NVIDIA.

NVIDIA TensorRT Samples

Support Guide | NVIDIA Docs

TRM-10259-001_v8.2.2 December 2021

Table of Contents

(0] a1 o1 (=T ol IR [oY {fo Yo 1V [ox 4o RSSO PPPPPPPPRPPPP 1
1.1. Getting Started With C++ Samples.. ..o 4
1.2. Getting Started With Python Samples........oooii 5

Chapter 2. Cross Compiling SamPles. i aeneennnnnnnnnnnnes 7
2.0 PO R QUISITES o et 7
2.2. Building Samples For ANX AArChOA. ..o 8
2.3. Building Samples For LINUX AAFCROA. ..o 9
2.4. Building Samples For Linux SBOA. .. 9

Chapter 3. Building Samples Using Static Libraries. ... 10
BT LIMIEAEIONS . 10

Chapter 4. Machine CompreRenSION.........oiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 12
4.1. Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model.....12
4.2. Building An RNN Network Layer By Layer. ..o 13
4.3. Refitting An Engine Built From An ONNX Model In Python.......c.ccooooi 14

Chapter 5. Character ReCognitiON........coiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeee e 15
5.7, "Hello World” For TeNSOrRT ... 15
5.2. Building A Simple MNIST Network Layer By Layer ... 16
5.3. Importing The TensorFlow Model And Running Inference..........ccooccoviiiiiiiiiiiii 16
5.4. "Hello World” For TensorRT From ONNX. ..o 17
5.5. Performing Inference In INT8 Using Custom Calibration...........cccooiiiiiiiii, 18
5.6. Digit Recognition With Dynamic Shapes In TensorRT.........ooiiiiiiii 18
5.7. SPeCifying 1/0 FOrmMats. ..o 19
5.8. Adding A Custom Layer That Supports INT8 1/0 To Your Network In TensorRT................. 20
5.9. "Hello World” For TensorRT Using TensorFlow And Python.........cccooiiiiiiii 20
5.10. Refitting An Engine In Python. ... 21
511 INT8 Calibration In Python. . ..o, 21
5.12. "Hello World” For TensorRT Using PyTorch And Python...........ccooooioiiiiiiiieee 22
5.13. Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python................ 22
5.14. Algorithm Selection APl Usage Example Based On sampleMNIST In TensorRT............... 23

Chapter 6. Image ClassifiCation. ... 24
6.1. Building And Running GoogleNet In TensorRT. ..o 24
6.2. Performing Inference In INT8 PrecCiSION.......cciiiiiiiiiii e 25
6.3. Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using

P O 25

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | ii

6.4. TensorRT Inference Of ONNX Models With Custom Layers In Python............ccoooocii 26
6.5. Scalable And Efficient Image Classification With EfficientNet Networks In Python............ 27
Chapter 7. Object Detection.. ... 28
7.1. Object Detection With SSD In Python.. ..o, 28
7.2. Object Detection With The ONNX TensorRT Backend In Python...........oocciiiii 29
7.3. Object Detection With A TensorFlow SSD Network........cccoooiiiiiiiiiiiii e, 30
7.4. Object Detection With Faster R-CNN.......ooi e, 30
7.5. Object Detection With SSD ... 31
7.6. Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN Network 32
7.7. Object Detection With A TensorFlow Faster R-CNN Network...........ccccoiiiiiiiiiiiiiin 32
7.8. Scalable And Efficient Object Detection With EfficientDet Networks In Python................. 33

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | iii

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | iv

Chapter 1. Introduction

The following samples show how to use NVIDIA® TensorRT" in numerous use cases while
highlighting different capabilities of the interface.

S| Note: The TensorRT samples are provided for illustrative purposes only and are not meant to
be used nor taken as examples of production quality code.

Title TensorRT Sample Name Description

trtexec trtexec A tool to quickly utilize TensorRT
without having to develop your
own application.

“Hello World” For TensorRT sampleMNIST Performs the basic setup and
initialization of TensorRT using
the Caffe parser.

Building A Simple MNIST sampleMNISTAPI Uses the TensorRT API to build

Network Layer By Layer an MNIST (handwritten digit
recognition] layer by layer, sets
up weights and inputs/outputs
and then performs inference.

