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Chapter 1. What Is TensorRT?

To get started with TensorRT, we recommend that you start with the TensorRT Quick Start
Guide. The TensorRT Quick Start Guide is for users who want to try out TensorRT SDK;
specifically, you'll learn how to quickly construct an application to run inference on a TensorRT
engine.

The core of NVIDIA® TensorRT™ is a C++ library that facilitates high-performance inference
on NVIDIA graphics processing units (GPUs). It is designed to work in a complementary
fashion with training frameworks such as TensorFlow, PyTorch, MXNet, and so on. It focuses
specifically on running an already-trained network quickly and efficiently on a GPU.

Some training frameworks such as TensorFlow have integrated TensorRT so that it can be
used to accelerate inference within the framework. Alternatively, TensorRT can be used as
a library within a user application. It includes an ONNX parser and C++ and Python APIs for
building models programmatically.

https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html
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Figure 1. TensorRT is a high-performance neural network inference
optimizer and runtime engine for production deployment.

TensorRT optimizes the network by combining layers and optimizing kernel selection for
improved latency, throughput, power efficiency, and memory consumption. If the application
specifies, it optimizes the network to run in lower precision, further increasing performance
and reducing memory requirements.



What Is TensorRT?

NVIDIA TensorRT PG-08540-001_v8.0.1   |   3

The TensorRT API includes implementations for the most common deep learning layers. For
more information about the layers, refer to TensorRT Layers. You can also use the C++ Plugin
API or Python Plugin API to provide implementations for infrequently used or more innovative
layers that are not supported natively by TensorRT.

1.1.  Benefits Of TensorRT
After the neural network is trained, TensorRT enables the network to be compressed,
optimized, and deployed as a runtime without the overhead of a framework.

TensorRT combines layers, optimizes kernel selection, and also performs normalization and
conversion to optimized matrix math depending on the specified precision (FP32, FP16 or
INT8) for improved latency, throughput, and efficiency.

For deep learning inference, there are five critical factors that are used to measure software:
Throughput

The volume of output within a given period. Often measured in inferences/second or
samples/second, per-server throughput is critical to cost-effective scaling in data centers.

Efficiency

Amount of throughput delivered per unit-power, often expressed as performance/watt.
Efficiency is another key factor to cost-effective data center scaling since servers, server
racks, and entire data centers must operate within fixed power budgets.

Latency

Time to execute an inference, usually measured in milliseconds. Low latency is critical to
delivering rapidly growing, real-time inference-based services.

Accuracy

A trained neural network’s ability to deliver the correct answer.
Memory usage

The host and device memory that need to be reserved to do inference on a network depends
on the algorithms used. This constrains what networks and what combinations of networks
can run on a given inference platform. This is particularly important for systems where
multiple networks are needed, and memory resources are limited such as cascading
multi-class detection networks used in intelligent video analytics and multi-camera, multi-
network autonomous driving systems.

Alternatives to using TensorRT include:

‣ Using the training framework itself to perform inference.

‣ Writing a custom application that is designed specifically to execute the network using
low-level libraries and math operations.

Using the training framework to perform inference is easy but tends to result in much lower
performance on a given GPU than would be possible with an optimized solution like TensorRT.
Training frameworks tend to implement more general purpose code which stress generality,
and when they are optimized, the optimizations tend to focus on efficient training.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/pyPlugin.html
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Higher efficiency can be obtained by writing a custom application just to execute a neural
network; however, it can be quite labor-intensive and require specialized knowledge to reach
a high level of performance on a modern GPU. Furthermore, optimizations that work on one
GPU cannot translate fully to other GPUs in the same family, and each generation of GPU can
introduce new capabilities that can only be leveraged by writing new code.

TensorRT solves these problems by combining a high-level API that abstracts away specific
hardware details and an implementation that optimizes inference for high throughput, low
latency, and a low device-memory footprint.

1.1.1.  Who Can Benefit From TensorRT
TensorRT is intended for use by engineers who are responsible for building features and
applications based on new or existing deep learning models or deploying models into
production environments. These deployments might be into servers in a data center or
cloud, in an embedded device, robot or vehicle, or application software that runs on your
workstations.

TensorRT has been used successfully across a wide range of scenarios, including:
Robots

Companies sell robots using TensorRT to run various kinds of computer vision models to
autonomously guide an unmanned aerial system flying in dynamic environments.

Autonomous Vehicles

TensorRT is used to power computer vision in the NVIDIA DRIVE products.
Scientific and Technical Computing

A popular technical computing package embeds TensorRT to enable high throughput
execution of neural network models.

Deep Learning Training and Deployment Frameworks

TensorRT is included in several popular Deep Learning Frameworks, including TensorFlow
and MXNet. For TensorFlow and MXNet container release notes. Refer to TensorFlow
Release Notes and MXNet Release Notes.

Video Analytics

TensorRT is used in NVIDIA’s DeepStream product to power sophisticated video analytics
solutions both at the edge with 1 - 16 camera feeds and in the data center where hundreds
or even thousands of video feeds might come together.

Automatic Speech Recognition

TensorRT is used to power speech recognition on a small tabletop/desktop device. A limited
vocabulary is supported on the device with a larger vocabulary speech recognition system
available in the cloud.

1.2.  Where Does TensorRT Fit?
Generally, the workflow for developing and deploying a deep learning model goes through
three phases.

https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/tensorflow/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/mxnet/
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/index.html
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/index.html
https://docs.nvidia.com/deeplearning/dgx/mxnet-release-notes/index.html
https://developer.nvidia.com/deepstream-sdk
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‣ Phase 1 is training

‣ Phase 2 is developing a deployment solution, and

‣ Phase 3 is the deployment of that solution

Phase 1: Training

During the training phase, start with a statement of the problem that you want to solve
and decide on the precise inputs, outputs, and loss function that you’ll use. Collect, curate,
augment, and probably label the training, test, and validation data sets. Then, design the
structure of the network and train the model. During training, monitor the learning process,
which can provide feedback that causes you to revise the loss function, acquire, or augment
the training data. At the end of this process, validate the model performance and save the
trained model. Training and validation are usually done using DGX-1, Titan, or Tesla data
center GPUs.

TensorRT is generally not used during any part of the training phase.

Phase 2: Developing A Deployment Solution

During the second phase, start with the trained model and create and validate a deployment
solution using this trained model. Breaking this phase down into steps, you get:

 1. Think about how the neural network functions within the larger system that is a part of.
With that in mind, design and implement an appropriate solution. The range of systems
that might incorporate neural networks is tremendously diverse. Examples include:

‣ the autonomous driving system in a vehicle

‣ a video security system on a public venue or corporate campus

‣ the speech interface to a consumer device

‣ an industrial production line automated quality assurance system

‣ an online retail system providing product recommendations, or

‣ a consumer web service offering entertaining filters users can apply to uploaded
images.

Determine what your priorities are. Given the diversity of different systems that you
could implement, there are a lot of things that should be considered for designing and
implementing the deployment architecture.

‣ Do you have a single network or many networks? For example, are you developing
a feature or system that is based on a single network (face detection), nor will your
system be a mixture or cascade of different models or perhaps a more general facility
that serves up a collection model that can be provided by the end-user?

‣ What device or compute element will you use to run the network? CPU, GPU, other, or
a mixture? If the model is going to run on a GPU, is it a single type of GPU, or do you
need to design an application that can run on a variety of GPUs?
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‣ How is data going to get to the models? What is the data pipeline? Is the data coming
in from a camera or sensor, from a series of files, or being uploaded over a network
connection?

‣ What pre-processing will be done? What format will the data come in? If it is an image,
does it need to be cropped, rotated? If it is text, what character set is it, and are all
characters allowed as inputs to the model? Are there any special tokens?

‣ What latency and throughput requirements will you have?

‣ Will you be able to batch together multiple requests?

‣ Will you need multiple instances of a single network to achieve the required overall
system throughput and latency?

‣ What will you do with the output of the network?

‣ What post-processing steps are needed?

TensorRT provides a fast, modular, robust, reliable inference engine that can support the
inference needs within the deployment architecture.

 2. After you define the architecture of your inference solution, by which you determine what
your priorities are, you then build an inference engine from the saved network using
TensorRT. There are a number of ways to do this depending on the training framework
used and the network architecture. Generally, this means you need to take the saved
neural network and parse it from its saved format into TensorRT using the ONNX parser
(see left side of Figure 2).

Figure 2. ONNX Workflow V1

 3. After the network is parsed, consider your optimization options -- batch size, workspace
size, mixed precision, and bounds on dynamic shapes. These options are chosen and
specified as part of the TensorRT build step, where you build an optimized inference
engine based on your network. Subsequent sections of this guide provide detailed
instructions and numerous examples on this part of the workflow, parsing your model into
TensorRT and choosing the optimization parameters (refer to Figure 2).
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 4. After you’ve created an inference engine using TensorRT, you’ll want to validate that it
reproduces the results of the model as measured during the training process. If you have
chosen FP32 or FP16, it should match the results quite closely. If you have chosen INT8,
there can be a small gap between the accuracy achieved during training and the inference
accuracy.

 5. Write out the inference engine in a serialized format. This is also called a plan file.

Phase 3: Deploying A Solution

The TensorRT library is linked to the deployment application, which calls into the library when
it wants an inference result. To initialize the inference engine, the application first deserializes
the model from the plan file into an inference engine.

TensorRT is usually used asynchronously; therefore, when the input data arrives, the program
calls an enqueue function with the input buffer and the buffer in which TensorRT should put
the result.

1.3.  How Does TensorRT Work?
To optimize your model for inference, TensorRT takes your network definition, performs
network-specific and platform-specific optimizations, and generates the inference engine.
This process is referred to as the build phase. The build phase can take considerable time,
especially when running on embedded platforms. Therefore, a typical application builds an
engine once and then serializes it as a plan file for later use.

Note: The generated plan files are not portable across platforms or TensorRT versions and are
specific to the exact GPU model they were built on.

The build phase optimizes the network graph by eliminating dead computations, folding
constants, and reordering and combining operations to run more efficiently on the GPU.

The builder can also be configured to reduce the precision of computations. It can
automatically reduce 32-bit floating-point calculations to 16-bit and supports quantization of
floating-point values so that calculations can be performed using 8-bit integers. Quantization
requires dynamic range information, which can be provided by the application, or calculated
by TensorRT using representative network inputs, a process called calibration. The build phase
also runs multiple implementations of operators to find those which, when combined with
any intermediate precision conversions and layout transformations, yield the fastest overall
implementation of the network.

For more information, refer to Working With Mixed Precision.
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1.4.  What Capabilities Does TensorRT
Provide?

TensorRT enables developers to import, calibrate, optimize, and deploy deep learning models.
Models can be imported from frameworks like TensorFlow and PyTorch via the ONNX format.
They can also be created programmatically by instantiating individual layers and setting
parameters and weights directly.

TensorRT provides a C++ implementation on all supported platforms and a Python
implementation on Linux. Python is not currently supported on Windows or QNX.

The key interfaces in the TensorRT core library are:
Network Definition

The Network Definition interface provides methods for the application to define a network.
Input and output tensors can be specified, and layers can be added and configured. As
well as layer types, such as convolutional and recurrent layers, a Plugin layer type allows
the application to implement functionality not natively supported by TensorRT. For more
information, refer to the Network Definition API.

Optimization Profile

An optimization profile specifies constraints on dynamic dimensions. For more information,
refer to the Optimization Profile API and Working With Dynamic Shapes sections.

Builder Configuration

The Builder Configuration interface specifies details for creating an engine. It allows
the application to specify optimization profiles, maximum workspace size, the minimum
acceptable level of precision, timing iteration counts for autotuning, and an interface for
quantizing networks to run in 8-bit precision. For more information, refer to the Builder
Config API.

Builder

The Builder interface allows the creation of an optimized engine from a network definition
and a builder configuration. For more information, refer to the Builder API.

Engine

The Engine interface allows the application to execute inference. It supports synchronous
and asynchronous execution, profiling, and enumeration, and querying of the bindings
for the engine inputs and outputs. A single-engine can have multiple execution contexts,
allowing a single set of trained parameters to be used for the simultaneous execution of
multiple inferences. For more information, refer to the Engine API.

ONNX Parser

This parser can be used to parse an ONNX model. For more details, refer to the C++ ONNX
Parser or the Python ONNX Parser.

Note: Additionally, some TensorRT ONNX parsers and plugins can be found on GitHub.

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_optimization_profile.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder_config.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder_config.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_cuda_engine.html
https://github.com/nvidia/TensorRT
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C++ API vs. Python API
In theory, the C++ API and the Python API should be close to identical in supporting your
needs. The C++ API should be used in any performance-critical scenarios, as well as in
situations where safety is important, for example, in automotive.

The main benefit of the Python API is that data preprocessing and postprocessing are easy
to use because you’re able to use a variety of libraries like NumPy and SciPy. For more
information about the Python API, refer to Using The Python API.

1.5.  How Do I Get TensorRT?
To get started with TensorRT, we recommend that you start with the TensorRT Quick Start
Guide. The TensorRT Quick Start Guide is for users who want to try out TensorRT SDK;
specifically, you'll learn how to quickly construct an application to run inference on a TensorRT
engine.

If you’re already familiar with TensorRT or you’re looking for specific installation instructions,
refer to the TensorRT Installation Guide.

1.6.  Versioning
TensorRT version number (MAJOR.MINOR.PATCH) follows Semantic Versioning 2.0.0 for its
public APIs and library ABIs. Version numbers change as follows:

 1. MAJOR version when making incompatible API or ABI changes changes
 2. MINOR version when adding functionality in a backward-compatible manner
 3. PATCH version when making backward-compatible bug fixes

Note that semantic versioning does not extend to serialized objects, specifically plan files and
timing caches, which are not currently compatible across TensorRT versions.

1.7.  Deprecation Policy
Deprecation is used to inform developers that some APIs and tools are no longer
recommended for use. TensorRT has the following deprecation policy:.

‣ This policy comes into effect beginning with TensorRT 8.0.

‣ Deprecation notices are communicated in the release notes. Deprecated API elements are
marked with the TRT_DEPRECATED macro where possible.

‣ TensorRT provides a 12-month migration period after the deprecation. For any APIs and
tools deprecated in TensorRT 7.x, the 12-month migration period starts from the TensorRT
8.0 GA release date.

‣ APIs and tools continue to work during the migration period.

‣ After the migration period ends, we reserve the right to remove the APIs and tools in a
future release.

https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://semver.org/#semantic-versioning-200
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Chapter 2. Using The C++ API

The following sections highlight the NVIDIA® TensorRT™ user goals and tasks that you can
perform using the C++ API. Further details are provided in the Samples Support Guide.

The assumption is that you are starting with a trained model. This chapter covers the following
necessary steps in using TensorRT:

‣ Creating a TensorRT network definition from your model.

‣ Invoking the TensorRT builder to create an optimized runtime engine from the network.

‣ Serializing and deserializing the engine so that it can be rapidly recreated at runtime.

‣ Feeding the engine with data to perform inference.

2.1.  Instantiating TensorRT Objects in C++
In order to run inference, use the interface IExecutionContext. In order to create an object
of type IExecutionContext, first, create an object of type ICudaEngine (the engine).

Create an engine in one of two ways:

‣ Via the network definition from the user model. In this case, the engine can be optionally
serialized and saved for later use.

‣ By reading a serialized engine from the disk. This can save significant time compared to
creating a network definition and building an engine from it.

Create a global object of type ILogger. It is a required argument to various methods of
TensorRT API. Here is an example demonstrating the creation of the logger:
class Logger : public ILogger           
 {
     void log(Severity severity, const char* msg) override
     {
         // suppress info-level messages
         if (severity != Severity::kINFO)
             std::cout << msg << std::endl;
     }
 } gLogger;

Use the TensorRT API stand-alone function createInferBuilder(gLogger) to create an
object of type IBuilder. For more information, refer to IBuilder class reference.

Use method IBuilder::createNetworkV2 to create an object of type INetworkDefinition.

Create an ONNX parser using the INetwork definition as the input:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder.html
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auto parser = nvonnxparser::createParser(*network, gLogger);

Call method IParser::parse() to read the model file and populate the TensorRT network.

Call method IBuilder::buildSerializedNetwork() to create a serialized ICudaEngine.

The engine can be deserialized with IRuntime::deserializeCudaEngine().

Create and use an execution context to perform inference.

If the serialized engine is preserved and saved to a file, you can bypass most of the previously
described steps.

Use the TensorRT API stand-alone function createInferRuntime(gLogger) to create an
object of type IRuntime.

Create an engine by calling the method IRuntime::deserializeCudaEngine(). For more
information about the TensorRT runtime, refer to the reference IRuntime.

The rest of the inference is identical for whether the engine was directly built from a network
or deserialized from a file.

Even though it is possible to avoid creating the CUDA context (the default context is created for
you), it is not advisable. It is recommended to create and configure the CUDA context before
creating a runtime or builder object.

The builder or runtime is created with the GPU context associated with the creating thread.
Although a default context is created if it does not already exist, it is advisable to create and
configure the CUDA context before creating a runtime or builder object.

2.2.  Creating A Network Definition In C++
The first step in performing inference with TensorRT is to create a TensorRT network from
your model.

The easiest way to achieve this is to import the model using the TensorRT parser library,
which supports serialized models in the ONNX format. For more information, refer to the
“Hello World” For TensorRT From ONNX (sampleOnnxMNIST) sample located in the GitHub
repository.

An alternative is to define the model directly using the TensorRT API. This requires you to
make a small number of API calls to define each layer in the network graph and to implement
your own import mechanism for the model’s trained parameters.

In either case, you’ll explicitly need to tell TensorRT which tensors are required as outputs of
inference. Tensors that are not marked as outputs are considered to be transient values that
can be optimized away by the builder. There is no restriction on the number of output tensors;
however, marking a tensor as the output can prohibit some optimizations on that tensor.

Inputs and output tensors must also be given names (using ITensor::setName()). At
inference time, supply the engine with an array of pointers to input and output buffers. In order
to determine in which order the engine expects these pointers, you can query using the tensor
names.

An important aspect of a TensorRT network definition is that it contains pointers to model
weights, which are copied into the optimized engine by the builder. If a network was created

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_runtime.html
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleOnnxMNIST
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
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via a parser, the parser owns the memory occupied by the weights, and so the parser object
should not be deleted until after the builder has run.

2.2.1.  Creating A Network Definition From Scratch
Using The C++ API

Instead of using a parser, you can also define the network directly to TensorRT via the network
definition API. This scenario assumes that the per-layer weights are ready in host memory to
pass to TensorRT during the network creation.

About this task

In the following example, we'll create a simple network with Input, Convolution, Pooling,
FullyConnected, Activation, and SoftMax layers. To view the code in totality, refer to Building
A Simple MNIST Network Layer By Layer (sampleMNISTAPI) located in the opensource/
sampleMNISTAPI directory in the GitHub repository.

Procedure

 1. Create the builder and the network:
IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetworkV2(1U <<
 static_cast<uint32_t>(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH));

 2. Add the Input layer to the network, with the input dimensions, including dynamic batch. A
network can have multiple inputs, although in this sample there is only one:
auto data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{-1, 1, INPUT_H, INPUT_W});

 3. Add the Convolution layer with hidden layer input nodes, strides and weights for filter and
bias. In order to retrieve the tensor reference from the layer, we can use:
auto conv1 = network->addConvolution(*data->getOutput(0), 20, DimsHW{5, 5},
 weightMap["conv1filter"], weightMap["conv1bias"]);
conv1->setStride(DimsHW{1, 1});

Note: Weights passed to TensorRT layers are in host memory.

 4. Add the Pooling layer:
auto pool1 = network->addPooling(*conv1->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
pool1->setStride(DimsHW{2, 2});

 5. Add the FullyConnected and Activation layers:
auto ip1 = network->addFullyConnected(*pool1->getOutput(0), 500, weightMap["ip1filter"],
 weightMap["ip1bias"]);
auto relu1 = network->addActivation(*ip1->getOutput(0), ActivationType::kRELU);

 6. Add the SoftMax layer to calculate the final probabilities and set it as the output:
auto prob = network->addSoftMax(*relu1->getOutput(0));
prob->getOutput(0)->setName(OUTPUT_BLOB_NAME);

 7. Mark the output:
network->markOutput(*prob->getOutput(0));

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNISTAPI
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNISTAPI
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2.2.2.  Importing An ONNX Model Using The C++
Parser API

The following steps illustrate how to import an ONNX model using the C++ Parser API.

Note:

‣ When using the ONNX parser, recall that the parser has ownership of the weights required
for the network. Ensure that the parser is not destroyed until after the builder has run.

‣ In general, the newer version of the ONNX Parser is designed to be backward compatible
up to opset 7. There could be some exceptions when the changes were not backward
compatible. In this case, convert the earlier ONNX model file into a later supported version.
For more information on this subject, refer to ONNX Model Opset Version Converter.

It is also possible that the user model was generated by an exporting tool supporting later
opsets than supported by the ONNX parser shipped with TensorRT. In this case, check
whether the latest version of TensorRT released to GitHub, onnx-tensorrt, supports the
required version. The supported version is defined by the BACKEND_OPSET_VERSION variable
in onnx_trt_backend.cpp. Download and build the latest version of ONNX TensorRT Parser
from GitHub. The instructions for building can be found here: TensorRT backend for ONNX.

About this task

For more information about the ONNX import, refer to "Hello World" For TensorRT From
ONNX (sampleOnnxMNIST) located in the GitHub repository.

Note: Since TensorRT 7.0, the ONNX parser only supports full-dimensions mode, meaning
that your network definition must be created with the explicitBatch flag set. For more
information, refer to Working With Dynamic Shapes.

Procedure

 1. Create the builder and network.
IBuilder* builder = createInferBuilder(gLogger);
const auto explicitBatch = 1U <<
 static_cast<uint32_t>(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);  
INetworkDefinition* network = builder->createNetworkV2(explicitBatch);

 2. Create the ONNX parser:
nvonnxparser::IParser* parser = 
nvonnxparser::createParser(*network, gLogger);

For more information, refer to the NvOnnxParser.h file.
 3. Parse the model:

parser->parseFromFile(onnx_filename, ILogger::Severity::kWARNING);
 for (int i = 0; i < parser.getNbErrors(); ++i)
 {
  std::cout << parser->getError(i)->desc() << std::endl;

https://github.com/onnx/onnx/blob/master/docs/VersionConverter.md
https://github.com/onnx/onnx-tensorrt
https://github.com/onnx/onnx-tensorrt/blob/master/onnx_trt_backend.cpp
https://github.com/onnx/onnx-tensorrt/blob/master/README.md
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleOnnxMNIST
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleOnnxMNIST
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/_nv_onnx_parser_8h.html


Using The C++ API

NVIDIA TensorRT PG-08540-001_v8.0.1   |   14

 }

2.3.  Building An Engine In C++
The next step is to invoke the TensorRT builder to create an optimized runtime. One of the
functions of the builder is to search through its catalog of CUDA kernels for the fastest
implementation available, and thus it is necessary to use the same GPU for building like that
on which the optimized engine runs.

About this task

The IBuilderConfig has many properties that you can set in order to control such things as
the precision at which the network should run, and autotuning parameters such as how many
times TensorRT should time each kernel when ascertaining which is fastest (more iterations
lead to longer runtimes, but less susceptibility to noise.) You can also query the builder to find
out what reduced precision types are natively supported by the hardware.

One particularly important property is the maximum workspace size. Layer algorithms often
require a temporary workspace. This parameter limits the maximum size that any layer in the
network can use. If an insufficient scratch is provided, it is possible that TensorRT cannot be
able to find an implementation for a given layer.

Procedure

 1. Build the engine using the builder object:
IBuilderConfig* config = builder->createBuilderConfig();
config->setMaxWorkspaceSize(1 << 20);
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);

When the engine is built, TensorRT makes copies of the weights.
 2. Dispense with the network, builder, and parser if using one.

parser->destroy();
network->destroy();
config->destroy();
builder->destroy();

2.3.1.  Builder Layer Timing Cache
Building an engine can be time-consuming since the builder needs to time candidate kernels
for every layer. To reduce the builder time, TensorRT sets up a layer timing cache to keep the
layer profiling information during the builder phase.

If there are other layers with the same input/output tensor configuration and layer
parameters, then the TensorRT builder skips profiling and reuses the cached result for the
repeated layers.

Starting in TensorRT 8.0, the timing cache can be serialized and loaded by builder instances
running on devices with the same CUDA device property and CUDA/TensorRT versions.
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A global timing cache can be created by IBuilderConfig. To load from a serialized cache file,
the data pointer and size of the file must be provided. Setting the file size to 0 creates a new
empty timing cache:
IBuilderConfig* config = builder->createBuilderConfig();
ITimingCache* cache = config->createTimingCache(cacheFile.data(), cacheFile.size());

The global timing cache needs to be attached to an IBuilderConfig before launching the
builder instance. Sharing cache across devices with different CUDA device properties can lead
to functional/performance issues. The suggestion is to do this only when the devices are of
the same device model but different universally unique identifier (UUID). However, the loaded
cache must be generated by the same version of TensorRT as the current builder instance.
config->setTimingCache(*cache, false);

The builder can load layer profiling entries from cache and add new entries to it. The
ITimingCache object can be attached to other builder instances or serialized to IHostMemory.
IHostMemory* serializedCache = cache->serialize();

If there is no global timing cache attached to a builder instance, the builder creates its own
local cache and destroys it when the builder is done. The global/local cache can be turned off
by setting the builder flag.
...
config->setFlag(BuilderFlag::kDISABLE_TIMING_CACHE);

When building an engine with AlgorithmSelector, the layer timing cache needs to be
disabled; therefore, ensure you turn off cache.

2.4.  Serializing A Model In C++
It is not absolutely necessary to serialize and deserialize a model before using it for inference
– if desirable, the engine object can be used for inference directly.

About this task

To serialize, you are transforming the engine into a format to store and use at a later time
for inference. To use for inference, you would simply deserialize the engine. Serializing and
deserializing are optional. Since creating an engine from the Network Definition can be
time consuming, you could avoid rebuilding the engine every time the application reruns by
serializing it once and deserializing it while running inference. Therefore, after the engine is
built, users typically want to serialize it for later use.

Note: Serialized engines are not portable across platforms or TensorRT versions. Engines
are specific to the exact GPU model they were built on (in addition to the platforms and the
TensorRT version).

Procedure

 1. Run the builder as a prior offline step and then serialize:
IHostMemory *serializedModel = engine->serialize();
// store model to disk
// <…>

https://en.wikipedia.org/wiki/Serialization
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serializedModel->destroy();

 2. Create a runtime object to deserialize:
IRuntime* runtime = createInferRuntime(gLogger);
ICudaEngine* engine = runtime->deserializeCudaEngine(modelData, modelSize, nullptr);

The final argument is not used anymore and must be a nullptr. For more information,
refer to Extending TensorRT With Custom Layers.

2.5.  Performing Inference In C++
The following steps illustrate how to perform inference in C++ now that you have an engine.

Procedure

 1. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are held
in an execution context:
IExecutionContext *context = engine->createExecutionContext();

An engine can have multiple execution contexts, allowing one set of weights to be used
for multiple overlapping inference tasks. For example, you can process images in parallel
CUDA streams using one engine and one context per stream. Each context is created on
the same GPU as the engine.

For more information, refer to setBindingDimension() and
setOptimizationProfile() for dynamic shape models.

 2. Use the input and output blob names to get the corresponding input and output index:
int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME);
int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME);

 3. Using these indices, set up a buffer array pointing to the input and output buffers on the
GPU:
void* buffers[2];
buffers[inputIndex] = inputBuffer;
buffers[outputIndex] = outputBuffer;

 4. TensorRT execution is typically asynchronous, so enqueue the kernels on a CUDA stream:
context->enqueueV2(buffers, stream, nullptr);

It is common to enqueue asynchronous memcpy() before and after the kernels to move
data from the GPU if it is not already there. The final argument to enqueueV2() is an
optional CUDA event that is signaled when the input buffers have been consumed, and
their memory can be safely reused.

To determine when the kernel (and possibly memcpy()) are complete, use standard CUDA
synchronization mechanisms such as events or waiting on the stream.

For more information, refer to enqueue() for implicit batch networks and enqueueV2()
for explicit batch networks. In the event that asynchronous is not wanted, see execute()
and executeV2().

The IExecutionContext contains shared resources; therefore, calling enqueue or
enqueueV2 in from the same IExecutionContext object with different CUDA streams

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_execution_context.html#a9f87003474bc387e17782292cc2ea613
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_execution_context.html#aba0731b9fbc926c477010df818650b0a
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_execution_context.html#a84436f784eb3f0ea9089de2678d77954
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_execution_context.html#ac7a5737264c2b7860baef0096d961f5a
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_execution_context.html#a1fba6d417077b30a270d623119d02731
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_execution_context.html#a4baca5d4e8642905d487aaf7ca01c5ea


Using The C++ API

NVIDIA TensorRT PG-08540-001_v8.0.1   |   17

concurrently results in undefined behavior. To perform inference concurrently in multiple
CUDA streams, use one IExecutionContext per CUDA stream.

2.6.  Memory Management In C++
TensorRT provides two mechanisms to allow the application of more control over device
memory.

By default, when creating an IExecutionContext, persistent device
memory is allocated to hold activation data. To avoid this allocation, call
createExecutionContextWithoutDeviceMemory. It is then the application’s
responsibility to call IExecutionContext::setDeviceMemory() to provide the
required memory to run the network. The size of the memory block is returned by
ICudaEngine::getDeviceMemorySize().

