
TRM-10259-001_v8.2.3    |    January 2022

NVIDIA TensorRT Samples

Support Guide | NVIDIA Docs



NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   ii

Table of Contents

Chapter 1.  Introduction........................................................................................................ 1
1.1. Getting Started With C++ Samples.......................................................................................... 4

1.2. Getting Started With Python Samples..................................................................................... 5

Chapter 2. Cross Compiling Samples..................................................................................7
2.1. Prerequisites............................................................................................................................. 7

2.2. Building Samples For QNX AArch64........................................................................................8

2.3. Building Samples For Linux AArch64......................................................................................9

2.4. Building Samples For Linux SBSA.......................................................................................... 9

Chapter 3. Building Samples Using Static Libraries.........................................................10
3.1. Limitations............................................................................................................................... 10

Chapter 4. Machine Comprehension..................................................................................12
4.1. Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model......12

4.2. Building An RNN Network Layer By Layer........................................................................... 13

4.3. Refitting An Engine Built From An ONNX Model In Python..................................................14

Chapter 5. Character Recognition......................................................................................15
5.1. “Hello World” For TensorRT.................................................................................................. 15

5.2. Building A Simple MNIST Network Layer By Layer..............................................................16

5.3. Importing The TensorFlow Model And Running Inference................................................... 16

5.4. “Hello World” For TensorRT From ONNX............................................................................. 17

5.5. Performing Inference In INT8 Using Custom Calibration.....................................................18

5.6. Digit Recognition With Dynamic Shapes In TensorRT.......................................................... 18

5.7. Specifying I/O Formats........................................................................................................... 19

5.8. Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT..................20

5.9. “Hello World” For TensorRT Using TensorFlow And Python................................................20

5.10. Refitting An Engine In Python.............................................................................................. 21

5.11. INT8 Calibration In Python................................................................................................... 21

5.12. “Hello World” For TensorRT Using PyTorch And Python................................................... 22

5.13. Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python..................22

5.14. Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT...............23

Chapter 6. Image Classification......................................................................................... 24
6.1. Building And Running GoogleNet In TensorRT..................................................................... 24

6.2. Performing Inference In INT8 Precision................................................................................25

6.3. Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using
Python.........................................................................................................................................25



NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   iii

6.4. TensorRT Inference Of ONNX Models With Custom Layers In Python.................................26

6.5. Scalable And Efficient Image Classification With EfficientNet Networks In Python............ 27

Chapter 7. Object Detection............................................................................................... 28
7.1. Object Detection With SSD In Python.................................................................................... 28

7.2. Object Detection With The ONNX TensorRT Backend In Python..........................................29

7.3. Object Detection With A TensorFlow SSD Network.............................................................. 30

7.4. Object Detection With Faster R-CNN.................................................................................... 30

7.5. Object Detection With SSD..................................................................................................... 31

7.6. Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN Network...32

7.7. Object Detection With A TensorFlow Faster R-CNN Network............................................. 32

7.8. Scalable And Efficient Object Detection With EfficientDet Networks In Python...................33



NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   iv



NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   1

Chapter 1. Introduction

The following samples show how to use NVIDIA® TensorRT™ in numerous use cases while
highlighting different capabilities of the interface.

Note: The TensorRT samples are provided for illustrative purposes only and are not meant to
be used nor taken as examples of production quality code.

Title TensorRT Sample Name Description
trtexec trtexec A tool to quickly utilize TensorRT

without having to develop your
own application.

“Hello World” For TensorRT sampleMNIST Performs the basic setup and
initialization of TensorRT using
the Caffe parser.

Building A Simple MNIST
Network Layer By Layer

sampleMNISTAPI Uses the TensorRT API to build
an MNIST (handwritten digit
recognition) layer by layer, sets
up weights and inputs/outputs
and then performs inference.

Importing The TensorFlow
Model And Running Inference

sampleUffMNIST Imports a TensorFlow model
trained on the MNIST dataset.

“Hello World” For TensorRT
From ONNX

sampleOnnxMNIST Converts a model trained on the
MNIST dataset in ONNX format
to a TensorRT network.

Building And Running GoogleNet
In TensorRT

sampleGoogleNet Shows how to import a model
trained with Caffe into TensorRT
using GoogleNet as an example.

Building An RNN Network Layer
By Layer

sampleCharRNN Uses the TensorRT API to build
an RNN network layer by layer,
sets up weights and inputs/
outputs and then performs
inference.

Performing Inference In INT8
Using Custom Calibration

sampleINT8 Performs INT8 calibration and
inference. Calibrates a network
for execution in INT8.

Performing Inference In INT8
Precision

sampleINT8API Sets per tensor dynamic range
and computation precision of a
layer.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#trtexec


Introduction

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   2

Title TensorRT Sample Name Description
Object Detection With Faster R-
CNN

sampleFasterRCNN Uses TensorRT plugins,
performs inference and
implements a fused custom
layer for end-to-end inferencing
of a Faster R-CNN model.

Object Detection With A
TensorFlow SSD Network

sampleUffSSD Preprocesses the TensorFlow
SSD network, performs
inference on the SSD network
in TensorRT and uses TensorRT
plugins to speed up inference.

Object Detection With SSD sampleSSD Preprocesses the input to
the SSD network, performs
inference on the SSD network
in TensorRT, uses TensorRT
plugins to speed up inference,
and performs INT8 calibration
on an SSD network.

Specifying I/O Formats sampleIOFormats Uses a Caffe model that was
trained on theMNIST dataset
and performs engine building
and inference using TensorRT.
The correctness of outputs is
then compared to the golden
reference.

Adding A Custom Layer That
Supports INT8 I/O To Your
Network In TensorRT

sampleUffPluginV2Ext Demonstrates how to extend
INT8 I/O for a plugin that is
introduced in TensorRT 6.x.x.

Digit Recognition With Dynamic
Shapes In TensorRT

sampleDynamicReshape Demonstrates how to use
dynamic input dimensions in
TensorRT by creating an engine
for resizing dynamically shaped
inputs to the correct size for an
ONNX MNIST model.

Neural Machine Translation
(NMT) Using A Sequence To
Sequence (seq2seq) Model

sampleNMT Demonstrates the
implementation of Neural
Machine Translation (NMT)
based on a TensorFlow seq2seq
model using the TensorRT API.

Object Detection And
Instance Segmentation With
A TensorFlow Mask R-CNN
Network

sampleUffMaskRCNN Performs inference on the Mask
R-CNN network in TensorRT.
Mask R-CNN is based on the
Mask R-CNN paper which
performs the task of object
detection and object mask
predictions on a target image.

Object Detection With A
TensorFlow Faster R-CNN
Network

sampleUffFasterRCNN Serves as a demo of how to use
a pre-trained Faster-RCNN
model in NVIDIA TAO to do
inference with TensorRT.

https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md
https://arxiv.org/abs/1703.06870


Introduction

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   3

Title TensorRT Sample Name Description
Algorithm Selection API
Usage Example Based On
sampleMNIST In TensorRT

sampleAlgorithmSelector End-to-end example of how to
use the algorithm selection API
based on sampleMNIST.

Introduction To Importing Caffe,
TensorFlow And ONNX Models
Into TensorRT Using Python

introductory_parser_samples Uses TensorRT and its included
suite of parsers (the UFF, Caffe
and ONNX parsers), to perform
inference with ResNet-50
models trained with various
different frameworks.