Importing The TensorFlow sampleUffMNIST Imports a TensorFlow model

Model And Running Inference trained on the MNIST dataset.

“Hello World” For TensorRT sampleOnnxMNIST Converts a model trained on the

From ONNX MNIST dataset in ONNX format
to a TensorRT network.

Building And Running GoogleNet ' sampleGoogleNet Shows how to import a model

In TensorRT trained with Caffe into TensorRT
using GoogleNet as an example.

Building An RNN Network Layer | sampleCharRNN Uses the TensorRT API to build

By Layer an RNN network layer by layer,

sets up weights and inputs/
outputs and then performs

inference.
Performing Inference In INT8 samplelNT8 Performs INT8 calibration and
Using Custom Calibration inference. Calibrates a network
for execution in INTS8.
Performing Inference In INT8 samplelNT8API Sets per tensor dynamic range
Precision and computation precision of a
layer.

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 |

1

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#trtexec

Title
Object Detection With Faster R-

CNN

Object Detection With A
TensorFlow SSD Network

Object Detection With SSD

Specifying I/0 Formats

Adding A Custom Layer That
Supports INT8 1/0 To Your
Network In TensorRT

Digit Recognition With Dynamic
Shapes In TensorRT

Neural Machine Translation
(NMT) Using A Sequence To
Sequence [seg2seq) Model

Object Detection And
Instance Segmentation With
A TensorFlow Mask R-CNN
Network

Object Detection With A
TensorFlow Faster R-CNN
Network

NVIDIA TensorRT Samples

TensorRT Sample Name
sampleFasterRCNN

sampleUffSSD

sampleSSD

samplelOFormats

sampleUffPluginV2Ext

sampleDynamicReshape

sampleNMT

sampleUffMaskRCNN

sampleUffFasterRCNN

Introduction

Description

Uses TensorRT plugins,
performs inference and
implements a fused custom
layer for end-to-end inferencing
of a Faster R-CNN model.

Preprocesses the TensorFlow
SSD network, performs
inference on the SSD network
in TensorRT and uses TensorRT
plugins to speed up inference.

Preprocesses the input to

the SSD network, performs
inference on the SSD network
in TensorRT, uses TensorRT
plugins to speed up inference,
and performs INT8 calibration
on an SSD network.

Uses a Caffe model that was
trained on theMNIST dataset
and performs engine building
and inference using TensorRT.
The correctness of outputs is
then compared to the golden
reference.

Demonstrates how to extend
INT8 1/0 for a plugin that is
introduced in TensorRT 6.x.x.

Demonstrates how to use
dynamic input dimensions in
TensorRT by creating an engine
for resizing dynamically shaped
inputs to the correct size for an
ONNX MNIST model.

Demonstrates the
implementation of Neural
Machine Translation (NMT)
based on a TensorFlow seqZ2seq
model using the TensorRT API.

Performs inference on the Mask
R-CNN network in TensorRT.
Mask R-CNN is based on the
Mask R-CNN paper which
performs the task of object
detection and object mask
predictions on a target image.

Serves as a demo of how to use
a pre-trained Faster-RCNN
model in NVIDIA TAO to do
inference with TensorRT.

TRM-10259-001_v8.2.2 | 2

https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md
https://arxiv.org/abs/1703.06870

Title

Algorithm Selection API
Usage Example Based On
sampleMNIST In TensorRT

Introduction To Importing Caffe,
TensorFlow And ONNX Models
Into TensorRT Using Python

“"Hello World” For TensorRT
Using TensorFlow And Python

“"Hello World” For TensorRT
Using PyTorch And Python

Adding A Custom Layer To
Your TensorFlow Network In
TensorRT In Python

Object Detection With The ONNX
TensorRT Backend In Python

Object Detection With SSD In
Python

INT8 Calibration In Python

NVIDIA TensorRT Samples

TensorRT Sample Name

sampleAlgorithmSelector

introductory_parser_samples

end to_end tensorflow_mnist

network_api_pytorch_mnist

uff_custom_plugin

yolov3_onnx

uff_ssd

int8_caffe_mnist

Introduction

Description

End-to-end example of how to
use the algorithm selection API
based on sampleMNIST.

