.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 62

‣ The INT8 regression in LRN that impacted networks like GoogleNet and
AlexNet is now fixed.

‣ The FP16 regression that impacted networks like AlexNet and ResNet-50 is
now fixed.

‣ The performance of the Xception network has improved, for example, by more
than 3 times when batch size is 8 on Tesla P4.

‣ Changed how the CPU synchronizes with the GPU in order to reduce the overall
load on the CPU when running inference with TensorRT.

‣ The deconvolution layer implementation included with TensorRT was, in some
circumstances, using significantly more memory and had lower performance
than the implementation provided by the cuDNN library. This has now been
fixed.

‣ MAX_TENSOR_SIZE changed from (1<<30) to ((1<<31)-1). This change
enables the user to run larger batch sizes for networks with large input images.

Samples

‣ All Python examples now import TensorRT after the appropriate framework is
imported. For example, the tf_to_trt.py example imports TensorFlow before
importing TensorRT. This is done to avoid cuDNN version conflict issues.

‣ The tf_to_trt and pytorch_to_trt samples shipped with the TensorRT 3.0
Release Candidate included network models that were improperly trained with
the MNIST dataset, resulting in poor classification accuracy. This version has new
models that have been properly trained with the MNIST dataset to provide better
classification accuracy.

‣ The pytorch_to_trt sample originally showed low accuracy with MNIST,
however, data and training parameters were modified to address this.

‣ The giexec command line wrapper in earlier versions would fail if users specify
workspace >= 2048 MB. This issue is now fixed.

Functionality
The AverageCountExcludesPadding attribute has been added to the pooling
layer to control whether to use inclusive or exclusive averaging. The default is
true, as used by most frameworks. The NvCaffeParser sets this to false, restoring
compatibility of padded average pooling between NVCaffe and TensorRT.

TensorRT Python API
TensorRT 3.0.1 introduces the TensorRT Python API, which provides developers
interfaces to:

‣ the NvCaffeParser
‣ the NvUffParser
‣ The nvinfer graph definition API
‣ the inference engine builder

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 63

‣ the engine executor
‣ the perform calibration for running inference with INT8
‣ a workflow to include C++ custom layer implementations

TensorRT Lite: A simplified API for inference
TensorRT 3.0.1 provides a streamlined set of API functions (tensorrt.lite) that
allow users to export a trained model, build an engine, and run inference, with only a
few lines of Python code.

Streamlined export of models trained in TensorFlow into TensorRT
With this release, you can take a trained model in TensorFlow saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow model exporter creates
an output file in a format called UFF (Universal Framework Format), which can then
be parsed by TensorRT.

Currently the export path is expected to support the following:

‣ TensorFlow 1.3
‣ FP32 CNNs
‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc.)
‣ RNNs
‣ INT8 CNNs

Volta
The NVIDIA Volta architecture is now supported, including the Tesla V100 GPU. On
Volta devices, the Tensor Core feature provides a large performance improvement,
and Tensor Cores are automatically used when the builder is set to half2mode.

QNX
TensorRT 3.0.1 runs on the QNX operating system on the Drive PX2 platform.

Release Notes 3.0.1 Errata

‣ Due to the cuDNN symbol conflict issues between TensorRT and TensorFlow,
the tf_to_trt Python example works with TensorFlow 1.4.0 only and not prior
versions of TensorFlow.

‣ If your system has multiple libcudnnX-dev versions installed, ensure that cuDNN
7 is used for compiling and running TensorRT samples. This problem can occur
when you have TensorRT and a framework installed. TensorRT uses cuDNN 7 while
most frameworks are currently on cuDNN 6.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 64

‣ There are various details in the Release Notes and Developer Guide about the
pytorch_to_trt Python example. This sample is no longer part of the package
because of cuDNN symbol conflict issues between PyTorch and TensorRT.

‣ In the Installation and Setup section of the Release Notes, it is mentioned that
TENSORRT_LIB_DIR should point to <TAR_INSTALL_ROOT>/lib64. Instead,
TENSORRT_LIB_DIR should point to <TAR_INSTALL_ROOT>/lib.

