
TENSORRT SAMPLES

SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | June 2020

Support Guide

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | ii

TABLE OF CONTENTS

Chapter 1. Introduction...1
1.1. C++ Samples... 4
1.2. Python Samples... 5

Chapter 2. Application Areas.. 7
Chapter 3. Cross Compiling Samples For AArch64 Users... 10

3.1. Prerequisites..10
3.2. Building Samples For QNX AArch64.. 11
3.3. Building Samples For Linux AArch64... 11
3.4. Building Samples For Android AArch64.. 11

Chapter 4. “Hello World” For TensorRT... 12
Chapter 5. Building A Simple MNIST Network Layer By Layer.. 13
Chapter 6. Importing The TensorFlow Model And Running Inference............................... 14
Chapter 7. “Hello World” For TensorRT From ONNX... 15
Chapter 8. Building And Running GoogleNet In TensorRT..16
Chapter 9. Building An RNN Network Layer By Layer.. 17
Chapter 10. Performing Inference In INT8 Using Custom Calibration................................18
Chapter 11. Performing Inference In INT8 Precision... 19
Chapter 12. Adding A Custom Layer To Your Network In TensorRT.................................. 20
Chapter 13. Object Detection With Faster R-CNN...21
Chapter 14. Object Detection With A TensorFlow SSD Network......................................22
Chapter 15. Movie Recommendation Using Neural Collaborative Filter (NCF)..................... 23
Chapter 16. Movie Recommendation Using MPS (Multi-Process Service)............................24
Chapter 17. Object Detection With SSD... 25
Chapter 18. “Hello World” For Multilayer Perceptron (MLP)... 26
Chapter 19. Specifying I/O Formats Using The Reformat Free I/O APIs............................. 27
Chapter 20. Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT.... 28
Chapter 21. Digit Recognition With Dynamic Shapes In TensorRT....................................29
Chapter 22. Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq)

Model...30
Chapter 23. Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN

Network... 31
Chapter 24. Object Detection With A TensorFlow Faster R-CNN Network..........................32
Chapter 25. Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT.......33
Chapter 26. Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT

Using Python... 34
Chapter 27. “Hello World” For TensorRT Using TensorFlow And Python........................... 35
Chapter 28. “Hello World” For TensorRT Using PyTorch And Python................................36
Chapter 29. Adding A Custom Layer To Your Caffe Network In TensorRT In Python.............. 37
Chapter 30. Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python.......38
Chapter 31. Object Detection With The ONNX TensorRT Backend In Python...................... 39

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | iii

Chapter 32. Object Detection With SSD In Python.. 40
Chapter 33. INT8 Calibration In Python... 41
Chapter 34. Refitting An Engine In Python... 42

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | iv

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | 1

Chapter 1.
INTRODUCTION

The following samples show how to use TensorRT in numerous use cases while
highlighting different capabilities of the interface.

Title TensorRT Sample Name Description

trtexec trtexec A tool to quickly utilize TensorRT
without having to develop your
own application.

“Hello World” For TensorRT sampleMNIST Performs the basic setup and
initialization of TensorRT using
the Caffe parser.

Building A Simple MNIST Network
Layer By Layer

sampleMNISTAPI Uses the TensorRT API to build
an MNIST (handwritten digit
recognition) layer by layer, sets
up weights and inputs/outputs
and then performs inference.

Importing The TensorFlow Model
And Running Inference

sampleUffMNIST Imports a TensorFlow model
trained on the MNIST dataset.

“Hello World” For TensorRT From
ONNX

sampleOnnxMNIST Converts a model trained on the
MNIST dataset in ONNX format to
a TensorRT network.

Building And Running GoogleNet
In TensorRT

sampleGoogleNet Shows how to import a model
trained with Caffe into TensorRT
using GoogleNet as an example.

Building An RNN Network Layer
By Layer

sampleCharRNN Uses the TensorRT API to build an
RNN network layer by layer, sets
up weights and inputs/outputs
and then performs inference.

Performing Inference In INT8
Using Custom Calibration

sampleINT8 Performs INT8 calibration and
inference. Calibrates a network
for execution in INT8.

Performing Inference In INT8
Precision

sampleINT8API Sets per tensor dynamic range
and computation precision of a
layer.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#trtexec

Introduction

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | 2

Title TensorRT Sample Name Description

Adding A Custom Layer To Your
Network In TensorRT

samplePlugin Defines a custom layer that
supports multiple data formats
that can be serialized and
deserialized. Enables a custom
layer in NvCaffeParser.

Object Detection With Faster R-
CNN

sampleFasterRCNN Uses TensorRT plugins, performs
inference and implements a
fused custom layer for end-to-
end inferencing of a Faster R-
CNN model.

Object Detection With A
TensorFlow SSD Network

sampleUffSSD Preprocess the TensorFlow SSD
network, performs inference on
the SSD network in TensorRT and
uses TensorRT plugins to speed
up inference.

Movie Recommendation Using
Neural Collaborative Filter (NCF)

sampleMovieLens An end-to-end sample that
imports a trained TensorFlow
model and predicts the highest-
rated movie for each user.

Movie Recommendation Using
MPS (Multi-Process Service)

sampleMovieLensMPS An end-to-end sample that
imports a trained TensorFlow
model and predicts the highest-
rated movie for each user using
MPS (Multi-Process Service).

Object Detection With SSD sampleSSD Preprocess the input to the SSD
network, performs inference on
the SSD network in TensorRT,
uses TensorRT plugins to speed
up inference, and performs INT8
calibration on an SSD network.

“Hello World” For Multilayer
Perceptron (MLP)

sampleMLP Shows how to create a network
that triggers the multi-layer
perceptron (MLP) optimizer.

Specifying I/O Formats Using The
Reformat Free I/O APIs

sampleReformatFreeIO Uses a Caffe model that was
trained on theMNIST dataset
and performs engine building
and inference using TensorRT.
The correctness of outputs is
then compared to the golden
reference.

Adding A Custom Layer That
Supports INT8 I/O To Your
Network In TensorRT

sampleUffPluginV2Ext Demonstrates how to extend
INT8 I/O for a plugin that is
introduced in TensorRT 6.x.x.