In addition, the application can supply a custom allocator for use during build and runtime
by implementing the IGpuAllocator interface. This is useful if your application wishes to
control all GPU memory and sub-allocate to TensorRT instead of having TensorRT allocate
directly from CUDA.

Once the interface is implemented, call setGpuAllocator(&allocator); on the IBuilder
or IRuntime interfaces. All device memory is then allocated and freed through this interface.

2.7.  Refitting An Engine
TensorRT can refit an engine with new weights without having to rebuild it. The engine must be
built as “refittable.” Because of the way the engine is optimized, if you change some weights,
you might have to supply some other weights too. The interface can tell you what additional
weights need to be supplied.

Procedure

 1. Request a refittable engine before building it:
...
config->setFlag(BuilderFlag::kREFIT) 
builder->buildEngineWithConfig(network, config);

 2. Create a refitter object:
ICudaEngine* engine = ...;
IRefitter* refitter = createInferRefitter(*engine,gLogger)

 3. Update the weights that you want to update. For example, to update the kernel weights for
a convolution layer named “MyLayer”:
Weights newWeights = ...;
refitter->setWeights("MyLayer",WeightsRole::kKERNEL,
                    newWeights);

The new weights should have the same count as the original weights used to build the
engine.

setWeights returns are false if something went wrong, such as a wrong layer name or
role or a change in the weights count.
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Alternatively, update the weights via setNamedWeights and setWeights after building
the engine from ONNX models or calling INetworkDefinition::setWeightsName()
explicitly. For example, to update weights called MyWeights:
Weights newWeights = ...;
refitter->setNamedWeights("MyWeights", newWeights);

setNamedWeights and setWeights can be used at the same time, i.e., you can update
weights with names via setNamedWeights and update those unnamed weights via
setWeights.

 4. Find out what other weights must be supplied. This typically requires two calls to
IRefitter::getMissing, first to get the number of Weights objects that must be
supplied, and second to get their layers and roles.
const int n = refitter->getMissing(0, nullptr, nullptr);
std::vector<const char*> layerNames(n);
std::vector<WeightsRole> weightsRoles(n);
refitter->getMissing(n, layerNames.data(), 
                        weightsRoles.data());

Alternatively, to get the names of all missing weights, run:
const int n = refitter->getMissingWeights(0, nullptr);
std::vector<const char*> weightsNames(n);
refitter->getMissingWeights(n, weightsNames.data());

 5. Supply the missing weights, in any order:
for (int i = 0; i < n; ++i)
    refitter->setWeights(layerNames[i], weightsRoles[i],
                         Weights{...});

Supplying only the missing weights does not generate a need for any more weights.
Supplying any additional weights can trigger the need for yet more weights.

 6. Update the engine with all the weights that are provided:
bool success = refitter->refitCudaEngine();
assert(success);

If success is false, check the log for a diagnostic, perhaps about weights that are still
missing.

 7. Destroy the refitter:
refitter->destroy();

Results

The updated engine behaves as if it had been built from a network updated with the new
weights.

To view all refittable weights in an engine, use refitter->getAll(...) or refitter-
>getAllWeights(...); similarly to how getMissing and getMissingWeights were used in
step 3.

2.8.  Algorithm Selection
TensorRT provides a mechanism to control the algorithm selection for different layers in a
network. The default behavior of TensorRT is to choose the algorithms that globally minimize
the execution time of the engine. IAlgorithmSelector
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The application can supply a custom algorithm selector for use during engine build by
implementing the IAlgorithmSelector interface. Once the interface is implemented, call:
config.setAlgorithmSelector(&selector);

where config is the createBuilderConfig that is passed to
IBuilder::createBuilderConfig to build the engine and selector is an instance of your
class derived from IAlgorithmSelector.

IAlgorithmSelector::selectAlgorithms

This method lets the application guide algorithm selection. The method is given the algorithm
context for a layer and a list of IAlgorithm choices applicable to that context. You can use
your override of this method to indicate which choices TensorRT should consider, based on
whatever heuristic you like, or return all the choices if TensorRT should do all the choosing.

The choices returned from selectAlgorithm restrict the range of algorithms allowed
for some layers. The builder does global minimization with the allowed choices. If
no choice is returned, TensorRT falls back to its default behavior. You can unset
BuilderFlag::kSTRICT_TYPES to avoid this fallback and get an error if the override returns
an empty list. If the override returns a single choice, it’s guaranteed to be used.

IAlgorithmSelector::reportAlgorithms

The override reportAlgorithms can be used to record the final choices made by TensorRT
for each layer. TensorRT invokes reportAlgorithms after all calls to selectAlgorithms,
for a given optimization profile. To replay choices from an earlier build in a later build, make
method selectAlgorithms return the same choices that method reportAlgorithms
reported for the earlier build, as described in the Determinism And Reproducibility In The
Builder section.

Note:

‣ The notion of a “layer” in Algorithm Selection is different from ILayer in
INetworkDefinition. The “layer” in the former can be equivalent to a conglomeration of
multiple ILayer due to fusion optimizations.

‣ Picking the fastest algorithm in selectAlgorithms cannot get the best performance
for the overall network. TensorRT optimizes for minimum timing of the whole network,
possibly departing from locally greedy choices in exchange for less reformatting overhead.

‣ The timing of an IAlgorithm is 0 in selectAlgorithms if TensorRT found that layer to be
a no-op.

‣ Method reportAlgorithms doesn’t provide timing and workspace requirements of an
IAlgorithm. Method selectAlgorithms can be used to query that information.

‣ The sequence of IAlgorithmContext and IAlgorithm, as well as the timing for each
IAlgorithm, cannot be the same for each build.
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2.8.1.  Determinism And Reproducibility In The
Builder

The default behavior of TensorRT is to choose layer implementations that globally minimize
the execution time of the engine.

Trial execution times for an algorithm are almost never identical; however, if two algorithms
have similar timings, the same algorithm cannot turn out to be faster every time. As a
consequence, the algorithm selected by TensorRT can be different for every build, even if the
network and build config is unchanged.

However, Algorithm Selection API can be used to build TensorRT engines
deterministically. For more information, refer to Algorithm Selection. The method
IAlgorithmSelector::selectAlgorithms lets you select the algorithm for a layer from a
list of choices. By always returning the same choice, you can force deterministic choice for
that layer.

IAlgorithmSelector also lets you reproduce the same implementations.
IAlgorithmSelector::reportAlgorithms can be used to cache the algorithm choices
made by TensorRT, based on the default behavior or rule set by selectAlgorithms.
selectAlgorithms can then be used to choose the algorithms recorded in this cache. If you
return the same algorithm choice for each combination of layerName, implementation, tactic,
and input/output formats, then you'll always get the same engine.

Class sampleAlgorithmSelector demonstrates how to use the algorithm selector to achieve
determinism and reproducibility in the builder.
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Chapter 3. Using The Python API

The following sections highlight the NVIDIA® TensorRT™ user goals and tasks that you can
perform using the Python API.

These sections focus on using the Python API without any frameworks. Further details are
provided in the Samples Support Guide.

The assumption is that you are starting with a trained model. This chapter covers the following
necessary steps in using TensorRT:

‣ Creating a TensorRT network definition from your model

‣ Invoking the TensorRT builder to create an optimized runtime engine from the network

‣ Serializing and deserializing the engine so that it can be rapidly recreated at runtime

‣ Feeding the engine with data to perform inference

Python API vs. C++ API

In essence, the C++ API and the Python API should be close to identical in supporting your
needs. The main benefit of the Python API is that data preprocessing and postprocessing are
easy to use because you’re able to use a variety of libraries like NumPy and SciPy.

The C++ API should be used in situations where safety is important, for example, in
automotive. For more information about the C++ API, refer to Using The C++ API.

For more information about how to optimize performance using Python, refer to How Do I
Optimize My Python Performance? from the TensorRT Best Practices guide.

3.1.  Importing TensorRT Into Python

Procedure

 1. Import TensorRT:
import tensorrt as trt

 2. Implement a logging interface through which TensorRT reports errors, warnings, and
informational messages. The following code shows how to implement the logging
interface. In this case, we have suppressed informational messages and report only
warnings and errors. There is a simple logger included in the TensorRT Python bindings.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-python
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-python
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TRT_LOGGER = trt.Logger(trt.Logger.WARNING)

3.2.  Creating A Network Definition In
Python

The first step in performing inference with TensorRT is to create a TensorRT network from
your model.

The easiest way to achieve this is to import the model using the TensorRT parser library (refer
to Importing A Model Using A Parser In Python and Importing From ONNX Using Python),
which supports serialized models in ONNX releases up to ONNX 1.6, and ONNX opsets 7 to 11.

An alternative is to define the model directly using the TensorRT Network API, (refer to
Creating A Network Definition From Scratch Using The Python API). This requires you to make
a small number of API calls to define each layer in the network graph and to implement your
own import mechanism for the model’s trained parameters.

Note: The TensorRT Python API is not available for all platforms. For more information, refer to
TensorRT Support Matrix.

3.2.1.  Creating A Network Definition From Scratch
Using The Python API

When creating a network, you must first define the engine and create a builder object for
inference. The Python API is used to create a network and engine from the Network APIs. The
network definition reference is used to add various layers to the network.

About this task

For more information about using the Python API to create a network and engine, refer to the
"Hello World" For TensorRT Using PyTorch And Python (network_api_pytorch_mnist) sample.

The following code illustrates how to create a simple network with Input, Convolution, Pooling,
FullyConnected, Activation, and SoftMax layers.
# Create the builder and network
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network:
 # Configure the network layers based on the weights provided. In this case, the weights are
 imported from a pytorch model. 
 # Add an input layer. The name is a string, dtype is a TensorRT dtype, and the shape can be
 provided as either a list or tuple.
 input_tensor = network.add_input(name=INPUT_NAME, dtype=trt.float32, shape=INPUT_SHAPE)

 # Add a convolution layer
 conv1_w = weights['conv1.weight'].numpy()
 conv1_b = weights['conv1.bias'].numpy()
 conv1 = network.add_convolution(input=input_tensor, num_output_maps=20, kernel_shape=(5, 5),
 kernel=conv1_w, bias=conv1_b)
 conv1.stride = (1, 1)

 pool1 = network.add_pooling(input=conv1.get_output(0), type=trt.PoolingType.MAX,
 window_size=(2, 2))
 pool1.stride = (2, 2)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#network_api_pytorch_mnist
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 conv2_w = weights['conv2.weight'].numpy()
 conv2_b = weights['conv2.bias'].numpy()
 conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
 conv2.stride = (1, 1)

 pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
 pool2.stride = (2, 2)

 fc1_w = weights['fc1.weight'].numpy()
 fc1_b = weights['fc1.bias'].numpy()
 fc1 = network.add_fully_connected(input=pool2.get_output(0), num_outputs=500, kernel=fc1_w,
 bias=fc1_b)

 relu1 = network.add_activation(fc1.get_output(0), trt.ActivationType.RELU)

 fc2_w = weights['fc2.weight'].numpy()
 fc2_b = weights['fc2.bias'].numpy()
 fc2 = network.add_fully_connected(relu1.get_output(0), OUTPUT_SIZE, fc2_w, fc2_b)

 fc2.get_output(0).name =OUTPUT_NAME
 network.mark_output(fc2.get_output(0))

3.2.2.  Importing A Model Using A Parser In Python
To import a model using a parser, perform the following high-level steps:

 1. Create the TensorRT builder and network.
 2. Create the TensorRT parser for the specific format.
 3. Use the parser to parse the imported model and populate the network.

For step-by-step instructions, refer to Importing From ONNX Using Python.

The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs. For more
information, refer to the ONNX Parser API.

3.2.3.  Importing From ONNX Using Python
The following steps illustrate how to import an ONNX model directly using the OnnxParser and
the Python API.

About this task

For more information, refer to the Introduction To Importing TensorFlow And ONNX Models
Into TensorRT Using Python (introductory_parser_samples) sample.

Note:

In general, the newer version of the OnnxParser is designed to be backward compatible;
therefore, encountering a model file produced by an earlier version of the ONNX exporter
should not cause a problem. There could be some exceptions when the changes were not
backward compatible. In this case, convert the earlier ONNX model file into a later supported
version. For more information on this subject, refer to ONNX Model Opset Version Converter.

It is also possible that the user model was generated by an exporting tool supporting later
opsets than supported by the ONNX parser shipped with TensorRT. In this case, check whether

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Core/Builder.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Onnx/pyOnnx.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples
https://github.com/onnx/onnx/blob/master/docs/OpsetVersionConverter.md
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the latest version of TensorRT released to GitHub, onnx-tensorrt, supports the required
version. For more information, refer to the Object Detection With The ONNX TensorRT Backend
In Python (yolov3_onnx) sample.

The supported version is defined by the BACKEND_OPSET_VERSION variable in
onnx_trt_backend.cpp. Download and build the latest version of ONNX TensorRT Parser
from GitHub. The instructions for building can be found here: TensorRT backend for ONNX.

Since TensorRT 7.0, the ONNX parser only supports full-dimensions mode, meaning that your
network definition must be created with the explicitBatch flag set. For more information,
refer to Working With Dynamic Shapes.

Procedure

 1. Import TensorRT:
import tensorrt as trt

 2. Create the builder, network, and parser:
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as
 network, trt.OnnxParser(network, TRT_LOGGER) as parser:
with open(model_path, 'rb') as model:
if not parser.parse(model.read()):
    for error in range(parser.num_errors):
        print(parser.get_error(error))

3.2.4.  Importing From PyTorch And Other
Frameworks

About this task

Using TensorRT with PyTorch (or any other framework with NumPy compatible weights)
involves replicating the network architecture using the TensorRT API (refer to Creating A
Network Definition From Scratch Using The Python API), and then copying the weights from
PyTorch. For more information, refer to Working With PyTorch And Other Frameworks.

To perform inference, follow the instructions outlined in the Performing Inference In Python.

3.3.  Building An Engine In Python
One of the functions of the builder is to search through its catalog of CUDA kernels for the
fastest implementation available, and thus it is necessary to use the same GPU for building
like that on which the optimized engine runs.

About this task

The IBuilderConfig has many properties that you can set in order to control such things as
the precision at which the network should run, and autotuning parameters such as how many

https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#yolov3_onnx
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#yolov3_onnx
https://github.com/onnx/onnx-tensorrt/blob/master/onnx_trt_backend.cpp
https://github.com/onnx/onnx-tensorrt/blob/master/README.md
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
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times TensorRT should time each kernel when ascertaining which is fastest (more iterations
lead to longer runtimes, but less susceptibility to noise.) You can also query the builder to find
out what mixed-precision types are natively supported by the hardware.

One particularly important property is the maximum workspace size. Layer algorithms often
require a temporary workspace. This parameter limits the maximum size that any layer in the
network can use. If an insufficient scratch is provided, it is possible that TensorRT cannot be
able to find an implementation for a given layer.

For more information about building an engine in Python, refer to the Introduction
To Importing TensorFlow And ONNX Models Into TensorRT Using Python
(introductory_parser_samples) sample.

Procedure

 1. Build the engine using the builder object:

with trt.Builder(TRT_LOGGER) as builder, builder.create_builder_config() as config:
    config.max_workspace_size = 1 << 20 # This determines the amount of memory available
 to the builder when building an optimized engine and should generally be set as high as
 possible.
    with builder.build_engine(network, config) as engine:

# Do inference here.

When the engine is built, TensorRT makes copies of the weights.
 2. Perform inference. To perform inference, follow the instructions outlined in the

Performing Inference In Python.

3.4.  Serializing A Model In Python
You can serialize the engine or you can use the engine directly for inference. Serializing and
deserializing a model is an optional step before using it for inference - if desirable, the engine
object can be used for inference directly.

About this task

When you serialize, you are transforming the engine into a format to store and use at a later
time for inference. To use for inference, you would simply deserialize the engine. Serializing
and deserializing are optional. Since creating an engine from the Network Definition can be
time-consuming, you could avoid rebuilding the engine every time the application reruns by
serializing it once and deserializing it while inferencing. Therefore, after the engine is built,
users typically want to serialize it for later use.

Note: Serialized engines are not portable across platforms or TensorRT versions. Engines
are specific to the exact GPU model they were built on (in addition to the platforms and the
TensorRT version).

 1. Serialize the model to a modelstream:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples
https://en.wikipedia.org/wiki/Serialization
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serialized_engine = engine.serialize()

 2. Deserialize modelstream to perform inference. Deserializing requires creation of a
runtime object:
with trt.Runtime(TRT_LOGGER) as runtime:    engine =
 runtime.deserialize_cuda_engine(serialized_engine)

It is also possible to save a serialized engine to a file and read it back from the file:

 1. Serialize the engine and write to a file:
with open(“sample.engine”, “wb”) as f:
  f.write(engine.serialize())

 2. Read the engine from the file and deserialize:
with open(“sample.engine”, “rb”) as f, trt.Runtime(TRT_LOGGER) as runtime:
  engine = runtime.deserialize_cuda_engine(f.read())

3.5.  Performing Inference In Python
The following steps illustrate how to perform inference in Python, now that you have an
engine.

Procedure

 1. Allocate some host and device buffers for inputs and outputs. This example assumes that
context.all_binding_dimensions == True and that the engine has a single input at
binding_index=0 and a single output at binding_index=1:
# Determine dimensions and create page-locked memory buffers (i.e. won't be swapped to
 disk) to hold host inputs/outputs.
  h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)),
 dtype=np.float32)
  h_output = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)),
 dtype=np.float32)
  # Allocate device memory for inputs and outputs.
  d_input = cuda.mem_alloc(h_input.nbytes)
  d_output = cuda.mem_alloc(h_output.nbytes)
  # Create a stream in which to copy inputs/outputs and run inference.
  stream = cuda.Stream()

 2. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are held
in an execution context:
with engine.create_execution_context() as context:
  # Transfer input data to the GPU.
  cuda.memcpy_htod_async(d_input, h_input, stream)
  # Run inference.
  context.execute_async_v2(bindings=[int(d_input), int(d_output)],
 stream_handle=stream.handle)
  # Transfer predictions back from the GPU.
  cuda.memcpy_dtoh_async(h_output, d_output, stream)
  # Synchronize the stream
  stream.synchronize()
  # Return the host output. 
return h_output

An engine can have multiple execution contexts, allowing one set of weights to be used
for multiple overlapping inference tasks. For example, you can process images in parallel

https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html
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CUDA streams using one engine and one context per stream. Each context is created on
the same GPU as the engine.
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Chapter 4. Extending TensorRT With
Custom Layers

NVIDIA® TensorRT™ supports many types of layers and its functionality is continually extended;
however, there can be cases in which the layers supported do not cater to the specific needs of
a model.

In this case, users can extend TensorRT functionalities by implementing custom layers using
the IPluginV2Ext class for the C++ and Python API. Custom layers, often referred to as
plugins, are implemented and instantiated by an application, and their lifetime must span their
use within a TensorRT engine.

4.1.  Adding Custom Layers Using The C++
API

A custom layer is implemented by extending the class IPluginCreator and one of
TensorRT’s base classes for plugins.

IPluginCreator is a creator class for custom layers using which users can get plugin name,
version, and plugin field parameters. It also provides methods to create the plugin object
during the network build phase and deserialize it during inference.

You must derive your plugin class from one of the base classes for plugins. They have varying
expressive power with respect to supporting inputs/outputs with different types/formats or
networks with dynamic shapes. The following table summarizes the base classes, ordered
from least expressive to most expressive.

Table 1. Base classes, ordered from least expressive to most expressive

Introduced in
TensorRT version?

Mixed input/output
formats/types Dynamic shapes?

IPluginV2Ext 5.1 Limited No

IPluginV2IOExt 6.0.1 General No

IPluginV2DynamicExt 6.0.1 General Yes

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2Ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_creator.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_i_o_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_dynamic_ext.html
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All of these base classes include versioning support and help enable custom layers that
support other data formats besides NCHW and single precision.

Note: If using either IPluginV2Ext, IPluginV2IOExt, or IPluginV2DynamicExt, you should
always provide an FP32 implementation of the plugin in order to allow the plugin to properly
operate with any network.

Note: In versions of TensorRT prior to 6.0.1, you derived custom layers from IPluginV2 or
IPluginV2Ext. While these APIs are still supported, we highly encourage you to move to
IPluginV2IOExt or IPluginV2DynamicExt to be able to use all the new plugin functionalities.

TensorRT also provides the ability to register a plugin by calling
REGISTER_TENSORRT_PLUGIN(pluginCreator) that statically registers the Plugin Creator
to the Plugin Registry. During runtime, the Plugin Registry can be queried using the external
function getPluginRegistry(). The Plugin Registry stores a pointer to all the registered
Plugin Creators and can be used to look up a specific Plugin Creator based on the plugin
name and version. TensorRT library contains plugins that can be loaded into your application.
The version of all these plugins is set to 1. For a list of our open-sourced plugins, refer to
GitHub: TensorRT plugins.

Note: To use TensorRT registered plugins in your application, the libnvinfer_plugin.so
library must be loaded, and all plugins must be registered. This can be done by calling
initLibNvInferPlugins(void* logger, const char* libNamespace)() in your
application code.

Note: If you have your own plugin library, you can include a similar entry point to register all
plugins in the registry under a unique namespace. This ensures there are no plugin name
collisions during build time across different plugin libraries.

For more information about these plugins, refer to the NvInferPlugin.h file for reference.

Using the Plugin Creator, the IPluginCreator::createPlugin() function can be called and
returns a plugin object of type IPluginV2. This object can be added to the TensorRT network
using addPluginV2() that creates and adds a layer to a network and then binds the layer to
the given plugin. The method also returns a pointer to the layer (of type IPluginV2Layer),
which can be used to access the layer or the plugin itself (via getPlugin()).

For example, to add a plugin layer to your network with plugin name set to pluginName and
version set to pluginVersion, you can issue the following:
//Use the extern function getPluginRegistry to access the global TensorRT Plugin Registry
auto creator = getPluginRegistry()->getPluginCreator(pluginName, pluginVersion);
const PluginFieldCollection* pluginFC = creator->getFieldNames();
//populate the field parameters (say layerFields) for the plugin layer 
PluginFieldCollection *pluginData = parseAndFillFields(pluginFC, layerFields); 
//create the plugin object using the layerName and the plugin meta data
IPluginV2 *pluginObj = creator->createPlugin(layerName, pluginData);
//add the plugin to the TensorRT network using the network API
auto layer = network.addPluginV2(&inputs[0], int(inputs.size()), pluginObj);
… (build rest of the network and serialize engine)
pluginObj->destroy() // Destroy the plugin object
… (destroy network, engine, builder)

https://github.com/NVIDIA/TensorRT/tree/master/plugin#tensorrt-plugins
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/_nv_infer_plugin_8h.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0c6e2a0b4e1c8a4df1722a24cc7c0473
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… (free allocated pluginData)

Note: pluginData should allocate the PluginField entries on the heap before passing to
createPlugin.

Note: The createPlugin method described previously creates a new plugin object on the heap
and returns a pointer to it. Ensure you destroy the pluginObj, as shown previously, to avoid a
memory leak.

During serialization, the TensorRT engine internally stores the plugin type, plugin version, and
namespace (if it exists) for all IPluginV2 type plugins. During deserialization, this information
is looked up by the TensorRT engine to find the Plugin Creator from the Plugin Registry. This
enables the TensorRT engine to internally call the IPluginCreator::deserializePlugin()
method. The plugin object created during deserialization is destroyed internally by the
TensorRT engine by calling IPluginV2::destroy() method.

In previous versions of TensorRT, you had to implement the nvinfer1::IPluginFactory
class to call the createPlugin method during deserialization. IPlugin and IPluginFactory
interfaces are no longer supported starting in TensorRT 8.0 and are replaced by IPluginV2
interface.

4.1.1.  Example: Adding A Custom Layer With
Dynamic Shape Support Using C++

To support dynamic shapes, your plugin must be derived from IPluginV2DynamicExt.

About this task

BarPlugin is a plugin with two inputs and two outputs where:

‣ The first output is a copy of the second input

‣ The second output is the concatenation of both inputs, along the first dimension, and all
types/formats must be the same and be linear formats

BarPlugin needs to be derived as follows:
class BarPlugin : public IPluginV2DynamicExt
{
 ...override virtual methods inherited from IPluginV2DynamicExt.
};

The inherited methods are all pure virtual methods, so the compiler reminds you if you forget
one.

The four methods that are affected by dynamic shapes are:

‣ getOutputDimensions

‣ supportsFormatCombination

‣ configurePlugin

‣ enqueue
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The override for getOutputDimensions returns symbolic expressions for the output
dimensions in terms of the input dimensions. Build the expressions from the expressions for
the inputs, using the IExprBuilder passed into getOutputDimensions. In the example, the
dimensions of the second output are the same as the dimensions of the first input, so no new
expression has to be built for case 1.
DimsExprs BarPlugin::getOutputDimensions(int outputIndex, 
    const DimsExprs* inputs, int nbInputs, 
    IExprBuilder& exprBuilder)
{
    switch (outputIndex)
    {
    case 0: 
    {
        // First dimension of output is sum of input 
        // first dimensions.
        DimsExprs output(inputs[0]);
        output.d[0] = 
            exprBuilder.operation(DimensionOperation::kSUM, 
                inputs[0].d[0], inputs[1].d[0]);
    return output;
    }
    case 1:
        return inputs[0];
    default:
         throw std::invalid_argument(“invalid output”);
}

The override for supportsFormatCombination must indicate whether a format combination
is allowed. The interface indexes the inputs/outputs uniformly as “connections”, starting at 0
for the first input, then the rest of the inputs in order, followed by numbering the outputs. In
the example, the inputs are connections 0 and 1, and the outputs are connections 2 and 3.

TensorRT uses supportsFormatCombination to ask whether a given combination of formats/
types are okay for a connection, given formats/types for lesser indexed connections. So the
override can assume that lesser indexed connections have already been vetted and focus on
the connection with index pos.
bool BarPlugin::supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int
 nbInputs, int nbOutputs) override
{
    assert(0 <= pos && pos < 4);
    const auto* in = inOut;
    const auto* out = inOut + nbInputs;
    switch (pos)
    {
    case 0: in[0].format == TensorFormat::kLINEAR;
    case 1: return in[1].type == in[0].type &&
                   in[0].format == TensorFormat::kLINEAR;
    case 2: return out[0].type == in[0].type &&
                   out[0].format == TensorFormat::kLINEAR;
    case 3: return out[1].type == in[0].type &&
                   out[1].format == TensorFormat::kLINEAR;
    }
    throw std::invalid_argument(“invalid connection number”);
}
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The local variables in and out here allow inspecting inOut by input or output number instead
of connection number.

Important: The override inspects the format/type for a connection with an index less than pos,
but must never inspect the format/type for a connection with an index greater than pos. The
example uses case 3 to check connection 3 against connection 0, and not use case 0 to check
connection 0 against connection 3.

TensorRT uses configurePlugin to set up a plugin at runtime. Our plugin doesn’t need
configurePlugin to do anything, so it’s a no-op:
void BarPlugin::configurePlugin(
    const DynamicPluginTensorDesc* in, int nbInputs, 
    const DynamicPluginTensorDesc* out, int nbOutputs) override
{
}

If the plugin needed to know the minimum or maximum dimensions it might encounter, it can
inspect the field DynamicPluginTensorDesc::min or DynamicPluginTensorDesc::max
for any input or output. Format and build-time dimension information can be found in
DynamicPluginTensorDesc::desc. Any runtime dimensions appear as -1. The actual
dimension is supplied to BarPlugin::enqueue.

Finally, the override BarPlugin::enqueue has to do the work. Since shapes are dynamic,
enqueue is handed a PluginTensorDesc that describes the actual dimensions, type, and
format of each input and output.

4.1.2.  Example: Adding A Custom Layer With INT8 I/
O Support Using C++

To support INT8 I/O, your plugin can be derived from either IPluginV2IOExt or
IPluginV2DynamicExt.

The general steps are similar to Example: Adding A Custom Layer With Dynamic Shape
Support Using C++, therefore the repeated parts (registry) are not repeated here.

PoolPlugin is a plugin to demonstrate how to extend INT8 I/O for the custom pooling layer.
The derivation is as follows:
class PoolPlugin : public IPluginV2IOExt
{
    ...override virtual methods inherited from IPluginV2IOExt.
};

Most of the pure virtual methods are common to plugins. The main methods that affect INT8 I/
O are:

‣ supportsFormatCombination

‣ configurePlugin

‣ enqueue

The override for supportsFormatCombination must indicate which INT8 I/O combination is
allowed. The usage of this interface is similar to Adding A Custom Layer With Dynamic Shape

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#overview
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Support Using C++. In this example, the supported I/O tensor format is linear CHW while INT32
is excluded, but the I/O tensor must have the same data type.
bool PoolPlugin::supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int
 nbInputs, int nbOutputs) const override
{
    assert(nbInputs == 1 && nbOutputs == 1 && pos < nbInputs + nbOutputs);
    bool condition = inOut[pos].format == TensorFormat::kLINEAR;
    condition &= inOut[pos].type != DataType::kINT32;
    condition &= inOut[pos].type == inOut[0].type;
    return condition;
}

Important:

‣ If INT8 auto-calibration must be used with a network with INT8 I/O plugins, the FP32 I/O
variant should be supported by the plugin as it is used by the FP32 calibration graph.

‣ If the FP32 I/O variant is not supported or INT8 auto-calibration is not used, all required
INT8 I/O tensors scales should be set explicitly.

‣ Auto-calibration won't generate a dynamic range for the plugin internal tensors. INT8 I/O
plugins should calculate their own per-tensor dynamic range for internal tensors for the
purpose of quantization or dequantization.