‣ There are some known minor performance regressions for FP32 mode on K80 for
large batch sizes on CUDA 8. Update to CUDA 9 if you see similar performance
regression.

Using TensorRT 3.0.1

Ensure you are familiar with the following notes when using this release.

‣ Although networks can use NHWC and NCHW, TensorFlow users are encouraged
to convert their networks to use NCHW data ordering explicitly in order to achieve
the best possible performance.

‣ The libnvcaffe_parsers.so library file is now called libnvparsers.so. The
links for libnvcaffe_parsers are updated to point to the new libnvparsers
library. The static library libnvcaffe_parser.a is also linked to the new
libnvparsers.

Known Issues

Installation and Setup

‣ If you are installing TensorRT from a tar package (instead of using the .deb
packages and apt-get), you will need to update the custom_plugins example
to point to the location that the tar package was installed into. For example,
in the <PYTHON_INSTALL_PATH>/tensorrt/examples/custom_layers/
tensorrtplugins/setup.py file change the following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include
directory.

‣ Change TENSORRT_LIB_DIR to point to <TAR_INSTALL_ROOT>/lib64
directory.

‣ The PyTorch based sample will not work with the CUDA 9 Toolkit. It will only work
with the CUDA 8 Toolkit.

‣ When using the TensorRT APIs from Python, import the tensorflow and uff
modules before importing the tensorrt module. This is required to avoid a
potential namespace conflict with the protobuf library as well as the cuDNN
version. In a future update, the modules will be fixed to allow the loading of these
Python modules to be in an arbitrary order.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 65

‣ The TensorRT Python APIs are only supported on x86 based systems. Some
installation packages for ARM based systems may contain Python .whl files. Do not
install these on the ARM systems, as they will not function.

‣ The TensorRT product version is incremented from 2.1 to 3.0.1 because we added
major new functionality to the product. The libnvinfer package version number
was incremented from 3.0.2 to 4.0 because we made non-backward compatible
changes to the application programming interface.

‣ The TensorRT debian package name was simplified in this release to tensorrt.
In previous releases, the product version was used as a suffix, for example
tensorrt-2.1.2.

‣ If you have trouble installing the TensorRT Python modules on Ubuntu 14.04, refer
to the steps on installing swig to resolve the issue. For installation instructions, see
Unix Installation.

‣ The Flatten layer can only be placed in front of the Fully Connected layer. This
means that the Flatten layer can only be used if its output is directly fed to a Fully
Connected layer.

‣ The Squeeze layer only implements the binary squeeze (removing specific size 1
dimensions). The batch dimension cannot be removed.

‣ If you see the Numpy.core.multiarray failed to import error message,
upgrade your NumPy to version 1.13.0 or greater.

‣ For Ubuntu 14.04, use pip version >= 9.0.1 to get all the dependencies installed.

TensorFlow Model Conversion

‣ The TensorFlow to TensorRT model export works only when running TensorFlow
with GPU support enabled. The converter does not work if TensorFlow is running
without GPU acceleration.

‣ The TensorFlow to TensorRT model export does not work with network models
specified using the TensorFlow Slim interface, nor does it work with models
specified using the Keras interface.

‣ The TensorFlow to TensorRT model export does not support recurrent neural
network (RNN) models.

‣ The TensorFlow to TensorRT model export may produce a model that has extra
tensor reformatting layers compared to a model generated directly using the C++ or
Python TensorRT graph builder API. This may cause the model that originated from
TensorFlow to run slower than the model constructed directly with the TensorRT
APIs.

‣ Although TensorFlow models can use either NHWC or NCHW tensor layouts,
TensorFlow users are encouraged to convert their models to use the NCHW tensor
layout explicitly, in order to achieve the best possible performance when exporting
the model to TensorRT.

‣ The TensorFlow parser requires that input will be fed to the network in NCHW
format.

http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 66

Other known issues

‣ On the V100 GPU, running models with INT8 only works if the batch size is evenly
divisible by 4.

‣ TensorRT Python interface requires NumPy 1.13.0 while the installing TensorRT
using pip may only install 1.11.0. Use sudo pip install numpy -U to update if
the NumPy version on the user machine is not 1.13.0.