Uses TensorRT and its included
suite of parsers (the UFF, Caffe
and ONNX parsers), to perform
inference with ResNet-50
models trained with various
different frameworks.

An end-to-end sample that
trains a model in TensorFlow
and Keras, freezes the model
and writes it to a protobuf file,
converts it to UFF, and finally
runs inference using TensorRT.

An end-to-end sample that
trains a model in PyTorch,
recreates the network in
TensorRT, imports weights from
the trained model, and finally
runs inference with a TensorRT
engine.

Implements a clip layer (as

a NVIDIA CUDA® kernel)
wraps the implementation

in a TensorRT plugin (with a
corresponding plugin creator),
and generates a shared library
module containing its code.

Implements a full ONNX-

based pipeline for performing
inference with the YOLOv3-608
network, including pre and post-
processing.

Implements a full UFF-
based pipeline for performing
inference with an SSD
(InceptionV2 feature
extractor) network. The
sample downloads a trained

ssd_inception v2 coco 2017 11 17

model and uses it to perform
inference. Additionally, it
superimposes bounding boxes
on the input image as a post-
processing step.

Demonstrates how to calibrate
an engine to run in INT8 mode.

TRM-10259-001_v8.2.2 | 3

Title TensorRT Sample Name

Refitting An Engine In Python engine_refit_mnist

TensorRT Inference Of ONNX onnx_packnet
Models With Custom Layers In

Python

Refitting An Engine Built From engine_refit_onnx_bidaf
An ONNX Model In Python

Scalable And Efficient Object efficientdet
Detection With EfficientDet
Networks In Python

Scalable And Efficient Image efficientnet
Classification With EfficientNet
Networks In Python

Introduction

Description

Trains an MNIST model in
PyTorch, recreates the network
in TensorRT with dummy
weights, and finally refits the
TensorRT engine with weights
from the model.

Uses TensorRT to perform
inference with a PackNet
network. This sample
demonstrates the use of custom
layers in ONNX graphs and
processing them using ONNX-
graphsurgeon API.

Builds an engine from the
ONNX BiDAF model, refits the
TensorRT engine with weights
from the model.

Sample application to
demonstrate conversion
and execution of Google®
EfficientDet models with
TensorRT.

Sample application to
demonstrate conversion
and execution of a Google
EfficientNet model with
TensorRT.

1.1. Getting Started With C++ Samples

You can find the C++ samples in the /usr/src/tensorrt/samples package directory as well
as on GitHub. The following C++ samples are shipped with TensorRT.

“Hello World” For TensorRT
Building A Simple MNIST Network Layer By Layer

Importing The TensorFlow Model And Running Inference

“Hello World” For TensorRT From ONNX
Building And Running GoogleNet In TensorRT
Building An RNN Network Layer By Layer

Performing Inference In INT8 Using Custom Calibration

Performing Inference In INT8 Precision

Object Detection With Faster R-CNN

Object Detection With A TensorFlow SSD Network
Object Detection With SSD

vV V. v v v vV vV v v Vv%v

NVIDIA TensorRT Samples

TRM-10259-001_v8.2.2 | 4

https://github.com/NVIDIA/TensorRT/tree/main/samples

Introduction

Specifying 1/0 Formats
Adding A Custom Layer That Supports INT8 I/0 To Your Network In TensorRT
Digit Recognition With Dynamic Shapes In TensorRT

Neural Machine Translation (NMT) Using A Sequence To Sequence (seg2seq) Model
Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN Network
Object Detection With A TensorFlow Faster R-CNN Network

Algorithm Selection APl Usage Example Based On sampleMNIST In TensorRT'

vV v v v v Vv v

Getting Started With C++ Samples

Every C++ sample includes a README . md file in GitHub that provides detailed information about
how the sample works, sample code, and step-by-step instructions on how to run and verify its
output.