TensorRT invokes configurePlugin method to pass the information to the plugin through
PluginTensorDesc, which are stored as member variables, serialized and deserialized.
void PoolPlugin::configurePlugin(const PluginTensorDesc* in, int nbInput, const
 PluginTensorDesc* out, int nbOutput)
{
    ...
    mPoolingParams.mC = mInputDims.d[0];
    mPoolingParams.mH = mInputDims.d[1];
    mPoolingParams.mW = mInputDims.d[2];
    mPoolingParams.mP = mOutputDims.d[1];
    mPoolingParams.mQ = mOutputDims.d[2];
    mInHostScale = in[0].scale >= 0.0f ? in[0].scale : -1.0f;
    mOutHostScale = out[0].scale >= 0.0f ? out[0].scale : -1.0f;
}

Where INT8 I/O scales per tensor can be obtained from PluginTensorDesc::scale.

Finally, the override UffPoolPluginV2::enqueue has to do the work. It includes a collection
of core algorithms to execute the custom layer at runtime by using the actual batch size,
inputs, outputs, cuDNN stream, and the information configured.
int PoolPlugin::enqueue(int batchSize, const void* const* inputs, void** outputs, void*
 workspace, cudaStream_t stream)
{
    ...
    CHECK(cudnnPoolingForward(mCudnn, mPoolingDesc, &kONE, mSrcDescriptor, input, &kZERO,
 mDstDescriptor, output));
    ...
    return 0;
}

4.1.3.  Example: Implementing A GELU Operator
Using The C++ API

To implement a GELU operator, we need to add a group of ElementWise and Unary layers in
the network.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#overview
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The GELU equation is:
 

 1. Prepare the constant value:
const float f3 = 3.0f;
const float x3Coeff = 0.044715f;
const float sqrt2OverPi = 0.7978846f;
const float f1 = 1.0f;
const float f05 = 0.5f;

 2. Implement the GELU operator:
auto dim = nvinfer1::Dims3{1, 1, 1};
// y = x ^ 3
auto c3 = network->addConstant(dim, Weights{DataType::kFLOAT, &f3, 1});
auto pow1 = network->addElementWise(*x->getOutput(0), *c3->getOutput(0),
 ElementWiseOperation::kPOW);
// y = y * 0.044715f
auto cX3Coeff = network->addConstant(dim, Weights{DataType::kFLOAT, &x3Coeff, 1});
auto mul1 = network->addElementWise(
    *pow1->getOutput(0), *cX3Coeff->getOutput(0), ElementWiseOperation::kPROD);
// y = y + x
auto add1 = network->addElementWise(*mul1->getOutput(0), *x->getOutput(0),
 ElementWiseOperation::kSUM);
// y = y * 0.7978846f
auto cSqrt2OverPi = network->addConstant(dim, Weights{DataType::kFLOAT, &sqrt2OverPi,
 1});
auto mul2 = network->addElementWise(*add1->getOutput(0), *cSqrt2OverPi->getOutput(0),
 ElementWiseOperation::kPROD);
// y = tanh(y)
auto tanh1 = network->addActivation(*mul2->getOutput(0), ActivationType::kTANH);
// y = y + 1
auto c1 = network->addConstant(dim, Weights{DataType::kFLOAT, &f1, 1});
auto add2 = network->addElementWise(*tanh1->getOutput(0), *c1->getOutput(0),
 ElementWiseOperation::kSUM);
// y = y * 0.5
auto c05 = network->addConstant(dim, Weights{DataType::kFLOAT, &f05, 1});
auto mul3 = network->addElementWise(*add2->getOutput(0), *c05->getOutput(0),
 ElementWiseOperation::kPROD);
// y = y * x
auto y = network->addElementWise(*mul3->getOutput(0), *x->getOutput(0),
 ElementWiseOperation::kPROD);

Note: Considering that GELU is not a linear function, set the precision of every layer to FP32
when the network is set to run in INT8 mode.

For more information about layer fusion related to GELU, see the TensorRT Best Practices
Guide.

4.2.  Adding Custom Layers Using The
Python API

Although the C++ API is the preferred language to implement custom layers, due to accessing
libraries like CUDA and cuDNN, you can also work with custom layers in Python applications.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#fusion-types
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#fusion-types
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You can use the C++ API to create a custom layer, package the layer using pybind11 in
Python, then load the plugin into a Python application. For more information, refer to Creating
A Network Definition In Python.

The same custom layer implementation can be used for both C++ and Python.

4.2.1.  Example: Adding A Custom Layer To A
TensorRT Network Using Python

Custom layers can be added to any TensorRT network in Python using plugin nodes.

The Python API has a function called add_plugin_v2 that enables you to add a plugin node to
a network. The following example illustrates this. It creates a simple TensorRT network and
adds a Leaky ReLU plugin node by looking up TensorRT Plugin Registry.
import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger()

trt.init_libnvinfer_plugins(TRT_LOGGER, '')
PLUGIN_CREATORS = trt.get_plugin_registry().plugin_creator_list

def get_trt_plugin(plugin_name):
        plugin = None
        for plugin_creator in PLUGIN_CREATORS:
            if plugin_creator.name == plugin_name:
                lrelu_slope_field = trt.PluginField("neg_slope", np.array([0.1],
 dtype=np.float32), trt.PluginFieldType.FLOAT32)
                field_collection = trt.PluginFieldCollection([lrelu_slope_field])
                plugin = plugin_creator.create_plugin(name=plugin_name,
 field_collection=field_collection)
        return plugin

def main():
    builder = trt.Builder(TRT_LOGGER) 
    network = builder.create_network()
    config = builder.create_builder_config()
    config.max_workspace_size = 2**20
    input_layer = network.add_input(name="input_layer", dtype=trt.float32, shape=(1, 1))
    lrelu = network.add_plugin_v2(inputs=[input_layer], plugin=get_trt_plugin("LReLU_TRT"))
    lrelu.get_output(0).name = "outputs"
    network.mark_output(lrelu.get_output(0))

4.3.  Using Custom Layers When
Importing A Model With A Parser

The ONNX parser automatically attempts to import unrecognized nodes as plugins. If a plugin
with the same op_type as the node is found in the plugin registry, the parser forwards the
attributes of the node to the plugin creator as plugin field parameters in order to create the
plugin. By default, the parser uses “1” as the plugin version and “” as the plugin namespace.
This behavior can be overridden by setting a plugin_version and/or plugin_namespace
string attribute in the corresponding ONNX node.

In some cases, you might want to modify an ONNX graph prior to importing it into TensorRT.
For example, to replace a set of ops with a plugin node. To accomplish this, you can use the

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_plugin_v2
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ONNX GraphSurgeon utility. For details on how to use ONNX-GraphSurgeon to replace a
subgraph, refer to this example.

For more examples, refer to the TensorRT Inference Of ONNX Models With Custom Layers
(onnx_packnet) sample.

4.4.  Plugin API Description
All new plugins should derive classes from both IPluginCreator and one of the plugin
base classes described in Adding Custom Layers Using The C++ API. In addition, new
plugins should also call the REGISTER_TENSORRT_PLUGIN(...) macro to register
the plugin with the TensorRT Plugin Registry or create an init function equivalent to
initLibNvInferPlugins().

4.4.1.  Migrating Plugins From TensorRT 6.x Or 7.x
To TensorRT 8.x.x

While IPluginV2 and IPluginV2Ext interfaces are still supported for backward compatibility
with TensorRT 5.1 and 6.0.x respectively, however, we recommend that you write new plugins
or refactor existing ones to target the IPluginV2DynamicExt or IPluginV2IOExt interfaces
instead.

IPlugin and IPluginFactory interfaces were deprecated in TensorRT 6.0 and have been
removed in TensorRT 8.0. In order to use the most recent Plugin layer features, your custom
plugin should implement the IPluginV2DynamicExt or IPluginV2IOExt interface.

The new features in IPluginV2DynamicExt are as follows:
virtual DimsExprs getOutputDimensions(int outputIndex, const DimsExprs* inputs, int nbInputs,
 IExprBuilder& exprBuilder) = 0;

virtual bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs,
 int nbOutputs) = 0;

virtual void configurePlugin(const DynamicPluginTensorDesc* in, int nbInputs, const
 DynamicPluginTensorDesc* out, int nbOutputs) = 0;

virtual size_t getWorkspaceSize(const PluginTensorDesc* inputs, int nbInputs, const
 PluginTensorDesc* outputs, int nbOutputs) const = 0;

virtual int enqueue(const PluginTensorDesc* inputDesc, const PluginTensorDesc* outputDesc,
 const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) = 0;

The new features in IPluginV2IOExt are as follows:
virtual void configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc*
 out, int nbOutput) = 0;

virtual bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs,
 int nbOutputs) const = 0;

Guidelines for migration to IPluginV2DynamicExt or IPluginV2IOExt:

‣ getOutputDimensions implements the expression for output tensor dimensions given the
inputs.

https://github.com/NVIDIA/TensorRT/tree/master/tools/onnx-graphsurgeon
https://github.com/NVIDIA/TensorRT/tree/master/tools/onnx-graphsurgeon/examples/08_replacing_a_subgraph
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#onnx_packnet
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#onnx_packnet
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‣ supportsFormatCombination checks if the plugin supports the format and datatype for
the specified input/output.

‣ configurePlugin mimics the behavior of equivalent configurePlugin in IPluginV2Ext
but accepts tensor descriptors.

‣ getWorkspaceSize and enqueue mimic the behavior of equivalent APIs in IPluginV2Ext
but accept tensor descriptors.

Refer to the API description in IPluginV2 API Description for more details about the API.

4.4.2.  IPluginV2 API Description
The following section describes the functions of the IPluginV2 class. To connect a plugin
layer to neighboring layers and set up input and output data structures, the builder checks for
the number of outputs and their dimensions by calling the following plugins methods.

getNbOutputs

Used to specify the number of output tensors.
getOutputDimensions

Used to specify the dimensions of output as a function of the input dimensions.
supportsFormat

Used to check if a plugin supports a given data format.
getOutputDataType

Used to get the data type of the output at a given index. The returned data type must have a
format that is supported by the plugin.

Plugin layers can support four data formats and layouts, for example:

‣ NCHW single (FP32), half-precision (FP16), and integer (INT32) tensors

‣ NC/2HW2 and NHWC8 half-precision (FP16) tensors

The formats are enumerated by PluginFormatType.

Plugins that do not compute all data in place and need memory space in addition to input and
output tensors can specify the additional memory requirements with the getWorkspaceSize
method, which is called by the builder to determine and pre-allocate scratch space.

During both build and inference time, the plugin layer is configured and executed, possibly
multiple times. At build time, to discover optimal configurations, the layer is configured,
initialized, executed, and terminated. After the optimal format is selected for a plugin, the
plugin is once again configured, then it is initialized once and executed as many times as
needed for the lifetime of the inference application, and finally terminated when the engine is
destroyed. These steps are controlled by the builder and the engine using the following plugin
methods:
configurePlugin

Communicates the number of inputs and outputs, dimensions and datatypes of all inputs
and outputs, broadcast information for all inputs and outputs, the chosen plugin format,
and maximum batch size. At this point, the plugin sets up its internal state and selects the
most appropriate algorithm and data structures for the given configuration.
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initialize

The configuration is known at this time, and the inference engine is being created, so the
plugin can set up its internal data structures and prepare for execution.

enqueue

Encapsulates the actual algorithm and kernel calls of the plugin and provides the runtime
batch size, pointers to input, output, and scratch space, and the CUDA stream to be used
for kernel execution.

terminate

The engine context is destroyed, and all the resources held by the plugin should be
released.

clone

This is called every time a new builder, network, or engine is created that includes this
plugin layer. It should return a new plugin object with the correct parameters.

destroy

Used to destroy the plugin object and/or other memory allocated each time a new plugin
object is created. It is called whenever the builder or network or engine is destroyed.

set/getPluginNamespace

This method is used to set the library namespace that this plugin object belongs to
(default can be ""). All plugin objects from the same plugin library should have the same
namespace.

IPluginV2Ext supports plugins that can handle broadcast inputs and outputs. The following
methods need to be implemented for this feature:
canBroadcastInputAcrossBatch

This method is called for each input whose tensor is semantically broadcast across a
batch. If canBroadcastInputAcrossBatch returns true (meaning the plugin can support
broadcast), TensorRT does not replicate the input tensor. There is a single copy that the
plugin should share across the batch. If it returns false, TensorRT replicates the input
tensor so that it appears like a non-broadcasted tensor.

isOutputBroadcastAcrossBatch

This is called for each output index. The plugin should return true the output at the given
index and is broadcast across the batch.

IPluginV2IOExt

This is called by the builder prior to initialize(). It provides an opportunity for the layer
to make algorithm choices on the basis of I/O PluginTensorDesc and the maximum batch
size.

4.4.3.  IPluginCreator API Description
The following methods in the IPluginCreator class are used to find and create the
appropriate plugin from the Plugin Registry.
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getPluginName

This returns the plugin name and should match the return value of
IPluginExt::getPluginType.

getPluginVersion

Returns the plugin version. For all internal TensorRT plugins, this defaults to 1.
getFieldNames

To successfully create a plugin, it is necessary to know all the field parameters of the
plugin. This method returns the PluginFieldCollection struct with the PluginField
entries populated to reflect the field name and PluginFieldType (the data should point to
nullptr).

createPlugin

This method is used to create the plugin using the PluginFieldCollection argument.
The data field of the PluginField entries should be populated to point to the actual data
for each plugin field entry.

deserializePlugin

This method is called internally by the TensorRT engine based on the plugin name and
version. It should return the plugin object to be used for inference.

set/getPluginNamespace

This method is used to set the namespace that this creator instance belongs to (default can
be "").

4.4.4.  Persistent LSTM Plugin
The following section describes the new Persistent LSTM plugin. The Persistent LSTM
plugin supports half-precision persistent LSTM. To create a Persistent LSTM plugin in the
network, you need to call:
auto creator = getPluginRegistry()->getPluginCreator("CgPersistentLSTMPlugin_TRT", "1") 

IPluginV2* cgPersistentLSTMPlugin = creator->createPlugin("CgPersistentLSTMPlugin_TRT", &fc);

fc is a PluginField array that consists of four parameters:

‣ hiddenSize: This is an INT32 parameter that specifies the hidden size of LSTM.

‣ numLayers: This is an INT32 parameter that specifies the number of layers in LSTM.

‣ bidirectionFactor: This is an INT32 parameter that indicates whether LSTM is
bidirectional. If LSTM is bidirectional, the value should be set to 2; otherwise, the value is
set to 1.

‣ setInitialStates: This is an INT32 parameter that indicates whether LSTM has initial
state and cell values as inputs. If it is set to 0, the initial state and cell values are zero. It is
recommended to use this flag instead of providing zero state and cell values as inputs for
better performance.

The plugin can be added to the network by calling:
auto lstmLayer = network->addPluginV2(&inputs[0], 6, *cgPersistentLSTMPlugin);

inputs is a vector of ITensor pointers with six elements in the following order:
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 1. input: These are the input sequences to the LSTM.
 2. seqLenTensor: This is the sequence length vector that stores the effective length of each

sequence.
 3. weight: This tensor consists of all weights needed for LSTM. Even though this tensor is

1D, it can be viewed with the following 3D indexing [isW, layerNb, gateType]. isW
starts from false to true suggesting that the first half of weight is recurrent weight and
the second half is input weight. layerNb starts from 0 to numLayers*bidirectionFactor
such that the first layer is the forward direction of the actual layer and the second layer
is the backward direction. The gateType follows this order: input, cell, forget and
output.

 4. bias: Similar to weight, this tensor consists of all biases needed for LSTM. Even though
this tensor is 1D, it can be viewed with the following 3D indexing [layerNb, isW,
gateType]. Notice the slight difference between bias and weight.

 5. initial hidden state: The pointer should be set to null if setInitialStates is 0.
Otherwise, the tensor should consist of the initial hidden state values with the following
coordinates [batch index, layerNb, hidden index]. The batch index indicates the
index within a batch, and the hidden index is the index to vectors of hiddenSize length.

 6. initial cell state: The pointer should be set to null if setInitialStates is 0.
Otherwise, the tensor should consist of the initial hidden state values with the following
coordinates [batch index, layerNb, hidden index].

4.5.  Best Practices For Custom Layers
Plugin

Converting User-Defined Layers

To create a custom layer implementation as a TensorRT plugin, you need to implement the
IPluginV2Ext class and the IPluginCreator class for your plugin.

For more information about both API classes, refer to Plugin API Description.

Debugging Custom Layer Issues

Memory allocated in the plugin must be freed to ensure no memory leak. If resources are
acquired in the initialize() function, they need to be released in the terminate()
function. All other memory allocations should be freed, preferably in the plugin class
destructor or in the destroy() method. Adding Custom Layers Using The C++ API outlines
this in detail and also provides some notes for best practices when using plugins.
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Chapter 5. Working With Mixed
Precision

Mixed precision is the combined use of different numerical precisions in a computational
method. NVIDIA® TensorRT™ can store weights and activations, and execute layers in 32-bit
floating-point, 16-bit floating-point, or quantized 8-bit integer.

Using precision lower than FP32 reduces memory usage, allowing the deployment of larger
networks. Data transfers take less time, and compute performance increases, especially on
GPUs with Tensor Core support for that precision.

By default, TensorRT uses FP32 inference, but it also supports FP16 and INT8. While running
FP16 inference, it automatically converts FP32 weights to FP16 weights.

You can check the supported precision on a platform using the following APIs:
if (builder->platformHasFastFp16()) { … }; 
if (builder->platformHasFastInt8()) { … };

Specifying the precision for a network defines the minimum acceptable precision for the
application. Higher precision kernels can be chosen if they are faster for some particular set
of kernel parameters or if no lower-precision kernel exists. You can set the builder config flag
BuilderFlag::kSTRICT_TYPES to force the network or layer precision, which cannot have
optimal performance. The usage of this flag is only recommended for debugging purposes.

You can also choose to set both INT8 and FP16 mode if the platform supports it. Using both
INT8 and FP16 mode would allow TensorRT to choose from FP32, FP16, and INT8 kernels,
thus resulting in the most optimal engine from inference.

5.1.  Mixed Precision Using The C++ API

5.1.1.  Setting The Layer Precision Using C++
If you want to run certain layers in a specific precision, you can constrain the input and output
types per layer using the following API:
layer->setPrecision(nvinfer1::DataType::kINT8)

This gives the layer’s inputs and outputs a preferred type (here, DataType::kINT8).

The arithmetic precision with which TensorRT runs the layer matches the input types (note
that INT8 means quantized INT8 for this purpose).
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You can choose a different preferred type for an output of a layer using:
layer->setOutputType(out_tensor_index, nvinfer1::DataType::kFLOAT)

Most TensorRT implementations have the same floating-point types for input and output;
however, Convolution, Deconvolution, and FullyConnected can support quantized INT8 input
and unquantized FP16 or FP32 output.

Setting the precision constraints hints that TensorRT should use a layer implementation
whose inputs and outputs match the preferred types, inserting reformat operations if the
outputs of the previous layer and the inputs to the next layer do not match the requested types.

By default, TensorRT chooses such an implementation only if it results in a higher-
performance network. If an implementation with another precision is faster, TensorRT uses it
and issues a warning. You can override this behavior by making the type constraints strict.
IBuilderConfig * config = builder->createBuilderConfig();
config->setFlag(BuilderFlag::kSTRICT_TYPES)

If the constraints are strict, TensorRT obeys them unless there is no implementation with
the preferred precision constraints, in which case it issues a warning and uses the fastest
available implementation.

If there are no precision constraints, TensorRT selects an operator implementation based on
performance considerations and the flags specified to the builder. For more information, refer
to the Hardware And Precision section in the TensorRT Support Matrix.

Refer to Performing Inference In INT8 Precision (sampleINT8API) located in the GitHub
repository for an example of running mixed-precision inference with these APIs.

Note: INT8 should not be used as a type constraint when using explicit quantization. For details
of using mixed precision with explicit quantization, refer to the TensorRT Processing Of Q/DQ
Networks section.

5.1.2.  Enabling TF32 Inference Using C++
TensorRT allows the use of TF32 Tensor Cores by default. When computing inner products,
such as during convolution or matrix multiplication, TF32 execution does the following:

‣ Rounds the FP32 multiplicands to FP16 precision but keeps the FP32 dynamic range.

‣ Computes an exact product of the rounded multiplicands.

‣ Accumulates the products in an FP32 sum.

TF32 Tensor Cores can speed up networks using FP32, typically with no loss of accuracy.
It is more robust than FP16 for models which require a high dynamic range for weights or
activations.

There is no guarantee that TF32 Tensor Cores are actually used, and there’s no way to force
it. TensorRT can fall back to FP32 at any time and always falls back if the platform does not
support TF32. You can check for platform support by querying an IBuilder like this:
bool hasTf32 = builder->platformHasTf32()

To disable TF32, clear the flag BuilderFlag::kTF32 in in your IBuilderConfig, like this:
config->clearFlag(BuilderFlag::kTF32);

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#hardware-precision-matrix
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8API
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If TF32 works for you, we nonetheless Enabling FP16 Inference Using C++ since it can yield
faster execution than TF32.

Setting the environment variable NVIDIA_TF32_OVERRIDE=0 when building an engine disables
the use of TF32, despite setting BuilderFlag::kTF32. This environment variable, when set
to 0, overrides any defaults or programmatic configuration of NVIDIA libraries, so they never
accelerate FP32 computations with TF32 Tensor Cores. This is meant to be a debugging
tool only, and no code outside NVIDIA libraries should change the behavior based on this
environment variable. Any other setting besides 0 is reserved for future use.

WARNING: Setting the environment variable NVIDIA_TF32_OVERRIDE to a different value
when the engine is run can cause unpredictable precision/performance effects. It is best left
unset when an engine is run.

5.1.3.  Enabling FP16 Inference Using C++
Setting the builder’s Fp16Mode flag indicates that 16-bit precision is acceptable.
config->setFlag(BuilderFlag::kFP16);

This flag allows but does not guarantee that 16-bit kernels are used when building the engine.
You can choose to force 16-bit precision by setting the following builder flag:
config->setFlag(BuilderFlag::kSTRICT_TYPES)

Weights can be specified in FP16 or FP32, and are converted automatically to the appropriate
precision for the computation.

Refer to Building And Running GoogleNet In TensorRT (sampleGoogleNet) and "Hello World"
For TensorRT (sampleMNIST) located in the GitHub repository for running FP16 inference.

5.1.4.  Enabling INT8 Inference Using C++
In order to perform INT8 inference, FP32 activation tensors and weights need to be quantized.
In order to represent 32-bit floating point values and INT 8-bit quantized values, TensorRT
needs to understand the dynamic range of each activation tensor. The dynamic range is used
to determine the appropriate quantization scale.

Setting the builder flag enables INT8 precision inference.
config->setFlag(BuilderFlag::kINT8);

For weights, TensorRT supports symmetric quantization with a quantization scale calculated
using absolute maximum dynamic range values.

TensorRT needs the dynamic range for each activation tensor in the network. There are two
ways in which the dynamic-range can be provided to the network:

‣ Manually set the dynamic range for each network tensor using setDynamicRange API

Or

‣ Use INT8 calibration to generate per tensor dynamic range using the calibration dataset.

The dynamic range API can also be used along with INT8 calibration, such that manually
setting the range takes precedence over the calibration generated dynamic range. Such a

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleGoogleNet
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNIST
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNIST
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scenario is possible if INT8 calibration does not generate a satisfactory dynamic range for
certain tensors.

For more information, refer to Performing Inference In INT8 Precision (sampleINT8API)
located in the GitHub repository.

5.1.4.1.  Setting Per-Tensor Dynamic Range Using C++
You can generate per tensor the dynamic range using various techniques. The basic technique
includes recording per tensor the min and max values during the last epoch of training or
using quantization aware training. TensorRT expects you to set the dynamic range for each
network tensor to perform INT8 inference.

After you have the dynamic range of information, you can set the dynamic range as follows:
ITensor* tensor = network->getLayer(layer_index)->getOutput(output_index);
tensor->setDynamicRange(min_float, max_float);

You also need to set the dynamic range for the network input:
ITensor* input_tensor = network->getInput(input_index);
input_tensor->setDynamicRange(min_float, max_float);

One way to achieve this is to iterate through the network layers and tensors and set per
tensor the dynamic range. TensorRT only supports symmetric range currently; therefore, only
abs(min_float) and abs(max_float) is used for quantization. For more information, refer
to Performing Inference In INT8 Precision (sampleINT8API) located in the GitHub repository.

5.1.4.2.  INT8 Calibration Using C++
INT8 calibration provides an alternative to generate a per-tensor dynamic range. Calibrators
compute a scale per tensor. This method can be categorized as a post-training technique to
generate the appropriate quantization scale. The process of determining these scale factors is
called calibration and requires the application to pass batches of representative input for the
network (typical batches from the training set.) Experiments indicate that about 500 images
are sufficient for calibrating ImageNet classification networks.

About this task

To provide calibration data to TensorRT, implement the IInt8Calibrator interface. TensorRT
provides multiple variants of IInt8Calibrator:
IEntropyCalibratorV2

This is the recommended calibrator and is required for DLA. Calibration happens before
Layer fusion by default. This is recommended for CNN-based networks.

IMinMaxCalibrator
This calibrator seems to work better for NLP tasks. Calibration happens before Layer
fusion by default. This is recommended for networks such as NVIDIA BERT (an optimized
version of Google's official implementation).

IEntropyCalibrator
This is the legacy entropy calibrator. This is less complicated than a legacy calibrator
and produces better results. Calibration happens after Layer fusion by default. Refer to
kCALIBRATION_BEFORE_FUSION for enabling calibration before fusion.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8API
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8API
https://github.com/google-research/bert
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ILegacyCalibrator
This calibrator is for compatibility with TensorRT 2.0 EA. This calibrator requires
user parameterization and is provided as a fallback option if the other calibrators
yield poor results. Calibration happens after Layer fusion by default. Refer to
kCALIBRATION_BEFORE_FUSION for enabling calibration before fusion. Users can
customize this calibrator to implement percentile max, like 99.99% percentile max is
proved to have the best accuracy for NVIDIA BERT. For more information, refer to the
Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation
paper.

The builder invokes the calibrator as follows:

‣ First, it calls getBatchSize() to determine the size of the input batch to expect.

‣ Then, it repeatedly calls getBatch() to obtain batches of input. Batches should be exactly
the batch size by getBatchSize(). When there are no more batches, getBatch() should
return false.

Calibration can be slow; therefore, the IInt8Calibrator interface provides methods
for caching intermediate data. Using these methods effectively requires a more detailed
understanding of calibration.

When building an INT8 engine, the builder performs the following steps:

 1. Builds a 32-bit engine, runs it on the calibration set, and records a histogram for each
tensor of the distribution of activation values.

 2. Builds a calibration table from the histograms.

 3. Builds the INT8 engine from the calibration table and the network definition.

The calibration table can be cached. Caching is useful when building the same network
multiple times, for example, on multiple platforms. It captures data derived from the network
and the calibration set. The parameters are recorded in the table. If the network or calibration
set changes, it is the application’s responsibility to invalidate the cache.

The cache is used as follows:

‣ if a calibration table is found, calibration is skipped, otherwise:

‣ the calibration table is built from the histograms and parameters

‣ then the INT8 network is built from the network definition and the calibration table.

Cached data is passed as a pointer and length.

After you have implemented the calibrator, you can configure the builder to use it:
config->setInt8Calibrator(calibrator.get());

It is possible to cache the output of calibration using the writeCalibrationCache() and
readCalibrationCache() methods. The builder checks the cache prior to performing
calibration, and if data is found, calibration is skipped.

https://arxiv.org/abs/2004.09602


Working With Mixed Precision

NVIDIA TensorRT PG-08540-001_v8.0.1   |   46

For more information about configuring INT8 Calibrator objects, see Performing Inference In
INT8 Using Custom Calibration (sampleINT8) located in the GitHub repository.

5.2.  Mixed Precision Using The Python
API

5.2.1.  Setting The Layer Precision Using Python
In Python, you can specify the layer precision using the precision flag:
layer.precision = trt.int8

You can set the output tensor data type to conform with the layer implementation:
layer.set_output_type(out_tensor_index, trt.int8)

Ensure that the builder understands to force the precision:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)

For more information, refer to the INT8 Calibration In Python (int8_caffe_mnist) sample.

5.2.2.  Enabling FP16 Inference Using Python
In Python, set the fp16_mode flag as follows:
config.set_flag(trt.BuilderFlag.FP16)

Force 16-bit precision by setting the builder flag:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)

5.2.3.  Enabling INT8 Inference Using Python
Enable INT8 mode by setting the builder flag:
config.set_flag(trt.BuilderFlag.INT8)

Similar to the C++ API, you can choose per activation tensor the dynamic range either using
dynamic_range or using INT8 calibration.

INT8 calibration can be used along with the dynamic range APIs. Setting the dynamic range
manually overrides the dynamic range generated from INT8 calibration.

5.2.3.1.  Setting Per-Tensor Dynamic Range Using Python
In order to perform INT8 inference, you must set the dynamic range for each network tensor.
You can derive the dynamic range values using various methods, including quantization aware
training or simply recording per tensor the min and max values during the last training epoch.
To set the dynamic range use:
layer = network[layer_index]
tensor = layer.get_output(output_index)
tensor.dynamic_range = (min_float, max_float)

You also need to set the dynamic range for the network input:
input_tensor = network.get_input(input_index)

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#int8_caffe_mnist
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input_tensor.dynamic_range = (min_float, max_float)

5.2.3.2.  INT8 Calibration Using Python
INT8 calibration provides an alternative approach to generate per activation tensor the
dynamic range. This method can be categorized as a post-training technique to generate the
appropriate quantization scale. The following steps illustrate how to create an INT8 calibrator
object using the Python API. By default, TensorRT supports INT8 calibration.

