
RN-08624-001_v8.4.3 | April 2024

NVIDIA TensorRT

Release Notes | NVIDIA Docs

NVIDIA TensorRT RN-08624-001_v8.4.3 | ii

Table of Contents

Chapter 1. TensorRT Release 8.x.x..1
1.1. TensorRT Release 8.4.3..1

1.2. TensorRT Release 8.4.2..7

1.3. TensorRT Release 8.4.1...14

1.4. TensorRT Release 8.4.0 Early Access (EA).. 23

1.5. TensorRT Release 8.2.5...32

1.6. TensorRT Release 8.2.4...36

1.7. TensorRT Release 8.2.3...41

1.8. TensorRT Release 8.2.2...46

1.9. TensorRT Release 8.2.1...50

1.10. TensorRT Release 8.2.0 Early Access (EA)..57

1.11. TensorRT Release 8.0.3.. 63

1.12. TensorRT Release 8.0.2.. 64

1.13. TensorRT Release 8.0.1.. 64

1.14. TensorRT Release 8.0.0 Early Access (EA)..82

Chapter 2. TensorRT Release 7.x.x... 98
2.1. TensorRT Release 7.2.3...98

2.2. TensorRT Release 7.2.2.. 103

2.3. TensorRT Release 7.2.1.. 107

2.4. TensorRT Release 7.2.0.. 111

2.5. TensorRT Release 7.1.3.. 114

2.6. TensorRT Release 7.1.2 Release Candidate (RC)... 124

2.7. TensorRT Release 7.1.0 Early Access (EA)..127

2.8. TensorRT Release 7.0.0.. 132

Chapter 3. TensorRT Release 6.x.x...137
3.1. TensorRT Release 6.0.1.. 137

Chapter 4. TensorRT Release 5.x.x...143
4.1. TensorRT Release 5.1.5.. 143

4.2. TensorRT Release 5.1.3.. 144

4.3. TensorRT Release 5.1.2 Release Candidate (RC)... 147

4.4. TensorRT Release 5.1.1 Release Candidate (RC)... 150

4.5. TensorRT Release 5.1.0 Release Candidate (RC)... 151

4.6. TensorRT Release 5.0.6.. 154

4.7. TensorRT Release 5.0.5.. 155

4.8. TensorRT Release 5.0.4.. 156

NVIDIA TensorRT RN-08624-001_v8.4.3 | iii

4.9. TensorRT Release 5.0.3.. 158

4.10. TensorRT Release 5.0.2..159

4.11. TensorRT Release 5.0.1 Release Candidate (RC)...165

4.12. TensorRT Release 5.0.0 Release Candidate (RC)...169

Chapter 5. TensorRT Release 4.x.x...174
5.1. TensorRT Release 4.0.1.. 174

5.2. TensorRT Release 4.0 Release Candidate (RC) 2...177

5.3. TensorRT Release 4.0 Release Candidate (RC)...178

Chapter 6. TensorRT Release 3.x.x...182
6.1. TensorRT Release 3.0.4.. 182

6.2. TensorRT Release 3.0.3.. 182

6.3. TensorRT Release 3.0.2.. 183

6.4. TensorRT Release 3.0.1.. 184

6.5. TensorRT Release 3.0 Release Candidate (RC)...190

6.6. TensorRT Release 3.0 Early Access (EA)... 193

Chapter 7. TensorRT Release 2.x.x...196
7.1. TensorRT Release 2.1..196

NVIDIA TensorRT RN-08624-001_v8.4.3 | iv

NVIDIA TensorRT RN-08624-001_v8.4.3 | 1

Chapter 1. TensorRT Release 8.x.x

1.1. TensorRT Release 8.4.3
These are the TensorRT 8.4.3 Release Notes and is applicable to x86 Linux and Windows
users. This release incorporates Arm® based CPU cores for Server Base System
Architecture (SBSA) users on Linux only. This release includes several fixes from the
previous TensorRT releases as well as the following additional changes.

These Release Notes are applicable to workstation, server, and NVIDIA JetPack™ users
unless appended specifically with (not applicable for Jetson platforms).

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

‣ APIs deprecated in TensorRT 8.4 will be retained until at least 2/2023.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.4.3 has been tested with the following:

‣ cuDNN 8.4.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

‣ 11.7 update 1

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-841
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 2

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used; however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all non-batch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to the DLA Supported Layers
section in the TensorRT Developer Guide for details.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ You may encounter an error such as, “Unable to load library:
nvinfer_builder_resource.dll”, if using Python 3.9.10 on Windows. You can
workaround this issue by downgrading to an earlier version of Python 3.9.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ The builder may require up to 60% more memory to build an engine.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or later).

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in NVIDIA
JetPack 4.5 for ResNet-like networks on NVIDIA DLA on Xavier platforms when the
dynamic ranges of the inputs of the ElementWise ADD layers are different. This is due
to a fix for a bug in DLA where it ignored the dynamic range of the second input of

https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 3

the ElementWise ADD layers and caused some accuracy issues. NVIDIA Orin platforms
are not affected by this.

Fixed Issues

‣ When parsing networks with ONNX operand expand on scalar input. TensorRT would
error out. This issue has been fixed in this release.

‣ The custom ClipPlugin used in the uff_custom_plugin sample had an issue with a
plugin parameter not being serialized, leading to a failure when the plugin needed to
be deserialized. This issue has been fixed with proper serialization/deserialization.

‣ When working with transformer based networks with multiple dynamic dimensions,
if the network had shuffle operations which caused one or more dimensions to be
a coalesced dimension (combination of multiple dynamic dimensions) and if this
shuffle was further used in a reduction operation such as MatrixMultiply layer, it can
potentially lead to corruption of results. This issue has been fixed in this release.

‣ When working with recurrent networks containing Loops and Fill layers, it was
possible that the engine may have failed to build. This issue has been fixed in this
release.

‣ In some rare cases when converting a MatrixMultiply layer to a Convolution layer for
optimization purposes, the shapes may fail to inference. This issue has been fixed in
this release.

‣ In some cases, Tensor memory was not zero initialized for vectorized dimensions. This
resulted in NaN in the output tensor during engine execution. This issue has been
fixed in this release.

‣ For the HuggingFace demos, the T5-3B model had only been verified on A100, and
was not expected to work on A10, T4, and so on. This issue has been fixed in this
release.

‣ Certain spatial dimensions may have caused crashes during DLA optimization for
models using single-channel inputs. This issue has been fixed in this release.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can be
horizontally fused before a Concat layer may have created an internal error causing
the application to crash while building the engine. This issue has been fixed in this
release.

‣ For some networks using sparsity, TensorRT may have produced inaccurate results.
This issue has been fixed in this release.

Announcements

‣ CUDA 11.7 added a feature called Lazy loading, however, this feature is not supported
by TensorRT 8.4 because the CUDA 11.x binaries were built with CUDA Toolkit 11.6.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 4

Known Issues

Functional

‣ When performing an L2_Normalization in float16 precision, there is undefined
behavior occurring from a fusion. This fusion can be disabled by marking the input to
the L2_Normalization as a network output.

‣ When performing PTQ with TensorRT with tensors rank > 4, some layers may cause
an assertion about invalid Region Dims. This can be worked around by fusing the
index layers into the 4th dimension to have the tensor have a rank 4.

‣ SM75 and earlier devices may not have INT8 implementations for all layers with Q/DQ
nodes. In this case, you will encounter a could not find any implementation error
while building your engine. To resolve this, remove the Q/DQ nodes which quantize
the failing layers.

‣ When the TensorRT static library is used to build engines and the NVPTXCompiler
static library is also used outside of the TensorRT core library at the same time, it is
possible to trigger a crash of the process in rare cases.

‣ TensorRT should only allow up to a total of 16 I/O tensors for a single subnetwork
offloaded to DLA. However, there is a leak in the logic that incorrectly allows > 16 I/O
tensors. You may need to manually specify the per layer device to avoid the creation
of subnetworks with over 16 I/O tensors, for successful engine construction. This
restriction will be properly reinstated in a future release.

‣ One of the deconvolution algorithms sourced from cuDNN exhibits non-deterministic
execution. Disabling cuDNN tactics will prevent this algorithm from being chosen
(refer to IBuilderConfig::setTacticSources).

‣ Due to ABI compatibility issues, static builds are not supported on SBSA platforms.

‣ TensorRT in FP16 mode does not perform cast operations correctly when only the
output types are set, but not the layer precisions.

‣ TensorRT does not preserve precision for operations that are imported from ONNX
models in FP16 mode.

‣ There is a known issue when ProfilingVerbosity is set to kDETAILED, the
enqueueV2() call may take up to 2ms compared to ProfilingVerbosity=kNONE or
kLAYER_NAMES_ONLY.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fall back to using cuBLAS. (not applicable for Jetson platforms)

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 5

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9 or newer. Any Python samples that
depend on TensorFlow 1.x cannot be run with Python 3.9 or newer.