Running C++ Samples on Linux

If you installed TensorRT using the Debian files, copy /usr/src/tensorrt to a new directory
first before building the C++ samples. If you installed TensorRT using the tar file, then the
samples are located in {TAR_EXTRACT PATH}/samples. [0 build all the samples and then run

one of the samples, use the following commands:

$ cd <samples_dir>
$ make -3j4

$ cd ../bin

$./<sample_bin>

Running C++ Samples on Windows

All of the C++ samples on Windows are provided as Visual Studio Solution files. To build a
sample, open its corresponding Visual Studio Solution file and build the solution. The output
executable will be generated in (zIP EXTRACT PATH) \bin. You can then run the executable
directly or through Visual Studio.

1.2. Getting Started With Python Samples

You can find the Python samples in the /usr/src/tensorrt/samples/python package
directory. The following Python samples are shipped with TensorRT.

» |ntroduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using

Python
“Hello World” For TensorRT Using TensorFlow And Python

“Hello World” For TensorRT Using PyTorch And Python
Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
Object Detection With The ONNX TensorRT Backend In Python

vV v v VY

! This sample is located in the release product package only.

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 5

https://github.com/NVIDIA/TensorRT/tree/main/samples

vV vV .v v v v v

Introduction

Object Detection With SSD In Python

INT8 Calibration In Python

Refitting An Engine In Python

TensorRT Inference Of ONNX Models With Custom Layers In Python

Refitting An Engine Built From An ONNX Model In Python

Scalable And Efficient Object Detection With EfficientDet Networks In Python
Scalable And Efficient Image Classification With EfficientNet Networks In Python

Getting Started With Python Samples

Every C++ sample includes a README . md file in GitHub that provides detailed information about
how the sample works, sample code, and step-by-step instructions on how to run and verify its
output.

Running Python Samples

To run one of the Python samples, the process typically involves two steps:

1.

Install the sample requirements:

python<x> -m pip install -r requirements.txt

where python<x> is either python2 or python3.

Run the sample code with the data directory provided if the TensorRT sample data is not

in the default location. For example:
python<x> sample.py [-d DATA DIR]

For more information on running samples, see the README . md file included with the sample.

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 6

https://github.com/NVIDIA/TensorRT/tree/main/samples/python

Chapter 2. Cross Compiling Samples

The following sections show how to cross-compile TensorRT samples for AArché64 QNX and
Linux platforms under x86_64 Linux.

2.1. Prerequisites

This section provides step-by-step instructions to ensure you meet the minimum
requirements to cross-compile.

Procedure

1. Install the CUDA cross-platform toolkit for the corresponding target and set the
environment variable CUDA INSTALL DIR.

$ export CUDA_INSTALL DIR="your cuda install dir"

Where CUDA INSTALL DIRis setto /usr/local/cuda by default.

Note: If you are installing TensorRT using the network repository, then it’s best if you
install the cuda-toolkit-x-Y and cuda-cross-<arch>-X-Y packages first to ensure you
have all CUDA dependencies required to build the TensorRT samples.

2. Install the cuDNN cross-platform libraries for the corresponding target and set the
environment variable CUDNN_INSTALL DIR.

$ export CUDNN_INSTALL DIR="your cudnn install dir"

Where CUDNN_ INSTALL DIRIs setto CUDA INSTALL DIR by default.
3. Install the TensorRT cross-compilation Debian packages for the corresponding target.

Note: If you are using the tar file release for the target platform, then you can safely skip
this step. The tar file release already includes the cross-compile libraries so no additional
packages are required.

QNX AArché4

» libnvinfer-dev-cross—-gnx
> libnvinfer8-cross—-gnx

» libnvinfer-plugin-dev-cross-gnx

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 7

Cross Compiling Samples

> libnvinfer-plugin8-cross-gnx

> libnvparsers—-dev-cross—-gnx

> libnvparsers8-cross—-gnx

> libnvonnxparsers—-dev-cross—-gnx

> libnvonnxparsers8-cross—-gnx

Linux AArché4

» libnvinfer-dev-cross-aarch64

> libnvinfer8-cross-aarch64

» libnvinfer-plugin-dev-cross-aarch64
» libnvinfer-plugin8-cross-aarché64

» libnvparsers-dev-cross—-aarch64

> libnvparsers8-cross-aarch64

» libnvonnxparsers-dev-cross-aarch64

> libnvonnxparsers8-cross—-aarché6

Linux SBSA

» libnvinfer-dev-cross-sbsa

> libnvinfer8-cross-sbsa

» libnvinfer-plugin-dev-cross-sbsa
» libnvinfer-plugin8-cross-sbsa

> libnvparsers-dev-cross-sbsa

» libnvparsers8-cross-sbsa

» libnvonnxparsers-dev-cross-sbsa

» libnvonnxparsers8-cross-sbsa

2.2. Building Samples For QNX AArché4

This section provides step-by-step instructions to build samples for QNX users.