Procedure

 1. Import TensorRT:
import tensorrt as trt

 2. Similar to test/validation files, use a set of input files as a calibration files dataset.
Make sure the calibration files are representative of the overall inference data files.
For TensorRT to use the calibration files, we need to create a batchstream object. A
batchstream object are used to configure the calibrator.
NUM_IMAGES_PER_BATCH = 5
batchstream = ImageBatchStream(NUM_IMAGES_PER_BATCH, calibration_files)

 3. Create an Int8_calibrator object with input nodes names and batch stream:
Int8_calibrator = EntropyCalibrator(["input_node_name"], batchstream)

 4. Set INT8 mode and INT8 calibrator:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = Int8_calibrator

The rest of the logic for engine creation and inference is similar to Importing From ONNX
Using Python.

5.2.3.3.  INT8 Rounding Modes
Weights Quantization (FP32 to INT8)

Backend

Compute Kernel
Quantization (FP32 to
INT8)

Quantized Network
(QAT)

Dynamic Range API /
Calibration

GPU round-to-nearest-
with-ties-to-even

round-to-nearest-
with-ties-to-even

round-to-nearest-
with-ties-to-
positive-infinity

DLA round-to-nearest-
with-ties-away-
from-zero

N/A round-to-nearest-
with-ties-away-
from-zero

5.3.  Explicit-Quantization
TensorRT supports two modes to process INT8 networks. The first processing mode uses
INT8 precision opportunistically to optimize the model inference latency and is described
in Enabling INT8 Inference Using C++. The second mode for processing INT8 networks is
referred to as TensorRT explicit-quantization and is described in this chapter.

TensorRT 8.0 improves support for networks utilizing instances of C++ IQuantizeLayer
/ Python IQuantizeLayer and C++ IDequantizeLayer / Python IDequantizeLayer.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_quantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iquantizelayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_dequantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#idequantizelayer
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IQuantizeLayer and IDequantizeLayer implement quantization and dequantization
operators, respectively, and are referred to as Q/DQ for the remainder of this guide. Q/DQ
layers are used in 8-bit integer quantized models for explicitly specifying compute and data
precisions in a network.

When TensorRT detects the presence of Q/DQ layers in a network, it builds an engine using
explicit-precision processing logic, as described in later sections.

5.3.1.  Quantization Scale
TensorRT supports symmetric uniform quantization only, which means the zero point is always
zero (as a scalar or as a vector), and it is therefore not discussed.

There are two common quantization scale granularities:

‣ Per-tensor quantization: in which a single scale value (scalar) is used to scale the entire
tensor.

‣ Per-axis quantization: in which a scale tensor is broadcast along the given quantization
axis.

Weights can be quantized using per-tensor quantization or they can be quantized using
per-channel quantization. In either case, the scale precision is FP32. Activations can only
be quantized using per-tensor quantization. TensorRT uses signed INT8 for representing
quantized weights and activations.

When using per-channel quantization, the axis of quantization must be the output-channel
axis. For example, when the weights of 2D convolution are described using KCRS notation, K is
the output-channel axis, and the weights quantization can be described as:
For each k in K:
    For each c in C:
        For each r in R:
            For each s in S:
                output[k,c,r,s] := clamp(round(input[k,c,r,s] / scale[k]))

The scale is a vector of coefficients and must have the same size as the quantization axis.
The quantization scale must consist of all positive float coefficients. The rounding method is
rounding-to-nearest ties-to-even and clamping is in the range [-128, 127].

Dequantization is performed similarly except for the pointwise operation which is defined as:
output[k,c,r,s] := input[k,c,r,s] * scale[k]

5.3.2.  Quantized Weights
Weights of Q/DQ models must be specified using FP32 data type. The weights are quantized
by TensorRT using the scale of the IQuantlizeLayer that operates on the weights. The
quantized weights are stored in the Engine file.

Pre-quantized weights can also be used but still require to be specified using FP32 data-type.
The quantization scale should be set to 1.0f, but the dequantization scale should be the real
scale value used to quantize the weights so that TensorRT knows how to dequantize the output
of the linear operation.

https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
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5.3.3.  ONNX Support
When a model trained in PyTorch or TensorFlow using Quantization Aware Training (QAT) is
exported to ONNX, each fake-quantization operation in the framework’s graph is exported as a
pair of QuantizeLinear and DequantizeLinear ONNX operators.

When TensorRT imports ONNX models, the ONNX QuantizeLinear operator is imported as
an IQuantizeLayer instance, and the ONNX DequantizeLinear operator is imported as an
IDequantizeLayer instance. ONNX using opset 10 introduced support for QuantizeLinear/
DequantizeLinear, and a quantization-axis attribute was added in opset 13 (required for per-
channel quantization). PyTorch 1.8 introduced support for exporting PyTorch models to ONNX
using opset 13.

WARNING: The ONNX GEMM operator is an example that can be quantized per channel.
PyTorch torch.nn.Linear layers are exported as an ONNX GEMM operator with (K, C)
weights layout and with the transB GEMM attribute enabled (this transposes the weights
before performing the GEMM operation). TensorFlow, on the other hand, pre-transposes the
weights (C, K) before ONNX export:

‣ PyTorch: y = xWT

‣ TensorFlow: y = xW

PyTorch weights are therefore transposed by TensorRT. The weights are quantized by
TensorRT before they are transposed, so GEMM layers originating from ONNX QAT models
that were exported from PyTorch use dimension 0 for per-channel quantization (axis K = 0);
while models originating from TensorFlow use dimension 1 (axis K = 1).

TensorRT does not support pre-quantized ONNX models that use INT8 tensors or quantized
operators. Specifically, the following ONNX quantized operators are not supported and
generates an import error if they are encountered when TensorRT imports the ONNX model:

‣ QLinearConv/QLinearMatmul

‣ ConvInteger/MatmulInteger

TensorRT’s Quantization Toolkit for PyTorch provides a recipe for performing fine-tuning
QAT. The toolkit complements TensorRT by providing a convenient PyTorch library that helps
produce QAT models that can be optimized by TensorRT. You can also utilize the toolkit’s
Post-Training Quantization (PTQ) recipe to perform PTQ in PyTorch and export to ONNX.
The toolkit exports the quantization-scales learned through the calibration process as a
pair of QuantizeLinear and DequantizeLinear ONNX operators. In this workflow, you
perform PTQ but generate a Q/DQ ONNX model. TensorRT processes this ONNX model using
explicit-quantization Q/DQ processing mode, which provides more control over the arithmetic
precision of layers in the network.

5.3.4.  QAT Networks Using C++
A Q/DQ network must be built with the INT8-precision builder flag enabled:
config->setFlag(BuilderFlag::kINT8);

https://github.com/onnx/onnx/blob/master/docs/Operators.md#QuantizeLinear
https://github.com/onnx/onnx/blob/master/docs/Operators.md#dequantizelinear
https://github.com/onnx/onnx/blob/master/docs/Operators.md#QLinearConv
https://github.com/onnx/onnx/blob/master/docs/Operators.md#QLinearMatMul
https://github.com/onnx/onnx/blob/master/docs/Operators.md#ConvInteger
https://github.com/onnx/onnx/blob/master/docs/Operators.md#MatMulInteger
https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization
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5.3.5.  TensorRT Processing Of Q/DQ Networks
When TensorRT optimizes a network in Q/DQ-mode, the optimization process is limited to
optimizations that do not change the arithmetic correctness of the network. Bit-level accuracy
is rarely possible since the order of floating-point operations can produce different results
(for example, rewriting a * s + b * s as (a + b) * sis a valid optimization). Allowing
these differences is fundamental to back-end optimization in general, and this also applies to
converting a graph with Q/DQ layers to use INT8 computation.

Q/DQ layers control the compute and data precision of a network. An IQuantizeLayer
instance converts an FP32 tensor to an INT8 tensor by employing quantization, and an
IDequantizeLayer instance converts an INT8 tensor to an FP32 tensor by means of
dequantization. TensorRT expects a Q/DQ layer pair on each of the inputs of quantizable-
layers. Quantizable-layers are deep-learning layers that can be converted to quantized layers
by fusing with IQuantizeLayer and IDequantizeLayer instances. When TensorRT performs
these fusions, it replaces the quantizable-layers with quantized layers that actually operate on
INT8 data using INT8 compute operations.

For the diagrams used in this chapter, green designates INT8 precision and blue designates
floating-point precision. Arrows represent network activation tensors and squares represent
network layers.

Figure 3. A quantizable AveragePool layer (in blue) is fused with a DQ
layer and a Q layer. All three layers are replaced by a quantized
AveragePool layer (in green).

During network optimization, TensorRT moves Q/DQ layers in a process called Q/DQ
propagation. The goal in propagation is to maximize the proportion of the graph that can
be processed at low precision. Thus, TensorRT propagates Q nodes backwards (so that
quantization happens as early as possible) and DQ nodes forward (so that dequantization
happens as late as possible). Q-layers can swap places with layers that commute-with-
Quantization and DQ-layers can swap places with layers that commute-with-Dequantization.

A layer Op commutes with quantization if:
Q(Op(x)) == Op(Q(x))

Similarly, a layer Op commutes with dequantization if:
Op(DQ(x)) == DQ(Op(x))
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The following diagram illustrates DQ forward-propagation and Q backward-propagation.
These are legal rewrites of the model because Max Pooling has an INT8 implementation and
because Max Pooling commutes with DQ and with Q.

Figure 4. An illustration depicting a DQ forward-propagation and Q
backward-propagation.

Note:

To understand Max Pooling commutation, let’s look at the output of the maximum-pooling
operation applied to some arbitrary input. Max Pooling is applied to groups of input coefficients
and outputs the coefficient with the maximum value. For group i composed of coefficients

:
 

It is therefore enough to look at two arbitrary coefficients without loss of generality (WLOG):
 

For quantization function , with
scale > 0, note that (without providing proof, and using simplified notation):
 

Therefore:
 

However, by definition:
 

Function max commutes-with-quantization and so does Max Pooling.

Similarly for dequantization, function DQ(a, scale) := a * scale with scale > 0 we can
show that:
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There is a distinction between how quantizable-layers and commuting-layers are processed.
Both types of layers can compute in INT8, but quantizable-layers also fuse with DQ input
layers and a Q output layer. For example, an AveragePooling layer (quantizable) does not
commute with either Q or DQ, so it is quantized using Q/DQ fusion as illustrated in the first
diagram. This is in contrast to how Max Pooling (commuting) is quantized.

5.3.5.1.  Explicit-Quantization Vs. PTQ-Processing
To understand explicit-quantization in TensorRT, it is important to understand the motivation
for this special mode: network processing-predictability, which relies on the concept of explicit
precision. Processing-predictability is the promise to maintain the arithmetic precision of the
original model as it is optimized, and it gives users more control over the arithmetic precision
used by kernels in the optimized engine file. Note that the processing-predictability promise
does not mean that specific fusions or graph-rewrites are used.

Q/DQ layers specify where precision transitions must happen and that all optimizations must
preserve the arithmetic semantics of the original ONNX model. This can be made clear by
contrasting TensorRT explicit-quantization and TensorRT INT8 (PTQ) processing.

In PTQ, TensorRT treats the model as a floating-point model when applying the graph
optimizations; and uses INT8 opportunistically to optimize layer execution time. If a layer
runs faster in INT8, then it executes in INT8. Otherwise, FP32 or FP16 are used. In this mode,
TensorRT is optimizing for performance only, and the user has little control over where INT8
are used.

In contrast, in explicit-quantization, Q/DQ layers specify where precision transitions must
happen. The optimizer is not allowed to perform precision-conversions that are not dictated by
the semantics of the network, even if:

‣ such conversions increase layer precision (for example, choosing an FP16 kernel
implementation over an INT8 implementation)

‣ such conversion results in an engine that executes faster (for example, choosing an INT8
kernel implementation to execute a layer specified as having float precision or vice versa)

Note: On some older GPUs, a lower ratio of INT8 to FP compute can even result in better
performance of the FP kernels compared to INT8.

This is called explicit precision.

In this mode, the user has full control over precision-transitions and quantizations are
predictable. TensorRT still optimizes for performance but under the promise of maintaining
the arithmetic precision of the original model.

Note that some of the Q/DQ optimizations do change the order of floating-point operations
and that reordering float-operations does produce arithmetic errors. This class of arithmetic
errors are acceptable in the realm of DNN optimization.
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Table 2. The differences in processing;
IQuantizeLayer/IDequantizeLayer (Q/DQ) vs Post-Training
Quantization (PTQ)

TensorRT INT8 (PTQ)
processing

TensorRT explicit-
quantization

User control over precision Little control: INT8 is used in all
kernels for which it accelerates
performance.

Full control over quantization/
dequantization boundaries.

Optimization criterion Optimize for performance. Optimize for performance while
maintaining arithmetic precision
(accuracy).

API ‣ Model + Scales (dynamic
range API)

‣ Model + Calibration data

Model with Q/DQ layers.

Quantization scales Weights:

‣ Set by TensorRT (internal)

‣ Range [-127, 127]

Activations:

‣ Set by calibration or
specified by the user

‣ Range [-128, 127]

Weights and activations:

‣ Specified using Q/DQ ONNX
operators

‣ Range [-128, 127]

5.3.5.2.  Q/DQ Layer-Placement Recommendations
The placement of Q/DQ layers in a network affects performance and accuracy. Aggressive
quantization can lead to degradation in model accuracy because of the error introduced
by quantization. But quantization also enables latency reductions. Listed here are some
recommendations for placing Q/DQ layers in your network.

Quantize all inputs of weighted-operations (Convolution, Transposed Convolution and GEMM).
Quantization of the weights and activations reduces bandwidth requirements and also enables
INT8 compute to accelerate bandwidth-limited and compute-limited layers.
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Figure 5. Two examples of how TensorRT fuses convolutional layers. On
the left, only the inputs are quantized. On the right, both inputs
and output are quantized.

By default, don’t quantize the outputs of weighted-operations. It’s sometimes useful to
preserve the higher-precision dequantized output. For example, we can want to follow the
linear operation by an activation function (SiLU, in the following diagram) that requires higher
precision to improve network accuracy.

Figure 6. Example of a linear operation followed by an activation
function.

Don’t simulate batch-normalization and ReLU fusions in the training framework because
TensorRT optimizations guarantee to preserve the arithmetic semantics of these operations.
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Figure 7. Batch normalization is fused with convolution and ReLU while
keeping the same execution order as defined in the pre-
fusion network. There is no need to simulate BN-folding in the
training network.

TensorRT can fuse element-wise addition following weighted layers, which is useful for
models with skip connections like ResNet and EfficientNet. The precision of the first input to
the element-wise addition layer determines the precision of the output of the fusion.

For example, in the following diagram, the precision of xf1 is floating-point, so the output of
the fused convolution is limited to floating-point, and the trailing Q-layer cannot be fused with
the convolution.
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Figure 8. The precision of xf
1 is floating-point, so the output of the fused

convolution is limited to floating-point, and the trailing Q-layer
cannot be fused with the convolution.

In contrast, when xf
1 is quantized to INT8, as depicted in the following diagram, the output of

the fused convolution is also INT8, and the trailing Q-layer is fused with the convolution.

Figure 9. When xf
1 is quantized to INT8, the output of the fused

convolution is also INT8, and the trailing Q-layer is fused with
the convolution.
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For extra performance, try quantizing layers that do not commute with Q/DQ. Currently, non-
weighted layers that have INT8 inputs also require INT8 outputs, so quantize both inputs and
outputs.

Figure 10. An example of quantizing a quantizable-operator. An element-
wise addition operator is fused with the input DQ operators and
the output Q operator.

Performance can decrease if TensorRT cannot fuse the operations with the surrounding Q/
DQ layers, so be conservative when adding Q/DQ nodes and experiment with accuracy and
TensorRT performance in mind.

The following figure is an example of suboptimal fusions (the highlighted light green
background rectangles) that can result from extra Q/DQ operators. Contrast the following
figure with Figure 9, which shows a more performant configuration. The convolution operator
is fused separately from the element-wise addition operator because each of them is
surrounded by Q/DQ operator pairs. The fusion of the element-wise addition operator is shown
in Figure 10.
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Figure 11. An example of suboptimal quantization fusions: contrast the
suboptimal fusion in A and the optimal fusion in B. The extra
pair of Q/DQ operators (highlighted with a glowing-green
border) forces the separation of the convolution operator from
the element-wise addition operator.

Use per-tensor quantization for activations; and per-channel quantization for weights.This
configuration has been demonstrated empirically to lead to the best quantization accuracy.

You can further optimize engine latency by enabling FP16. TensorRT attempts to use FP16
instead of FP32 whenever possible (this is not currently supported for all layer types):
config->setFlag(BuilderFlag::kFP16)

5.3.5.3.  Q/DQ Limitations
A few of the Q/DQ graph-rewrite optimizations that TensorRT performs compare the values
of quantization scales between two or more Q/DQ layers and only perform the graph-rewrite
if the compared quantization scales are equal. When a refittable TensorRT engine is refitted,
the scales of Q/DQ nodes can be assigned new values. During the refitting operation of Q/DQ
engines, TensorRT checks if Q/DQ layers that participated in scale-dependent optimizations
are assigned new values that break the rewrite optimizations and throws an exception if true.
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Figure 12. An example showing scales of Q1 and Q2 are compared for
equality, and if equal, they are allowed to propagate backward. If
the engine is refitted with new values for Q1 and Q2 such that Q1 !
= Q2, then an exception aborts the refitting process.

5.3.6.  Quantization Aware Training (QAT) Using
TensorFlow

TensorFlow QAT models place Q/DQ on the outputs of weighted-operations (in contrast with
the TensorRT Quantization Toolkit for PyTorch) and can produce suboptimal models. TensorRT
is not validated on TensorFlow and can show a lower quality of service.

As TensorRT only supports symmetric quantization for both activations and weights, a training
graph must be created using symmetric=True.

Tensorflow 1.15 supports Quantization Aware Training (QAT) for creating symmetrically
quantized models using tf.contrib.quantize.experimental_create_training_graph API. By
default, the TensorFlow training graph would create per-tensor weights and activation
dynamic range, meaning (min, max). If per-channel weights dynamic range needs to be
generated, we would need to update QAT scripts.

After QAT, we can create a frozen inference graph using the following commands. We are
using TensorFlow models repo for training and creating an inference graph.
python models/research/slim/export_inference_graph.py \
     --model_name<model> \
     --output_file=quantized_symm_eval.pb \
     --quantize \
     --symmetric

Freeze the graph with checkpoints:
python tensorflow/tensorflow/python/tools/freeze_graph.py \
 --input_graph=eval.pb \  
 --input_checkpoint=model.ckpt-0000 \
 --input_binary=true \
 --output_graph=quantized_symm_frozen.pb \     

https://github.com/tensorflow/tensorflow/tree/r1.15/tensorflow/contrib/quantize
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/quantize/experimental_create_training_graph
https://github.com/tensorflow/tensorflow/blob/r1.15/tensorflow/contrib/quantize/python/quant_ops.py
https://github.com/tensorflow/models
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 --output_node_names=<OutputNode>

5.3.6.1.  Converting TensorFlow To ONNX Quantized Models
TensorFlow quantized model with tensorflow::ops::FakeQuantWithMinMaxVars or
tensorflow::ops::FakeQuantWithMinMaxVarsPerChannel nodes can be converted to
sequence of QuantizeLinear and DequantizeLinear nodes (Q/DQ nodes).

Dynamic range with, meaning [min, max], values are converted to scale and zero-point,
where scale = max(abs(min, max))/127 and zero_point = 0.

We use the tf2onnx converter to convert a quantized frozen model to a quantized ONNX model.
python -m tf2onnx.convert \
--input quantized_symm_frozen.pb \
--output quantized.onnx \
--inputs <InputNode> \
--outputs <OutputNode> \
--opset 10 \
--fold_const \
--inputs-as-nchw <InputNode>

5.3.7.  Quantization Aware Training (QAT) Using
PyTorch

PyTorch 1.8.0 supports QuantizeLinear/DequantizeLinear that support per channel scales.
We can use pytorch-quantization to do INT8 calibration, run quantization aware fine-tuning,
generate ONNX and finally use TensorRT to run inference on this ONNX model. More detail
can be found in PyTorch-Quantization Toolkit User Guide.

https://github.com/jhalakpatel/tensorflow-onnx/tree/fake_quant_ops_rewriter
https://github.com/onnx/onnx/blob/master/docs/Operators.md#QuantizeLinear
https://github.com/onnx/onnx/blob/master/docs/Operators.md#dequantizelinear
https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/index.html
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Chapter 6. Working With Reformat-
Free Network I/O Tensors

Requirements from Automotive Safety Integrity Level (ASIL) for safety flows require that
accessing GPU address spaces should be removed from the NvMedia DLA safety path. To
achieve this objective, reformat-free network I/O tensors are introduced to let you specify I/O
formats that are supported by NvMedia tensor before passing the data to NVIDIA® TensorRT™.

On the other hand, the potential overhead of tensor reformatting can cause performance
issues because TensorRT less than 6.0.1 assumes that network I/O tensors are FP32. In
the case of multiple TensorRT sub-networks embedded into a large network (for example,
TensorFlow), with a precision of INT8 or FP16, the unavoidable I/O reformatting from and
to FP32 could waste considerable memory traffic time. The same issue can also happen on
the user-defined plugins. Now you can explicitly specify network I/O tensors to INT8 or FP16
formats to eliminate unnecessary reformatting.

6.1.  Building An Engine With Reformat-
Free Network I/O Tensors

You can use the following API to specify formats of network I/O tensors.

C++ API:
network->getInput(i)->setAllowedFormats(formats);
network->getOutput(i)->setAllowedFormats(formats);

Where i is the index of network I/O tensors.

Python API:1

network.get_input(0).allowed_formats = formats
network.get_output(0).allowed_formats = formats

Where formats is the mask form of the dense enum TensorFormat which sets the memory
layout of the tensor. For example, 1U << TensorFormat::kLINEAR or, in Python, 1 <<
int(tensorrt.TensorFormat.LINEAR).

BuilderFlag::kSTRICT_TYPES or tensorrt.BuilderFlag.STRICT_TYPES in Python can be
explicitly set to generate an engine without reformatting rather than getting the fastest path.
For example:

C++ API:

1 The TensorRT Safety 6.0.0 Release does not support the TensorRT 6.0.1 Python API.
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builderConfig->setFlag(BuilderFlag::kSTRICT_TYPES);

Python API:
builder_config.set_flag(tensorrt.BuilderFlag.STRICT_TYPES)

The flag can also be set via a bitmask manner as follows.

C++ API:
builderConfig->setFlags(flags);

Python API:
builder_config.flags = flags

Where flags is the bit mask combination of the dense enum BuilderFlags. For example, 1
<< BuilderFlag::kFP16 | 1<< BuilderFlag::kSTRICT_TYPES or, in Python,
1 << int(tensorrt.BuilderFlag.FP16) | 1 <<
        int(tensorrt.BuilderFlag.STRICT_TYPES)

If TensorRT doesn’t find any implementation of the reformat-free path, the following warning
message displays:
‘[W] [TRT] Warning: no implementation obeys reformatting-free rules ...’

As a result, the fastest path is picked instead.

If the combination of data type and memory layout of I/O tensors is well chosen, the overall
performance of the reformat-free path should be very close to the fastest path for most
normal cases or else it is recommended to disable the reformat-free path.

For more information, refer to Specifying I/O Formats Using The Reformat Free I/O APIs
(sampleReformatFreeIO) for an example of setting reformat-free network I/O tensors with
these APIs using C++.

6.2.  Supported Combination Of Data Type
And Memory Layout of I/O Tensors

The supported settings of I/O tensors are listed in the following table.

Table 3. Supported combination of data types and memory layout.

Memory Layout \
Data Type kINT32 kFLOAT kHALF kINT8

kLINEAR Supported Supported Supported Supported

kCHW2 N/A N/A Supported N/A

kCHW4 N/A N/A Supported
(including DLA)

Supported
(including DLA)

kHWC8 N/A N/A Supported N/A

kCHW16 N/A N/A Only for DLA N/A

kCHW32 N/A Supported Supported Supported
(including DLA)

kDHWC8 N/A N/A Supported N/A

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleReformatFreeIO
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleReformatFreeIO
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Memory Layout \
Data Type kINT32 kFLOAT kHALF kINT8

kCDHW32 N/A N/A Supported Supported

kHWC N/A Supported N/A N/A

kDLA_LINEAR N/A N/A Only for DLA Only for DLA

kDLA_HWC4 N/A N/A Only for DLA Only for DLA

kHWC16 N/A N/A Supported (on
NVIDIA Ampere
GPUs)

N/A

6.3.  Calibration For A Network With INT8
I/O Tensors

INT8 auto-calibration is supported by INT8 I/O tensors. In this case, you need to provide FP32
data for calibration and INT8 I/O tensors for inference.

With an INT8 I/O network, TensorRT expects calibration data to be in FP32 precision to
generate a calibration cache. Calibration cache data is then internally used by the builder
during inference with INT8 I/O tensors.

This limitation of INT8 I/O networks requiring FP32 calibration data is relaxed in future
releases. For now, you can create FP32 calibration data by simply casting INT8 I/O calibration
data to FP32 precision. You should also ensure that FP32 cast calibration data should be in the
range [-128.0f, 127.0f] and can be converted to INT8 data without any precision loss.

Setting up a calibrator for a network with INT8 I/O tensors remains exactly the same as a
network with FP32 I/O tensors.

6.4.  Restrictions With DLA
DLA supports formats that are unique to the device and have constraints on their layout due to
vector width byte requirements.

For DLA input, kDLA_LINEAR(FP16, INT8), kDLA_HWC4(FP16, INT8), kCHW16(FP16), and
kCHW32(INT8) are supported. For DLA output, only kDLA_LINEAR(FP16, INT8), kCHW16(FP16),
and kCHW32(INT8) are supported. For kCHW16 and kCHW32 formats, the C channel count is
recommended to be equivalent to a positive integer multiple of the vector size. If C is not an
integer multiple, then it must be padded to the next 32-byte boundary.

For kDLA_LINEAR format, the stride along the W dimension must be padded up to 64 bytes.
The memory layout is equivalent to a C array with dimensions [N][C][H][roundUp(W, 64/
elementSize)] where elementSize is 2 for FP16 and 1 for Int8, with the tensor coordinates
(n, c, h, w) mapping to array subscript [n][c][h][w].

For kDLA_HWC4 format, the stride along the W dimension must be a multiple of 32 bytes.

‣ When C == 1, TensorRT maps the format to the native grayscale image format.
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‣ When C == 3 or C == 4, it maps to the native color image format. If C == 3, the stride for
stepping along the W axis needs to be padded to 4 in elements.

In this case, the padded channel is located at the 4th-index. Ideally, the padding value
doesn't matter because the 4th channel in the weights is padded to zero by the DLA
compiler; however, it is safe for the application to allocate a zero-filled buffer of four
channels and populate three valid channels.

‣ When C is {1, 3, 4}, then padded C' is {1, 4, 4} respectively, the memory layout is
equivalent to a C array with dimensions [N][H][roundUp(W, 32/C'/elementSize)][C']
where elementSize is 2 for FP16 and 1 for Int8. The tensor coordinates (n, c, h, w)
mapping to array subscript [n][h][w][c] roundUp calculates the smallest multiple of
64/elementSize greater than or equal to W.

When using kDLA_HWC4 as DLA input format, it has the following requirements:

‣ C must be 1, 3, or 4

‣ The first layer must be convolution.

‣ The convolution parameters must meet DLA requirements, refer to DLA Supported Layers.

When the EngineCapability is EngineCapability::kDEFAULT and TensorRT cannot
generate a reformat free network for the given input/output formats, the unsupported DLA
formats can be automatically converted into supported DLA format. For example, if the layers
connected to the network inputs or outputs cannot run on DLA or if the network does not meet
other DLA requirements, reformat operations are inserted to satisfy constraints. In all cases,
the strides that TensorRT expects data to be formatted with can be obtained by querying
IExecutionContext::getStrides.

TensorRT doesn't provide native APIs to run EngineCapability::kDLA_STANDALONE engines.
Serializing an engine with EngineCapability::kDLA_STANDALONE produces an NVDLA
loadable that is only consumable by NvMedia DLA API directly and requires all input formats
to match exactly without reformatting layers.

If you specify that multiple DLA formats are allowed with
EngineCapability::kDLA_STANDALONE, TensorRT doesn't provide native API to query
which format matches input tensors of the NVDLA loadable. You could use NvMedia DLA API
NvMediaDlaGetInputTensorDescriptor to get the input tensor descriptor (refer to NVIDIA
DRIVE OS Linux SDK API Reference Documentation for more details).

6.5.  FAQs
This section is to help troubleshoot the most asked questions when using reformat-free
network I/O tensors.

Q: Why are reformatting layers observed although there is no warning message
no implementation obeys reformatting-free rules ...?

A: Reformat-free network I/O does not mean there are no reformatting layers inserted in the
entire network. Only the input and output network tensors have a possibility not to require

https://docs.nvidia.com/drive/drive_os_5.1.12.0L/nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/baggage/index.html
https://docs.nvidia.com/drive/drive_os_5.1.12.0L/nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/baggage/index.html
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reformatting layers. In other words, reformatting layers can be inserted by TensorRT for
internal tensors to improve performance.

Q: What is the best practice to use reformat-free network I/O tensors for DLA?