‣ The Debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

‣ You may see the following error:
"Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared
 object file: No such file or directory"

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library
search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF
model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

‣ For some networks, using a batch size of 4096 may cause accuracy degradation on
DLA.

Performance

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is an up to 22% performance drop for Jasper networks compared to TensorRT
8.2 when running in FP32 precision on NVIDIA Volta or NVIDIA Turing GPUs with
CUDA 10.2. This performance drop can be avoided if CUDA 11.x is used instead.

‣ There is an up to 5% performance drop for the InceptionV4 network compared to
TensorRT 8.2 when running in FP32 precision on NVIDIA Volta GPUs with CUDA 10.2.
This performance drop can be avoided if CUDA 11.x is used instead.

‣ There is an up to 27% performance drop for BART compared to TensorRT 8.2 when
running with both FP16 and INT8 precisions enabled on T4. This performance drop
can be fixed by disabling the INT8 precision flag.

‣ There is an up to 5% performance drop for the ShuffleNet network compared to
TensorRT 8.2 when running in INT8 precision on NVIDIA Ampere Architecture GPUs.
This will be fixed in a future TensorRT release.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 6

‣ There is an up to 10% performance drop for the SegResNet network compared to
TensorRT 8.2 when running in FP16 precision on NVIDIA Ampere Architecture GPUs
due to a cuDNN regression in the InstanceNormalization plug-in. This will be fixed
in a future TensorRT release. You can work around the regression by reverting the
cuDNN version to cuDNN 8.2.1.

‣ There is an up to 10% performance difference for the WaveRNN network between
different operating systems when running in FP16 precision on NVIDIA Ampere
Architecture GPUs. This will be fixed in a future TensorRT release.

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

‣ There is an up to 7% performance regression for the 3D-UNet networks compared to
TensorRT 8.4 EA when running in INT8 precision on NVIDIA Orin due to a functionality
fix.

‣ There is an up to 20% performance variation between different engines built from
the same network for some LSTM networks when running on Windows due to
unstable tactic selections.

‣ Some networks may see a small increase in deserialization time.

‣ Due to the difference in DLA hardware specification between NVIDIA Orin and
Xavier, a relative increase in latency is expected when running DLA FP16 operations
involving convolution (which includes deconvolution, fully-connected, and concat) on
NVIDIA Orin as compared to running on Xavier. At the same DLA clocks and memory
bandwidth, INT8 convolution operations on NVIDIA Orin are expected to be about
4x faster than on Xavier, whereas FP16 convolution operations on NVIDIA Orin are
expected to be about 40% slower than on Xavier.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ For transformer-based networks such as BERT and GPT, TensorRT can consume CPU
memory up to 10 times the model size during compilation.

‣ There is an up to 17% performance regression for DeepASR networks at BS=1 on
NVIDIA Turing GPUs.

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and NVIDIA Pascal GPUs.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 7

‣ There is an up to 10-11% performance regression on Xavier compared to TensorRT
7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ On Xavier, DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve
accuracy. Thus, latency may be worse compared to an equivalent network using a
different activation like ReLU. To mitigate this, you can disable LeakyReLU layers from
running on DLA.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

1.2. TensorRT Release 8.4.2
These are the TensorRT 8.4.2 Release Notes and is applicable to x86 Linux and Windows
users. This release incorporates Arm® based CPU cores for Server Base System
Architecture (SBSA) users on Linux only. This release includes several fixes from the
previous TensorRT releases as well as the following additional changes.

These Release Notes are applicable to workstation, server, and NVIDIA JetPack™ users
unless appended specifically with (not applicable for Jetson platforms).

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added samples:

‣ tensorflow_object_detection_api, which demonstrates the conversion and
execution of the Tensorflow Object Detection API Model Zoo models with
TensorRT. For information about how this sample works, sample code, and step-
by-step instructions on how to run and verify its output, refer to the GitHub:
tensorflow_object_detection_api/README.md file.

‣ detectron2, which demonstrates the conversion and execution of the Detectron 2
Model Zoo Mask R-CNN R50-FPN 3x model with TensorRT. For information about
how this sample works, sample code, and step-by-step instructions on how to run
and verify its output, refer to the GitHub: detectron2/README.md file.

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/tensorflow_object_detection_api/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/tensorflow_object_detection_api/README.md
https://github.com/NVIDIA/TensorRT/blob/main/samples/python/detectron2/README.md

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 8

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

‣ APIs deprecated in TensorRT 8.4 will be retained until at least 2/2023.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.4.2 has been tested with the following:

‣ cuDNN 8.4.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

‣ 11.7

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used; however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all non-batch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-841
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 9

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to the DLA Supported Layers
section in the TensorRT Developer Guide for details.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

‣ You may encounter an error such as, “Unable to load library:
nvinfer_builder_resource.dll”, if using Python 3.9.10 on Windows. You can
workaround this issue by downgrading to an earlier version of Python 3.9.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ The builder may require up to 60% more memory to build an engine.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or later).

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in NVIDIA
JetPack 4.5 for ResNet-like networks on NVIDIA DLA on Xavier platforms when the
dynamic ranges of the inputs of the ElementWise ADD layers are different. This is due
to a fix for a bug in DLA where it ignored the dynamic range of the second input of
the ElementWise ADD layers and caused some accuracy issues. NVIDIA Orin platforms
are not affected by this.

Fixed Issues

‣ The standalone Python wheel files for TensorRT 8.4.1 were much larger than
necessary. We have removed some duplication within the Python wheel files, which
has resulted in a file size reduction.

‣ When parsing networks with random fill nodes defined within conditionals, TensorRT
would error out. The issue has been fixed and these networks can now successfully
compile.

‣ When using multiple Convolution layers using the same input and wrapped with Q/
DQ layers, TensorRT could have produced inaccurate results. This issue has been fixed
in this release.

‣ Calling a Max Reduction on a shape tensor that has a non-power of two volumes of
index dimensions could produce undefined results. This issue has been fixed in this
release.

‣ There was a known regression with the encoder model. The encoder model could be
built successfully with TensorRT 8.2 but would fail with TensorRT 8.4. This issue has
been fixed in this release.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 10

‣ An assertion error occurred when the constant folding of Boolean type for the slice
operation was not enabled. The constant folding of Boolean type for the slice op is
now enabled.

‣ Parsing ONNX models with conditional nodes that contained the same initializer
names would sometimes produce incorrect results. This issue has been fixed in this
release.

‣ An assertion in TensorRT occurred when horizontally fusing Convolution or Matrix
Multiplication operations that have weights in different precisions. This issue has
been fixed in this release.

‣ Certain models including but not limited to those with loops or conditionals were
susceptible to an allocation-related assertion failure due to a race condition. This
issue has been fixed in this release.

‣ When using the IAlgorithmSelector interface, if
BuildFlag::kREJECT_EMPTY_ALGORITHMS was not set, an assertion occurred where
the number of algorithms is zero. This issue has been fixed in this release.

Announcements

‣ CUDA 11.7 added a feature called Lazy loading, however, this feature is not supported
by TensorRT 8.4 because the CUDA 11.x binaries were built with CUDA Toolkit 11.6.

Known Issues

Functional

‣ When performing an L2_Normalization in float16 precision, there is undefined
behavior occurring from a fusion. This fusion can be disabled by marking the input to
the L2_Normalization as a network output.

‣ When performing PTQ with TensorRT with tensors rank > 4, some layers may cause
an assertion about invalid Region Dims. This can be worked around by fusing the
index layers into the 4th dimension to have the tensor have a rank 4.

‣ SM75 and earlier devices may not have INT8 implementations for all layers with Q/DQ
nodes. In this case, you will encounter a could not find any implementation error
while building your engine. To resolve this, remove the Q/DQ nodes which quantize
the failing layers.

‣ For some networks using sparsity, TensorRT may produce inaccurate results.

‣ When the TensorRT static library is used to build engines and the NVPTXCompiler
static library is also used outside of the TensorRT core library at the same time, it is
possible to trigger a crash of the process in rare cases.

‣ TensorRT should only allow up to a total of 16 I/O tensors for a single subnetwork
offloaded to DLA. However, there is a leak in the logic that incorrectly allows > 16 I/O
tensors. You may need to manually specify the per layer device to avoid the creation

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 11

of subnetworks with over 16 I/O tensors, for successful engine construction. This
restriction will be properly reinstated in a future release.

‣ One of the deconvolution algorithms sourced from cuDNN exhibits non-deterministic
execution. Disabling cuDNN tactics will prevent this algorithm from being chosen
(refer to IBuilderConfig::setTacticSources).

‣ Some models may fail on SBSA platforms when using statically linked binaries.

‣ For the HuggingFace demos, the T5-3B model has only been verified on A100, and is
not expected to work on A10, T4, and so on.

‣ TensorRT in FP16 mode does not perform cast operations correctly when only the
output types are set, but not the layer precisions.