Digit Recognition With Dynamic
Shapes In TensorRT

sampleDynamicReshape Demonstrates how to use
dynamic input dimensions in
TensorRT by creating an engine
for resizing dynamically shaped
inputs to the correct size for an
ONNX MNIST model.

https://en.wikipedia.org/wiki/Multilayer_perceptron
https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md

Introduction

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | 3

Title TensorRT Sample Name Description

Neural Machine Translation (NMT)
Using A Sequence To Sequence
(seq2seq) Model

sampleNMT Demonstrates the
implementation of Neural
Machine Translation (NMT) based
on a TensorFlow seq2seq model
using the TensorRT API.

Object Detection And Instance
Segmentation With A TensorFlow
Mask R-CNN Network

sampleUffMaskRCNN Performs inference on the Mask
R-CNN network in TensorRT. Mask
R-CNN is based on the Mask R-
CNN paper which performs the
task of object detection and
object mask predictions on a
target image.

Object Detection With A
TensorFlow Faster R-CNN
Network

sampleUffFasterRCNN Serves as a demo of how to use a
pre-trained Faster-RCNN model
in Transfer Learning Toolkit to do
inference with TensorRT.

Algorithm Selection API Usage
Example Based On sampleMNIST
In TensorRT

sampleAlgorithmSelector End-to-end example of how to
use the algorithm selection API
based on sampleMNIST.

Introduction To Importing Caffe,
TensorFlow And ONNX Models
Into TensorRT Using Python

introductory_parser_samples Uses TensorRT and its included
suite of parsers (the UFF, Caffe
and ONNX parsers), to perform
inference with ResNet-50 models
trained with various different
frameworks.

“Hello World” For TensorRT Using
TensorFlow And Python

end_to_end_tensorflow_mnist An end-to-end sample that trains
a model in TensorFlow and Keras,
freezes the model and writes it
to a protobuf file, converts it to
UFF, and finally runs inference
using TensorRT.

“Hello World” For TensorRT Using
PyTorch And Python

network_api_pytorch_mnist An end-to-end sample that trains
a model in PyTorch, recreates
the network in TensorRT, imports
weights from the trained model,
and finally runs inference with a
TensorRT engine.

Adding A Custom Layer To Your
Caffe Network In TensorRT In
Python

fc_plugin_caffe_mnist Implements a FullyConnected
layer using cuBLAS and cuDNN,
wraps the implementation
in a TensorRT plugin (with a
corresponding plugin factory)
and generates Python bindings
for it using pybind11. These
bindings are then used to
register the plugin factory with
the CaffeParser.

Adding A Custom Layer To Your
TensorFlow Network In TensorRT
In Python

uff_custom_plugin Implements a clip layer (as
a CUDA kernel) wraps the
implementation in a TensorRT
plugin (with a corresponding
plugin creator), and generates a

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870

Introduction

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | 4

Title TensorRT Sample Name Description

shared library module containing
its code.

Object Detection With The ONNX
TensorRT Backend In Python

yolov3_onnx Implements a full ONNX-
based pipeline for performing
inference with the YOLOv3-608
network, including pre and post-
processing.

Object Detection With SSD In
Python

uff_ssd Implements a full UFF-based
pipeline for performing inference
with an SSD (InceptionV2
feature extractor) network. The
sample downloads a trained
ssd_inception_v2_coco_2017_11_17
model and uses it to perform
inference. Additionally, it
superimposes bounding boxes
on the input image as a post-
processing step.

INT8 Calibration In Python int8_caffe_mnist Demonstrates how to calibrate
an engine to run in INT8 mode.

Refitting An Engine In Python engine_refit_mnist Trains an MNIST model in
PyTorch, recreates the network
in TensorRT with dummy weights,
and finally refits the TensorRT
engine with weights from the
model.

1.1. C++ Samples
You can find the C++ samples in the /usr/src/tensorrt/samples package directory
as well as on GitHub. The following C++ samples are shipped with TensorRT.

‣ “Hello World” For TensorRT
‣ Building A Simple MNIST Network Layer By Layer
‣ Importing The TensorFlow Model And Running Inference
‣ “Hello World” For TensorRT From ONNX
‣ Building And Running GoogleNet In TensorRT
‣ Building An RNN Network Layer By Layer
‣ Performing Inference In INT8 Using Custom Calibration
‣ Performing Inference In INT8 Precision
‣ Adding A Custom Layer To Your Network In TensorRT
‣ Object Detection With Faster R-CNN
‣ Object Detection With A TensorFlow SSD Network
‣ Movie Recommendation Using Neural Collaborative Filter (NCF)
‣ Movie Recommendation Using MPS (Multi-Process Service)
‣ Object Detection With SSD

Introduction

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | 5

‣ “Hello World” For Multilayer Perceptron (MLP)
‣ Specifying I/O Formats Using The Reformat Free I/O APIs
‣ Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT
‣ Digit Recognition With Dynamic Shapes In TensorRT
‣ Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model
‣ Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN

Network
‣ Object Detection With A TensorFlow Faster R-CNN Network
‣ Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT1

Getting Started With C++ Samples

Every C++ sample includes a README.md file in GitHub that provides detailed
information about how the sample works, sample code, and step-by-step instructions on
how to run and verify its output.

Running C++ Samples on Linux

If you installed TensorRT using the Debian files, copy /usr/src/tensorrt to a new
directory first before building the C++ samples. If you installed TensorRT using the tar
file, then the samples are located in {TAR_EXTRACT_PATH}/samples. To build all the
samples and then run one of the samples, use the following commands:

$ cd <samples_dir>
$ make -j4
$ cd ../bin
$./<sample_bin>

Running C++ Samples on Windows

All of the C++ samples on Windows are provided as Visual Studio Solution files.
To build a sample, open its corresponding Visual Studio Solution file and build the
solution. The output executable will be generated in (ZIP_EXTRACT_PATH)\bin. You
can then run the executable directly or through Visual Studio.

1.2. Python Samples
You can find the Python samples in the /usr/src/tensorrt/samples/python
package directory. The following Python samples are shipped with TensorRT.

‣ Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT
Using Python

‣ “Hello World” For TensorRT Using TensorFlow And Python
‣ “Hello World” For TensorRT Using PyTorch And Python

1 This sample is located in the release product package only.

https://github.com/NVIDIA/TensorRT/tree/release/7.0/samples/opensource

Introduction

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | 6

‣ Adding A Custom Layer To Your Caffe Network In TensorRT In Python
‣ Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
‣ Object Detection With The ONNX TensorRT Backend In Python
‣ Object Detection With SSD In Python
‣ INT8 Calibration In Python
‣ Refitting An Engine In Python

Getting Started With Python Samples

Every Python sample includes a README.md file. Refer to the /usr/src/tensorrt/
samples/python/<sample-name>/README.md file for detailed information about how
the sample works, sample code, and step-by-step instructions on how to run and verify
its output.