Procedure

1. Download the QNX tool-chain and export the following environment variables.

$ export QNX HOST=/path/to/your/qnx/toolchains/host/linux/x86_ 64
$ export QONX TARGET=/path/to/your/qnx/toolchain/target/qnx7

2. Build the samples by issuing:

$ cd /path/to/TensorRT/samples
$ make TARGET=qnx

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2

8

Cross Compiling Samples

2.3. Building Samples For Linux AArché4

This section provides step-by-step instructions to build samples for Linux users.

Procedure

1. Install the corresponding GCC compiler, aarch64-1inux-gnu-g++. In Ubuntu, this can be
installed via:
$ sudo apt-get install g++-aarch64-linux-gnu

2. Build the samples by issuing:

$ cd /path/to/TensorRT/samples
$ make TARGET=aarché64

2.4. Building Samples For Linux SBSA

This section provides step-by-step instructions to build samples for Linux SBSA users.

Procedure

1. Install the corresponding GCC compiler, aarch64-1inux-gnu-g++. In Ubuntu, this can be
installed via:
$ sudo apt-get install g++-aarch64-linux-gnu

2. Build the samples by issuing:

$ cd /path/to/TensorRT/samples
$ make TARGET=aarch64 ARMSERVER=1

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 9

Chapter 3. Building Samples Using
Static Libraries

The following section demonstrates how to build the TensorRT samples using the TensorRT
static libraries, including cuDNN and other CUDA libraries that are statically linked. The
TensorRT samples can be used as a guideline for how to build your own application using the
TensorRT static libraries, if you choose.

S| Note: You must use the tar package if you wish to build the TensorRT samples statically
because some libraries are not included in the Debian or RPM packages including some
required dependent static libraries and linker scripts. Also, building the TensorRT samples
statically is only supported on Linux x86 platforms and not AArché4 or PowerPC at this time.

To build the TensorRT samples using the TensorRT static libraries, you can use the following
command when you are building the samples.
$ make TRT_STATIC=1

You should append any other Make arguments you would normally include, such as TARGET
to indicate the CPU architecture or cUDA_ INSTALL DIR to indicate where CUDA has been
installed on your system. The static sample binaries created by the TRT STATIC make option
will have the suffix static appended to the filename in the output directory to distinguish
them from the dynamic sample binaries.

3.1. Limitations

It's strongly advised that the same major.minor version of the CUDA toolkit that was used to
build TensorRT is used to build your application. Since symbols cannot be hidden or duplicated
in a static binary, like they can for dynamic libraries, using the same CUDA toolkit version
reduces the chance of symbol conflicts or incompatibilities.

If you are including libnvinfer static.aand libnvinfer plugin static.a inyour linker
command line, then consider using the following linker flags to ensure that all CUDA kernels
and TensorRT plugins are included in your final application.

-Wl,-whole-archive -lnvinfer static -W1l,-no-whole-archive

-W1l,-whole-archive -lnvinfer plugin_static -W1l,-no-whole-archive

When linking with the cuDNN static library, 1ibcudnn_static.a should be linked with the
following whole-archive linker flag for best possible performance. Refer to the cuDNN 8.x.x
Release Notes for more information.

-Wl,-whole-archive -lcudnn_static -Wl,-no-whole-archive

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 10

https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel_8
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel_8

Building Samples Using Static Libraries

For platforms other than x86_64 Linux CUDA-11.x, if 1ibnvrtc.so.* cannot be found in your
library search path, then TensorRT will automatically disable some TensorRT features that
require NVRTC to function (see list below). If these features are required for your application,
then you must provide the NVRTC library at runtime.

Loops
Boolean operations
PointWise fusions

Fusions that depend on PointWise fusion. For example, Convolution or FullyConnected
operations fused with the subsequent PointWise operation.