6.5. TensorRT Release 3.0 Release Candidate (RC)
This is the second preview release of TensorRT. For production use of TensorRT,
continue to use 2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Volta
The NVIDIA Volta architecture is now supported, including the Tesla V100 GPU. On
Volta devices, the Tensor Core feature provides a large performance improvement,
and Tensor Cores are automatically used when the builder is set to half2mode.

Streamlined export of models trained in TensorFlow into TensorRT
With this release you can take a trained model in TensorFlow saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow model exporter creates
an output file in a format called UFF (Universal Framework Format), which can then
be parsed by TensorRT.

Currently the export path is expected to support the following:

‣ Tensorflow 1.3
‣ FP32 CNNs
‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc.)
‣ RNNs
‣ INT8 CNNs

TensorFlow convenience functions
NVIDIA provides convenience functions so that when using UFF and TensorRT to
export a model and run inference, only a few lines of code is needed.

Universal Framework Format 0.1
UFF format is designed to encapsulate trained neural networks so they can be parsed
by TensorRT.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 67

Python API
TensorRT 3.0 introduces the TensorRT Python API, which provides developers
interfaces to:

‣ the NvCaffeParser
‣ the NvUffParser
‣ The nvinfer graph definition API
‣ the inference engine builder
‣ the engine executor

TensorRT also introduces a workflow to include C++ custom layer implementations in
Python based TensorRT applications.

New deep learning layers or algorithms

‣ The TensorRT deconvolution layer previously did not support non-zero padding,
or stride values that were distinct from kernel size. These restrictions have now
been lifted.

‣ The TensorRT deconvolution layer now supports groups.
‣ Non-determinism in the deconvolution layer implementation has been

eliminated.
‣ The TensorRT convolution layer API now supports dilated convolutions.
‣ The TensorRT API now supports these new layers (but they are not supported via

the NvCaffeParser):

‣ unary
‣ shuffle
‣ padding

‣ The Elementwise (eltwise) layer now supports broadcasting of input dimensions.

QNX
TensorRT 3.0 runs on the QNX operating system on the Drive PX2 platform.

Known Issues

Installation and Setup

‣ If you are installing TensorRT from a tar package (instead of using the .deb
packages and apt-get), then the custom_plugins example will need to be
updated to point to the location that the tar package was installed to. For example,
in the <PYTHON_INSTALL_PATH>/tensorrt/examples/custom_layers/
tensorrtplugins/setup.py file change the following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include
directory.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 68

‣ Change TENSORRT_LIB_DIR to point to the <TAR_INSTALL_ROOT>/lib
directory.

‣ The PyTorch based sample will not work with the CUDA 9 Toolkit. It will only work
with the CUDA 8 Toolkit.

‣ When using the TensorRT APIs from Python, import the tensorflow and uff
modules before importing the tensorrt module. This is required to avoid a
potential namespace conflict with the protobuf library. In a future update, the
modules will be fixed to allow the loading of these Python modules to be in an
arbitrary order.

‣ The TensorRT Python APIs are only supported on x86 based systems. Some
installation packages for ARM based systems may contain Python .whl files. Do not
install these on the ARM systems, as they will not function.

‣ The TensorRT product version is incremented from 2.1 to 3.0 because we added
major new functionality to the product. The libnvinfer package version number
was incremented from 3.0.2 to 4.0 because we made non-backward compatible
changes to the application programming interface.

‣ The TensorRT debian package name was simplified in this release to tensorrt.
In previous releases, the product version was used as a suffix, for example
tensorrt-2.1.2.

‣ If you have trouble installing the TensorRT Python modules on Ubuntu 14.04, refer
to the steps on installing swig to resolve the issue. For installation instructions, see
Unix Installation.

‣ There is a performance regression in the LRN layer when the network is running
in INT8 mode. It impacts networks like GoogleNet and AlexNet but not ResNet-50,
VGG-19 etc.

TensorFlow Model Conversion

‣ The TensorFlow to TensorRT model export works only when running TensorFlow
with GPU support enabled. The converter does not work if TensorFlow is running
without GPU acceleration.

