
DU-10313-001_v8.2.5 | April 2024

NVIDIA TensorRT

Quick Start Guide | NVIDIA Docs

NVIDIA TensorRT DU-10313-001_v8.2.5 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. Installing TensorRT..3
2.1. Container Installation...3

2.2. Debian Installation...3

2.3. Python Package Index Installation...5

Chapter 3. The TensorRT Ecosystem... 7
3.1. Basic TensorRT Workflow...7

3.2. Conversion And Deployment Options... 9

3.2.1. Conversion...9

3.2.2. Deployment.. 10

3.3. Selecting The Correct Workflow...11

Chapter 4. Example Deployment Using ONNX..13
4.1. Export The Model..14

4.2. Select A Batch Size.. 14

4.3. Select A Precision... 14

4.4. Convert The Model... 15

4.5. Deploy The Model... 15

Chapter 5. TF-TRT Framework Integration..17

Chapter 6. ONNX Conversion And Deployment..18
6.1. Exporting With ONNX... 18

6.1.1. Exporting To ONNX From TensorFlow.. 18

6.1.2. Exporting To ONNX From PyTorch...19

6.2. Converting ONNX To A TensorRT Engine..20

6.3. Deploying A TensorRT Engine To The Python Runtime API...21

Chapter 7. Using The TensorRT Runtime API.. 22
7.1. Setting Up The Test Container And Building The TensorRT Engine.................................. 22

7.2. Running An Engine In C++.. 24

7.3. Running An Engine In Python..26

Chapter 8. Additional Resources...28
8.1. Glossary... 29

NVIDIA TensorRT DU-10313-001_v8.2.5 | iii

List of Figures

Figure 1. Typical deep learning development cycle using TensorRT.. 1

Figure 2. The five basic steps to convert and deploy your model.. 8

Figure 3. Main options available for conversion and deployment...9

Figure 4. Flowchart for getting started with TensorRT.. 12

Figure 5. Deployment process using ONNX.. 13

Figure 6. TF-TRT integration with TensorRT.. 17

Figure 7. Exporting ONNX from TensorFlow..19

Figure 8. Exporting ONNX from PyTorch..20

Figure 9. Test image, size 1282x1026..23

Figure 10. Test image, size 1282x1026... 26

NVIDIA TensorRT DU-10313-001_v8.2.5 | iv

List of Tables

Table 1. Additional TensorRT resources...28

NVIDIA TensorRT DU-10313-001_v8.2.5 | 1

Chapter 1. Introduction

NVIDIA® TensorRT™ is an SDK for optimizing trained deep learning models to enable
high-performance inference. TensorRT contains a deep learning inference optimizer for
trained deep learning models, and a runtime for execution.

After you have trained your deep learning model in a framework of your choice, TensorRT
enables you to run it with higher throughput and lower latency.

Figure 1. Typical deep learning development cycle using TensorRT.

This guide covers the basic installation, conversion, and runtime options available in
TensorRT, and when they are best applied.

Here is a quick summary of each chapter:
Installing TensorRT

We provide multiple, simple ways of installing TensorRT.
The TensorRT Ecosystem

We describe a simple flowchart to show the different types of conversion and
deployment workflows and discuss their pros and cons.

Example Deployment Using ONNX
We take a look at the basic steps to convert and deploy your model. It will introduce
concepts used in the rest of the guide, and walk you through the decisions you will
need to make to optimize inference execution.

TF-TRT Framework Integration
We introduce the TensorRT (TRT) inside of Google® TensorFlow (TF) integration.

Introduction

NVIDIA TensorRT DU-10313-001_v8.2.5 | 2

ONNX Conversion And Deployment
We provide a broad overview of ONNX export from TensorFlow and PyTorch, as well as
pointers to Jupyter notebooks that go into more detail.

Using The TensorRT Runtime API
We provide a tutorial to illustrate semantic segmentation of images using the
TensorRT C++ and Python API.

For a higher-level application that allows you to quickly deploy your model, refer to the
NVIDIA Triton™ Inference Server Quick Start.

https://github.com/triton-inference-server/server/blob/r20.12/docs/quickstart.md

NVIDIA TensorRT DU-10313-001_v8.2.5 | 3

Chapter 2. Installing TensorRT

There are a number of installation methods for TensorRT. This chapter covers the most
common options using:

‣ a container

‣ a Debian file, or

‣ a standalone pip wheel file.

For other ways to install TensorRT, refer to the NVIDIA TensorRT Installation Guide.

For advanced users who are already familiar with TensorRT and want to get their
application running quickly, who are using an NVIDIA CUDA® container with cuDNN
included, or want to setup automation, follow the network repo installation instructions
(see Using The NVIDIA Machine Learning Network Repo For Debian Installation).

2.1. Container Installation
This section contains an introduction to the customized virtual machine images (VMI)
that NVIDIA publishes and maintains on a regular basis. NVIDIA NGC™ certified public
cloud platform users can access specific setup instructions on how to browse the NGC
website and identify an available NGC container and tag to run on their VMI.

On each of the major cloud providers, NVIDIA publishes customized GPU-optimized
virtual machine images (VMI) with regular updates to OS and drivers. These VMIs are
optimized for performance on the latest generations of NVIDIA GPUs. Using these VMIs
to deploy NGC hosted containers, models and resources on cloud-hosted virtual machine
instances with A100, V100 or T4 GPUs ensures optimum performance for deep learning,
machine learning, and HPC workloads.

To deploy a TensorRT container on a public cloud, follow the steps associated with your
NGC certified public cloud platform.

2.2. Debian Installation
This section contains instructions for a developer installation. This installation method is
for new users or users who want the complete developer installation, including samples
and documentation for both the C++ and Python APIs.

https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#maclearn-net-repo-install
http://ngc.nvidia.com/
http://ngc.nvidia.com/
https://docs.nvidia.com/ngc/ngc-deploy-public-cloud/index.html

Installing TensorRT

NVIDIA TensorRT DU-10313-001_v8.2.5 | 4

For advanced users who are already familiar with TensorRT and want to get their
application running quickly, are using an NVIDIA CUDA container, or want to set up
automation, follow the network repo installation instructions (refer to Using The NVIDIA
CUDA Network Repo For Debian Installation).

Note:

‣ The following commands are examples for amd64, however, the commands are identical
for arm64.