If you are building the TensorRT samples with a GCC version less than 8., then you may
require the RedHat Developer Toolset 8 non-shared libstdc++ library to avoid missing C++
standard library symbols during linking. You can use the following one-line command to obtain
this additional static library, assuming the programs required by this command are already
installed on your system.

$ curl -s http://mirror.centos.org/centos/7/sclo/x86_64/rh/Packages/d/devtoolset-8-libstdc++-
devel-8.3.1-3.2.el17.x86_64.rpm | rpm2cpio - | bsdtar --strip-components=10 -xf - '*/libstdc+
+_nonshared.a'

If you are building the TensorRT samples with a GCC version less than 5.x (for example GCC
4.8 on RHEL/Cent0S 7.x), then you may require the linker options mentioned below to ensure
you're using the correct C++ standard library symbols in your application. Your application
object files must come after the TensorRT static libraries when linking to ensure the newer
C++ standard library symbols from the RedHat Developer Toolset are used. This change is
required to avoid undefined behavior within TensorRT that may lead to a crash. Since the
resulting binary will of course depend on TensorRT both the TensorRT static libraries and any
dependent object files must be linked together as a group to ensure all symbols are resolved.
-Wl,--start-group -lnvinfer static -lnvinfer plugin_ static -lnvparsers_static -
lnvonnxparser_ static <object files> -W1l,--end-group

You may observe relocation issues during linking if the resulting binary exceeds 2 GB. This can
occur if you are linking TensorRT and all of its dependencies into your application statically. To
workaround this issue and move the GPU code to the end of the binary, you may require the
linker script below and the following linker option -wWl, <path/to/fatbin.1ld>.

SECTIONS

{
.nvFatBinSegment : { *(.nvFatBinSegment) }
.nv_fatbin : { *(.nv_fatbin) }

}

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 11

Chapter 4. Machine Comprehension

Machine comprehension systems are used to translate text from one language to another
language, make predictions or answer questions based on a specific context. Recurrent
neural networks (RNNJ) are one of the most popular deep learning solutions for machine
comprehension.

Some examples of TensorRT machine comprehension samples include the following:

» Neural Machine Translation (NMT] Using A Sequence To Sequence [seg2seq) Model
» Building An RNN Network [ayer By Layer

» Refitting An Engine Built From An ONNX Model In Python

4.1. Neural Machine Translation (NMT)
Using A Sequence To Sequence
[seq2seq) Model

This sample, sampleNMT, demonstrates the implementation of Neural Machine Translation
(NMT) based on a TensorFlow seq2seq model using the TensorRT API. The TensorFlow
seq2seq model is an open-sourced NMT project that uses deep neural networks to translate
text from one language to another language.

What does this sample do?

Specifically, this sample is an end-to-end sample that takes a TensorFlow model, builds
an engine, and runs inference using the generated network. The sample is intended to be
modular so it can be used as a starting point for your machine translation application.

This sample implements German to English translation using the data that is provided by and
trained from the TensorFlow NMT (seq2seq) Tutorial.

Where is this sample located?

This sample is maintained under the samples/sampleNMT directory in the GitHub:
sampleNMT repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleNMT. If using the tar or zip package, the sample is at
<extracted path>/samples/sampleNMT.

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 12

https://github.com/tensorflow/nmt.git
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleNMT
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleNMT

Machine Comprehension

How do | get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleNMT/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

4.2. Building An RNN Network Layer By
Layer

This sample, sampleCharRNN, uses the TensorRT API to build an RNN network layer by layer,
sets up weights and inputs/outputs and then performs inference.

What does this sample do?

Specifically, this sample creates a CharRNN network that has been trained on the Tiny
Shakespeare dataset. For more information about character level modeling, see char-rnn.

TensorFlow has a useful RNN Tutorial which can be used to train a word-level model. Word
level models learn a probability distribution over a set of all possible word sequences. Since
our goal is to train a char level model, which learns a probability distribution over a set of all
possible characters, a few modifications will need to be made to get the TensorFlow sample to
work. These modifications can be seen here.

Where is this sample located?