A: First, you have to check if your network can run entirely on DLA, then try to build the
network by specifying kDLA_LINEAR, kDLA_HWC4 or kCHW16/32 format as allowed I/O
formats. If multiple formats can work, you can profile them and choose the fastest I/O format
combination. If your network indeed performs better with kDLA_HWC4, but it doesn't work, you
have to check which requirement listed in the previous section is unsatisfied.
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Chapter 7. Working With Dynamic
Shapes

Dynamic shapes are the ability to defer specifying some or all tensor dimensions until runtime.
Dynamic shapes can be used via both the C++ and Python interfaces.

The following sections provide greater detail; however, here’s an overview of the steps for
building an engine with dynamic shapes:

 1. The network definition must not have an implicit batch dimension.
C++

Create the INetworkDefinition by calling
IBuilder::createNetworkV2(1U <<
        static_cast<int>(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH))

Python
Create the tensorrt.INetworkDefinition by calling
create_network(1 <<
        int(tensorrt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

These calls request that the network not have an implicit batch dimension.
 2. Specify each runtime dimension of an input tensor by using -1 as a placeholder for the

dimension.
 3. Specify one or more optimization profiles at build time that specify the permitted range of

dimensions for inputs with runtime dimensions, and the dimensions for which the auto-
tuner should optimize. For more information, refer to Optimization Profiles.

 4. To use the engine:

 a). Create an execution context from the engine, the same as without dynamic shapes.
 b). Specify one of the optimization profiles from step 3 that covers the input dimensions.
 c). Specify the input dimensions for the execution context. After setting input dimensions,

you can get the output dimensions that TensorRT computes for the given input
dimensions.

 d). Enqueue work.

To change the runtime dimensions, repeat steps 4b and 4c, which do not have to be repeated
until the input dimensions change.
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7.1.  Specifying Runtime Dimensions
When building a network, use -1 to denote a runtime dimension for an input tensor. For
example, to create a 3D input tensor named foo where the last two dimensions are specified
at runtime, and the first dimension is fixed at build time, issue the following.

C++
networkDefinition.addInput("foo", DataType::kFLOAT, Dims3(3, -1, -1))

Python
network_definition.add_input("foo", trt.float32,(3, -1, -1))

At run time, you’ll need to set the input dimensions after choosing an optimization profile
(refer to Optimization Profiles). Let the bindingIndex of input foo be 0, and the input have
dimensions [3,150,250]. After setting an optimization profile for the previous example, you
would call:
C++

context.setBindingDimensions(0, Dims3(3, 150, 250))

Python
context.set_binding_shape(0, (3, 150, 250))

At runtime, asking the engine for binding dimensions returns the same dimensions used to
build the network, meaning, you get a -1 for each runtime dimension. For example:
C++

engine.getBindingDimensions(0) returns a Dims with dimensions {3, -1, -1}.
Python

engine.get_binding_shape(0) returns (3, -1, -1).

To get the actual dimensions, which are specific to each execution context, query the execution
context:
C++

context.getBindingDimensions(0) returns a Dims with dimensions {3, 150, 250}.
Python

context.get_binding_shape(0) returns (3, 150, 250).

Note: The return value of setBindingDimensions for an input only indicates consistency with
respect to the optimization profile set for that input. After all input binding dimensions are
specified, you can check whether the entire network is consistent with respect to the dynamic
input shapes by querying the dimensions of the output bindings of the network.
nvinfer1::Dims out_dim = context->getBindingDimensions(out_index);

if (out_dim.nbDims == -1) {
gLogError << "Invalid network output, this might be caused by inconsistent input
 shapes." << std::endl;
// abort inference
}
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7.2.  Optimization Profiles
An optimization profile describes a range of dimensions for each network input and the
dimensions that the auto-tuner should use for optimization. When using runtime dimensions,
you must create at least one optimization profile at build time. Two profiles can specify disjoint
or overlapping ranges.

For example, one profile might specify a minimum size of [3,100,200], a maximum
size of [3,200,300], and optimization dimensions of [3,150,250] while another profile
might specify min, max and optimization dimensions of [3,200,100], [3,300,400], and
[3,250,250].

To create an optimization profile, first construct an IOptimizationProfile. Then set the
min, optimization, and max dimensions, and add it to the network configuration. The shapes
defined by the optimization profile must define valid input shapes for the network. Here are the
calls for the first profile mentioned previously for an input foo:
C++

IOptimizationProfile* profile = builder.createOptimizationProfile();
profile->setDimensions("foo", OptProfileSelector::kMIN, Dims3(3,100,200);
profile->setDimensions("foo", OptProfileSelector::kOPT, Dims3(3,150,250);
profile->setDimensions("foo", OptProfileSelector::kMAX, Dims3(3,200,300);

config->addOptimizationProfile(profile)

Python
profile = builder.create_optimization_profile();
profile.set_shape("foo", (3, 100, 200), (3, 150, 250), (3, 200, 300)) 
config.add_optimization_profile(profile)

At runtime, you need to set an optimization profile before setting input dimensions. Profiles
are numbered in the order they were added, starting at 0. To choose the first optimization
profile in the example, use:
C++

call context.setOptimizationProfileAsync(0, stream)

where stream is the CUDA stream that is used for the subsequent enqueue() or
enqueueV2() invocation in this context.

Python
set context.set_optimization_profile_async(0, stream)

If the associated CUDA engine has dynamic inputs, the optimization profile must be set at
least once with a unique profile index that is not used by other execution contexts that are
not destroyed. For the first execution context that is created for an engine, profile 0 is chosen
implicitly.

setOptimizationProfileAsync() can be called to switch between profiles. It must be called
after any enqueue() or enqueueV2() operations finish in the current context. When multiple
execution contexts run concurrently, it is allowed to switch to a profile that was formerly used
but already released by another execution context with different dynamic input dimensions.

setOptimizationProfileAsync() function replaces the now deprecated version of
the API setOptimizationProfile(). Using setOptimizationProfile() to switch
between optimization profiles can cause GPU memory copy operations in the subsequent
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enqueue() or enqueueV2() operations operation. To avoid these calls during enqueue, use
setOptimizationProfileAsync() API instead.

In an engine built from multiple profiles, there are separate binding indices for each profile.
The names of input/output tensors for the Kth profile have [profile K] appended to
them, with K written in decimal. For example, if the INetworkDefinition had the name
“foo“, and bindingIndex refers to that tensor in the optimization profile with index 3,
engine.getBindingName(bindingIndex) returns “foo [profile 3]“.

Likewise, if using ICudaEngine::getBindingIndex(name) to get the index for a
profile K beyond the first profile (K=0), append “[profile K]“ to the name used
in the INetworkDefinition. For example, if the tensor was called “foo“ in the
INetworkDefinition, then engine.getBindingIndex(“foo [profile 3]“) returns the
binding index of Tensor “foo" in optimization profile 3.

Always omit the suffix for K=0.

7.2.1.  Bindings For Multiple Optimization Profiles
TensorRT 7.1 is stricter about binding indices than its predecessors. Previously, binding
indices for the wrong profile were tolerated. Consider a network with four inputs, one output,
with three optimization profiles in the IBuilderConfig. The engine has 15 bindings, five for
each optimization profile, conceptually organized as a table:

Figure 13. Optimization profile

Each row is a profile. Numbers in the table denote binding indices. The first profile has
binding indices 0..4, the second has 5..9, and the third has 10..14. Prior to version 7.1,
where a profile index was specified or implied, TensorRT accepted binding numbers for
the wrong profile, using the binding index only to determine the column. In TensorRT 7.1,
the binding index must be correct; otherwise, refer to an API check failure that mentions
bindingIndexBelongsToProfile.

For the sake of backward semi-compatibility, the interfaces have an “auto-correct” for the
case that the binding belongs to the first profile, but another profile was specified. In that case,
TensorRT warns about the mistake and then chooses the correct binding index from the same
column.
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7.3.  Layer Extensions For Dynamic
Shapes

Some layers have optional inputs that allow specifying dynamic shape information, and there
is a new layer IShapeLayer for accessing the shape of a tensor at runtime. Furthermore,
some layers allow calculating new shapes. The next section goes into semantic details and
restrictions. Here is a summary of what you might find useful in conjunction with dynamic
shapes.

IShapeLayer outputs a 1D tensor containing the dimensions of the input tensor. For example,
if the input tensor has dimensions [2,3,5,7], the output tensor is a four-element 1D tensor
containing {2,3,5,7}. If the input tensor is a scalar, it has dimensions [], and the output
tensor is a zero-element 1D tensor containing {}.

IResizeLayer accepts an optional second input containing the desired dimensions of the
output.

IShuffleLayer accepts an optional second input containing the reshape dimensions before
the second transpose is applied. For example, the following network reshapes a tensor Y to
have the same dimensions as X:
C++

    auto* reshape = networkDefinition.addShuffle(Y);
    reshape.setInput(1, networkDefintion.addShape(X)->getOutput(0));

Python
    reshape = network_definition.add_shuffle(y)
    reshape.set_input(1, network_definition.add_shape(X)->get_output(0))

Shuffle operations that are equivalent to identity operations on the underlying data is omitted
if the input tensor is only used in the shuffle layer and the input and output tensors of this
layer are not input and output tensors of the network. TensorRT no longer executes additional
kernels or memory copies for such operations.

ISliceLayer accepts an optional second, third, and fourth inputs containing the start, size,
and stride.
IConcatenationLayer, IElementWiseLayer, IGatherLayer, IIdentityLayer, and
        IReduceLayer
can be used to do calculations on shapes and create new shape tensors.

7.4.  Restrictions For Dynamic Shapes
The following layer restrictions arise because the layer’s weights have a fixed size:

‣ IConvolutionLayer and IDeconvolutionLayer require that the channel dimension be a
build-time constant.

‣ IFullyConnectedLayer requires that the last three dimensions be build-time constants.

‣ Int8 requires that the channel dimension be a build-time constant.
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‣ Layers accepting additional shape inputs (IResizeLayer, IShuffleLayer, ISliceLayer)
require that the additional shape inputs be compatible with the dimensions of the
minimum and maximum optimization profiles as well as with the dimensions of the
runtime data input; otherwise, it can lead to either a build-time or runtime error.

Values that must be build-time constants don’t have to be constants at the API level.
TensorRT’s shape analyzer does element-by-element constant propagation through layers
that do shape calculations. It’s sufficient that the constant propagation discovers that a value
is a build-time constant.

7.5.  Execution Tensors vs. Shape Tensors
Engines using dynamic shapes employ a two-phase execution strategy.

 1. Compute the shapes of all tensors
 2. Stream work to the GPU.

Phase 1 is implicit and driven by demand, such as when output dimensions are requested.
Phase 2 is the same as in prior versions of TensorRT. The two-phase execution puts some
limits on dynamism that are important to understand.

The key limits are:

‣ The rank of a tensor must be determinable at build time.

‣ A tensor is either an execution tensor, shape tensor, or both. Tensors classified as shape
tensors are subject to limits.

An execution tensor is a traditional TensorRT tensor. A shape tensor is a tensor that is related
to shape calculations. It must be 0D or 1D, have type Int32 or Bool, and its shape must
be determinable at build time. For example, there is an IShapeLayer whose output is a
1D tensor containing the dimensions of the input tensor. The output is a shape tensor.
IShuffleLayer accepts an optional second input that can specify reshaping dimensions. The
second input must be a shape tensor.

Some layers are “polymorphic” with respect to the kinds of tensors they handle. For example,
IElementWiseLayer can sum two Int32 execution tensors or sum two Int32 shape tensors.
The type of tensor depends on its ultimate use. If the sum is used to reshape another tensor,
then it is a “shape tensor.”

7.5.1.  Formal Inference Rules
The formal inference rules used by TensorRT for classifying tensors are based on a type-
inference algebra. Let E denote an execution tensor and S denote a shape tensor.

IActivationLayer has the signature:
IActivationLayer: E → E

since it takes an execution tensor as an input and an execution tensor as an output.
IElementWiseLayer is polymorphic in this respect, with two signatures:
IElementWiseLayer: S × S → S, E × E → E
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For brevity, let’s adopt the convention that tis a variable denoting either class of tensor, and
all tin a signature refers to the same class of tensor. Then, the two previous signatures can be
written as a single polymorphic signature:
IElementWiseLayer: t × t → t

The two-input IShuffleLayer has a shape tensor as the second input and is polymorphic with
respect to the first input:
IShuffleLayer (two inputs): t × S → t

IConstantLayer has no inputs, but can produce a tensor of either kind, so its signature is:
IConstantLayer: → t

The signature for IShapeLayer allows all four possible combinations E→E, E→S, S→E, and S→S,
so it can be written with two independent variables:
IShapeLayer: t1 → t2

Here is the complete set of rules, which also serves as a reference for which layers can be
used to manipulate shape tensors:
IConcatenationLayer: t × t × ...→ t
IConstantLayer: → t
IElementWiseLayer: t × t → t
IGatherLayer: t × t → t
IIdentityLayer: t → t
IReduceLayer: t → t
IResizeLayer (one input): E → E
IResizeLayer (two inputs): E × S → E
ISelectLayer: t × t × t → t
IShapeLayer: t1 → t2
IShuffleLayer (one input): t → t
IShuffleLayer (two inputs): t × S → t
ISliceLayer (one input): t → t
ISliceLayer (two inputs): t × S → t
ISliceLayer (three inputs): t × S × S → t
ISliceLayer (four inputs): t × S × S × S → t
all other layers: E × ... → E × ...

Because an output can be the input of more than one subsequent layer, the inferred
“types” are not exclusive. For example, an IConstantLayer might feed into one use that
requires an execution tensor and another use that requires a shape tensor. The output of
IConstantLayer is classified as both and can be used in both phase 1 and phase 2 of the two-
phase execution.

The requirement that the rank of a shape tensor be known at build time limits how
ISliceLayer can be used to manipulate a shape tensor. Specifically, if the third parameter,
which specifies the size of the result, is not a build-time constant, the length of the resulting
shape tensor would no longer be known at build time, breaking the restriction of shape
tensors to build-time shapes. Worse, it might be used to reshape another tensor, breaking the
restriction that tensor ranks must be known at build time.

TensorRT’s inferences can be inspected via methods ITensor::isShapeTensor(), which
returns true for a shape tensor, and ITensor::isExecutionTensor(), which returns true for
an execution tensor. Build the entire network first before calling these methods because their
answer can change depending on what uses of the tensor have been added.

For example, if a partially built network sums two tensors, T1 and T2, to create tensor T3, and
none are yet needed as shape tensors, isShapeTensor() returns false for all three tensors.
Setting the second input of IShuffleLayer to T3 would cause all three tensors to become
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shape tensors because IShuffleLayer requires that its second optional input be a shape
tensor, and if the output of IElementWiseLayer is a shape tensor, its inputs are too.

7.6.  Shape Tensor I/O (Advanced)
Sometimes the need arises to do shape tensor I/O for a network. For example, consider a
network consisting solely of an IShuffleLayer. TensorRT infers that the second input is a
shape tensor. ITensor::isShapeTensor returns true for it. Because it is an input shape
tensor, TensorRT requires two things for it:

‣ At build time: the optimization profile values of the shape tensor.

‣ At run time: the values of the shape tensor.

The shape of an input shape tensor is always known at build time. It’s the values that need to
be described since they can be used to specify the dimensions of execution tensors.

The optimization profile values can be set using IOptimizationProfile::setShapeValues.
Analogous to how min, max, and optimization dimensions must be supplied for execution
tensors with runtime dimensions, min, max and optimization values must be provided for
shape tensors at build time.

The corresponding runtime method is IExecutionContext::setInputShapeBinding, which
sets the values of the shape tensor at runtime.

Because the inference of “execution tensor” vs “shape tensor” is based on ultimate use,
TensorRT cannot infer whether a network output is a shape tensor. You must to tell it via the
method INetworkDefinition::markOutputForShapes.

Besides letting you output shape information for debugging, this feature is useful for
composing engines. For example, consider building three engines, one each for sub-
networks A, B, C, where a connection from A to B or B to C might involve a shape tensor.
Build the networks in reverse order: C, B, and A. After constructing network C, you
can use ITensor::isShapeTensor to determine if an input is a shape tensor, and use
INetworkDefinition::markOutputForShapes to mark the corresponding output tensor
in network B. Then check which inputs of B are shape tensors and mark the corresponding
output tensor in network A.

Shape tensors at network boundaries must have type Int32. They cannot have type Bool.

7.7.  INT8 Calibration With Dynamic
Shapes

To run INT8 calibration for a network with dynamic shapes, a calibration optimization profile
must be set. Calibration is performed using kOPT values of the profile. Calibration input data
size must match this profile.

To create a calibration optimization profile, first, construct an IOptimizationProfile
the same way as it is done for a general optimization profile. Then set the profile to the
configuration:
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C++
config->setCalibrationProfile(profile)

Python
config.set_calibration_profile(profile)

The calibration profile must be valid or be nullptr. kMIN and kMAX
values are overwritten by kOPT. To check the current calibration profile,
useIBuilderConfig::getCalibrationProfile.

This method returns a pointer to the current calibration profile or nullptr if the calibration
profile is unset. getBatchSize() calibrator method must return 1 when running calibration
for a network with dynamic shapes.

Note: If the calibration optimization profile is not set, the first network optimization profile are
used as a calibration optimization profile.
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Chapter 8. Working With Empty
Tensors

NVIDIA® TensorRT™ supports empty tensors. A tensor is an empty tensor if it has one or more
dimensions with length zero. Zero-length dimensions usually get no special treatment. If a
rule works for a dimension of length L for an arbitrary positive value of L, it usually works for
L=0 too.

For example, when concatenating two tensors with dimensions [x,y,z] and [x,y,w] along
the last axis, the result has dimensions [x,y,z+w], regardless of whether x, y, z, or w is zero.

Implicit broadcast rules remain unchanged since only unit-length dimensions are special for
broadcast. For example, given two tensors with dimensions [1,y,z] and [x,1,z], their sum
computed by IElementWiseLayer has dimensions [x,y,z], regardless of whether x, y, or z
is zero.

Note that if an engine binding is an empty tensor, at least one byte of memory still needs to be
allocated for it.

8.1.  IReduceLayer And Empty Tensors
If all inputs to a layer are empty, the output is usually empty, but there are exceptions. The
exceptions arise from how reduction over an empty set is defined in mathematics: Reduction
over an empty set yields the identity element for the operation.

The following table shows cases relevant to TensorRT:

Reduction Operation kFLOAT & kHALF kINT32 kINT8

kSUM 0 0 0

kPROD 1 1 1

kMAX ∞ INT_MAX -128

kMIN -∞ INT_MIN 127

kAVG NaN 0 -128

The average empty set is mathematically ill-defined. The obvious definition (sum of elements)/
(number of elements) yields 0/0. It’s represented by “Not a Number” (NaN) for floating-
point. The 0 for kAVG over an empty set of kINT32 has no mathematical justification and was
chosen for compatibility with TensorFlow.
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TensorRT usually performs reduction for kINT8 via kFLOAT or kHALF. The kINT8 values show
the quantized representations of the floating-point values, not their dequantized values.

8.2.  IMatrixMultiplyLayer,
IFullyConnectedLayer, And Empty
Tensors

Multiplying matrices with dimensions [m,0] and [0,n] results in a matrix of zeros with
dimensions [m,n]. It’s zeros because each element of the result is the sum over an empty set
of products.

IFullyConnectedLayer is fundamentally a matrix multiplication, so similar rules apply.

8.3.  Plugins And Empty Tensors
Plugins that need to handle empty tensors must be written with IPluginV2Ext,
IPluginV2IOExt, or IPluginV2DynamicExt.

WARNING: Empty tensors can have properties not seen for non-empty tensors:

‣ a volume of zero

‣ one or more strides equal to zero

The volume of zero can break kernel launching logic since a common approach is to set the
number of CUDA blocks proportional to the volume being processed. CUDA reports an error
for launching a kernel with zero blocks. Hence plugins should be careful about avoiding such
launches.

Strides should be calculated the same as for non-empty tensors. For example, given a tensor
with dimensions [N,C,H,W], the stride of the memory representation corresponding to an
increment along the C axis is H*W. It doesn’t matter if H or W is zero. Though make sure
that your code does not divide by a stride or dimension that could be zero. For example, the
assertion in the following fragment risks dividing by zero in both divisions:
int volume = N*C*H*W;
int cStride = H*W;
...
assert(C == volume/N/cStride);

For some plugins, an effective strategy is to make the plugin’s method enqueue return early
if all outputs are empty, and thereby not complicate the rest of the logic with consideration of
zero-length dimensions.
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8.4.  IRNNv2Layer And Empty Tensors
IRNNv2Layer works for empty tensors but was deprecated in TensorRT 7.2.1 and are removed
in TensorRT 9.0. Use a loop to synthesize a recurrent sub-network as discussed in the
Working With Loops section.

IRNNLayer has been deprecated since TensorRT 4.0 and was removed in TensorRT 8.0.

8.5.  IShuffleLayer And Empty Tensors
By default, IShuffleLayer treats a 0 in the reshape dimensions as a special placeholder,
and not meaning zero. The placeholder means “copy the corresponding input dimension.”
This default behavior has been kept for compatibility with earlier versions of TensorRT but is
hazardous when working with empty tensors.

If you are reshaping to dimensions that might include a zero-length dimension, disable the
placeholder treatment of zero with the IShuffleLayer::setZeroIsPlaceholder method.
IShuffleLayer* s = ...;
s->setZeroIsPlaceholder(false);

For example, consider the following code that intends to reshape a tensor input to dimensions
specified by shape tensor reshapeDims.
IShuffleLayer* s = network.addShuffle(input);
s->setInput(1, reshapeDims);
#if CORRECT
s->setZeroIsPlaceholder(false);
#endif
output = *s->getOutput(0);

Suppose at runtime, the input has dimensions [3,0], and the second input reshapeDims
contains [0,0]. If the engine was built with CORRECT==0, the zeros in reshapeDims are
interpreted as placeholders for input dimensions, and the output has dimensions [3,0], not
[0,0] as intended. Building the fragment with CORRECT==1 ensures that the IShuffleLayer
treats zero as zero. Unless you know that you need the placeholder feature, it is recommended
that it be turned off with setZeroIsPlaceholder(false).

Empty tensors also introduce the possibility of a new kind of error when using the -1 wildcard
in reshape dimensions. The wildcard denotes an unknown dimension x that TensorRT solves
using the equation:
x *  (volume of other reshape dimension) = volume(input
    tensor)

If the volume of the other reshape dimensions is zero, one of two errors occur:

‣ The volume of the input tensor is zero. Then x is indeterminate.

‣ The volume of the input tensor is nonzero. Then x has no solution.

TensorRT reports an error in either case, possibly at build time or run time.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
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8.6.  ISliceLayer And Empty Tensors
The behavior of ISliceLayer for empty tensors follows a strict interpretation of its semantics.
Specifically, consider slicing a dimension of length L with parameters start, size, and
stride.

Constructing the output tensor requires subscripting the half-open interval [0,L) with
generated indices of the form start+i*stride for all i, such that 0 ≤ i < size. All the
generated indices must be in bounds. However, with size=0, no indices are generated, and
thus no bounds checking applies. So for size=0, the start and stride parameters do not
matter and can be any values.

Conversely, if L=0 and size≠0, then TensorRT reports an error since the half-open interval
[0,L) becomes empty, and the generated indices are inherently out of bounds.

8.7.  IConvolutionLayer And Empty
Tensors

Convolution with zero input channels (for example, [n, 0, h, w]) results in a tensor of zeros
with dimensions [n, k, p, q], before adding the bias, because each element of the result is
a sum over an empty set of products.
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Chapter 9. Working With Loops

NVIDIA® TensorRT™ supports loop-like constructs, which can be useful for recurrent
networks. TensorRT loops support scanning over input tensors, recurrent definitions of
tensors, and both “scan outputs” and “last value” outputs.

9.1.  Defining A Loop
A loop is defined by loop boundary layers.

‣ ITripLimitLayer specifies how many times the loop iterates.

‣ IIteratorLayer enables a loop to iterate over a tensor.

‣ IRecurrenceLayer specifies a recurrent definition.

‣ ILoopOutputLayer specifies an output from the loop.

Each of the boundary layers inherits from class ILoopBoundaryLayer, which has a method
getLoop() for getting its associated ILoop. The ILoop object identifies the loop. All loop
boundary layers with the same ILoop belong to that loop.

Figure 14 depicts the structure of a loop and data flow at the boundary. Loop-invariant tensors
can be used inside the loop directly, such as shown for FooLayer.
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Figure 14. A TensorRT loop is set by loop boundary layers. Dataflow can
leave the loop only via ILoopOutputLayer. The only back edges
allowed are the second input to IRecurrenceLayer.

A loop can have multiple IIteratorLayer, IRecurrenceLayer, and ILoopOutputLayer, and
at most two ITripLimitLayers as explained later. A loop with no ILoopOutputLayer has no
output and is optimized away by TensorRT.

The interior of the loop can have the following kinds of layers:

‣ IActivationLayer if the operation is one of:

‣ kRELU

‣ kSIGMOID

‣ kTANH

‣ kELU

‣ IConcatenationLayer

‣ IConstantLayer

‣ IIdentityLayer

‣ IFullyConnectedLayer

‣ IMatrixMultiplyLayer

‣ IElementWiseLayer

‣ IPluginV2Layer

‣ IScaleLayer

‣ ISliceLayer

‣ ISelectLayer
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‣ IShuffleLayer

‣ ISoftMaxLayer

‣ IUnaryLayer if the operation is one of:

‣ kABS

‣ kCEIL

‣ kEXP

‣ kFLOOR

‣ kLOG

‣ kNEG

‣ kNOT

‣ kRECIP

‣ kSQRT

Interior layers are free to use tensors defined inside or outside the loop. The interior can
contain other loops (refer to Nested Loops).

To define a loop, first, create an ILoop object with the method
INetworkDefinition::addLoop. Then add the boundary and interior layers. The rest of
this section describes the features of the boundary layers, using loop to denote the ILoop*
returned by INetworkDefinition::addLoop.

ITripLimitLayer supports both counted loops and while-loops.

‣ loop->addTripLimit(t,TripLimit::kCOUNT) creates an ITripLimitLayer whose
input t is a 0D Int32 tensor that specifies the number of loop iterations.

‣ loop->addTripLimit(t,TripLimit::kWHILE) creates an ITripLimitLayer whose
input t is a 0D Bool tensor that specifies whether an iteration should occur. Typically t is
either the output of an IRecurrenceLayer or a calculation based on said output.

A loop can have at most one of each kind of limit.

IIteratorLayer supports iterating forwards or backward over any axis.

‣ loop->addIterator(t) adds an IIteratorLayer that iterates over axis 0 of tensor t.
For example, if the input is the matrix:
2 3 5
4 6 8

the output is the 1D tensor {2, 3, 5} on the first iteration and {4, 6, 8} for the second
iteration. It’s invalid to iterate beyond the tensor’s bounds.

‣ loop->addIterator(t,axis) is similar, but the layer iterates over the given axis. For
example, if axis=1 and the input is a matrix, each iteration delivers a column of the matrix.

‣ loop->addIterator(t,axis,reverse) is similar, but the layer produces its output in
reverse order if reverse=true.

ILoopOutputLayer supports three forms of loop output:

‣ loop->addLoopOutput(t,LoopOutput::kLAST_VALUE) outputs the last value of t,
where t must be the output of a IRecurrenceLayer.



Working With Loops

NVIDIA TensorRT PG-08540-001_v8.0.1   |   82

‣ loop->addLoopOutput(t,LoopOutput::kCONCATENATE,axis) outputs the
concatenation of each iteration’s input to t. For example, if the input is a 1D tensor, with
value {a,b,c} on the first iteration and {d,e,f} on the second iteration, and axis=0, the
output is the matrix:
a b c
d e f

If axis=1, the output is:
a d
b e
c f

‣ loop->addLoopOutput(t,LoopOutput::kREVERSE,axis) is similar, but reverses the
order.

Both the kCONCATENATE and kREVERSE forms of ILoopOutputLayer require a 2nd input,
which is a 0D INT32 shape tensor specifying the length of the new output dimension. When the
length is greater than the number of iterations, the extra elements contain arbitrary values.
The second input, for example u, should be set using ILoopOutputLayer::setInput(1,u).

Finally, there is IRecurrenceLayer. Its first input specifies the initial output value, and its
second input specifies the next output value. The first input must come from outside the loop;
the second input usually comes from inside the loop. For example, the TensorRT analog of this
C++ fragment:
for (int32_t i = j; ...; i += k) ...

could be created by these calls, where j and k are ITensor*.
ILoop* loop = n.addLoop();
IRecurrenceLayer* iRec = loop->addRecurrence(j);
ITensor* i = iRec->getOutput(0);
ITensor* iNext = addElementWise(*i, *k, 
    ElementWiseOperation::kADD)->getOutput(0);
iRec->setInput(1, *iNext);

The second input to IRecurrenceLayer is the only case where TensorRT allows a back edge.
If such inputs are removed, the remaining network must be acyclic.

9.2.  Formal Semantics
TensorRT has applicative semantics, meaning there are no visible side effects other than
engine inputs and outputs. Because there are no side effects, intuitions about loops from
imperative languages do not always work. This section defines formal semantics for
TensorRT’s loop constructs.

The formal semantics is based on lazy sequences of tensors. Each iteration of a loop
corresponds to an element in the sequence. The sequence for a tensor X inside the loop is
denoted ⟨X0, X1, X2, ...⟨. Elements of the sequence are evaluated lazily, meaning, as
needed.

