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Chapter 1. How Do I Measure
Performance?

Before starting any optimization effort with TensorRT, it’s essential to determine what should
be measured. Without measurements, it’s impossible to make reliable progress or measure
whether success has been achieved.

Latency

A performance measurement for network inference is how much time elapses from an input
being presented to the network until an output is available. This is the latency of a single input.
Lower latencies are better. In some applications, low latency is a critical safety requirement.
In other applications, latency is directly visible to users as a quality of service issue. For larger
bulk processing, latency may not be important at all.

Throughput

Another performance measurement is how many inferences can be completed in a fixed unit
of time. This is the throughput of the network. Higher throughput is better. Higher throughputs
indicate a more efficient utilization of fixed compute resources. For bulk processing, the total
time taken will be determined by the throughput of the network.

Before we can start measuring latency and throughput, we need to choose the exact points at
which to start and stop timing. Depending on the network and application, it might make sense
to choose different points. In many applications, there is a processing pipeline.

The overall system performance can be measured by the latency and throughput of the entire
processing pipeline. Because the pre and post-processing steps depend so strongly on the
particular application, in this section, we will mostly consider the latency and throughput of
the network inference, excluding the data pre and post-processing overhead.

Another way of looking at latency and throughput is to fix the maximum latency and measure
throughput at that latency. This is a type of quality-of-service measurement. A measurement
like this can be a reasonable compromise between the user experience and system efficiency.
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1.1.  Tools
If you have a model saved as a UFF file, or if you have a network description in a Caffe prototxt
format, you can use the trtexec tool to test the performance of running inference on your
network using TensorRT. The trtexec tool has many options such as specifying inputs and
outputs, iterations and runs for performance timing, precisions allowed, and other options.

For more information about trtexec, see trtexec.

If you have a saved serialized engine file, you can use NVIDIA Triton Inference Server to
run the engine with multiple execution contexts from multiple threads in a fully pipelined
asynchronous way to test parallel inference performance.

1.2.  CPU Timing
C++11 provides high precision timers in the <chrono> standard library. For
example, std::chrono::system_clock represents wall-clock time, and
std::chrono::high_resolution_clock measures time in the highest precision available.
Every operating system also provides mechanisms for measuring time in high precision.

For example:
Linux

gettimeofday

Windows
QueryPerformanceCounter and QueryPerformanceFrequency

These mechanisms measure wall-clock time from the host side. If there is only one
inference happening on the device at one time, then this can be a simple way of profiling
the time various operations take. Inference is typically asynchronous. When measuring
times with asynchronous operations, ensure you add an explicit CUDA stream or device
synchronization to wait for results to become available. Alternatively, convert calls from
IExecutionContext::enqueue to IExecutionContext::execute to force the calls to be
synchronous.

The following example code snippet shows measuring a network inference execution host
time:
#include <chrono>

auto startTime = std::chrono::high_resolution_clock::now();
context->enqueue(batchSize, &buffers[0], stream, nullptr);
cudaStreamSynchronize(stream);
auto endTime = std::chrono::high_resolution_clock::now();
float totalTime = std::chrono::duration<float, std::milli>
(endTime - startTime).count();

These types of wall-clock times can be useful for measuring overall throughput and latency of
the application, and for placing inference times in context within a larger system.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#trtexec
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html
http://man7.org/linux/man-pages/man2/gettimeofday.2.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
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1.3.  CUDA Events
One problem with timing on the host exclusively is that it requires host/device synchronization.
Optimized applications may have many inferences running in parallel on the device with
overlapping data movement. In addition, the synchronization itself adds some amount of noise
to timing measurements.

To help with these issues, CUDA provides an Event API. This API allows you to place events
into CUDA streams that will be time-stamped by the GPU as they are encountered. Differences
in timestamps can then tell you how long different operations took.