‣ TensorRT does not preserve precision for operations that are imported from ONNX
models in FP16 mode.

‣ There is a known issue when ProfilingVerbosity is set to kDETAILED, the
enqueueV2() call may take up to 2ms compared to ProfilingVerbosity=kNONE or
kLAYER_NAMES_ONLY.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fall back to using cuBLAS. (not applicable for Jetson platforms)

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9 or newer. Any Python samples that
depend on TensorFlow 1.x cannot be run with Python 3.9 or newer.

‣ The Debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

‣ You may see the following error:
"Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared
 object file: No such file or directory"

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library
search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 12

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF
model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

‣ For some networks, using batch sizes larger than 32 may cause accuracy degradation
on DLA.

‣ Certain spatial dimensions may cause crashes during DLA optimization for models
using single-channel inputs.

Performance

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is an up to 22% performance drop for Jasper networks compared to TensorRT
8.2 when running in FP32 precision on NVIDIA Volta or NVIDIA Turing GPUs with
CUDA 10.2. This performance drop can be avoided if CUDA 11.x is used instead.

‣ There is an up to 5% performance drop for the InceptionV4 network compared to
TensorRT 8.2 when running in FP32 precision on NVIDIA Volta GPUs with CUDA 10.2.
This performance drop can be avoided if CUDA 11.x is used instead.

‣ There is an up to 27% performance drop for BART compared to TensorRT 8.2 when
running with both FP16 and INT8 precisions enabled on T4. This performance drop
can be fixed by disabling the INT8 precision flag.

‣ There is an up to 5% performance drop for the ShuffleNet network compared to
TensorRT 8.2 when running in INT8 precision on NVIDIA Ampere Architecture GPUs.
This will be fixed in a future TensorRT release.

‣ There is an up to 10% performance drop for the SegResNet network compared to
TensorRT 8.2 when running in FP16 precision on NVIDIA Ampere Architecture GPUs
due to a cuDNN regression in the InstanceNormalization plug-in. This will be fixed
in a future TensorRT release. You can work around the regression by reverting the
cuDNN version to cuDNN 8.2.1.

‣ There is an up to 10% performance difference for the WaveRNN network between
different operating systems when running in FP16 precision on NVIDIA Ampere
Architecture GPUs. This will be fixed in a future TensorRT release.

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

‣ There is an up to 7% performance regression for the 3D-UNet networks compared to
TensorRT 8.4 EA when running in INT8 precision on NVIDIA Orin due to a functionality
fix.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 13

‣ There is an up to 20% performance variation between different engines built from
the same network for some LSTM networks when running on Windows due to
unstable tactic selections.

‣ Some networks may see a small increase in deserialization time.

‣ Due to the difference in DLA hardware specification between NVIDIA Orin and
Xavier, a relative increase in latency is expected when running DLA FP16 operations
involving convolution (which includes deconvolution, fully-connected, and concat) on
NVIDIA Orin as compared to running on Xavier. At the same DLA clocks and memory
bandwidth, INT8 convolution operations on NVIDIA Orin are expected to be about
4x faster than on Xavier, whereas FP16 convolution operations on NVIDIA Orin are
expected to be about 40% slower than on Xavier.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ For transformer-based networks such as BERT and GPT, TensorRT can consume CPU
memory up to 10 times the model size during compilation.

‣ There is an up to 17% performance regression for DeepASR networks at BS=1 on
NVIDIA Turing GPUs.

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and NVIDIA Pascal GPUs.

‣ There is an up to 10-11% performance regression on Xavier compared to TensorRT
7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ On Xavier, DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve
accuracy. Thus, latency may be worse compared to an equivalent network using a
different activation like ReLU. To mitigate this, you can disable LeakyReLU layers from
running on DLA.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 14

1.3. TensorRT Release 8.4.1
These are the TensorRT 8.4.1 Release Notes and is applicable to x86 Linux and Windows
users. This release incorporates Arm® based CPU cores for Server Base System
Architecture (SBSA) users on Linux only. This release includes several fixes from the
previous TensorRT releases as well as the following additional changes.

These Release Notes are applicable to workstation, server, and NVIDIA JetPack™ users
unless appended specifically with (not applicable for Jetson platforms).

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added sampleOnnxMnistCoordConvAC, which contains custom CoordConv layers.
It converts a model trained on the MNIST dataset in ONNX format to a TensorRT
network and runs inference on the network. Scripts for generating the ONNX model
are also provided.

‣ The DLA slice layer is supported for DLA 3.9.0 and later. The DLA SoftMax layer is
supported for DLA 1.3.8.0 and later. Refer to the DLA Supported Layers section in the
TensorRT Developer Guide for details.

‣ Added a Revision History section to the TensorRT Developer Guide to help identify
content that’s been added or updated since the previous release.

‣ Reduced engine file size and runtime memory use on some networks with large
spatial dimension convolution or deconvolution layers.

‣ The following C++ API functions and enums were added:

‣ setMemoryPoolLimit (IBuilderConfig::setMemoryPoolLimit)

‣ getMemoryPoolLimit (IBuilderConfig::getMemoryPoolLimit)

‣ MemoryPoolType

‣ setMaxThreads (IBuilder::setMaxThreads, IRefitter::setMaxThreads,
IRuntime::setMaxThreads)

‣ getMaxThreads (IBuilder::getMaxThreads, IRefitter::getMaxThreads,
IRuntime::getMaxThreads)

‣ getBuilderPluginRegistry

‣ The following Python API functions and enums were added:

‣ set_memory_pool_limit

‣ get_memory_pool_limit

‣ MemoryPoolType

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#sample_onnx_mnist_coordconvac
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#revision-history
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder_config.html#a0a88a9b43bbe47c839ba65de9b40779f
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder_config.html#a44c23f22dc08e6171ae905524baa0ed4
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#a125336eeaa69c11d9aca0535449f0391
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder.html#aa1878b70aed7a904891d5cf8e8481b15
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_refitter.html#aac227267ca6442d4274832e703c66863
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_runtime.html#a06e81de3c593f226bd3e1f1053b55154
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder.html#a48c49591fc0572904259ab4c48f893f9
http://classnvinfer1_1_1_i_refitter.html#a061e80a2f50d7da3ffb167b19e64dbc4
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_runtime.html#aed644b20c97f30d74c0b73c0dfb858bd
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#a11d83e5d6226b6f7ced9852d27becaf2
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=set_memory_pool_limit#tensorrt.IBuilderConfig.set_memory_pool_limit
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=get_memory_pool_limit#tensorrt.IBuilderConfig.get_memory_pool_limit
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 15

‣ max_threads property (Builder.max_threads, Refitter.max_threads,
Runtime.max_threads)

‣ get_builder_plugin_registry

‣ TacticSource::kEDGE_MASK_CONVOLUTIONS

‣ Improved the performance of some convolutional neural networks trained in
TensorFlow and exported using the tf2onnx tool or running in TF-TRT.

‣ Added the --layerPrecisions and --layerOutputTypes flags to the trtexec tool
to allow you to specify layer-wise precision constraints and layer-wise output type
constraints.

‣ Added the --memPoolSize flag to the trtexec tool to allow you to specify the size of
the workspace as well as the DLA memory pools using a unified interface.

‣ Added a new interface to customize and query the sizes of the three DLA memory
pools: managed SRAM, local DRAM, and global DRAM. For consistency with past
behavior, the pool sizes apply per-subgraph (that is, per-loadable). Upon loadable
compilation success, the builder reports the actual amount of memory used per
pool by each loadable, thus allowing for fine-tuning; upon failure due to insufficient
memory a message will be emitted.

There are also changes outside the scope of DLA: the existing API to specify and
query the workspace size (setMaxWorkspaceSize, getMaxWorkspaceSize) has been
deprecated and integrated into the new API. Also, the default workspace size has
been updated to the device-global memory size, and the TensorRT samples have had
their specific workspace sizes removed in favor of the new default value. Refer to
Customizing DLA Memory Pools section in the NVIDIA TensorRT Developer Guide for
more details.

‣ Added support for NVIDIA BlueField®-2 data processing units (DPUs), both A100X
and A30X variants when using the Arm Server Base System Architecture (SBSA)
packages.

‣ Added support for NVIDIA JetPack 5.0 users. NVIDIA Xavier and NVIDIA Orin™ based
devices are supported.

‣ Added support for the dimensions labeled with the same subscript in IEinsumLayer
to be broadcastable.

‣ Added-asymmetric padding support for 3D or dilated deconvolution layers on sm70+
GPUs, when the accumulation of kernel size is equal to or less than 32.