“Hello World” For TensorRT
Using TensorFlow And Python

end_to_end_tensorflow_mnist An end-to-end sample that
trains a model in TensorFlow
and Keras, freezes the model
and writes it to a protobuf file,
converts it to UFF, and finally
runs inference using TensorRT.

“Hello World” For TensorRT
Using PyTorch And Python

network_api_pytorch_mnist An end-to-end sample that
trains a model in PyTorch,
recreates the network in
TensorRT, imports weights from
the trained model, and finally
runs inference with a TensorRT
engine.

Adding A Custom Layer To
Your TensorFlow Network In
TensorRT In Python

uff_custom_plugin Implements a clip layer (as
a NVIDIA CUDA® kernel)
wraps the implementation
in a TensorRT plugin (with a
corresponding plugin creator),
and generates a shared library
module containing its code.

Object Detection With The ONNX
TensorRT Backend In Python

yolov3_onnx Implements a full ONNX-
based pipeline for performing
inference with the YOLOv3-608
network, including pre and post-
processing.

Object Detection With SSD In
Python

uff_ssd Implements a full UFF-
based pipeline for performing
inference with an SSD
(InceptionV2 feature
extractor) network. The
sample downloads a trained
ssd_inception_v2_coco_2017_11_17
model and uses it to perform
inference. Additionally, it
superimposes bounding boxes
on the input image as a post-
processing step.

INT8 Calibration In Python int8_caffe_mnist Demonstrates how to calibrate
an engine to run in INT8 mode.



Introduction

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   4

Title TensorRT Sample Name Description
Refitting An Engine In Python engine_refit_mnist Trains an MNIST model in

PyTorch, recreates the network
in TensorRT with dummy
weights, and finally refits the
TensorRT engine with weights
from the model.

TensorRT Inference Of ONNX
Models With Custom Layers In
Python

onnx_packnet Uses TensorRT to perform
inference with a PackNet
network. This sample
demonstrates the use of custom
layers in ONNX graphs and
processing them using ONNX-
graphsurgeon API.

Refitting An Engine Built From
An ONNX Model In Python

engine_refit_onnx_bidaf Builds an engine from the
ONNX BiDAF model, refits the
TensorRT engine with weights
from the model.

Scalable And Efficient Object
Detection With EfficientDet
Networks In Python

efficientdet Sample application to
demonstrate conversion
and execution of Google®

EfficientDet models with
TensorRT.

Scalable And Efficient Image
Classification With EfficientNet
Networks In Python

efficientnet Sample application to
demonstrate conversion
and execution of a Google
EfficientNet model with
TensorRT.

1.1.  Getting Started With C++ Samples
You can find the C++ samples in the /usr/src/tensorrt/samples package directory as well
as on GitHub. The following C++ samples are shipped with TensorRT.

‣ “Hello World” For TensorRT

‣ Building A Simple MNIST Network Layer By Layer

‣ Importing The TensorFlow Model And Running Inference

‣ “Hello World” For TensorRT From ONNX

‣ Building And Running GoogleNet In TensorRT

‣ Building An RNN Network Layer By Layer

‣ Performing Inference In INT8 Using Custom Calibration

‣ Performing Inference In INT8 Precision

‣ Object Detection With Faster R-CNN

‣ Object Detection With A TensorFlow SSD Network

‣ Object Detection With SSD

https://github.com/NVIDIA/TensorRT/tree/main/samples


Introduction

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   5

‣ Specifying I/O Formats

‣ Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT

‣ Digit Recognition With Dynamic Shapes In TensorRT

‣ Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model

‣ Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN Network

‣ Object Detection With A TensorFlow Faster R-CNN Network

‣ Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT1

Getting Started With C++ Samples

Every C++ sample includes a README.md file in GitHub that provides detailed information about
how the sample works, sample code, and step-by-step instructions on how to run and verify its
output.

Running C++ Samples on Linux

If you installed TensorRT using the Debian files, copy /usr/src/tensorrt to a new directory
first before building the C++ samples. If you installed TensorRT using the tar file, then the
samples are located in {TAR_EXTRACT_PATH}/samples. To build all the samples and then run
one of the samples, use the following commands:
$ cd <samples_dir>
$ make -j4
$ cd ../bin
$ ./<sample_bin>

Running C++ Samples on Windows

All of the C++ samples on Windows are provided as Visual Studio Solution files. To build a
sample, open its corresponding Visual Studio Solution file and build the solution. The output
executable will be generated in (ZIP_EXTRACT_PATH)\bin. You can then run the executable
directly or through Visual Studio.

1.2.  Getting Started With Python Samples
You can find the Python samples in the /usr/src/tensorrt/samples/python package
directory. The following Python samples are shipped with TensorRT.

‣ Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using
Python

‣ “Hello World” For TensorRT Using TensorFlow And Python

‣ “Hello World” For TensorRT Using PyTorch And Python

‣ Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python

‣ Object Detection With The ONNX TensorRT Backend In Python

1 This sample is located in the release product package only.

https://github.com/NVIDIA/TensorRT/tree/main/samples


Introduction

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   6

‣ Object Detection With SSD In Python

‣ INT8 Calibration In Python

‣ Refitting An Engine In Python

‣ TensorRT Inference Of ONNX Models With Custom Layers In Python

‣ Refitting An Engine Built From An ONNX Model In Python

‣ Scalable And Efficient Object Detection With EfficientDet Networks In Python

‣ Scalable And Efficient Image Classification With EfficientNet Networks In Python

Getting Started With Python Samples

Every C++ sample includes a README.md file in GitHub that provides detailed information about
how the sample works, sample code, and step-by-step instructions on how to run and verify its
output.

Running Python Samples

To run one of the Python samples, the process typically involves two steps:

 1. Install the sample requirements:
python<x> -m pip install -r requirements.txt

where python<x> is either python2 or python3.

 2. Run the sample code with the data directory provided if the TensorRT sample data is not
in the default location. For example:
python<x> sample.py [-d DATA_DIR]

For more information on running samples, see the README.md file included with the sample.

https://github.com/NVIDIA/TensorRT/tree/main/samples/python


NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   7

Chapter 2. Cross Compiling Samples

The following sections show how to cross-compile TensorRT samples for AArch64 QNX and
Linux platforms under x86_64 Linux.

2.1.  Prerequisites
This section provides step-by-step instructions to ensure you meet the minimum
requirements to cross-compile.

Procedure

 1. Install the CUDA cross-platform toolkit for the corresponding target and set the
environment variable CUDA_INSTALL_DIR.

$ export CUDA_INSTALL_DIR="your cuda install dir"

Where CUDA_INSTALL_DIR is set to /usr/local/cuda by default.

Note: If you are installing TensorRT using the network repository, then it’s best if you
install the cuda-toolkit-X-Y and cuda-cross-<arch>-X-Y packages first to ensure you
have all CUDA dependencies required to build the TensorRT samples.

 2. Install the cuDNN cross-platform libraries for the corresponding target and set the
environment variable CUDNN_INSTALL_DIR.

$ export CUDNN_INSTALL_DIR="your cudnn install dir"

Where CUDNN_INSTALL_DIR is set to CUDA_INSTALL_DIR by default.
 3. Install the TensorRT cross-compilation Debian packages for the corresponding target.