The output from IIteratorLayer(X) is ⟨X[0], X[1], X[2], ...⟨ where X[i] denotes
subscripting on the axis specified for the IIteratorLayer.

The output from IRecurrenceLayer(X,Y)is ⟨X, Y0, Y1, Y2, ...⟨.

The input and output from an ILoopOutputLayer depend on the kind of LoopOutput.
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‣ kLAST_VALUE: Input is a single tensor X, and output is Xn for an n-trip loop.

‣ kCONCATENATE: The first input is a tensor X, and the second input is a scalar shape
tensor Y. The result is the concatenation of X0, X1, X2, ... Xn-1 with post padding,
if necessary, to the length specified by Y. It is a runtime error if Y < n. Y is a build-time
constant. Note the inverse relationship with IIteratorLayer. IIteratorLayer maps
a tensor to a sequence of subtensors; ILoopOutputLayer with kCONCATENATE maps a
sequence of sub-tensors to a tensor.

‣ kREVERSE: Similar to kCONCATENATE, but the output is in the reverse direction.

The value of n in the definitions for the output of ILoopOutputLayer is determined by the
ITripLimitLayer for the loop:

‣ For counted loops, it’s the iteration count, meaning the input to the ITripLimitLayer.

‣ For while loops, it’s the least n such that Xn is false, where X is the sequence for the
ITripLimitLayer’s input tensor.

The output from a non-loop layer is a sequence-wise application of the layer’s function. For
example, for a two-input non-loop layer F(X,Y) = ⟨f(X0,Y0), f(X1,Y1), f(X2,Y2)...⟨. If a
tensor comes from outside the loop, i.e. is loop-invariant, then the sequence for it is created by
replicating the tensor.

9.3.  Nested Loops
TensorRT infers the nesting of the loops from the data flow. For instance, if loop B uses values
defined inside loop A, then B is considered to be nested inside of A.

TensorRT rejects networks where the loops are not cleanly nested, such as if loop A uses
values defined in the interior of loop B and vice versa.

9.4.  Limitations
A loop that refers to more than one dynamic dimension can take an unexpected amount of
memory.

In a loop, memory is allocated as if all dynamic dimensions take on the maximum value
of any of those dimensions. For example, if a loop refers to two tensors with dimensions
[4,x,y] and [6,y], memory allocation for those tensors are as if their dimensions were
[4,max(x,y),max(x,y)] and [6,max(x,y)].

The input to a LoopOutputLayer with kLAST_VALUE must be the output from an
IRecurrenceLayer.

The loop API supports only FP32 and FP16 precision.
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9.5.  Replacing IRNNLayer And
IRNNv2Layer With Loops

IRNNLayer was deprecated in TensorRT 4.0 and removed in TensorRT 8.0. IRNNv2Layer
was deprecated in TensorRT 7.2.1 and will be removed in TensorRT 9.0. Use the loop API
to synthesize a recurrent sub-network. For an example, refer to sampleCharRNN, method
SampleCharRNNLoop::addLSTMCell. The loop API lets you express general recurrent
networks instead of being limited to the prefabricated cells in IRNNLayer and IRNNv2Layer.
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Chapter 10. Working With DLA

NVIDIA® DLA™ (Deep Learning Accelerator) is a fixed-function accelerator engine targeted for
deep learning operations. DLA is designed to do full hardware acceleration of convolutional
neural networks. DLA supports various layers such as convolution, deconvolution, fully-
connected, activation, pooling, batch normalization, etc. DLA does not support Explicit-
Quantization.

For more information about DLA support in NVIDIA® TensorRT™ layers, refer to DLA Supported
Layers. The trtexec tool has additional arguments to run networks on DLA, refer to trtexec.

To run the AlexNet network on DLA using trtexec in FP16 mode, issue:
 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLACore=1 --fp16 --
allowGPUFallback

To run the AlexNet network on DLA using trtexec in INT8 mode, issue:
 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLACore=1 --int8 --
allowGPUFallback

10.1.  Running On DLA During TensorRT
Inference

The TensorRT builder can be configured to enable inference on DLA. DLA support is currently
limited to networks running in either FP16 or INT8 mode. The DeviceType enumeration is
used to specify the device that the network or layer executes on. The following API functions in
the IBuilderConfig class can be used to configure the network to use DLA,

setDeviceType(ILayer* layer, DeviceType deviceType)

This function can be used to set the deviceType that the layer must execute on.
getDeviceType(const ILayer* layer)

This function can be used to return the deviceType that this layer executes on. If the layer
is executing on the GPU, this returns DeviceType::kGPU.

canRunOnDLA(const ILayer* layer)

This function can be used to check if a layer can run on DLA.
setDefaultDeviceType(DeviceType deviceType)

This function sets the default deviceType to be used by the builder. It ensures that all the
layers that can run on DLA runs on DLA unless setDeviceType is used to override the
deviceType for a layer.
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getDefaultDeviceType()

This function returns the default deviceType which was set by setDefaultDeviceType.
isDeviceTypeSet(const ILayer* layer)

This function checks whether the deviceType has been explicitly set for this layer.
resetDeviceType(ILayer* layer)

This function resets the deviceType for this layer. The value is reset to the deviceType
that is specified by setDefaultDeviceType or DeviceType::kGPU if none is specified.

allowGPUFallback(bool setFallBackMode)

This function notifies the builder to use GPU if a layer that was supposed to run on DLA
cannot run on DLA. For more information, refer to GPU Fallback Mode.

reset()

This function can be used to reset the IBuilderConfig state, which sets the deviceType
for all layers to be DeviceType::kGPU. After reset, the builder can be re-used to build
another network with a different DLA config.

The following API functions in IBuilder class can be used to help configure the network for
using the DLA:
getMaxDLABatchSize()

This function returns the maximum batch size DLA can support.

Note: For any tensor, the total volume of index dimensions combined with the requested
batch size should not exceed the value returned by this function.

getNbDLACores()

This function returns the number of DLA cores available to the user.

If the builder is not accessible, such as in the case where a plan file is being loaded online in
an inference application, then the DLA to be utilized can be specified differently by using DLA
extensions to the IRuntime. The following API functions in the IRuntime class can be used to
configure the network to use DLA:
getNbDLACores()

This function returns the number of DLA cores that are accessible to the user.
setDLACore(int dlaCore)

The DLA core to execute on. Where dlaCore is a value between 0 and getNbDLACores() -
1. The default value is 0.

getDLACore()

The DLA core the runtime execution is assigned to. The default value is 0.

10.1.1.  Example: sampleMNIST With DLA
This section provides details on how to run a TensorRT sample with DLA enabled.
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The "Hello World" For TensorRT (sampleMNIST) located in the GitHub repository, the sample
demonstrates how to import a trained model, build the TensorRT engine, serialize and
deserialize the engine and finally use the engine to perform inference.

The sample first creates the builder:
auto builder = SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(gLogger));
if (!builder) return false;
builder->setMaxBatchSize(batchSize);
config->setMaxWorkspaceSize(16_MB);

Then, enable GPUFallback mode:
config->setFlag(BuilderFlag::kGPU_FALLBACK);
config->setFlag(BuilderFlag::kFP16); or config->setFlag(BuilderFlag::kINT8);

Enable execution on DLA, where dlaCore specifies the DLA core to execute on:
config->setDefaultDeviceType(DeviceType::kDLA);
config->setDLACore(dlaCore);

With these additional changes, sampleMNIST is ready to execute on DLA. To run
sampleMNIST with DLA Core 1, use the following command:
 ./sample_mnist --useDLACore=1 [--int8|--fp16]

10.1.2.  Example: Enable DLA Mode For A Layer
During Network Creation

In this example, let’s create a simple network with input, convolution and output.

About this task

Procedure

 1. Create the builder and the network:
IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetworkV2(0U);

 2. Add the Input layer to the network, with the input dimensions.
auto data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{1, INPUT_H, INPUT_W});

 3. Add the convolution layer with hidden layer input nodes, strides, and weights for filter and
bias.
auto conv1 = network->addConvolution(*data->getOutput(0), 20, DimsHW{5, 5},
 weightMap["conv1filter"], weightMap["conv1bias"]);
conv1->setStride(DimsHW{1, 1});

 4. Set the convolution layer to run on DLA:
if(canRunOnDLA(conv1))
{
config->setFlag(BuilderFlag::kFP16); or config->setFlag(BuilderFlag::kINT8);
builder->setDeviceType(conv1, DeviceType::kDLA); 

}

 5. Mark the output:
network->markOutput(*conv1->getOutput(0));

 6. Set the DLA engine to execute on:
engine->setDLACore(0)

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleMNIST
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10.2.  DLA Supported Layers
This section lists the layers supported by DLA along with the constraints associated with each
layer.

Generic restrictions while running on DLA (applicable to all layers)

‣ Max batch size supported is 32.

‣ The dimensions used for building must be used at runtime.

‣ The maximum size of weights supported by DLA is 512 MB.

‣ A DLA network can only support up to 1 GB of intermediate tensor data. Tensors that are
the input and output to the DLA graph are not counted against this limit. TensorRT rejects
networks that exceed this limit that are built without GPU fallback enabled.

‣ DLA supports wildcard dimensions on the leftmost dimension as long as the min, max, and
opt values of the profile are equal.

‣ TensorRT can split a DLA network into multiple sections if any restriction is violated and
GpuFallback is enabled. Otherwise, TensorRT can emit an error and fallback. For more
information, refer to GPU Fallback Mode.

‣ At most, four DLA loadables can be in use concurrently due to hardware and software
memory limitations.

Note: Batch size for DLA is the product of all index dimensions except the CHW dimensions. For
example, if input dimensions are NPQRS, the effective batch size is N*P.

Layer specific restrictions
Convolution and Fully Connected layers

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Each dimension of the kernel must be in the range [1, 32].

‣ Padding must be in the range [0, 31].

‣ Dimensions of padding must be less than the corresponding kernel dimension.

‣ Dimensions of stride must be in the range [1, 8].

‣ Number of output maps must be in the range [1, 8192].

‣ Number of groups must be in the range [1, 8192] for operations using the formats
TensorFormat::kLINEAR, TensorFormat::kCHW16, and TensorFormat::kCHW32.

‣ Number of groups must be in the range [1, 4] for operations using the formats
TensorFormat::kCHW4.

‣ Dilated convolution must be in the range [1, 32].
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Deconvolution layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Dimensions of the kernel must be in the range[1, 32], in addition to 1x[64, 96,
128] and [64, 96, 128]x1.

‣ TensorRT has disabled deconvolution square kernels and strides in the range [23 -
32] on DLA as they significantly slow down compilation.

‣ The stride must be the same in each dimension as the kernel dimensions.

‣ Padding must be 0.

‣ Grouped deconvolution must be 1.

‣ Dilated deconvolutions must be 1.

‣ Number of input channels must be in the range [1, 8192].

‣ Number of output channels must be in the range [1, 8192].

Pooling layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Operations supported: kMAX, kAVERAGE.

‣ Dimensions of the window must be in the range [1, 8].

‣ Dimensions of padding must be in the range [0, 7].

‣ Dimensions of stride must be in the range [1, 16].

‣ Exclusive padding with kAVERAGE pooling is not supported.

‣ With INT8 mode, input and output tensor scales must be the same.

Activation layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Functions supported: ReLU, Sigmoid, TanH and Clipped ReLU.

‣ Negative slope is not supported for ReLU.

‣ Clipped ReLU only supports values in the range [1, 127].

‣ TanH, Sigmoid INT8 support is supported by auto-upgrading to FP16.

ElementWise layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Operations supported: Sum, Sub, Product, Max, and Min.
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‣ Only Sum operation is supported in INT8.

Note: TensorRT concatenates a DLA Scale layer and a DLA ElementWise layer with
the operation Sum to support the Sub operation, which is not supported by a single DLA
ElementWise layer.

Scale layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Mode supported: Uniform, Per-Channel, and ElementWise.

‣ Only scale and shift operations are supported.

LRN (Local Response Normalization) layer

‣ Allowed window sizes are 3, 5, 7, or 9.

‣ Normalization region supported is ACROSS_CHANNELS.

‣ LRN INT8 is supported by auto-upgrading to FP16.

Concatenation layer

‣ DLA supports concatenation only along the channel axis.

‣ Concat must have at least two inputs.

Note: When running INT8 networks on the DLA using TensorRT, operations are recommended
to be added to the same subgraph to reduce quantization errors across the subgraph of
the network running on the DLA by allowing them to fuse and retain higher precision for
intermediate results. Breaking apart the subgraph in order to inspect intermediate results
by setting the tensors as Network output tensors can result in different levels of quantization
errors due to these optimizations being disabled.

10.3.  GPU Fallback Mode
The GPUFallbackMode sets the builder to use GPU if a layer that was marked to run on DLA
could not run on DLA.

A layer cannot run on DLA due to the following reasons:

 1. The layer operation is not supported on DLA.
 2. The parameters specified are out of the supported range for DLA.
 3. The given batch size exceeds the maximum permissible DLA batch size. For more

information, refer to DLA Supported Layers.
 4. A combination of layers in the network causes the internal state to exceed what the DLA is

capable of supporting.
 5. There are no DLA engines available on the platform.
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If the GPUFallbackMode is set to false, a layer set to execute on DLA that couldn't run on
DLA results in an error. However, with GPUFallbackMode set to true, it continues to execute
on the GPU instead, after reporting a warning.

Similarly, if defaultDeviceType is set to DeviceType::kDLA and GPUFallbackMode is set to
false, it results in an error if any of the layers can't run on DLA. With GPUFallbackMode set
to true, it reports a warning and continue executing on the GPU.

If a combination of layers in the network cannot run on DLA, all layers in the combination
executes on the GPU.
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Chapter 11. Working With Multi-
Instance GPU (MIG)

Multi-instance GPU, or MIG, is a new feature in NVIDIA Ampere GPU architecture that enables
user-directed partitioning of a single GPU into multiple smaller GPUs. This improves GPU
utilization by enabling the GPU to be shared effectively by parallel compute workloads on bare
metal, GPU pass through, or on multiple vGPUs.

The physical partitions provide dedicated compute and memory slices with QoS and
independent execution of parallel workloads on fractions of the GPU SMs. For TensorRT
applications with low GPU SM or memory utilization, partitioning the GPU into smaller
instances can produce higher throughput at small or no impact on latency. The optimal
partitioning scheme is application-specific.

MIG functionality is available in NVIDIA GPU drivers starting with the CUDA 11.0 release. For
more information, refer to the NVIDIA Multi-Instance GPU User Guide.

11.1.  GPU Partitioning
The NVIDIA Ampere GPU architecture supports eight independent GPU slices. Multiple GPU
slices can be combined to create GPU instances. Each slice is a partition of the GPU memory
and SMs resources; other engines (DMAs, NVDEC, etc.) continue to be shared resources.

GPU slices are a combination of GPU memory and SM slices. The NVIDIA Ampere GPU
architecture has 7 GPU SM slices and 8 GPU memory slices (i.e, one GPU slice has no SMs).

A GPU instance is built from 1, 2, 4 or 8 naturally aligned GPU memory slices and all the
available corresponding GPU SM slices. One exception is the GPU instance with 2 GPU
memory slices and 1 GPU SM slice, which is not supported.

For more information, refer to the NVIDIA Multi-Instance GPU User Guide.

11.2.  Impact On TensorRT Applications
The Multi-instance GPU (MIG) feature affects many internal components of the compute
software stack; however, the user-visible impact is minimal.

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
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TensorRT and CUDA applications treat a compute instance and its parent GPU instance as a
single CUDA device (i.e., the MIG configuration is completely transparent to TensorRT APIs
and the CUDA programming model).

11.3.  Configuring NVIDIA MIG
The partitioning of GPU resources into slices is controlled by the Multi-instance GPU (MIG)-
mode setting of the GPU.

Management of GPU instances is performed through the nvidia-smi CLI or nvml APIs. All
the operations require MIG management privileges. For details on the MIG manager and GPU
instance profiles, refer to the GPU Deployment and Management documentation.

https://docs.nvidia.com/deploy
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Chapter 12. Deploying A TensorRT
Optimized Model

After you’ve created a plan file containing your optimized inference model, you can deploy that
file into your production environment. How you create and deploy the plan file depends on your
environment. For example, you may have a dedicated inference executable for your model that
loads the plan file and then uses the NVIDIA® TensorRT™ Execution API to pass inputs to the
model, execute the model to perform inference, and finally read outputs from the model.

This section discusses how TensorRT can be deployed in some common deployment
environments.

12.1.  Deploying In The Cloud
One common cloud deployment strategy for inferencing is to expose a model through a server
that implements an HTTP REST or gRPC endpoint for the model. A remote client can then
perform inferencing by sending a properly formatted request to that endpoint. The request
selects a model, provides the necessary input tensor values required by the model, and
indicates which model outputs should be calculated.

To take advantage of TensorRT optimized models within this deployment strategy does not
require any fundamental change. The inference server must be updated to accept models
represented by TensorRT plan files and must use the TensorRT Execution APIs to load and
execute those plans. An example of an inference server that provides a REST endpoint for
inferencing can be found in the NVIDIA Triton Inference Server Container Release Notes and
NVIDIA Triton Inference Server Guide.

12.2.  Deploying To An Embedded System
TensorRT can also be used to deploy trained networks to embedded systems such as NVIDIA
Drive. In this context, deployment means taking the network and using it in a software
application running on the embedded device, such as object detection or mapping service.
Deploying a trained network to an embedded system involves the following steps:

http://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html
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Procedure

 1. Export the trained network to ONNX, which can be imported into TensorRT (refer to
Working With Deep Learning Frameworks for more details).

 2. Write a program that uses the TensorRT C++ API to import, optimize, and serialize the
trained network to a plan file (refer to Working With Deep Learning Frameworks, Working
With Mixed Precision, and Performing Inference In C++). For the purpose of discussion,
let’s call this program make_plan.
 a). Optionally, perform INT8 calibration and export a calibration cache (refer to Working

With Mixed Precision).
 3. Build and run make_plan on the host system to validate the trained model before

deployment to the target system.
 4. Copy the trained network (and INT8 calibration cache, if applicable) to the target system.

Re-build and re-run the make_plan program on the target system to generate a plan file.

Note: The make_plan program must run on the target system in order for the TensorRT
engine to be optimized correctly for that system. However, if an INT8 calibration cache
was produced on the host, the cache can be re-used by the builder on the target when
generating the engine (in other words, there is no need to do INT8 calibration on the target
system itself).

After the plan file has been created on the embedded system, an embedded application
can create an engine from the plan file and perform inferencing with the engine by using
the TensorRT C++ API. For more information, refer to Performing Inference In C++.

To walk through a typical use case where a TensorRT engine is deployed on an embedded
system, refer to:

‣ Fast INT8 Inference for Autonomous Vehicles with TensorRT 3

‣ GitHub for Jetson and JetPack

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://devblogs.nvidia.com/int8-inference-autonomous-vehicles-tensorrt/
https://github.com/dusty-nv/jetson-inference
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Chapter 13. Working With Deep
Learning Frameworks

With the Python API, an existing model built with TensorFlow or an ONNX compatible
framework can be used to build a NVIDIA® TensorRT™ engine using the provided parsers. The
Python API also supports frameworks that store layer weights in a NumPy compatible format,
for example, PyTorch.

13.1.  Working With TensorFlow
TensorRT can work with TensorFlow in the following ways.

tf2onnx

This is the recommended method and involves using the tf2onnx converter first to convert
the TensorFlow graph to ONNX and then using the ONNX parser to import the ONNX model
into TensorRT. For details on tf2onnx, refer to thetf2onnx repository. For details on using
the ONNX parser, refer to the Importing From ONNX Using Python or Importing An ONNX
Model Using The C++ Parser API steps.

TF-TRT

This method accelerates a TensorFlow graph with TensorRT even if there are TensorFlow
operators in the graph that are not supported by TensorRT (or TF-TRT). The subgraphs that
are supported by TensorRT and TF-TRT are accelerated, and the resulting graph is still
a TensorFlow graph that you can execute as usual. For step-by-step instructions on how
to accelerate inference in TensorFlow with TensorRT (TF-TRT), refer to the TF-TRT User
Guide. For TF-TRT examples, refer to Examples for TensorRT in TensorFlow (TF-TRT).

13.2.  Working With PyTorch And Other
Frameworks

PyTorch models can be exported to ONNX which can then be consumed by TensorRT.

If ONNX export is not possible, exporting to TensorRT is possible by replicating the network
architecture using the TensorRT API and then copying the weights from PyTorch (or any
other framework with NumPy compatible weights). For more information on using TensorRT

https://github.com/onnx/tensorflow-onnx
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://github.com/tensorflow/tensorrt
https://pytorch.org/docs/stable/onnx.html
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with a PyTorch model, refer to the "Hello World" For TensorRT Using PyTorch And Python
(network_api_pytorch_mnist) sample.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#network_api_pytorch_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#network_api_pytorch_mnist
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Chapter 14. Working With DALI

DALI is a highly optimized open sourced library available on GitHub for data preprocessing.
It uses an execution engine for a fast preprocessing pipeline. DALI accelerates blocks for
image loading and augmentation and also provides GPU support for JPEG decoding and image
manipulation.

NVIDIA® TensorRT™ can be integrated with NVIDIA® Data Loading Library™ (DALI), a collection
of highly optimized building blocks and an execution engine to accelerate input data pre-
processing for deep learning applications.

For more information about DALI, refer to the DALI data loading documentation.

14.1.  Benefits Of Integration
The benefits of integrating DALI with TensorRT include the following.

‣ Running DNN models requires input data pre-processing

‣ The computational complexity of the I/O pipeline has increased. Hence, the GPU starves
for data. DALI helps to accelerate the preprocessing pipeline.

‣ DALI offsets the compute-intensive data pre-processing to GPU.

‣ Pre-processing involves decoding, resize, crop, spatial augmentation, format conversions
(NCHW and NHWC)

‣ Multi-device DNN inference could be achieved via the same I/O pipeline

DALI supports:

‣ The feature to accelerate pre-processing on GPUs

‣ Configurable graphs and custom operators

‣ Multiple input formats (for example, JPEG, LMDB, RecordIO, TFRecord)

‣ Serializing a whole graph (portable graph)

‣ Easily integrates with framework plugins and open-source bindings

DALI supports a custom operator library that can be loaded at runtime. TensorRT inference
can be configured as a custom operator to be a part of the DALI pipeline. A working example of
TensorRT inference integrated as a part of DALI is open-sourced here.

For more information about integrating DALI with TensorRT on Xavier, refer to the GTC 2019
talk here.

https://docs.nvidia.com/deeplearning/sdk/index.html#data-loading
https://github.com/NVIDIA/DL4AGX
https://on-demand.gputechconf.com/gtc/2019/video/_/S9818/
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Chapter 15. Troubleshooting

The following sections help answer the most commonly asked questions regarding typical use
cases with NVIDIA® TensorRT™.

15.1.  FAQs
This section is to help troubleshoot the problem and answer our most asked questions.

Q: How do I create an engine that is optimized for several different batch sizes?

A: While TensorRT allows an engine optimized for a given batch size to run at any smaller
size, the performance for those smaller sizes can not be as well-optimized. To optimize for
multiple different batch sizes, create optimization profiles at the dimensions that are assigned
to OptProfilerSelector::kOPT.

Q: Are engines and calibration tables portable across TensorRT versions?

A: No. Internal implementations and formats are continually optimized and can change
between versions. For this reason, engines and calibration tables are not guaranteed to be
binary compatible with different versions of TensorRT. Applications should build new engines
and INT8 calibration tables when using a new version of TensorRT.

Q: How do I choose the optimal workspace size?

A: Some TensorRT algorithms require additional workspace on the GPU. The method
IBuilderConfig::setMaxWorkspaceSize() controls the maximum amount of workspace
that can be allocated and prevents algorithms that require more workspace from being
considered by the builder. At runtime, the space is allocated automatically when creating an
IExecutionContext. The amount allocated is no more than is required, even if the amount
set in IBuilderConfig::setMaxWorkspaceSize() is much higher. Applications should
therefore allow the TensorRT builder as much workspace as they can afford; at runtime,
TensorRT allocates no more than this and typically less.
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Q: How do I use TensorRT on multiple GPUs?

A: Each ICudaEngine object is bound to a specific GPU when it is instantiated, either by the
builder or on deserialization. To select the GPU, use cudaSetDevice() before calling the
builder or deserializing the engine. Each IExecutionContext is bound to the same GPU as
the engine from which it was created. When calling execute() or enqueue(), ensure that the
thread is associated with the correct device by calling cudaSetDevice() if necessary.

Q: How do I get the version of TensorRT from the library file?

A: There is a symbol in the symbol table named tensorrt_version_⟨_⟨_⟨_⟨ which contains
the TensorRT version number. One possible way to read this symbol on Linux is to use the nm
command like in the following example:
$ nm -D libnvinfer.so.7 | grep tensorrt_version
000000002564741c B tensorrt_version_7_2_2_3

Q: What can I do if my network is producing the wrong answer?

A: There are several reasons why your network can be generating incorrect answers. Here are
some troubleshooting approaches which can help diagnose the problem:

‣ Turn on INFO level messages from the log stream and check what TensorRT is reporting.

‣ Check that your input preprocessing is generating exactly the input format required by the
network.

‣ If you’re using reduced precision, run the network in FP32. If it produces the correct result,
it is possible that lower precision has an insufficient dynamic range for the network.

‣ Try marking intermediate tensors in the network as outputs, and verify if they match what
you are expecting.

Note: Marking tensors as outputs can inhibit optimizations, and therefore, can change the
results.

How do I determine how much device memory TensorRT needs to run my
network?

A: TensorRT engines use device memory for three purposes: to hold the weights required by
the network, to hold per context persistent state information, and to hold the intermediate
activations required by IExecutionContext. The size of the weights can be closely
approximated by the size of the serialized engine (in fact, this is a slight overestimate as
the serialized engine also includes the network definition). The per context persistent state
information is allocated using the GPU allocator during the creation of the execution context
(even when createExecutionContextWithoutDeviceMemory() API is used). The size of
persistent memory allocated is reported in the verbose logs generated during the creation of
the execution context. The size of the activation memory required can be determined by calling
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ICudaEngine::getDeviceMemorySize(). The sum of these is the amount of device memory
TensorRT allocates for the engine at runtime to run the network.

Note: The CUDA infrastructure and device code also consume device memory. The amount of
memory varies by platform, device, and TensorRT version. Use cudaGetMemInfo to determine
the total amount of device memory in use.

Q: How much memory does the TensorRT builder use to build my network?

IBuilder can temporarily use more device memory than what the engine runtime requires.

‣ During a phase, it uses twice as much memory for the weights required by the engine.
During that phase, no memory is allocated for activations.

‣ The auto-tuner times each layer for FP32 operation. Timing a layer in FP32 consumes
twice as much device memory as an FP16 operation and four times as much for an INT8
operation, both for the weights and its input/output activations. The additional memory
consumption for timing is theoretically noticeable if a single layer dominates the overall
memory consumption of a network.

Note: The CUDA infrastructure and device code also consume device memory. The amount of
memory varies by platform, device, and TensorRT version. Use cudaGetMemInfo to determine
the total amount of device memory in use.

On systems with unified CPU/GPU memory, the IBuilder CPU memory consumption can
further impact memory requirements. IBuilder can hold in CPU memory not only the original
weights provided via the API but a copy of weights at a different precision or calculated from
multiple weights from the original network.

Q: If I build the engine on one GPU and run the engine on another GPU, does
this work?

A: We recommend that you don’t; however if you do, you’ll need to follow these guidelines:

 1. The major, minor, and patch versions of TensorRT must match between systems. This
ensures you are picking kernels that are still present and have not undergone certain
optimizations or bug fixes that would change their behavior.

 2. The CUDA compute capability major and minor versions must match between systems.
This ensures that the same hardware features are present so the kernel does not fail to
execute. An example would be mixing cards with different precision capabilities.

 3. The following properties should match between systems:

‣ Maximum GPU graphics clock speed

‣ Maximum GPU memory clock speed

‣ GPU memory bus width

https://developer.nvidia.com/cuda-gpus
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‣ Total GPU memory

‣ GPU L2 cache size

‣ SM processor count

‣ Asynchronous engine count

If any of the previous properties do not match, you receive the following warning: Using
an engine plan file across different models of devices is not recommended

and is likely to affect performance or even cause errors.

If you still want to proceed, then you should build the engine on the smallest SKU in the
family because autotuner choices made on smaller GPUs generalize better.

Q: How do I implement batch normalization in TensorRT?

A: Batch normalization can be implemented using a sequence of IElementWiseLayer in
TensorRT. More specifically:
adjustedScale = scale / sqrt(variance + epsilon) 
batchNorm = (input + bias - (adjustedScale * mean)) * adjustedScale

Q: Why does my network run slower when using DLA compared to without
DLA?

A: DLA was designed to maximize energy efficiency. Depending on the features supported by
DLA and the features supported by the GPU, either implementation can be more performant.
Which implementation to use depends on your latency or throughput requirements and your
power budget. Since all DLA engines are independent of the GPU and each other, you could
also use both implementations at the same time to further increase the throughput of your
network.

Q: Which platforms and/or layers support INT8 quantization?

A: List of Layers supporting INT8 precision:

‣ IConcatenationLayer

‣ IDeconvolutionLayer

‣ IElementWiseLayer

‣ IFullyConnectedLayer

‣ IPaddingLayer

‣ IPoolingLayer

‣ IScaleLayer

For more information, refer to the Support Matrix.

Q: Is INT4 quantization or INT16 quantization supported by TensorRT?