‣ When installing Python packages using this method, you must install dependencies
manually with pip.

Ensure that you have the following dependencies installed.

‣ CUDA 11.0 update 3, 11.1 update 1, 11.2 update 2, 11.3 update 1, 11.4 update 4,
11.5 update 2, 11.6 update 2, 11.7 update 1, 11.8, 12.0 update 1, 12.1 update 1, 12.2
update 2, 12.3 update 2, or 12.4 update 1

‣ cuDNN 8.9.7 (Optional and not required for lean or dispatch runtime installations.)

 1. Install CUDA according to the CUDA installation instructions.
 2. Download the TensorRT local repo file that matches the Ubuntu version and CPU

architecture that you are using.
 3. Install TensorRT from the Debian local repo package. Replace ubuntuxx04, 10.x.x,

and cuda-x.x with your specific OS version, TensorRT version, and CUDA version.
os="ubuntuxx04"
tag="10.x.x-cuda-x.x"
sudo dpkg -i nv-tensorrt-local-repo-${os}-${tag}_1.0-1_amd64.deb
sudo cp /var/nv-tensorrt-local-repo-${os}-${tag}/*-keyring.gpg /usr/share/keyrings/
sudo apt-get update

For the full C++ and Python runtimes
sudo apt-get install tensorrt

For the lean runtime only, instead of tensorrt
sudo apt-get install libnvinfer-lean10
sudo apt-get install libnvinfer-vc-plugin10

For lean runtime Python package
sudo apt-get install python3-libnvinfer-lean

For the dispatch runtime only, instead of tensorrt
sudo apt-get install libnvinfer-dispatch10
sudo apt-get install libnvinfer-vc-plugin10

For dispatch runtime Python package
sudo apt-get install python3-libnvinfer-dispatch

For all TensorRT Python packages without samples
python3 -m pip install numpy
sudo apt-get install python3-libnvinfer-dev

The following additional packages will be installed:
python3-libnvinfer
python3-libnvinfer-lean
python3-libnvinfer-dispatch

If you want to install Python packages for the lean or dispatch runtime only,
specify these individually rather than installing the dev package.

https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#maclearn-net-repo-install
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#maclearn-net-repo-install
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-897/release-notes/index.html#rel-897
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#downloading

Installing TensorRT

NVIDIA TensorRT DU-10313-001_v8.2.5 | 5

If you want to run samples that require onnx-graphsurgeon or use the Python
module for your own project

python3 -m pip install numpy onnx
sudo apt-get install onnx-graphsurgeon

 4. Verify the installation.
dpkg-query -W tensorrt

You should see something similar to the following:
tensorrt 10.0.1.x-1+cuda12.4

2.3. Python Package Index Installation
This section contains instructions for installing TensorRT from the Python Package
Index.

When installing TensorRT from the Python Package Index, you’re not required to install
TensorRT from a .tar, .deb, or .rpm package. All required libraries are included in the
Python package. However, the header files, which may be needed if you want to access
TensorRT C++ APIs or to compile plugins written in C++, are not included. Additionally,
if you already have the TensorRT C++ library installed, using the Python package index
version will install a redundant copy of this library, which may not be desirable. Refer
to Tar File Installation for information on how to manually install TensorRT wheels that
do not bundle the C++ libraries. You can stop after this section if you only need Python
support.

The tensorrt Python wheel files only support Python versions 3.8 to 3.12 at this time
and will not work with other Python versions. Only the Linux operating system and
x86_64 CPU architecture is currently supported. These Python wheel files are expected
to work on RHEL 8 or newer and Ubuntu 20.04 or newer.

Note: If you do not have root access, you are running outside a Python virtual environment,
or for any other reason you would prefer a user installation, then append --user to any of
the pip commands provided.

 1. Ensure the pip Python module is up-to-date and the wheel Python module is
installed before proceeding or you may encounter issues during the TensorRT Python
installation.
python3 -m pip install --upgrade pip
python3 -m pip install wheel

 2. Install the TensorRT Python wheel.
python3 -m pip install --upgrade tensorrt

The above pip command will pull in all the required CUDA libraries in Python wheel
format from PyPI because they are dependencies of the TensorRT Python wheel.
Also, it will upgrade tensorrt to the latest version if you had a previous version
installed.

A TensorRT Python Package Index installation is split into multiple modules:

https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar

Installing TensorRT

NVIDIA TensorRT DU-10313-001_v8.2.5 | 6

‣ TensorRT libraries (tensorrt_libs)

‣ Python bindings matching the Python version in use (tensorrt_bindings)

‣ Frontend source package, which pulls in the correct version of dependent
TensorRT modules from pypi.nvidia.com (tensorrt)

‣ You can append -cu11 or -cu12 to any of the Python modules if you require a
different CUDA major version. When unspecified, the TensorRT Python meta-
packages default to the CUDA 12.x variants, which is the latest CUDA version
supported by TensorRT.

Optionally, install the TensorRT lean or dispatch runtime wheels, which are similarly
split into multiple Python modules. If you are only using TensorRT to run pre-built
version compatible engines, you can install these wheels without installing the
regular TensorRT wheel.
python3 -m pip install --upgrade tensorrt_lean
python3 -m pip install --upgrade tensorrt_dispatch

 3. To verify that your installation is working, use the following Python commands to:

‣ Import the tensorrt Python module.

‣ Confirm that the correct version of TensorRT has been installed.

‣ Create a Builder object to verify that your CUDA installation is working.

python3
>>> import tensorrt
>>> print(tensorrt.__version__)
>>> assert tensorrt.Builder(tensorrt.Logger())

Use a similar procedure to verify that the lean and dispatch modules work as
expected:
python3
>>> import tensorrt_lean as trt
>>> print(trt.__version__)
>>> assert trt.Runtime(trt.Logger())

python3
>>> import tensorrt_dispatch as trt
>>> print(trt.__version__)
>>> assert trt.Runtime(trt.Logger())

If the final Python command fails with an error message similar to the error message
below, then you may not have the NVIDIA driver installed or the NVIDIA driver may not
be working properly. If you are running inside a container, then try starting from one
of the nvidia/cuda:x.y-base-<os> containers.
[TensorRT] ERROR: CUDA initialization failure with error 100. Please check your CUDA
 installation: ...