The following example code snippet shows computing the time between two CUDA events:
cudaEvent_t start, end;
cudaEventCreate(&start);
cudaEventCreate(&end);

cudaEventRecord(start, stream);
context->enqueue(batchSize, &buffers[0], stream, nullptr);
cudaEventRecord(end, stream);

cudaEventSynchronize(end);
float totalTime;
cudaEventElapsedTime(&totalTime, start, end);

TensorRT also includes an optional CUDA event in the method
IExecutionContext::enqueue that will be signaled once the input buffers are free to be
reused. This allows the application to immediately start refilling the input buffer region for the
next inference in parallel with finishing the current inference. For example:
cudaEvent_t inputReady;
cudaEventCreate(&inputReady);

context->enqueue(batchSize, &buffers[0], stream, &inputReady);
cudaEventSynchronize(inputReady);

// At this point we can refill the input buffers, but output buffers may not be done

1.4.  Built-In TensorRT Profiling
To dig deeper into the performance of inference, it requires more fine-grained timing
measurements within the optimized network. The IExecutionContext interface class
provides a method called setProfiler that allows you to write a custom class implementing
the IProfiler interface.

When called, the network will run in a profiling mode. After finishing inference, the profiler
object of your class is called to report the timing for each layer in the network. These timings
can be used to locate bottlenecks, compare different versions of a serialized engine, and
debug performance issues.

Layers inside a loop compile into a single monolithic layer, therefore, separate timings for
those layers are not available.

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT
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Profiling is currently only enabled for the synchronous execute mode when setProfiler is
called. There is a slight impact on performance when profiling is enabled, therefore, it should
only be set up when needed.

An example showing how to use the IProfiler interface is provided in the common sample
code (common.h), and then used in Neural Machine Translation (NMT) Using A Sequence To
Sequence (seq2seq) Model (sampleNMT) located in the GitHub repository.

1.5.  CUDA Profiling
The recommended CUDA profilers are NVIDIA Nsight Compute and NVIDIA Nsight Systems.
Some CUDA developers may be more familiar with nvprof and nvvp, however, these are being
deprecated. In any case, these profilers can be used on any CUDA program to report timing
information about the kernels launched during execution, data movement between host and
device, and CUDA API calls used.

NVIDIA Nsight Systems can be configured in various ways to report timing information for only
a portion of the execution of the program or to also report traditional CPU sampling profile
information together with GPU information.

Enabling NVIDIA Tools Extension SDK (NVTX) tracing allows NVIDIA Nsight Compute and
Nsight Systems to collect data generated by TensorRT applications. NVTX is a C-based API for
marking events and ranges in your applications.

Note: In TensorRT, each layer may launch one or more kernels to perform its operations.
The exact kernels launched depends on the optimized network and the hardware present.
Depending on the choices of the builder, there may be multiple additional operations that
reorder data interspersed with layer computations; these reformat operations may be
implemented as either device-to-device memory copies or as custom kernels.

Decoding the kernel names back to layers in the original network can be complicated.
Because of this, TensorRT uses NVTX to mark a range for each layer, which then allows the
CUDA profilers to correlate each layer with the kernels called to implement it. In TensorRT,
NVTX helps to correlate the runtime engine layer execution with CUDA kernel calls. Nsight
Systems supports collecting and visualizing these events and ranges on the timeline. Nsight
Compute also supports collecting and displaying the state of all active NVTX domains and
ranges in a given thread when the application is suspended.

For example, the following screenshots are from Nsight Systems.
 

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleNMT
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleNMT
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
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Figure 1. The layer execution and the kernel being launched on the CPU
side.

 

 

Figure 2. The kernels actually running on the GPU, in other words, it
shows the correlation between the layer execution and kernel
launch on the CPU side and their execution on the GPU side.
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When profiling a TensorRT application, it is recommended to enable profiling only after the
engine has been built. During the build phase, all possible tactics are tried and timed. Profiling
this portion of the execution will not show any meaningful performance measurements and
will include all possible kernels, not the ones actually selected for inference. One way to limit
the scope of profiling is to:
First phase

Structure the application to build and then serialize the engines in one phase.
Second phase

Load the serialized engines and run inference in a second phase.
Third phase

Profile this second phase only.

WARNING:

Layers inside loops may be greatly fused and show up as __myln_k_bb[n]_[m] where n and
m are integers.