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

‣ APIs deprecated in TensorRT 8.4 will be retained until at least 2/2023.

https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Builder.html#tensorrt.Builder
http://refitter.html#tensorrt.Refitter
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Runtime.html#tensorrt.Runtime
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/IPluginRegistry.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=tacticsource#tensorrt.TacticSource
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#customize-dla-mem-pools
https://www.nvidia.com/en-us/data-center/products/egx-converged-accelerator/

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 16

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.4.1 has been tested with the following:

‣ cuDNN 8.4.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

‣ 11.7

‣ 11.6 update 2

‣ 11.5 update 2

‣ 11.4 update 4

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used; however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ There are two modes of DLA softmax where the mode is chosen automatically based
on the shape of the input tensor, where:

‣ the first mode triggers when all non-batch, non-axis dimensions are 1, and

‣ the second mode triggers in other cases if valid.

The second of the two modes is supported only for DLA 3.9.0 and later. It involves
approximations that may result in errors of a small degree. Also, batch size greater
than 1 is supported only for DLA 3.9.0 and later. Refer to the DLA Supported Layers
section in the TensorRT Developer Guide for details.

‣ On QNX, networks that are segmented into a large number of DLA loadables may fail
during inference.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-841
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dla_layers

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 17

‣ You may encounter an error such as, “Unable to load library:
nvinfer_builder_resource.dll”, if using Python 3.9.10 on Windows. You can
workaround this issue by downgrading to an earlier version of Python 3.9.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ The builder may require up to 60% more memory to build an engine.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or later).

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in NVIDIA
JetPack 4.5 for ResNet-like networks on NVIDIA DLA on Xavier platforms when the
dynamic ranges of the inputs of the ElementWise ADD layers are different. This is due
to a fix for a bug in DLA where it ignored the dynamic range of the second input of
the ElementWise ADD layers and caused some accuracy issues. NVIDIA Orin platforms
are not affected by this.

Deprecated and Removed Features

The following features are deprecated in TensorRT 8.4.1:

‣ Removed sampleNMT.

‣ The End-To-End Host Latency metric in trtexec output has been removed to avoid
confusion. Use the “Host Latency” metric instead for performance metric. For more
information, refer to the Benchmarking Network section in the TensorRT Developer
Guide.

‣ CentOS Linux 8 has reached End-of-Life on Dec 31, 2021. Support for this OS will be
deprecated in the next TensorRT release. CentOS Linux 8 support will be completely
removed in a future release.

‣ In previous TensorRT releases, PDF documentation was included inside the TensorRT
package. The PDF documentation has been removed from the package in favor of
online documentation, which is updated regularly. Online documentation can be
found at https://docs.nvidia.com/deeplearning/tensorrt/index.html.

‣ The TensorRT shared library files no longer have RUNPATH set to $ORIGIN. This setting
was causing unintended behavior for some users. If you relied on this setting before
you may have trouble with missing library dependencies when loading TensorRT. It is
preferred that you manage your own library search path using LD_LIBRARY_PATH or a
similar method.

Fixed Issues

‣ If the TensorRT Python bindings were used without a GPU present, such as when the
NVIDIA Container Toolkit is not installed or enabled before running Docker, then you

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#trtexec-benchmark
https://www.centos.org/centos-linux-eol/
https://docs.nvidia.com/deeplearning/tensorrt

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 18

may have encountered an infinite loop that required the process to be killed in order
to terminate the application. This issue has been fixed in this release.

‣ The EngineInspector detailed layer information always showed batch size = 1 when
the engine was built with implicit batch dimensions. This issue has been fixed in this
release.

‣ The IElementWiseLayer and IUnaryLayer layers can accept different input datatypes
depending on the operation that is used. The documentation was updated to
explicitly show which datatypes are supported. For more information, refer to the
IElementWiseLayer and IUnaryLayer sections in the TensorRT Developer Guide.

‣ When running ONNX models with dynamic shapes, there was a potential accuracy
issue if the dimension names of the inputs that were expected to be the same were
not. For example, if a model had two 2D inputs of which the dimension semantics
were both batch and seqlen, and in the ONNX model, the dimension name of the
two inputs were different, there was a potential accuracy issue when running with
dynamic shapes. This issue has been fixed in this release.

‣ There was an up to 15% performance regression for networks with a Pooling layer
located before or after a Concatenate layer. This regression has been fixed in this
release.

‣ The engine building time for the networks using 3D convolution, like 3d_unet, is up
to 500% longer compared to TensorRT 8.0 due to many fast kernels being added in,
which enlarges the profiling time.

‣ TensorRT bundles a version of libnvptxcompiler_static.a inside
libnvinfer_static.a. If an application links with a different version of PTXJIT than
the version used to build TensorRT, it may lead to symbol conflicts or undesired
behavior. This issue has been fixed in this release. TensorRT does not archive public
libnvptxcompiler_static.a and libnvrtc_static.a into libnvinfer_static.a.

‣ There was an up to 10% performance regression for ResNeXt networks with small
batch (1 or 2) in FP32 compared to TensorRT 6 on Xavier. This regression has been
fixed in this release.

‣ TensorRT could have experienced some instability when running networks containing
TopK layers on T4 under Azure VM. This issue has been fixed in this release.

‣ There was a potential memory leak while running models containing the Einsum op.
This issue has been fixed in this release.

‣ On integrated GPUs, a memory tracking issue in TensorRT 8.0 that was artificially
restricting the amount of available memory has been fixed. A side effect was that the
TensorRT optimizer was able to choose layer implementations that use more memory,
which could cause the OOM Killer to trigger for networks where it previously did not.
This issue has been fixed in this release.

‣ TensorRT had limited support for fusing IConstantLayer and IShuffleLayer. In
explicit-quantization mode, the weights of Convolutions and FullyConnected layers

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#elementwise-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#unary-layer

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 19

had to be fused. Therefore, if a weights shuffle pattern was not supported, it may
lead to failure to quantize the layer. This issue has been fixed in this release

‣ Networks that used certain pointwise operations not preceded by convolutions
or deconvolutions and followed by slicing on spatial dimensions could crash in the
optimizer. This issue has been fixed in this release.

‣ When running the Python engine_refit_mnist, network_api_pytorch_mnist, or
onnx_packnet samples, you may have encountered Illegal instruction (core
dumped) when using the CPU version of PyTorch on Jetson TX2. The README for
these samples have been updated with instructions on how to install a GPU enabled
version of PyTorch.

‣ Intermittent accuracy issues were observed in sample_mnist with INT8 precision on
WSL2. This issue has been fixed in this release.

‣ The TensorRT plug-ins library used a logger that was not thread-safe and that could
cause data races. This issue has been fixed in this release.

‣ For a quantized (QAT) network with ConvTranspose followed by BN, ConvTranspose
would be quantized first and then BN would be fused to ConvTranspose. This fusion
was wrong and caused incorrect outputs. This issue has been fixed in this release.

‣ During the graph optimization, new nodes were added but there was no mechanism
preventing the duplication of node names. This issue has been fixed in this release.

‣ For some networks with large amounts of weights and activation data, TensorRT
failed compiling a subgraph, and that subgraph would fallback to GPU. Now, rather
than the whole subgraph fallback to GPU, only the single node that cannot be run
with DLA will fallback to GPU.

‣ There was a known functional issue when running networks containing 3D
deconvolution layers on L4T. This issue has been fixed in this release.

‣ There was a known functional issue when running networks containing convolution
layers on K80. This issue has been fixed in this release.

‣ A small portion of the data of the inference results of the LSTM graph of a specific
pattern was non-deterministic occasionally. This issue has been fixed in this release.

‣ A small portion of the LSTM graph, in which multiple MatMul layers have opA/
opB==kTRANSPOSE consuming the same input tensor, may have failed to build the
engine. This issue has been fixed in this release.

‣ For certain networks built for the Xavier GPU, the deserialized engine may have
allocated more GPU memory than necessary. This issue has been fixed in this release.

‣ If a network had a Gather layer with both indices and input dynamic, and the
optimization profile had a large dynamic range (difference between max and min),
TensorRT could request a very large workspace. This issue has been fixed in this
release.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 20

Announcements

‣ Python support for Windows included in the zip package is ready for production use.

‣ CUDA 11.7 added a feature called Lazy loading, however, this feature is not supported
by TensorRT 8.4 because the CUDA 11.x binaries were built with CUDA Toolkit 11.6.

Known Issues

Functional

‣ Calling a Max Reduction on a shape tensor that has a non-power of two volumes of
index dimensions can produce undefined results. This can be fixed by padding the
index dimensions to have a volume equal to a power of two.

‣ When performing an L2_Normalization in float16 precision, there is undefined
behavior occurring from a fusion. This fusion can be disabled by marking the input to
the L2_Normalization as a network output.

‣ When performing PTQ with TensorRT with tensors rank > 4, some layers may cause
an assertion about invalid Region Dims. This can be worked around by fusing the
index layers into the 4th dimension to have the tensor have a rank 4.

‣ SM75 and earlier devices may not have INT8 implementations for all layers with Q/DQ
nodes. In this case, you will encounter a could not find any implementation error
while building your engine. To resolve this, remove the Q/DQ nodes which quantize
the failing layers.

‣ For some networks using sparsity, TensorRT may produce inaccurate results.