If the preceding Python commands worked, then you should now be able to run any
of the TensorRT Python samples to further confirm that your TensorRT installation is
working. For more information about TensorRT samples, refer to the NVIDIA TensorRT
Sample Support Guide.

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html

NVIDIA TensorRT DU-10313-001_v8.2.5 | 7

Chapter 3. The TensorRT Ecosystem

TensorRT is a large and flexible project. It can handle a variety of conversion and
deployment workflows, and which workflow is best for you will depend on your specific
use case and problem setting.

TensorRT provides several options for deployment, but all workflows involve the
conversion of your model to an optimized representation, which TensorRT refers to
as an engine. Building a TensorRT workflow for your model involves picking the right
deployment option, and the right combination of parameters for engine creation.

3.1. Basic TensorRT Workflow
TensorRT users must follow five basic steps to convert and deploy their model:

The TensorRT Ecosystem

NVIDIA TensorRT DU-10313-001_v8.2.5 | 8

Figure 2. The five basic steps to convert and deploy your model.

It is easiest to understand these steps in the context of a complete, end-to-end
workflow: In Example Deployment Using ONNX, we will cover a simple framework-
agnostic deployment workflow to convert and deploy a trained ResNet-50 model to
TensorRT using ONNX conversion and TensorRT’s standalone runtime.

https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#convert-model
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#convert-model
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#convert-model
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-tf
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#save-model
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#save-model
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#save-model
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#batch-sizes
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#batch-sizes
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#batch-sizes
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#batch-sizes
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#precision
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#precision
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#precision
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#deploy-engine
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#deploy-engine
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#deploy-engine

The TensorRT Ecosystem

NVIDIA TensorRT DU-10313-001_v8.2.5 | 9

3.2. Conversion And Deployment
Options

The TensorRT ecosystem breaks down into two parts:

 1. The various paths users can follow to convert their models to optimized TensorRT
engines.

 2. The various runtimes users can target with TensorRT when deploying their optimized
TensorRT engines.

Figure 3. Main options available for conversion and deployment.

3.2.1. Conversion
There are three main options for converting a model with TensorRT:

‣ using TF-TRT

‣ automatic ONNX conversion from .onnx files

‣ manually constructing a network using the TensorRT API (either in C++ or Python)

For converting TensorFlow models, the TensorFlow integration (TF-TRT) provides both
model conversion and a high-level runtime API, and has the capability to fall back to
TensorFlow implementations where TensorRT does not support a particular operator. For
more information about supported operators, refer to the Supported Ops section in the
NVIDIA TensorRT Support Matrix.

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#supported-ops

The TensorRT Ecosystem

NVIDIA TensorRT DU-10313-001_v8.2.5 | 10

A more performant option for automatic model conversion and deployment is to
convert using ONNX. ONNX is a framework agnostic option that works with models in
TensorFlow, PyTorch, and more. TensorRT supports automatic conversion from ONNX
files using either the TensorRT API, or trtexec - the latter being what we will use in
this guide. ONNX conversion is all-or-nothing, meaning all operations in your model
must be supported by TensorRT (or you must provide custom plugins for unsupported
operations). The end result of ONNX conversion is a singular TensorRT engine that allows
less overhead than using TF-TRT.

For the most performance and customizability possible, you can also construct TensorRT
engines manually using the TensorRT network definition API. This essentially involves
building an identical network to your target model in TensorRT operation by operation,
using only TensorRT operations. After a TensorRT network is created, you will then export
just the weights of your model from the framework and load them into your TensorRT
network. For this approach, more information about constructing the model using
TensorRT's network definition API, can be found here:

‣ Creating A Network Definition From Scratch Using The C++ API

‣ Creating A Network Definition From Scratch Using The Python API

3.2.2. Deployment
There are three options for deploying a model with TensorRT:

‣ deploying within TensorFlow

‣ using the standalone TensorRT runtime API

‣ using NVIDIA Triton Inference Server

Your choice for deployment will determine the steps required to convert the model.

When using TF-TRT, the most common option for deployment is to simply deploy
within TensorFlow. TF-TRT conversion results in a TensorFlow graph with TensorRT
operations inserted into it. This means you can run TF-TRT models like you would any
other TensorFlow model using Python.

The TensorRT runtime API allows for the lowest overhead and finest-grained control, but
operators that TensorRT does not natively support must be implemented as plugins (a
library of prewritten plugins is available here). The most common path for deploying with
the runtime API is via ONNX export from a framework, which is covered in this guide in
the following section.

Last, NVIDIA Triton Inference Server is an open source inference serving software that
enables teams to deploy trained AI models from any framework (TensorFlow, TensorRT,
PyTorch, ONNX Runtime, or a custom framework), from local storage or Google Cloud
Platform or AWS S3 on any GPU- or CPU-based infrastructure (cloud, data center, or
edge). It is a flexible project with several unique features - such as concurrent model
execution of both heterogeneous models and multiple copies of the same model
(multiple model copies can reduce latency further) as well as load balancing and model
analysis. It is a good option if you need to serve your models over HTTP - such as in a
cloud inferencing solution. You can find the Triton Inference Server home page here and
the documentation here.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#create_network_c
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/#create_network_python
https://github.com/NVIDIA/TensorRT/tree/main/plugin
https://developer.nvidia.com/nvidia-triton-inference-server
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/

The TensorRT Ecosystem

NVIDIA TensorRT DU-10313-001_v8.2.5 | 11

3.3. Selecting The Correct Workflow
Two of the most important factors in selecting how to convert and deploy your model
are:

 1. your choice of framework.
 2. your preferred TensorRT runtime to target.

The following flowchart covers the different workflows covered in this guide. This
flowchart will help you select a path based on these two factors.

For more information on the runtime options available, refer to the Jupyter notebook
included with this guide on Understanding TensorRT Runtimes.

https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/5.%20Understanding%20TensorRT%20Runtimes.ipynb

The TensorRT Ecosystem

NVIDIA TensorRT DU-10313-001_v8.2.5 | 12

Figure 4. Flowchart for getting started with TensorRT.

https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-pytorch
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-pytorch
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-pytorch
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-pytorch
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-pytorch
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-tf
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-tf
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-tf
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-tf
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-tf
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#export-from-tf
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#framework-integration
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#framework-integration
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#framework-integration
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#run-engine-c
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#run-engine-c
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#run-engine-c
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#run-engine-c
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#run-engine-c
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#run-engine-python
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#run-engine-python
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#run-engine-python
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#run-engine-python
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#run-engine-python

NVIDIA TensorRT DU-10313-001_v8.2.5 | 13

Chapter 4. Example Deployment
Using ONNX

ONNX conversion is generally the most performant way of automatically converting an
ONNX model to a TensorRT engine. In this section, we will walk through the five basic
steps of TensorRT conversion in the context of deploying a pretrained ONNX model.