1.6.  Memory
Tracking memory usage can be as important as execution performance. Usually, the memory
will be more constrained on the device than on the host. To keep track of device memory, the
recommended mechanism is to create a simple custom GPU allocator that internally keeps
some statistics then uses the regular CUDA memory allocation functions cudaMalloc and
cudaFree.

A custom GPU allocator can be set for the builder IBuilder for network optimizations, and for
IRuntime when deserializing engines. One idea for the custom allocator is to keep track of the
current amount of memory allocated, and to push an allocation event with a timestamp and
other information onto a global list of allocation events. Looking through the list of allocation
events allows profiling memory usage over time. For guidance on how to determine the
amount of memory a model will use, see FAQs, question How do I determine how much device
memory will be required by my network?.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#faq
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Chapter 2. How Do I Optimize My
TensorRT Performance?

The following sections focus on the general inference flow on GPUs and some of the general
strategies to improve performance. These ideas are applicable to most CUDA programmers
but may not be as obvious to developers coming from other backgrounds.

2.1.  Mixed Precision
TensorRT supports Mixed Precision Inference with FP32, FP16, or INT8 as supported
precisions. Depending on the hardware support, you can choose to enable either of the above
precision to accelerate inference.

FP32 precision is the default precision if no specific precision mode is enabled. When FP16
precision mode is enabled, a layer can either execute in FP32 or FP16 based on fastest
execution time. Similarly, if INT8 precision mode is enabled, a layer can either execute in FP32
or INT8 based on fastest execution time.

For the best performance, you can choose to enable all three precisions by enabling FP16 and
INT8 precision mode explicitly. You can also choose to execute trtexec with the “--best”
option directly, which would enable all supported precisions for inference resulting in best
performance.

For more information, refer to the TensorRT Support Matrix.

2.2.  Batching
The most important optimization is to compute as many results in parallel as possible using
batching. In TensorRT, a batch is a collection of inputs that can all be processed uniformly.
Each instance in the batch has the same shape and flows through the network in exactly the
same way. Each instance can, therefore, be trivially computed in parallel.

Each layer of the network will have some amount of overhead and synchronization required
to compute forward inference. By computing more results in parallel, this overhead is
paid off more efficiently. In addition, many layers are performance-limited by the smallest
dimension in the input. If the batch size is one or small, this size can often be the performance
limiting dimension. For example, the FullyConnected layer with V inputs and K outputs can be
implemented for one batch instance as a matrix multiply of an 1xV matrix with a VxK weight

https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
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matrix. If N instances are batched, this becomes an NxV multiplied by VxK matrix. The vector-
matrix multiply becomes a matrix-matrix multiply, which is much more efficient.

Larger batch sizes are almost always more efficient on the GPU. Extremely large batches,
such as N > 2^16, can sometimes require extended index computation and so should be
avoided if possible. Often the time taken to compute results for batch size N=1 is almost
identical to batch sizes up to N=16 or N=32. In this case, increasing the batch size from N=1
to N=32 would dramatically improve total throughput with only a small effect on latency. In
addition, when the network contains MatrixMultiply layers or FullyConnected layers, batch
sizes of multiples of 32 tend to have the best performance for FP16 and INT8 inference
because of the utilization of Tensor Cores, if the hardware supports them.

Sometimes batching inference work is not possible due to the organization of the application.
In some common applications, such as a server that does inference per request, it can be
possible to implement opportunistic batching. For each incoming request, wait for a time T.
If other requests come in during that time, batch them together. Otherwise, continue with
a single instance inference. This type of strategy adds fixed latency to each request but can
improve the maximum throughput of the system by orders of magnitude.

Using batching

The C++ and Python APIs are designed for batch input. The IExecutionContext::execute
(IExecutionContext.execute in Python) and IExecutionContext::enqueue
(IExecutionContext.execute_async in Python) methods take an explicit batch size
parameter. The maximum batch size should also be set for the builder when building the
optimized network with IBuilder::setMaxBatchSize (Builder.max_batch_size in
Python). When calling IExecutionContext::execute or enqueue, the bindings passed as the
bindings parameter are organized per tensor and not per instance. In other words, the data
for one input instance is not grouped together into one contiguous region of memory. Instead,
each tensor binding is an array of instance data for that tensor.