Note: If you are using the tar file release for the target platform, then you can safely skip
this step. The tar file release already includes the cross-compile libraries so no additional
packages are required.

QNX AArch64

‣ libnvinfer-dev-cross-qnx

‣ libnvinfer8-cross-qnx

‣ libnvinfer-plugin-dev-cross-qnx



Cross Compiling Samples

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   8

‣ libnvinfer-plugin8-cross-qnx

‣ libnvparsers-dev-cross-qnx

‣ libnvparsers8-cross-qnx

‣ libnvonnxparsers-dev-cross-qnx

‣ libnvonnxparsers8-cross-qnx

Linux AArch64

‣ libnvinfer-dev-cross-aarch64

‣ libnvinfer8-cross-aarch64

‣ libnvinfer-plugin-dev-cross-aarch64

‣ libnvinfer-plugin8-cross-aarch64

‣ libnvparsers-dev-cross-aarch64

‣ libnvparsers8-cross-aarch64

‣ libnvonnxparsers-dev-cross-aarch64

‣ libnvonnxparsers8-cross-aarch6

Linux SBSA

‣ libnvinfer-dev-cross-sbsa

‣ libnvinfer8-cross-sbsa

‣ libnvinfer-plugin-dev-cross-sbsa

‣ libnvinfer-plugin8-cross-sbsa

‣ libnvparsers-dev-cross-sbsa

‣ libnvparsers8-cross-sbsa

‣ libnvonnxparsers-dev-cross-sbsa

‣ libnvonnxparsers8-cross-sbsa

2.2.  Building Samples For QNX AArch64
This section provides step-by-step instructions to build samples for QNX users.

Procedure

 1. Download the QNX tool-chain and export the following environment variables.
$ export QNX_HOST=/path/to/your/qnx/toolchains/host/linux/x86_64
$ export QNX_TARGET=/path/to/your/qnx/toolchain/target/qnx7

 2. Build the samples by issuing:
$ cd /path/to/TensorRT/samples
$ make TARGET=qnx



Cross Compiling Samples

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   9

2.3.  Building Samples For Linux AArch64
This section provides step-by-step instructions to build samples for Linux users.

Procedure

 1. Install the corresponding GCC compiler, aarch64-linux-gnu-g++. In Ubuntu, this can be
installed via:
$ sudo apt-get install g++-aarch64-linux-gnu

 2. Build the samples by issuing:
$ cd /path/to/TensorRT/samples
$ make TARGET=aarch64

2.4.  Building Samples For Linux SBSA
This section provides step-by-step instructions to build samples for Linux SBSA users.

Procedure

 1. Install the corresponding GCC compiler, aarch64-linux-gnu-g++. In Ubuntu, this can be
installed via:
$ sudo apt-get install g++-aarch64-linux-gnu

 2. Build the samples by issuing:
$ cd /path/to/TensorRT/samples
$ make TARGET=aarch64 ARMSERVER=1



NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   10

Chapter 3. Building Samples Using
Static Libraries

The following section demonstrates how to build the TensorRT samples using the TensorRT
static libraries, including cuDNN and other CUDA libraries that are statically linked. The
TensorRT samples can be used as a guideline for how to build your own application using the
TensorRT static libraries, if you choose.

Note: You must use the tar package if you wish to build the TensorRT samples statically
because some libraries are not included in the Debian or RPM packages including some
required dependent static libraries and linker scripts. Also, building the TensorRT samples
statically is only supported on Linux x86 platforms and not AArch64 or PowerPC at this time.

To build the TensorRT samples using the TensorRT static libraries, you can use the following
command when you are building the samples.
$ make TRT_STATIC=1

You should append any other Make arguments you would normally include, such as TARGET
to indicate the CPU architecture or CUDA_INSTALL_DIR to indicate where CUDA has been
installed on your system. The static sample binaries created by the TRT_STATIC make option
will have the suffix _static appended to the filename in the output directory to distinguish
them from the dynamic sample binaries.

3.1.  Limitations
It’s strongly advised that the same major.minor version of the CUDA toolkit that was used to
build TensorRT is used to build your application. Since symbols cannot be hidden or duplicated
in a static binary, like they can for dynamic libraries, using the same CUDA toolkit version
reduces the chance of symbol conflicts or incompatibilities.

If you are including libnvinfer_static.a and libnvinfer_plugin_static.a in your linker
command line, then consider using the following linker flags to ensure that all CUDA kernels
and TensorRT plugins are included in your final application.
-Wl,-whole-archive -lnvinfer_static -Wl,-no-whole-archive
-Wl,-whole-archive -lnvinfer_plugin_static -Wl,-no-whole-archive

When linking with the cuDNN static library, libcudnn_static.a should be linked with the
following whole-archive linker flag for best possible performance. Refer to the cuDNN 8.x.x
Release Notes for more information.
-Wl,-whole-archive -lcudnn_static -Wl,-no-whole-archive

https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel_8
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel_8


Building Samples Using Static Libraries

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   11

For platforms other than x86_64 Linux CUDA-11.x, if libnvrtc.so.* cannot be found in your
library search path, then TensorRT will automatically disable some TensorRT features that
require NVRTC to function (see list below). If these features are required for your application,
then you must provide the NVRTC library at runtime.

‣ Loops

‣ Boolean operations

‣ PointWise fusions

‣ Fusions that depend on PointWise fusion. For example, Convolution or FullyConnected
operations fused with the subsequent PointWise operation.

If you are building the TensorRT samples with a GCC version less than 8.x, then you may
require the RedHat Developer Toolset 8 non-shared libstdc++ library to avoid missing C++
standard library symbols during linking. You can use the following one-line command to obtain
this additional static library, assuming the programs required by this command are already
installed on your system.
$ curl -s http://mirror.centos.org/centos/7/sclo/x86_64/rh/Packages/d/devtoolset-8-libstdc++-
devel-8.3.1-3.2.el7.x86_64.rpm | rpm2cpio - | bsdtar --strip-components=10 -xf - '*/libstdc+
+_nonshared.a'

If you are building the TensorRT samples with a GCC version less than 5.x (for example GCC
4.8 on RHEL/CentOS 7.x), then you may require the linker options mentioned below to ensure
you’re using the correct C++ standard library symbols in your application. Your application
object files must come after the TensorRT static libraries when linking to ensure the newer
C++ standard library symbols from the RedHat Developer Toolset are used. This change is
required to avoid undefined behavior within TensorRT that may lead to a crash. Since the
resulting binary will of course depend on TensorRT both the TensorRT static libraries and any
dependent object files must be linked together as a group to ensure all symbols are resolved.
-Wl,--start-group -lnvinfer_static -lnvinfer_plugin_static -lnvparsers_static -
lnvonnxparser_static <object_files> -Wl,--end-group

You may observe relocation issues during linking if the resulting binary exceeds 2 GB. This can
occur if you are linking TensorRT and all of its dependencies into your application statically. To
workaround this issue and move the GPU code to the end of the binary, you may require the
linker script below and the following linker option -Wl,<path/to/fatbin.ld>.
SECTIONS
{
  .nvFatBinSegment : { *(.nvFatBinSegment) }
  .nv_fatbin : { *(.nv_fatbin) }
}



NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   12

Chapter 4. Machine Comprehension

Machine comprehension systems are used to translate text from one language to another
language, make predictions or answer questions based on a specific context. Recurrent
neural networks (RNN) are one of the most popular deep learning solutions for machine
comprehension.