‣ When the TensorRT static library is used to build engines and the NVPTXCompiler
static library is also used outside of the TensorRT core library at the same time, it is
possible to trigger a crash of the process in rare cases.

‣ TensorRT should only allow up to a total of 16 I/O tensors for a single subnetwork
offloaded to DLA. However, there is a leak in the logic that incorrectly allows > 16 I/O
tensors. You may need to manually specify the per layer device to avoid the creation
of subnetworks with over 16 I/O tensors, for successful engine construction. This
restriction will be properly reinstated in a future release.

‣ When using multiple Convolution layers using the same input and wrapped with Q/
DQ layers, TensorRT may produce inaccurate results

‣ One of the deconvolution algorithms sourced from cuDNN exhibits non-deterministic
execution. Disabling cuDNN tactics will prevent this algorithm from being chosen
(refer to IBuilderConfig::setTacticSources).

‣ Some models may fail on SBSA platforms when using statically linked binaries.

‣ For the HuggingFace demos, the T5-3B model has only been verified on A100, and is
not expected to work on A10, T4, and so on.

‣ TensorRT in FP16 mode does not perform cast operations correctly when only the
output types are set, but not the layer precisions.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 21

‣ TensorRT does not preserve precision for operations that are imported from ONNX
models in FP16 mode.

‣ There is a known issue when ProfilingVerbosity is set to kDETAILED, the
enqueueV2() call may take up to 2ms compared to ProfilingVerbosity=kNONE or
kLAYER_NAMES_ONLY.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fall back to using cuBLAS. (not applicable for Jetson platforms)

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9 or newer. Any Python samples that
depend on TensorFlow 1.x cannot be run with Python 3.9 or newer.

‣ The Debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

‣ You may see the following error:
"Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared
 object file: No such file or directory"

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library
search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF
model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

‣ For some networks, using batch sizes larger than 32 may cause accuracy degradation
on DLA.

‣ Certain spatial dimensions may cause crashes during DLA optimization for models
using single-channel inputs.

Performance

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 22

‣ There is a known regression with the encoder model. The encoder model can be built
successfully with TensorRT 8.2 but fails with TensorRT 8.4.

‣ There is a known performance issue when running instance normalization layers on
Arm Server Base System Architecture (SBSA).

‣ There is an up to 22% performance drop for Jasper networks compared to TensorRT
8.2 when running in FP32 precision on NVIDIA Volta or NVIDIA Turing GPUs with
CUDA 10.2. This performance drop can be avoided if CUDA 11.x is used instead.

‣ There is an up to 5% performance drop for the InceptionV4 network compared to
TensorRT 8.2 when running in FP32 precision on NVIDIA Volta GPUs with CUDA 10.2.
This performance drop can be avoided if CUDA 11.x is used instead.

‣ There is an up to 27% performance drop for BART compared to TensorRT 8.2 when
running with both FP16 and INT8 precisions enabled on T4. This performance drop
can be fixed by disabling the INT8 precision flag.

‣ There is an up to 5% performance drop for the ShuffleNet network compared to
TensorRT 8.2 when running in INT8 precision on NVIDIA Ampere Architecture GPUs.
This will be fixed in a future TensorRT release.

‣ There is an up to 10% performance drop for the SegResNet network compared to
TensorRT 8.2 when running in FP16 precision on NVIDIA Ampere Architecture GPUs
due to a cuDNN regression in the InstanceNormalization plug-in. This will be fixed
in a future TensorRT release. You can work around the regression by reverting the
cuDNN version to cuDNN 8.2.1.

‣ There is an up to 10% performance difference for the WaveRNN network between
different operating systems when running in FP16 precision on NVIDIA Ampere
Architecture GPUs. This will be fixed in a future TensorRT release.

‣ There is a performance drop when offloading a SoftMax layer to DLA on NVIDIA Orin
as compared to when running the layer on a GPU, with a larger drop for larger batch
sizes. As an example, FP16 AlexNet with batch size 16 shows 32% drop when the
network runs on DLA as compared to when the last SoftMax layer runs on a GPU.

‣ There is an up to 7% performance regression for the 3D-UNet networks compared to
TensorRT 8.4 EA when running in INT8 precision on NVIDIA Orin due to a functionality
fix.

‣ There is an up to 20% performance variation between different engines built from
the same network for some LSTM networks when running on Windows due to
unstable tactic selections.

‣ Some networks may see a small increase in deserialization time.

‣ Due to the difference in DLA hardware specification between NVIDIA Orin and
Xavier, a relative increase in latency is expected when running DLA FP16 operations
involving convolution (which includes deconvolution, fully-connected, and concat) on
NVIDIA Orin as compared to running on Xavier. At the same DLA clocks and memory
bandwidth, INT8 convolution operations on NVIDIA Orin are expected to be about

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 23

4x faster than on Xavier, whereas FP16 convolution operations on NVIDIA Orin are
expected to be about 40% slower than on Xavier.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package Release Notes for details.

‣ For transformer-based networks such as BERT and GPT, TensorRT can consume CPU
memory up to 10 times the model size during compilation.

‣ There is an up to 17% performance regression for DeepASR networks at BS=1 on
NVIDIA Turing GPUs.

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and NVIDIA Pascal GPUs.

‣ There is an up to 10-11% performance regression on Xavier compared to TensorRT
7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ On Xavier, DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve
accuracy. Thus, latency may be worse compared to an equivalent network using a
different activation like ReLU. To mitigate this, you can disable LeakyReLU layers from
running on DLA.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

1.4. TensorRT Release 8.4.0 Early
Access (EA)

These are the TensorRT 8.4.0 Early Access (EA) Release Notes and are applicable to x86
Linux and Windows users. This release incorporates ARM® based CPU cores for Server
Base System Architecture (SBSA) users on Linux only. This release includes several fixes
from the previous TensorRT 8.x.x release as well as the following additional changes.

These Release Notes are also applicable to workstation, server, and NVIDIA JetPack™

users unless appended specifically with (not applicable for Jetson platforms).

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 24

This EA release is for early testing and feedback. For production use of TensorRT,
continue to use TensorRT 8.2.3 or later TensorRT 8.2.x patch.

Note: TensorRT 8.4 EA does not include updates to the CUDA network repository. You
should use the local repo installer package instead.

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Reduce engine file size and runtime memory usage on some networks with large
spatial dimension convolution or deconvolution layers.

‣ The following C++ API functions and enums were added:

‣ setMemoryPoolLimit (IBuilderConfig::setMemoryPoolLimit)

‣ getMemoryPoolLimit (IBuilderConfig::getMemoryPoolLimit)

‣ MemoryPoolType

‣ setMaxThreads (IBuilder::setMaxThreads, IRefitter::setMaxThreads,
IRuntime::setMaxThreads)

‣ getMaxThreads (IBuilder::getMaxThreads, IRefitter::getMaxThreads,
IRuntime::getMaxThreads)

‣ getBuilderPluginRegistry

‣ The following Python API functions and enums were added:

‣ set_memory_pool_limit

‣ get_memory_pool_limit

‣ MemoryPoolType

‣ max_threads property (Builder.max_threads, Refitter.max_threads,
Runtime.max_threads)

‣ get_builder_plugin_registry

‣ Improved the performance of some convolutional neural networks trained in
TensorFlow and exported using the tf2onnx tool or running in TF-TRT.

‣ Added the --layerPrecisions and --layerOutputTypes flags to the trtexec tool
to allow you to specify layer-wise precision constraints and layer-wise output type
constraints.

‣ Added the --memPoolSize flag to the trtexec tool to allow you to specify the size of
the workspace as well as the DLA memory pools via a unified interface.

‣ Added a new interface to customize and query the sizes of the three DLA memory
pools: managed SRAM, local DRAM, and global DRAM. For consistency with past
behavior, the pool sizes apply per-subgraph (i.e. per-loadable). Upon loadable

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder_config.html#a0a88a9b43bbe47c839ba65de9b40779f
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder_config.html#a44c23f22dc08e6171ae905524baa0ed4
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#a125336eeaa69c11d9aca0535449f0391
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder.html#aa1878b70aed7a904891d5cf8e8481b15
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_refitter.html#aac227267ca6442d4274832e703c66863
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_runtime.html#a06e81de3c593f226bd3e1f1053b55154
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder.html#a48c49591fc0572904259ab4c48f893f9
http://classnvinfer1_1_1_i_refitter.html#a061e80a2f50d7da3ffb167b19e64dbc4
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_runtime.html#aed644b20c97f30d74c0b73c0dfb858bd
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#a11d83e5d6226b6f7ced9852d27becaf2
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=set_memory_pool_limit#tensorrt.IBuilderConfig.set_memory_pool_limit
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=get_memory_pool_limit#tensorrt.IBuilderConfig.get_memory_pool_limit
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Builder.html#tensorrt.Builder
http://refitter.html#tensorrt.Refitter
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Runtime.html#tensorrt.Runtime
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/IPluginRegistry.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 25

compilation success, the builder reports the actual amount of memory used per
pool by each loadable, thus allowing for fine-tuning; upon failure due to insufficient
memory a message will be emitted.