‣ The TensorFlow to TensorRT model export does not work with network models
specified using the TensorFlow Slim interface, nor does it work with models
specified using the Keras interface.

‣ The TensorFlow to TensorRT model export does not support recurrent neural
network (RNN) models.

‣ The TensorFlow to TensorRT model export does not support convolutional layers
that have asymmetric padding (a different number of zero-padded rows and
columns).

‣ The TensorFlow to TensorRT model export may produce a model that has extra
tensor reformatting layers compared to a model generated directly using the C++ or
Python TensorRT graph builder API. This may cause the model that originated from

http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 69

TensorFlow to run slower than the model constructed directly with the TensorRT
APIs.

‣ Although TensorFlow models can use either NHWC or NCHW tensor layouts,
TensorFlow users are encouraged to convert their models to use the NCHW tensor
layout explicitly, in order to achieve the best possible performance.

Other known issues

‣ The Inception v4 network models are not supported with this Release Candidate
with FP16 on V100.

‣ On V100, running models with INT8 do not work if the batch size is not divisible by
4.

‣ The Average Pooling behavior has changed to exclude padding from the
computation, which is how all other Pooling modes handle padding. This results in
incorrect behavior for network models which rely on Average Pooling and which
include padding, such as Inception v3. This issue will be addressed in a future
release.

‣ In this Release Candidate, the arguments for the tensorrt_exec.py script are
slightly different than the ones for the giexec executable, and can be a source
of confusion for users. Consult the documentation carefully to avoid unexpected
errors. The command-line arguments will be changed to match giexec in a future
update.

‣ The INT8 Calibration feature is not available in the TensorRT Python APIs.
‣ The examples/custom_layer sample will not work on Ubuntu 14.04 x86_64

systems, however, it does work properly on Ubuntu 16.04 systems. This will be fixed
in the next update of the software.

6.6. TensorRT Release 3.0 Early Access (EA)
This is a preview release of TensorRT. For production use of TensorRT, continue to use
2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Streamlined export for models trained in TensorFlow to TensorRT
With this release you can take a TensorFlow trained model saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow to UFF converter creates
an output file in a format called UFF (Universal Framework Format) which can then
be read into TensorRT.

Currently the export path is expected to support the following:

‣ Tensorflow 1.0
‣ FP32 CNNs

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 70

‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc..)
‣ RNNs
‣ INT8 CNNs

TensorFlow convenience functions
NVIDIA provides convenience functions so that when using UFF and TensorRT to
export a model and run inference, only a few lines of code is needed.

Universal Framework Format 0.1
UFF format is designed as a way of storing the information about a neural network
that is needed to create an inference engine based on that neural network.

Python API
TensorRT 3.0 introduces the TensorRT Python API, allowing developers to access:

‣ the NvCaffeParser
‣ the NvUffParser
‣ The nvinfer graph definition API
‣ the inference engine builder
‣ the inference-time interface for engine execution within Python

TensorRT also introduces a workflow to include C++ custom layer implementations in
Python based TensorRT applications.

Using TensorRT 3.0

Ensure you are familiar with the following notes when using this release.

‣ Although networks can use NHWC and NCHW, TensorFlow users are encouraged
to convert their networks to use NCHW data ordering explicitly in order to achieve
the best possible performance.

‣ Average pooling behavior changed to exclude the padding from the computation.
The padding is now excluded from the computation in all of the pooling modes.
This results in incorrect behavior for networks which rely on average pooling which
includes padding, such as inceptionV3. This issue will be addressed in a future
release.

‣ The libnvcaffe_parsers.so library file is now called libnvparsers.so. The
links for libnvcaffe_parsers are updated to point to the new libnvparsers
library. The static library libnvcaffe_parser.a is also linked to the new
libnvparsers. For example:

‣ Old structure: libnvcaffe_parsers.4.0.0.so links to
libnvcaffe_parsers.4.so which links to libnvcaffe_parsers.so.

TensorRT Release 3.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 71

‣ New structure: libnvcaffe_parsers.4.0.0.so links to
ibnvcaffe_parsers.4.so which links to libnvcaffe_parsers.so which
links to libnvparsers.so(actual file).