Another consideration is that building the optimized network optimizes for the given maximum
batch size. The final result will be tuned for the maximum batch size but will still work
correctly for any smaller batch size. It is possible to run multiple build operations to create
multiple optimized engines for different batch sizes, then choose which engine to use based on
the actual batch size at runtime.

2.3.  Streaming
In general, CUDA programming streams are a way of organizing asynchronous work.
Asynchronous commands put into a stream are guaranteed to run in sequence but may
execute out of order with respect to other streams. In particular, asynchronous commands in
two streams may be scheduled to run concurrently (subject to hardware limitations).

In the context of TensorRT and inference, each layer of the optimized final network will
require work on the GPU. However, not all layers will be able to fully utilize the computation
capabilities of the hardware. Scheduling requests in separate streams allows work to
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be scheduled immediately as the hardware becomes available without unnecessary
synchronization. Even if only some layers can be overlapped, overall performance will improve.

Using streaming

 1. Identify the batches of inferences that are independent.

 2. Create a single engine for the network.

 3. Create a CUDA stream using cudaStreamCreate for each independent batch and an
IExecutionContext for each independent batch.

 4. Launch inference work by requesting asynchronous results using
IExecutionContext::enqueue from the appropriate IExecutionContext and passing in
the appropriate stream.

 5. After all the work has been launched, synchronize with all the streams to wait for results.
The execution contexts and streams can be reused for later batches of independent work.

With the help of streaming, the Triton Inference Server helps to manage multiple execution
instances of a model. For more information about how Triton Inference Server does this, see
Instance Groups.

It is also possible to use multiple host threads with streams. A common pattern is incoming
requests dispatched to a pool of waiting for worker threads. In this case, the pool of worker
threads will each have one execution context and CUDA stream. Each thread will request work
in its own stream as the work becomes available. Each thread will synchronize with its stream
to wait for results without blocking other worker threads.

2.4.  Thread Safety
The TensorRT builder may only be used by one thread at a time. If you need to run multiple
builds simultaneously, you will need to create multiple builders.

The TensorRT runtime can be used by multiple threads simultaneously, so long as each object
uses a different execution context.

Note: Plugins are shared at the engine level, not the execution context level, and thus plugins
which may be used simultaneously by multiple threads need to manage their resources in a
thread-safe manner. This is however not required for plugins based on IPluginV2Ext and
derivative interfaces since we clone these plugin when ExecutionContext is created.

The TensorRT library pointer to the logger is a singleton within the library. If using multiple
builder or runtime objects, use the same logger, and ensure that it is thread-safe.

2.5.  Initializing The Engine
In general, creating an engine from scratch is an expensive operation. The builder optimizes
the given network in various ways, then performs timing tests to choose the highest

https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/model_configuration.html#instance-groups
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performance implementation for each layer specific to the actual GPU in the system. As the
number of layers in the network increases, the number of possible configurations increases
and the time taken to choose the optimal one also increases.

The builder layer timing cache helps to reduce the time taken in the builder phase. The
caching should work in all cases and even better than non-caching in some cases, however,
there can be cases where turning it off may give you marginally better performance.

More complicated deployment scenarios can involve multiple networks for the same
application or even multiple applications running at the same time. The recommended
strategy in these scenarios is to create engines and serialize them before they are needed. An
engine can be deserialized relatively quickly. One engine can then be used to create multiple
IExecutionContext objects.

2.6.  Enabling Fusion
The following sections discuss the different options for enabling fusion.

2.6.1.  Layer Fusion
TensorRT attempts to perform many different types of optimizations in a network during
the build phase. In the first phase, layers are fused together whenever possible. Fusions
transform the network into a simpler form but preserve the same overall behavior. Internally,
many layer implementations have extra parameters and options that are not directly
accessible when creating the network. Instead, the fusion optimization step detects supported
patterns of operations and fuses multiple layers into one layer with internal options set.