There are also changes outside the scope of DLA: the existing API to specify and
query the workspace size (setMaxWorkspaceSize, getMaxWorkspaceSize) has been
deprecated and integrated into the new API. Also, the default workspace size has
been updated to the device global memory size, and the TensorRT samples have had
their specific workspace sizes removed in favor of the new default value. Refer to
Customizing DLA Memory Pools section in the NVIDIA TensorRT Developer Guide for
more details.

‣ Added support for NVIDIA BlueField®-2 data processing units (DPUs), both A100X
and A30X variants when using the ARM Server Base System Architecture (SBSA)
packages.

‣ Added support for NVIDIA JetPack 5.0 users. NVIDIA Xavier and NVIDIA Orin™ based
devices are supported.

‣ Added support for the dimensions labeled with the same subscript in IEinsumLayer
to be broadcastable.

‣ Added asymmetric padding support for 3D or dilated deconvolution layers on sm70+
GPUs, when the accumulation of kernel size is equal to or less than 32.

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

‣ APIs deprecated in TensorRT 8.4 will be retained until at least 2/2023.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.4.0 EA has been tested with the following:

‣ cuDNN 8.3.2

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

‣ 11.6

‣ 11.5 update 1

‣ 11.4 update 3

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#customize-dla-mem-pools
https://www.nvidia.com/en-us/data-center/products/egx-converged-accelerator/
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-832
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 26

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used, however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ When static linking with cuDNN, cuBLAS, and cuBLASLt libraries, TensorRT requires
CUDA >=11.3.

‣ TensorRT attempts to catch GPU memory allocation failure and avoid profiling tactics
whose memory requirements would trigger Out of Memory. However, GPU memory
allocation failure cannot be handled by CUDA gracefully on some platforms and
would lead to an unrecoverable application status. If this happens, consider lowering
the specified workspace size if a large size is set, or using the IAlgorithmSelector
interface to avoid tactics that require a lot of GPU memory.

‣ 3D Asymmetric Padding is not supported on GPUs older than the NVIDIA Volta GPU
architecture (compute capability 7.0).

Deprecated And Removed Features

The following features are deprecated in TensorRT 8.4.0 EA:

‣ The following C++ API functions and classes were deprecated:

‣ IFullyConnectedLayer

‣ getMaxWorkspaceSize

‣ setMaxWorkspaceSize

‣ The following Python API functions and classes were deprecated:

‣ IFullyConnectedLayer

‣ get_max_workspace_size

‣ set_max_workspace_size

‣ The --workspace flag in trtexec has been deprecated. TensorRT now allocates as
much workspace as available GPU memory by default when the --workspace/--
memPoolSize flags are not added, instead of having 16MB default workspace
size limit in the trtexec in TensorRT 8.2. To limit the workspace size, use the --
memPoolSize=workspace:<size> flag instead.

https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 27

‣ The IFullyConnectedLayer operation is deprecated. Typically, you should replace
it with IMatrixMultiplyLayer. The MatrixMultiply layer does not support all data
layouts supported by the FullyConnected layer currently, so additional work may be
required when using BuilderFlag::kDIRECT_IO, if the input of the MatrixMultiply
layer is a network I/O tensor:

‣ If the MatrixMultiply layer is forced to INT8 precision via a combination of

‣ ILayer::setPrecision(DataType::kINT8)

‣ IBuilderConfig::setFlag(BuilderFlag::kOBEY_PRECISION_CONSTRAINTS)

the engine will fail to build.

‣ If the MatrixMultiply layer is prefered to run on DLA and GPU fallback is allowed
via a combination of

‣ IBuilderConfig->setDeviceType(matrixMultiplyLayer,
 DeviceType::kDLA)

‣ IBuilderConfig->setFlag(BuilderFlag::kGPU_FALLBACK)

the layer will fall back to run on the GPU.

‣ If the MatrixMultiply layer is required to run on DLA and GPU fallback is not
allowed via

‣ IBuilderConfig->setDeviceType(matrixMultiplyLayer,
 DeviceType::kDLA)

the engine will fail to build.

To resolve these issues, either relax one of the constraints, or use
IConvolutionLayer to create a Convolution 1x1 layer to replace
IFullyConnectedLayer.

Refer to the MNIST API samples (C++, Python) for examples of migrating from
IFullyConnectedLayer to IMatrixMultiplyLayer.

Fixed Issues

‣ The EngineInspector detailed layer information always showed batch size = 1 when
the engine was built with implicit batch dimension. This issue has been fixed in this
release.

‣ The IElementWiseLayer and IUnaryLayer layers can accept different input datatypes
depending on the operation that is used. The documentation was updated to
explicitly show which datatypes are supported. For more information, refer to the
IElementWiseLayer and IUnaryLayer sections in the TensorRT Developer Guide.

‣ When running ONNX models with dynamic shapes, there was a potential accuracy
issue if the dimension names of the inputs that were expected to be the same were
not. For example, if a model had two 2D inputs of which the dimension semantics
were both batch and seqlen, and in the ONNX model, the dimension name of the

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#reformat-free-network-tensors
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNISTAPI
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/network_api_pytorch_mnist
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#elementwise-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#unary-layer

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 28

two inputs were different, there was a potential accuracy issue when running with
dynamic shapes. This issue has been fixed in this release.

‣ There was an up to 15% performance regression for networks with a Pooling layer
located before or after a Concatenate layer. This regression has been fixed in this
release.

‣ The engine building time for the networks using 3D convolution, like 3d_unet, is up
to 500% longer compared to TensorRT 8.0 due to many fast kernels being added in,
which enlarges the profiling time.

Known Issues

Functional

‣ There is a known functional issue when running networks containing 3D
deconvolution layers on L4T.

‣ There is a known functional issue when running networks containing convolution
layers on K80.

‣ A small portion of the data of the inference results of the LSTM graph of a specific
pattern is non-deterministic occasionally.

‣ If a network has a Gather layer with both indices and input dynamic and the
optimization profile has a large dynamic range (difference between max and min),
TensorRT could request a very large workspace.

‣ For the HuggingFace demos, the T5-3B model has only been verified on A100, and is
not expected to work on A10, T4, etc.

‣ For a quantized (QAT) network with ConvTranspose followed by BN, ConvTranspose
will be quantized first and then BN will be fused to ConvTranspose. This fusion is
wrong and causes incorrect outputs.

‣ A small portion of the LSTM graph, in which multiple MatMul layers have opA/
opB==kTRANSPOSE consuming the same input tensor, may fail to build the engine.

‣ During the graph optimization, new nodes are added but there is no mechanism
preventing the duplication of node names.

‣ TensorRT in FP16 mode does not perform cast operations correctly when only the
output types are set, but not the layer precisions.

‣ TensorRT does not preserve precision for operations that are imported from ONNX
models in FP16 mode.

‣ The TensorRT plugins library uses a logger that is not thread-safe which can cause
data races

‣ There is a potential memory leak while running models containing the Einsum op.

‣ There is a known issue when ProfilingVerbosity is set to kDETAILED, the
enqueueV2() call may take up to 2ms compared to ProfilingVerbosity=kNONE or
kLAYER_NAMES_ONLY.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 29

‣ TensorRT may experience some instabilities when running networks containing TopK
layers on T4 under Azure VM.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fallback to using cuBLAS. (not applicable for Jetson platforms)

‣ For some networks with large amounts of weights and activation data, DLA may fail
compiling a subgraph, and that subgraph will fallback to GPU.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or above).

‣ On integrated GPUs, a memory tracking issue in TensorRT 8.0 that was artificially
restricting the amount of available memory has been fixed. A side effect is that the
TensorRT optimizer is able to choose layer implementations that use more memory,
which can cause the OOM Killer to trigger for networks where it previously didn't.
To work around this problem, use the IAlgorithmSelector interface to avoid layer
implementations that require a lot of memory, or use the layer precision API to reduce
precision of large tensors and use STRICT_TYPES, or reduce the size of the input
tensors to the builder by reducing batch or other higher dimensions.

‣ TensorRT bundles a version of libnvptxcompiler_static.a inside
libnvinfer_static.a. If an application links with a different version of PTXJIT than
the version used to build TensorRT, it may lead to symbol conflicts or undesired
behavior.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9. Any Python samples that depend on
TensorFlow 1.x cannot be run with Python 3.9.

‣ TensorRT has limited support for fusing IConstantLayer and IShuffleLayer. In
explicit-quantization mode, the weights of Convolutions and Fully-Connected layers
must be fused. Therefore, if a weights-shuffle is not supported, it may lead to failure
to quantize the layer.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 30

‣ For DLA networks where a convolution layer consumes an NHWC network input, the
compute precision of the convolution layer must match the data type of the input
tensor.