A: Neither INT4 nor INT16 quantization is supported by TensorRT at this time.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#hardware-precision-matrix
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Q: When will TensorRT support layer XYZ required by my network in the UFF
parser?

A: UFF is deprecated. We recommend users switch their workflows to ONNX. The TensorRT
ONNX parser is an open source project.

Q: Can I use multiple TensorRT builders to compile on different targets?

A: TensorRT assumes that all resources for the device it is building on are available for
optimization purposes. Concurrent use of multiple TensorRT builders (for example, multiple
trtexec instances) to compile on different targets (DLA0, DLA1 and GPU) can oversubscribe
system resources causing undefined behavior (meaning, inefficient plans, builder failure, or
system instability).

It is recommended to use trtexec with the --saveEngine argument to compile for different
targets (DLA and GPU) separately and save their plan files. Such plan files can then be reused
for loading (using trtexec with the --loadEngine argument) and submitting multiple
inference jobs on the respective targets (DLA0, DLA1, GPU). This two-step process alleviates
over-subscription of system resources during the build phase while also allowing execution of
the plan file to proceed without interference by the builder.

Q: How can I safely reuse execution context device memory in TensorRT?

A: IExecutionContext requires device memory for both persistent and stateless purposes.
Users can reuse the stateless portion of the context memory by using a combination of
createExecutionContextWithoutDeviceMemory() and setDeviceMemory(). Any memory
that the user provides to TensorRT using setDeviceMemory() API can be reused by the
application after context execution. However, the persistent memory allocated by TensorRT
during context creation cannot be reused between engine executions. If the user uses the
createExecutionContext() API, there is no simple way to distinguish between persistent
and stateless memory.

15.2.  How Do I Report A Bug?
We appreciate all types of feedback. If you encounter any issues, please report them by
following these steps.

Procedure

 1. Register for the NVIDIA Developer website.
 2. Log in to the developer site.
 3. Click on your name in the upper right corner.
 4. Click My account > My Bugs and select Submit a New Bug.

https://developer.nvidia.com/
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 5. Fill out the bug reporting page. Be descriptive and if possible, provide the steps that you
are following to help reproduce the problem.

 6. Click Submit a bug.

15.3.  Understanding Error Messages
If an error is encountered during execution, TensorRT reports an error message that is
intended to help in debugging the problem. Some common error messages that can be
encountered by developers are discussed in the following sections.

UFF Parser Error Messages

The following table captures the common UFF parser error messages.

Error Message Description
The input to the Scale Layer is required to
 have a minimum of 3 dimensions.

Invalid scale mode, nbWeights: <X>

kernel weights has count <X> but <Y> was
 expected

This error message can occur due to incorrect
input dimensions. In UFF, input dimensions
should always be specified with the implicit batch
dimension not included in the specification.

<NODE> Axis node has op <OP>, expected
 Const. The axis must be specified as a
 Const node.

As indicated by the error message, the axis must
be a build-time constant in order for UFF to parse
the node correctly.

ONNX Parser Error Messages

The parser can issue error messages if a constant input is used with a layer that does not
support constant inputs. Consider using a tensor input instead.

TensorRT Core Library Error Messages

The following table captures the common TensorRT core library error messages.

Error Message Description

Installation Errors Cuda initialization failure
 with error <code>. Please
 check cuda installation:
  http://docs.nvidia.com/
cuda/cuda-installation-guide-
linux/index.html.

This error message can occur
if the CUDA or NVIDIA driver
installation is corrupt. Refer
to the URL for instructions on
installing CUDA and the NVIDIA
driver on your operating system.

Builder Errors Internal error: could not
 find any implementation for
 node <name>. Try increasing
 the workspace size with
 IBuilderConfig::setMaxWorkspaceSize().

This error message occurs
because there is no layer
implementation for the given
node in the network that
can operate with the given
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Error Message Description
workspace size. This usually
occurs because the workspace
size is insufficient but could also
indicate a bug. If increasing the
workspace size as suggested
doesn’t help, report a bug (refer
to How Do I Report A Bug?).

<layer-name>: (kernel|bias)
 weights has non-zero count
 but null values
<layer-name>: (kernel|bias)
 weights has zero count but
 non-null values

This error message occurs when
there is a mismatch between
the values and count fields in a
Weights data structure passed
to the builder. If the count is
0, then the values field should
contain a null pointer; otherwise,
the count must be non-zero, and
values should contain a device
pointer.

Builder was created on device
 different from current
 device.

This error message can show up
if you:

 1. Created an IBuilder
targeting one GPU, then

 2. Called cudaSetDevice() to
target a different GPU, then

 3. Attempted to use the
IBuilder to create an engine.

Ensure you only use the
IBuilder when targeting the
GPU that was used to create the
IBuilder.

You can encounter error messages indicating that the tensor
dimensions do not match the semantics of the given layer.
Carefully read the documentation on NvInfer.h on the usage of each
layer and the expected dimensions of the tensor inputs and outputs
to the layer.

INT8 Calibration Errors Tensor <X> is uniformly zero. This warning occurs and should
be treated as an error when
data distribution for a tensor is
uniformly zero. In a network,
the output tensor distribution

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/namespacenvinfer1.html
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Error Message Description
can be uniformly zero under the
following scenarios:

 1. Constant tensor with all zero
values; not an error.

 2. Activation (ReLU) output
with all negative inputs: not
an error.

 3. Data distribution is forced to
all zero due to computation
error in the previous layer;
emit a warning here.2

 4. User does not provide any
calibration images; emit a
warning here.1

Could not find scales for
 tensor <X>.

This error message indicates
that a calibration failure
occurred with no scaling factors
detected. This could be due to
no INT8 calibrator or insufficient
custom scales for network
layers. For more information,
refer to the Performing
Inference In INT8 Using Custom
Calibration (sampleINT8)
located in the /opensource/
sampleINT8 directory in the
GitHub repository to set up
calibration correctly.

The engine plan file is not
 compatible with this version
 of TensorRT, expecting
 (format|library) version <X>
 got <Y>, please rebuild.

This error message can occur
if you are running TensorRT
using an engine PLAN file that
is incompatible with the current
version of TensorRT. Ensure
you use the same version of
TensorRT when generating the
engine and running it.

Engine Compatibility Errors

The engine plan file is
 generated on an incompatible
 device, expecting compute

This error message can occur if
you build an engine on a device

2 It is recommended to evaluate the calibration input or validate the previous layer outputs.

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleINT8
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Error Message Description
 <X> got compute <Y>, please
 rebuild.

of a different compute capability
than the device that is used to
run the engine.

Using an engine plan file
 across different models of
 devices is not recommended
 and is likely to affect
 performance or even cause
 errors.

This warning message can
occur if you build an engine on
a device with the same compute
capability but is not identical to
the device that is used to run the
engine.

As indicated by the warning,
it is highly recommended
to use a device of the same
model when generating the
engine and deploying it to avoid
compatibility issues.

GPU memory allocation failed
 during initialization of
 (tensor|layer): <name>
GPU memory

Allocation failed during
 deserialization of weights.

Out Of Memory Errors

GPU does not meet the minimum
 memory requirements to run
 this engine …

These error messages can
occur if there is insufficient GPU
memory available to instantiate
a given TensorRT engine. Verify
that the GPU has sufficient
available memory to contain
the required layer weights and
activation tensors.

FP16 Errors Network needs native FP16
 and platform does not have
 native FP16

This error message can occur
if you attempt to deserialize
an engine that uses FP16
arithmetic on a GPU that does
not support FP16 arithmetic. You
either need to rebuild the engine
without FP16 precision inference
or upgrade your GPU to a model
that supports FP16 precision
inference.

Plugin Errors Custom layer <name> returned
 non-zero initialization

This error message can occur
if the initialize() method
of a given plugin layer returns
a non-zero value. Refer to the
implementation of that layer
to debug this error further.
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Error Message Description
For more information, refer to
TensorRT Layers.

15.4.  Support
Support, resources, and information about TensorRT can be found online at https://
developer.nvidia.com/tensorrt. This includes blogs, samples, and more.

In addition, you can access the NVIDIA DevTalk TensorRT forum at https://devtalk.nvidia.com/
default/board/304/tensorrt/ for all things related to TensorRT. This forum offers the possibility
of finding answers, making connections, and getting involved in discussions with customers,
developers, and TensorRT engineers.

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://devtalk.nvidia.com/default/board/304/tensorrt/
https://devtalk.nvidia.com/default/board/304/tensorrt/
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Appendix A. Appendix

A.1.  TensorRT Layers
In TensorRT, layers represent distinct flavors of mathematical and/or programmatic
operations. The following sections describe every layer that TensorRT supports. The minimum
workspace required by TensorRT depends on the operators used by the network. A suggested
minimum build-time setting is 16 MB. Regardless of the maximum workspace value provided
to the builder, TensorRT will allocate at runtime no more than the workspace it requires.
To view a list of the specific attributes supported by each layer, refer to the TensorRT API
documentation.

TensorRT can optimize performance by fusing layers. For information about how to enable
layer fusion optimizations, refer to Types Of Fusions. For information about optimizing
individual layer performance, refer to How Do I Optimize My Layer Performance?.

For details about the types of precision and features supported per layer, refer to the
TensorRT Support Matrix.

A.1.1.  IActivationLayer
The IActivationLayer implements element-wise activation functions.

Layer Description

Apply an activation function on an input tensor A, and produce an output tensor B with the
same dimensions.

The Activation layer supports the following operations:
rectified Linear Unit (ReLU): B = ReLU(A)
Hyperbolic tangent: B = tanh(A)
“s” shaped curve (sigmoid): B = σ(A)

Conditions And Limitations

None

Refer to the C++ class IActivationLayer or the Python class IActivationLayer for further
details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#fusion-types
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#optimize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_activation_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iactivationlayer
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A.1.2.  IConcatenationLayer
The IConcatenationLayer links together multiple tensors of the same non-channel sizes
along the channel dimension.

Layer Description

The concatenation layer is passed in an array of m input tensors Ai and a channel axis c.

All dimensions of all input tensors must match in every axis except axis c. Let each input
tensor have dimensions ai. The concatenated output tensor will have dimensions b such that

.

Conditions And Limitations

The default channel axis is assumed to be the third from the last axis or the first non-batch
axis if there are fewer than three non-batch axes. Concatenation cannot be done along the
batch axis. All input tensors must be non-INT32 type, or all must be INT32 type.

Refer to the C++ class IConcatenationLayer or the Python class IConcatenationLayer for
further details.

A.1.3.  IConstantLayer
The IConstantLayer outputs a tensor with values provided as parameters to this layer,
enabling the convenient use of constants in computations.

Layer Description

Given dimensions d and weight vector w, the constant layer will output a tensor B of
dimensions d with the constant values in w. This layer takes no input tensor. The number of
elements in the weight vector w is equal to the volume of d.

Conditions And Limitations

The output can be a tensor of zero to seven dimensions. Boolean weights are not supported.

Refer to the C++ class IConstantLayer or the Python class IConstantLayer for further
details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_concatenation_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iconcatenationlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_constant_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iconstantlayer
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A.1.4.  IConvolutionLayer
The IConvolutionLayer computes a 2D (channel, height, and width) convolution or 3D
(channel, depth, height, and width) convolution, with or without bias.

Note: The operation that the IConvolutionLayer performs is actually a correlation. Therefore,
it is a consideration if you are formatting weights to import via an API rather than via the
NvCaffeParser library.

Layer Description: 2D convolution

Compute a cross-correlation with 2D filters on a 4D tensor A, of dimensions a, to produce a 4D
tensor B, of dimensions b. The dimensions of B depend on the dimensions of A, the number of
output maps m, kernel size k, symmetric padding p, stride s, dilation d, and dilated kernel size

, such that height and width are adjusted accordingly as follows:

‣
‣

‣

The kernel weights w and bias weights x (optional) for the number of groups g are such that:

‣ w is ordered according to shape 

‣ x has length m

Let tensor K with dimensions  be defined as the zero-filled tensor, such that:

‣
‣
‣

and tensor C the zero-padded copy of A with dimensions , then tensor B is

defined as  where  and .

Layer Description: 3D convolution

Compute a cross-correlation with 3D filters on a 5D tensor A, of dimensions a, to produce a 5D
tensor B, of dimensions b. The dimensions of B depend on the dimensions of A, the number of
output maps m, kernel size k, symmetric padding p, stride s, dilation d, and dilated kernel size

, such that height and width are adjusted accordingly as follows:

‣
‣



Appendix

NVIDIA TensorRT PG-08540-001_v8.0.1   |   112

‣

‣

The kernel weights w and bias weights x (optional) for the number of groups g, are such that:

‣ w is ordered according to shape 

‣ x has length m

Let tensor K with dimensions  be defined as the zero-filled tensor, such
that:

‣
‣
‣
‣

and tensor C the zero-padded copy of A with dimensions , then tensor

B is defined as  where , , and
.

Conditions And Limitations

The number of input kernel dimensions determine 2D or 3D. For 2D convolution, input
and output may have more than four dimensions; beyond four, all dimensions are treated
as multipliers on the batch size, and input and output are treated as 4D tensors. For 3D
convolution, similar to 2D convolution, if input or output has more than 5 dimensions, all
dimensions beyond five are treated as multipliers on the batch size. If groups are specified and
INT8 data type is used, then the size of the groups must be a multiple of four for both input and
output.

Refer to the C++ class IConvolutionLayer or the Python class IConvolutionLayer for
further details.

A.1.5.  IDeconvolutionLayer
The IDeconvolutionLayer computes a 2D (channel, height, and width) or 3D (channel, depth,
height and width) deconvolution, with or without bias.

Note: This layer actually applies a 2D/3D transposed convolution operator over a 2D/3D input. It
is also known as fractionally-strided convolution or transposed convolution.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iconvolutionlayer
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Layer Description: 2D deconvolution

Compute a cross-correlation with 2D filters on a 4D tensor A, of dimensions a, to produce a 4D
tensor B, of dimensions b. The dimensions of B depend on the dimensions of A, the number of
output maps m, kernel size k, symmetric padding p, stride s, dilation d, and dilated kernel size

, such that height and width are adjusted accordingly as follows:

‣
‣

‣

The kernel weights w and bias weights x (optional) for the number of groups g, are such that:

‣ w is ordered according to shape 

‣ x has length m

Let tensor K with dimensions  be defined as the zero-filled tensor, such that:

‣
‣
‣

and tensor C the zero-padded copy of A with dimensions , then tensor B is

defined as  where u ranges from 0 to , and v ranges

from 0 to .

Layer Description: 3D deconvolution

Compute a cross-correlation with 3D filters on a 5D tensor A, of dimensions a, to produce a 5D
tensor B, of dimensions b. The dimensions of B depend on the dimensions of A, the number of
output maps m, kernel size k, symmetric padding p, stride s, dilation d, and dilated kernel size

, such that height and width are adjusted accordingly as follows:

‣
‣

‣

‣

The kernel weights w and bias weights x (optional) for the number of groups g, are such that:

‣ w is ordered according to shape 
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‣ x has length m

Let tensor K with dimensions  be defined as the zero-filled tensor, such
that:

‣
‣
‣
‣

and tensor C the zero-padded copy of A with dimensions , then tensor

B is defined as  where u ranges from 0 to , and

v ranges from 0 to , and w ranges from 0 to .

Conditions And Limitations

2D or 3D is determined by the number of input kernel dimensions. For 2D deconvolution,
input and output may have more than 4 dimensions; beyond 4, all dimensions are treated
as multipliers on the batch size, and input and output are treated as 4D tensors. For 3D
deconvolution, similar to 2D deconvolution, dimensions beyond 5 are treated as multipliers on
the batch size. If groups are specified and INT8 data type is used, then the size of the groups
must be a multiple of 4 for both input and output.

Refer to the C++ class IDeconvolutionLayer or the Python class IDeconvolutionLayer for
further details.

A.1.6.  IDequantizeLayer
The IDequantizeLayer implements dequantization operators.

Layer Description

The IDequantizeLayer layer accepts a signed 8-bit integer input tensor, and uses the
configured scale and zero-point inputs to dequantize the input according to:
output = (input - zeroPt) * scale

The first input (index 0) is the tensor to be quantized. The second input (index 1), and third
input (index 2), are the scale and zero-point respectively.

Refer to the C++ class IDequantizeLayer or the Python class IDequantizeLayer for further
details.

A.1.7.  IElementWiseLayer
The IElementWiseLayer, also known as the Eltwise layer, implements per-element
operations.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ideconvolutionlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_dequantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#idequantizelayer
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Layer Description

This layer computes a per-element binary operation between input tensor A and input tensor
B to produce an output tensor C. For each dimension, their lengths must match, or one of
them must be one. In the latter case, the tensor is broadcast along that axis. The output tensor
has the same number of dimensions as the inputs. The output tensor has the same number
of dimensions as the inputs. For each output dimension, its length is equal to the lengths of
the corresponding input dimensions if they match; otherwise, it is equal to the corresponding
input dimension that is not one.

The IElementWiseLayer supports the following operations:
Sum: C = A+B
Product: C = A*B
Minimum: C = min(A, B)
Maximum: C = max(A, B)
Subtraction: C = A-B
Division: C = A/B
Power: C = A^B
Floor division : C = floor(A/B)
And : C = A & B
Or : C = A | B
Xor : C = A xor B
Equal : C = (A == B)
Greater : C = A > B
Less: C = A < B

Conditions And Limitations

The length of each dimension of the two input tensors A and B must be equal or equal to one.

Refer to the C++ class IElementWiseLayer or the Python class IElementWiseLayer for
further details.

A.1.7.1.  ElementWise Layer Setup
The ElementWise layer is used to execute the second step of the functionality provided by a
FullyConnected layer. The output of the fcbias Constant layer and Matrix Multiplication layer
are used as inputs to the ElementWise layer. The output from this layer is then supplied to the
TopK layer.

The code below demonstrates how to setup the layer:
C++ code snippet

auto fcbias = network->addConstant(Dims2(VOCAB_SIZE, 1), weightMap[FCB_NAME]);
auto addBiasLayer = network->addElementWise(
*matrixMultLayer->getOutput(0), 
*fcbias->getOutput(0), ElementWiseOperation::kSUM);
assert(addBiasLayer != nullptr);
addBiasLayer->getOutput(0)->setName("Add Bias output");

Python code snippet
fc_bias = network.add_constant((VOCAB_SIZE, 1), weightMap[FCB_NAME])
add_bias_layer = network.add_elementwise(
matrix_mult_layer.get_output(0), 
fc_bias.get_output(0), trt.ElementWiseOperation.SUM)
assert add_bias_layer != None
add_bias_layer.get_output(0).name = "Add Bias output"

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_element_wise_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ielementwiselayer
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For more information, refer to the TensorRT API documentation.

A.1.8.  IFillLayer
The IFillLayer is used to generate an output tensor with the specified mode.

Layer Description

Given an output tensor size, the layer will generate data with the specified mode and fill the
tensor. The alpha and beta perform as different parameters for different modes.

The IFillLayer supports the following operations:

‣ LINSPACE: Output = alpha(scalar) + beta(different on each axis) *
element_index

‣ RANDOM_UNIFORM: Output = Random(min = alpha, max = beta)

Conditions And Limitations

The layer can only generate a 1D tensor if using static tensor size. When using the dynamic
tensor size, the dimensions for alpha and beta should match each mode’s requirement.

Refer to the C++ class IFillLayer or the Python class IFillLayer for further details.

A.1.9.  IFullyConnectedLayer
The IFullyConnectedLayer implements a matrix-vector product, with or without bias.

Layer Description

The IFullyConnectedLayer expects an input tensor A of three or more dimensions. Given

an input tensor A of dimensions , it is first reshaped into a tensor A’ of dimensions

 by squeezing the last three dimensions into one dimension.

Then, the layer performs the operation  where W is the weight tensor of dimensions

, X is the bias tensor of dimensions  broadcasted along the other
dimensions, and k is the number of output channels, configured via setNbOutputChannels().
If X is not specified, the value of the bias is implicitly 0. The resulting B’ is a tensor of

dimensions .

Finally, B’ is reshaped again into the output tensor B of dimensions  by
inserting two lower dimensions each of size 1.

In summary, for input tensor A of dimensions , the output tensor B will have

dimensions .

Conditions And Limitations

A must have three dimensions or more.

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fill_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2Ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html#a7a268ddbb5c40ac1c35b872a3f08278b
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Refer to the C++ class IFullyConnectedLayer or the Python class IFullyConnectedLayer
for further details.

A.1.10.  IGatherLayer
The IGatherLayer implements the gather operation on a given axis.

Layer Description

The IGatherLayer gathers elements of each data tensor A along the specified axisxusing
indices tensor B of zero dimensions or more dimensions to produce output tensor C of
dimensions c.

If B has zero dimensions and it is a scalar b, then 
and c has a length equal to one less than the length of a. In this case,  where

.

If B is a tensor of dimensions b (with length b), then

. In this case,  where

 and .

Conditions And Limitations

‣ The indices tensor B must contain only INT32 values.

‣ If there are any invalid indices elements in the indices tensor, then zeros will be stored at
the appropriate locations in the output tensor.

Applicable to implicit batch mode:

‣ Elements cannot be gathered along the batch size dimension.

‣ The data tensor A must contain at least one non-batch dimension.

‣ The data tensor A must contain at least axis + 1 non-batch dimensions.

‣ The parameter axis is zero-indexed and starts at the first non-batch dimension of data
tensor A.

Applicable to explicit batch mode:

‣ The data tensor A must contain at least one dimension.

‣ The data tensor A must contain at least axis + 1 dimensions.

‣ The parameter axis is zero-indexed and starts at the first dimension of data tensor A.

‣ axis must be larger than or equal to the number of element-wise dimensions set by
IGatherLayer::setNbElementWiseDimensions().

‣ The number of ElementWise dimensions can only be set to 0 or 1.

‣ If the number of ElementWise dimensions is set to 1, the behavior will be similar to
implicit batch mode. The leading dimension will be treated like batch dimension in implicit

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ifullyconnectedlayer
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batch mode, which is not part of the gather operation. For example, data tensor A has
dimensions of [N, C, H, W], and indices tensor B has the dimensions of  [N, K]. If
nbElementWiseDimensions is 1 and the axis  is set to 1, the dimensions of the result
will be  [N, K, H, W]. If nbElementWiseDimensions is 0 and the axis is set to 1, the
dimensions of the result will be [N, N, K, H, W].

‣ ElementWise dimensions support broadcasts like IElementWiseLayer.

Refer to the C++ class IGatherLayer or the Python class IGatherLayer for further details.

A.1.11.  IIdentityLayer
The IIdentityLayer implements the identity operation.

Layer Description

The output of the layer is mathematically identical to the input. This layer allows you to
precisely control the precision of tensors and transform from one precision to another. If the
input is at a different precision than the output, the layer will convert the input tensor into the
output precision.

Conditions And Limitations

None

Refer to the C++ class IIdentityLayer or the Python class IIdentityLayer for further
details.

A.1.12.  IIteratorLayer
The IIteratorLayer enables a loop to iterate over a tensor. A loop is defined by loop boundary
layers.

For more information about the IIteratorLayer, including how loops work and their
limitations, refer to Working With Loops.

Refer to the C++ class IIteratorLayer or the Python class IIteratorLayer for further
details.

A.1.13.  ILoopBoundaryLayer
Class ILoopBoundaryLayer, derived from class ILayer, is the base class for the loop-related
layers, specifically ITripLimitLayer, ILoopIteratorLayer, IRecurrenceLayer, and
ILoopOutputLayer. Class ILoopBoundaryLayer defines a virtual method getLoop() that
returns a pointer to the associated ILoop.

For more information about the ILoopBoundaryLayer, including how loops work and their
limitations, refer to Working With Loops.

Refer to the C++ class ILoopBoundaryLayer or the Python class ILoopBoundaryLayer for
further details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_gather_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#igatherlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_identity_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iidentitylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_iterator_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iiteratorlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_boundary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iloopboundarylayer
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A.1.14.  ILoopOutputLayer
The ILoopOutputLayer specifies an output from the loop. A loop is defined by loop boundary
layers.

For more information about the ILoopOutputLayer, including how loops work and their
limitations, refer to Working With Loops.

Refer to the C++ class ILoopOutputLayer or the Python class ILoopOutputLayer for further
details.

A.1.15.  ILRNLayer
The ILRNLayer implements cross-channel Local Response Normalization (LRN).

Layer Description

Given an input A, the LRN layer performs a cross-channel LRN to produce output Bof
the same dimensions. The operation of this layer depends on four constant values: w is
the size of the cross-channel window over which the normalization will occur, α, β, and k
are normalization parameters. This formula shows the operation performed by the layer:

Where I represents the indexes of tensor elements, and  the indices where the channel
dimension is replaced by j. For channel index c of C channels, index j ranges from

 and .

Conditions And Limitations

A must have three or more dimensions. The following list shows the possible values for the

parameters: 

Refer to the C++ class ILRNLayer or the Python class ILRNLayer for further details.

A.1.16.  IMatrixMultiplyLayer
The IMatrixMultiplyLayer implements matrix multiplication for a collection of matrices.

Layer Description

The IMatrixMultiplyLayer computes the matrix multiplication of input tensors A, of
dimensions a, and B, of dimensions b, and produces output tensor C, of dimensions c. A,
B, and C all have the same rank . If , then A, B, and C are treated as collections

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_output_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iloopoutputlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_l_r_n_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ilrnlayer
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of matrices; A and B may be optionally transposed (the transpose is applied to the last
two dimensions). Let  and  be the input tensors after the optional transpose, then

.

Given the corresponding dimensions aI and bI of AI and BI, then

; that is, the resulting collection has the
same number of matrices as the input collections, and the rows and columns correspond to
the rows in  and the columns in . Notice also the use of max in lengths, for the case of
broadcast on a dimension.

Conditions And Limitations

Tensors A and B must have at least two dimensions and agree on the number of dimensions.
The length of each dimension must be the same, assuming that dimensions of length one are
broadcast to match the corresponding length.

Refer to the C++ class IMatrixMultiplyLayer or the Python class IMatrixMultiplyLayer
for further details.

A.1.16.1.  MatrixMultiply Layer Setup
The Matrix Multiplication layer is used to execute the first step of the functionality provided
by a FullyConnected layer. As shown in the code below, a Constant layer will need to be used
so that the FullyConnected weights can be stored in the engine. The output of the Constant
and RNN layers are then used as inputs to the Matrix Multiplication layer. The RNN output is
transposed so that the dimensions for the MatrixMultiply are valid.

C++ code snippet
weightMap["trt_fcw"] = transposeFCWeights(weightMap[FCW_NAME]);
auto fcwts = network->addConstant(Dims2(VOCAB_SIZE, HIDDEN_SIZE), weightMap["trt_fcw"]);
auto matrixMultLayer = network->addMatrixMultiply(
*fcwts->getOutput(0), false, *rnn->getOutput(0), true);
assert(matrixMultLayer != nullptr);
matrixMultLayer->getOutput(0)->setName("Matrix Multiplication output");

Python code snippet
weight_map["trt_fcw"] = transpose_fc_weights(weight_map[FCW_NAME])
fc_wts = network.add_constant((VOCAB_SIZE, HIDDEN_SIZE), weight_map["trt_fcw"])
matrix_mult_layer = network.add_matrix_multiply(
fc_wts.get_output(0), trt.MatrixOperation.NONE,  rnn.get_output(0),
 trt.MatrixOperation.TRANSPOSE)
assert matrix_mult_layer != None
matrix_mult_layer.get_output(0).name = 
"Matrix Multiplication output"

For more information, refer to the TensorRT API documentation.

A.1.17.  IParametricReluLayer
The IParametricReluLayer represents a parametric ReLU operation, meaning a leaky ReLU
where the slopes for x < 0 can be different for each element.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_matrix_multiply_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#imatrixmultiplylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
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Layer Description

Users provide a data tensor X and a slopes tensor S. At each element, the layer computes y =
x if x ≥ 0 and y = x∙s if x < 0. The slopes tensor may be broadcast to the size of the data
tensor and vice versa.

Conditions And Limitations

Parametric ReLU is not supported in many fusions; therefore, the performance may be worse
than with standard ReLU.

Refer to the C++ class IParametricReluLayer or the Python class IParametricReluLayer
for further details.

A.1.18.  IPaddingLayer
The IPaddingLayer implements spatial zero-padding of tensors along the two innermost
dimensions.

Layer Description

The IPaddingLayer pads zeros to (or trims edges from) an input tensor A along each of the
two innermost dimensions and gives the output tensor B. Padding can be different on each
dimension, asymmetric, and can be either positive (resulting in expansion of the tensor) or
negative (resulting in trimming). Padding at the beginning and end of the two dimensions is
specified by 2D vectors x and y for pre and post padding respectively.

For input tensor A of n dimensions a,  the output B will have n dimensions b such that

. Accordingly, the values of

Bw are zeros if . Otherwise,  where
 and  for all other dimensions i.

Conditions And Limitations

‣ A must have three dimensions or more.

‣ The padding can only be applied along the two innermost dimensions.

‣ Only zero-padding is supported.

Refer to the C++ class IPaddingLayer or the Python class IPaddingLayer for further details.

A.1.19.  IPluginV2Layer
The IPluginV2Layer provides the ability to extend the functionalities of TensorRT by using
custom implementations for unsupported layers.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_parametric_re_l_u_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iparametricrelulayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_padding_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ipaddinglayer
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Layer Description

The IPluginV2Layer is used to set up and configure the plugin. Refer to the IPluginV2 API
Description for more details on the API. TensorRT also has support for a Plugin Registry,
which is a single registration point for all plugins in the network. In order to register plugins
with the registry, implement the IPluginV2 class and the IPluginCreator class for your
plugin.