Running Python Samples

To run one of the Python samples, the process typically involves two steps:

 1. Install the sample requirements:

python<x> -m pip install -r requirements.txt

where python<x> is either python2 or python3.
 2. Run the sample code with the data directory provided if the TensorRT sample data

is not in the default location. For example:

python<x> sample.py [-d DATA_DIR]

For more information on running samples, see the README.md file included with the
sample.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | 7

Chapter 2.
APPLICATION AREAS

The TensorRT samples focus on the following application areas.

Recommenders

Recommender systems are used to provide product or media recommendations to
users of social networking, media content consumption, and e-commerce platforms.
MLP-based Neural Collaborative Filter (NCF) recommenders employ a stack of fully-
connected or matrix multiplication layers to generate recommendations.

Some examples of TensorRT recommenders samples include the following:

‣ Movie Recommendation Using Neural Collaborative Filter (NCF)
‣ Movie Recommendation Using MPS (Multi-Process Service)
‣ “Hello World” For Multilayer Perceptron (MLP)

Machine translation

Machine translation systems are used to translate text from one language to another
language. Recurrent neural networks (RNN) are one of the most popular deep learning
solutions for machine translation.

Some examples of TensorRT machine translation samples include the following:

‣ Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model
‣ Building An RNN Network Layer By Layer

Character recognition

Character recognition, especially on the MNIST dataset, is a classic machine learning
problem. The MNIST problem involves recognizing the digit that is present in an image
of a handwritten digit.

Some examples of TensorRT character recognition samples include the following:

‣ “Hello World” For TensorRT

Application Areas

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | 8

‣ Building A Simple MNIST Network Layer By Layer
‣ Importing The TensorFlow Model And Running Inference
‣ “Hello World” For TensorRT From ONNX
‣ Performing Inference In INT8 Using Custom Calibration
‣ Adding A Custom Layer To Your Network In TensorRT
‣ Digit Recognition With Dynamic Shapes In TensorRT
‣ Specifying I/O Formats Using The Reformat Free I/O APIs
‣ Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT
‣ “Hello World” For TensorRT Using TensorFlow And Python
‣ Refitting An Engine In Python
‣ Adding A Custom Layer To Your Caffe Network In TensorRT In Python
‣ INT8 Calibration In Python
‣ “Hello World” For TensorRT Using PyTorch And Python
‣ Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
‣ topics/samplealgorithmselection

Image classification

Image classification is the problem of identifying one or more objects present in an
image. Convolutional neural networks (CNN) are a popular choice for solving this
problem. They are typically composed of convolution and pooling layers.

Some examples of TensorRT image classification samples include the following:

‣ Building And Running GoogleNet In TensorRT
‣ Performing Inference In INT8 Precision
‣ Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT

Using Python

Object detection

Object detection is one of the classic computer vision problems. The task, for a given
image, is to detect, classify and localize all objects of interest. For example, imagine
that you are developing a self-driving car and you need to do pedestrian detection -
the object detection algorithm would then, for a given image, return bounding box
coordinates for each pedestrian in an image.

There have been many advances in recent years in designing models for object detection.

Some examples of TensorRT object detection samples include the following:

‣ Object Detection With SSD In Python
‣ Object Detection With The ONNX TensorRT Backend In Python
‣ Object Detection With A TensorFlow SSD Network
‣ Object Detection With Faster R-CNN

Application Areas

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access (EA) | 9

‣ Object Detection With SSD
‣ Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN

Network
‣ Object Detection With A TensorFlow Faster R-CNN Network

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 10

Chapter 3.
CROSS COMPILING SAMPLES FOR AARCH64
USERS

The following sections show how to cross-compile TensorRT samples for AArch64 QNX,
Linux and Android platforms under x86_64 Linux.

3.1. Prerequisites
This section provides step-by-step instructions to ensure you meet the minimum
requirements to cross-compile.

 1. Install the CUDA cross-platform toolkit for the corresponding target and set the
environment variable CUDA_INSTALL_DIR.

$ export CUDA_INSTALL_DIR="your cuda install dir"

Where CUDA_INSTALL_DIR is set to /usr/local/cuda by default.
 2. Install the cuDNN cross-platform libraries for the corresponding target and set the

environment variable CUDNN_INSTALL_DIR.

$ export CUDNN_INSTALL_DIR="your cudnn install dir"

Where CUDNN_INSTALL_DIR is set to CUDA_INSTALL_DIR by default.
 3. Install the TensorRT cross-compilation Debian packages for the corresponding

target.

If you are using the tar file release for the target platform, then you can safely
skip this step. The tar file release already includes the cross-compile libraries so
no additional packages are required.

QNX AArch64
libnvinfer-dev-cross-qnx, libnvinfer5-cross-qnx

Linux AArch64
libnvinfer-dev-cross-aarch64, libnvinfer5-cross-aarch64

Cross Compiling Samples For AArch64 Users

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 11

Android AArch64
No debian packages are available.

3.2. Building Samples For QNX AArch64
This section provides step-by-step instructions to build samples for QNX users.

 1. Download the QNX tool-chain and export the following environment variables.

$ export QNX_HOST=/path/to/your/qnx/toolchains/host/linux/x86_64
$ export QNX_TARGET=/path/to/your/qnx/toolchain/target/qnx7

 2. Build the samples by issuing:

$ cd /path/to/TensorRT/samples
$ make TARGET=qnx

3.3. Building Samples For Linux AArch64
This section provides step-by-step instructions to build samples for Linux users.

 1. Install the corresponding GCC compiler, aarch64-linux-gnu-g++. In Ubuntu, this
can be installed via:

$ sudo apt-get install g++-aarch64-linux-gnu

 2. Build the samples by issuing:

$ cd /path/to/TensorRT/samples
$ make TARGET=aarch64

3.4. Building Samples For Android AArch64
This section provides step-by-step instructions to build samples for Android users.