‣ The debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

‣ When running the Python engine_refit_mnist, network_api_pytorch_mnist, or
onnx_packnet samples, you may encounter Illegal instruction (core dumped)
when using the CPU version of PyTorch on Jetson TX2. The workaround is to install a
GPU enabled version of PyTorch as per the instructions in the sample READMEs.

‣ Intermittent accuracy issues are observed in sample_mnist with INT8 precision on
WSL2.

‣ You may see the following error:
Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared
 object file: No such file or directory

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library
search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF
model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

‣ For some networks, using batch sizes larger than 32 may cause accuracy degradation
on DLA.

‣ Certain spatial dimensions may cause crashes during DLA optimization for models
using single-channel inputs.

‣ Networks that use certain pointwise operations not preceded by convolutions
or deconvolutions and followed by slicing on spatial dimensions may crash in the
optimizer.

‣ The builder may require up to 60% more memory to build an engine.

‣ If the TensorRT Python bindings are used without a GPU present, such as when the
NVIDIA Container Toolkit is not installed or enabled before running Docker, then you
may encounter an infinite loop which requires the process to be killed in order to
terminate the application.

Performance

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 31

‣ For certain networks built for the Xavier GPU, the deserialized engine may allocate
more GPU memory than necessary.

‣ Some networks may see a small increase in deserialization time.

‣ Due to the difference in DLA hardware specification between Orin and Xavier, a
relative increase in latency is expected when running DLA FP16 operations involving
convolution (which includes deconvolution, fully-connected, and concat) on Orin as
compared to running on Xavier. At the same DLA clocks and memory bandwidth, INT8
convolution operations on Orin are expected to be about 4x faster than on Xavier,
whereas FP16 convolution operations on Orin are expected to be about 40% slower
than on Xavier.

‣ There is a known issue with DLA clocks that requires users to reboot the system after
changing the nvpmodel power mode or otherwise experience a performance drop.
Refer to the L4T board support package release notes for details.

‣ For transformer based networks such as BERT and GPT, TensorRT can consume CPU
memory up to 10 times the model size during compilation.

‣ There is an up to 17% performance regression for DeepASR networks at BS=1 on
Turing GPUs.

‣ If a Pointwise operation has 2 inputs, then a fusion may not be possible leading
to lower performance. For example, MatMul and Sigmoid can typically be fused to
ConvActFusion but not in this scenario.

‣ There is an up to 15% performance regression for MaskRCNN-ResNet-101 on Turing
GPUs in INT8 precision.

‣ There is an up to 23% performance regression for Jasper networks on Volta and
Turing GPUs in FP32 precision.

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and Pascal GPUs.

‣ There is an up to 10-11% performance regression on Xavier:

‣ compared to TensorRT 7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ compared to TensorRT 6 for ResNeXt networks with small batch (1 or 2) in FP32.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in
JetPack 4.5 for ResNet-like networks on NVIDIA DLA when the dynamic ranges of
the inputs of the ElementWise ADD layers are different. This is due to a fix for a bug in

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 32

DLA where it ignored the dynamic range of the second input of the ElementWise ADD
layers and caused some accuracy issues.

‣ DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve accuracy.
Thus, latency may be worse compared to an equivalent network using a different
activation like ReLU. To mitigate this, you can disable LeakyReLU layers from running
on DLA.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 21% performance drop compared to TensorRT 8.0 for SSD-
Inception2 networks on NVIDIA Volta GPUs.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

1.5. TensorRT Release 8.2.5
These are the TensorRT 8.2.5 Release Notes and are applicable to x86 Linux and
Windows users. This release incorporates ARM® based CPU cores for Server Base System
Architecture (SBSA) users on Linux only. This release includes several fixes from the
previous TensorRT release as well as the following additional changes.

These Release Notes are also applicable to workstation, server, and NVIDIA JetPack™

users unless appended specifically with (not applicable for Jetson platforms).

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.2.5 has been tested with the following:

‣ cuDNN 8.2.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-821
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 33

‣ 11.5 update 2

‣ 11.4 update 3

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used, however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Fixed Issues

‣ There is a fast configuration for the SoftMax kernel which was not enabled previously
when porting it from cuDNN. This performance regression has been fixed in this
release.

‣ The Scale kernel had previously incorrectly supported strides (due to concat and slice
elision). This issue has been fixed with this release.

Known Issues

Functional

‣ TensorRT attempts to catch GPU memory allocation failure and avoid profiling tactics
whose memory requirements would trigger Out of Memory. However, GPU memory
allocation failure cannot be handled by CUDA gracefully on some platforms and
would lead to an unrecoverable application status. If this happens, consider lowering
the specified workspace size if a large size is set, or using the IAlgorithmSelector
interface to avoid tactics that require a lot of GPU memory.

‣ TensorRT may experience some instabilities when running networks containing TopK
layers on T4 under Azure VM.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ When running ONNX models with dynamic shapes, there is a potential accuracy issue
if the dimension names of the inputs that are expected to be the same are not. For
example, if a model has two 2D inputs of which the dimension semantics are both
batch and seqlen, and in the ONNX model, the dimension name of the two inputs
are different, there is a potential accuracy issue when running with dynamic shapes.

https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 34

Ensure you the dimension semantics match when exporting ONNX models from
frameworks.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fallback to using cuBLAS. (not applicable for Jetson platforms)

‣ For some networks with large amounts of weights and activation data, DLA may fail
compiling a subgraph, and that subgraph will fallback to GPU.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or above).

‣ On integrated GPUs, a memory tracking issue in TensorRT 8.0 that was artificially
restricting the amount of available memory has been fixed. A side effect is that the
TensorRT optimizer is able to choose layer implementations that use more memory,
which can cause the OOM Killer to trigger for networks where it previously didn't.
To work around this problem, use the IAlgorithmSelector interface to avoid layer
implementations that require a lot of memory, or use the layer precision API to reduce
precision of large tensors and use STRICT_TYPES, or reduce the size of the input
tensors to the builder by reducing batch or other higher dimensions.

‣ TensorRT bundles a version of libnvptxcompiler_static.a inside
libnvinfer_static.a. If an application links with a different version of PTXJIT than
the version used to build TensorRT, it may lead to symbol conflicts or undesired
behavior.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9. Any Python samples that depend on
TensorFlow 1.x cannot be run with Python 3.9.

‣ TensorRT has limited support for fusing IConstantLayer and IShuffleLayer. In
explicit-quantization mode, the weights of Convolutions and Fully-Connected layers
must be fused. Therefore, if a weights-shuffle is not supported, it may lead to failure
to quantize the layer.

‣ For DLA networks where a convolution layer consumes an NHWC network input, the
compute precision of the convolution layer must match the data type of the input
tensor.

‣ Hybrid precision is not supported with the Pooling layer. Data type of input and
output tensors should be the same as the layer precision.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 35

‣ When running the Python engine_refit_mnist, network_api_pytorch_mnist, or
onnx_packnet samples, you may encounter Illegal instruction (core dumped)
when using the CPU version of PyTorch on Jetson TX2. The workaround is to install a
GPU enabled version of PyTorch as per the instructions in the sample READMEs.

‣ Intermittent accuracy issues are observed in sample_mnist with INT8 precision on
WSL2.

‣ The Debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

‣ You may see the following error:
"Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared
 object file: No such file or directory"

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library
search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF
model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

Performance

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and Pascal GPUs.

‣ There is an up to 8% performance regression compared to TensorRT 7.1 for some
networks with heavy FullyConnected operation like VGG16 on NVIDIA Jetson Nano™.

‣ There is an up to 10-11% performance regression on Xavier:

‣ compared to TensorRT 7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ compared to TensorRT 6 for ResNeXt networks with small batch (1 or 2) in FP32.

‣ For networks that use deconv with large kernel size, the engine build time can
increase a lot for this layer on Xavier. It can also lead to the launch timed out and
was terminated error message on Jetson Nano/TX1.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 36

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in
JetPack 4.5 for ResNet-like networks on NVIDIA DLA when the dynamic ranges of
the inputs of the ElementWise ADD layers are different. This is due to a fix for a bug in
DLA where it ignored the dynamic range of the second input of the ElementWise ADD
layers and caused some accuracy issues.

‣ DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve accuracy.
Thus, latency may be worse compared to an equivalent network using a different
activation like ReLU. To mitigate this, you can disable LeakyReLU layers from running
on DLA.

‣ The builder may require up to 60% more memory to build an engine.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 21% performance drop compared to TensorRT 8.0 for SSD-
Inception2 networks on NVIDIA Volta GPUs.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ There is an up to 25% performance drop for networks using the InstanceNorm plugin.
This issue is being investigated.

‣ The engine building time for the networks using 3D convolution, like 3d_unet, is up
to 500% longer compared to TensorRT 8.0 due to many fast kernels being added in,
which enlarges the profiling time.

