
SWE-SWDOCTRT-001-RELN_v7.2.1 | October 2020

TensorRT

Release Notes

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | ii

Table of Contents

Chapter 1. TensorRT Overview...1

Chapter 2. TensorRT Release 7.x.x..2
2.1. TensorRT Release 7.2.1..2

2.2. TensorRT Release 7.2.0..6

2.3. TensorRT Release 7.1.3..9

2.4. TensorRT Release 7.1.2 Release Candidate (RC)..18

2.5. TensorRT Release 7.1.0 Early Access (EA)..21

2.6. TensorRT Release 7.0.0..26

Chapter 3. TensorRT Release 6.x.x..31
3.1. TensorRT Release 6.0.1..31

Chapter 4. TensorRT Release 5.x.x..37
4.1. TensorRT Release 5.1.5..37

4.2. TensorRT Release 5.1.3..38

4.3. TensorRT Release 5.1.2 Release Candidate (RC)..40

4.4. TensorRT Release 5.1.1 Release Candidate (RC)..43

4.5. TensorRT Release 5.1.0 Release Candidate (RC)..44

4.6. TensorRT Release 5.0.6..48

4.7. TensorRT Release 5.0.5..49

4.8. TensorRT Release 5.0.4..50

4.9. TensorRT Release 5.0.3..51

4.10. TensorRT Release 5.0.2.. 52

4.11. TensorRT Release 5.0.1 Release Candidate (RC)..59

4.12. TensorRT Release 5.0.0 Release Candidate (RC)..63

Chapter 5. TensorRT Release 4.x.x..68
5.1. TensorRT Release 4.0.1..68

5.2. TensorRT Release 4.0 Release Candidate (RC) 2... 71

5.3. TensorRT Release 4.0 Release Candidate (RC).. 72

Chapter 6. TensorRT Release 3.x.x..76
6.1. TensorRT Release 3.0.4..76

6.2. TensorRT Release 3.0.3..76

6.3. TensorRT Release 3.0.2..77

6.4. TensorRT Release 3.0.1..78

6.5. TensorRT Release 3.0 Release Candidate (RC).. 83

6.6. TensorRT Release 3.0 Early Access (EA)...87

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | iii

Chapter 7. TensorRT Release 2.x.x..89
7.1. TensorRT Release 2.1...89

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | iv

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 1

Chapter 1. TensorRT Overview

The core of NVIDIA® TensorRT™ is a C++ library that facilitates high-performance inference on
NVIDIA graphics processing units (GPUs). TensorRT takes a trained network, which consists of
a network definition and a set of trained parameters, and produces a highly optimized runtime
engine which performs inference for that network.

TensorRT provides API's via C++ and Python that help to express deep learning models via
the Network Definition API or load a pre-defined model via the parsers that allows TensorRT
to optimize and run them on an NVIDIA GPU. TensorRT applies graph optimizations, layer
fusion, among other optimizations, while also finding the fastest implementation of that model
leveraging a diverse collection of highly optimized kernels. TensorRT also supplies a runtime
that you can use to execute this network on all of NVIDIA’s GPU’s from the Kepler generation
onwards.

TensorRT also includes optional high speed mixed precision capabilities introduced in the
Tegra X1, and extended with:

‣ NVIDIA® Ampere GPU architecture

‣ NVIDIA® Turing™ GPU architecture

‣ NVIDIA® Volta™ GPU architecture

‣ NVIDIA® Pascal™ GPU architecture

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 2

Chapter 2. TensorRT Release 7.x.x

2.1. TensorRT Release 7.2.1
These are the TensorRT 7.2.1 release notes and are applicable to Linux x86, Windows x64 and
Linux ARM Server Base System Architecture (SBSA) users.

These release notes are applicable to workstation, server, and JetPack users unless appended
specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 7.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added support for CUDA 11.1 and GeForce devices with compute capability version 8.6.

‣ Added support for Linux ARM Server Base System Architecture (SBSA) users on Ubuntu
18.04.

‣ Added instructions for installing TensorRT from a pip wheel file. For step-by-step
instructions, refer to the pip Wheel File Installation section in the TensorRT Installation
Guide.

Compatibility

‣ TensorRT 7.2.1 has been tested with the following:

‣ cuDNN 8.0.4

‣ TensorFlow 1.15.3

‣ PyTorch 1.5.0

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2, 11.0 update 1, and 11.1.

‣ It is suggested that you use TensorRT with a software stack that has been tested; including
cuDNN and cuBLAS versions as documented in the Features For Platforms And Software

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-pip
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-804
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.3
https://github.com/pytorch/pytorch/releases/tag/v1.5.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/11.1/
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 3

section in the TensorRT Support Matrix. Other semantically compatible releases of cuDNN
and cuBLAS can be used, however, other versions may have performance improvements
as well as regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ TensorRT 7.2 only supports per-tensor quantization scales for both activations and weights
in explicit precision mode. No shift weights are allowed for the QDQ scale layer as only
symmetric quantization is supported. For more information, refer to the Working With
Explicit Precision Using C++ in the TensorRT Developer Guide for more information.

‣ Replace IRNNLayer and IRNNv2Layer with loops. IRNNLayer was deprecated in
TensorRT 4.0 and will be removed in TensorRT 8.0. IRNNv2Layer was deprecated in
TensorRT 7.2.1 and will be removed in TensorRT 9.0. Use the loop API to synthesize
a recurrent subnetwork. For an example, see sampleCharRNN sample, method
SampleCharRNNLoop::addLSTMCell. The loop API lets you express general recurrent
networks instead of being limited to the prefabricated cells in IRNNLayer and
IRNNv2Layer.

‣ When using reformat-free I/O, the extent of a tensor in a vectorized dimension might not
be a multiple of the vector length. Elements in a partially occupied vector that are not
within the tensor are referred to here as vector-padding. For example:

‣ On GPU

‣ for input tensors, the application shall set vector-padding elements to zero.

‣ for output tensors, the value of vector-padding elements is undefined. In a future
release, TensorRT will support setting them to zero.

‣ On DLA

‣ for input tensors, vector-padding elements are ignored.

‣ for output tensors, vector-padding elements are unmodified.

‣ Loops and DataType::kBOOL are not supported when the static TensorRT library is used.

‣ When running INT8 networks on DLA using TensorRT, operations must be added to the
same subgraph to reduce quantization errors across the subgraph of the network that
runs on the DLA by allowing them to fuse and retain higher precision for intermediate
results. Breaking apart the subgraph in order to inspect intermediate results by setting the
tensors as network output tensors, can result in different levels of quantization errors due
to these optimizations being disabled.

‣ There is a known issue that TensorRT selects kLINEAR format when the user uses
reformat-free I/O with vectorized formats and with input/output tensors which have only 3
dimensions. The workaround is to add an additional dimension to the tensors with size 1 to
make them 4 dimensional tensors.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 4

Deprecated Features

The following features are deprecated in TensorRT 7.2.1:

‣ Documented the deprecation policy of TensorRT. For details, see TensorRT Deprecation
Policy in the TensorRT Developer Guide.

‣ IRNNLayer was deprecated in TensorRT 4.0 and will be removed in TensorRT 8.0.
IRNNv2Layer was deprecated in TensorRT 7.2.1 and will be removed in TensorRT 9.0.
IRNNv2Layer has been deprecated in favor of the loop API, however, it is still available
for backwards compatibility. For more information about the loop API, refer to the
sampleCharRNN sample with the --Iloop option as well as the Working With Loops
chapter in the TensorRT Developer Guide.

‣ We have deprecated the Caffe Parser and UFF Parser in TensorRT 7. They will be tested
and functional in the next major release of TensorRT 8, however, we plan to remove
the support in the subsequent major release. Ensure you migrate your workflow to use
tf2onnx, keras2onnx or TensorFlow-TensorRT (TF-TRT) for deployment.

If using UFF, ensure you migrate to the ONNX workflow through enablement of a plugin.
ONNX workflow is not dependent on plugin enablement. For plugin enablement of a plugin
on ONNX, refer to Estimating Depth with ONNX Models and Custom Layers Using NVIDIA
TensorRT.

‣ For TensorFlow to ONNX and then to TensorRT, refer to Speeding up Deep Learning
Inference Using TensorFlow, ONNX, and TensorRT.

‣ For PyTorch to ONNX and then to TensorRT, refer to Speeding up Deep Learning
Inference Using TensorRT.

Fixed Issues

‣ A symbol conflict between the cuBLAS static library and the TensorRT plugin static library
has been resolved. The Logger class used internally by the TensorRT plugin library has
been moved to a namespace to avoid symbol conflicts. You may experience unexpected
crashes during initialization or when exiting your application if linking with TensorRT static
libraries prior to this fix.

‣ There was a known performance regression on P100:

‣ 30% regression on 3D networks like 3D U-Net in FP32 mode

This issue has been fixed in this release. (not applicable for Jetson platforms)

‣ For Windows users with CUDA 11.0, some fusions were not enabled. This means there
was a performance loss of around 10% - 60% for networks like BERT and YOLO3. The
performance loss depends on the precision used and batch size. This issue has been fixed
in this release.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#deprecation
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#deprecation
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 5

‣ There was up to a 10% performance regression for Inception V4 networks in FP32 mode
on P100 and V100. This issue has been fixed in this release. (not applicable for Jetson
platforms)

‣ MobileNetV1 and MobileNetV2 networks had up to a 14% performance regression in FP32
mode. This issue has been fixed in this release.

Announcements

‣ Support for Python 2 will be dropped in a future TensorRT release. This means that
TensorRT will no longer include wheels for Python 2, and Python samples will not work
with Python 2. Ensure you migrate your application to Python version 3.

Known Issues

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in a future release.

‣ There is a known issue that graph capture may fail in some cases for
IExecutionContext::enqueue() and IExecutionContext::enqueueV2(). For
more information, refer to the documentation for IExecutionContext::enqueueV2(),
including how to work around this issue.

‣ There is up to 23% performance regression on Volta GPUs for some RNN networks. (not
applicable for Jetson platforms)

‣ Some fusions are not enabled when the static library is used. This means there is a
performance loss of around 10% for networks like BERT and YOLO3. The performance loss
depends on precision used and batch size and it can be up to 60% in some cases.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit those weights with IRefitter::setWeights will be rejected. Given an
IConstantLayer* layer, you can detect whether it is used for execution by checking:
layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation type
of the forward pass does not match the activation type of the reverse pass in bidirectional
cases.

‣ There is a known accuracy issue of 3D U-Net networks on NVIDIA Ampere GPUs where
TF32 mode is enabled by default. To workaround this issue, TF32 mode can be disabled
via TensorRT or by setting the environment variable NVIDIA_TF32_OVERRIDE=0 when an
engine is built. For more information and how to control TF32, see Enabling TF32 Inference
Using C++ in the TensorRT Developer Guide.

‣ Convolution layers with dynamic shapes and large range of possible index dimensions
in the profile have a known build time performance issue. This can be bypassed by using
IAlgorithmSelector and disabling cudnnConvolution tactics.

‣ If you are starting with a clean system installation and you have not installed the CUDA
Toolkit prior to installing the TensorRT samples, then you may need to manually install
cuda-nvcc-XX-Y and cuda-nvprof-XX-Y, where XX-Y matches the CUDA major and

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=iexecutioncontext
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#tf32-inference-c
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#tf32-inference-c

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 6

minor version for your desired setup. Without these additional packages, you may
encounter compile errors while building the TensorRT samples. These additional
dependencies will be corrected in a future release.

2.2. TensorRT Release 7.2.0

ATTENTION:

This is the TensorRT 7.2.0 release notes. We recommend PowerPC users download the
TensorRT 7.2.0 build for production use. For Linux and JetPack users, TensorRT 7.2.0 is a
Release Candidate (RC). As an RC release, this is a Preview for early testing and feedback.
For production use of TensorRT for Linux and JetPack users, we recommend downloading
TensorRT 7.1.3. The RC release is subject to change based on ongoing performance tuning and
functional testing. For feedback, submit a bug on the NVIDIA Developer website.

These release notes are applicable to workstation, server, and JetPack users unless appended
specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 7.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
FullyConnected Layer optimization

‣ Improved performance with Tensor Core in INT8 mode.

‣ TensorRT now uses cuBLASLt internally instead of cuBLAS. This decreases the overall
runtime memory footprint. Users can revert to the old behavior by using the new
setTacticSources API in IBuilderConfig.

Compatibility

‣ TensorRT 7.2.0 has been tested with the following:

‣ cuDNN 8.0.2 for x86 and Jetson and 8.0.3 for PowerPC

‣ TensorFlow 1.15.3

‣ PyTorch 1.5.1

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2 for Jetson and 11.0 update 1 for x86 and
PowerPC.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#bug-reporting
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-802
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-803
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.3
https://github.com/pytorch/pytorch/releases/tag/v1.5.1
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 7

Limitations

‣ TensorRT 7.2 only supports per-tensor quantization scales for both activations and weights
in explicit precision mode. No shift weights are allowed for the QDQ scale layer as only
symmetric quantization is supported. For more information, refer to the Working With
Explicit Precision Using C++ in the TensorRT Developer Guide for more information.

‣ When using reformat-free I/O, the extent of a tensor in a vectorized dimension might not
be a multiple of the vector length. Elements in a partially occupied vector that are not
within the tensor are referred to here as vector-padding. For example:

‣ On GPU

‣ for input tensors, the application shall set vector-padding elements to zero.

‣ for output tensors, the value of vector-padding elements is undefined. In a future
release, TensorRT will support setting them to zero.

‣ On DLA

‣ for input tensors, vector-padding elements are ignored.

‣ for output tensors, vector-padding elements are unmodified.

Fixed Issues

‣ When using an RPM file on RedHat for a cuDNN installation, upgrading from cuDNN v7
to cuDNN v8 directly or indirectly via TensorRT 7.1.3 would cause installation errors. This
issue has been fixed in the cuDNN 8.0.2 release.

Known Issues

‣ There is a known package dependency issue when installing the python-libnvinfer
RPM package on RHEL/CentOS 8.x. You will encounter the following error:
- nothing provides python >= 2.7 needed by python-libnvinfer-7.2.0-1.cuda11.0.ppc64le

Listed below are two options you can choose from to workaround this packaging issue:

Option 1: Install the RPM package by ignoring the missing dependency.
Install TensorRT and Python 2.x first
sudo yum install tensorrt python2
Download the RPM package and install the package directly
sudo yum install yum-utils
yumdownloader python-libnvinfer
sudo rpm -Uvh --nodeps python-libnvinfer-*.rpm

Option 2: Install the TensorRT Python bindings using the Python wheel file.

An alternative to installing the RPM package for the Python bindings is to instead install
the Python wheel file from the TAR package using pip. Refer to step 6 within the Tar File
Installation section of the TensorRT Installation Guide.

The Python 3.x RPM packages are not affected by this dependency issue. This issue will be
resolved in the next release.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 8

(not applicable for Jetson platforms)

‣ There is a known performance regression on some RNN networks:

‣ up to 12% on Pascal and Turing GPUs

‣ up to 20% on Volta GPUs

(not applicable for Jetson platforms)

‣ There is a known performance regression on P100:

‣ 30% regression on 3D networks like 3D U-Net in FP32 mode

(not applicable for Jetson platforms)

‣ There is up to a 10% performance regression for Inception V4 networks in FP32 mode on
P100 and V100. (not applicable for Jetson platforms)

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in a future release.

‣ There is a known issue that graph capture may fail in some cases for
IExecutionContext::enqueue() and IExecutionContext::enqueueV2(). For
more information, refer to the documentation for IExecutionContext::enqueueV2(),
including how to work around this issue.

‣ On PowerPC, some RNN networks have up to a 15% performance regression compared to
TensorRT 7.0. (not applicable for Jetson platforms)

‣ MobileNetV1 and MobileNetV2 networks have up to a 14% performance regression in FP32
mode.

‣ Some fusions are not enabled in the following cases:

‣ Windows with CUDA 11.0

‣ When the static library is used

This means there is a performance loss of around 10% for networks like BERT and YOLO3.
The performance loss depends on precision used and batch size and it can be up to 60% in
some cases.

‣ Loops and DataType::kBOOL are not supported when the static TensorRT library is used.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit the weights with IRefitter::setWeights will be rejected. Given an
IConstantLayer* layer, you can detect whether it is used for execution by checking:
layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation type
of the forward pass does not match the activation type of the reverse pass in bidirectional
cases.

‣ When using concat on the DLA, all inputs to concat must be exact multiples of the vector
size (16 for FP16, 32 for INT8). This will be fixed in a future release of TensorRT.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=iexecutioncontext

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 9

2.3. TensorRT Release 7.1.3

ATTENTION:

This is the TensorRT 7.1.3 GA release notes. For production use of TensorRT, we recommend
using the TensorRT 7.1.3 build for CUDA 10.2. The CUDA 11.0 RC build is a Preview release
for early testing and feedback on NVIDIA A100. This release is subject to change based on
ongoing performance tuning and functional testing. For feedback, submit a bug on the NVIDIA
Developer website.

These release notes are applicable to JetPack users of TensorRT unless appended specifically
with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 7.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

Working with empty tensors

TensorRT supports empty tensors. A tensor is an empty tensor if it has one or more
dimensions with length zero. Zero-length dimensions usually get no special treatment.
If a rule works for a dimension of length L for an arbitrary positive value of L, it usually
works for L=0 too. For more information, see Working With Empty Tensors in the TensorRT
Developer Guide.

Builder layer timing cache

The layer timing cache will cache the layer profiling information during the builder phase.
If there are other layers with the same input/output tensor configuration and layer params,
then the TensorRT builder will skip profiling and reuse the cached result for the repeated
layers. Models with many repeated layers (for example, BERT, WaveGlow, etc...) will see a
significant speedup in builder time. The builder flag kDISABLE_TIMING_CACHE can be set if
you want to disable this feature. For more information, see Builder Layer Timing Cache in
the TensorRT Developer Guide and Initializing The Engine in the Best Practices For TensorRT
Performance.

Pointwise fusion based on code generation

Pointwise fusion was introduced in TensorRT 6.0.1 to fuse multiple adjacent pointwise
layers into one single layer. In this release, its implementation has been updated to use
code generation and runtime compilation to further improve performance. The code

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#bug-reporting
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#bug-reporting
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-empty-tensors
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#builder-layer-timing
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#initialize-engine

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 10

generation and runtime compilation happen during execution plan building. For more
information, see the TensorRT Best Practices Guide.

Dilation support for deconvolution

IDeconvolutionLayer now supports a dilation parameter. This is accessible through the
C++ API, Python API, and the ONNX parser (see ConvTranspose). For more information,
IDeconvolutionLayer in the TensorRT Developer Guide.

Selecting FP16 and INT8 kernels

TensorRT supports Mixed Precision Inference with FP32, FP16, or INT8 as supported
precisions. Depending on the hardware support, you can choose to enable either of the
above precision to accelerate inference. You can also choose to execute trtexec with
the “--best” option directly, which would enable all supported precisions for inference
resulting in best performance. For more information, see Mixed Precision in the Best
Practices For TensorRT Performance.

Calibration with dynamic shapes

INT8 calibration with dynamic shapes supports the same functionality as a standard INT8
calibrator but for networks with dynamic shapes. You will need to provide a calibration
optimization profile that would be used to set the dimensions for calibration. If a calibration
optimization profile is not set, the first network optimization profile will be used as a
calibration optimization profile. For more information, see INT8 Calibration With Dynamic
Shapes in the TensorRT Developer Guide.

Algorithm selection

Algorithm selection provides a mechanism to select and report algorithms for different
layers in a network. This can also be used to deterministically build TensorRT engine or to
reproduce the same implementations for layers in the engine. For more information, see
the Algorithm Selection and Determinism And Reproducibility In The Builder topics in the
TensorRT Developer Guide.

INT8 calibration

The Legacy class IInt8LegacyCalibrator is un-deprecated. It is provided as a fallback
option if the other calibrators yield poor results. A new kCALIBRATION_BEFORE_FUSION
has been added which allows calibration before fusion. For more information, see INT8
Calibration Using C++ in the TensorRT Developer Guide.