 1. Download the Android NDK (r16b) from https://developer.android.com/ndk/.
 2. Create a standalone tool-chain, for example:

$ $NDK/build/tools/make_standalone_toolchain.py \
 --arch arm64 \
 --api 26 \
 --install-dir=/path/to/my-toolchain

You can find more information by visiting: https://developer.android.com/ndk/
guides/standalone_toolchain

 3. Build the samples by issuing:

$ cd /path/to/TensorRT/samples
$ make TARGET=android64 ANDROID_CC=/path/to/my-toolchain/bin/aarch64-linux-
android-clang++

https://developer.android.com/ndk/
https://developer.android.com/ndk/guides/standalone_toolchain
https://developer.android.com/ndk/guides/standalone_toolchain

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 12

Chapter 4.
“HELLO WORLD” FOR TENSORRT

This sample, sampleMNIST, is a simple hello world example that performs the basic
setup and initialization of TensorRT using the Caffe parser.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleMNIST directory in
the GitHub: sampleMNIST repository.

How do I get started?

Refer to the GitHub: sampleMNIST/README.md file for detailed information about
how this sample works, sample code, and step-by-step instructions on how to run and
verify its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNIST
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleMNIST/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 13

Chapter 5.
BUILDING A SIMPLE MNIST NETWORK
LAYER BY LAYER

This sample, sampleMNISTAPI, uses the TensorRT API to build an engine for a model
trained on the MNIST dataset.

What does this sample do?

Specifically, it creates the network layer by layer, sets up weights and inputs/outputs,
and then performs inference. This sample is similar to sampleMNIST. Both of these
samples use the same model weights, handle the same input, and expect similar output.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleMNISTAPI
directory in the GitHub: sampleMNISTAPI repository.

How do I get started?

Refer to the GitHub: sampleMNISTAPI/README.md file for detailed information about
how this sample works, sample code, and step-by-step instructions on how to run and
verify its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNISTAPI
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleMNISTAPI/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 14

Chapter 6.
IMPORTING THE TENSORFLOW MODEL
AND RUNNING INFERENCE

This sample, sampleUffMNIST, imports a TensorFlow model trained on the MNIST
dataset.

What does this sample do?

The MNIST TensorFlow model has been converted to UFF (Universal Framework
Format) using the explanation described in Working With TensorFlow.

The UFF is designed to store neural networks as a graph. The NvUffParser that we use
in this sample parses the UFF file in order to create an inference engine based on that
neural network.

With TensorRT, you can take a TensorFlow trained model, export it into a UFF protobuf
file (.uff) using the UFF converter, and import it using the UFF parser.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleUffMNIST
directory in the GitHub: sampleUffMNIST repository.

How do I get started?

Refer to the GitHub: sampleUffMNIST/README.md file for detailed information about
how this sample works, sample code, and step-by-step instructions on how to run and
verify its output.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#working_tf
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffMNIST
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleUffMNIST/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 15

Chapter 7.
“HELLO WORLD” FOR TENSORRT FROM
ONNX

This sample, sampleOnnxMNIST, converts a model trained on the MNIST in Open
Neural Network Exchange (ONNX) format to a TensorRT network and runs inference
on the network. ONNX is a standard for representing deep learning models that enables
models to be transferred between frameworks.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleOnnxMNIST
directory in the GitHub: sampleOnnxMNIST repository.

How do I get started?

Refer to the GitHub: sampleOnnxMNIST/README.md file for detailed information
about how this sample works, sample code, and step-by-step instructions on how to run
and verify its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleOnnxMNIST
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleOnnxMNIST/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 16

Chapter 8.
BUILDING AND RUNNING GOOGLENET IN
TENSORRT

This sample, sampleGoogleNet, demonstrates how to import a model trained with Caffe
into TensorRT using GoogleNet as an example.

What does this sample do?

Specifically, this sample builds a TensorRT engine from the saved Caffe model, sets
input values to the engine, and runs it.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleGoogleNet
directory in the GitHub: sampleGoogleNet repository.

How do I get started?

Refer to the GitHub: sampleGoogleNet/README.md file for detailed information about
how this sample works, sample code, and step-by-step instructions on how to run and
verify its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleGoogleNet
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleGoogleNet/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 17

Chapter 9.
BUILDING AN RNN NETWORK LAYER BY
LAYER

This sample, sampleCharRNN, uses the TensorRT API to build an RNN network layer
by layer, sets up weights and inputs/outputs and then performs inference.

What does this sample do?

Specifically, this sample creates a CharRNN network that has been trained on the Tiny
Shakespeare dataset. For more information about character level modeling, see char-rnn.

TensorFlow has a useful RNN Tutorial which can be used to train a word-level model.
Word level models learn a probability distribution over a set of all possible word
sequences. Since our goal is to train a char level model, which learns a probability
distribution over a set of all possible characters, a few modifications will need to be
made to get the TensorFlow sample to work. These modifications can be seen here.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleCharRNN directory
in the GitHub: sampleCharRNN repository.

How do I get started?

Refer to the GitHub: sampleCharRNN/README.md file for detailed information about
how this sample works, sample code, and step-by-step instructions on how to run and
verify its output.

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://github.com/karpathy/char-rnn
https://www.tensorflow.org/tutorials/recurrent
http://deeplearningathome.com/2016/10/Text-generation-using-deep-recurrent-neural-networks.html
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleCharRNN/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 18

Chapter 10.
PERFORMING INFERENCE IN INT8 USING
CUSTOM CALIBRATION

This sample, sampleINT8, performs INT8 calibration and inference.

What does this sample do?

Specifically, this sample demonstrates how to perform inference in an 8-bit integer
(INT8). INT8 inference is available only on GPUs with compute capability 6.1 or 7.x.
After the network is calibrated for execution in INT8, the output of the calibration is
cached to avoid repeating the process. You can then reproduce your own experiments
with Caffe in order to validate your results on ImageNet networks.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleINT8 directory in
the GitHub: sampleINT8 repository.

How do I get started?

Refer to the GitHub: sampleINT8/README.md file for detailed information about how
this sample works, sample code, and step-by-step instructions on how to run and verify
its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleINT8/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 19

Chapter 11.
PERFORMING INFERENCE IN INT8
PRECISION

This sample, sampleINT8API, performs INT8 inference without using the INT8
calibrator; using the user-provided per activation tensor dynamic range. INT8 inference
is available only on GPUs with compute capability 6.1 or 7.x and supports Image
Classification ONNX models such as ResNet-50, VGG19, and MobileNet.

What does this sample do?

Specifically, this sample demonstrates how to:

‣ Use nvinfer1::ITensor::setDynamicRange to set per tensor dynamic range
‣ Use nvinfer1::ILayer::setPrecison to set computation precision of a layer
‣ Use nvinfer1::ILayer::setOutputType to set output tensor data type of a layer
‣ Perform INT8 inference without using INT8 calibration

Where is this sample located?