Some examples of TensorRT machine comprehension samples include the following:

‣ Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model

‣ Building An RNN Network Layer By Layer

‣ Refitting An Engine Built From An ONNX Model In Python

4.1.  Neural Machine Translation (NMT)
Using A Sequence To Sequence
(seq2seq) Model

This sample, sampleNMT, demonstrates the implementation of Neural Machine Translation
(NMT) based on a TensorFlow seq2seq model using the TensorRT API. The TensorFlow
seq2seq model is an open-sourced NMT project that uses deep neural networks to translate
text from one language to another language.

What does this sample do?

Specifically, this sample is an end-to-end sample that takes a TensorFlow model, builds
an engine, and runs inference using the generated network. The sample is intended to be
modular so it can be used as a starting point for your machine translation application.

This sample implements German to English translation using the data that is provided by and
trained from the TensorFlow NMT (seq2seq) Tutorial.

Where is this sample located?

This sample is maintained under the samples/sampleNMT directory in the GitHub:
sampleNMT repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleNMT. If using the tar or zip package, the sample is at
<extracted_path>/samples/sampleNMT.

https://github.com/tensorflow/nmt.git
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleNMT
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleNMT


Machine Comprehension

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   13

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleNMT/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

4.2.  Building An RNN Network Layer By
Layer

This sample, sampleCharRNN, uses the TensorRT API to build an RNN network layer by layer,
sets up weights and inputs/outputs and then performs inference.

What does this sample do?

Specifically, this sample creates a CharRNN network that has been trained on the Tiny
Shakespeare dataset. For more information about character level modeling, see char-rnn.

TensorFlow has a useful RNN Tutorial which can be used to train a word-level model. Word
level models learn a probability distribution over a set of all possible word sequences. Since
our goal is to train a char level model, which learns a probability distribution over a set of all
possible characters, a few modifications will need to be made to get the TensorFlow sample to
work. These modifications can be seen here.

Where is this sample located?

This sample is maintained under the samples/sampleCharRNN directory in the GitHub:
sampleCharRNN repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleCharRNN. If using the tar or zip package, the sample is
at <extracted_path>/samples/sampleCharRNN.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleCharRNN/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleNMT/README.md
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://github.com/karpathy/char-rnn
https://www.tensorflow.org/tutorials/recurrent
http://deeplearningathome.com/2016/10/Text-generation-using-deep-recurrent-neural-networks.html
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleCharRNN
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleCharRNN
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleCharRNN/README.md


Machine Comprehension

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   14

4.3.  Refitting An Engine Built From An
ONNX Model In Python

This sample, engine_refit_onnx_bidaf, builds an engine from the ONNX BiDAF model, and
refits the TensorRT engine with weights from the model. The new refit APIs allow users to
locate the weights via names from ONNX models instead of layer names and weights roles.

In the first pass, the weights “Parameter576_B_0” are refitted with empty values resulting in
an incorrect inference result. In the second pass, we refit the engine with the actual weights
and run inference again. With the weights now set correctly, inference should provide correct
results.

Where Is This Sample Located?

This sample is maintained under the samples/python/engine_refit_onnx_bidaf directory
in the GitHub: engine_refit_onnx_bidaf repository. If using the Debian or RPM package, the
sample is located at /usr/src/tensorrt/samples/python/engine_refit_onnx_bidaf.
If using the tar or zip package, the sample is at <extracted_path>/samples/python/
engine_refit_onnx_bidaf.

Getting Started:

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: engine_refit_onnx_bidaf/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/engine_refit_onnx_bidaf
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/engine_refit_onnx_bidaf/README.md


NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   15

Chapter 5. Character Recognition

Character recognition, especially on the MNIST dataset, is a classic machine learning
problem. The MNIST problem involves recognizing the digit that is present in an image of a
handwritten digit.

Some examples of TensorRT character recognition samples include the following:

‣ “Hello World” For TensorRT

‣ Building A Simple MNIST Network Layer By Layer

‣ Importing The TensorFlow Model And Running Inference

‣ “Hello World” For TensorRT From ONNX

‣ Performing Inference In INT8 Using Custom Calibration

‣ Digit Recognition With Dynamic Shapes In TensorRT

‣ Specifying I/O Formats

‣ Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT

‣ “Hello World” For TensorRT Using TensorFlow And Python

‣ Refitting An Engine In Python

‣ INT8 Calibration In Python

‣ “Hello World” For TensorRT Using PyTorch And Python

‣ Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python

‣ Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT

5.1.  “Hello World” For TensorRT
This sample, sampleMNIST, is a simple hello world example that performs the basic setup
and initialization of TensorRT using the Caffe parser.

Where is this sample located?

This sample is maintained under the samples/sampleMNIST directory in the GitHub:
sampleMNIST repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleMNIST. If using the tar or zip package, the sample is at
<extracted_path>/samples/sampleMNIST.

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNIST
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNIST


Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   16

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleMNIST/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

5.2.  Building A Simple MNIST Network
Layer By Layer

This sample, sampleMNISTAPI, uses the TensorRT API to build an engine for a model trained
on the MNIST dataset.

What does this sample do?

Specifically, it creates the network layer by layer, sets up weights and inputs/outputs, and then
performs inference. This sample is similar to sampleMNIST. Both of these samples use the
same model weights, handle the same input, and expect similar output.

Where is this sample located?

This sample is maintained under the samples/sampleMNISTAPI directory in the GitHub:
sampleMNISTAPI repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleMNISTAPI. If using the tar or zip package, the sample is
at <extracted_path>/samples/sampleMNISTAPI.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleMNISTAPI/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

5.3.  Importing The TensorFlow Model And
Running Inference

This sample, sampleUffMNIST, imports a TensorFlow model trained on the MNIST dataset.

What does this sample do?

The MNIST TensorFlow model has been converted to UFF (Universal Framework Format)
using the explanation described in Working With TensorFlow.

https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleMNIST/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNISTAPI
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNISTAPI
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleMNISTAPI/README.md
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#working_tf


Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   17

The UFF is designed to store neural networks as a graph. The NvUffParser that we use in
this sample parses the UFF file in order to create an inference engine based on that neural
network.

With TensorRT, you can take a TensorFlow trained model, export it into a UFF protobuf file
(.uff) using the UFF converter, and import it using the UFF parser.

Where is this sample located?

This sample is maintained under the samples/sampleUffMNIST directory in the GitHub:
sampleUffMNIST repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleUffMNIST. If using the tar or zip package, the sample is
at <extracted_path>/samples/sampleUffMNIST.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleUffMNIST/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

5.4.  “Hello World” For TensorRT From
ONNX

This sample, sampleOnnxMNIST, converts a model trained on the MNIST in ONNX format to
a TensorRT network and runs inference on the network. ONNX is a standard for representing
deep learning models that enables models to be transferred between frameworks.

Where is this sample located?