Quantizing and dequantizing scale layers

A quantizing scale layer can be specified as a scale layer with output precision type of INT8.
Similarly, a dequantizing scale layer can be specified as a scale layer with output precision
type of FP32. Networks must be created with Explicit Precision mode to use these layers.
Quantizing and dequantizing (QDQ) scale layers only support per-tensor quantization scales
i.e. a single scale per tensor. Also, No shift weights are allowed for the QDQ scale layer as

https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#pointwise-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ideconvolutionlayer
https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deconvolution-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#mixed-precision
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#int8-calib-dynamic-shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#int8-calib-dynamic-shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#algorithm-select
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deter-repro
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#optimizing_int8_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#optimizing_int8_c

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 11

only symmetric quantization is supported. For more information, see Working With Explicit
Precision Using C++ in the TensorRT Developer Guide.

Samples compilation

A new Makefile option TRT_STATIC=1 has been added which allows you to build the
TensorRT samples with TensorRT and most dependent libraries statically linked into the
sample binary.

Group normalization plugin

A new group normalization plugin has been added. For details on group normalization,
refer to the Group Normalization paper.

TF32 support

TF32 is enabled by default for DataType::kFLOAT. On the NVIDIA Ampere architecture-
based A100/GA100 GPU, TF32 can speed up networks using FP32, typically with no loss of
accuracy. It combines FP32 dynamic range and format with FP16 precision. TF32 can be
disabled via TensorRT or by setting the environment variable NVIDIA_TF32_OVERRIDE=0
when an engine is built. For more information and how to control TF32, see Enabling TF32
Inference Using C++ in the TensorRT Developer Guide. (not applicable for Jetson platforms)

New plugins

Added new plugins for common operators in the BERT model, including embedding layer
normalization, skip layer normalization and multi-head attention.
embLayerNormPlugin

This plugin performs the following two tasks:

‣ Embeds an input sequence consisting of token IDs and segment IDs. This consists of
token embedding lookup, segment embedding lookup, adding positional embeddings
and finally, layer normalization.

‣ Preprocesses input masks that are used to mark valid input tokens in sequences
that are padded to the target sequence length. It assumes contiguous input masks
and encodes the masks as a single number denoting the number of valid elements.
This plugin supports FP32 mode and FP16 mode.

skipLayerNormPlugin
This plugin adds a residual tensor, and applies layer normalization, meaning,
transforming the mean and standard deviation to beta and gamma, respectively.
Optionally, it can add a bias vector before layer normalization. This plugin supports FP32
mode, FP16 mode, and INT8 mode. It may bring a negative impact on the end-to-end
prediction accuracy when running under INT8 mode.

bertQKVToContextPlugin
This plugin takes query, key, and value tensors and computes scaled multi-head
attention, that is to compute scaled dot product attention scores SoftMax(K' * Q /
sqrt(HeadSize)) and return values weighted by these attention scores. This plugin

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://arxiv.org/abs/1803.08494
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#tf32-inference-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#tf32-inference-c

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 12

supports FP32 mode, FP16 mode, and INT8 mode. It is optimized for sequence lengths
128 and 384, and INT8 mode is only available for those sequence lengths.

These plugins only support GPUs with compute capability >= 7.0. For more information
about these new BERT-related plugins, see TensorRT Open Source Plugins.

New sample
sampleAlgorithmSelector

sampleAlgorithmSelector shows an example of how to use the algorithm
selection API based on sampleMNIST. This sample demonstrates the usage of
IAlgorithmSelector to deterministically build TensorRT engines. It also shows the
usage of IAlgorithmSelector::selectAlgorithms to define heuristics for selection
of algorithms. For more information, see Algorithm Selection in the TensorRT Developer
Guide, Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT in
the TensorRT Samples Support Guide.

onnx_packnet

onnx_packnet is a Python sample which uses TensorRT to perform inference with the
PackNet network. PackNet is a self-supervised monocular depth estimation network
used in autonomous driving. For more information, refer to TensorRT Inference Of ONNX
Models With Custom Layers in the TensorRT Sample Support Guide.

Multi-Instance GPU (MIG)

Multi-instance GPU, or MIG, is a new feature in NVIDIA Ampere GPU architecture that
enables user-directed partitioning of a single GPU into multiple smaller GPUs. This
improves GPU utilization by enabling the GPU to be shared effectively by parallel compute
workloads on bare metal, GPU pass through, or on multiple vGPUs. For more information,
refer to Working With Multi-Instance GPU in the TensorRT Developer Guide. (not applicable
for Jetson platforms)

Improved ONNX Resize operator support

The ONNX resize modes asymmetric, align_corners, half_pixel, and
pytorch_half_pixel are now supported. For more information on these resize modes,
see the ONNX Resize Operator Specification.

Compatibility

‣ TensorRT 7.1.3 has been tested with the following:

‣ cuDNN 8.0.0 Preview

‣ TensorFlow 1.15.2

https://github.com/NVIDIA/TensorRT/tree/master/plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#algorithm-select
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplealgorithmselector
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#onnx_packnet
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#onnx_packnet
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#mig-ovr
https://github.com/onnx/onnx/blob/master/docs/Operators.md#Resize
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_8.html#rel-800-Preview
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 13

‣ PyTorch 1.4.0

Note: Due to a known issue in PyTorch (#32983), you need to use the CPU version of
PyTorch if you intend to load it with TensorRT; just as the TensorRT samples do.

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2 and CUDA 11.0 RC.

Limitations

‣ TensorRT 7.1 only supports per-tensor quantization scales for both activations and weights
in explicit precision mode. No shift weights are allowed for the QDQ scale layer as only
symmetric quantization is supported. For more information, refer to the Working With
Explicit Precision Using C++ in the TensorRT Developer Guide for more information.

Deprecated Features

The following features are deprecated in TensorRT 7.1.3:

‣ The fc_plugin_caffe_mnist Python sample has been deprecated. The FCPlugin is not
selected by fc_plugin_caffe_mnist which was intended to demonstrate its usage. This is
because there is no default importer for FCPlugin in the Caffe parser.

‣ Python 2.7 support has been deprecated. A warning will be emitted when you import the
TensorRT bindings for Python 2.7. You should update your application to support Python
3.x to prevent issues with future TensorRT releases. In addition, the legacy Python bindings
have been removed. You will need to migrate your application to the new Python bindings if
you haven’t done so already. Refer to the Python Migration Guide for more information.

‣ Support for CUDA Compute Capability version 3.0 has been removed. Support for
CUDA Compute Capability versions 5.0 and lower may be removed in a future release.
Specifically:

CUDA Compute Capability Version Status

Maxwell SM 5.0 (2014-2017):

‣ GM10X - GeForce 745

‣ GM10X - GeForce 750

‣ GM10X - GeForce 830

‣ GM10X - GeForce 840

‣ Quadro K620

‣ Quadro K1200

‣ Quadro K2200

‣ M5XX

‣ M6XX

Supported

https://github.com/pytorch/pytorch/releases/tag/v1.4.0
https://github.com/pytorch/pytorch/issues/32983
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/archive/11.0/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/migrationGuide.html

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 14

CUDA Compute Capability Version Status
‣ M1XXX

‣ M2000

Kepler SM 3.7 (2014):

‣ GK210 - K8

Deprecated

Kepler SM 3.5 (2013):

‣ GK110 - K20

‣ GeForce GTX 780 family

‣ GTX Titan

Deprecated

Kepler SM 3.0 (2012):

‣ GK10X GPUs

‣ GeForce 600 series

‣ K10

‣ GRID K1/K2

‣ Quadro K series

Removed

‣ Many methods of class IBuilder have been deprecated. The following table shows
deprecated methods of class IBuilder that have replacements in IBuilder:

Deprecated IBuilder Method IBuilder Replacement

createNetwork() createNetworkV2(0)

buildCudaEngine(network) buildEngineWithConfig(network,config)

reset(network) reset()

The next table shows the deprecated methods of IBuilder that have direct equivalents in
class IBuilderConfig with the same name.

Deprecated IBuilder Methods with Direct Equivalents in IBuilderConfig

‣ setMaxWorkspaceSize

‣ getMaxWorkspaceSize

setInt8Calibrator

‣ setDeviceType

‣ getDeviceType

‣ isDeviceTypeSet

‣ resetDeviceType

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 15

Deprecated IBuilder Methods with Direct Equivalents in IBuilderConfig
‣ setDefaultDeviceType

‣ getDefaultDeviceType

canRunOnDLA

‣ setDLACore

‣ getDLACore

‣ setEngineCapability

‣ getEngineCapability

Timing methods in IBuilder also have replacements in IBuilderConfig, with new
names.

Deprecated IBuilder Method Replacement In IBuilderConfig

setMinFindIterations setMinTimingIterations

getMinFindIterations getMinTimingIterations

setAverageFindIterations setAvgTimingIterations

getAverageFindIterations getAvgTimingIterations

Finally, some IBuilder methods related to boolean properties have been replaced with
methods for setting/getting flags. For example, these calls on an IBuilder:
builder.setHalf2Mode(true);
builder.setInt8Mode(false);

can be replaced with these calls on a IBuilderConfig:
config.setFlag(BuilderFlag::kFP16);
config.clearFlag(BuilderFlag::kINT8);

The following table lists the deprecated methods and the corresponding flag.

Deprecated IBuilder Method Corresponding Flag

‣ setHalf2Mode

‣ setFp16Mode

‣ getHalf2Mode

‣ getFp16Mode

BuilderFlag::kFP16

‣ setInt8Mode

‣ getInt8Mode

BuilderFlag::kINT8

setDebugSync BuilderFlag::kDEBUG

‣ setRefittable BuilderFlag::kREFIT

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 16

Deprecated IBuilder Method Corresponding Flag
‣ getRefittable

‣ setStrictTypeConstraints

‣ getStrictTypeConstraints

BuilderFlag::kSTRICT_TYPES

allowGPUFallback BuilderFlag::kGPU_FALLBACK

‣ The INvPlugin creator function has been deprecated since TensorRT 5.1.x and has now
been fully removed. We recommend that users upgrade their plugins to one of the later
plugin interfaces, refer to Extending TensorRT With Custom Layers section in the TensorRT
Developer Guide for more information.

Fixed Issues

‣ Fixed memory leaks in engine serialization when UFF models are used.

‣ Fixed a crash during engine build for networks with RNNv2 on Windows.

‣ Statically linking with TensorRT library resulted in segfault in certain cases. The issue is
now fixed.

‣ Fixed multiple bugs related to dynamic shapes, specifically:

‣ padding modes for convolution and deconvolution,

‣ engines with multiple optimization profiles, and

‣ empty tensors (tensors with zero volume).

Announcements

‣ Boolean shape tensors now supported:

‣ IElementwiseLayer with kLESS, kEQUAL, kGREATER, kAND, kOR, kXOR can operate on
shape tensors.

‣ ISelectLayer can operate on shape tensors.

‣ IUnaryLayer with kNOT is not supported for shape tensors.

‣ NVIDIA TensorRT Inference Server has been renamed to NVIDIA Triton Inference Server.
For more information, refer to the Triton Inference Server documentation.

Known Issues

‣ In the CUDA 11.0 RC release, there is a known performance regression on some RNN
networks:

‣ up to 50% on Turing GPUs

‣ up to 12% on Pascal and Volta GPUs

‣ There is known performance regression between 30-80% for networks like ResNet-50 and
MobileNet when run in FP16 mode on SM50 devices.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#elementwise-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#select-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#unary-layer
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 17

‣ The Windows library size is 600 MB bigger than the Linux library size. This will be fixed in
the next release.

‣ Static compiling of samples with the CentOS7 CUDA 11.0 RC build fails.

‣ There is a known performance regressions on P100:

‣ 50-100% regression on 3D networks like 3D U-Net

‣ 17% on Xception in FP16 mode

‣ There is a known performance regression for Inception V3 and V4 networks in FP32 mode:

‣ up to 60% on V100

‣ up to 15% on RTX6000

‣ Some fusions are not enabled on Windows with CUDA 11. This would mean performance
loss of around 10% for networks like YOLO3.

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in a future release.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit the weights with IRefitter::setWeights will be rejected. Given an
IConstantLayer* layer, you can detect whether it is used for execution by checking:
layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation type
of the forward pass does not match the activation type of the reverse pass in bidirectional
cases.

‣ Some fusions are not enabled in the following cases:

‣ Windows with CUDA 11

‣ When the static library is used

This means there is a performance loss of around 10% for networks like BERT and YOLO3.
The performance loss depends on precision used and batch size and it can be up to 60% in
some cases.

‣ Loops and DataType::kBOOL are not supported when the static TensorRT library is used.

‣ There is an error in the config.py file included in the
sampleUffFasterRCNN sample. Specifically, line 34 in the config
file should be changed from: dynamic_graph.remove('input_2')
todynamic_graph.remove(dynamic_graph.find_nodes_by_name('input_2'))

‣ Updated: June 25, 2020

When using an RPM file on RedHat for installation, installing cuDNN v8 directly or via
TensorRT 7.1.3 will enable users to build their application with cuDNN v8. However, in
order for the user to compile an application with cuDNN v7 after cuDNN v8 is installed, the
user will need to perform the following steps:

 1. Issue sudo mv /usr/include/cudnn.h /usr/include/cudnn_v8.h.

 2. Issue sudo ln -s /etc/alternatives/libcudnn /usr/include/cudnn.h.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 18

 3. Switch to cuDNN v7 by issuing sudo update-alternatives --config libcudnn
and choose cuDNN v7 from the list.

Steps 1 and 2 are required for the user to be able to switch between v7 and v8 installations.
After steps 1 and 2 are performed once, step 3 can be used repeatedly and the user
can choose the appropriate cuDNN version to work with. For more information, refer
to the Installing From An RPM File and Upgrading From v7 To v8 sections in the cuDNN
Installation Guide.

2.4. TensorRT Release 7.1.2 Release
Candidate (RC)

These are the TensorRT 7.1.2 Release Candidate (RC) release notes and are applicable to data
center and workstation Linux users. This release includes several fixes from the previous
TensorRT 7.x.x release as well as the following additional changes. These release notes are
applicable to workstation, server, and JetPack users unless appended specifically with (not
applicable for Jetson platforms).

For previous TensorRT documentation, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
INT8 calibration

The Legacy class IInt8LegacyCalibrator is un-deprecated. It is provided as a fallback
option if the other calibrators yield poor results. A new kCALIBRATION_BEFORE_FUSION
has been added which allows calibration before fusion. For more information, see INT8
Calibration Using C++ in the TensorRT Developer Guide.

Quantizing and dequantizing scale layers

A quantizing scale layer can be specified as a scale layer with output precision type of INT8.
Similarly, a dequantizing scale layer can be specified as a scale layer with output precision
type of FP32. Networks must be created with Explicit Precision mode to use these layers.
Quantizing and dequantizing (QDQ) scale layers only support per-tensor quantization scales
i.e. a single scale per tensor. Also, No shift weights are allowed for the QDQ scale layer as
only symmetric quantization is supported. For more information, see Working With Explicit
Precision Using C++ in the TensorRT Developer Guide.

Samples compilation

A new Makefile option TRT_STATIC=1 has been added which allows you to build the
TensorRT samples with TensorRT and most dependent libraries statically linked into the
sample binary.

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-rpm
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#upgrade
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#optimizing_int8_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#optimizing_int8_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 19

Group normalization plugin

A new group normalization plugin has been added. For details on group normalization,
refer to the Group Normalization paper.

TF32 support

TF32 is enabled by default for DataType::kFLOAT. On the NVIDIA Ampere architecture-
based A100/GA100 GPU, TF32 can speed up networks using FP32, typically with no loss of
accuracy. It combines FP32 dynamic range and format with FP16 precision. TF32 can be
disabled via TensorRT or by setting the environment variable NVIDIA_TF32_OVERRIDE=0
when an engine is built. For more information and how to control TF32, see Enabling TF32
Inference Using C++ in the TensorRT Developer Guide. (not applicable for Jetson platforms)

New plugins

Added new plugins for common operators in the BERT model, including embedding layer
normalization, skip layer normalization and multi-head attention.
embLayerNormPlugin

This plugin performs the following two tasks:

‣ Embeds an input sequence consisting of token IDs and segment IDs. This consists of
token embedding lookup, segment embedding lookup, adding positional embeddings
and finally, layer normalization.

‣ Preprocesses input masks that are used to mark valid input tokens in sequences
that are padded to the target sequence length. It assumes contiguous input masks
and encodes the masks as a single number denoting the number of valid elements.
This plugin supports FP32 mode and FP16 mode.

skipLayerNormPlugin
This plugin adds a residual tensor, and applies layer normalization, meaning,
transforming the mean and standard deviation to beta and gamma, respectively.
Optionally, it can add a bias vector before layer normalization. This plugin supports FP32
mode, FP16 mode, and INT8 mode. It may bring a negative impact on the end-to-end
prediction accuracy when running under INT8 mode.

bertQKVToContextPlugin
This plugin takes query, key, and value tensors and computes scaled multi-head
attention, that is to compute scaled dot product attention scores SoftMax(K' * Q /
sqrt(HeadSize)) and return values weighted by these attention scores. This plugin
supports FP32 mode, FP16 mode, and INT8 mode. It is optimized for sequence lengths
128 and 384, and INT8 mode is only available for those sequence lengths.

These plugins only support GPUs with compute capability >= 7.0. For more information
about these new BERT-related plugins, see TensorRT Open Source Plugins.

Compatibility

‣ TensorRT 7.1.2 has been tested with the following:

‣ cuDNN 8.0.0 Preview

https://arxiv.org/abs/1803.08494
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#tf32-inference-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#tf32-inference-c
https://github.com/NVIDIA/TensorRT/tree/master/plugin
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel-800-Preview.html#rel-800-Preview

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 20

‣ TensorFlow 1.15.2

‣ PyTorch 1.4.0

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2 and 11.0 RC.

‣ Linux x86

Limitations

‣ TensorRT 7.1 only supports per-tensor quantization scales for both activations and weights
in explicit precision mode. No shift weights are allowed for the QDQ scale layer as only
symmetric quantization is supported. For more information, refer to the Working With
Explicit Precision Using C++ in the TensorRT Developer Guide for more information.

Deprecated Features

The following features are deprecated in TensorRT 7.1.2:

‣ The fc_plugin_caffe_mnist Python sample has been deprecated. The FCPlugin is not
selected by fc_plugin_caffe_mnist which was intended to demonstrate its usage. This is
because there is no default importer for FCPlugin in the Caffe parser.

Announcements

‣ NVIDIA TensorRT Inference Server has been renamed to NVIDIA Triton Inference Server.
For more information, refer to the Triton Inference Server documentation.

Known Issues

‣ There is a known issue that graph capture may fail in some cases for
IExecutionContext::enqueue() and IExecutionContext::enqueueV2(). For more
information, refer to the documentation for IExecutionContext::enqueueV2(), including
how to work around this issue.

‣ There is a known ~40% performance regression on 3D networks like 3D Unet.

‣ There is a known ~50% performance regression on LSTM autoencoder with BS=8.

‣ There is a minor performance regression across a variety of networks that will be fixed in
TensorRT 7.1.x GA.

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in TensorRT 7.1.x GA.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit the weights with IRefitter::setWeights will be rejected. Given an
IConstantLayer* layer, you can detect whether it is used for execution by checking:
layer->getOutput(0)->isExecutionTensor().

https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2
https://github.com/pytorch/pytorch/releases/tag/v1.4.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/archive/11.0/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=iexecutioncontext
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#rnnv2-layer

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 21

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation type
of the forward pass does not match the activation type of the reverse pass in bidirectional
cases.

2.5. TensorRT Release 7.1.0 Early Access
(EA)

These are the TensorRT 7.1.0 Early Access (EA) release notes and are applicable to NVIDIA®

Jetson™ Linux for Tegra™ users. This release includes several fixes from the previous
TensorRT 6.0.0 and later releases as well as the following additional changes. These release
notes are applicable to workstation, server, and JetPack users unless appended specifically
with (not applicable for Jetson platforms).

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 7.0.0.

For previous TensorRT documentation, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
Working with empty tensors

TensorRT supports empty tensors. A tensor is an empty tensor if it has one or more
dimensions with length zero. Zero-length dimensions usually get no special treatment.
If a rule works for a dimension of length L for an arbitrary positive value of L, it usually
works for L=0 too. For more information, see Working With Empty Tensors in the TensorRT
Developer Guide.