This sample is maintained under the samples/opensource/sampleINT8API directory
in the GitHub: sampleINT8API repository.

How do I get started?

Refer to the GitHub: sampleINT8API/README.md file for detailed information about
how this sample works, sample code, and step-by-step instructions on how to run and
verify its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8API
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleINT8API/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 20

Chapter 12.
ADDING A CUSTOM LAYER TO YOUR
NETWORK IN TENSORRT

This sample, samplePlugin, defines a custom layer that supports multiple data
formats and demonstrates how to serialize/deserialize plugin layers. This sample also
demonstrates how to use a fully connected plugin (FCPlugin) as a custom layer and the
integration with NvCaffeParser.

Where is this sample located?

This sample is maintained under the samples/opensource/samplePlugin directory
in the GitHub: samplePlugin repository.

How do I get started?

Refer to the GitHub: samplePlugin/README.md file for detailed information about
how this sample works, sample code, and step-by-step instructions on how to run and
verify its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/samplePlugin
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/samplePlugin/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 21

Chapter 13.
OBJECT DETECTION WITH FASTER R-CNN

This sample, sampleFasterRCNN, uses TensorRT plugins, performs inference, and
implements a fused custom layer for end-to-end inferencing of a Faster R-CNN model.

What does this sample do?

Specifically, this sample demonstrates the implementation of a Faster R-CNN network
in TensorRT, performs a quick performance test in TensorRT, implements a fused
custom layer, and constructs the basis for further optimization, for example using INT8
calibration, user trained network, etc. The Faster R-CNN network is based on the paper
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleFasterRCNN
directory in the GitHub: sampleFasterRCNN repository.

How do I get started?

Refer to the GitHub: sampleFasterRCNN/README.md file for detailed information
about how this sample works, sample code, and step-by-step instructions on how to run
and verify its output.

https://arxiv.org/abs/1506.01497
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleFasterRCNN
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleFasterRCNN/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 22

Chapter 14.
OBJECT DETECTION WITH A TENSORFLOW
SSD NETWORK

This sample, sampleUffSSD, preprocesses a TensorFlow SSD network, performs
inference on the SSD network in TensorRT, using TensorRT plugins to speed up
inference.

What does this sample do?

This sample is based on the SSD: Single Shot MultiBox Detector paper. The SSD network
performs the task of object detection and localization in a single forward pass of the
network.

The SSD network used in this sample is based on the TensorFlow implementation
of SSD, which actually differs from the original paper, in that it has an
inception_v2 backbone. For more information about the actual model, download
ssd_inception_v2_coco. The TensorFlow SSD network was trained on the InceptionV2
architecture using the MSCOCO dataset which has 91 classes (including the background
class). The config details of the network can be found here.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleUffSSD directory
in the GitHub: sampleUffSSD repository.

How do I get started?

Refer to the GitHub: sampleUffSSD/README.md file for detailed information about
how this sample works, sample code, and step-by-step instructions on how to run and
verify its output.

https://arxiv.org/abs/1512.02325
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz
http://cocodataset.org/#home
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffSSD
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleUffSSD/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 23

Chapter 15.
MOVIE RECOMMENDATION USING NEURAL
COLLABORATIVE FILTER (NCF)

This sample, sampleMovieLens, is an end-to-end sample that imports a trained
TensorFlow model and predicts the highest-rated movie for each user. This sample
demonstrates a simple movie recommender system using a multi-layer perceptron
(MLP) based Neural Collaborative Filter (NCF) recommender.

What does this sample do?

Specifically, this sample demonstrates how to generate weights for a MovieLens dataset
that TensorRT can then accelerate.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleMovieLens
directory in the GitHub: sampleMovieLens repository.

How do I get started?

Refer to the GitHub: sampleMovieLens/README.md file for detailed information about
how this sample works, sample code, and step-by-step instructions on how to run and
verify its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMovieLens
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleMovieLens/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 24

Chapter 16.
MOVIE RECOMMENDATION USING MPS
(MULTI-PROCESS SERVICE)

This sample, sampleMovieLensMPS, is an end-to-end sample that imports a trained
TensorFlow model and predicts the highest-rated movie for each user using MPS (Multi-
Process Service).

What does this sample do?

MPS allows multiple CUDA processes to share a single GPU context. With MPS,
multiple overlapping kernel execution and memcpy operations from different processes
can be scheduled concurrently to achieve maximum utilization. This can be especially
effective in increasing parallelism for small networks with low resource utilization such
as those primarily consisting of a series of small MLPs.

This sample is identical to Movie Recommendation Using Neural Collaborative Filter
(NCF) in terms of functionality but is modified to support concurrent execution in
multiple processes. Specifically, this sample demonstrates how to generate weights for a
MovieLens dataset that TensorRT can then accelerate.

Currently, sampleMovieLensMPS supports only Linux x86-64 (includes Ubuntu and
RedHat) desktop users.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleMovieLensMPS
directory in the GitHub: sampleMovieLensMPS repository.

How do I get started?

Refer to the GitHub: sampleMovieLensMPS/README.md file for detailed information
about how this sample works, sample code, and step-by-step instructions on how to run
and verify its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMovieLensMPS
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleMovieLensMPS/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 25

Chapter 17.
OBJECT DETECTION WITH SSD

This sample, sampleSSD, performs the task of object detection and localization in a
single forward pass of the network.

What does this sample do?

This sample is based on the SSD: Single Shot MultiBox Detector paper. This network is
built using the VGG network as a backbone and trained using PASCAL VOC 2007+ 2012
datasets.

Unlike Faster R-CNN, SSD completely eliminates the proposal generation and
subsequent pixel or feature resampling stages and encapsulates all computation in a
single network. This makes SSD straightforward to integrate into systems that require a
detection component.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleSSD directory in
the GitHub: sampleSSD repository.

How do I get started?

Refer to the GitHub: sampleSSD/README.md file for detailed information about how
this sample works, sample code, and step-by-step instructions on how to run and verify
its output.

https://arxiv.org/abs/1512.02325
https://github.com/weiliu89/caffe/tree/ssd
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleSSD
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleSSD/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 26

Chapter 18.
“HELLO WORLD” FOR MULTILAYER
PERCEPTRON (MLP)

This sample, sampleMLP, is a simple hello world example that shows how to create a
network that triggers the multilayer perceptron (MLP) optimizer. The generated MLP
optimizer can then accelerate TensorRT.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleMLP directory in
the GitHub: sampleMLP repository.