Consider the common case of a convolution followed by ReLU activation. To create a network
with these operations, it involves adding a Convolution layer with addConvolution, following
it with an Activation layer using addActivation with an ActivationType of kRELU. The
unoptimized graph will contain separate layers for convolution and activation. The internal
implementation of convolution supports computing the ReLU function on the output in one
step directly from the convolution kernel without requiring a second kernel call. The fusion
optimization step will detect the convolution followed by ReLU, verify that the operations are
supported by the implementation, then fuse them into one layer.

To investigate which fusions have happened, or has not happened, the builder logs its
operations to the logger object provided during construction. Optimization steps are at the
kINFO log level. To see these messages, ensure you log them in the ILogger callback.

Fusions are normally handled by creating a new layer with a name containing the names
of both of the layers which were fused. For example, in MNIST, a FullyConnected layer
(InnerProduct) named ip1 is fused with a ReLU Activation layer named relu1; to create a new
layer named ip1 + relu1.

2.6.2.  Types Of Fusions
The following list describes the types of supported fusions.
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Supported Layer Fusions
ReLU ReLU Activation

An Activation layer performing ReLU followed by an activation performing ReLU will be
replaced by a single activation layer.

Convolution and ReLU Activation

The Convolution layer can be of any type and there are no restrictions on values. The
Activation layer must be ReLU type.

Convolution and GELU Activation

The precision of input and output should be the same; with both of them FP16 or INT8. The
Activation layer must be GELU type. TensorRT should be running on a Turing or later device
with CUDA version 10.0 or later.

Convolution and Clip Activation

The Convolution layer can be any type and there are no restrictions on values. The
Activation layer must be Clip type.

FullyConnected and ReLU Activation

The FullyConnected layer has no restrictions. The Activation layer must be ReLU type.

FullyConnected and GELU Activation

The precision of input and output should be the same; with both of them FP16 or INT8. The
Activation layer must be GELU type. TensorRT should be running on a Turing or later device
with CUDA version 10.0 or later.

Scale and Activation

The Scale layer followed by an Activation layer can be fused into a single Activation layer.

Convolution And ElementWise Operation

A Convolution layer followed by a simple sum, min, or max in an ElementWise layer can
be fused into the Convolution layer. The sum must not use broadcasting, unless the
broadcasting is across the batch size.

Padding and Convolution/Deconvolution

Padding followed by a Convolution or Deconvolution can be fused into a single Convolution/
Deconvolution layer if all the padding sizes are non-negative.

Shuffle and Reduce

A Shuffle layer without reshape, followed by a Reduce layer can be fused into a single
Reduce layer. The Shuffle layer can perform permutations but cannot perform any reshape
operation. The Reduce layer must have keepDimensions set of dimensions.

Shuffle and Shuffle

Each Shuffle layer consists of a transpose, a reshape, and a second transpose. A Shuffle
layer followed by another Shuffle layer can be replaced by a single Shuffle (or nothing). If
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both Shuffle layers perform reshape operations, this fusion is only allowed if the second
transpose of the first shuffle is the inverse of the first transpose of the second shuffle.

Scale

A Scale layer that adds 0, multiplied by 1, or computes powers to the 1 can be erased.

Convolution and Scale

A Convolution layer followed by a Scale layer that is kUNIFORM or kCHANNEL can be fused
into a single convolution by adjusting the convolution weights. This fusion is disabled if the
scale has a non-constant power parameter.

Reduce

A Reduce layer that performs average pooling will be replaced by a Pooling layer. The
Reduce layer must have keepDimensions set, reduce across H and W dimensions from CHW
input format before batching, using the kAVG operation.

Convolution and Pooling

The Convolution and Pooling layers must have the same precision. The Convolution layer
may already have a fused activation operation from a previous fusion.

Depthwise Separable Convolution

A depthwise convolution with activation followed by a convolution with activation may
sometimes be fused into a single optimized DepSepConvolution layer. The precision of both
convolutions must be INT8 and the device computes capability must be 7.2 or later.

SoftMax and Log

Can be fused into a single Softmax layer if the SoftMax has not already been fused with a
previous log operation.

SoftMax and TopK

It can be fused into a single layer. The SoftMax may or may not include a Log operation.