Builder layer timing cache

The layer timing cache will cache the layer profiling information during the builder phase.
If there are other layers with the same input/output tensor configuration and layer params,
then the TensorRT builder will skip profiling and reuse the cached result for the repeated
layers. Models with many repeated layers (for example, BERT, WaveGlow, etc...) will see a
significant speedup in builder time. The builder flag kDISABLE_TIMING_CACHE can be set if
you want to disable this feature. For more information, see Builder Layer Timing Cache in
the TensorRT Developer Guide and Initializing The Engine in the Best Practices For TensorRT
Performance.

Pointwise fusion based on code generation

Pointwise fusion was introduced in TensorRT 6.0.1 to fuse multiple adjacent pointwise
layers into one single layer. In this release, its implementation has been updated to use
code generation and runtime compilation to further improve performance. The code
generation and runtime compilation happen during execution plan building. For more
information, see the TensorRT Best Practices Guide.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-7.html#rel_7-0-0
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-empty-tensors
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#builder-layer-timing
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#initialize-engine
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#pointwise-fusion

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 22

Dilation support for deconvolution

IDeconvolutionLayer now supports a dilation parameter. This is accessible through the
C++ API, Python API, and the ONNX parser (see ConvTranspose). For more information,
IDeconvolutionLayer in the TensorRT Developer Guide.

Selecting FP16 and INT8 kernels

TensorRT supports Mixed Precision Inference with FP32, FP16, or INT8 as supported
precisions. Depending on the hardware support, you can choose to enable either of the
above precision to accelerate inference. You can also choose to execute trtexec with
the “--best” option directly, which would enable all supported precisions for inference
resulting in best performance. For more information, see Mixed Precision in the Best
Practices For TensorRT Performance.

Calibration with dynamic shapes

INT8 calibration with dynamic shapes supports the same functionality as a standard INT8
calibrator but for networks with dynamic shapes. You will need to provide a calibration
optimization profile that would be used to set the dimensions for calibration. If a calibration
optimization profile is not set, the first network optimization profile will be used as a
calibration optimization profile. For more information, see INT8 Calibration With Dynamic
Shapes in the TensorRT Developer Guide.

Algorithm selection

Algorithm selection provides a mechanism to select and report algorithms for different
layers in a network. This can also be used to deterministically build TensorRT engine or to
reproduce the same implementations for layers in the engine. For more information, see
the Algorithm Selection and Determinism And Reproducibility In The Builder topics in the
TensorRT Developer Guide.

New sample

sampleAlgorithmSelector shows an example of how to use the algorithm
selection API based on sampleMNIST. This sample demonstrates the usage of
IAlgorithmSelector to deterministically build TensorRT engines. It also shows the
usage of IAlgorithmSelector::selectAlgorithms to define heuristics for selection
of algorithms. For more information, see Algorithm Selection in the TensorRT Developer
Guide, Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT in the
TensorRT Samples Support Guide.

Compatibility

‣ TensorRT 7.1.0 has been tested with the following:

‣ cuDNN 8.0.0 Preview

‣ TensorFlow 1.15.2

‣ PyTorch 1.4.0

‣ ONNX 1.6.0

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ideconvolutionlayer
https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deconvolution-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#mixed-precision
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#int8-calib-dynamic-shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#int8-calib-dynamic-shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#algorithm-select
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deter-repro
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#algorithm-select
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplealgorithmselector
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel-800-Preview.html#rel-800-Preview
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2
https://github.com/pytorch/pytorch/releases/tag/v1.4.0
https://pypi.org/project/onnx/1.6.0/

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 23

‣ This TensorRT release supports CUDA 10.2.

‣ JetPack 4.4

Deprecated Features

The following features are deprecated in TensorRT 7.1.0:

‣ Python 2.7 support has been deprecated. A warning will be emitted when you import the
TensorRT bindings for Python 2.7. You should update your application to support Python
3.x to prevent issues with future TensorRT releases. In addition, the legacy Python bindings
have been removed. You will need to migrate your application to the new Python bindings if
you haven’t done so already. Refer to the Python Migration Guide for more information.

‣ Support for CUDA Compute Capability version 3.0 has been removed. Support for
CUDA Compute Capability versions 5.0 and lower may be removed in a future release.
Specifically:

CUDA Compute Capability Version Status

Maxwell SM 5.0 (2014-2017):

‣ GM10X - GeForce 745

‣ GM10X - GeForce 750

‣ GM10X - GeForce 830

‣ GM10X - GeForce 840

‣ Quadro K620

‣ Quadro K1200

‣ Quadro K2200

‣ M5XX

‣ M6XX

‣ M1XXX

‣ M2000

Supported

Kepler SM 3.7 (2014):

‣ GK210 - K8

Deprecated

Kepler SM 3.5 (2013):

‣ GK110 - K20

‣ GeForce GTX 780 family

‣ GTX Titan

Deprecated

Kepler SM 3.0 (2012):

‣ GK10X GPUs

‣ GeForce 600 series

Removed

https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/migrationGuide.html

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 24

CUDA Compute Capability Version Status
‣ K10

‣ GRID K1/K2

‣ Quadro K series

‣ Many methods of class IBuilder have been deprecated. The following table shows
deprecated methods of class IBuilder that have replacements in IBuilder:

Deprecated IBuilder Method IBuilder Replacement

createNetwork() createNetworkV2(0)

buildCudaEngine(network) buildEngineWithConfig(network,config)

reset(network) reset()

The next table shows the deprecated methods of IBuilder that have direct equivalents in
class IBuilderConfig with the same name.

Deprecated IBuilder Methods with Direct Equivalents in IBuilderConfig

‣ setMaxWorkspaceSize

‣ getMaxWorkspaceSize

setInt8Calibrator

‣ setDeviceType

‣ getDeviceType

‣ isDeviceTypeSet

‣ resetDeviceType

‣ setDefaultDeviceType

‣ getDefaultDeviceType

canRunOnDLA

‣ setDLACore

‣ getDLACore

‣ setEngineCapability

‣ getEngineCapability

Timing methods in IBuilder also have replacements in IBuilderConfig, with new
names.

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 25

Deprecated IBuilder Method Replacement In IBuilderConfig

setMinFindIterations setMinTimingIterations

getMinFindIterations getMinTimingIterations

setAverageFindIterations setAvgTimingIterations

getAverageFindIterations getAvgTimingIterations

Finally, some IBuilder methods related to boolean properties have been replaced with
methods for setting/getting flags. For example, these calls on an IBuilder:
builder.setHalf2Mode(true);
builder.setInt8Mode(false);

can be replaced with these calls on a IBuilderConfig:
config.setFlag(BuilderFlag::kFP16);
config.clearFlag(BuilderFlag::kINT8);

The following table lists the deprecated methods and the corresponding flag.

Deprecated IBuilder Method Corresponding Flag

‣ setHalf2Mode

‣ setFp16Mode

‣ getHalf2Mode

‣ getFp16Mode

BuilderFlag::kFP16

‣ setInt8Mode

‣ getInt8Mode

BuilderFlag::kINT8

setDebugSync BuilderFlag::kDEBUG

‣ setRefittable

‣ getRefittable

BuilderFlag::kREFIT

‣ setStrictTypeConstraints

‣ getStrictTypeConstraints

BuilderFlag::kSTRICT_TYPES

allowGPUFallback BuilderFlag::kGPU_FALLBACK

‣ The INvPlugin creator function has been deprecated since TensorRT 5.1.x and has now
been fully removed. We recommend that users upgrade their plugins to one of the later
plugin interfaces, refer to Extending TensorRT With Custom Layers section in the TensorRT
Developer Guide for more information.

Fixed Issues

‣ DLA has restrictions on usage that were previously undocumented. Some programs that
might have worked, but violated these restrictions, are now expected to fail at build time.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 26

For more information, see Restrictions With DLA and FAQs in the TensorRT Developer
Guide.

Announcements

‣ NVIDIA TensorRT Inference Server has been renamed to NVIDIA Triton Inference Server.
For more information, refer to the Triton Inference Server documentation.

Known Issues

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit the weights with IRefitter::setWeights will be rejected. Given an
IConstantLayer* layer, you can detect whether it is used for execution by checking:
layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation type
of the forward pass does not match the activation type of the reverse pass in bidirectional
cases.

2.6. TensorRT Release 7.0.0
These are the TensorRT 7.0.0 release notes for Linux and Windows users. This release
includes fixes from the previous TensorRT 6.0.1 release as well as the following additional
changes. These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

For previous TensorRT release notes, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
Working with loops

TensorRT supports loop-like constructs, which can be useful for recurrent networks.
TensorRT loops support scanning over input tensors, recurrent definitions of tensors, and
both “scan outputs” and “last value” outputs. For more information, see Working With
Loops in the TensorRT Developer Guide.

ONNX parser with dynamic shapes support

The ONNX parser supports full-dimensions mode only. Your network definition must be
created with the explicitBatch flag set. For more information, see Importing An ONNX
Model Using The C++ Parser API and Working With Dynamic Shapes in the TensorRT
Developer Guide for more information.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#restrictions-with-dla
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#faqs-reformat
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_onnx_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_onnx_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 27

TensorRT container with OSS

The TensorRT monthly container release now contains pre-built binaries from the
TensorRT Open Source Repository. For more information, refer to the monthly released
TensorRT Container Release Notes starting in 19.12+.

BERT INT8 and mixed precision optimizations

Some GEMM layers are now followed by GELU activation in the BERT model. Since
TensorRT doesn’t have IMMA GEMM layers, you can implement those GEMM layers
in the BERT network with either IConvolutionLayer or IFullyConnectedLayer
layers depending on what precision you require. For example, you can leverage
IConvolutionLayer with H == W == 1 (CONV1x1) to implement a FullyConnected
operation and leverage IMMA math under INT8 mode. TensorRT supports the fusion of
Convolution/FullyConnected and GELU. For more information, refer to TensorRT Best
Practices Guide and Adding Custom Layers Using The C++ API in the TensorRT Developer
Guide.

Working with Quantized Networks

TensorRT now supports quantized models trained with Quantization Aware Training.
Support is limited to symmetrically quantized models, meaning zero_point = 0 using
QuantizeLinear and DequantizeLinear ONNX ops. For more information, see Working
With Quantized Networks in the TensorRT Developer Guide and QDQ Fusions in the Best
Practices For TensorRT Performance Guide.

New layers
IFillLayer

The IFillLayer is used to generate an output tensor with the specified mode. For more
information, see the C++ class IFillLayer or the Python class IFillLayer.

IIteratorLayer

The IIteratorLayer enables a loop to iterate over a tensor. A loop is defined by loop
boundary layers. For more information, see the C++ class IIteratorLayer or the
Python class IIteratorLayer and Working With Loops in the TensorRT Developer Guide.

ILoopBoundaryLayer

Class ILoopBoundaryLayer defines a virtual method getLoop() that returns a pointer
to the associated ILoop. For more information, see the C++ class ILoopBoundaryLayer
or the Python class ILoopBoundaryLayer and Working With Loops in the TensorRT
Developer Guide.

ILoopOutputLayer

The ILoopOutputLayer specifies an output from the loop. For more information, see
the C++ class ILoopOutputLayer or the Python class ILoopOutputLayer and Working
With Loops in the TensorRT Developer Guide.

https://github.com/NVIDIA/TensorRT
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#add_custom_layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-qat-networks
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-qat-networks
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#qdq-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fill_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2Ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_iterator_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IIteratorLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_boundary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iloopboundarylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_output_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.ILoopOutputLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 28

IParametricReluLayer

The IParametricReluLayer represents a parametric ReLU operation, meaning,
a leaky ReLU where the slopes for x < 0 can be different for each element. For
more information, see the C++ class IParametricReluLayer or the Python class
IParametricReluLayer.

IRecurrenceLayer

The IRecurrenceLayer specifies a recurrent definition. For more information, see the C
++ class IRecurrenceLayer or the Python class IRecurrenceLayer and Working With
Loops in the TensorRT Developer Guide.

ISelectLayer

The ISelectLayer returns either of the two inputs depending on the condition. For
more information, see the C++ class ISelectLayer or the Python class ISelectLayer.

ITripLimitLayer

The ITripLimitLayer specifies how many times the loop iterates. For more
information, see the C++ class ITripLayer or the Python class ITripLayer and
Working With Loops in the TensorRT Developer Guide.

New operations

ONNX: Added ConstantOfShape, DequantizeLinear, Equal, Erf, Expand, Greater,
GRU, Less, Loop, LRN, LSTM, Not, PRelu, QuantizeLinear, RandomUniform,
RandomUniformLike, Range, RNN, Scan, Sqrt, Tile, and Where.

For more information, see the full list of Supported Ops in the Support Matrix.

Boolean tensor support

TensorRT supports boolean tensors which can be marked as network input and output.
IElementWiseLayer, IUnaryLayer (only kNOT), IShuffleLayer, ITripLimit (only
kWHILE) and ISelectLayer support the boolean datatype. Boolean tensors can be used
only with FP32 and FP16 precision networks. For more information, refer to the Layers
section in the TensorRT Developer Guide.

Compatibility

‣ TensorRT 7.0.0 has been tested with the following:

‣ cuDNN 7.6.5

‣ TensorFlow 1.14.0

‣ PyTorch 1.3.0

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 9.0, 10.0, and 10.2.

‣ For PowerPC users, Tesla V100 and Tesla T4 GPUs are supported.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_parametric_re_l_u_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iparametricrelulayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iparametricrelulayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_recurrence_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_recurrence_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IRecurrenceLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_select_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iselectlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_trip_limit_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.ITripLimitLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#supported-ops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_765.html#rel_765
https://github.com/tensorflow/tensorflow/releases/tag/v1.14.0
https://github.com/pytorch/pytorch/releases/tag/v1.3.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/9.0/
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://docs.nvidia.com/cuda/archive/10.2/index.html

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 29

Limitations

‣ UFF samples, such as sampleUffMNIST, sampleUffSSD, sampleUffPluginV2Ext,
sampleUffMaskRCNN, sampleUffFasterRCNN, uff_custom_plugin, and uff_ssd,
support TensorFlow 1.x and not models trained with TensorFlow 2.0.

‣ Loops and DataType::kBOOL are supported on limited platforms. On platforms without
loop support, INetworkDefinition::addLoop returns nullptr. Attempting to build
an engine using operations that consume or produce DataType::kBOOL on a platform
without support, results in validation rejecting the network. For details on which platforms
are supported with loops, refer to the Features For Platforms And Software section in the
TensorRT Support Matrix.

‣ Explicit precision networks with quantized and de-quantized nodes are only supported on
devices with hardware INT8 support. Running on devices without hardware INT8 support
results in undefined behavior.

Deprecated Features

The following features are deprecated in TensorRT 7.0.0:

‣ Backward Compatibility and Deprecation Policy - When a new function, for example foo,
is first introduced, there is no explicit version in the name and the version is assumed to be
1. When changing the API of an existing TensorRT function foo (usually to support some
new functionality), first, a new routine fooV<N> is created where N represents the Nth
version of the function and the previous version fooV<N-1> remains untouched to ensure
backward compatibility. At this point, fooV<N-1> is considered deprecated, and should be
treated as such by users of TensorRT.

Starting with TensorRT 7, we will be eliminating deprecated API per the following policy.

‣ APIs already marked deprecated prior to TensorRT 7 (6 and older) will be removed in
the next major release of TensorRT 8.

‣ APIs deprecated in TensorRT <M>, where M is the major version greater than or equal
to 7, will be removed in TensorRT <M+2>. This means that deprecated APIs remain
functional for two major releases before they are removed.

‣ Deprecation of Caffe Parser and UFF Parser - We are deprecating Caffe Parser and
UFF Parser in TensorRT 7. They will be tested and functional in the next major release of
TensorRT 8, but we plan to remove the support in the subsequent major release. Plan to
migrate your workflow to use tf2onnx, keras2onnx or TensorFlow-TensorRT (TF-TRT) for
deployment.

Fixed Issues

‣ You no longer have to build ONNX and TensorFlow from source in order to workaround
pybind11 compatibility issues. The TensorRT Python bindings are now built using pybind11
version 2.4.3.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

TensorRT Release 7.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 30

‣ Windows users are now able to build applications designed to use the TensorRT refittable
engine feature. The issue related to unresolved symbols has been resolved.

‣ A virtual destructor has been added to the IPluginFactory class.

Known Issues

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so an
attempt to refit the weights with IRefitter::setWeights will be rejected. Given an
IConstantLayer* layer, you can detect whether it is used for execution by checking:
layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation type
of the forward pass does not match the activation type of the reverse pass in bidirectional
cases.

‣ The INT8 calibration does not work with dynamic shapes. To workaround this issue, ensure
there are two passes in the code:

 1. Using a fixed shape input to build the engine in the first pass, allows TensorRT to
generate the calibration cache.

 2. Then, create the engine again using the dynamic shape input and the builder will reuse
the calibration cache generated in the first pass.

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 31

Chapter 3. TensorRT Release 6.x.x

3.1. TensorRT Release 6.0.1
This is the TensorRT 6.0.1 release notes for Linux and Windows users. This release includes
fixes from the previous TensorRT 5.x.x releases as well as the following additional changes.
These release notes are applicable to workstation, server, and JetPack users unless appended
specifically with (not applicable for Jetson platforms).

For previous TensorRT release notes, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ New layers:
IResizeLayer

The IResizeLayer implements the resize operation on an input tensor. For more
information, see IResizeLayer: TensorRT API and IResizeLayer: TensorRT Developer
Guide.

IShapeLayer

The IShapeLayer gets the shape of a tensor. For more information, see IShapeLayer:
TensorRT API and IShapeLayer: TensorRT Developer Guide.

PointWise fusion

Multiple adjacent pointwise layers can be fused into a single pointwise layer, to improve
performance. For more information, see the TensorRT Best Practices Guide.

‣ New operators:
3-dimensional convolution

Performs a convolution operation with 3D filters on a 5D tensor. For more information,
see addConvolutionNd in the TensorRT API and IConvolutionalLayer in the TensorRT
Developer Guide.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_resize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#resize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#resize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shape_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shape_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#shape-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#pointwise-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a8c7b60e83e453285ff85803e17a258ce
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#convolution-layer

TensorRT Release 6.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 32

3-dimensional deconvolution

Performs a deconvolution operation with 3D filters on a 5D tensor. For more
information, see addDeconvolutionNd in the TensorRT API and IDeconvolutionLayer in
the TensorRT Developer Guide.

3-dimensional pooling

Performs a pooling operation with a 3D sliding window on a 5D tensor. For more
information, see addPoolingNd in the TensorRT API and IPoolingLayer in the TensorRT
Developer Guide.

‣ New plugins:

Added a persistent LSTM plugin; a half precision persistent LSTM plugin that supports
variable sequence lengths. This plugin also supports bi-direction, setting initial hidden/
cell values, storing final hidden/cell values, and multi layers. You can use it through the
PluginV2 interface, achieves better performance with small batch sizes, and is currently
only supported on Linux. For more information, see Persistent LSTM Plugin in the
TensorRT Developer Guide. (not applicable for Jetson platforms)

‣ New operations:
TensorFlow

Added ResizeBilinear and ResizeNearest ops.

ONNX

Added Resize op.

For more information, see the full list of Supported Ops in the Support Matrix.