How do I get started?

Refer to the GitHub: sampleMLP/README.md file for detailed information about how
this sample works, sample code, and step-by-step instructions on how to run and verify
its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMLP
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleMLP/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 27

Chapter 19.
SPECIFYING I/O FORMATS USING THE
REFORMAT FREE I/O APIS

This sample, sampleReformatFreeIO, uses a Caffe model that was trained on the MNIST
dataset and performs engine building and inference using TensorRT. The correctness of
outputs is then compared to the golden reference.

What does this sample do?

Specifically, this sample shows how to use reformat free I/O APIs to explicitly
specify I/O formats to TensorFormat::kLINEAR, TensorFormat::kCHW2 and
TensorFormat::kHWC8 for Float16 and INT8 precision.

ITensor::setAllowedFormats is invoked to specify which format is expected to be
supported so that the unnecessary reformatting will not be inserted to convert from/to
FP32 formats for I/O tensors. BuilderFlag::kSTRICT_TYPES is also assigned to the
builder configuration to let the builder choose a reformat free path rather than the fastest
path.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleReformatFreeIO
directory in the GitHub: sampleReformatFreeIO repository.

How do I get started?

Refer to the GitHub: sampleReformatFreeIO/README.md file for detailed information
about how this sample works, sample code, and step-by-step instructions on how to run
and verify its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleReformatFreeIO
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleReformatFreeIO/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 28

Chapter 20.
ADDING A CUSTOM LAYER THAT SUPPORTS
INT8 I/O TO YOUR NETWORK IN
TENSORRT

This sample, sampleUffPluginV2Ext, implements the custom pooling layer for the
MNIST model (data/samples/lenet5_custom_pool.uff).

What does this sample do?

Since cuDNN function cudnnPoolingForward with float precision is used to simulate
an INT8 kernel, the performance for INT8 precision does not speed up. Nevertheless, the
main purpose of this sample is to demonstrate how to extend INT8 I/O for a plugin that
is introduced in TensorRT 6.0. This requires the interface replacement from IPlugin/
IPluginV2/IPluginV2Ext to IPluginV2IOExt (or IPluginV2DynamicExt if
dynamic shape is required).

Where is this sample located?

This sample is maintained under the samples/opensource/sampleUffPluginV2Ext
directory in the GitHub: sampleUffPluginV2Ext repository.

How do I get started?

Refer to the GitHub: /sampleUffPluginV2Ext/README.md file for detailed information
about how this sample works, sample code, and step-by-step instructions on how to run
and verify its output.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffPluginV2Ext
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleUffPluginV2Ext/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 29

Chapter 21.
DIGIT RECOGNITION WITH DYNAMIC
SHAPES IN TENSORRT

This sample, sampleDynamicReshape, demonstrates how to use dynamic input
dimensions in TensorRT by creating an engine for resizing dynamically shaped inputs to
the correct size for an ONNX MNIST model.

What does this sample do?

This sample creates an engine for resizing an input with dynamic dimensions to a size
that an ONNX MNIST model can consume.

Specifically, this sample demonstrates how to:

‣ Create a network with dynamic input dimensions to act as a preprocessor for the
model

‣ Parse an ONNX MNIST model to create a second network
‣ Build engines for both networks and start calibration if running in INT8
‣ Run inference using both engines

For more information, see Working With Dynamic Shapes in the TensorRT Developer
Guide.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleDynamicReshape
directory in the GitHub: sampleDynamicReshape repository.

How do I get started?

Refer to the GitHub: sampleDynamicReshape/README.md file for detailed information
about how this sample works, sample code, and step-by-step instructions on how to run
and verify its output.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleDynamicReshape
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleDynamicReshape/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 30

Chapter 22.
NEURAL MACHINE TRANSLATION (NMT)
USING A SEQUENCE TO SEQUENCE
(SEQ2SEQ) MODEL

This sample, sampleNMT, demonstrates the implementation of Neural Machine
Translation (NMT) based on a TensorFlow seq2seq model using the TensorRT API.
The TensorFlow seq2seq model is an open-sourced NMT project that uses deep neural
networks to translate text from one language to another language.

What does this sample do?

Specifically, this sample is an end-to-end sample that takes a TensorFlow model, builds
an engine, and runs inference using the generated network. The sample is intended to be
modular so it can be used as a starting point for your machine translation application.

This sample implements German to English translation using the data that is provided
by and trained from the TensorFlow NMT (seq2seq) Tutorial.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleNMT directory in
the GitHub: sampleNMT repository.

How do I get started?

Refer to the GitHub: sampleNMT/README.md file for detailed information about how
this sample works, sample code, and step-by-step instructions on how to run and verify
its output.

https://github.com/tensorflow/nmt.git
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleNMT
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleNMT/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 31

Chapter 23.
OBJECT DETECTION AND INSTANCE
SEGMENTATION WITH A TENSORFLOW
MASK R-CNN NETWORK

This sample, sampleUffMaskRCNN, performs inference on the Mask R-CNN network in
TensorRT.

What does this sample do?

Mask R-CNN is based on the Mask R-CNN paper which performs the task of object
detection and object mask predictions on a target image.

This sample’s model is based on the Keras implementation of Mask R-CNN and its
training framework can be found in the Mask R-CNN Github repository. We have
verified that the pre-trained Keras model (with backbone ResNet101 + FPN and dataset
coco) provided in the v2.0 release can be converted to UFF and consumed by this
sample. And, it is also feasible to deploy your customized Mask R-CNN model trained
with specific backbone and datasets.

This sample makes use of TensorRT plugins to run the Mask R-CNN model. To use
these plugins, the Keras model should be converted to TensorFlow .pb model. Then this
.pb model needs to be preprocessed and converted to the UFF model with the help of
GraphSurgeon and the UFF utility.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleUffMaskRCNN
directory in the GitHub: sampleUffMaskRCNN repository.

How do I get started?

Refer to the GitHub: sampleUffMaskRCNN/README.md file for detailed information
about how this sample works, sample code, and step-by-step instructions on how to run
and verify its output.

https://arxiv.org/abs/1703.06870
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN/releases/tag/v2.0
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffMaskRCNN
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleUffMaskRCNN/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 32

Chapter 24.
OBJECT DETECTION WITH A TENSORFLOW
FASTER R-CNN NETWORK

This sample, sampleUffFasterRCNN, serves as a demo of how to use the pre-trained
Faster-RCNN model in Transfer Learning Toolkit to do inference with TensorRT.