This sample is maintained under the samples/sampleOnnxMNIST directory in the GitHub:
sampleOnnxMNIST repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleOnnxMNIST. If using the tar or zip package, the sample
is at <extracted_path>/samples/sampleOnnxMNIST.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleOnnxMNIST/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/uff/uff.html
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffMNIST
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffMNIST
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleUffMNIST/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleOnnxMNIST
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleOnnxMNIST
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleOnnxMNIST/README.md


Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   18

5.5.  Performing Inference In INT8 Using
Custom Calibration

This sample, sampleINT8, performs INT8 calibration and inference.

What does this sample do?

Specifically, this sample demonstrates how to perform inference in an 8-bit integer (INT8).
INT8 inference is available only on GPUs with compute capability 6.1 or 7.x. After the network
is calibrated for execution in INT8, the output of the calibration is cached to avoid repeating
the process. You can then reproduce your own experiments with Caffe in order to validate your
results on ImageNet networks.

Where is this sample located?

This sample is maintained under the samples/sampleINT8 directory in the GitHub:
sampleINT8 repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleINT8. If using the tar or zip package, the sample is at
<extracted_path>/samples/sampleINT8.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleINT8/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

5.6.  Digit Recognition With Dynamic
Shapes In TensorRT

This sample, sampleDynamicReshape, demonstrates how to use dynamic input dimensions in
TensorRT by creating an engine for resizing dynamically shaped inputs to the correct size for
an ONNX MNIST model.

What does this sample do?

This sample creates an engine for resizing an input with dynamic dimensions to a size that an
ONNX MNIST model can consume.

Specifically, this sample demonstrates how to:

‣ Create a network with dynamic input dimensions to act as a preprocessor for the model

‣ Parse an ONNX MNIST model to create a second network

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleINT8/README.md


Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   19

‣ Build engines for both networks and start calibration if running in INT8

‣ Run inference using both engines

For more information, see Working With Dynamic Shapes in the NVIDIA TensorRT Developer
Guide.

Where is this sample located?

This sample is maintained under the samples/sampleDynamicReshape directory in the
GitHub: sampleDynamicReshape repository. If using the Debian or RPM package, the sample
is located at /usr/src/tensorrt/samples/sampleDynamicReshape. If using the tar or zip
package, the sample is at <extracted_path>/samples/sampleDynamicReshape.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleDynamicReshape/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

5.7.  Specifying I/O Formats
This sample, sampleIOFormats, uses a Caffe model that was trained on the MNIST dataset
and performs engine building and inference using TensorRT. The correctness of outputs is
then compared to the golden reference.

What does this sample do?

Specifically, it shows how to explicitly specify I/O formats for TensorFormat::kLINEAR,
TensorFormat::kCHW2 and TensorFormat::kHWC8 for Float16 and INT8 precision.

ITensor::setAllowedFormats is invoked to specify which format is used.

Where is this sample located?

This sample is maintained under the directory samples/sampleIOFormats in the GitHub:
sampleIOFormats repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleIOFormats. If using the tar or zip package, the sample
is at <extracted_path>/samples/sampleIOFormats.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleIOFormats/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleDynamicReshape
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleDynamicReshape/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleReformatFreeIO
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleReformatFreeIO
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleReformatFreeIO/README.md


Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   20

5.8.  Adding A Custom Layer That
Supports INT8 I/O To Your Network In
TensorRT

This sample, sampleUffPluginV2Ext, implements the custom pooling layer for the MNIST
model (data/samples/lenet5_custom_pool.uff).

What does this sample do?

Since cuDNN function cudnnPoolingForward with float precision is used to simulate an
INT8 kernel, the performance for INT8 precision does not speed up. Nevertheless, the main
purpose of this sample is to demonstrate how to extend INT8 I/O for a plugin that is introduced
in TensorRT 6.0. This requires the interface replacement from IPlugin/IPluginV2/
IPluginV2Ext to IPluginV2IOExt (or IPluginV2DynamicExt if dynamic shape is required).

Where is this sample located?

This sample is maintained under the samples/sampleUffPluginV2Ext directory in the
GitHub: sampleUffPluginV2Ext repository. If using the Debian or RPM package, the sample
is located at /usr/src/tensorrt/samples/sampleUffPluginV2Ext. If using the tar or zip
package, the sample is at <extracted_path>/samples/sampleUffPluginV2Ext.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: /sampleUffPluginV2Ext/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

5.9.  “Hello World” For TensorRT Using
TensorFlow And Python

This sample, end_to_end_tensorflow_mnist, trains a small, fully-connected model on the
MNIST dataset and runs inference using TensorRT.

Where Is This Sample Located?

This sample is maintained under the samples/python/end_to_end_tensorflow_mnist
directory in the GitHub: end_to_end_tensorflow_mnist repository. If using the Debian
or RPM package, the sample is located at /usr/src/tensorrt/samples/python/

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffPluginV2Ext
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleUffPluginV2Ext/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/end_to_end_tensorflow_mnist


Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   21

end_to_end_tensorflow_mnist. If using the tar or zip package, the sample is at
<extracted_path>/samples/python/end_to_end_tensorflow_mnist.

Getting Started:

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: /end_to_end_tensorflow_mnist/README.md
file for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

5.10.  Refitting An Engine In Python
This sample, engine_refit_mnist, trains an MNIST model in PyTorch, recreates the network in
TensorRT with dummy weights, and finally refits the TensorRT engine with weights from the
model. Refitting allows us to quickly modify the weights in a TensorRT engine without needing
to rebuild.

Where Is This Sample Located?

This sample is maintained under the samples/python/engine_refit_mnist directory in
the GitHub: engine_refit_mnist repository. If using the Debian or RPM package, the sample is
located at /usr/src/tensorrt/samples/python/engine_refit_mnist. If using the tar or
zip package, the sample is at <extracted_path>/samples/python/engine_refit_mnist.

Getting Started:

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: /engine_refit_mnist/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

5.11.  INT8 Calibration In Python
This sample, int8_caffe_mnist, demonstrates how to create an INT8 calibrator, build and
calibrate an engine for INT8 mode, and finally run inference in INT8 mode.

Where Is This Sample Located?

This sample is maintained under the samples/python/int8_caffe_mnist directory in
the GitHub: int8_caffe_mnist repository. If using the Debian or RPM package, the sample is
located at /usr/src/tensorrt/samples/python/int8_caffe_mnist. If using the tar or zip
package, the sample is at <extracted_path>/samples/python/int8_caffe_mnist.

https://github.com/NVIDIA/TensorRT/blob/main/samples/python/end_to_end_tensorflow_mnist/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/engine_refit_mnist
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/engine_refit_mnist/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/int8_caffe_mnist


Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   22

Getting Started:

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: /int8_caffe_mnist/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

5.12.  “Hello World” For TensorRT Using
PyTorch And Python

This sample, network_api_pytorch_mnist, trains a convolutional model on the MNIST dataset
and runs inference with a TensorRT engine.

Where Is This Sample Located?

This sample is maintained under the samples/python/network_api_pytorch_mnist
directory in the GitHub: network_api_pytorch_mnist repository. If using the Debian
or RPM package, the sample is located at /usr/src/tensorrt/samples/python/
network_api_pytorch. If using the tar or zip package, the sample is at <extracted_path>/
samples/python/network_api_pytorch.