‣ New samples:
sampleDynamicReshape

Added sampleDynamicReshape which demonstrates how to use dynamic input
dimensions in TensorRT by creating an engine for resizing dynamically shaped
inputs to the correct size for an ONNX MNIST model. For more information, see
Working With Dynamic Shapes in the TensorRT Developer Guide, Digit Recognition
With Dynamic Shapes in the TensorRT Samples Support Guide and the GitHub:
sampleDynamicReshape directory.

sampleReformatFreeIO

Added sampleReformatFreeIO which uses a Caffe model that was trained on theMNIST
dataset and performs engine building and inference using TensorRT. Specifically, it
shows how to use reformat free I/O tensors APIs to explicitly specify I/O formats to
TensorFormat::kLINEAR, TensorFormat::kCHW2 and TensorFormat::kHWC8 for
Float16 and INT8 precision. For more information, see Specifying I/O Formats Using
The Reformat Free I/O Tensors APIs in the TensorRT Samples Support Guide and the
GitHub: sampleReformatFreeIO directory.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0660e807ff32f1f73666d825e51de1fb
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deconvolution-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a6cbe5542f80352a630ebe8a809441ee0
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#pooling-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#persistent-lstm-plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#supported-ops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape
https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md
https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplereformatfreeio
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplereformatfreeio
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleReformatFreeIO

TensorRT Release 6.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 33

sampleUffPluginV2Ext

Added sampleUffPluginV2Ext which implements the custom pooling layer for the MNIST
model (data/samples/lenet5_custom_pool.uff) and demonstrates how to extend
INT8 I/O for a plugin. For more information, see Adding A Custom Layer That Supports
INT8 I/O To Your Network In TensorRT in the TensorRT Samples Support Guide and the
GitHub: sampleUffPluginV2Ext directory.

sampleNMT

Added sampleNMT which demonstrates the implementation of Neural Machine
Translation (NMT) based on a TensorFlow seq2seq model using the TensorRT API.
The TensorFlow seq2seq model is an open sourced NMT project that uses deep
neural networks to translate text from one language to another language. For more
information, see Neural Machine Translation (NMT) Using A Sequence To Sequence
(seq2seq) Model in the TensorRT Samples Support Guide and Importing A Model Using
The C++ API For Safety in the TensorRT Developer Guide and the GitHub: sampleNMT
directory.

sampleUffMaskRCNN

This sample, sampleUffMaskRCNN, performs inference on the Mask R-CNN network
in TensorRT. Mask R-CNN is based on the Mask R-CNN paper which performs
the task of object detection and object mask predictions on a target image. This
sample’s model is based on the Keras implementation of Mask R-CNN and its training
framework can be found in the Mask R-CNN Github repository. For more information,
see sampleUffMaskRCNN in the TensorRT Sample Support Guide. This sample is
available only in GitHub: sampleUffMaskRCNN and is not packaged with the product.
(not applicable for Jetson platforms)

sampleUffFasterRCNN

This sample, sampleUffFasterRCNN, is a UFF TensorRT sample for Faster-RCNN
in NVIDIA Transfer Learning Toolkit SDK. This sample serves as a demo of how to
use pretrained Faster-RCNN model in Transfer Learning Toolkit to do inference with
TensorRT. For more information, see sampleUffFasterRCNN in the TensorRT Sample
Support Guide. This sample is available only in GitHub: sampleUffFasterRCNN and is
not packaged with the product. (not applicable for Jetson platforms)

‣ New optimizations:
Dynamic shapes

The size of a tensor can vary at runtime. IShuffleLayer, ISliceLayer, and the new
IResizeLayer now have optional inputs that can specify runtime dimensions.
IShapeLayer can get the dimensions of tensors at runtime, and some layers can
compute new dimensions. For more information, see Working With Dynamic
Shapes and TensorRT Layers in the TensorRT Developer Guide, Digit Recognition
With Dynamic Shapes in the TensorRT Samples Support Guide and the GitHub:
sampleDynamicReshape directory.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleUffPluginV2Ext
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleUffPluginV2Ext
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffPluginV2Ext
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplenmt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplenmt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import-model-c-safety
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import-model-c-safety
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleNMT
https://arxiv.org/abs/1703.06870
https://github.com/matterport/Mask_RCNN
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleuffmaskrcnn
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffMaskRCNN
https://developer.nvidia.com/transfer-learning-toolkit
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleufffasterrcnn
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffFasterRCNN
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape

TensorRT Release 6.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 34

Reformat free I/O

Network I/O tensors can be different to linear FP32. Formats of network I/O tensors
now have APIs to be specified explicitly. The removal of reformatting is beneficial to
many applications and specifically saves considerable memory traffic time. For more
information, see Working With Reformat-Free Network I/O Tensors and Example 4: Add
A Custom Layer With INT8 I/O Support Using C++ in the TensorRT Developer Guide.

Layer optimizations

Shuffle operations that are equivalent to identify operations on the underlying data
will be omitted, if the input tensor is only used in the shuffle layer and the input and
output tensors of this layer are not input and output tensors of the network. TensorRT
no longer executes additional kernels or memory copies for such operations. For more
information, see How Does TensorRT Work in the TensorRT Developer Guide.

New INT8 calibrator

MinMaxCalibrator - Preferred calibrator for NLP tasks. Supports per activation
tensor scaling. Computes scales using per tensor absolute maximum value. For more
information, see INT8 Calibration Using C++.

Explicit precision

You can manually configure a network to be an explicit precision network in TensorRT.
This feature enables users to import pre-quantized models with explicit quantizing and
dequantizing scale layers into TensorRT. Setting the network to be an explicit precision
network implies that you will set the precision of all the network input tensors and
layer output tensors in the network. TensorRT will not quantize the weights of any layer
(including those running in lower precision). Instead, weights will simply be cast into
the required precision. For more information about explicit precision, see Working With
Explicit Precision Using C++ and Working With Explicit Precision Using Python in the
TensorRT Developer Guide.

‣ Installation:

‣ Added support for RPM and Debian packages for PowerPC users. (not applicable for
Jetson platforms)

Compatibility

‣ TensorRT 6.0.1 has been tested with the following:

‣ cuDNN 7.6.5

‣ TensorFlow 1.14.0

‣ PyTorch 1.1.0

‣ ONNX 1.5.0

‣ This TensorRT release supports CUDA 9.0 (not applicable for Jetson platforms), 10.0, and
10.1 update 2 (not applicable for Jetson platforms), and 10.2.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#reformat-free-network-tensors
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#example4_add_custlay_int8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#example4_add_custlay_int8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#optimizing_int8_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work-python
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_765.html#rel_765
https://github.com/tensorflow/tensorflow/releases/tag/v1.14.0
https://github.com/pytorch/pytorch/releases/tag/v1.1.0
https://pypi.org/project/onnx/1.5.0/
https://docs.nvidia.com/cuda/archive/9.0/
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/archive/10.2/index.html

TensorRT Release 6.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 35

‣ For PowerPC users, Tesla V100 Volta and Turing T4 GPUs are supported.

Limitations

‣ Upgrading TensorRT to the latest version is only supported when the currently installed
TensorRT version is equal to or newer than the last two public releases. For example,
TensorRT 6.x.x supports upgrading from TensorRT 5.0.x and TensorRT 5.1.x. (not applicable
for Jetson platforms)

‣ Calibration for a network with INT8 I/O tensors requires FP32 calibration data.

‣ Shape tensors cannot be network inputs or outputs. Shape tensors can be created by
IConstantLayer, IShapeLayer, or any of the following operations on shape tensors:
IConcatenationLayer, IElementWiseLayer, IGatherLayer, IReduceLayer (kSUM,
kMAX, kMIN, kPROD), IShuffleLayer, or ISliceLayer.

Deprecated Features

The following features are deprecated in TensorRT 6.0.1:
Samples changes

‣ The PGM files for the MNIST samples have been removed. A script, called
generate_pgms.py (or download_pgms.py for CUDA 10.2), has been provided in the
samples/mnist/data directory to generate the images using the dataset.

‣ --useDLACore=0 is no longer a valid option for sampleCharRNN as DLA does not
support FP32 or RNN’s, and the sample is only written to work with FP32 in all cases.

Fixed Issues

‣ Logging level Severity::kVERBOSE is now fully supported. Log messages with this level
of severity are verbose messages with debugging information.

‣ Deconvolution layer with stride > 32 is now supported on DLA.

‣ Deconvolution layer with kernel size > 32 is now supported on DLA.

Known Issues

‣ For Ubuntu 14.04 and CentOS7, in order for ONNX, TensorFlow and TensorRT to co-exist
in the same environment, ONNX and TensorFlow must be built from source using your
system's native compilers. It’s especially important to build ONNX and TensorFlow from
source when using the IBM Anaconda channel for PowerPC to avoid compatibility issues
with pybind11 and protobuf. (not applicable for Jetson platforms)

‣ PointWise fusions will be disabled when the SM version is lower than 7.0 due to a
performance issue. This includes all pre-Volta GPUs, for example, Pascal, Maxwell,
Kepler, TX-1, TX-2, Nano.

‣ TensorRT assumes that all resources for the device it is building on are available for
optimization purposes. Concurrent use of multiple TensorRT builders (for example,
multiple trtexec instances) to compile on different targets (DLA0, DLA1 and GPU) may

TensorRT Release 6.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 36

oversubscribe system resources causing undefined behavior (meaning, inefficient plans,
builder failure, or system instability).

It is recommended to use trtexec with the --saveEngine argument to compile for
different targets (DLA and GPU) separately and save their plan files. Such plan files
can then be reused for loading (using trtexec with the --loadEngine argument) and
submitting multiple inference jobs on the respective targets (DLA0, DLA1, GPU). This two
step process alleviates over-subscription of system resources during the build phase while
also allowing execution of the plan file to proceed without interference by the builder.

‣ Windows users are currently unable to refit an engine due to some linking issues. You will
encounter undefined symbols while building an application designed to use the TensorRT
refittable engine feature. (not applicable for Jetson platforms)

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 37

Chapter 4. TensorRT Release 5.x.x

4.1. TensorRT Release 5.1.5
This is the TensorRT 5.1.5 release notes for Linux and Windows users. This release includes
fixes from the previous TensorRT 5.1.x releases as well as the following additional changes.

For previously released versions of TensorRT, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
TensorRT Open Source Software (OSS)

The TensorRT GitHub repository contains the Open Source Software (OSS) components
of NVIDIA TensorRT. Included are the sources for TensorRT plugins and parsers (Caffe
and ONNX) libraries, as well as sample applications demonstrating usage and capabilities
of the TensorRT platform. Refer to the README.md file for prerequisites, steps for
downloading, setting-up the build environment, and instructions for building the TensorRT
OSS components.

For more information, see the NVIDIA Developer news article NVIDIA open sources parsers
and plugins in TensorRT.

Compatibility

‣ TensorRT 5.1.5 has been tested with the following:

‣ cuDNN 7.5.0

‣ TensorFlow 1.12.0

‣ PyTorch 1.0

‣ ONNX 1.4.1

‣ This TensorRT release supports CUDA 9.0, CUDA 10.0, and CUDA 10.1.

Deprecated Features

The following features are deprecated in TensorRT 5.1.5:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://github.com/nvidia/TensorRT
https://github.com/nvidia/TensorRT/README.md
https://news.developer.nvidia.com/nvidia-open-sources-parsers-and-plugins-in-tensorrt/
https://news.developer.nvidia.com/nvidia-open-sources-parsers-and-plugins-in-tensorrt/
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_750.html#rel_750
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://github.com/onnx/onnx/releases/tag/v1.4.1
https://docs.nvidia.com/cuda/archive/9.0/index.html
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://docs.nvidia.com/cuda/archive/10.1/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 38

‣ getDIGITS has been removed from the TensorRT package.

Known Issues

‣ For Ubuntu 14.04 and CentOS7, there is a known bug when trying to import TensorRT and
ONNX Python modules together due to different compiler versions used to generate their
respective Python bindings. As a work around, build the ONNX module from source using
your system's native compilers.

‣ You may see the following warning when running programs linked with TensorRT 5.1.5 and
CUDA 10.1 libraries:
[W] [TRT] TensorRT was compiled against cuBLAS 10.2.0 but is linked against cuBLAS
 10.1.0.

You can resolve this by updating your CUDA 10.1 installation to 10.1 update 1 here.

‣ There is a known issue in sample yolov3_onnx with ONNX versions > 1.4.1. To work around
this, install version 1.4.1 of ONNX through:
pip uninstall onnx; pip install onnx==1.4.1

4.2. TensorRT Release 5.1.3
This is the TensorRT 5.1.3 release notes for PowerPC users. This release includes fixes from
the previous TensorRT 5.1.x releases as well as the following additional changes.

For previously released versions of TensorRT, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
Samples

The README.md files for many samples, located within each sample source directory, have
been greatly improved. We hope this makes it easier to understand the sample source code
and successfully run the sample.

ONNX parser
The ONNX parser now converts GEMMs and MatMuls using the MatrixMultiply layer, and
adds support for scaling the results with the alpha and beta parameters.

Asymmetric padding

‣ IConvolutionLayer, IDeconvolutionLayer and IPoolingLayer directly support
setting asymmetric padding. You do not need to add an explicit IPaddingLayer.

‣ The new APIs are setPaddingMode(), setPrePadding() and setPostPadding().
The setPaddingMode() method takes precedence over setPaddingMode() and
setPrePadding() when more than one padding method is used.

‣ The Caffe, UFF, and ONNX parsers have been updated to support the new asymmetric
padding APIs.

https://developer.nvidia.com/cuda-downloads
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 39

Precision optimization
TensorRT provides optimized kernels for mixed precision (FP32, FP16 and INT8) workloads
on Turing GPUs, and optimizations for depthwise convolution operations. You can control
the precision per-layer with the ILayer APIs.

Compatibility

‣ TensorRT 5.1.3 has been tested with the following:

‣ cuDNN 7.5.0

‣ TensorFlow 1.12.0

‣ PyTorch 1.0

‣ ONNX 1.4.1

‣ This TensorRT release supports CUDA 10.1.

‣ TensorRT will now emit a warning when the major, minor, and patch versions of cuDNN
and cuBLAS do not match the major, minor, and patch versions that TensorRT is
expecting.

Limitations

‣ For CentOS and RHEL users, when choosing Python 3:

‣ Only Python version 3.6 from EPEL is supported by the RPM installation.

‣ Only Python versions 3.4 and 3.6 from EPEL are supported by the tar installation.

‣ In order to run the UFF converter and its related C++ and Python samples on PowerPC,
it’s necessary to install TensorFlow for PowerPC. For more information, see Install
TensorFlow on Power systems.

‣ In order to run the PyTorch samples on PowerPC, it’s necessary to install PyTorch
specifically built for PowerPC, which is not available from PyPi. For more information, see
Install PyTorch on Power systems.

Deprecated Features

The following features are deprecated in TensorRT 5.1.3:

‣ sampleNMT has been removed from the TensorRT package. The public data source files
have changed and no longer work with the sample.

Fixed Issues

The following issues have been resolved in TensorRT 5.1.3:

‣ Fixed the behavior of the Caffe crop layer when the layer has an asymmetric crop offset.

‣ ITensor::getType() and ILayer::getOutputType() now report the type correctly.
Previously, both types reported DataType::kFLOAT even if the output type should

https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_750.html#rel_750
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://github.com/onnx/onnx/releases/tag/v1.4.1
https://docs.nvidia.com/cuda/archive/10.1/index.html
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://developer.ibm.com/tutorials/install-tensorflow-on-power/
https://developer.ibm.com/tutorials/install-tensorflow-on-power/
https://developer.ibm.com/tutorials/install-pytorch-on-power/

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 40

have been DataType::kINT32. For example, the output type of IConstantLayer with
DataType::kINT32 weights is now correctly reported as DataType::kINT32. The affected
layers include:

‣ IConstantLayer (when weights have type DataType::kINT32)

‣ IConcatentationLayer (when inputs have type DataType::kINT32)

‣ IGatherLayer (when first input has type DataType::kINT32)

‣ IIdentityLayer (when input has type DataType::kINT32)

‣ IShuffleLayer (when input has type DataType::kINT32)

‣ ISliceLayer (when input has type DataType::kINT32)

‣ ITopKLayer (second output)

‣ When using INT8 mode, dynamic ranges are no longer required for INT32 tensors, even if
you’re not using automatic quantization.

‣ Using an INT32 tensor where a floating-point tensor is expected, or vice-versa, issues an
error explaining the mismatch instead of asserting failure.

‣ The ONNX TensorRT parser now attempts to downcast INT64 graph weights to INT32.

‣ Fixed an issue where the engine would fail to build when asymmetric padding convolutions
were present in the network.

Known Issues

‣ When running ShuffleNet with small batch sizes between 1 and 4, you may encounter
performance regressions of up to 15% compared to TensorRT 5.0.

‣ When running ResNeXt101 with a batch size of 4 using INT8 precision on a Volta GPU, you
may encounter intermittent performance regressions of up to 10% compared to TensorRT
5.0. Rebuilding the engine may resolve this issue.

‣ There is a known issue in sample yolov3_onnx with ONNX versions > 1.4.1. To work around
this, install version 1.4.1 of ONNX through:
pip uninstall onnx; pip install onnx==1.4.1

4.3. TensorRT Release 5.1.2 Release
Candidate (RC)

This is the release candidate (RC) for TensorRT 5.1.2 and is applicable to Linux and Windows
users. This RC includes several enhancements and improvements compared to the previously
released TensorRT 5.0.2.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 5.0.2.

For previously released versions of TensorRT, see the TensorRT Documentation Archives.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 41

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
Improved performance of HMMA and IMMA convolution

The performance of Convolution, including Depthwise Separable Convolution and Group
Convolution has improved in FP16 and INT8 modes on Volta and Turing. For example:
ResNeXt-101 batch=1 INT8 3x speedup on Tesla T4.

Reload weights for an existing TensorRT engine
Engines can be refitted with new weights. For more information, see Refitting An Engine.

New supported operations
Caffe: Added BNLL, Clip and ELU ops. Additionally, the leaky ReLU option for the ReLU op
(negative_slope != 0) was added.

UFF: Added ArgMax, ArgMin, Clip, Elu, ExpandDims, Identity, LeakyReLU,
Recip, Relu6, Sin, Cos, Tan, Asin, Acos, Atan, Sinh, Cosh, Asinh, Acosh,

Atanh, Ceil, Floor, Selu, Slice, Softplus and Softsign ops.

ONNX: Added ArgMax, ArgMin, Clip, Cast, Elu, Selu, HardSigmoid, Softplus,
Gather, ImageScaler, LeakyReLU, ParametricSoftplus, Sin, Cos, Tan, Asin,

Acos, Atan, Sinh, Cosh, Asinh, Acosh, Atanh, Ceil, Floor, ScaledTanh,

Softsign, Slice, ThresholdedRelu and Unsqueeze ops.

For more information, see the TensorRT Support Matrix.

NVTX support
NVIDIA Tools Extension SDK (NVTX) is a C-based API for marking events and ranges in
your applications. NVTX annotations were added in TensorRT to help correlate the runtime
engine layer execution with CUDA kernel calls. NVIDIA Nsight Systems supports collecting
and visualizing these events and ranges on the timeline. NVIDIA Nsight Compute also
supports collecting and displaying the state of all active NVTX domains and ranges in a
given thread when the application is suspended.

New layer
Added support for the Slice layer. The Slice layer implements a slice operator for tensors.
For more information, see ISliceLayer.

RNNs
Changed RNNv1 and RNNv2 validation of hidden and cell input/output dimensions. This
affects only bidirectional RNNs.

EntropyCalibrator2
Added Entropy Calibration algorithm; which is the preferred calibrator.

Python support
Python 3 is now supported for CentOS and RHEL users. The Python 3 wheel files have been
split so that each wheel file now contains the Python bindings for only one Python version
and follows pip naming conventions.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#slice-layer

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 42

New Python samples

‣ INT8 Calibration In Python - This sample demonstrates how to create an INT8
calibrator, build and calibrate an engine for INT8 mode, and finally run inference in INT8
mode.

‣ Engine Refit In Python - This sample demonstrates the engine refit functionality
provided by TensorRT. The model first trains an MNIST model in PyTorch, then
recreates the network in TensorRT.

For more information, see the Samples Support Guide.
NVIDIA Machine Learning network repository installation

TensorRT 5.1 can now be directly installed from the NVIDIA Machine Learning network
repository when only the C++ libraries and headers are required. The intermediate step of
downloading and installing a local repo from the network repo is no longer required. This
simplifies the number of steps required to automate the TensorRT installation. See the
TensorRT Installation Guide for more information.

Breaking API Changes

‣ A kVERBOSE logging level was added in TensorRT 5.1, however, due to ABI implications,
kVERBOSE is not currently being used. Messages at the kVERBOSE logging level may be
emitted in a future release.

Compatibility

‣ TensorRT 5.1.2 RC has been tested with the following:

‣ cuDNN 7.5.0

‣ TensorFlow 1.12.0

‣ PyTorch 1.0

‣ This TensorRT release supports CUDA 9.0, CUDA 10.0 and CUDA 10.1.

Limitations

‣ A few optimizations are disabled when building refittable engines:

‣ IScaleLayer operations that have non-zero count of weights for shift or scale and are
mathematically the identity function will not be removed, since a refit of the shift or
scale weights could make it a non-identity function. IScaleLayer operations where
the shift and scale weights have zero count are still removed if the power weights are
unity.