What does this sample do?

This sample is a UFF TensorRT sample for Faster-RCNN in NVIDIA Transfer Learning
Toolkit SDK. Besides the sample itself, it also provides two TensorRT plugins: Proposal
and CropAndResize to implement the proposal layer and ROIPooling layer as custom
layers in the model since TensorRT has no native support for them.

In this sample, we provide a UFF model as a demo. While in the Transfer Learning
Toolkit workflow, we can't provide the UFF model. Instead, we can only get the .tlt
model during training and the .etlt model after tlt-export. Both of them are
encrypted models and the Transfer Learning Toolkit user will use tlt-converter to
decrypt the .etlt model and generate a TensorRT engine file in a single step. Therefore,
in the Transfer Learning Toolkit workflow, we will consume the TensorRT engine instead
of a UFF model. However, this sample can still serve as a demo on how to use the UFF
Faster R-CNN model regardless of its format.

Where is this sample located?

This sample is maintained under the samples/opensource/sampleUffFasterRCNN
directory in the GitHub: sampleUffFasterRCNN repository.

How do I get started?

Refer to the GitHub: sampleUffFasterRCNN/README.md file for detailed information
about how this sample works, sample code, and step-by-step instructions on how to run
and verify its output.

https://developer.nvidia.com/transfer-learning-toolkit
https://developer.nvidia.com/transfer-learning-toolkit
https://github.com/NVIDIA/TensorRT/tree/release/5.1/plugin/proposalPlugin
https://github.com/NVIDIA/TensorRT/tree/release/5.1/plugin/cropAndResizePlugin
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleUffFasterRCNN
https://github.com/NVIDIA/TensorRT/blob/master/samples/opensource/sampleUffFasterRCNN/README.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 33

Chapter 25.
ALGORITHM SELECTION API USAGE
EXAMPLE BASED ON SAMPLEMNIST IN
TENSORRT

This sample, sampleAlgorithmSelector, shows an example of how to use the algorithm
selection API based on sampleMNIST.

What does this sample do?

This sample demonstrates the usage of IAlgorithmSelector to
deterministically build TensorRT engines. It also shows the usage of
IAlgorithmSelector::selectAlgorithms to define heuristics for selection of
algorithms.

This sample uses a Caffe model that was trained on theMNIST dataset.

To verify whether the engine is operating correctly, this sample picks a 28x28 image of
a digit at random and runs inference on it using the engine it created. The output of the
network is a probability distribution on the digit, showing which digit is likely to be that
in the image.

Where is this sample located?

This sample is located in the release product package under the samples/
sampleAlgorithmSelector directory.

How do I get started?

Refer to the samples/sampleAlgorithmSelector/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 34

Chapter 26.
INTRODUCTION TO IMPORTING CAFFE,
TENSORFLOW AND ONNX MODELS INTO
TENSORRT USING PYTHON

This sample, introductory_parser_samples, is a Python sample that uses TensorRT and
its included suite of parsers (UFF, Caffe and ONNX parsers), to perform inference with
ResNet-50 models trained with various different frameworks.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
introductory_parser_samples directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/
introductory_parser_samples/README.md file for detailed information about how
this sample works, sample code, and step-by-step instructions on how to run and verify
its output.

A summary of the README.md file is included in this section for your reference, however,
you should always refer to the README.md within the package for the most recent
documentation updates.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 35

Chapter 27.
“HELLO WORLD” FOR TENSORRT USING
TENSORFLOW AND PYTHON

This sample, end_to_end_tensorflow_mnist, trains a small, fully-connected model on the
MNIST dataset and runs inference using TensorRT.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
end_to_end_tensorflow_mnist directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/
end_to_end_tensorflow_mnist/README.md file for detailed information about how
this sample works, sample code, and step-by-step instructions on how to run and verify
its output.

A summary of the README.md file is included in this section for your reference, however,
you should always refer to the README.md within the package for the most recent
documentation updates.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 36

Chapter 28.
“HELLO WORLD” FOR TENSORRT USING
PYTORCH AND PYTHON

This sample, network_api_pytorch_mnist, trains a convolutional model on the MNIST
dataset and runs inference with a TensorRT engine.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
network_api_pytorch_mnist directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/network_api_pytorch_mnist/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

A summary of the README.md file is included in this section for your reference, however,
you should always refer to the README.md within the package for the most recent
documentation updates.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 37

Chapter 29.
ADDING A CUSTOM LAYER TO YOUR CAFFE
NETWORK IN TENSORRT IN PYTHON

This sample, fc_plugin_caffe_mnist, demonstrates how to implement a custom
FullyConnected layer using cuBLAS and cuDNN, wraps the implementation in a
TensorRT plugin (with a corresponding plugin factory) and generates Python bindings
for it using pybind11. These bindings are then used to register the plugin factory with
the CaffeParser.

The Caffe InnerProduct/FullyConnected layer is normally handled natively in
TensorRT using the IFullyConnected layer. However, in this sample, we use a plugin
implementation for instructive purposes.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
fc_plugin_caffe_mnist directory.

Getting started:

Refer to the /usr/src/tensorrt/samples/python/fc_plugin_caffe_mnist/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

A summary of the README.md file is included in this section for your reference, however,
you should always refer to the README.md within the package for the most recent
documentation updates.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 38

Chapter 30.
ADDING A CUSTOM LAYER TO YOUR
TENSORFLOW NETWORK IN TENSORRT IN
PYTHON

This sample, uff_custom_plugin, demonstrates how to use plugins written in C++ with
the TensorRT Python bindings and UFF Parser. This sample uses the MNIST dataset.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
uff_custom_plugin directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/uff_custom_plugin/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

A summary of the README.md file is included in this section for your reference, however,
you should always refer to the README.md within the package for the most recent
documentation updates.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 39

Chapter 31.
OBJECT DETECTION WITH THE ONNX
TENSORRT BACKEND IN PYTHON

This sample, yolov3_onnx, implements a full ONNX-based pipeline for performing
inference with the YOLOv3 network, with an input size of 608x608 pixels, including pre
and post-processing.

What Does This Sample Do?
This sample is based on the YOLOv3-608 paper.