Supported Reduction Operation Fusions
GELU

A group of Unary layer and ElementWise layer which represent the following equations can
be fused into a single GELU reduction operation.
0.5x(1+tanh(2/π(x+0.044715x3)))

Or the alternative representation.
0.5x(1+erf(x/√2))

For more information about the GELU operation, refer to the GAUSSIAN ERROR LINEAR
UNITS (GELUS) paper. For more information about implementing the GELU operation, see
Adding Custom Layers Using The C++ API in the TensorRT Developer Guide.

L1Norm

A Unary layer kABS operation followed by a Reduce layer kSUM operation can be fused into a
single L1Norm reduction operation.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#add_custom_layer
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Sum of Squares

A product ElementWise layer with the same input (square operation) followed by a kSUM
reduction can be fused into a single square Sum reduction operation.

L2Norm

A sum of squares operation followed by a kSQRT UnaryOperation can be fused into a single
L2Norm reduction operation.

LogSum

A Reduce layer kSUM followed by a kLOG UnaryOperation can be fused into a single LogSum
reduction operation.

LogSumExp

A Unary kEXP ElementWise operation followed by a LogSum fusion can be fused into a
single LogSumExp reduction.

For more information about layers, see TensorRT Layers

2.6.3.  MLP Fusions
Multilayer Perceptron (MLP) networks can be described as stacked layers of FullyConnected
or MatrixMultiply layers interleaved with Activation layer functions. To improve the
performance of Multilayer Perceptron networks, different types of fusions are possible.

The initial creation of a dedicated MLP layer comes from a MatrixMultiply layer fused with an
Activation layer. The MatrixMultiply layer must be a 2D multiplication. The size of the matrices
must be small enough to use hardware shared memory to store temporary weights; for the
untransposed case, this means the product of the widths of both matrices must be limited
(heights if transposed).

Other patterns supported for the creation of the initial MLP layer is fusing a MatrixMultiply
with an ElementWise kSUM operation with a constant, for example bias, and fusing two
MatrixMultiply layers together with no intermediate computation.

It is also possible to create the initial MLP layer from fusing a FullyConnected layer with
an Activation layer, fusing a FullyConnected layer with a Scale layer (performing bias only
using the shift parameter), and fusing two FullyConnected layers with no intermediate
computation.

Once an MLP layer is created, it will be reported in the builder log as a 1-layer MLP layer (or
a 2-layer MLP layer if two MatrixMultiply or FullyConnected layers were merged). This layer
can then also be fused with more layers to create deeper MLP fusions.

MLP layers can be fused with subsequent MatrixMultiply, FullyConnected, Activation,
ElementWise sums, and Scale layers. The general restrictions are that:

‣ MatrixMultiply must be strictly 2D

‣ ElementWise must be a kSUM with a constant

‣ Scale must be a bias using the shift parameter

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers


How Do I Optimize My TensorRT Performance?

Optimizing The Performance Of TensorRT SWE-SWDOCTRT-001-BPRC _vTensorRT 7.1.3   |   14

All activations are supported. The size of matrices being multiplied must allow shared memory
for weight reuse as described for initial MLP layer creation.

Two MLP layer nodes can also be fused into one larger MLP layer. The total number of layers
is limited to 31. The last layer of the first MLP layer must match the input of the second MLP
layer.

Because these fusions are general, sometimes networks not designed as strictly as Multilayer
Perceptron networks will use MLP layers as an automatic optimization. For example, the
MNIST sample contains an InnerProduct layer followed by a ReLU activation, followed by
another InnerProduct layer. InnerProduct from Caffe is parsed as a FullyConnected layer in
TensorRT. The ip1 and relu1 layers are fused into ip1 + relu1 as described previously. This
layer is then fused with ip2 into a new layer named 2-layer MLP.

2.6.4.  PointWise Fusion
Multiple adjacent PointWise layers can be fused into a single PointWise layer, to improve
performance.

The following types of PointWise layers are supported, with some limitations:
Activation

All ActivationType is supported.
Constant

Only constant with single value (size == 1).
ElementWise

All ElementWiseOperation are supported.
PointWise

PointWise itself is also a PointWise layer.
Scale

Only support ScaleMode::kUNIFORM.
Unary

All UnaryOperation are supported.
Safe mode does not support PointWise fusion.