‣ Optimizations for multilayer perceptrons are disabled. These optimizations target
serial compositions of IFullyConnectedLayer, IMatrixMultiplyLayer, and
IActivationLayer.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#int8_caffe_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#engine_refit_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-5.html#rel_5-1-0-RC
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_750.html#rel_750
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://docs.nvidia.com/cuda/archive/9.0/index.html
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://docs.nvidia.com/cuda/archive/10.1/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 43

Deprecated Features

The following features are deprecated in TensorRT 5.1.2 RC:

‣ The UFF Parser which is used to parse a network in UFF format will be deprecated in a
future release. The recommended method of importing TensorFlow models to TensorRT
is using TensorFlow with TensorRT (TF-TRT). For step-by-step instructions on how to
accelerate inference in TF-TRT, see the TF-TRT User Guide and Release Notes. For source
code from GitHub, see Examples for TensorRT in TensorFlow (TF-TRT).

‣ Deprecated --engine=<filename> option in trtexec. Use --saveEngine=<filename>
and --loadEngine=<filename> instead for clarity.

Known Issues

‣ Using the current public data sources, sampleNMT produces incorrect results which
results in a low BLEU score. This sample will be removed in the next release so that we
can update the source code to work with the latest public data.

‣ There is a known multilayer perceptron (MLP) performance regression in TensorRT 5.1.2
compared to TensorRT 5.0. During the engine build phase the GPU cache state may lead
to different tactic selections on Turing. The magnitude of the regression depends on the
batch size and the depth of the network.

‣ On sampleSSD and sampleUffSSD during INT8 calibration, you may encounter a file read
error in TensorRT-5.1.x.x/data/samples/ssd/VOC2007/list.txt. This is due to line-
ending differences on Windows vs Linux. To workaround this problem, open list.txt in a
text editor and ensure that the file is using Unix-style line endings.

‣ Python sample yolov3_onnx is functional only for ONNX versions greater than 1.1.0 and
less than 1.4.0.

4.4. TensorRT Release 5.1.1 Release
Candidate (RC)

This is the release candidate (RC) for TensorRT 5.1.1 and is applicable to automotive users on
PDK version 5.1.3. This RC includes several enhancements and improvements compared to
the previously released TensorRT 5.0.3.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 5.0.3.

For previously released versions of TensorRT, see the TensorRT Documentation Archives.

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt-release-notes/index.html
https://github.com/tensorflow/tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 44

Key Features And Enhancements
This TensorRT release includes the following key features and enhancements.

‣ CUDA 10.1 is now supported. For more information, see the CUDA 10.1 Release Notes.

Breaking API Changes

‣ A kVERBOSE logging level was added in TensorRT 5.1.0, however, due to ABI implications,
kVERBOSE is no longer being used in TensorRT 5.1.1. It may be used again in a future
release.

Compatibility

‣ TensorRT 5.1.1 RC has been tested with the following:

‣ cuDNN 7.5.0

‣ This TensorRT release supports CUDA 10.1.

Limitations

‣ The Python API is not included in this package.

Known Issues

‣ When linking against CUDA 10.1, performance regressions may occur under Drive 5.0 QNX
and Drive 5.0 Linux because of a regression in cuBLAS. This affects the FullyConnected
layers in AlexNet, VGG19, and ResNet-50 for small batch sizes (between 1 and 4).

‣ Performance regressions of around 10% may be seen when using group convolutions
caused by a CUDA mobile driver bug. These regressions might be seen in networks such
as ResNext and ShuffleNet.

4.5. TensorRT Release 5.1.0 Release
Candidate (RC)

This is the release candidate (RC) for TensorRT 5.1.0. It includes several enhancements and
improvements compared to the previously released TensorRT 5.0.x.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 5.0.2.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

https://docs.nvidia.com/cuda/archive/10.1/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-5.html#rel_5-1-0-RC
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/index.html
https://docs.nvidia.com/cuda/archive/10.1/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_5

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 45

Improved performance of HMMA and IMMA convolution
The performance of Convolution, including Depthwise Separable Convolution and Group
Convolution has improved in FP16 and INT8 modes on Volta, Xavier and Turing. For
example:

‣ ResNet50 INT8 batch=8 1.2x speedup on Jetson AGX Xavier

‣ MobileNetV2 FP16 batch=8 1.2x speedup on Jetson AGX Xavier

‣ ResNeXt-101 batch=1 INT8 3x speedup on Tesla T4

Reload weights for an existing TensorRT engine
Engines can be refitted with new weights. For more information, see Refitting An Engine.

DLA with INT8
Added support for running the AlexNet network on DLA using trtexec in INT8 mode. For
more information, see Working With DLA.

New supported operations
Caffe: Added BNLL, Clip and ELU ops. Additionally, the leaky ReLU option for the ReLU op
(negative_slope != 0) was added.

UFF: Added ArgMax, ArgMin, Clip, Elu, ExpandDims, Identity, LeakyReLU,
Recip, Relu6, Sin, Cos, Tan, Asin, Acos, Atan, Sinh, Cosh, Asinh, Acosh,

Atanh, Ceil, Floor, Selu, Slice, Softplus and Softsign ops.

ONNX: Added ArgMax, ArgMin, Clip, Cast, Elu, Selu, HardSigmoid, Softplus,
Gather, ImageScaler, LeakyReLU, ParametricSoftplus, Sin, Cos, Tan, Asin,

Acos, Atan, Sinh, Cosh, Asinh, Acosh, Atanh, Ceil, Floor, ScaledTanh,

Softsign, Slice, ThresholdedRelu and Unsqueeze ops.

For more information, see the TensorRT Support Matrix.

NVTX support
NVIDIA Tools Extension SDK (NVTX) is a C-based API for marking events and ranges in
your applications. NVTX annotations were added in TensorRT to help correlate the runtime
engine layer execution with CUDA kernel calls. NVIDIA Nsight Systems supports collecting
and visualizing these events and ranges on the timeline. NVIDIA Nsight Compute also
supports collecting and displaying the state of all active NVTX domains and ranges in a
given thread when the application is suspended.

New layer
Added support for the Slice layer. The Slice layer implements a slice operator for tensors.
For more information, see ISliceLayer.

RNNs
Changed RNNv1 and RNNv2 validation of hidden and cell input/output dimensions. This
affects only bidirectional RNNs.

EntropyCalibrator2
Added Entropy Calibration algorithm; which is the preferred calibrator. This is also the
required calibrator for DLA INT8 because it supports per activation tensor scaling.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_topic
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#slice-layer

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 46

ILogger
Added verbose severity level in ILogger for emitting debugging messages. Some messages
that were previously logged with severity level kINFO are now logged with severity level
kVERBOSE. Added new ILogger derived class in samples and trtexec. Most messages
should be categorized (using the severity level) as:
[V]

For verbose debug informational messages.
[I]

For "instructional" informational messages.
[W]

For warning messages.
[E]

For error messages.
[F]

For fatal error messages.

Python

‣ INT8 Calibration In Python - This sample demonstrates how to create an INT8
calibrator, build and calibrate an engine for INT8 mode, and finally run inference in INT8
mode.

‣ Engine Refit In Python - This sample demonstrates the engine refit functionality
provided by TensorRT. The model first trains an MNIST model in PyTorch, then
recreates the network in TensorRT.

For more information, see the Samples Support Guide.

Python bindings
Added Python bindings to the aarch64-gnu release package (debian and tar).

RPM installation
Provided installation support for Red Hat Enterprise Linux (RHEL) and CentOS users to
upgrade from TensorRT 5.0.x to TensorRT 5.1.x. For more information, see the upgrading
instructions in the Installation Guide.

Breaking API Changes

‣ A new logging level, kVERBOSE, was added in TensorRT 5.1.0. Messages are being emitted
by the TensorRT builder and/or engine using this new logging level. Since the logging
level did not exist in TensorRT 5.0.x, some applications might not handle the new logging
level properly and in some cases the application may crash. In the next release, more
descriptive messages will appear when using the kINFO logging level because the
kVERBOSE messages will be produced using kINFO. However, the kVERBOSE logging level
will remain in the API and kVERBOSE messages may be emitted in a future TensorRT
release.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#int8_caffe_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#engine_refit_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html#upgrading-50x-51x-redhat
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html#upgrading-50x-51x-redhat

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 47

Compatibility

‣ TensorRT 5.1.0 RC has been tested with cuDNN 7.3.1.

‣ TensorRT 5.1.0 RC has been tested with TensorFlow 1.12.0.

‣ TensorRT 5.1.0 RC has been tested with PyTorch 1.0.

‣ This TensorRT release supports CUDA 10.0.

Limitations

‣ A few optimizations are disabled when building refittable engines.

‣ IScaleLayer operations that have non-zero count of weights for shift or scale and are
mathematically the identity function will not be removed, since a refit of the shift or
scale weights could make it a non-identity function. IScaleLayer operations where
the shift and scale weights have zero count are still removed if the power weights are
unity.

‣ Optimizations for multilayer perceptrons are disabled. These optimizations target
serial compositions of IFullyConnectedLayer, IMatrixMultiplyLayer, and
IActivationLayer.

‣ DLA limitations

‣ FP16 LRN is supported with the following parameters:

‣ local_size = 5

‣ alpha = 0.0001

‣ beta = 0.75

‣ INT8 LRN, Sigmoid, and Tanh are not supported.

For more information, see DLA Supported Layers.

Deprecated Features

The following features are deprecated in TensorRT 5.1.0 RC:

‣ Deprecated --engine=<filename> option in trtexec. Use --saveEngine=<filename>
and --loadEngine=<filename> instead for clarity.

Known Issues

‣ When the tensor size is too large, such as a single tensor that has more than 4G elements,
overflow may occur which will cause TensorRT to crash. As a workaround, you may need to
reduce the batch size.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 48

4.6. TensorRT Release 5.0.6
This is the release for TensorRT 5.0.6 and is applicable to JetPack 4.2.0 users.

This release includes several enhancements and improvements compared to the previously
released TensorRT Release 5.0.5.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements for JetPack
users.

‣ Python support for AArch64 Linux is included as an early access release. All features are
expected to be available, however, some aspects of functionality and performance will
likely be limited compared to a non-EA release.

‣ The UFF parser’s memory usage was significantly reduced to better accommodate boards
with small amounts of memory.

Compatibility

‣ TensorRT 5.0.6 has been tested with the following:

‣ cuDNN 7.3.1

‣ TensorFlow 1.12

‣ PyTorch 1.0

‣ This TensorRT release supports CUDA 10.0.

Known Issues

‣ The default workspace size for sampleUffSSD is 1 GB. This may be too large for the Jetson
TX1 NANO, therefore, change the workspace for the builder in the source file via the
following code:
builder->setMaxWorkspaceSize(16_MB);

‣ In order to run larger networks or larger batch sizes with TensorRT, it may be necessary
to free memory on the board. This can be accomplished by running in headless mode or
killing processes with high memory consumption.

‣ Due to limited system memory on the Jetson TX1 NANO, which is shared between the CPU
and GPU, you may not be able run some samples, for example, sampleFasterRCNN.

‣ Python sample yolov3_onnx is functional only for ONNX versions greater than 1.1.0 and
less than 1.4.0.

https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_731.html#rel_731
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://docs.nvidia.com/cuda/archive/10.0/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 49

4.7. TensorRT Release 5.0.5
This is the TensorRT 5.0.5 release notes for Android users. This release includes fixes from
the previous TensorRT 5.0.x releases as well as the following additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements for Android
users.

‣ TensorRT 5.0.5 has two sub-releases:

‣ TensorRT 5.0.5.0 (without DLA support)

‣ TensorRT 5.0.5.1 (with DLA support)

Compatibility

‣ TensorRT 5.0.5 supports CUDA 10.0

‣ TensorRT 5.0.5 supports cuDNN 7.3.1

‣ TensorRT 5.0.5 supports the Android platform with API level 26 or higher

Limitations In 5.0.5

‣ TensorRT 5.0.5.1 supports DLA while TensorRT 5.0.5.0 does not.

Known Issues

‣ For TensorRT 5.0.5.0, some sample programs have --useDLACore in their command line
arguments, however, do not use it because this release does not support DLA.

‣ When running trtexec from a saved engine, the --output and --input command line
arguments are mandatory. For example:
./trtexec --onnx=data/mnist/mnist.onnx --fp16 --engine=./mnist_onnx_fp16.engine
./trtexec --engine=./mnist_onnx_fp16.engine --input=Input3 --output=Plus214_Output_0

‣ When running applications that use DLA on Xavier based platforms that also contain a
discrete GPU (dGPU), you may be required to select the integrated GPU (iGPU). This can be
done using the following command:
export CUDA_VISIBLE_DEVICES=1

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 50

4.8. TensorRT Release 5.0.4
This is the TensorRT 5.0.4 release notes for Windows users. This release includes fixes from
the previous TensorRT 5.0.x releases as well as the following additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements for the Windows
platform.

‣ ONNX model parsing support has been added.

‣ Two new samples showcasing ONNX model parsing functionality have been added:

‣ sampleOnnxMNIST

‣ sampleINT8API

‣ CUDA 9.0 support has been added.

Compatibility

‣ TensorRT 5.0.4 supports Windows 10

‣ TensorRT 5.0.4 supports CUDA 10.0 and CUDA 9.0

‣ TensorRT 5.0.4 supports CUDNN 7.3.1

‣ TensorRT 5.0.4 supports Visual Studio 2017

Limitations In 5.0.4

‣ TensorRT 5.0.4 does not support Python API on Windows.

Known Issues

‣ NVIDIA’s Windows display driver sets timeout detection recovery to 2 seconds by default.
This can cause some timeouts within TensorRT’s builder and cause crashes. For more
information, see Timeout Detection & Recovery (TDR) to increase the default timeout
threshold if you encounter this problem.

‣ TensorRT Windows performance is slower than Linux due to the operating system and
driver differences. There are two driver modes:

‣ WDDM (around 15% slower than Linux)

‣ TCC (around 10% slower than Linux.) TCC mode is generally not supported for GeForce
GPUs, however, we recommend it for Quadro or Tesla GPUs. Detailed instructions on
setting TCC mode can be found here: Tesla Compute Cluster (TCC).

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html
http://developer.download.nvidia.com/NsightVisualStudio/2.2/Documentation/UserGuide/HTML/Content/Timeout_Detection_Recovery.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 51

‣ Volta FP16 performance on CUDA 9.0 may be up to 2x slower than on CUDA 10.0. We
expect to mitigate this issue in a future release.

‣ Most README files that are included with the samples assume that you are working
on a Linux workstation. If you are using Windows and do not have access to a Linux
system with an NVIDIA GPU, then you can try using VirtualBox to create a virtual
machine based on Ubuntu. You may also want to consider using a Docker container
for Ubuntu. Many samples do not require any training, therefore the CPU versions of
TensorFlow and PyTorch are enough to complete the samples.

‣ For sample_ssd and sample_uff_ssd, the INT8 calibration script is not supported
natively on Windows. You can generate the INT8 batches on a Linux machine and copy
them over in order to run sample_ssd in INT8 mode.

‣ For sample_uff_ssd, the Python script convert-to-uff is not packaged within
the .zip. You can generate the required .uff file on a Linux machine and copy it over
in order to run sample_uff_ssd. During INT8 calibration, you may encounter a file
reading error in TensorRT/data/samples/ssd/VOC2007/list.txt. This is due to
line-ending differences on Windows. To work around this, open list.txt in a text
editor and ensure that the file is using Unix-style line endings.

‣ For sample_int8_api,the legacy runtime option is not supported on Windows.

‣ When issuing -h for sampleINT8API, the --write_tensors option is missing. The --
write_tensors option generates a file that contains a list of network tensor names.
By default, it writes to the network_tensors.txt file. For information about additional
options, issue --tensors.

4.9. TensorRT Release 5.0.3
This is the TensorRT 5.0.3 release notes for Automotive and L4T users. This release includes
fixes from the previous TensorRT 5.0.x releases as well as the following additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ For this TensorRT release, JetPack L4T and Drive D5L are supported by a single package.

See the TensorRT Developer Guide for details.

Compatibility

TensorRT 5.0.3 supports the following product versions:

https://www.virtualbox.org/
https://www.ubuntu.com/
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 52

‣ CUDA 10.0

‣ cuDNN 7.3.1

‣ NvMedia DLA version 2.2

‣ NvMedia VPI Version 2.3

Known Issues

‣ For multi-process execution, and specifically when executing multiple inference sessions
in parallel (for example, of trtexec) target different accelerators, you may observe a
performance degradation if cudaEventBlockingSync is used for stream synchronization.

One way to work around this performance degradation is to use the cudaEventDefault
flag when creating the events which internally uses the spin-wait synchronization
mechanism. In trtexec, the default behavior is to use blocking events, but this can be
overridden with the --useSpinWait option to specify spin-wait based synchronization.

Note: The spin-wait mechanism can increase CPU utilization on the system.

For more information about CUDA blocking sync semantics, refer to Event Management.

‣ There is a known issue when attempting to cross compile samples for mobile platforms
on an x86_64 host machine. As cross-platform CUDA packages are structured differently,
the following changes are required for samples/Makefile.config when compiling cross
platform.
Line 80

Add:
-L"$(CUDA_INSTALL_DIR)/targets/$(TRIPLE)/$(CUDA_LIBDIR)/stubs"

Line 109
Remove:
-lnvToolsExt

4.10. TensorRT Release 5.0.2
This is the TensorRT 5.0.2 release notes for Desktop users. This release includes fixes from
the previous TensorRT 5.0.x releases as well as the following additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Platforms
Added support for CentOS 7.5, Ubuntu 18.04, and Windows 10.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 53

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution, Deconvolution,
ElementWise, FullyConnected, LRN, Pooling, and Scale. For layer specific constraints, see
DLA Supported Layers. AlexNet, GoogleNet, ResNet-50, and LeNet for MNIST networks
have been validated on DLA. Since DLA support is new to this release, it is possible that
other CNN networks that have not been validated will not work. Report any failing CNN
networks that satisfy the layer constraints by submitting a bug via the NVIDIA Developer
website. Ensure you log-in, click on your name in the upper right corner, click My account >
My Bugs and select Submit a New Bug.

The trtexec tool can be used to run on DLA with the --useDLACore=N where N is 0 or 1,
and --fp16 options. To run the MNIST network on DLA using trtexec, issue:
 ./trtexec --deploy=data/mnist/mnist.prototxt --output=prob --useDLACore=0 --fp16 --
allowGPUFallback

trtexec does not support ONNX models on DLA.

Redesigned Python API
The Python API has gone through a thorough redesign to bring the API up to modern
Python standards. This fixed multiple issues, including making it possible to support
serialization via the Python API. Python samples using the new API include parser samples
for ResNet-50, a Network API sample for MNIST, a plugin sample using Caffe, and an end-
to-end sample using TensorFlow.

INT8
Support has been added for user-defined INT8 scales, using the new
ITensor::setDynamicRange function. This makes it possible to define dynamic range
for INT8 tensors without the need for a calibration data set. setDynamicRange currently
supports only symmetric quantization. A user must either supply a dynamic range for each
tensor or use the calibrator interface to take advantage of INT8 support.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, is a single registration point for all
plugins in an application and is used to find plugin implementations during deserialization.

C++ Samples
sampleSSD

This sample demonstrates how to perform inference on the Caffe SSD network in
TensorRT, use TensorRT plugins to speed up inference, and perform INT8 calibration on
an SSD network. To generate the required prototxt file for this sample, perform the
following steps:

 1. Download models_VGGNet_VOC0712_SSD_300x300.tar.gz from: https://
drive.google.com/file/d/0BzKzrI_SkD1_WVVTSmQxU0dVRzA/view

 2. Extract the contents of the tar file;
tar xvf
 ~/Downloads/models_VGGNet_VOC0712_SSD_300x300.tar.gz

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers
https://developer.nvidia.com/
https://drive.google.com/file/d/0BzKzrI_SkD1_WVVTSmQxU0dVRzA/view
https://drive.google.com/file/d/0BzKzrI_SkD1_WVVTSmQxU0dVRzA/view

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 54

 3. Edit the deploy.prototxt file and change all the Flatten layers to Reshape
operations with the following parameters:
reshape_param {
 shape {
 dim: 0
 dim: -1
 dim: 1
 dim: 1
 }

 4. Update the detection_out layer by adding the keep_count output, for example,
add:
top: "keep_count"

 5. Rename the deploy.prototxt file to ssd.prototxt and run the sample.

 6. To run the sample in INT8 mode, install Pillow first by issuing the $ pip install
Pillow command, then follow the instructions from the README.

sampleINT8API
This sample demonstrates how to perform INT8 Inference using per-tensor dynamic
range. To generate the required input data files for this sample, perform the following
steps:

Running the sample:

 1. Download the Model files from GitHub, for example:
wget https://s3.amazonaws.com/download.onnx/models/opset_3/resnet50.tar.gz

 2. Unzip the tar file:
tar -xvzf resnet50.tar.gz

 3. Rename resnet50/model.onnx to resnet50/resnet50.onnx, then copy the
resnet50.onnx file to the data/int8_api directory.