For this example, we’ll convert a pretrained ResNet-50 model from the ONNX model zoo
via the ONNX format; a framework-agnostic model format that can be exported from
most major frameworks, including TensorFlow and PyTorch. More information about the
ONNX format can be found here.

Figure 5. Deployment process using ONNX.

After you understand the basic steps of the TensorRT workflow, you can dive into the
more in-depth Jupyter notebooks (refer to the following topics) for using TensorRT via
TF-TRT or ONNX. You can follow along in the introductory Jupyter notebook here, which
covers these workflow steps in more detail, using the TensorFlow framework.

https://github.com/onnx/onnx/blob/main/docs/IR.md
https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/0.%20Running%20This%20Guide.ipynb

Example Deployment Using ONNX

NVIDIA TensorRT DU-10313-001_v8.2.5 | 14

4.1. Export The Model
The two main automatic paths for TensorRT conversion require different model formats
to successfully convert a model:

‣ TF-TRT uses TensorFlow SavedModels.

‣ The ONNX path requires that models are saved in ONNX.

In this example, we are using ONNX, so we need an ONNX model. We are going to use
ResNet-50; a basic backbone vision model that can be used for a variety of purposes. We
will perform classification using a pretrained ResNet-50 ONNX model included with the
ONNX model zoo.

Download a pretrained ResNet-50 model from the ONNX model zoo using wget and untar
it.
wget https://s3.amazonaws.com/download.onnx/models/opset_8/resnet50.tar.gz
tar xzf resnet50.tar.gz

This will unpack a pretrained ResNet-50 .onnx file to the path resnet50/model.onnx.

You can see how we export ONNX models that will work with this same deployment
workflow in Exporting To ONNX From TensorFlow or Exporting To ONNX From PyTorch.

4.2. Select A Batch Size
Batch size can have a large effect on the optimizations TensorRT performs on our model.
Generally speaking, at inference, we pick a small batch size when we want to prioritize
latency and a larger batch size when we want to prioritize throughput. Larger batches
take longer to process but reduce the average time spent on each sample.

TensorRT is capable of handling the batch size dynamically if you don’t know until
runtime what batch size you will need. That said, a fixed batch size allows TensorRT to
make additional optimizations. For this example workflow, we use a fixed batch size
of 64. For more information on handling dynamic input size, see the NVIDIA TensorRT
Developer Guide section on dynamic shapes.

We set the batch size during the original export process to ONNX. This is demonstrated
in the Exporting To ONNX From TensorFlow or Exporting To ONNX From PyTorch
sections. The sample model.onnx file downloaded from the ONNX model zoo has its
batch size set to 64 already. We will want to remember this when we deploy our model:
BATCH_SIZE=64

For more information about batch sizes, see Batching.

4.3. Select A Precision
Inference typically requires less numeric precision than training. With some care, lower
precision can give you faster computation and lower memory consumption without

https://github.com/onnx/models
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#batching

Example Deployment Using ONNX

NVIDIA TensorRT DU-10313-001_v8.2.5 | 15

sacrificing any meaningful accuracy. TensorRT supports TF32, FP32, FP16, and INT8
precisions. For more information about precision, refer to the Working With Mixed
Precision section in the NVIDIA TensorRT Developer Guide.

FP32 is the default training precision of most frameworks, so we will start by using FP32
for inference here.
import numpy as np
PRECISION = np.float32

We set the precision that our TensorRT engine should use at runtime, which we will do in
the next section.

For more information about precision, see Working With Mixed Precision. For more
information about the ONNXClassifierWrapper, see GitHub: TensorRT Open Source
Software.

4.4. Convert The Model
The ONNX conversion path is one of the most universal and performant paths for
automatic TensorRT conversion. It works for TensorFlow, PyTorch, and many other
frameworks.

There are several tools to help you convert models from ONNX to a TensorRT engine. One
common approach is to use trtexec - a command line tool included with TensorRT that
can, among other things, convert ONNX models to TensorRT engines and profile them.

We can run this conversion as follows:
trtexec --onnx=resnet50/model.onnx --saveEngine=resnet_engine.trt

This will convert our resnet50/model.onnx to a TensorRT engine named
resnet_engine.trt.

Note:

‣ To tell trtexec where to find our ONNX model, run:
--onnx=resnet50/model.onnx

‣ To tell trtexec where to save our optimized TensorRT engine, run:
--saveEngine=resnet_engine_intro.trt

4.5. Deploy The Model
After we have our TensorRT engine created successfully, we need to decide how to run it
with TensorRT.

There are two types of TensorRT runtimes: a standalone runtime which has C++ and
Python bindings, and a native integration into TensorFlow. In this section, we will use a
simplified wrapper (ONNXClassifierWrapper) which calls the standalone runtime. We
will generate a batch of randomized “dummy” data and use our ONNXClassifierWrapper
to run inference on that batch. For more information on TensorRT runtimes, refer to the
Understanding TensorRT Runtimes Jupyter notebook.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#mixed_precision
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#mixed_precision
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#mixed_precision
https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/5.%20Understanding%20TensorRT%20Runtimes.ipynb

Example Deployment Using ONNX

NVIDIA TensorRT DU-10313-001_v8.2.5 | 16

 1. Set up the ONNXClassifierWrapper (using the precision we determined in Select A
Precision).
from onnx_helper import ONNXClassifierWrapper
N_CLASSES = 1000 # Our ResNet-50 is trained on a 1000 class ImageNet task
trt_model = ONNXClassifierWrapper("resnet_engine.trt", [BATCH_SIZE, N_CLASSES],
 target_dtype = PRECISION)

 2. Generate a dummy batch.
BATCH_SIZE=32
dummy_input_batch = np.zeros((BATCH_SIZE, 224, 224, 3))

 3. Feed a batch of data into our engine and get our predictions.
predictions = trt_model.predict(dummy_input_batch)

Note that the wrapper does not load and initialize the engine until running the first
batch, so this batch will generally take a while. For more information about batching,
refer to the Batching section in the NVIDIA TensorRT Developer Guide.