The size of the fused PointWise layer is not unlimited, therefore, some PointWise layers may
not be fused.

Fusion will create a new layer with a name consisting of both of the layers which were fused.
For example, an ElementWise layer named add1 is fused with a ReLU Activation layer named
relu1 with new layer name: fusedPointwiseNode(add1, relu1).

2.6.5.  QDQ Fusion
Quantized INT8 graph consists of onnx::QuantizeLinear and onnx::DequantizeLinear
pair of nodes (QDQ) with scales and zero-points. Starting in TensorRT 7.0, it’s required that
zero_point is 0.

QDQ nodes help convert from FP32 values to INT8 and vice-versa. Such a graph would still
have weights and bias in FP32 precision.

Weights are followed by a QDQ node pair so that they can be quantized/dequantize if required.
Bias quantization is performed using scales from activations and weights, thus no extra QDQ
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node pair is required for bias input. Assumption for bias quantization is that S_weights *
S_input = S_bias.

Fusions related to QDQ nodes includes quantized/dequantized weights, commutating QDQ
nodes without changing the mathematical equivalence of the model, and erasing redundant
QDQ nodes. After applying QDQ fusions, the rest of the builder optimizations would be applied
to the graph.
Fuse QDQ with weighted node (Conv, FC, Deconv)

If we have a
[DequantizeLinear (Activations), DequantizeLinear (weights)] > Node >
        QuantizeLinear
( [DQ, DQ] > Node > Q) sequence, then it is fused to the quantized node (QNode).

Supporting QDQ nodes pair for weights requires weighted nodes to support more than one
input. Thus we support adding second input (for weights tensor) and third input (for bias
tensor). Additional inputs can be set using setInput(index, tensor)API for Convolution,
Deconvolution and FullyConnected layers where index = 2 for weights tensor and index = 3
for bias tensor.

During fusion with weighted nodes, we would quantize FP32 weights to INT8 and fuse it with
the corresponding weighted node. Similarly, FP32 bias would be quantized to INT32 and
fused.

Fuse QDQ with non-weighted node

If we have a DequantizeLinear > Node > QuantizeLinear (DQ > Node > Q) sequence,
then it is fused to the quantized node (QNode).

Commutate QDQ nodes

DequantizeLinear commutation is allowed when Φ(DQ(x)) == DQ(Φ(x)).
QuantizeLinear commutation is allowed when Q(Φ(x)) == Φ(Q(x)).

Also, commutation logic also accounts for available kernel implementations such that
mathematical equivalence is guaranteed.

Insert missing QDQ nodes

If a node has missing QDQ nodes pair, and max(abs(Φ(x)) == max(abs(x)) (for
example, MaxPool), missing QDQ pairs would be inserted to run more node with INT8
precision.

Erase redundant QDQ nodes

It’s possible that after applying all the optimizations, the graph still has QDQ node pairs
which are in itself a no-op. QDQ node erasure fusion would remove such redundant pairs.
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Chapter 3. How Do I Optimize My Layer
Performance?

The following descriptions detail how you can optimize the listed layers.
Concatenation Layer

The main consideration with the Concatenation layer is that if multiple outputs are
concatenated together, they can not be broadcasted across the batch dimension and must
be explicitly copied. Most layers support broadcasting across the batch dimension to avoid
copying data unnecessarily, but this will be disabled if the output is concatenated with other
tensors.

FullyConnected Layer

To get the maximum performance out of a FullyConnected layer for INT8 datatypes, use
conv1x1 to replace the FullyConnected layer. As conv1x1 is equivalent to FullyConnected
and convolution supports INT8 Tensor Cores while FullyConnected doesn’t, conv1x1 is
expected to have better performance than FullyConnected.

Gather Layer

To get the maximum performance out of a Gather layer, use an axis of 0. There are no
fusions available for a Gather layer.

MatrixMultiply and FullyConnected Layers

A new development is encouraged to use MatrixMultiply in preference to FullyConnected
layers for consistency of interface. Matrix multiplication is generally significantly faster in
FP16 Tensor Cores compared to FP32.