 4. Run the sample:
./sample_int8_api [-v or --verbose]

Running the sample with a custom configuration:

 1. Download the Model files from GitHub.

 2. Create an input image with a PPM extension. Resize it with the dimensions of
224x224x3.

 3. Create a file called reference_labels.txt. Ensure each line corresponds to a
single imagenet label. You can download the imagenet 1000 class human readable
labels from here. The reference label file contains only a single label name per line,
for example, 0:'tench, Tinca tinca' is represented as tench.

 4. Create a file called dynamic_ranges.txt. Ensure each line corresponds to the
tensor name and floating point dynamic range, for example <tensor_name> :
<float dynamic range>. In order to generate tensor names, iterate over the
network and generate the tensor names. The dynamic range can either be obtained
from training (by measuring the min/max value of activation tensors in each epoch)

https://github.com/onnx/models/tree/master/models/image_classification
https://github.com/onnx/models/tree/master/models/image_classification
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 55

or using custom post processing techniques (similar to TensorRT calibration). You
can also choose to use a dummy per tensor dynamic range to run the sample.

Python Samples
yolov3_onnx

This sample demonstrates a full ONNX-based pipeline for inference with the network
YOLOv3-608, including pre- and post-processing.

uff_ssd
This sample demonstrates a full UFF-based inference pipeline for performing inference
with an SSD (InceptionV2 feature extractor) network.

IPluginV2
A plugin class IPluginV2 has been added together with a corresponding IPluginV2 layer.
The IPluginV2 class includes similar methods to IPlugin and IPluginExt, so if your
plugin implemented IPluginExt previously, you will change the class name to IPluginV2.
The IPlugin and IPluginExt interfaces are to be deprecated in the future, therefore,
moving to the IPluginV2 interface for this release is strongly recommended.

See the TensorRT Developer Guide for details.

Breaking API Changes

‣ The choice of which DLA core to run a layer on is now made at runtime. You can select the
device type at build time, using the following methods:
IBuilder::setDeviceType(ILayer* layer, DeviceType deviceType)
IBuilder::setDefaultDeviceType(DeviceType deviceType)

where DeviceType is:
{
 kGPU, //!< GPU Device
 kDLA, //!< DLA Core
};

The specific DLA core to execute the engine on can be set by the following methods:
IBuilder::setDLACore(int dlaCore)
IRuntime::setDLACore(int dlaCore)

The following methods have been added to get the DLA core set on IBuilder or IRuntime
objects:
int IBuilder::getDLACore()
int IRuntime::getDLACore()

Another API has been added to query the number of accessible DLA cores as follows:
int IBuilder::getNbDLACores()
Int IRuntime::getNbDLACores()

‣ The --useDLA=<int> on trtexec tool has been changed to --useDLACore=<int>, the
value can range from 0 to N-1, N being the number of DLA cores. Similarly, to run any
sample on DLA, use --useDLACore=<int> instead of --useDLA=<int>.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 56

Compatibility

‣ TensorRT 5.0.2 has been tested with cuDNN 7.3.1.

‣ TensorRT 5.0.2 has been tested with TensorFlow 1.9.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA 9.2 are no
longer supported. On Windows only, CUDA 10.0 is supported for TensorRT 5.0.1 RC.

Limitations In 5.0.2

‣ TensorRT 5.0.2 does not include support for DLA with the INT8 data type. Only DLA with the
FP16 data type is supported by TensorRT at this time. DLA with INT8 support is planned for
a future TensorRT release.

‣ Android is not supported in TensorRT 5.0.2.

‣ The Python API is only supported on x86-based Linux platforms.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python bindings.

‣ ONNX models are not supported on DLA in TensorRT 5.0.2.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do not support
FP16 mode. This is because some of the weights fall outside the range of FP16.

‣ The ONNX parser is not supported on Windows 10. This includes all samples which depend
on the ONNX parser. ONNX support will be added in a future release.

‣ Tensor Cores supporting INT4 were first introduced with Turing GPUs. This release of
TensorRT 5.0 does not support INT4.

‣ The yolov3_onnx Python sample is not supported on Ubuntu 14.04 and earlier.

‣ The uff_ssd sample requires tensorflow-gpu for performing validation only. Other parts
of the sample can use the CPU version of tensorflow.

‣ The Leaky ReLU plugin (LReLU_TRT) allows for only a parameterized slope on a per tensor
basis.

Deprecated Features

The following features are deprecated in TensorRT 5.0.2:

‣ The majority of the old Python API, including the Lite and Utils API, are deprecated. It is
currently still accessible in the tensorrt.legacy package, but will be removed in a future
release.

‣ The following Python examples are deprecated:

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 57

‣ caffe_to_trt

‣ pytorch_to_trt

‣ tf_to_trt

‣ onnx_mnist

‣ uff_mnist

‣ mnist_api

‣ sample_onnx

‣ googlenet

‣ custom_layers

‣ lite_examples

‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the open-
source ONNX parser.

‣ The DimensionTypes class is deprecated.

‣ The plugin APIs that return INvPlugin are being deprecated and they now return
IPluginV2. These APIs will be removed in a future release. Refer to NvInferPlugin.h
inside the TensorRT package.

‣ The nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt plugins are still available for backward
compatibility. However, it is still recommended to use the Plugin Registry and implement
IPluginCreator for all new plugins.

‣ The libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a libraries have
been renamed to libnvinfer_static.a, libnvinfer_plugin_static.a, and
libnvparsers_static.a respectively. This makes TensorRT consistent with CUDA,
cuDNN, and other NVIDIA software libraries. It also avoids some ambiguity between
dynamic and static libraries during linking.

Known Issues

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA. Other
networks may work, but they have not been extensively tested.

‣ For this TensorRT release, there are separate JetPack L4T and Drive D5L packages due
to differences in the DLA library dependencies. In a future release, this should become
unified.

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 58

‣ The static library libnvparsers_static.a requires a special build of protobuf to
complete static linking. Due to filename conflicts with the official protobuf packages,
these additional libraries are only included in the tar file at this time. The two additional
libraries that you will need to link against are libprotobuf.a and libprotobuf-lite.a
from the tar file.

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are missing from
the package in order to complete static linking. The two static libraries that are required
to complete linking are libonnx_proto.a and libnvonnxparser_plugin.a, as well
as the protobuf libraries mentioned earlier. You will need to build these two missing
static libraries from the open source ONNX project. This issue will be resolved in a future
release.

‣ The C++ API documentation is not included in the TensorRT zip file. Refer to the online
documentation if you want to view the TensorRT C++ API.

‣ Most README files that are included with the samples assume that you are working on
a Linux workstation. If you are using Windows and do not have access to a Linux system
with an NVIDIA GPU, then you can try using VirtualBox to create a virtual machine based
on Ubuntu. Many samples do not require any training, therefore the CPU versions of
TensorFlow and PyTorch are enough to complete the samples.

‣ The TensorRT Developer Guide has been written with Linux users in mind. Windows
specific instructions, where possible, will be added in a future revision of the document.

‣ If sampleMovieLensMPS crashes before completing execution, an artifact (/dev/shm/
sem.engine_built) will not be properly destroyed. If the sample complains about
being unable to create a semaphore, remove the artifact by running rm /dev/shm/
sem.engine_built.

‣ To create a valid UFF file for sampleMovieLensMPS, the correct command is:
python convert_to_uff.py sampleMovieLens.pb -p preprocess.py

where preprocess.py is a script that is shipped with sampleMovieLens. Do not use the
command specified by the README.

‣ The trtexec tool does not currently validate command-line arguments. If you encounter
failures, double check the command-line parameters that you provided.

https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://www.virtualbox.org/
https://www.ubuntu.com/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 59

4.11. TensorRT Release 5.0.1 Release
Candidate (RC)

This is the release candidate (RC) for TensorRT 5.0.1 release notes. This release is for
Windows users only. It includes several enhancements and improvements compared to the
previously released TensorRT 4.0.1.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 4.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Platforms
Added support for CentOS 7.5, Ubuntu 18.04, and Windows 10.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution, Deconvolution,
ElementWise, FullyConnected, LRN, Pooling, and Scale. For layer specific constraints, see
DLA Supported Layers. Networks such as AlexNet, GoogleNet, ResNet-50, and MNIST work
with DLA. Other CNN networks may work, but they have not been extensively tested and
may result in failures including segfaults.

The trtexec tool can be used to run on DLA with the --useDLA=N and --fp16 options. To
run the AlexNet network on DLA using trtexec, issue:
 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLA=1 --fp16 --
allowGPUFallback

trtexec does not support ONNX models to run on DLA.

Redesigned Python API
The Python API has been rewritten from scratch and includes various improvements. In
addition to several bug fixes, it is now possible to serialize and deserialize an engine to and
from a file using the Python API. Python samples using the new API include parser samples
for ResNet-50, a Network API sample for MNIST, a plugin sample using Caffe, and an end-
to-end sample using TensorFlow.

INT8
Support for user-defined INT8 scales, using the new ITensor::setDynamicRange
function. This makes it possible to provide custom INT8 calibration without the need for a
calibration data set. setDynamicRange currently supports only symmetric quantization.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_4
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 60

Furthermore, if no calibration table is provided, calibration scales must be provided for
each layer.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, that is a single registration point
for all plugins in an application and is used to find plugin implementations during
deserialization.

sampleSSD
This sample demonstrates how to preprocess the input to the SSD network, perform
inference on the SSD network in TensorRT, use TensorRT plugins to speed up inference,
and perform INT8 calibration on an SSD network.

See the TensorRT Developer Guide for details.

Breaking API Changes

‣ The IPluginExt API has 4 new methods, getPluginType, getPluginVersion, destroy
and clone. All plugins of type IPluginExt will have to implement these new methods and
re-compile. This is a temporary issue; we expect to restore compatibility with the 4.0 API in
the GA release. For more information, see Migrating Plugins From TensorRT 5.0.0 RC To
TensorRT 5.0.x for guidance on migration.

Compatibility

‣ TensorRT 5.0.1 RC has been tested with cuDNN 7.3.0.

‣ TensorRT 5.0.1 RC has been tested with TensorFlow 1.9.

‣ TensorRT 5.0.1 RC for Windows has been tested with Visual Studio 2017.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA 9.2 are no
longer supported. On Windows only, CUDA 10.0 is supported for TensorRT 5.0.1 RC.

Limitations In 5.0.1 RC

‣ For this release, there are separate JetPack L4T and Drive D5L packages due to
differences in the DLA library dependencies. In a future release, this should become
unified.

‣ Android is not supported in TensorRT 5.0.1 RC.

‣ The Python API does not support DLA.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python bindings.

‣ The choice of which DLA device to run on is currently made at build time. In GA, it will be
selectable at runtime.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins-50rc-50ga
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins-50rc-50ga

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 61

‣ ONNX models are not supported on DLA in TensorRT 5.0.1 RC.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do not support
FP16 mode. This is because some of the weights fall outside the range of FP16.

‣ Python is not supported on Windows 10. This includes the graphsurgeon and UFF Python
modules.

‣ The ONNX parser is not supported on Windows 10. This includes all samples which depend
on the ONNX parser. ONNX support will be added in a future release.

Deprecated Features

The following features are deprecated in TensorRT 5.0.1 RC:

‣ Majority of the old Python API, including the Lite and Utils API, is deprecated. It is currently
still accessible in the tensorrt.legacy package, but will be removed in a future release.

‣ The following Python examples:

‣ caffe_to_trt

‣ pytorch_to_trt

‣ tf_to_trt

‣ onnx_mnist

‣ uff_mnist

‣ mnist_api

‣ sample_onnx

‣ googlenet

‣ custom_layers

‣ lite_examples

‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the open-
source ONNX parser.

‣ The DimensionTypes class.

‣ The plugin APIs that return IPlugin are being deprecated and they now return
IPluginExt. These APIs will be removed in a future release. Refer to the
NvInferPlugin.h file inside the package.

‣ nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt (still available for backward compatibility). Instead,
use the Plugin Registry and implement IPluginCreator for all new plugins.

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 62

‣ libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a have been renamed to
libnvinfer_static.a, libnvinfer_plugin_static.a, and libnvparsers_static.a
respectively. This makes TensorRT consistent with CUDA, cuDNN, and other NVIDIA
software libraries. It also avoids some ambiguity between dynamic and static libraries
during linking.

Known Issues

‣ The Plugin Registry will only register plugins with a unique {name, version} tuple. The
API for this is likely to change in future versions to support multiple plugins with same
name and version.

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA. Other
networks may work, but they have not been extensively tested.

‣ The static library libnvparsers_static.a requires a special build of protobuf to
complete static linking. Due to filename conflicts with the official protobuf packages,
these additional libraries are only included in the tar file at this time. The two additional
libraries that you will need to link against are libprotobuf.a and libprotobuf-lite.a
from the tar file.

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are missing from
the package in order to complete static linking. The two static libraries that are required
to complete linking are libonnx_proto.a and libnvonnxparser_plugin.a, as well
as the protobuf libraries mentioned earlier. You will need to build these two missing
static libraries from the open source ONNX project. This issue will be resolved in a future
release.

‣ If you upgrade only uff-converter-tf, for example using apt-get install uff-
converter-tf, then it will not upgrade graphsurgeon-tf due to inexact dependencies
between these two packages. You will need to specify both packages on the command line,
such as apt-get install uff-converter-tf graphsurgeon-tf in order to upgrade
both packages. This will be fixed in a future release.

‣ The fc_plugin_caffe_mnist python sample cannot be executed if the sample is built
using pybind11 v2.2.4. We suggest that you instead clone pybind11 v2.2.3 using the
following command:
git clone -b v2.2.3 https://github.com/pybind/pybind11.git

‣ The C++ API documentation is not included in the TensorRT zip file. Refer to the online
documentation if you want to view the TensorRT C++ API.

‣ Most README files that are included with the samples assume that you are working on
a Linux workstation. If you are using Windows and do not have access to a Linux system
with an NVIDIA GPU, then you can try using VirtualBox to create a virtual machine based

https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://www.virtualbox.org/

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 63

on Ubuntu. Many samples do not require any training, therefore the CPU versions of
TensorFlow and PyTorch are enough to complete the samples.

‣ The TensorRT Developer Guide has been written with Linux users in mind. Windows
specific instructions, where possible, will be added in a future revision of the document.

4.12. TensorRT Release 5.0.0 Release
Candidate (RC)

This is the release candidate (RC) for TensorRT 5.0.0. It includes several enhancements and
improvements compared to the previously released TensorRT 4.0.1.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 4.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Platforms
Added support for CentOS 7.5 and Ubuntu 18.04.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution, Deconvolution,
ElementWise, FullyConnected, LRN, Pooling, and Scale. For layer specific constraints, see
DLA Supported Layers. Networks such as AlexNet, GoogleNet, ResNet-50, and MNIST work
with DLA. Other CNN networks may work, but they have not been extensively tested and
may result in failures including segfaults.

The trtexec tool can be used to run on DLA with the --useDLA=N and --fp16 options. To
run the AlexNet network on DLA using trtexec, issue:
 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLA=1 --fp16 --
allowGPUFallback

trtexec does not support ONNX models to run on DLA.

Redesigned Python API
The Python API has been rewritten from scratch and includes various improvements. In
addition to several bug fixes, it is now possible to serialize and deserialize an engine to and
from a file using the Python API. Python samples using the new API include parser samples
for ResNet-50, a Network API sample for MNIST, a plugin sample using Caffe, and an end-
to-end sample using TensorFlow.

https://www.ubuntu.com/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_4
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 64

INT8
Support for user-defined INT8 scales, using the new ITensor::setDynamicRange
function. This makes it possible to provide custom INT8 calibration without the need for a
calibration data set. setDynamicRange currently supports only symmetric quantization.
Furthermore, if no calibration table is provided, calibration scales must be provided for
each layer.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, that is a single registration point
for all plugins in an application and is used to find plugin implementations during
deserialization.

See the TensorRT Developer Guide for details.

Breaking API Changes

‣ The IPluginExt API has 4 new methods, getPluginType, getPluginVersion, destroy
and clone. All plugins of type IPluginExt will have to implement these new methods and
re-compile. This is a temporary issue; we expect to restore compatibility with the 4.0 API
in the GA release. For more information, see Migrating Plugins From TensorRT 4.0.x To
TensorRT 5.0 RC for guidance on migration.

‣ Upcoming changes in TensorRT 5.0 GA for plugins

‣ A new plugin class IPluginV2 and a corresponding IPluginV2 layer will be
introduced. The IPluginV2 class includes similar methods to IPlugin and
IPluginExt, so if your plugin implemented IPluginExt previously, you will change
the class name to IPluginV2.

‣ The IPluginCreator class will create and deserialize plugins of type IPluginV2 as
opposed to IPluginExt.

‣ The create*Plugin() methods in NvInferPlugin.h will return plugin objects of type
IPluginV2 as opposed to IPluginExt.

Compatibility

‣ TensorRT 5.0.0 RC has been tested with cuDNN 7.3.0.

‣ TensorRT 5.0.0 RC has been tested with TensorFlow 1.9.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA 9.2 are no
longer supported.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 65

Limitations In 5.0.0 RC

‣ For this release, there are separate JetPack L4T and Drive D5L packages due to
differences in the DLA library dependencies. In a future release, this should become
unified.

‣ Android is not supported in TensorRT 5.0.0 RC.

‣ The Python API does not support DLA.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python bindings.

‣ The choice of which DLA device to run on is currently made at build time. In GA, it will be
selectable at runtime.

‣ ONNX models are not supported on DLA in TensorRT 5.0 RC.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do not support
FP16 mode. This is because some of the weights fall outside the range of FP16.

Deprecated Features

The following features are deprecated in TensorRT 5.0.0:

‣ Majority of the old Python API, including the Lite and Utils API, is deprecated. It is currently
still accessible in the tensorrt.legacy package, but will be removed in a future release.

‣ The following Python examples:

‣ caffe_to_trt

‣ pytorch_to_trt

‣ tf_to_trt

‣ onnx_mnist

‣ uff_mnist

‣ mnist_api

‣ sample_onnx

‣ googlenet

‣ custom_layers

‣ lite_examples

‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the open-
source ONNX parser.

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 66

‣ The DimensionTypes class.

‣ The plugin APIs that return IPlugin are being deprecated and they now return
IPluginExt. These APIs will be removed in a future release. Refer to the
NvInferPlugin.h file inside the package.

‣ nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt (still available for backward compatibility). Instead,
use the Plugin Registry and implement IPluginCreator for all new plugins.

‣ libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a have been renamed to
libnvinfer_static.a, libnvinfer_plugin_static.a, and libnvparsers_static.a
respectively. This makes TensorRT consistent with CUDA, cuDNN, and other NVIDIA
software libraries. It also avoids some ambiguity between dynamic and static libraries
during linking.

Known Issues

‣ The Plugin Registry will only register plugins with a unique {name, version} tuple. The
API for this is likely to change in future versions to support multiple plugins with same
name and version.

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA. Other
networks may work, but they have not been extensively tested.

‣ The static library libnvparsers_static.a requires a special build of protobuf to
complete static linking. Due to filename conflicts with the official protobuf packages,
these additional libraries are only included in the tar file at this time. The two additional
libraries that you will need to link against are libprotobuf.a and libprotobuf-lite.a
from the tar file.

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are missing from
the package in order to complete static linking. The two static libraries that are required
to complete linking are libonnx_proto.a and libnvonnxparser_plugin.a, as well
as the protobuf libraries mentioned earlier. You will need to build these two missing
static libraries from the open source ONNX project. This issue will be resolved in a future
release.