Conditions And Limitations

None

Refer to the C++ class IPluginV2Layer or the Python class IPluginV2Layer for further
details.

A.1.20.  IPoolingLayer
The IPoolingLayer implements pooling within a channel. Supported pooling types are
maximum, average, and maximum-average blend.

Layer Description: 2D pooling

Compute a pooling with 2D filters on a tensor A, of dimensions a, to produce a tensor B, of
dimensions b. The dimensions of B depend on the dimensions of A, window size r, symmetric
padding p and stride s such that:

‣
‣

‣

Let tensor C be the zero-padded copy of A with dimensions

 where  and .

Where func is defined by one of the pooling types t:
PoolingType::kMAX

Maximum over elements in window.
PoolingType::kAVERAGE

Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND

Hybrid of maximum and average pooling. The results of the maximum
pooling and the average pooling are combined with the blending factor as (1-
blendFactor)*maximumPoolingResult + blendFactor*averagePoolingResult to
yield the result. The blendFactor can be set to a value between 0 and 1.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ipluginv2layer
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By default, average pooling is performed on the overlap between the pooling window and the
padded input. If the exclusive parameter is set to true, the average pooling is performed on
the overlap area between the pooling window and unpadded input.

Layer Description: 3D pooling

Compute a pooling with 3D filters on a tensor A, of dimensions a, to produce a tensor B, of
dimensions b. The dimensions of B depend on the dimensions of A, window size r, symmetric
padding p and stride s such that:

‣
‣

‣

‣

Let tensor C be the zero-padded copy of A with dimensions

 where ,

, and .

Where func is defined by one of the pooling types t:
PoolingType::kMAX

Maximum over elements in window.
PoolingType::kAVERAGE

Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND

Hybrid of maximum and average pooling. The results of the maximum
pooling and the average pooling are combined with the blending factor as (1-
blendFactor)*maximumPoolingResult + blendFactor*averagePoolingResult to
yield the result. The blendFactor can be set to a value between 0 and 1.

By default, average pooling is performed on the overlap between the pooling window and the
padded input. If the exclusive parameter is set to true, the average pooling is performed on
the overlap area between the pooling window and unpadded input.

Conditions And Limitations

The number of input kernel dimensions determine 2D or 3D. For 2D pooling, input and output
tensors should have three or more dimensions. For 3D pooling, input and output tensors
should have four or more dimensions.

Refer to the C++ class IPoolingLayer or the Python class IPoolingLayer for further details.

A.1.21.  IQuantizeLayer
This IQuantizeLayer layer implements quantization operators.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_pooling_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ipoolinglayer
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Layer Description

The IQuantizeLayer layer accepts a floating-point data input tensor and uses the scale and
zero-point inputs to quantize the data to an 8-bit signed integer according to:
output = clamp(round(input / scale) +  zeroPt)

Rounding type is rounding-to-nearest ties-to-even. Clamping is in the range [-128, 127].
The first input (index 0) is the tensor to be quantized. The second (index 1) and third (index
2) are the scale and zero-point respectively.

Refer to the C++ class IQuantizeLayer or the Python class IQuantizeLayer for further
details.

A.1.22.  IRaggedSoftMaxLayer
The IRaggedSoftMaxLayer applies the SoftMax function on an input tensor of sequences
across the sequence lengths specified by the user.

Layer Description

This layer has two inputs: a 2D input tensor A of shape zs containing z sequences of data and
a 1D bounds tensor B of shape z containing the lengths of each of the z sequences in A. The
resulting output tensor C has the same dimensions as the input tensor A.

The SoftMax function S is defined on every i of the z sequences of data values  like in the
SoftMax layer.

Conditions And Limitations

None

Refer to the C++ class IRaggedSoftMaxLayer or the Python class IRaggedSoftMaxLayer for
further details.

A.1.23.  IRecurrenceLayer
The IRecurrenceLayer specifies a recurrent definition. A loop is defined by loop boundary
layers.

For more information about the IRecurrenceLayer, including how loops work and their
limitations, refer to Working With Loops.

Refer to the C++ class IRecurrenceLayer or the Python class IRecurrenceLayer for further
details.

A.1.24.  IReduceLayer
The IReduceLayer implements dimension reduction of tensors using reduce operators.

https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_quantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iquantizelayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_ragged_soft_max_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iraggedsoftmaxlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_recurrence_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#irecurrencelayer


Appendix

NVIDIA TensorRT PG-08540-001_v8.0.1   |   125

Layer Description

The IReduceLayer computes a reduction of input tensor A, of dimensions a, to produce
an output tensor B, of dimensions b, over the set of reduction dimensions r. The
reduction operator op is one of max, min, product, sum, and average. The reduction
can preserve the number of dimensions of A or not. If the dimensions are kept, then

; if the dimensions are not kept, then  where  and

 is the number of reduction indexes in r less than or equal to j.

With the sequence of indexes i, , where the sequence of indexes j is such that

.

Conditions And Limitations

The input must have at least one non-batch dimension. The batch size dimension cannot be
reduced.

Refer to the C++ class IReduceLayer or the Python class IReduceLayer for further details.

A.1.25.  IResizeLayer
The IResizeLayer implements the resize operation on an input tensor.

Layer Description

The IResizeLayer resizes input tensor A, of dimension a, to produce an output tensor B, of
dimension b, using a given resize mode m. Output dimension b can either be provided directly

or can be computed using resize scales s. If resize scales s are provided, .

Interpolation modes such as Nearest and Linear are supported for the resize operation. The

nearest mode resizes innermost d dimensions of N-D tensors, where  and N

> 0. The linear mode resizes innermost d dimensions of N-D tensors, where 
and N > 0.

The coordinate transformation mapping function, while interpolating, can be configured to
align corners, asymmetric and half pixel. When resized to a single pixel, we support using
either the coordinate transformation or using the upper left pixel. When resize mode is
Nearest, we support different rounding modes like half down, half up, round to floor, and
round to ceiling.

Conditions And Limitations

Either output dimension b or resize scales s must be known and valid. Number of scales must
be equal to the number of input dimensions. Number of output dimensions must be equal to
the number of input dimensions.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_reduce_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ireducelayer
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Refer to the C++ class IResizeLayer or the Python class IResizeLayer for further details.

A.1.26.  IRNNv2Layer
The IRNNv2Layer implements recurrent layers such as Recurrent Neural Network (RNN),
Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM). Supported types are
RNN, GRU, and LSTM. It performs a recurrent operation, where the operation is defined by
one of several well-known recurrent neural network (RNN) "cells."

Note: The IRNNv2Layer is deprecated in favor of the loop API; however, it is still available for
backward compatibility. For more information about the loop API, refer to the sampleCharRNN
sample with the --Iloop option.

Layer Description

This layer accepts an input sequence X, initial hidden state H0, and if the cell is a long short-
term memory (LSTM) cell, initial cell state C0, and produces an output Y which represents the
output of the final RNN "sub-layer" computed across T timesteps (refer below). Optionally, the
layer can also produce an output hT representing the final hidden state, and, if the cell is an
LSTM cell, an output cT representing the final cell state.

Let the operation of the cell be defined as the function . This function takes vector
inputs x, h, and c, and produces up to two vector outputs h' and c', representing the hidden and
cell state after the cell operation has been performed.

In the default (unidirectional) configuration, the RNNv2 layer applies Gas shown in the
following diagram:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_resize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IResizeLayer
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
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G' is a variant of G,.

Arrows leading into boxes are function inputs, and arrows leading away from boxes are
function outputs.

‣
‣

‣
‣

The gray c edges are only present if the RNN is using LSTM cells for G and G'.

Note: The above construction has L "sub-layers" (horizontal rows of G), and the matrices Hi and

Ci have dimensionality L.

Optionally, the sequence length Tmay be specified as an input to the RNNv2 layer, allowing the
client to specify a batch of input sequences with different lengths.

Bidirectional RNNs (BiRNNs): The RNN can be configured to be bidirectional. In that case,
each sub-layer consists of a "forward" layer and a "backward" layer. The forward layer
iteratively applies G using xi from 0 to T, and the backward layer iteratively applies G using xi
from T to 0, as shown in the diagram below:
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Black bars in the diagram above represent concatenation. The full hidden state ht is defined by
the concatenation of the forward hidden state htf and the backward hidden state htb:

‣
‣

Similarly, for the cell state (not shown), each ht,i  is used as input to the next sub-layer, as
shown above.

RNN operations: The RNNv2 layer supports the following cell operations:
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‣  (c not used)

‣  (c not used)

‣
‣
‣  (c not used)

‣
‣
‣
‣
‣
‣
‣
For GRU and LSTM, we refer to the intermediate computations for Z, M, I, F, for example, as
“gates.”

In the unidirectional case, the dimensionality of the W matrices is HxE for the first layer and
HxH for subsequent layers (unless skip mode is set, refer below). In the bidirectional case,
the dimensionality of the W matrices is HxE for the first forward/backward layer and Hx2H for
subsequent layers.

The dimensionality of the R matrices is always HxH. The biases  and  have
dimensionality H.

Skip mode: The default mode used by RNNv2 is "linear mode." In this mode, the first sub-

layer of the RNNv2 layer uses the cell , which accepts a vector x of size E (embedding
size), and vectors h and c of size H (hidden state size), and is defined by the cell operation

formula. Subsequent layers use the cell , where x, h, and c are all vectors of size H,
and are also defined by the cell operation formula.

Optionally, the RNN can be configured to run in “skip mode,” which means the input weight
matrices for the first layer are implicitly identity matrices, and x Is expected to be size H.

Conditions And Limitations

The data (X) input and initial hidden/cell state (H0 and C0) tensors have at least two non-batch
dimensions. Additional dimensions are considered batch dimensions.

The optional sequence length input T is 0-dimensional (scalar) when excluding batch
dimensions.
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The data (Y) output and final hidden/cell state (HT and CT) tensors have at least two non-batch
dimensions. Additional dimensions are considered batch dimensions. If the sequence length
input is provided, each output in the batch is padded to the maximum sequence length .

The IRNNv2Layer supports:

‣ FP32 and FP16 data type for input and output, hidden, and cell tensors.

‣ INT32 data type only for the sequence length tensor.

After the network is defined, you can mark the required outputs. RNNv2 output tensors that
are not marked as network outputs or used as inputs to another layer are dropped.
network->markOutput(*pred->getOutput(1));
pred->getOutput(1)->setType(DataType::kINT32);
rnn->getOutput(1)->setName(HIDDEN_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(1));
if (rnn->getOperation() == RNNOperation::kLSTM)
{
rnn->getOutput(2)->setName(CELL_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(2));
};

Refer to the C++ class IRNNv2Layer or the Python class IRNNv2Layer for further details.

A.1.26.1.  RNNv2 Layer Setup
The first layer in the network is an RNN layer. This is added and configured in the
addRNNv2Layer() function. This layer consists of the following configuration parameters.

Operation
This defines the operation of the RNN cell. Supported operations are currently relu,
LSTM, GRU, and tanh.

Direction
This defines whether the RNN is unidirectional or bidirectional (BiRNN).

Input mode
This defines whether the first layer of the RNN carries out a matrix multiply (linear mode),
or the matrix multiply is skipped (skip mode).

For example, in the network used in sampleCharRNN, we used a linear, unidirectional LSTM
cell containing LAYER_COUNT number of stacked layers. The code below shows how to create
this RNNv2 layer.
auto rnn = network->addRNNv2(*data, LAYER_COUNT, HIDDEN_SIZE, SEQ_SIZE, RNNOperation::kLSTM);

Note: For the RNNv2 layer, weights and bias need to be set separately. For more information,
refer to RNNv2 Layer - Optional Inputs.

For more information, refer to the TensorRT API documentation.

A.1.26.2.  RNNv2 Layer - Optional Inputs
If there are cases where the hidden and cell states need to be pre-initialized to a non-zero
value, then you can pre-initialize them via the setHiddenState and setCellState calls.
These are optional inputs to the RNN.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#irnnv2layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
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C++ code snippet
rnn->setHiddenState(*hiddenIn);
if (rnn->getOperation() == RNNOperation::kLSTM)
    rnn->setCellState(*cellIn);

Python code snippet
rnn.hidden_state = hidden_in
if rnn.op == trt.RNNOperation.LSTM:
rnn.cell_state = cell_in

A.1.27.  IScaleLayer
The IScaleLayer implements a per-tensor, per-channel, or per-element affine
transformation and/or exponentiation by constant values.

Layer Description

Given an input tensor A, the IScaleLayer performs a per-tensor, per-channel, or per-
element transformation to produce an output tensor B of the same dimensions. The
transformations corresponding to each mode are:
ScaleMode::kUNIFORM tensor-wise transformation

ScaleMode::kCHANNEL channel-wise transformation

ScaleMode::kELEMENTWISE element-wise transformation

Where I represents the indexes of tensor elements and c(I) is the channel dimension in I.

Conditions And Limitations

A must have at least three dimensions in implicit batch mode and at least four dimensions in
explicit batch mode.

If an empty weight object is provided for scale, shift, or power, then a default value is used.
By default, scale has a value of 1.0, shift has a value of 0.0, and power has a value of 1.0.

Refer to the C++ class IScaleLayer or the Python class IScaleLayer for further details.

A.1.28.  ISelectLayer
The ISelectLayer returns either of the two inputs depending on the condition.

Layer Description

This layer returns the elements chosen from input tensor B(thenInput) or C(elseInput)
depending on the condition tensor A.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_scale_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iscalelayer
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Conditions And Limitations

All three input tensors must have the same number of dimensions; along each axis, each must
have the same length or a length of one. If the length is one, the tensor is broadcast along that
axis. The output tensor has the dimensions of the inputs after the broadcast rule is applied.
The condition tensor is required to be of boolean type. The other two inputs may be FP32,
FP16, or INT32.

Refer to the C++ class ISelectLayer or the Python class ISelectLayer for further details.

A.1.29.  IShapeLayer
The IShapeLayer gets the shape of a tensor.

Layer Description

The IShapeLayer outputs the dimensions of its input tensor. The output is a 1D tensor of type
INT32.

Conditions And Limitations

The input tensor must have at least one dimension. The output tensor is a “shape tensor,”
which can be used as an input only for layers that handle shape tensors. Refer to Execution
Tensors vs. Shape Tensors for more information.

Refer to the C++ class IShapeLayer or the Python class IShapeLayer for further details.

A.1.30.  IShuffleLayer
The IShuffleLayer implements a reshape and transpose operator for tensors.

Layer Description

The IShuffleLayer implements reshuffling of tensors to permute the tensor and/or reshape
it. An input tensor A of dimensions a is transformed by applying a transpose, followed by
a reshape operation with reshape dimensions r, and then followed by another transpose
operation to produce an output data tensor B of dimensions b.

To apply the transpose operation to A, the permutation order must be specified. The specified
permutation p1 is used to permute the elements of A in the following manner to produce
output C of dimensions  and  for a sequence of indexes I. By default, the

permutation is assumed to be an identity (no change to the input tensor).

The reshape operation does not alter the order of the elements and reshapes tensor C into

tensor R of shape rI, such that . Only one dimension
can be inferred, such that .

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_select_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iselectlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shape_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IShapeLayer
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The special interpretation of  as a placeholder, and not the actual dimensions, can be
turned off by calling method setZeroIsPlaceholder(false) on the layer. If using dynamic
shapes, it is strongly recommended to turn off the placeholder interpretation of 0 because
it can interfere with the correct handling of empty tensors and can decrease optimization by
TensorRT. For example, consider a tensor C with dimensions [2,x] that needs to be reshaped
to a tensor R with dimensions [x,2]. With the placeholder interpretation, when x=0, the
reshape dimensions expand to [2,2], not [0,2] as intended.

The reshape dimensions can be specified as build-time constants in the layer or as runtime
values by supplying a second input to the layer, which must be a 1D tensor of type INT32.
A placeholder 0 or wildcard -1 occurring in the second input at runtime are interpreted
identically to how they are interpreted if they are build-time constants.

The second transpose operation is applied after the reshape operation. It follows the same
rules as the first transpose operation and requires a permutation (say p2) to be specified. This
permutation produces an output tensor B of dimensions b, such that  and  for

a sequence of indexes I.

Conditions And Limitations

Product of dimensions rI must be equal to the product of input dimensions a.

Refer to the C++ class IShuffleLayer or the Python class IShuffleLayer for further details.

A.1.31.  ISliceLayer
The ISliceLayer implements a slice operator for tensors.

Layer Description

Giving an input n-dimension (excluding batch dimension) tensor A, the Slice layer generates
an output tensor B with elements extracted from A. The correspondence between element

coordinates in A and B is given by , where a, b, s, o are element
coordinates in A, element coordinates in B, stride and starting offset, respectively. The stride
can be positive, negative, or zero.

Conditions And Limitations

The corresponding A coordinates for every element in B must not be out-of-bounds.

Refer to the C++ class ISliceLayer or the Python class ISliceLayer for further details.

A.1.32.  ISoftMaxLayer
The ISoftMaxLayer applies the SoftMax function on the input tensor along an input
dimension specified by the user.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shuffle_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ishufflelayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_slice_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#islicelayer
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Layer Description

Given an input tensor A of shape a and an input dimension i, this layer applies the SoftMax
function on every slice  along dimension i of A. The resulting output tensor C
has the same dimensions as the input tensor A.

The SoftMax function S for a slice x is defined as 

The SoftMax function rescales the input such that every value in the output lies in the range
[0, 1] and the values of every slice  along dimension i of C sum up to 1.

Conditions And Limitations

For n being the length of a, the input dimension i should be . If the user does not

provide an input dimension, then .

Refer to the C++ class ISoftMaxLayer or the Python class ISoftMaxLayer for further details.

A.1.33.  ITopKLayer
The ITopKLayer finds the top K maximum (or minimum) elements along a dimension,
returning a reduced tensor and a tensor of index positions.

Layer Description

For an input tensor A of dimensions a, given an axis i, an operator that is either max or min,
and a value for k, produces a tensor of values V and a tensor of indices I of dimensions v such

that .

The output values are:

‣
‣

where sort is in descending order for operator max and ascending order for operator min.

Ties are broken during sorting with lower index considered to be larger for operator max, and
lower index considered to be smaller for operator min.

Conditions And Limitations

The K value must be 3840 or less. Only one axis can be searched to find the top K minimum or
maximum values; this axis cannot be the batch dimension.

Refer to the C++ class ITopKLayer or the Python class ITopKLayer for further details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_soft_max_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#isoftmaxlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_top_k_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#itopklayer
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A.1.33.1.  TopK Layer Setup
The TopK layer is used to identify the character that has the maximum probability of appearing
next.

Note: The layer has two outputs. The first output is an array of the top K values. The second,
which is of more interest to us, is the index at which these maximum values appear.

The code below sets up the TopK layer and assigns the OUTPUT_BLOB_NAME to the second
output of the layer.
C++ code snippet

auto pred =  network->addTopK(*addBiasLayer->getOutput(0),                                
        nvinfer1::TopKOperation::kMAX, 1, reduceAxis);
assert(pred != nullptr);
pred->getOutput(1)->setName(OUTPUT_BLOB_NAME);

Python code snippet
pred = network.add_topk(add_bias_layer.get_output(0),                                     
   trt.TopKOperation.MAX, 1, reduce_axis)
assert pred != None
pred.get_output(1).name = OUTPUT_BLOB_NAME

For more information, refer to the TensorRT API documentation.

A.1.34.  ITripLimitLayer
The ITripLimitLayer specifies how many times the loop iterates. A loop is defined by loop
boundary layers.

For more information about the ITripLimitLayer, including how loops work and their
limitations, refer to Working With Loops.

Refer to the C++ class ITripLayer or the Python class ITripLayer for further details.

A.1.35.  IUnaryLayer
The IUnaryLayer supports PointWise unary operations.

Layer Description

The IUnaryLayer performs PointWise operations on input tensor A resulting in output tensor
B of the same dimensions. The following functions are supported:

‣
‣
‣
‣

‣
‣
‣

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_trip_limit_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#itriplimitlayer
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‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣

Conditions And Limitations

Input and output can be zero to 7-dimensional tensors.

Refer to the C++ class IUnaryLayer or the Python class IUnaryLayer for further details.

A.2.  Data Format Descriptions
NVIDIA® TensorRT™ supports different data formats. There are two aspects to consider: data
type and layout.

Data type format

The data type is the representation of each individual value. Its size determines the range of
values and the precision of the representation, which are FP32 (32-bit floating point, or single
precision), FP16 (16-bit floating point or half precision), INT32 (32-bit integer representation),
and INT8 (8-bit representation).

Layout format

The layout format determines the ordering in which values are stored. Typically, batch
dimensions are the leftmost dimensions, and the other dimensions refer to aspects of each
data item, such as C is channel, H is height, and W is width, in images. Ignoring batch sizes,

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_unary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iunarylayer
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which are always preceding these, C, H, and W are typically sorted as CHW (see Figure 15) or HWC
(see Figure 16).

Figure 15. Layout format for CHW: The image is divided into HxW matrices,
one per channel, and the matrices are stored in sequence; all
the values of a channel are stored contiguously.
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Figure 16. Layout format for HWC: The image is stored as a single HxW
matrix, whose value is actually C-tuple, with a value per
channel; all the values of a point (pixel) are stored contiguously.

To enable faster computations, more formats are defined to pack together channel values and
use reduced precision. For this reason, TensorRT also supports formats NC/2HW2 and NHWC8.

In NC/2HW2, pairs of channel values are packed together in each HxW matrix (with an empty
value in the case of an odd number of channels). The result is a format in which the values of
⟨C/2⟨HxW matrices are pairs of values of two consecutive channels (see Figure 17); notice that
this ordering interleaves dimensions as values of channels that have stride 1 if they are in the
same pair and stride 2xHxW otherwise.
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Figure 17. A pair of channel values are packed together in each HxW
matrix. The result is a format in which the values of [C/2] HxW
matrices are pairs of values of two consecutive channels.

In NHWC8, the entries of an HxW matrix include the values of all the channels (see Figure 18).
In addition, these values are packed together in ⟨C/8⟨ 8-tuples, and C is rounded up to the
nearest multiple of 8.
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Figure 18. In this NHWC8 format, the entries of an HxW matrix include the
vlaues of all the channels.

A.3.  Command-Line Programs

A.3.1.  trtexec
Included in the samples directory is a command-line wrapper tool called trtexec. trtexec is
a tool to quickly utilize TensorRT without having to develop your own application.

The trtexec tool has three main purposes:

‣ It’s useful for benchmarking networks on random or user-provided input data.

‣ It’s useful for generating serialized engines from models.

‣ It’s useful for generating serialized timing cache from the builder.
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Benchmarking network

If you have a model saved as a UFF file, ONNX file, or if you have a network description in
a Caffe prototxt format, you can use the trtexec tool to test the performance of running
inference on your network using TensorRT. The trtexec tool has many options for specifying
inputs and outputs, iterations for performance timing, precision allowed, and other options.

To maximize GPU utilization, trtexec enqueues the queries one batch ahead of time. In other
words, it does the following:
enqueue batch 0 -> enqueue batch 1 -> wait until batch 0 is done -> enqueue batch 2 -> wait
 until batch 1 is done -> enqueue batch 3 -> wait until batch 2 is done -> enqueue batch 4 -
> ...

If multi-stream (--streams=N flag) is used, then trtexec follows this pattern on each stream
separately.

The trtexec tool prints the following performance metrics. The following figure shows
an example Nsight System profile of a trtexec run with markers showing what each
performance metric means.
Throughput

The observed throughput is computed by dividing the number of queries by the Total Host
Walltime. If this is significantly lower than the reciprocal of GPU Compute Time, the GPU
may be underutilized because of host-side overheads or data transfers. Using CUDA graphs
(with --useCudaGraph) or disabling H2D/D2H transfers (with --noDataTransfer) may
improve GPU utilization. The output log provides guidance on which flag to use when
trtexec detects that the GPU is underutilized.

Host Latency
The summation of H2D Latency, GPU Compute Time, and D2H Latency. This is the latency
to infer a single query.

End-to-End Host Latency
The duration from when the H2D of a query is called to when the D2H of the same query is
completed, which includes the latency to wait for the completion of the previous query. This
is the latency of a query if multiple queries are enqueued consecutively.

Enqueue Time
The host latency to enqueue a query, including calling H2D/D2H CUDA APIs, running host-
side heuristics, and launching CUDA kernels. If this is longer than GPU Compute Time, the
GPU may be underutilized and the throughput may be dominated by host-side overhead.
Using CUDA graphs (with --useCudaGraph) may reduce Enqueue Time.

H2D Latency
The latency for host-to-device data transfers for input tensors of a single query. Add --
noDataTransfer to disable H2D/D2H data transfers.

D2H Latency
The latency for device-to-host data transfers for output tensors of a single query. Add --
noDataTransfer to disable H2D/D2H data transfers.

GPU Compute Time
The GPU latency to execute the CUDA kernels for a query.
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Total Host Walltime
The host walltime from when the first query (after warm-ups) is enqueued to when the last
query was completed.

Total GPU Compute Time
The summation of the GPU Compute Time of all the queries. If this is significantly shorter
than Total Host Walltime, the GPU may be under-utilized because of host-side overheads or
data transfers.

Figure 19. Performance metrics in a normal trtexec run under Nsight
Systems (ShuffleNet, BS=16, best, TitanRTX@1200MHz)

In addition, add the --dumpProfile flag to trtexec to show per-layer performance profiles,
which allows users to understand which layers in the network take the most time in GPU
execution.

Serialized engine generation

If you generate a saved serialized engine file, you can pull it into another application that runs
inference. For example, you can use the TensorRT Laboratory to run the engine with multiple
execution contexts from multiple threads in a fully pipelined asynchronous way to test parallel
inference performance. There are some caveats; for example, if you used a Caffe prototxt

https://github.com/NVIDIA/tensorrt-laboratory
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file and a model is not supplied, random weights are generated. Also, in INT8 mode, random
weights are used, meaning trtexec does not provide calibration capability.

Serialized timing cache generation

If you provide a timing cache file to the --timingCacheFile option, the builder can load
existing profiling data from it and add new profiling data entries during layer profiling. The
timing cache file can be reused in other builder instances to improve the builder execution
time. It is suggested to reuse this cache only in the same hardware/software configurations
(for example, CUDA/cuDNN/TensorRT versions, device model, and clock frequency);
otherwise, functional or performance issues may occur.

Refer to GitHub: trtexec/README.md file for detailed information about how to build this tool
and examples of its usage.

A.4.  ACKNOWLEDGEMENTS
TensorRT uses elements from the following software, whose licenses are reproduced below.

Google Protobuf

This license applies to all parts of Protocol Buffers except the following:

‣ Atomicops support for generic gcc, located in src/google/protobuf/stubs/
atomicops_internals_generic_gcc.h. This file is copyrighted by Red Hat Inc.

‣ Atomicops support for AIX/POWER, located in src/google/protobuf/stubs/
atomicops_internals_power.h. This file is copyrighted by Bloomberg Finance LP.

Copyright 2014, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

‣ Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

‣ Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

‣ Neither the name of Google Inc. nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/trtexec
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SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner of the input file used
when generating it. This code is not standalone and requires a support library to be linked with
it. This support library is itself covered by the above license.

Google Flatbuffers

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that
is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of
this definition, "control" means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted
by this License.

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of authorship.
For the purposes of this License, Derivative Works shall not include works that remain

http://www.apache.org/licenses/
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separable from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that
is intentionally submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of the copyright owner.
For the purposes of this definition, "submitted" means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, including but not
limited to communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose
of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within the
Work.

 2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such Derivative
Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license
applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with the
Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that Work
shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

 a). You must give any other recipients of the Work or Derivative Works a copy of this
License; and

 b). You must cause any modified files to carry prominent notices stating that You changed
the files; and

 c). You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and
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 d). If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices that do not pertain to
any part of the Derivative Works, in at least one of the following places: within a
NOTICE text file distributed as part of the Derivative Works; within the Source form
or documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the Work,
provided that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding such
Contributions.

 6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the
NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work
and assume any risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.
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 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright 2014 Google Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at: http://
www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

BVLC Caffe

COPYRIGHT

All contributions by the University of California:

Copyright (c) 2014, 2015, The Regents of the University of California (Regents) All rights
reserved.

All other contributions:

Copyright (c) 2014, 2015, the respective contributors All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over their contributions
to Caffe. The project versioning records all such contribution and copyright details. If a
contributor wants to further mark their specific copyright on a particular contribution,
they should indicate their copyright solely in the commit message of the change when it is
committed.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
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LICENSE

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/Caffe repository through pull-request, comment, or otherwise, the
contributor releases their content to the license and copyright terms herein.

half.h

Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
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jQuery.js

jQuery.js is generated automatically under doxygen.

In all cases TensorRT uses the functions under the MIT license.

CRC

policies, either expressed or implied, of the Regents of the University of California.

Note: The copyright of UC Berkeley's Berkeley Software Distribution ("BSD") source has
been updated. The copyright addendum may be found at ftp://ftp.cs.berkeley.edu/pub/4bsd/
README.Impt.License.Change and is

William Hoskins

Director, Office of Technology Licensing

University of California, Berkeley

getopt.c

Copyright (c) 2002 Todd C. Miller <Todd.Miller@courtesan.com>

Permission to use, copy, modify, and distribute this software for any purpose with or without
fee is hereby granted, provided that the above copyright notice and this permission notice
appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

Sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF, under agreement number
F39502-99-1-0512.

Copyright (c) 2000 The NetBSD Foundation, Inc.

All rights reserved.

This code is derived from software contributed to The NetBSD Foundation by Dieter Baron and
Thomas Klausner.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
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 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
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