This sample is not supported on Ubuntu 14.04 and older. Additionally, the
yolov3_to_onnx.py script does not support Python 3.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/yolov3_onnx
directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/yolov3_onnx/README.md file
for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

A summary of the README.md file is included in this section for your reference, however,
you should always refer to the README.md within the package for the most recent
documentation updates.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 40

Chapter 32.
OBJECT DETECTION WITH SSD IN PYTHON

This sample, uff_ssd, implements a full UFF-based pipeline for performing inference
with an SSD (InceptionV2 feature extractor) network.

What Does This Sample Do?

This sample is based on the SSD: Single Shot MultiBox Detector paper. The SSD network,
built on the VGG-16 network, performs the task of object detection and localization
in a single forward pass of the network. This approach discretizes the output space of
bounding boxes into a set of default boxes over different aspect ratios and scales per
feature map location. At prediction time, the network generates scores for the presence
of each object category in each default box and produces adjustments to the box to better
match the object shape. Additionally, the network combines predictions from multiple
features with different resolutions to naturally handle objects of various sizes.

This sample is based on the TensorFlow implementation of SSD. For more information,
download ssd_inception_v2_coco. Unlike the paper, the TensorFlow SSD network was
trained on the InceptionV2 architecture using the MSCOCO dataset which has 91 classes
(including the background class). The config details of the network can be found here.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/uff_ssd
directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/uff_ssd/README.md file for
detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

A summary of the README.md file is included in this section for your reference, however,
you should always refer to the README.md within the package for the most recent
documentation updates.

https://arxiv.org/abs/1512.02325
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 41

Chapter 33.
INT8 CALIBRATION IN PYTHON

This sample, int8_caffe_mnist, demonstrates how to create an INT8 calibrator, build and
calibrate an engine for INT8 mode, and finally run inference in INT8 mode.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
int8_caffe_mnist directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/int8_caffe_mnist/README.md
file for detailed information about how this sample works, sample code, and step-by-
step instructions on how to run and verify its output.

A summary of the README.md file is included in this section for your reference, however,
you should always refer to the README.md within the package for the most recent
documentation updates.

www.nvidia.com
TensorRT Samples SWE-SWDOCTRT-001-SAMG_vTensorRT 7.1.0 Early Access

(EA) | 42

Chapter 34.
REFITTING AN ENGINE IN PYTHON

This sample, engine_refit_mnist, trains an MNIST model in PyTorch, recreates the
network in TensorRT with dummy weights, and finally refits the TensorRT engine with
weights from the model. Refitting allows us to quickly modify the weights in a TensorRT
engine without needing to rebuild.

Where Is This Sample Located?
This sample is installed in the /usr/src/tensorrt/samples/python/
engine_refit_mnist directory.

Getting Started:

Refer to the /usr/src/tensorrt/samples/python/engine_refit_mnist/
README.md file for detailed information about how this sample works, sample code, and
step-by-step instructions on how to run and verify its output.

A summary of the README.md file is included in this section for your reference, however,
you should always refer to the README.md within the package for the most recent
documentation updates.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain

functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations

or warranties, expressed or implied, as to the accuracy or completeness of the information contained in

this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability

for the consequences or use of such information or for any infringement of patents or other rights of third

parties that may result from its use. This document is not a commitment to develop, release, or deliver any

Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other

changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such

information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time

of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized

representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any

customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in

this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,

aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA

product can reasonably be expected to result in personal injury, death, or property or environmental

damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or

applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for

any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is

customer’s sole responsibility to evaluate and determine the applicability of any information contained in

this document, ensure the product is suitable and fit for the application planned by customer, and perform

the necessary testing for the application in order to avoid a default of the application or the product.

Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product

and may result in additional or different conditions and/or requirements beyond those contained in this

document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based

on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or

(ii) customer product designs.

www.nvidia.com

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other

NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-

party products or services does not constitute a license from NVIDIA to use such products or services or a

warranty or endorsement thereof. Use of such information may require a license from a third party under the

patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents

or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing,

reproduced without alteration and in full compliance with all applicable export laws and regulations, and

accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,

DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING

PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH

RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,

MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN

NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT,

SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE

THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason

whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein

shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and

DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards

Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of

HDMI Licensing LLC.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are

trademarks of ARM Limited. All other brands or product names are the property of their respective

holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional

subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting

(Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM

Sweden AB.

www.nvidia.com

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX

Station, DLProf, GPU, JetPack, Jetson, Kepler, Maxwell, NCCL, Nsight Compute, Nsight Systems, NVCaffe,

NVIDIA Ampere GPU architecture, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud,

NVLink, NVSHMEM, PerfWorks, Pascal, SDK Manager, T4, Tegra, TensorRT, TensorRT Inference Server, Tesla,

TF-TRT, Triton Inference Server, Turing, and Volta are trademarks and/or registered trademarks of NVIDIA

Corporation in the United States and other countries. Other company and product names may be trademarks

of the respective companies with which they are associated.

Copyright

© 2020 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Introduction
	1.1. C++ Samples
	1.2. Python Samples

	Application Areas
	Cross Compiling Samples For AArch64 Users
	3.1. Prerequisites
	3.2. Building Samples For QNX AArch64
	3.3. Building Samples For Linux AArch64
	3.4. Building Samples For Android AArch64

	“Hello World” For TensorRT
	Building A Simple MNIST Network Layer By Layer
	Importing The TensorFlow Model And Running Inference
	“Hello World” For TensorRT From ONNX
	Building And Running GoogleNet In TensorRT
	Building An RNN Network Layer By Layer
	Performing Inference In INT8 Using Custom Calibration
	Performing Inference In INT8 Precision
	Adding A Custom Layer To Your Network In TensorRT
	Object Detection With Faster R-CNN
	Object Detection With A TensorFlow SSD Network
	Movie Recommendation Using Neural Collaborative Filter (NCF)
	Movie Recommendation Using MPS (Multi-Process Service)
	Object Detection With SSD
	“Hello World” For Multilayer Perceptron (MLP)
	Specifying I/O Formats Using The Reformat Free I/O APIs
	Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT
	Digit Recognition With Dynamic Shapes In TensorRT
	Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model
	Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN Network
	Object Detection With A TensorFlow Faster R-CNN Network
	Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT
	Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using Python
	“Hello World” For TensorRT Using TensorFlow And Python
	“Hello World” For TensorRT Using PyTorch And Python
	Adding A Custom Layer To Your Caffe Network In TensorRT In Python
	Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
	Object Detection With The ONNX TensorRT Backend In Python
	Object Detection With SSD In Python
	INT8 Calibration In Python
	Refitting An Engine In Python