‣ If you upgrade only uff-converter-tf, for example using apt-get install uff-
converter-tf, then it will not upgrade graphsurgeon-tf due to inexact dependencies
between these two packages. You will need to specify both packages on the command line,
such as apt-get install uff-converter-tf graphsurgeon-tf in order to upgrade
both packages. This will be fixed in a future release.

https://github.com/onnx/onnx-tensorrt

TensorRT Release 5.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 67

‣ The fc_plugin_caffe_mnist python sample cannot be executed if the sample is built
using pybind11 v2.2.4. We suggest that you instead clone pybind11 v2.2.3 using the
following command:
git clone -b v2.2.3 https://github.com/pybind/pybind11.git

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 68

Chapter 5. TensorRT Release 4.x.x

5.1. TensorRT Release 4.0.1
This TensorRT 4.0.1 General Availability release includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 4.0.1 GA has been tested with cuDNN 7.1.3 and now requires cuDNN 7.1.x.

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented. ONNX is
a standard for representing deep learning models that enable models to be transferred
between frameworks. TensorRT can now parse the network definitions in ONNX format, in
addition to NVCaffe and UFF formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or FP16,
inputs and return FP16 outputs.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce, RNNv2
and TopK layers (for K up to 25).

‣ This release has optimizations which target recommender systems like Neural
Collaborative Filtering.

‣ Many layers now support the ability to broadcast across the batch dimension.

‣ In TensorRT 3.0, INT8 had issues with rounding and striding in the Activation layer. This
may have caused INT8 accuracy to be low. Those issues have been fixed.

‣ The C++ samples and Python examples were tested with TensorFlow 1.8 and PyTorch 0.4.0
where applicable.

‣ Added sampleOnnxMNIST. This sample shows the conversion of an MNIST network in
ONNX format to a TensorRT network.

TensorRT Release 4.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 69

‣ Added sampleNMT. Neural Machine Translation (NMT) using sequence to sequence
(seq2seq) models has garnered a lot of attention and is used in various NMT frameworks.
sampleNMT is a highly modular sample for inferencing using C++ and TensorRT API so
that you can consider using it as a reference point in your projects.

‣ Updated sampleCharRNN to use RNNv2 and converting weights from TensorFlow to
TensorRT.

‣ Added sampleUffSSD. This sample converts the TensorFlow Single Shot MultiBox Detector
(SSD) network to a UFF format and runs it on TensorRT using plugins. This sample also
demonstrates how other TensorFlow networks can be preprocessed and converted to UFF
format with support of custom plugin nodes.

‣ Memory management improvements (see the Memory Management section in the
Developer Guide for details.)

‣ Applications may now provide their own memory for activations and workspace during
inference, which is used only while the pipeline is running.

‣ An allocator callback is available for all memory allocated on the GPU. In addition,
model deserialization is significantly faster (from system memory, up to 10x faster on
large models).

Using TensorRT 4.0.1

Ensure you are familiar with the following notes when using this release.

‣ The builder methods setHalf2Mode and getHalf2Mode have been superseded by
setFp16Mode and getFp16Mode which better represent their intended usage.

‣ The sample utility giexec has been renamed to trtexec to be consistent with the product
name, TensorRT, which is often shortened to TRT. A compatibility script for users of
giexec has been included to help users make the transition.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available for
backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were NV_GIE_MAJOR,
NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct alternatives
are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH, and
NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension types are now ignored in the API, however, they are still available for backwards
compatibility.

TensorRT Release 4.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 70

Known Issues

‣ If the ONNX parser included with TensorRT is unable to parse your model, then try
updating to the latest open source ONNX parser, which may resolve your issue.

‣ PyTorch no longer supports Python 3.4 with their current release (0.4.0). Therefore, the
TensorRT PyTorch examples will not work when using Python 3 on Ubuntu 14.04.

‣ Reshape to a tensor that has a larger number of dimensions than the input tensor is not
supported.

‣ Reformat has a known memory overwrite issue on Volta when FP16 is used with the
Concatenation layer and the Reformat layer.

‣ If you have two different CUDA versions of TensorRT installed, such as CUDA 8.0 and CUDA
9.0, or CUDA 9.2 using local repos, then you will need to execute an additional command to
install the CUDA 8.0 version of TensorRT and prevent it from upgrading to the CUDA 9.0 or
CUDA 9.2 versions of TensorRT.
sudo apt-get install libnvinfer4=4.1.2-1+cuda8.0 \
 libnvinfer-dev=4.1.2-1+cuda8.0
sudo apt-mark hold libnvinfer4 libnvinfer-dev

‣ sampleNMT

‣ Performance is not fully optimized

‣ sampleUffSSD

‣ Some precision loss was observed while running the network in INT8 mode, causing
some objects to go undetected in the image. Our general observation is that having at
least 500 images for calibration is a good starting point.

‣ Performance regressions

‣ Compared to earlier TensorRT versions, a 5% slowdown was observed on AlexNet
when running on GP102 devices with batch size 2 using the NvCaffeParser.

‣ Compared to earlier TensorRT versions, a 5% to 10% slowdown was observed on
variants of inception and some instances of ResNet when using the NvUffParser.

‣ The NvUffParser returns the output tensor in the shape specified by the user, and not in
NCHW shape as in earlier versions of TensorRT. In other words, the output tensor shape
will match the shape of the tensor returned by TensorFlow, for the same network.

‣ The Python 3.4 documentation is missing from the Ubuntu 14.04 packages. Refer to the
Python 2.7 documentation or view the online Python documentation as an alternative.

‣ Some samples do not provide a -h argument to print the sample usage. You can refer to
the README.txt file in the sample directory for usage examples. Also, if the data files for

https://github.com/onnx/onnx-tensorrt

TensorRT Release 4.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 71

some samples cannot be found it will sometimes raise an exception and abort instead of
exiting normally.

‣ If you have more than one version of the CUDA toolkit installed on your system and the
CUDA version for TensorRT is not the latest version of the CUDA toolkit, then you will need
to provide an additional argument when compiling the samples. For example, you have
CUDA 9.0 and CUDA 9.2 installed and you are using TensorRT for CUDA 9.0.
make CUDA_INSTALL_DIR=/usr/local/cuda-9.0

‣ When you pip uninstall the tensorrtplugins Python package, you may see the
following error which can be ignored.
OSError: [Errno 2] No such file or directory: '/usr/local/lib/python2.7/dist-packages/
tensorrtplugins-4.0.1.0-py2.7-linux-x86_64.egg'

‣ Due to a bug in cuDNN 7.1.3, which is the version of cuDNN TensorRT has been validated
against, using RNNs with half precision on Kepler GPUs will cause TensorRT to abort.
FP16 support is non-native on Kepler GPUs, therefore, using any precision other than
FP32 is discouraged except for testing.

‣ sampleMovieLens is currently limited to running a maximum of 8 concurrent processes on
a Titan V and may result in suboptimal engines during parallel execution. The sample will
be enhanced in the near future to support a greater degree of concurrency. Additionally,
to ensure compatibility with TensorRT, use TensorFlow <= 1.7.0 to train the model. There
may be a conflict between the versions of CUDA and/or cuDNN used by TensorRT and
TensorFlow 1.7. We suggest that you install TensorFlow 1.7 CPU in order to complete the
sample.
python -m pip install tensorflow==1.7.0

5.2. TensorRT Release 4.0 Release
Candidate (RC) 2

This TensorRT 4.0 Release Candidate (RC) 2 includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4. TensorRT 4.0 RC2
supports desktop and Tegra platforms. This release candidate is for early testing and
feedback, for production use of TensorRT, continue to use 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 4.0 RC2 for mobile supports cuDNN 7.1.2.

‣ TensorRT 4.0 RC2 for desktop supports cuDNN 7.1.3.

TensorRT Release 4.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 72

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented. TensorRT
can now parse the network definitions in ONNX format, in addition to NVCaffe and UFF
formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or FP16,
inputs and return FP16 tensors.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce, RNNv2
and TopK layers (for K up to 25).

‣ Added SampleONNXMNIST sample. Open Neural Network Exchange (ONNX) is a standard
for representing deep learning models that enable models to be transferred between
frameworks. This sample shows the conversion of an MNIST network in ONNX format to a
TensorRT network.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available for
backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were NV_GIE_MAJOR,
NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct alternatives
are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH, and
NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension Types are now ignored in the API, however, they are still available for
backwards compatibility.

Known Issues
SampleMLP and SampleNMT are included in this release, however, they are beta samples.
They are currently not optimized for mobile platforms.

5.3. TensorRT Release 4.0 Release
Candidate (RC)

This TensorRT 4.0 Release Candidate (RC) includes several enhancements and improvements
compared to the previously released TensorRT 3.0.4. TensorRT 4.0 RC supports x86 desktop
platforms only. This release candidate is for early testing and feedback, for production use of
TensorRT, continue to use 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

TensorRT Release 4.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 73

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented. TensorRT
can now parse the network definitions in ONNX format, in addition to NVCaffe and UFF
formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or FP16,
inputs and return FP16 tensors.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce, RNNv2
and TopK layers (for K up to 25).

‣ The samples were tested with TensorFlow 1.6. You must be using cuDNN 7.0.x in order
to use both TensorRT and TensorFlow at the same time since TensorFlow 1.6 does not
support cuDNN 7.1.x yet.

‣ Added SampleMLP sample for multi-layer perceptrons.

‣ Added SampleONNXMNIST sample. Open Neural Network Exchange (ONNX) is a standard
for representing deep learning models that enable models to be transferred between
frameworks. This sample shows the conversion of an MNIST network in ONNX format to a
TensorRT network.

‣ Added SampleNMT sample. Neural Machine Translation (NMT) using sequence to
sequence (seq2seq) models has garnered a lot of attention and is used in various NMT
frameworks. SampleNMT is a highly modular sample for inferencing using C++ and
TensorRT API so that you can consider using it as a reference point in your projects.

‣ Updated SampleCharRNN sample to use RNNv2 and converting weights from TensorFlow
to TensorRT.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available for
backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were NV_GIE_MAJOR,
NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct alternatives
are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH, and
NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension Types are now ignored in the API, however, they are still available for
backwards compatibility.

Known Issues

‣ If you were previously using the machine learning debian repository, then it will conflict
with the version of libcudnn7 that is contained within the local repository for TensorRT.
The following commands will downgrade libcudnn7 to version 7.0.5.15, which is

TensorRT Release 4.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 74

supported and tested with TensorRT, and hold the package at this version. If you are using
CUDA 8.0 for your application, ensure you replace cuda9.0 with cuda8.0.
sudo apt-get install libcudnn7=7.0.5.15-1+cuda9.0 libcudnn7-dev=7.0.5.15-1+cuda9.0
sudo apt-mark hold libcudnn7 libcudnn7-dev

If you would like to later upgrade libcudnn7 to the latest version, then you can use the
following commands to remove the hold.
sudo apt-mark unhold libcudnn7 libcudnn7-dev
sudo apt-get dist-upgrade

‣ If you have both the CUDA 8.0 and CUDA 9.0 local repos installed for TensorRT, then you
will need to execute an additional command to install the CUDA 8.0 version of TensorRT
and prevent it from upgrading to the CUDA 9.0 version of TensorRT.
sudo apt-get install libnvinfer4=4.1.0-1+cuda8.0 libnvinfer-dev=4.1.0-1+cuda8.0
sudo apt-mark hold libnvinfer4 libnvinfer-dev

‣ If you installed the dependencies for the TensorRT python examples using pip install
tensorrt[examples] then it could replace the GPU accelerated version of TensorFlow
with the CPU accelerated version of TensorFlow. You will need to remove the version of
TensorFlow installed as a TensorRT dependency and install the GPU accelerated version in
its place.
pip uninstall tensorflow
pip install tensorflow-gpu

‣ SampleNMT

‣ Performance is not fully optimized

‣ SampleNMT does not support FP16

‣ The vocabulary files are expected to be in the ../../../../data/samples/nmt/deen
directory from the executable. The sample doesn’t print usage if vocabulary files are
not present in the above mentioned path. For more information, see the README.txt
file for usage details.

‣ SampleMLP

‣ Performance is not fully optimized

‣ SampleMLP does not support FP16

‣ The accuracy of MLPs for handwritten digit recognition is lower than CNNs, therefore,
the sample may give an incorrect prediction in some cases.

‣ SampleMLP usage has incorrect details on the -a parameter. It should be -a <#>. The
activation to use on the layers, defaults to 1. Valid values are 1[ReLU], 2[Sigmoid],
and 3[TanH]; instead of -a <#>. The activation to use in on the layers, defaults to 1.
Valid values are 0[ReLU], 1[Sigmoid], and 2[TanH].

‣ The timing information printed by the sample may not be accurate.

‣ Performance regressions

‣ A 5% slowdown was observed on AlexNet when running on GP102 devices with batch
size 2 using the Caffe parser.

TensorRT Release 4.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 75

‣ A 5% to 10% slowdown was observed on variants of inception, some instances of
ResNet, and some instances of SSD when using the UFF parser.

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 76

Chapter 6. TensorRT Release 3.x.x

6.1. TensorRT Release 3.0.4
This TensorRT 3.0.4 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.2.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Fixed an issue with INT8 deconvolution bias. If you have seen an issue with deconvolution
INT8 accuracy especially regarding TensorRT. 2.1, then this fix should solve the issue.

‣ Fixed an accuracy issue in FP16 mode for NVCaffe models.

Using TensorRT 3.0.4

Ensure you are familiar with the following notes when using this release.

‣ The UFF converter script is packaged only for x86 users. If you are not an x86 user, and
you want to convert TensorFlow models into UFF, you need to obtain the conversion script
from the x86 package of TensorRT.

6.2. TensorRT Release 3.0.3
This TensorRT 3.0.3 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.2. This release is
for AArch64 only.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added support for Xavier

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 77

Using TensorRT 3.0.3

Ensure you are familiar with the following notes when using this release.

‣ When building the samples in this release, it is necessary to specify CUDA_INSTALL_DIR as
an argument to the Makefile.

‣ This release does not support TensorRT Python bindings.

Known Issues

‣ When building the samples on aarch64 natively, there is an issue in the Makefile.config
file that requires you to provide an additional option to make, namely CUDA_LIBDIR.

‣ The infer_caffe_static test fails on D5L Parker dGPU. This is a regression from the
previous release.

‣ QnX has known performance issues with the mmap and malloc() operating system
memory allocation routines. These issues can affect the performance of TensorRT; up to
10X.

6.3. TensorRT Release 3.0.2
This TensorRT 3.0.2 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Fixed a bug in one of the INT8 deconvolution kernels that was generating incorrect results.
This fixed accuracy regression from 2.1 for networks that use deconvolutions.

‣ Fixed a bug where the builder would report out-of-memory when compiling a low precision
network, in the case that a low-precision version of the kernel could not be found. The
builder now correctly falls back to a higher precision version of the kernel.

‣ Fixed a bug where the existence of some low-precision kernels were being incorrectly
reported to the builder.

Using TensorRT 3.0.2

Ensure you are familiar with the following notes when using this release.

‣ When working with large networks and large batch sizes on the Jetson TX1 you may see
failures that are the result of CUDA error 4. This error generally means a CUDA kernel
failed to execute properly, but sometimes this can mean the CUDA kernel actually timed
out. The CPU and GPU share memory on the Jetson TX1 and reducing the memory used by

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 78

the CPU would help the situation. If you are not using the graphical display on L4T you can
stop the X11 server to free up CPU and GPU memory. This can be done using:
$ sudo systemctl stop lightdm.service

Known Issues

‣ INT8 deconvolutions with biases have the bias scaled incorrectly. U-Net based
segmentation networks typically have non-zero bias.

‣ For TensorRT Android 32-bit, if your memory usage is high, then you may see TensorRT
failures. The issue is related to the CUDA allocated buffer address being higher or equal to
0x80000000 and it is hard to know the exact memory usage after which this issue is hit.

‣ If you are installing TensorRT from a tar package (instead of using the .deb packages and
apt-get), you will need to update the custom_plugins example to point to the location
that the tar package was installed into. For example, in the <PYTHON_INSTALL_PATH>/
tensorrt/examples/custom_layers/tensorrtplugins/setup.py file change the
following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include directory.

‣ Change TENSORRT_LIB_DIR to point to <TAR_INSTALL_ROOT>/lib directory.

‣ If you were previously using the machine learning debian repository, then it will conflict
with the version of libcudnn7 that is contained within the local repository for TensorRT.
The following commands will downgrad libcudnn7 to the CUDA 9.0 version, which is
supported by TensorRT, and hold the package at this version.
sudo apt-get install libcudnn7=7.0.5.15-1+cuda9.0
libcudnn7-dev=7.0.5.15-1+cuda9.0
sudo apt-mark hold libcudnn7 libcudnn7-dev

If you would like to later upgrade libcudnn7 to the latest version, then you can use the
following commands to remove the hold.
sudo apt-mark unhold libcudnn7 libcudnn7-dev
sudo apt-get dist-upgrade

6.4. TensorRT Release 3.0.1
This TensorRT 3.0.1 General Availability release includes several enhancements and
improvements compared to the previously released TensorRT 2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

NvCaffeParser
NVCaffe 0.16 is now supported.

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 79

New deep learning layers or algorithms

‣ The TensorRT deconvolution layer previously did not support non-zero padding, or
stride values that were distinct from kernel size. These restrictions have now been
lifted.

‣ The TensorRT deconvolution layer now supports groups.

‣ Non-determinism in the deconvolution layer implementation has been eliminated.

‣ The TensorRT convolution layer API now supports dilated convolutions.

‣ The TensorRT API now supports these new layers (but they are not supported via the
NvCaffeParser):

‣ unary

‣ shuffle

‣ padding

‣ The Elementwise (eltwise) layer now supports broadcasting of input dimensions.

‣ The Flatten layer flattens the input while maintaining the batch_size. This layer was
added in the UFF converter and NvUffParser.

‣ The Squeeze layer removes dimensions of size 1 from the shape of a tensor. This layer
was added in the UFF converter and NvUffParser.

Universal Framework Format 0.2
UFF format is designed to encapsulate trained neural networks so that they can be parsed
by TensorRT. It’s also designed in a way of storing the information about a neural network
that is needed to create an inference engine based on that neural network.

Performance

‣ Performance regressions seen from v2.1 to 3.0.1 Release Candidate for INT8 and FP16
are now fixed.

‣ The INT8 regression in LRN that impacted networks like GoogleNet and AlexNet is
now fixed.

‣ The FP16 regression that impacted networks like AlexNet and ResNet-50 is now
fixed.

‣ The performance of the Xception network has improved, for example, by more than 3
times when batch size is 8 on Tesla P4.

‣ Changed how the CPU synchronizes with the GPU in order to reduce the overall load on
the CPU when running inference with TensorRT.

‣ The deconvolution layer implementation included with TensorRT was, in some
circumstances, using significantly more memory and had lower performance than the
implementation provided by the cuDNN library. This has now been fixed.

‣ MAX_TENSOR_SIZE changed from (1<<30) to ((1<<31)-1). This change enables the
user to run larger batch sizes for networks with large input images.

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 80

Samples

‣ All Python examples now import TensorRT after the appropriate framework is imported.
For example, the tf_to_trt.py example imports TensorFlow before importing
TensorRT. This is done to avoid cuDNN version conflict issues.

‣ The tf_to_trt and pytorch_to_trt samples shipped with the TensorRT 3.0 Release
Candidate included network models that were improperly trained with the MNIST
dataset, resulting in poor classification accuracy. This version has new models that
have been properly trained with the MNIST dataset to provide better classification
accuracy.

‣ The pytorch_to_trt sample originally showed low accuracy with MNIST, however,
data and training parameters were modified to address this.

‣ The giexec command line wrapper in earlier versions would fail if users specify
workspace >= 2048 MB. This issue is now fixed.

Functionality
The AverageCountExcludesPadding attribute has been added to the pooling layer to
control whether to use inclusive or exclusive averaging. The default is true, as used by
most frameworks. The NvCaffeParser sets this to false, restoring compatibility of padded
average pooling between NVCaffe and TensorRT.

TensorRT Python API
TensorRT 3.0.1 introduces the TensorRT Python API, which provides developers interfaces
to:

‣ the NvCaffeParser

‣ the NvUffParser

‣ The nvinfer graph definition API

‣ the inference engine builder

‣ the engine executor

‣ the perform calibration for running inference with INT8

‣ a workflow to include C++ custom layer implementations

TensorRT Lite: A simplified API for inference
TensorRT 3.0.1 provides a streamlined set of API functions (tensorrt.lite) that allow
users to export a trained model, build an engine, and run inference, with only a few lines of
Python code.