Known Issues

‣ TensorRT does not support asymmetric padding.
‣ Some TensorRT optimizations disabled just for this Early Release (EA) to ensure that

the UFF model runs properly. This will be addressed in TensorRT 3.0.
‣ The TensorFlow conversion path is not fully optimized.
‣ INT8 Calibration is not available in Python.
‣ Deconvolution is not implemented in the UFF workflow.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 72

Chapter 7.
TENSORRT RELEASE 2.X.X

7.1. TensorRT Release 2.1
This TensorRT 2.1 General Availability release is a minor release and includes the
following improvements and fixes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Custom Layer API
If you want TensorRT to use novel, unique or proprietary layers in the evaluation of
certain networks, the Custom Layer API lets you provide a CUDA kernel function
that implements the functionality you want.

Installers
You have two ways you can install TensorRT 2.1:

 1. Ubuntu deb packages. If you have root access and prefer to use package
management to ensure consistency of dependencies, then you can use the apt-
get command and the deb packages.

 2. Tar file based installers. If you do not have root access or you want to install
multiple versions of TensorRT side-by-side for comparison purposes, then you
can use the tar file install. The tar file installation uses target dep-style directory
structures so that you can install TensorRT libraries for multiple architectures and
then do cross compilation.

INT8 support
TensorRT can be used on supported GPUs (such as P4 and P40) to execute networks
using INT8 rather than FP32 precision. Networks using INT8 deliver significant
performance improvements.

TensorRT Release 2.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 73

Recurrent Neural Network
LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) are two popular
and powerful variations of a Recurrent Neural Network cell. Recurrent neural
networks are designed to work with sequences of characters, words, sounds, images,
etc. TensorRT 2.1 provides implementations of LSTM, GRU and the original RNN
layer.

Using TensorRT 2.1

Ensure you are familiar with the following notes when using this release.

‣ Running networks in FP16 or INT8 may not work correctly on platforms without
hardware support for the appropriate reduced precision instructions.

‣ GTX 750 and K1200 users will need to upgrade to CUDA 8 in order to use TensorRT.
‣ If you have previously installed TensorRT 2.0 EA or TensorRT 2.1 RC and you install

TensorRT 2.1, you may find that the old meta package is still installed. It can be
safely removed with the apt-get command.

‣ Debian packages are supplied in the form of local repositories. Once you have
installed TensorRT, you can safely remove the TensorRT local repository debian
package.

‣ The implementation of deconvolution is now deterministic. In order to ensure
determinism, the new algorithm requires more workspace.

‣ FP16 performance was significantly improved for batch size = 1. The new algorithm
is sometimes slower for batch sizes greater than one.

‣ Calibration for INT8 does not require labeled data. SampleINT8 uses labels only to
compare the accuracy of INT8 inference with the accuracy of FP32 inference.

‣ Running with larger batch sizes gives higher overall throughput but uses more
memory. When trying TensorRT out on GPUs with smaller memory, be aware that
some of the samples may not work with batch sizes of 128.

‣ The included Caffe parser library does not currently understand the NVIDIA/Caffe
format for batch normalization. The BVLC/Caffe batch normalization format is
parsed correctly.

Deprecated Features

The parameterized calibration technique introduced in the 2.0 EA pre-release has been
replaced by the new entropy calibration mechanism.

‣ The Legacy class IInt8LegacyCalibrator is deprecated.

https://github.com/NVIDIA/caffe
https://github.com/BVLC/caffe

TensorRT Release 2.x.x

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-RELN_vTensorRT 7.1.0 Early Access

(EA) | 74

Known Issues

‣ When using reduced precision, either INT8 or FP16, on platforms with hardware
support for those types, pooling with window sizes other than 1,2,3,5 or 7 will fail.

‣ When using MAX_AVERAGE_BLEND or AVERAGE pooling in INT8 with a channel
count that is not a multiple of 4, TensorRT may generate incorrect results.