This sample is maintained under the samples/sampleCharRNN directory in the GitHub:
sampleCharRNN repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleCharRNN. If using the tar or zip package, the sample is
at <extracted path>/samples/sampleCharRNN.

How do | get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleCharRNN/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 13

https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleNMT/README.md
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://github.com/karpathy/char-rnn
https://www.tensorflow.org/tutorials/recurrent
http://deeplearningathome.com/2016/10/Text-generation-using-deep-recurrent-neural-networks.html
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleCharRNN
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleCharRNN
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleCharRNN/README.md

Machine Comprehension

4.3. Refitting An Engine Built From An
ONNX Model In Python

This sample, engine_refit_onnx_bidaf, builds an engine from the ONNX BiDAF model, and
refits the TensorRT engine with weights from the model. The new refit APls allow users to
locate the weights via names from ONNX models instead of layer names and weights roles.

In the first pass, the weights "Parameter576_B_0" are refitted with empty values resulting in
an incorrect inference result. In the second pass, we refit the engine with the actual weights

and run inference again. With the weights now set correctly, inference should provide correct
results.

Where Is This Sample Located?

This sample is maintained under the samples/python/engine refit onnx bidaf directory
in the GitHub: engine_refit_onnx_bidaf repository. If using the Debian or RPM package, the
sample is located at /usr/src/tensorrt/samples/python/engine refit onnx bidaf.

If using the tar or zip package, the sample is at <extracted path>/samples/python/

engine refit onnx bidaf.

Getting Started:

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: engine_refit_onnx_bidaf/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 14

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/engine_refit_onnx_bidaf
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/engine_refit_onnx_bidaf/README.md

Chapter 5. Character Recognition

Character recognition, especially on the MNIST dataset, is a classic machine learning
problem. The MNIST problem involves recognizing the digit that is present in an image of a
handwritten digit.

Some examples of TensorRT character recognition samples include the following:
» “Hello World” For TensorRT

» Building A Simple MNIST Network Layer By Layer

» Importing The TensorFlow Model And Running Inference

"Hello World” For TensorRT From ONNX

» Performing Inference In INT8 Using Custom Calibration

v

» Digit Recognition With Dynamic Shapes In TensorRT

» Specifying I/0O Formats

» Adding A Custom Layer That Supports INT8 I/0 To Your Network In TensorRT
» “Hello World” For TensorRT Using TensorFlow And Python

» Refitting An Engine In Python

» INT8 Calibration In Python

» “Hello World” For TensorRT Using PyTorch And Python

» Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python

» Algorithm Selection APl Usage Example Based On sampleMNIST In TensorRT

H.1. “Hello World” For TensorRT

This sample, sampleMNIST, is a simple hello world example that performs the basic setup
and initialization of TensorRT using the Caffe parser.

Where is this sample located?

This sample is maintained under the samples/sampleMNIST directory in the GitHub:
sampleMNIST repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleMNIST. If using the tar or zip package, the sample is at
<extracted path>/samples/sampleMNIST.

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 15

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNIST
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNIST

Character Recognition

How do | get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleMNIST/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

5.2. Building A Simple MNIST Network
Layer By Layer

This sample, sampleMNISTAPI, uses the TensorRT API to build an engine for a model trained
on the MNIST dataset.

What does this sample do?

Specifically, it creates the network layer by layer, sets up weights and inputs/outputs, and then
performs inference. This sample is similar to sampleMNIST. Both of these samples use the
same model weights, handle the same input, and expect similar output.

Where is this sample located?

This sample is maintained under the samples/sampleMNISTAPI directory in the GitHub:
sampleMNISTAPI repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleMNISTAPI. If using the tar or zip package, the sample is
at <extracted path>/samples/sampleMNISTAPI.

How do | get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleMNISTAPI/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

5.3. Importing The TensorFlow Model And
Running Inference

This sample, sampleUffMNIST, imports a TensorFlow model trained on the MNIST dataset.

What does this sample do?

The MNIST TensorFlow model has been converted to UFF (Universal Framework Format)
using the explanation described in Working With TensorFlow.

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 16

https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleMNIST/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNISTAPI
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNISTAPI
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleMNISTAPI/README.md
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#working_tf

Character Recognition

The UFF is designed to store neural networks as a graph. The NvUffParser that we use in
this sample parses the UFF file in order to create an inference engine based on that neural
network.