Streamlined export of models trained in TensorFlow into TensorRT
With this release, you can take a trained model in TensorFlow saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow model exporter creates an
output file in a format called UFF (Universal Framework Format), which can then be parsed
by TensorRT.

Currently the export path is expected to support the following:

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 81

‣ TensorFlow 1.3

‣ FP32 CNNs

‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc.)

‣ RNNs

‣ INT8 CNNs

Volta
The NVIDIA Volta architecture is now supported, including the Tesla V100 GPU. On Volta
devices, the Tensor Core feature provides a large performance improvement, and Tensor
Cores are automatically used when the builder is set to half2mode.

QNX
TensorRT 3.0.1 runs on the QNX operating system on the Drive PX2 platform.

Release Notes 3.0.1 Errata

‣ Due to the cuDNN symbol conflict issues between TensorRT and TensorFlow, the
tf_to_trt Python example works with TensorFlow 1.4.0 only and not prior versions of
TensorFlow.

‣ If your system has multiple libcudnnX-dev versions installed, ensure that cuDNN 7 is
used for compiling and running TensorRT samples. This problem can occur when you have
TensorRT and a framework installed. TensorRT uses cuDNN 7 while most frameworks are
currently on cuDNN 6.

‣ There are various details in the Release Notes and Developer Guide about the
pytorch_to_trt Python example. This sample is no longer part of the package because
of cuDNN symbol conflict issues between PyTorch and TensorRT.

‣ In the Installation and Setup section of the Release Notes, it is mentioned that
TENSORRT_LIB_DIR should point to <TAR_INSTALL_ROOT>/lib64. Instead,
TENSORRT_LIB_DIR should point to <TAR_INSTALL_ROOT>/lib.

‣ There are some known minor performance regressions for FP32 mode on K80 for large
batch sizes on CUDA 8. Update to CUDA 9 if you see similar performance regression.

Using TensorRT 3.0.1

Ensure you are familiar with the following notes when using this release.

‣ Although networks can use NHWC and NCHW, TensorFlow users are encouraged to
convert their networks to use NCHW data ordering explicitly in order to achieve the best
possible performance.

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 82

‣ The libnvcaffe_parsers.so library file is now called libnvparsers.so. The links for
libnvcaffe_parsers are updated to point to the new libnvparsers library. The static
library libnvcaffe_parser.a is also linked to the new libnvparsers.

Known Issues

Installation and Setup

‣ If you are installing TensorRT from a tar package (instead of using the .deb packages and
apt-get), you will need to update the custom_plugins example to point to the location
that the tar package was installed into. For example, in the <PYTHON_INSTALL_PATH>/
tensorrt/examples/custom_layers/tensorrtplugins/setup.py file change the
following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include directory.

‣ Change TENSORRT_LIB_DIR to point to <TAR_INSTALL_ROOT>/lib64 directory.

‣ The PyTorch based sample will not work with the CUDA 9 Toolkit. It will only work with the
CUDA 8 Toolkit.

‣ When using the TensorRT APIs from Python, import the tensorflow and uff modules
before importing the tensorrt module. This is required to avoid a potential namespace
conflict with the protobuf library as well as the cuDNN version. In a future update, the
modules will be fixed to allow the loading of these Python modules to be in an arbitrary
order.

‣ The TensorRT Python APIs are only supported on x86 based systems. Some installation
packages for ARM based systems may contain Python .whl files. Do not install these on
the ARM systems, as they will not function.

‣ The TensorRT product version is incremented from 2.1 to 3.0.1 because we added
major new functionality to the product. The libnvinfer package version number was
incremented from 3.0.2 to 4.0 because we made non-backward compatible changes to the
application programming interface.

‣ The TensorRT debian package name was simplified in this release to tensorrt. In
previous releases, the product version was used as a suffix, for example tensorrt-2.1.2.

‣ If you have trouble installing the TensorRT Python modules on Ubuntu 14.04, refer to
the steps on installing swig to resolve the issue. For installation instructions, see Unix
Installation.

‣ The Flatten layer can only be placed in front of the Fully Connected layer. This means that
the Flatten layer can only be used if its output is directly fed to a Fully Connected layer.

‣ The Squeeze layer only implements the binary squeeze (removing specific size 1
dimensions). The batch dimension cannot be removed.

‣ If you see the Numpy.core.multiarray failed to import error message, upgrade your
NumPy to version 1.13.0 or greater.

‣ For Ubuntu 14.04, use pip version >= 9.0.1 to get all the dependencies installed.

http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation
http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 83

TensorFlow Model Conversion

‣ The TensorFlow to TensorRT model export works only when running TensorFlow with
GPU support enabled. The converter does not work if TensorFlow is running without GPU
acceleration.

‣ The TensorFlow to TensorRT model export does not work with network models specified
using the TensorFlow Slim interface, nor does it work with models specified using the
Keras interface.

‣ The TensorFlow to TensorRT model export does not support recurrent neural network
(RNN) models.

‣ The TensorFlow to TensorRT model export may produce a model that has extra tensor
reformatting layers compared to a model generated directly using the C++ or Python
TensorRT graph builder API. This may cause the model that originated from TensorFlow to
run slower than the model constructed directly with the TensorRT APIs.

‣ Although TensorFlow models can use either NHWC or NCHW tensor layouts, TensorFlow
users are encouraged to convert their models to use the NCHW tensor layout explicitly, in
order to achieve the best possible performance when exporting the model to TensorRT.

‣ The TensorFlow parser requires that input will be fed to the network in NCHW format.

Other known issues

‣ On the V100 GPU, running models with INT8 only works if the batch size is evenly divisible
by 4.

‣ TensorRT Python interface requires NumPy 1.13.0 while the installing TensorRT using pip
may only install 1.11.0. Use sudo pip install numpy -U to update if the NumPy version
on the user machine is not 1.13.0.

6.5. TensorRT Release 3.0 Release
Candidate (RC)

This is the second preview release of TensorRT. For production use of TensorRT, continue to
use 2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Volta
The NVIDIA Volta architecture is now supported, including the Tesla V100 GPU. On Volta
devices, the Tensor Core feature provides a large performance improvement, and Tensor
Cores are automatically used when the builder is set to half2mode.

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 84

Streamlined export of models trained in TensorFlow into TensorRT
With this release you can take a trained model in TensorFlow saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow model exporter creates an
output file in a format called UFF (Universal Framework Format), which can then be parsed
by TensorRT.

Currently the export path is expected to support the following:

‣ Tensorflow 1.3

‣ FP32 CNNs

‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc.)

‣ RNNs

‣ INT8 CNNs

TensorFlow convenience functions
NVIDIA provides convenience functions so that when using UFF and TensorRT to export a
model and run inference, only a few lines of code is needed.

Universal Framework Format 0.1
UFF format is designed to encapsulate trained neural networks so they can be parsed by
TensorRT.

Python API
TensorRT 3.0 introduces the TensorRT Python API, which provides developers interfaces to:

‣ the NvCaffeParser

‣ the NvUffParser

‣ The nvinfer graph definition API

‣ the inference engine builder

‣ the engine executor

TensorRT also introduces a workflow to include C++ custom layer implementations in
Python based TensorRT applications.

New deep learning layers or algorithms

‣ The TensorRT deconvolution layer previously did not support non-zero padding, or
stride values that were distinct from kernel size. These restrictions have now been
lifted.

‣ The TensorRT deconvolution layer now supports groups.

‣ Non-determinism in the deconvolution layer implementation has been eliminated.

‣ The TensorRT convolution layer API now supports dilated convolutions.

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 85

‣ The TensorRT API now supports these new layers (but they are not supported via the
NvCaffeParser):

‣ unary

‣ shuffle

‣ padding

‣ The Elementwise (eltwise) layer now supports broadcasting of input dimensions.

QNX
TensorRT 3.0 runs on the QNX operating system on the Drive PX2 platform.

Known Issues

Installation and Setup

‣ If you are installing TensorRT from a tar package (instead of using the .deb packages
and apt-get), then the custom_plugins example will need to be updated to
point to the location that the tar package was installed to. For example, in the
<PYTHON_INSTALL_PATH>/tensorrt/examples/custom_layers/tensorrtplugins/

setup.py file change the following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include directory.

‣ Change TENSORRT_LIB_DIR to point to the <TAR_INSTALL_ROOT>/lib directory.

‣ The PyTorch based sample will not work with the CUDA 9 Toolkit. It will only work with the
CUDA 8 Toolkit.

‣ When using the TensorRT APIs from Python, import the tensorflow and uff modules
before importing the tensorrt module. This is required to avoid a potential namespace
conflict with the protobuf library. In a future update, the modules will be fixed to allow the
loading of these Python modules to be in an arbitrary order.

‣ The TensorRT Python APIs are only supported on x86 based systems. Some installation
packages for ARM based systems may contain Python .whl files. Do not install these on
the ARM systems, as they will not function.

‣ The TensorRT product version is incremented from 2.1 to 3.0 because we added major new
functionality to the product. The libnvinfer package version number was incremented
from 3.0.2 to 4.0 because we made non-backward compatible changes to the application
programming interface.

‣ The TensorRT debian package name was simplified in this release to tensorrt. In
previous releases, the product version was used as a suffix, for example tensorrt-2.1.2.

‣ If you have trouble installing the TensorRT Python modules on Ubuntu 14.04, refer to
the steps on installing swig to resolve the issue. For installation instructions, see Unix
Installation.

‣ There is a performance regression in the LRN layer when the network is running in INT8
mode. It impacts networks like GoogleNet and AlexNet but not ResNet-50, VGG-19 etc.

http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation
http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 86

TensorFlow Model Conversion

‣ The TensorFlow to TensorRT model export works only when running TensorFlow with
GPU support enabled. The converter does not work if TensorFlow is running without GPU
acceleration.

‣ The TensorFlow to TensorRT model export does not work with network models specified
using the TensorFlow Slim interface, nor does it work with models specified using the
Keras interface.

‣ The TensorFlow to TensorRT model export does not support recurrent neural network
(RNN) models.

‣ The TensorFlow to TensorRT model export does not support convolutional layers that have
asymmetric padding (a different number of zero-padded rows and columns).

‣ The TensorFlow to TensorRT model export may produce a model that has extra tensor
reformatting layers compared to a model generated directly using the C++ or Python
TensorRT graph builder API. This may cause the model that originated from TensorFlow to
run slower than the model constructed directly with the TensorRT APIs.

‣ Although TensorFlow models can use either NHWC or NCHW tensor layouts, TensorFlow
users are encouraged to convert their models to use the NCHW tensor layout explicitly, in
order to achieve the best possible performance.

Other known issues

‣ The Inception v4 network models are not supported with this Release Candidate with FP16
on V100.

‣ On V100, running models with INT8 do not work if the batch size is not divisible by 4.

‣ The Average Pooling behavior has changed to exclude padding from the computation,
which is how all other Pooling modes handle padding. This results in incorrect behavior
for network models which rely on Average Pooling and which include padding, such as
Inception v3. This issue will be addressed in a future release.

‣ In this Release Candidate, the arguments for the tensorrt_exec.py script are slightly
different than the ones for the giexec executable, and can be a source of confusion for
users. Consult the documentation carefully to avoid unexpected errors. The command-line
arguments will be changed to match giexec in a future update.

‣ The INT8 Calibration feature is not available in the TensorRT Python APIs.

‣ The examples/custom_layer sample will not work on Ubuntu 14.04 x86_64 systems,
however, it does work properly on Ubuntu 16.04 systems. This will be fixed in the next
update of the software.

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 87

6.6. TensorRT Release 3.0 Early Access
(EA)

This is a preview release of TensorRT. For production use of TensorRT, continue to use 2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Streamlined export for models trained in TensorFlow to TensorRT
With this release you can take a TensorFlow trained model saved in a TensorFlow protobuf
and convert it to run in TensorRT. The TensorFlow to UFF converter creates an output file in
a format called UFF (Universal Framework Format) which can then be read into TensorRT.

Currently the export path is expected to support the following:

‣ Tensorflow 1.0

‣ FP32 CNNs

‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc..)

‣ RNNs

‣ INT8 CNNs

TensorFlow convenience functions
NVIDIA provides convenience functions so that when using UFF and TensorRT to export a
model and run inference, only a few lines of code is needed.

Universal Framework Format 0.1
UFF format is designed as a way of storing the information about a neural network that is
needed to create an inference engine based on that neural network.

Python API
TensorRT 3.0 introduces the TensorRT Python API, allowing developers to access:

‣ the NvCaffeParser

‣ the NvUffParser

‣ The nvinfer graph definition API

‣ the inference engine builder

‣ the inference-time interface for engine execution within Python

TensorRT also introduces a workflow to include C++ custom layer implementations in
Python based TensorRT applications.

TensorRT Release 3.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 88

Using TensorRT 3.0

Ensure you are familiar with the following notes when using this release.

‣ Although networks can use NHWC and NCHW, TensorFlow users are encouraged to
convert their networks to use NCHW data ordering explicitly in order to achieve the best
possible performance.

‣ Average pooling behavior changed to exclude the padding from the computation. The
padding is now excluded from the computation in all of the pooling modes. This results
in incorrect behavior for networks which rely on average pooling which includes padding,
such as inceptionV3. This issue will be addressed in a future release.

‣ The libnvcaffe_parsers.so library file is now called libnvparsers.so. The links for
libnvcaffe_parsers are updated to point to the new libnvparsers library. The static
library libnvcaffe_parser.a is also linked to the new libnvparsers. For example:

‣ Old structure: libnvcaffe_parsers.4.0.0.so links to libnvcaffe_parsers.4.so
which links to libnvcaffe_parsers.so.

‣ New structure: libnvcaffe_parsers.4.0.0.so links to ibnvcaffe_parsers.4.so
which links to libnvcaffe_parsers.so which links to libnvparsers.so(actual
file).

Known Issues

‣ TensorRT does not support asymmetric padding.

‣ Some TensorRT optimizations disabled just for this Early Release (EA) to ensure that the
UFF model runs properly. This will be addressed in TensorRT 3.0.

‣ The TensorFlow conversion path is not fully optimized.

‣ INT8 Calibration is not available in Python.

‣ Deconvolution is not implemented in the UFF workflow.

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 89

Chapter 7. TensorRT Release 2.x.x

7.1. TensorRT Release 2.1
This TensorRT 2.1 General Availability release is a minor release and includes the following
improvements and fixes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Custom Layer API
If you want TensorRT to use novel, unique or proprietary layers in the evaluation of certain
networks, the Custom Layer API lets you provide a CUDA kernel function that implements
the functionality you want.

Installers
You have two ways you can install TensorRT 2.1:

 1. Ubuntu deb packages. If you have root access and prefer to use package management
to ensure consistency of dependencies, then you can use the apt-get command and
the deb packages.

 2. Tar file based installers. If you do not have root access or you want to install multiple
versions of TensorRT side-by-side for comparison purposes, then you can use the tar
file install. The tar file installation uses target dep-style directory structures so that you
can install TensorRT libraries for multiple architectures and then do cross compilation.

INT8 support
TensorRT can be used on supported GPUs (such as P4 and P40) to execute networks using
INT8 rather than FP32 precision. Networks using INT8 deliver significant performance
improvements.

Recurrent Neural Network
LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) are two popular and
powerful variations of a Recurrent Neural Network cell. Recurrent neural networks are

TensorRT Release 2.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 90

designed to work with sequences of characters, words, sounds, images, etc. TensorRT 2.1
provides implementations of LSTM, GRU and the original RNN layer.

Using TensorRT 2.1

Ensure you are familiar with the following notes when using this release.

‣ Running networks in FP16 or INT8 may not work correctly on platforms without hardware
support for the appropriate reduced precision instructions.

‣ GTX 750 and K1200 users will need to upgrade to CUDA 8 in order to use TensorRT.

‣ If you have previously installed TensorRT 2.0 EA or TensorRT 2.1 RC and you install
TensorRT 2.1, you may find that the old meta package is still installed. It can be safely
removed with the apt-get command.

‣ Debian packages are supplied in the form of local repositories. Once you have installed
TensorRT, you can safely remove the TensorRT local repository debian package.

‣ The implementation of deconvolution is now deterministic. In order to ensure
determinism, the new algorithm requires more workspace.

‣ FP16 performance was significantly improved for batch size = 1. The new algorithm is
sometimes slower for batch sizes greater than one.

‣ Calibration for INT8 does not require labeled data. SampleINT8 uses labels only to
compare the accuracy of INT8 inference with the accuracy of FP32 inference.

‣ Running with larger batch sizes gives higher overall throughput but uses more memory.
When trying TensorRT out on GPUs with smaller memory, be aware that some of the
samples may not work with batch sizes of 128.

‣ The included Caffe parser library does not currently understand the NVIDIA/Caffe format
for batch normalization. The BVLC/Caffe batch normalization format is parsed correctly.

Deprecated Features

The parameterized calibration technique introduced in the 2.0 EA pre-release has been
replaced by the new entropy calibration mechanism.

‣ The Legacy class IInt8LegacyCalibrator is deprecated.

Known Issues

‣ When using reduced precision, either INT8 or FP16, on platforms with hardware support
for those types, pooling with window sizes other than 1,2,3,5 or 7 will fail.

‣ When using MAX_AVERAGE_BLEND or AVERAGE pooling in INT8 with a channel count that is
not a multiple of 4, TensorRT may generate incorrect results.

‣ When downloading the Faster R-CNN data on Jetson TX1 users may see the following
error:

https://github.com/NVIDIA/caffe
https://github.com/BVLC/caffe

TensorRT Release 2.x.x

TensorRT SWE-SWDOCTRT-001-RELN_v7.2.1 | 91

ERROR: cannot verify dl.dropboxusercontent.com's certificate, issued by 'CN=DigiCert SHA2
 High Assurance Server CA,OU=www.digicert.com,O=DigiCert Inc,C=US':
 Unable to locally verify the issuer's authority.
To connect to dl.dropboxusercontent.com insecurely, use `--no-check-certificate`.

Adding the --no-check-certificate flag should resolve the issue.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All other brands or product
names are the property of their respective holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries
ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded
Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX Station, DLProf, GPU, JetPack, Jetson, Kepler, Maxwell,
NCCL, Nsight Compute, Nsight Systems, NVCaffe, NVIDIA Ampere GPU architecture, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud,
NVLink, NVSHMEM, PerfWorks, Pascal, SDK Manager, T4, Tegra, TensorRT, TensorRT Inference Server, Tesla, TF-TRT, Triton Inference Server, Turing, and Volta are
trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks
of the respective companies with which they are associated.

Copyright
© 2017-2020 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	TensorRT Overview
	TensorRT Release 7.x.x
	2.1. TensorRT Release 7.2.1
	2.2. TensorRT Release 7.2.0
	2.3. TensorRT Release 7.1.3
	2.4. TensorRT Release 7.1.2 Release Candidate (RC)
	2.5. TensorRT Release 7.1.0 Early Access (EA)
	2.6. TensorRT Release 7.0.0

	TensorRT Release 6.x.x
	3.1. TensorRT Release 6.0.1

	TensorRT Release 5.x.x
	4.1. TensorRT Release 5.1.5
	4.2. TensorRT Release 5.1.3
	4.3. TensorRT Release 5.1.2 Release Candidate (RC)
	4.4. TensorRT Release 5.1.1 Release Candidate (RC)
	4.5. TensorRT Release 5.1.0 Release Candidate (RC)
	4.6. TensorRT Release 5.0.6
	4.7. TensorRT Release 5.0.5
	4.8. TensorRT Release 5.0.4
	4.9. TensorRT Release 5.0.3
	4.10. TensorRT Release 5.0.2
	4.11. TensorRT Release 5.0.1 Release Candidate (RC)
	4.12. TensorRT Release 5.0.0 Release Candidate (RC)

	TensorRT Release 4.x.x
	5.1. TensorRT Release 4.0.1
	5.2. TensorRT Release 4.0 Release Candidate (RC) 2
	5.3. TensorRT Release 4.0 Release Candidate (RC)

	TensorRT Release 3.x.x
	6.1. TensorRT Release 3.0.4
	6.2. TensorRT Release 3.0.3
	6.3. TensorRT Release 3.0.2
	6.4. TensorRT Release 3.0.1
	6.5. TensorRT Release 3.0 Release Candidate (RC)
	6.6. TensorRT Release 3.0 Early Access (EA)

	TensorRT Release 2.x.x
	7.1. TensorRT Release 2.1