Getting Started:

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: /network_api_pytorch_mnist/README.md
file for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

5.13.  Adding A Custom Layer To Your
TensorFlow Network In TensorRT In
Python

This sample, uff_custom_plugin, demonstrates how to use plugins written in C++ with the
TensorRT Python bindings and UFF Parser. This sample uses the MNIST dataset.

Where Is This Sample Located?

This sample is maintained under the samples/python/uff_custom_plugin directory in the
GitHub: uff_custom_plugin repository. If using the Debian or RPM package, the sample is
located at /usr/src/tensorrt/samples/python/uff_custom_plugin. If using the tar or
zip package, the sample is at <extracted_path>/samples/python/uff_custom_plugin.

https://github.com/NVIDIA/TensorRT/blob/main/samples/python/int8_caffe_mnist/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/network_api_pytorch_mnist
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/network_api_pytorch_mnist/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/uff_custom_plugin


Character Recognition

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   23

Getting Started:

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: /uff_custom_plugin/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

5.14.  Algorithm Selection API Usage
Example Based On sampleMNIST In
TensorRT

This sample, sampleAlgorithmSelector, shows an example of how to use the algorithm
selection API based on sampleMNIST.

What does this sample do?

This sample demonstrates the usage of IAlgorithmSelector to deterministically build
TensorRT engines. It also shows the usage of IAlgorithmSelector::selectAlgorithms to
define heuristics for selection of algorithms.

This sample uses a Caffe model that was trained on the MNIST dataset.

To verify whether the engine is operating correctly, this sample picks a 28x28 image of a digit
at random and runs inference on it using the engine it created. The output of the network is a
probability distribution on the digit, showing which digit is likely to be that in the image.

Where is this sample located?

This sample is maintained under the samples/sampleAlgorithmSelector directory in the
GitHub: sampleAlgorithmSelector repository. If using the Debian or RPM package, the sample
is located at /usr/src/tensorrt/samples/sampleAlgorithmSelector. If using the tar or
zip package, the sample is at <extracted_path>/samples/sampleAlgorithmSelector.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: /uff_custom_plugin/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

https://github.com/NVIDIA/TensorRT/blob/main/samples/python/uff_custom_plugin/README.md
https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleAlgorithmSelector
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleAlgorithmSelector/README.md


NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   24

Chapter 6. Image Classification

Image classification is the problem of identifying one or more objects present in an image.
Convolutional neural networks (CNN) are a popular choice for solving this problem. They are
typically composed of convolution and pooling layers.

Some examples of TensorRT image classification samples include the following:

‣ Building And Running GoogleNet In TensorRT

‣ Performing Inference In INT8 Precision

‣ Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using
Python

‣ TensorRT Inference Of ONNX Models With Custom Layers In Python

6.1.  Building And Running GoogleNet In
TensorRT

This sample, sampleGoogleNet, demonstrates how to import a model trained with Caffe into
TensorRT using GoogleNet as an example.

What does this sample do?

Specifically, this sample builds a TensorRT engine from the saved Caffe model, sets input
values to the engine, and runs it.

Where is this sample located?

This sample is maintained under the samples/sampleGoogleNet directory in the GitHub:
sampleGoogleNet repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleGoogleNet. If using the tar or zip package, the sample
is at <extracted_path>/samples/sampleGoogleNet.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleGoogleNet/README.md file for

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleGoogleNet
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleGoogleNet
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleGoogleNet/README.md


Image Classification

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   25

detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

6.2.  Performing Inference In INT8
Precision

This sample, sampleINT8API, performs INT8 inference without using the INT8 calibrator;
using the user-provided per activation tensor dynamic range. INT8 inference is available only
on GPUs with compute capability 6.1 or 7.x and supports Image Classification ONNX models
such as ResNet-50, VGG19, and MobileNet.

What does this sample do?

Specifically, this sample demonstrates how to:

‣ Use nvinfer1::ITensor::setDynamicRange to set per tensor dynamic range

‣ Use nvinfer1::ILayer::setPrecison to set computation precision of a layer

‣ Use nvinfer1::ILayer::setOutputType to set output tensor data type of a layer

‣ Perform INT8 inference without using INT8 calibration

Where is this sample located?

This sample is maintained under the samples/sampleINT8API directory in the GitHub:
sampleINT8API repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleINT8API. If using the tar or zip package, the sample is
at <extracted_path>/samples/sampleINT8API.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleINT8API/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

6.3.  Introduction To Importing Caffe,
TensorFlow And ONNX Models Into
TensorRT Using Python

This sample, introductory_parser_samples, is a Python sample that uses TensorRT and its
included suite of parsers (UFF, Caffe and ONNX parsers), to perform inference with ResNet-50
models trained with various different frameworks.

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8API
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8API
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleINT8API/README.md


Image Classification

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   26

Where Is This Sample Located?

This sample is maintained under the samples/python/introductory_parser_samples
directory in the GitHub: introductory_parser_samples repository. If using the Debian
or RPM package, the sample is located at /usr/src/tensorrt/samples/python/
introductory_parser_samples. If using the tar or zip package, the sample is at
<extracted_path>/samples/python/introductory_parser_samples.

Getting Started:

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: introductory_parser_samples/README.md
file for detailed information about how this sample works, sample code, and step-by-step
instructions on how to run and verify its output.

6.4.  TensorRT Inference Of ONNX Models
With Custom Layers In Python

This sample, onnx_packnet, uses TensorRT to perform inference with the PackNet network.
PackNet is a self-supervised monocular depth estimation network used in autonomous
driving.

What does this sample do?

This sample converts the PyTorch graph into ONNX and uses an ONNX-parser included in
TensorRT to parse the ONNX graph. The sample also demonstrates how to:

‣ Use custom layers (plugins) in an ONNX graph. These plugins can be automatically
registered in TensorRT by using REGISTER_TENSORRT_PLUGIN API.

‣ Use the ONNX GraphSurgeon (ONNX-GS) API to modify layers or subgraphs in the ONNX
graph. For this network, we transform Group Normalization, upsample and pad layers to
remove unnecessary nodes for inference with TensorRT.

Where is this sample located?

This sample is maintained under the samples/python/onnx_packnet directory in the GitHub:
onnx_packnet repository. If using the Debian or RPM package, the sample is located at /usr/
src/tensorrt/samples/python/onnx_packnet. If using the tar or zip package, the sample
is at <extracted_path>/samples/python/onnx_packnet.

How do I get started?

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: onnx_packnet/README.md file for detailed

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/introductory_parser_samples
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/introductory_parser_samples/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/onnx_packnet
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/onnx_packnet
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/onnx_packnet/README.md


Image Classification

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   27

information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

6.5.  Scalable And Efficient Image
Classification With EfficientNet
Networks In Python

This sample, efficientnet, shows how to convert and execute a Google EfficientNet model with
TensorRT.

What does this sample do?

The sample supports models from the original EfficientNet implementation, as well as newer
EfficientNet V2 models. The sample code converts a TensorFlow saved model to ONNX
and then builds a TensorRT engine with it. Inference and accuracy validation can also be
performed with the helper scripts provided in the sample.

Where is this sample located?

This sample is maintained under the samples/python/efficientnet directory in the GitHub:
efficientnet repository. If using the Debian or RPM package, the sample is located at /usr/
src/tensorrt/samples/python/efficientnet. If using the tar or zip package, the sample
is at <extracted_path>/samples/python/efficientnet.