For more information about TensorRT APIs, see the API Reference. For more information
on the ONNXClassifierWrapper, see its implementation on GitHub here.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#batching
https://docs.nvidia.com/deeplearning/tensorrt/api/index.html
https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/onnx_helper.py

NVIDIA TensorRT DU-10313-001_v8.2.5 | 17

Chapter 5. TF-TRT Framework
Integration

The TF-TRT integration provides a simple and flexible way to get started with TensorRT.
TF-TRT is a high-level Python interface for TensorRT that works directly with TensorFlow
models. It allows you to convert TensorFlow SavedModels to TensorRT optimized models
and run them within Python using a high-level API.

TF-TRT provides both a conversion path and a Python runtime that allows you to run
an optimized model the way you would any other TensorFlow model. This has a number
of advantages, notably that TF-TRT is able to convert models that contain a mixture of
supported and unsupported layers without having to create custom plugins, by analyzing
the model and passing subgraphs to TensorRT where possible to convert into engines
independently.

This notebook provides a basic introduction and wrapper that simplifies the process of
working with basic Keras/TensorFlow 2 models. In the notebook, we take a pretrained
ResNet-50 model from the keras.applications model zoo, convert it using TF-TRT, and
run it in the TF-TRT Python runtime.

Visually, the TF-TRT notebook demonstrates how to follow this path through TensorRT:

Figure 6. TF-TRT integration with TensorRT.

https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/2.%20Using%20the%20Tensorflow%20TensorRT%20Integration.ipynb
https://www.tensorflow.org/api_docs/python/tf/keras/applications

NVIDIA TensorRT DU-10313-001_v8.2.5 | 18

Chapter 6. ONNX Conversion And
Deployment

The ONNX interchange format provides a way to export models from many frameworks,
including PyTorch, TensorFlow and TensorFlow 2, for use with the TensorRT runtime.
Importing models via ONNX requires the operators in your model to be supported by
ONNX, and for you to supply plugin implementations of any operators TensorRT does not
support. (A library of plugins for TensorRT can be found here).

6.1. Exporting With ONNX
ONNX models can be easily generated from TensorFlow models using the ONNX project's
keras2onnx and tf2onnx tools.

This notebook shows how to generate ONNX models from a Keras/TF2 ResNet-50 model,
how to convert those ONNX models to TensorRT engines using trtexec, and how to
use the Python TensorRT runtime to feed a batch of data into the TensorRT engine at
inference time.

6.1.1. Exporting To ONNX From TensorFlow
Tensorflow can be exported through ONNX and run in one of our TensorRT runtimes.
Here, we provide the steps needed to export an ONNX model from TensorFlow. For more
information, refer to the Using Tensorflow 2 through ONNX notebook. The notebook will
walk you through this path, starting from the below export steps:

https://github.com/NVIDIA/TensorRT/tree/main/plugin
https://pypi.org/project/keras2onnx/
https://pypi.org/project/tf2onnx/
https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/3.%20Using%20Tensorflow%202%20through%20ONNX.ipynb
https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/3.%20Using%20Tensorflow%202%20through%20ONNX.ipynb

ONNX Conversion And Deployment

NVIDIA TensorRT DU-10313-001_v8.2.5 | 19

Figure 7. Exporting ONNX from TensorFlow.

 1. Import a ResNet-50 model from keras.applications. This will load a copy of
ResNet-50 with pretrained weights.
from tensorflow.keras.applications import ResNet50

model = ResNet50(weights='imagenet')

 2. Convert the ResNet-50 model to ONNX format.
import tf2onnx

model.save('my_model')
!python -m tf2onnx.convert --saved-model my_model --output temp.onnx
onnx_model = onnx.load_model('temp.onnx')

 3. Set an explicit batch size in the ONNX file.

Note:

By default, TensorFlow doesn’t set an explicit batch size.

import onnx

BATCH_SIZE = 64
inputs = onnx_model.graph.input
for input in inputs:
 dim1 = input.type.tensor_type.shape.dim[0]
 dim1.dim_value = BATCH_SIZE

 4. Save the ONNX file.
model_name = "resnet50_onnx_model.onnx"
onnx.save_model(onnx_model, model_name)

6.1.2. Exporting To ONNX From PyTorch
One approach to converting a PyTorch model to TensorRT is to export a PyTorch model
to ONNX and then convert into a TensorRT engine. For more details, see Using PyTorch

https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/4.%20Using%20PyTorch%20through%20ONNX.ipynb

ONNX Conversion And Deployment

NVIDIA TensorRT DU-10313-001_v8.2.5 | 20

with TensorRT through ONNX. The notebook will walk you through this path, starting
from the below export steps:

Figure 8. Exporting ONNX from PyTorch.

 1. Import a ResNet-50 model from torchvision. This will load a copy of ResNet-50 with
pretrained weights.
import torchvision.models as models

resnext50_32x4d = models.resnext50_32x4d(pretrained=True)

 2. Save the ONNX file from PyTorch.

Note: We need a batch of data to save our ONNX file from PyTorch. We will use a
dummy batch.

import torch

BATCH_SIZE = 64
dummy_input=torch.randn(BATCH_SIZE, 3, 224, 224)

 3. Save the ONNX file.
import torch.onnx
torch.onnx.export(resnext50_32x4d, dummy_input, "resnet50_onnx_model.onnx",
 verbose=False)

6.2. Converting ONNX To A TensorRT
Engine

There are two main ways of converting ONNX files to TensorRT engines:

‣ using trtexec

‣ using the TensorRT API

https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/4.%20Using%20PyTorch%20through%20ONNX.ipynb

ONNX Conversion And Deployment

NVIDIA TensorRT DU-10313-001_v8.2.5 | 21

In this guide, we’ll focus on using trtexec. To convert one of the above ONNX models to
a TensorRT engine using trtexec, we can run this conversion as follows:
trtexec --onnx=resnet50_onnx_model.onnx --saveEngine=resnet_engine.trt

This will convert our resnet50_onnx_model.onnx to a TensorRT engine named
resnet_engine.trt.