‣ When downloading the Faster R-CNN data on Jetson TX1 users may see the
following error:

ERROR: cannot verify dl.dropboxusercontent.com's certificate,
 issued by 'CN=DigiCert SHA2 High Assurance Server
 CA,OU=www.digicert.com,O=DigiCert Inc,C=US':
 Unable to locally verify the issuer's authority.
To connect to dl.dropboxusercontent.com insecurely, use `--no-
check-certificate`.

Adding the --no-check-certificate flag should resolve the issue.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain

functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations

or warranties, expressed or implied, as to the accuracy or completeness of the information contained in

this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability

for the consequences or use of such information or for any infringement of patents or other rights of third

parties that may result from its use. This document is not a commitment to develop, release, or deliver any

Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other

changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such

information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time

of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized

representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any

customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in

this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,

aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA

product can reasonably be expected to result in personal injury, death, or property or environmental

damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or

applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for

any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is

customer’s sole responsibility to evaluate and determine the applicability of any information contained in

this document, ensure the product is suitable and fit for the application planned by customer, and perform

the necessary testing for the application in order to avoid a default of the application or the product.

Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product

and may result in additional or different conditions and/or requirements beyond those contained in this

document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based

on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or

(ii) customer product designs.

www.nvidia.com

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other

NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-

party products or services does not constitute a license from NVIDIA to use such products or services or a

warranty or endorsement thereof. Use of such information may require a license from a third party under the

patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents

or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing,

reproduced without alteration and in full compliance with all applicable export laws and regulations, and

accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,

DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING

PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH

RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,

MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN

NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT,

SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE

THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason

whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein

shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and

DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards

Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of

HDMI Licensing LLC.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are

trademarks of ARM Limited. All other brands or product names are the property of their respective

holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional

subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting

(Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM

Sweden AB.

www.nvidia.com

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX

Station, DLProf, GPU, JetPack, Jetson, Kepler, Maxwell, NCCL, Nsight Compute, Nsight Systems, NVCaffe,

NVIDIA Ampere GPU architecture, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud,

NVLink, NVSHMEM, PerfWorks, Pascal, SDK Manager, T4, Tegra, TensorRT, TensorRT Inference Server, Tesla,

TF-TRT, Triton Inference Server, Turing, and Volta are trademarks and/or registered trademarks of NVIDIA

Corporation in the United States and other countries. Other company and product names may be trademarks

of the respective companies with which they are associated.

Copyright

© 2020 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	TensorRT Overview
	TensorRT Release 7.x.x
	2.1. TensorRT Release 7.1.0 Early Access (EA)
	2.2. TensorRT Release 7.0.0

	TensorRT Release 6.x.x
	3.1. TensorRT Release 6.0.1

	TensorRT Release 5.x.x
	4.1. TensorRT Release 5.1.5
	4.2. TensorRT Release 5.1.3
	4.3. TensorRT Release 5.1.2 Release Candidate (RC)
	4.4. TensorRT Release 5.1.1 Release Candidate (RC)
	4.5. TensorRT Release 5.1.0 Release Candidate (RC)
	4.6. TensorRT Release 5.0.6
	4.7. TensorRT Release 5.0.5
	4.8. TensorRT Release 5.0.4
	4.9. TensorRT Release 5.0.3
	4.10. TensorRT Release 5.0.2
	4.11. TensorRT Release 5.0.1 Release Candidate (RC)
	4.12. TensorRT Release 5.0.0 Release Candidate (RC)

	TensorRT Release 4.x.x
	5.1. TensorRT Release 4.0.1
	5.2. TensorRT Release 4.0 Release Candidate (RC) 2
	5.3. TensorRT Release 4.0 Release Candidate (RC)

	TensorRT Release 3.x.x
	6.1. TensorRT Release 3.0.4
	6.2. TensorRT Release 3.0.3
	6.3. TensorRT Release 3.0.2
	6.4. TensorRT Release 3.0.1
	6.5. TensorRT Release 3.0 Release Candidate (RC)
	6.6. TensorRT Release 3.0 Early Access (EA)

	TensorRT Release 2.x.x
	7.1. TensorRT Release 2.1