How do I get started?

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: efficientnet/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/efficientnet
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/efficientnet
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/efficientnet/README.md


NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   28

Chapter 7. Object Detection

Object detection is one of the classic computer vision problems. The task, for a given image,
is to detect, classify and localize all objects of interest. For example, imagine that you are
developing a self-driving car and you need to do pedestrian detection - the object detection
algorithm would then, for a given image, return bounding box coordinates for each pedestrian
in an image.

There have been many advances in recent years in designing models for object detection.

Some examples of TensorRT object detection samples include the following:

‣ Object Detection With SSD In Python

‣ Object Detection With The ONNX TensorRT Backend In Python

‣ Object Detection With A TensorFlow SSD Network

‣ Object Detection With Faster R-CNN

‣ Object Detection With SSD

‣ Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN Network

‣ Object Detection With A TensorFlow Faster R-CNN Network

‣ Scalable And Efficient Object Detection With EfficientDet Networks In Python

7.1.  Object Detection With SSD In Python
This sample, uff_ssd, implements a full UFF-based pipeline for performing inference with an
SSD (InceptionV2 feature extractor) network.

What Does This Sample Do?

This sample is based on the SSD: Single Shot MultiBox Detector paper. The SSD network,
built on the VGG-16 network, performs the task of object detection and localization in a
single forward pass of the network. This approach discretizes the output space of bounding
boxes into a set of default boxes over different aspect ratios and scales per feature map
location. At prediction time, the network generates scores for the presence of each object
category in each default box and produces adjustments to the box to better match the object
shape. Additionally, the network combines predictions from multiple features with different
resolutions to naturally handle objects of various sizes.

https://arxiv.org/abs/1512.02325


Object Detection

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   29

This sample is based on the TensorFlow implementation of SSD. For more information,
download ssd_inception_v2_coco. Unlike the paper, the TensorFlow SSD network was trained
on the InceptionV2 architecture using the MSCOCO dataset which has 91 classes (including the
background class). The config details of the network can be found here.

Where Is This Sample Located?

This sample is maintained under the samples/python/uff_ssd directory in the GitHub:
uff_ssd repository. If using the Debian or RPM package, the sample is located at /usr/
src/tensorrt/samples/python/uff_ssd. If using the tar or zip package, the sample is at
<extracted_path>/samples/python/uff_ssd.

Getting Started:

For more information about getting started, see Getting Started With Python Samples.
For specifics about this sample, refer to the GitHub: uff_ssd/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

7.2.  Object Detection With The ONNX
TensorRT Backend In Python

This sample, yolov3_onnx, implements a full ONNX-based pipeline for performing inference
with the YOLOv3 network, with an input size of 608x608 pixels, including pre and post-
processing.

What Does This Sample Do?
This sample is based on the YOLOv3-608 paper.

Note: This sample is not supported on Ubuntu 14.04 and older. Additionally, the
yolov3_to_onnx.py script does not support Python 3.

Where Is This Sample Located?

This sample is maintained under the samples/python/yolov3_onnx directory in the GitHub:
yolov3_onnx repository. If using the Debian or RPM package, the sample is located at /usr/
src/tensorrt/samples/python/yolov3_onnx. If using the tar or zip package, the sample is
at <extracted_path>/samples/python/yolov2_onnx.

Getting Started:

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: yolov3_onnx/README.md file for detailed

http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/uff_ssd
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/uff_ssd
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/uff_ssd/README.md
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/yolov3_onnx
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/yolov3_onnx
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/yolov3_onnx


Object Detection

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   30

information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

7.3.  Object Detection With A TensorFlow
SSD Network

This sample, sampleUffSSD, preprocesses a TensorFlow SSD network, performs inference on
the SSD network in TensorRT, using TensorRT plugins to speed up inference.

What does this sample do?

This sample is based on the SSD: Single Shot MultiBox Detector paper. The SSD network
performs the task of object detection and localization in a single forward pass of the network.

The SSD network used in this sample is based on the TensorFlow implementation of SSD,
which actually differs from the original paper, in that it has an inception_v2 backbone. For
more information about the actual model, download ssd_inception_v2_coco. The TensorFlow
SSD network was trained on the InceptionV2 architecture using the MSCOCO dataset which
has 91 classes (including the background class). The config details of the network can be
found here.

Where is this sample located?

This sample is maintained under the samples/sampleUffSSD directory in the GitHub:
sampleUffSSD repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleUffSSD. If using the tar or zip package, the sample is at
<extracted_path>/samples/sampleUffSSD.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleUffSSD/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

7.4.  Object Detection With Faster R-CNN
This sample, sampleFasterRCNN, uses TensorRT plugins, performs inference, and
implements a fused custom layer for end-to-end inferencing of a Faster R-CNN model.

What does this sample do?

Specifically, this sample demonstrates the implementation of a Faster R-CNN network in
TensorRT, performs a quick performance test in TensorRT, implements a fused custom

https://arxiv.org/abs/1512.02325
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz
http://cocodataset.org/#home
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffSSD
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffSSD
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleUffSSD/README.md


Object Detection

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   31

layer, and constructs the basis for further optimization, for example using INT8 calibration,
user trained network, etc. The Faster R-CNN network is based on the paper Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks.

Where is this sample located?

This sample is maintained under the samples/sampleFasterRCNN directory in the GitHub:
sampleFasterRCNN repository. If using the Debian or RPM package, the sample is located
at /usr/src/tensorrt/samples/sampleFasterRCNN. If using the tar or zip package, the
sample is at <extracted_path>/samples/sampleFasterRCNN.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleFasterRCNN/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

7.5.  Object Detection With SSD
This sample, sampleSSD, performs the task of object detection and localization in a single
forward pass of the network.

What does this sample do?

This sample is based on the SSD: Single Shot MultiBox Detector paper. This network is built
using the VGG network as a backbone and trained using PASCAL VOC 2007+ 2012 datasets.

Unlike Faster R-CNN, SSD completely eliminates the proposal generation and subsequent
pixel or feature resampling stages and encapsulates all computation in a single network. This
makes SSD straightforward to integrate into systems that require a detection component.

Where is this sample located?

This sample is maintained under the samples/sampleSSD directory in the GitHub:
sampleSSD repository. If using the Debian or RPM package, the sample is located at /
usr/src/tensorrt/samples/sampleSSD. If using the tar or zip package, the sample is at
<extracted_path>/samples/sampleSSD.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleSSD/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleFasterRCNN
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleFasterRCNN
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleFasterRCNN/README.md
https://arxiv.org/abs/1512.02325
https://github.com/weiliu89/caffe/tree/ssd
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleSSD
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleSSD
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleSSD/README.md


Object Detection

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   32

7.6.  Object Detection And Instance
Segmentation With A TensorFlow
Mask R-CNN Network

This sample, sampleUffMaskRCNN, performs inference on the Mask R-CNN network in
TensorRT.

What does this sample do?

Mask R-CNN is based on the Mask R-CNN paper which performs the task of object detection
and object mask predictions on a target image.

This sample’s model is based on the Keras implementation of Mask R-CNN and its training
framework can be found in the Mask R-CNN Github repository. We have verified that the pre-
trained Keras model (with backbone ResNet101 + FPN and dataset coco) provided in the v2.0
release can be converted to UFF and consumed by this sample. And, it is also feasible to
deploy your customized Mask R-CNN model trained with specific backbone and datasets.