Tensor dimensions (or the number of input and output channels for FullyConnected layer)
of multiples of 32 tend to have the best performance for FP16 and INT8 inference because
of the utilization of Tensor Cores if the hardware supports them. Tensor Core kernels for
FP16 data requires striding between data rows to be multiples of 8 data elements. For
example, a MatrixMultiply that is M x K times K x N requires M, K, and N to be multiple of 8
to use Tensor Core optimized kernels.

Reduce Layer

To get the maximum performance out of a Reduce layer, perform the reduction across the
last dimensions (tail reduce). This allows optimal memory to read/write patterns through
sequential memory locations. If doing common reduction operations, express the reduction
in a way that will be fused to a single operation if possible.
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RNN Layer

If possible, opt to use the newer RNNv2 interface in preference to the legacy RNN
interface. The newer interface supports variable sequence lengths and variable batch
sizes, as well as having a more consistent interface. To get maximum performance,
larger batch sizes are better. In general, sizes that are multiples of 64 achieve highest
performance. Bidirectional RNN-mode prevents wavefront propagation because of the
added dependency, therefore, it tends to be slower.

In addition, the newly introduced ILoop-based API provides a much more flexible
mechanism to use general layers within recurrence without being limited to a small set
of predefined RNNv2 interface. The ILoop recurrence enables a rich set of automatic
loop optimizations, including loop fusion, unrolling, and loop-invariant code motion, to
name a few. For example, significant performance gains are often obtained when multiple
instances of the same MatrixMultiply or FullyConnected layer are properly combined to
maximize machine utilization after loop unrolling along the sequence dimension. This
works best if you can avoid a MatrixMultiply or FullyConnected layer with a recurrent data
dependence along the sequence dimension.

TopK

To get the maximum performance out of a TopK layer, use small values of K reducing the
last dimension of data to allow optimal sequential memory accesses. Reductions along
multiple dimensions at once can be simulated by using a Shuffle layer to reshape the data,
then reinterpreting the index values appropriately.

For more information about layers, see TensorRT Layers

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers
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Chapter 4. How Do I Optimize My
Plugins?

TensorRT provides a mechanism for registering custom plugins that perform layer operations.
After a plugin creator is registered, you can look up the registry to find the creator and add the
corresponding plugin object to the network during serialization/deserialization.

All TensorRT plugins are automatically registered once the plugin library is loaded. For more
information about custom plugins, see Extending TensorRT With Custom Layers.

The performance of plugins depends on the CUDA code performing the plugin operation.
Standard CUDA best practices apply. When developing plugins, it can be helpful to start
with simple standalone CUDA applications that perform the plugin operation and verify
correctness. The plugin program can then be extended with performance measurements,
more unit testing, and alternate implementations. After the code is working and optimized, it
can be integrated as a plugin into TensorRT.

To get the best performance possible in FP16 mode, it is important to support as many
formats as possible in the plugin. This removes the need for internal reformat operations
during the execution of the network. Currently, plugins can support:

‣ FP32 NCHW

‣ FP16 NCHW

‣ FP16 N(C/2)HW2 (Half2 format)

‣ FP16 NHWC8 format (8-element packed channels; C is a multiple of 8)

For more information, see Data Format Descriptions.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#data-format-desc
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Chapter 5. How Do I Optimize My
Python Performance?

When using the Python API, most of the same performance considerations apply. When
building engines, the builder optimization phase will normally be the performance bottleneck;
not API calls to construct the network. Inference time should be nearly identical when
execute or execute_async is called through the Python API as opposed to the C++ API.

Setting up the input buffers in the Python API involves using pycuda to transfer the data from
the host to device memory. The details of how this works will depend on where the host data
is coming from. Internally, pycuda supports the Python Buffer Protocol which allows efficient
access to memory regions. This means that if the input data is available in a suitable format in
numpy arrays or another type that also has support for the buffer protocol, this allows efficient
access and transfer to the GPU. For even better performance, ensure that you allocate a page-
locked buffer using pycuda and write your final preprocessed input there.

For more information about using the Python API, see Working With TensorRT Using The
Python API.

https://docs.python.org/3/c-api/buffer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#python_topics
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#python_topics
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