6.3. Deploying A TensorRT Engine To
The Python Runtime API

There are a number of runtimes available to target with TensorRT. When performance is
important, the TensorRT API is a great way of running ONNX models. We will go into the
deployment of a more complex ONNX model using the TensorRT runtime API in both C++
and Python in the following section.

For the purposes of the above model, you can see how to deploy it in Jupyter with the
Python runtime API in the notebooks Using Tensorflow 2 through ONNX and Using
PyTorch through ONNX. Another simple option is to use the ONNXClassifierWrapper
provided with this guide, as demonstrated in Deploy The Model.

https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/3.%20Using%20Tensorflow%202%20through%20ONNX.ipynb
https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/4.%20Using%20PyTorch%20through%20ONNX.ipynb
https://github.com/NVIDIA/TensorRT/tree/main/quickstart/IntroNotebooks/4.%20Using%20PyTorch%20through%20ONNX.ipynb

NVIDIA TensorRT DU-10313-001_v8.2.5 | 22

Chapter 7. Using The TensorRT
Runtime API

One of the most performant and customizable options for both model conversion and
deployment is to use the TensorRT API, which has both C++ and Python bindings.

TensorRT includes a standalone runtime with C++ and Python bindings, which is
generally more performant and more customizable than using the TF-TRT integration
and running in Tensorflow. The C++ API has lower overhead, but the Python API works
well with Python data loaders and libraries like NumPy and SciPy, and is easier to use for
prototyping, debugging and testing.

The following tutorial illustrates semantic segmentation of images using the TensorRT
C++ and Python API. A fully-convolutional model with ResNet-101 backbone is used
for this task. The model accepts images of arbitrary sizes and produces per-pixel
predictions.

The tutorial consists of the following steps:

 1. Setup – launch the test container, and generate the TensorRT engine from a PyTorch
model exported to ONNX and converted using trtexec

 2. C++ runtime API – run inference using engine and TensorRT’s C++ API
 3. Python runtime API – run inference using engine and TensorRT’s Python API

7.1. Setting Up The Test Container And
Building The TensorRT Engine

 1. Download the source code for this quick start tutorial from the TensorRT Open
Source Software repository.
$ git clone https://github.com/NVIDIA/TensorRT.git
$ cd TensorRT/quickstart

 2. Convert a pre-trained FCN-ResNet-101 model from torch.hub to ONNX.

Here we use the export script that’s included with the tutorial to generate an ONNX
model and save it to fcn-resnet101.onnx. For details on ONNX conversion refer to
ONNX Conversion And Deployment. The script also generates a test image of size
1282x1026 and saves it to input.ppm.

http://github.com/NVIDIA/TensorRT
http://github.com/NVIDIA/TensorRT
https://pytorch.org/hub/pytorch_vision_fcn_resnet101/
https://pytorch.org/assets/images/deeplab1.png

Using The TensorRT Runtime API

NVIDIA TensorRT DU-10313-001_v8.2.5 | 23

Figure 9. Test image, size 1282x1026.

 a). Launch the NVIDIA PyTorch container for running the export script.
$ docker run --rm -it --gpus all -p 8888:8888 -v `pwd`:/workspace -w /workspace/
SemanticSegmentation nvcr.io/nvidia/pytorch:20.12-py3 bash

 b). Run the export script to convert the pretrained model to ONNX.
$ python export.py

Note: FCN-ResNet-101 has one input of dimension [batch, 3, height, width]
and one output of dimension [batch, 21, height, weight] containing
unnormalized probabilities corresponding to predictions for 21 class labels.
When exporting the model to ONNX, we append an argmax layer at the output to
produce per-pixel class labels of highest probability.

 3. Build a TensorRT engine from ONNX using the trtexec tool.

trtexec can generate a TensorRT engine from an ONNX model which can then be
deployed using the TensorRT runtime API. It leverages the TensorRT ONNX parser to
load the ONNX model into a TensorRT network graph, and the TensorRT Builder API
to generate an optimized engine. Building an engine can be time-consuming, and is
usually performed offline.
trtexec --onnx=fcn-resnet101.onnx --fp16 --workspace=64 --minShapes=input:1x3x256x256
 --optShapes=input:1x3x1026x1282 --maxShapes=input:1x3x1440x2560 --buildOnly --
saveEngine=fcn-resnet101.engine

Successful execution should result in an engine file being generated and see
something similar to Successful in the command output.

trtexec can build TensorRT engines with the following build configuration options:

‣ --fp16 enables FP16 precision for layers that support it, in addition to FP32. For
more information, refer to the Working With Mixed Precision section in the NVIDIA
TensorRT Developer Guide.

https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec
https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#build_engine_c
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#mixed_precision

Using The TensorRT Runtime API

NVIDIA TensorRT DU-10313-001_v8.2.5 | 24

‣ --int8 enables INT8 precision for layers that support it, in addition to FP32. For
more information, refer to the Working With Mixed Precision section in the NVIDIA
TensorRT Developer Guide.

‣ --best enables all supported precisions to achieve the best performance for
every layer.

‣ --workspace controls the maximum amount of persistent scratch memory
available (in MB) for algorithms considered by the builder. This should be set as
high as possible for a given platform based on availability; at runtime TensorRT
will allocate only what is required, not exceeding the max.

‣ --minShapes and --maxShapes specify the range of dimensions for each network
input and --optShapes specifies the dimensions that the auto-tuner should use
for optimization. For more information, refer to the Optimization Profiles section
in the NVIDIA TensorRT Developer Guide.

‣ --buildOnly requests that inference performance measurements be skipped.

‣ --saveEngine specifies the file into which the serialized engine must be saved.

‣ --safe enables building safety certified engines. This switch is used for
prototyping automotive safety restricted flows in the TensorRT safe runtime.

‣ --tacticSources can be used to add or remove tactics from the default tactic
sources (cuDNN, cuBLAS and cuBLASLt).

‣ --minTiming and --avgTiming respectively set the minimum and average number
of iterations used in tactic selection.

‣ --noBuilderCache disables the layer timing cache in the TensorRT builder. The
timing cache helps to reduce the time taken in the builder phase by caching the
layer profiling information and should work for most cases. Use this switch for the
problematic cases. For more information, refer to the Builder Layer Timing Cache
section in the NVIDIA TensorRT Developer Guide.