This sample makes use of TensorRT plugins to run the Mask R-CNN model. To use these
plugins, the Keras model should be converted to TensorFlow .pb model. Then this .pb model
needs to be preprocessed and converted to the UFF model with the help of GraphSurgeon and
the UFF utility.

Where is this sample located?

This sample is maintained under the samples/sampleUffMaskRCNN directory in the GitHub:
sampleUffMaskRCNN repository. If using the Debian or RPM package, the sample is located
at /usr/src/tensorrt/samples/sampleUffMaskRCNN. If using the tar or zip package, the
sample is at <extracted_path>/samples/sampleUffMaskRCNN.

How do I get started?

For more information about getting started, see Getting Started With C++ Samples. For
specifics about this sample, refer to the GitHub: sampleUffMaskRCNN/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

7.7.  Object Detection With A TensorFlow
Faster R-CNN Network

This sample, sample_uff_fasterRCNN, is a UFF TensorRT sample for Faster-RCNN in NVIDIA
TAO.

https://arxiv.org/abs/1703.06870
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN/releases/tag/v2.0
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffMaskRCNN
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffMaskRCNN
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleUffMaskRCNN/README.md
https://developer.nvidia.com/transfer-learning-toolkit
https://developer.nvidia.com/transfer-learning-toolkit


Object Detection

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   33

What does this sample do?

This sample serves as a demo of how to use the pre-trained Faster-RCNN model in TAO
Toolkit to do inference with TensorRT. Besides the sample itself, it also provides two TensorRT
plugins: Proposal and CropAndResize to implement the proposal layer and ROIPooling layer
as custom layers in the model since TensorRT has no native support for them.

In this sample, we provide a UFF model as a demo. While in the TAO workflow, we can't
provide the UFF model. Instead, we can only get the .tlt model during training and the .etlt
model after tlt-export. Both of them are encrypted models and the TAO user will use tlt-
converter to decrypt the .etlt model and generate a TensorRT engine file in a single step.
Therefore, in the TAO workflow, we will consume the TensorRT engine instead of a UFF model.
However, this sample can still serve as a demo on how to use the UFF Faster R-CNN model
regardless of its format.

Where is this sample located?

This sample is maintained under the samples/sampleUffFasterRCNN directory in the GitHub:
sampleUffFasterRCNN repository. If using the Debian or RPM package, the sample is located
at /usr/src/tensorrt/samples/sampleUffFasterRCNN. If using the tar or zip package, the
sample is at <extracted_path>/samples/sampleUffFasterRCNN.

How do I get started?

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: sampleUffFasterRCNN/README.md file for
detailed information about how this sample works, sample code, and step-by-step instructions
on how to run and verify its output.

7.8.  Scalable And Efficient Object
Detection With EfficientDet Networks
In Python

This sample, efficientdet, demonstrates the conversion and execution of Google EfficientDet
models with TensorRT.

What does this sample do?

The code converts a TensorFlow checkpoint or saved model to ONNX, adapts the ONNX graph
for TensorRT compatibility, and then builds a TensorRT engine with it. Inference and accuracy
validation can then be performed using the corresponding scripts provided in the sample.

https://github.com/NVIDIA/TensorRT/tree/release/5.1/plugin/proposalPlugin
https://github.com/NVIDIA/TensorRT/tree/release/5.1/plugin/cropAndResizePlugin
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffFasterRCNN
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleUffFasterRCNN
https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleUffFasterRCNN/README.md
https://github.com/google/automl/tree/master/efficientdet
https://developer.nvidia.com/tensorrt


Object Detection

NVIDIA TensorRT Samples TRM-10259-001_v8.2.3   |   34

Where is this sample located?

This sample is maintained under the samples/python/efficientdet directory in the GitHub:
efficientdet repository. If using the Debian or RPM package, the sample is located at /usr/
src/tensorrt/samples/python/efficientdet. If using the tar or zip package, the sample
is at <extracted_path>/samples/python/efficientdet

How do I get started?

For more information about getting started, see Getting Started With Python Samples. For
specifics about this sample, refer to the GitHub: efficientdet/README.md file for detailed
information about how this sample works, sample code, and step-by-step instructions on how
to run and verify its output.

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/efficientdet
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/efficientdet
python_samples_section
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/efficientdet/README.md


Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. "ARM" is used to represent
ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France
SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Blackberry/QNX

Copyright © 2020 BlackBerry Limited. All rights reserved.

Trademarks, including but not limited to BLACKBERRY, EMBLEM Design, QNX, AVIAGE, MOMENTICS, NEUTRINO and QNX CAR are the trademarks or registered
trademarks of BlackBerry Limited, used under license, and the exclusive rights to such trademarks are expressly reserved.

Google

Android, Android TV, Google Play and the Google Play logo are trademarks of Google, Inc.

NVIDIA Corporation  |  2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com


Trademarks

NVIDIA, the NVIDIA logo, and CUDA, DALI, DRIVE, JetPack, Jetson AGX Xavier, Jetson Nano, Kepler, Maxwell, NGC, Nsight, Pascal, Quadro, Tegra, TensorRT, Triton,
Turing and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2018-2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation  |  2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	1.1. Getting Started With C++ Samples
	1.2. Getting Started With Python Samples

	Cross Compiling Samples
	2.1. Prerequisites
	2.2. Building Samples For QNX AArch64
	2.3. Building Samples For Linux AArch64
	2.4. Building Samples For Linux SBSA

	Building Samples Using Static Libraries
	3.1. Limitations

	Machine Comprehension
	4.1. Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model
	4.2. Building An RNN Network Layer By Layer
	4.3. Refitting An Engine Built From An ONNX Model In Python

	Character Recognition
	5.1. “Hello World” For TensorRT
	5.2. Building A Simple MNIST Network Layer By Layer
	5.3. Importing The TensorFlow Model And Running Inference
	5.4. “Hello World” For TensorRT From ONNX
	5.5. Performing Inference In INT8 Using Custom Calibration
	5.6. Digit Recognition With Dynamic Shapes In TensorRT
	5.7. Specifying I/O Formats
	5.8. Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT
	5.9. “Hello World” For TensorRT Using TensorFlow And Python
	5.10. Refitting An Engine In Python
	5.11. INT8 Calibration In Python
	5.12. “Hello World” For TensorRT Using PyTorch And Python
	5.13. Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
	5.14. Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT

	Image Classification
	6.1. Building And Running GoogleNet In TensorRT
	6.2. Performing Inference In INT8 Precision
	6.3. Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using Python
	6.4. TensorRT Inference Of ONNX Models With Custom Layers In Python
	6.5. Scalable And Efficient Image Classification With EfficientNet Networks In Python

	Object Detection
	7.1. Object Detection With SSD In Python
	7.2. Object Detection With The ONNX TensorRT Backend In Python
	7.3. Object Detection With A TensorFlow SSD Network
	7.4. Object Detection With Faster R-CNN
	7.5. Object Detection With SSD
	7.6. Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN Network
	7.7. Object Detection With A TensorFlow Faster R-CNN Network
	7.8. Scalable And Efficient Object Detection With EfficientDet Networks In Python