With TensorRT, you can take a TensorFlow trained model, export it into a UFF protobuf file
(.uff) using the UFF converter, and import it using the UFF parser.

Where is this sample located?

This sample is maintained under the samples/sampleUf£fMNIST directory in the GitHub:
sampleUffMNIST repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleUf£fMNIST. If using the tar or zip package, the sample is
at <extracted path>/samples/sampleUffMNIST.

How do | get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleUffMNIST/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

5.4. “Hello World” For TensorRT From
ONNX

This sample, sampleOnnxMNIST, converts a model trained on the MNIST in ONNX format to
a TensorRT network and runs inference on the network. ONNX is a standard for representing
deep learning models that enables models to be transferred between frameworks.

Where is this sample located?

This sample is maintained under the samples/sampleOnnxMNIST directory in the GitHub:
sampleOnnxMNIST repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleOnnxMNIST. If using the tar or zip package, the sample
Is at <extracted path>/samples/sampleOnnxMNIST.

How do | get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleOnnxMNIST/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 17

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffMNIST
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffMNIST
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleUffMNIST/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleOnnxMNIST
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleOnnxMNIST
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleOnnxMNIST/README.md

Character Recognition

5.50. Performing Inference In INT8 Using
Custom Calibration

This sample, sampleINT8, performs INT8 calibration and inference.

What does this sample do?

Specifically, this sample demonstrates how to perform inference in an 8-bit integer (INT8).
INT8 inference is available only on GPUs with compute capability 6.1 or 7.x. After the network
is calibrated for execution in INT8, the output of the calibration is cached to avoid repeating
the process. You can then reproduce your own experiments with Caffe in order to validate your
results on ImageNet networks.

Where is this sample located?

This sample is maintained under the samples/sampleINT8 directory in the GitHub:
sampleINT8 repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleINTS8. If using the tar or zip package, the sample is at
<extracted path>/samples/sampleINTS8.

How do | get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleINT8/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

0.6. Digit Recognition With Dynamic
Shapes In TensorRT

This sample, sampleDynamicReshape, demonstrates how to use dynamic input dimensions in
TensorRT by creating an engine for resizing dynamically shaped inputs to the correct size for
an ONNX MNIST model.

What does this sample do?

This sample creates an engine for resizing an input with dynamic dimensions to a size that an
ONNX MNIST model can consume.

Specifically, this sample demonstrates how to:

» Create a network with dynamic input dimensions to act as a preprocessor for the model

» Parse an ONNX MNIST model to create a second network

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 18

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleINT8/README.md

Character Recognition

» Build engines for both networks and start calibration if running in INT8

» Run inference using both engines

For more information, see Working With Dynamic Shapes in the NVIDIA TensorRT Developer
Guide.

Where is this sample located?

This sample is maintained under the samples/sampleDynamicReshape directory in the
GitHub: sampleDynamicReshape repository. If using the Debian or RPM package, the sample
Is located at /usr/src/tensorrt/samples/sampleDynamicReshape. If using the tar or zip
package, the sample is at <extracted path>/samples/sampleDynamicReshape.

How do | get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleDynamicReshape/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

5.7. Specifying I/0 Formats

This sample, samplelOFormats, uses a Caffe model that was trained on the MNIST dataset
and performs engine building and inference using TensorRT. The correctness of outputs is
then compared to the golden reference.

What does this sample do?

Specifically, it shows how to explicitly specify I/0 formats for TensorFormat : : kKLINEAR,
TensorFormat: :kCHW2 and TensorFormat: : kHWCS for Float16 and INT8 precision.

ITensor::setAllowedFormats is invoked to specify which format is used.

Where is this sample located?

This sample is maintained under the directory samples/sampleIOFormats in the GitHub:
samplelOFormats repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleIOFormats. If using the tar or zip package, the sample
Is at <extracted path>/samples/sampleIOFormats.

How do | get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: samplelOFormats/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

NVIDIA TensorRT Samples TRM-10259-001_v8.2.2 | 19

https://docs.nvidia.com/deepl