‣ --timingCacheFile can be used to save or load the serialized global timing cache.

 4. Optionally, validate the generated engine for random-valued input using trtexec.
trtexec --shapes=input:1x3x1026x1282 --loadEngine=fcn-resnet101.engine

Where --shapes sets the input sizes for the dynamic shaped inputs to be used for
inference.

If successful, you should see something similar to the following:
&&&& PASSED TensorRT.trtexec # trtexec --shapes=input:1x3x1026x1282 --loadEngine=fcn-
resnet101.engine

7.2. Running An Engine In C++
 1. Compile and run the C++ segmentation tutorial within the test container.

$ make
$./bin/segmentation_tutorial

The following steps show how to use the TensorRT C++ Runtime API for inference.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#mixed_precision
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#opt_profiles
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#builder-layer-timing
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#perform_inference_c

Using The TensorRT Runtime API

NVIDIA TensorRT DU-10313-001_v8.2.5 | 25

 1. Deserialize the TensorRT engine from a file. The file contents are read into a buffer
and deserialized in-memory.
std::vector<char> engineData(fsize);
engineFile.read(engineData.data(), fsize);

util::UniquePtr<nvinfer1::IRuntime>
 runtime{nvinfer1::createInferRuntime(sample::gLogger.getTRTLogger())};

util::UniquePtr<nvinfer1::ICudaEngine> mEngine(runtime-
>deserializeCudaEngine(engineData.data(), fsize, nullptr));

Note: TensorRT objects are destroyed via their destroy() method. In this tutorial, a
smart pointer with a custom deleter is used to manage their lifetimes.

struct InferDeleter
{
 template <typename T>
 void operator()(T* obj) const
 {
 if (obj) obj->destroy();
 }
};
template <typename T>
using UniquePtr = std::unique_ptr<T, util::InferDeleter>;

 2. A TensorRT execution context encapsulates execution state such as persistent
device memory for holding intermediate activation tensors during inference.

Since the segmentation model was built with dynamic shapes enabled, the shape of
the input must be specified for inference execution. The network output shape may
be queried to determine the corresponding dimensions of the output buffer.
auto input_idx = mEngine->getBindingIndex("input");
assert(mEngine->getBindingDataType(input_idx) == nvinfer1::DataType::kFLOAT);
auto input_dims = nvinfer1::Dims4{1, 3 /* channels */, height, width};
context->setBindingDimensions(input_idx, input_dims);
auto input_size = util::getMemorySize(input_dims, sizeof(float));
auto output_idx = mEngine->getBindingIndex("output");
assert(mEngine->getBindingDataType(output_idx) == nvinfer1::DataType::kINT32);
auto output_dims = context->getBindingDimensions(output_idx);
auto output_size = util::getMemorySize(output_dims, sizeof(int32_t));

Note: The binding indices for network input/output can be queried by name.

 3. In preparation for inference, CUDA device memory is allocated for all inputs and
outputs, image data is processed and copied into input memory, and a list of engine
bindings is generated.

For semantic segmentation, input image data is processed by fitting into a range
of [0, 1] and normalized using mean [0.485, 0.456, 0.406] and std deviation
[0.229, 0.224, 0.225]. Refer to the input pre-processing requirements for
the torchvision models here. This operation is abstracted by the utility class
RGBImageReader.
void* input_mem{nullptr};
cudaMalloc(&input_mem, input_size);
void* output_mem{nullptr};
cudaMalloc(&output_mem, output_size);
const std::vector<float> mean{0.485f, 0.456f, 0.406f};
const std::vector<float> stddev{0.229f, 0.224f, 0.225f};
auto input_image{util::RGBImageReader(input_filename, input_dims, mean, stddev)};

https://github.com/pytorch/vision/blob/main/docs/source/models.rst

Using The TensorRT Runtime API

NVIDIA TensorRT DU-10313-001_v8.2.5 | 26

input_image.read();
auto input_buffer = input_image.process();
cudaMemcpyAsync(input_mem, input_buffer.get(), input_size, cudaMemcpyHostToDevice,
 stream);

 4. Inference execution is kicked off using the context’s executeV2 or enqueueV2
methods. After the execution is complete, we copy the results back to a host buffer
and release all device memory allocations.
void* bindings[] = {input_mem, output_mem};
bool status = context->enqueueV2(bindings, stream, nullptr);
auto output_buffer = std::unique_ptr<int>{new int[output_size]};
cudaMemcpyAsync(output_buffer.get(), output_mem, output_size, cudaMemcpyDeviceToHost,
 stream);
cudaStreamSynchronize(stream);

cudaFree(input_mem);
cudaFree(output_mem);

 5. To visualize the results, a pseudo-color plot of per-pixel class predictions are written
out to output.ppm. This is abstracted by the utility class ArgmaxImageWriter.
const int num_classes{21};
const std::vector<int> palette{
 (0x1 << 25) - 1, (0x1 << 15) - 1, (0x1 << 21) - 1};
auto output_image{util::ArgmaxImageWriter(output_filename, output_dims, palette,
 num_classes)};
output_image.process(output_buffer.get());
output_image.write();

For the test image, the expected output is as follows:

Figure 10. Test image, size 1282x1026.

7.3. Running An Engine In Python
 1. Install the required Python packages.

$ pip install pycuda

Using The TensorRT Runtime API

NVIDIA TensorRT DU-10313-001_v8.2.5 | 27

 2. Launch Jupyter and use the provided token to login using a browser http://<host-ip-
address>:8888.
$ jupyter notebook --port=8888 --no-browser --ip=0.0.0.0 --allow-root

 3. Open the tutorial-runtime.ipynb notebook and follow its steps.

The TensorRT Python runtime APIs map directly to the C++ API described in Running An
Engine In C++.

https://github.com/NVIDIA/TensorRT/blob/main/quickstart/SemanticSegmentation/tutorial-runtime.ipynb

NVIDIA TensorRT DU-10313-001_v8.2.5 | 28

Chapter 8. Additional Resources

Table 1. Additional TensorRT resources

Resource Description

Layer builder API documentation - for manual
TensorRT engine construction:

Python Layer Builder API

C++ Layer Builder API

The manual layer builder API is useful for when
you need the maximum flexibility possible in
building a TensorRT engine.

The Layer Builder API lets you construct a
network from scratch by hand in TensorRT, and
gives you tools to load in weights from your
model.

When using the layer builder API, your goal is
to essentially build an identical network to your
training model using TensorRT layer-by-layer,
and then load in the weights from your model.

Sample ONNX parser plugins documentation When you have a model that contains layers
unsupported by TensorRT, but are unwilling
to sacrifice performance by using TF-TRT, you
can write custom plugins for ONNX to add
TensorRT support for your unsupported layers.

This sample plugin provides an overview of how
you can apply this to your model.

ONNX-TensorRT GitHub The ONNX-TensortRT integration is a simple
high-level interface for ONNX conversion
with a Python runtime. It is useful for early
prototyping of TensorRT workflows using the
ONNX path.

TF-TRT product documentation Product documentation page for TF-TRT.

Profiling This is a great next step for further optimizing
and debugging models you are working on
productionizing.

TensorRT product documentation Product documentation page for the ONNX,
layer builder, C++, and legacy APIs.

TensorRT OSS GitHub Contains OSS TensorRT components, sample
applications, and plugin examples.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/#create_network_python
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#create_network_c
https://github.com/NVIDIA/TensorRT/tree/main/samples/opensource/samplePlugin
https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#profiling-tensorrt
https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://github.com/NVIDIA/TensorRT

Additional Resources

NVIDIA TensorRT DU-10313-001_v8.2.5 | 29

Resource Description

TensorRT developer page Contains downloads, blog posts, and quick
reference code samples.

8.1. Glossary
B
Batch

A batch is a collection of inputs that can all be processed uniformly. Each instance in
the batch has the same shape and flows through the network in exactly the same way.
All instances can therefore be computed in parallel.

Builder
TensorRT’s model optimizer. The builder takes as input a network definition, performs
device-independent and device-specific optimizations, and creates an engine. For
more information about the builder, see Builder API.

D
Dynamic batch

A mode of inference deployment where the batch size is not known until runtime.
Historically, TensorRT treated batch size as a special dimension, and the only
dimension which was configurable at runtime. TensorRT 6 and later allow engines to
be built such that all dimensions of inputs can be adjusted at runtime.

E
Engine

A representation of a model that has been optimized by the TensorRT builder. For
more information about the engine, see Execution API.

Explicit batch
An indication to the TensorRT builder that the model includes the batch size as one
of the dimensions of the input tensor(s). TensorRT’s implicit batch mode allows the
batch size to be omitted from the network definition and provided by the user at
runtime, but this mode is not supported by the ONNX parser.

F
Framework integration

An integration of TensorRT into a framework such as TensorFlow, which allows model
optimization and inference to be performed within the framework.

N
Network definition

A representation of a model in TensorRT. A network definition is a graph of tensors
and operators.

O
ONNX

Open Neural Network eXchange. A framework-independent standard for representing
machine learning models. For more information about ONNX, see onnx.ai.

https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_cuda_engine.html
https://onnx.ai/

Additional Resources

NVIDIA TensorRT DU-10313-001_v8.2.5 | 30

ONNX parser
A parser for creating a TensorRT network definition from an ONNX model. For more
details on the C++ ONNX Parser, see NvONNXParser or the Python ONNX Parser.

P
Plan

An optimized inference engine in a serialized format. To initialize the inference engine,
the application will first deserialize the model from the plan file. A typical application
will build an engine once, and then serialize it as a plan file for later use.

Precision
refers to the numerical format used to represent values in a computational method.
This option is specified as part of the TensorRT build step. TensorRT supports mixed
precision inference with FP32, FP16, or INT8 precisions. Devices prior to NVIDIA
Ampere Architecture default to FP32. NVIDIA Ampere Architecture and later devices
default to TF32, a fast format using FP32 storage with lower-precision math.

R
Runtime

The component of TensorRT which performs inference on a TensorRT engine. The
runtime API supports synchronous and asynchronous execution, profiling, and
enumeration and querying of the bindings for an engine inputs and outputs.

T
TF-TRT

TensorFlow integration with TensorRT. Optimizes and executes compatible subgraphs,
allowing TensorFlow to execute the remaining graph.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvonnxparser_1_1_i_o_n_n_x_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/parsers/Onnx/pyOnnx.html

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of
such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Arm

Arm, AMBA and Arm Powered are registered trademarks of Arm Limited. Cortex, MPCore and Mali are trademarks of Arm Limited. "Arm" is used to represent
Arm Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France
SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS and Arm Sweden AB.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Blackberry/QNX

Copyright © 2020 BlackBerry Limited. All rights reserved.

Trademarks, including but not limited to BLACKBERRY, EMBLEM Design, QNX, AVIAGE, MOMENTICS, NEUTRINO and QNX CAR are the trademarks or
registered trademarks of BlackBerry Limited, used under license, and the exclusive rights to such trademarks are expressly reserved.

Google

Android, Android TV, Google Play and the Google Play logo are trademarks of Google, Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and BlueField, CUDA, DALI, DRIVE, Hopper, JetPack, Jetson AGX Xavier, Jetson Nano, Maxwell, NGC, Nsight, Orin, Pascal, Quadro,
Tegra, TensorRT, Triton, Turing and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2021-2024 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Installing TensorRT
	2.1. Container Installation
	2.2. Debian Installation
	2.3. Python Package Index Installation

	The TensorRT Ecosystem
	3.1. Basic TensorRT Workflow
	3.2. Conversion And Deployment Options
	3.2.1. Conversion
	3.2.2. Deployment

	3.3. Selecting The Correct Workflow

	Example Deployment Using ONNX
	4.1. Export The Model
	4.2. Select A Batch Size
	4.3. Select A Precision
	4.4. Convert The Model
	4.5. Deploy The Model

	TF-TRT Framework Integration
	ONNX Conversion And Deployment
	6.1. Exporting With ONNX
	6.1.1. Exporting To ONNX From TensorFlow
	6.1.2. Exporting To ONNX From PyTorch

	6.2. Converting ONNX To A TensorRT Engine
	6.3. Deploying A TensorRT Engine To The Python Runtime API

	Using The TensorRT Runtime API
	7.1. Setting Up The Test Container And Building The TensorRT Engine
	7.2. Running An Engine In C++
	7.3. Running An Engine In Python

	Additional Resources
	8.1. Glossary