1.6. TensorRT Release 8.2.4
These are the TensorRT 8.2.4 Release Notes and are applicable to x86 Linux and
Windows users. This release incorporates ARM® based CPU cores for Server Base System
Architecture (SBSA) users on Linux only. This release includes several fixes from the
previous TensorRT release as well as the following additional changes.

These Release Notes are also applicable to workstation, server, and NVIDIA JetPack™

users unless appended specifically with (not applicable for Jetson platforms).

For previously released TensorRT documentation, refer to the NVIDIA TensorRT Archived
Documentation.

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 37

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.2.4 has been tested with the following:

‣ cuDNN 8.2.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

‣ 11.5 update 2

‣ 11.4 update 3

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used, however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Fixed Issues

‣ UBSan issues had not been discussed in the documentation. We’ve added a new
section that discusses Issues With Undefined Behavior Sanitizer in the TensorRT
Developer Guide.

‣ There was a functional issue when horizontal merge is followed by a concat layer with
axis on non-channel dimension. The issue is fixed in this release.

‣ For a network with floating-point output, when the configuration allows using INT8
in the engine, TensorRT has a heuristic for avoiding excess quantization noise in
the output. Previously, the heuristic assumed that plugins were capable of floating-
point output if needed, and otherwise the engine failed to build. Now, the engine will
build, although without trying to avoid quantization noise from an INT8 output from
a plugin. Furthermore, a plugin with an INT8 output that is connected to a network
output of type INT8 now works.

‣ TensorRT was incorrectly computing the size of tensors when doing memory
allocations computation. This occurred in cases where dynamic shapes was triggering

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-821
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#ubsan

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 38

an integer overflow on the max opt dimension when accumulating the volumes of all
the network I/O tensors.

‣ TensorRT incorrectly performed horizontal fusion of batched Matmuls along the
batch dimension. The issue is fixed in this release.

‣ In some cases TensorRT failed to find a tactic for Pointwise. The issue is fixed in this
release.

‣ There was a functional issue in fused reduction kernels which would lead to an
accuracy drop in WeNet transformer encoder layers. The issue is fixed in this release.

‣ There were functional issues when two layer's inputs (or outputs) shared the same
IQuantization/IDequantization layer. The issue is fixed in this release.

‣ When fusing Convolution+Quantization or Pointwise+Quantization and the output
type is constrained to INT8, you had to specify the precision for Convolution and
Pointwise operations for other fusions to work correctly. If the Convolution and
Pointwise precision had not been configured yet, it would have to be float because
INT8 precision requires explicitly fusing with Dequantization. The issue is fixed in this
release.

‣ There was a known crash when building certain large GPT2-XL model variants. The
issue is fixed in this release.

Known Issues

Functional

‣ TensorRT attempts to catch GPU memory allocation failure and avoid profiling tactics
whose memory requirements would trigger Out of Memory. However, GPU memory
allocation failure cannot be handled by CUDA gracefully on some platforms and
would lead to an unrecoverable application status. If this happens, consider lowering
the specified workspace size if a large size is set, or using the IAlgorithmSelector
interface to avoid tactics that require a lot of GPU memory.

‣ TensorRT may experience some instabilities when running networks containing TopK
layers on T4 under Azure VM.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ When running ONNX models with dynamic shapes, there is a potential accuracy issue
if the dimension names of the inputs that are expected to be the same are not. For
example, if a model has two 2D inputs of which the dimension semantics are both
batch and seqlen, and in the ONNX model, the dimension name of the two inputs
are different, there is a potential accuracy issue when running with dynamic shapes.
Ensure you the dimension semantics match when exporting ONNX models from
frameworks.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 39

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fallback to using cuBLAS. (not applicable for Jetson platforms)

‣ For some networks with large amounts of weights and activation data, DLA may fail
compiling a subgraph, and that subgraph will fallback to GPU.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or above).

‣ On integrated GPUs, a memory tracking issue in TensorRT 8.0 that was artificially
restricting the amount of available memory has been fixed. A side effect is that the
TensorRT optimizer is able to choose layer implementations that use more memory,
which can cause the OOM Killer to trigger for networks where it previously didn't.
To work around this problem, use the IAlgorithmSelector interface to avoid layer
implementations that require a lot of memory, or use the layer precision API to reduce
precision of large tensors and use STRICT_TYPES, or reduce the size of the input
tensors to the builder by reducing batch or other higher dimensions.

‣ TensorRT bundles a version of libnvptxcompiler_static.a inside
libnvinfer_static.a. If an application links with a different version of PTXJIT than
the version used to build TensorRT, it may lead to symbol conflicts or undesired
behavior.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9. Any Python samples that depend on
TensorFlow 1.x cannot be run with Python 3.9.

‣ TensorRT has limited support for fusing IConstantLayer and IShuffleLayer. In
explicit-quantization mode, the weights of Convolutions and Fully-Connected layers
must be fused. Therefore, if a weights-shuffle is not supported, it may lead to failure
to quantize the layer.

‣ For DLA networks where a convolution layer consumes an NHWC network input, the
compute precision of the convolution layer must match the data type of the input
tensor.

‣ Hybrid precision is not supported with the Pooling layer. Data type of input and
output tensors should be the same as the layer precision.

‣ When running the Python engine_refit_mnist, network_api_pytorch_mnist, or
onnx_packnet samples, you may encounter Illegal instruction (core dumped)

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 40

when using the CPU version of PyTorch on Jetson TX2. The workaround is to install a
GPU enabled version of PyTorch as per the instructions in the sample READMEs.

‣ Intermittent accuracy issues are observed in sample_mnist with INT8 precision on
WSL2.

‣ The Debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

‣ You may see the following error:
"Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared
 object file: No such file or directory"

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library
search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF
model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

Performance

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and Pascal GPUs.

‣ There is an up to 8% performance regression compared to TensorRT 7.1 for some
networks with heavy FullyConnected operation like VGG16 on NVIDIA Jetson Nano™.

‣ There is an up to 10-11% performance regression on Xavier:

‣ compared to TensorRT 7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ compared to TensorRT 6 for ResNeXt networks with small batch (1 or 2) in FP32.

‣ For networks that use deconv with large kernel size, the engine build time can
increase a lot for this layer on Xavier. It can also lead to the launch timed out and
was terminated error message on Jetson Nano/TX1.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 41

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in
JetPack 4.5 for ResNet-like networks on NVIDIA DLA when the dynamic ranges of
the inputs of the ElementWise ADD layers are different. This is due to a fix for a bug in
DLA where it ignored the dynamic range of the second input of the ElementWise ADD
layers and caused some accuracy issues.

‣ DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve accuracy.
Thus, latency may be worse compared to an equivalent network using a different
activation like ReLU. To mitigate this, you can disable LeakyReLU layers from running
on DLA.

‣ The builder may require up to 60% more memory to build an engine.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 21% performance drop compared to TensorRT 8.0 for SSD-
Inception2 networks on NVIDIA Volta GPUs.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ There is an up to 25% performance drop for networks using the InstanceNorm plugin.
This issue is being investigated.

‣ The engine building time for the networks using 3D convolution, like 3d_unet, is up
to 500% longer compared to TensorRT 8.0 due to many fast kernels being added in,
which enlarges the profiling time.

1.7. TensorRT Release 8.2.3
This is the TensorRT 8.2.3 release notes and is applicable to x86 Linux and Windows
users, as well as incorporates ARM® based CPU cores for Server Base System
Architecture (SBSA) users on Linux only.

These release notes are applicable to workstation, server, and NVIDIA JetPack™ users
unless appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 8.x.x release as well as
the following additional changes. For previous TensorRT documentation, see the NVIDIA
TensorRT Archived Documentation.

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 42

Compatibility

‣ TensorRT 8.2.3 has been tested with the following:

‣ cuDNN 8.2.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

‣ 11.5

‣ 11.4 update 3

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used, however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Fixed Issues

‣ There was a known issue where using custom allocator and allocation resizing
introduced in TensorRT 8 that would trigger an assert about a p.second failure. This
was caused by the application passing to TensorRT the same exact pointer from the
re-allocation routine. This assertion has been fixed to be a valid use case.

‣ There was an up to 15% performance regression for networks with a Pooling layer
located before or after a Concatenate layer. This issue has been fixed in this release.

‣ There was an up to 20% performance regression for INT8 QAT networks with a
Padding layer located before the Q/DQ and Convolution layer. This issue has been
fixed in this release.

‣ TensorRT does not support explicit quantization (i.e. Q/DQ) for batched matrix-
multiplication. This fix introduces support for the special case of quantized batched
matrix-multiplication when matrix B is constant and can be squeezed to a 2D matrix.
Specifically, in the supported configuration matrix A (the data) can have shape (BS, M,
K), where BS is the batch size, and matrix B (the weights) can have shape (1, K, N). The
output has shape (BS, M, N) which is computed by broadcasting the weights across
the batch dimension. Quantized batched matrix-multiplication has two pairs of Q/DQ
nodes that quantize the input data and the weights.

https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-821
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 43

‣ An incorrect fusion of two transpose operations caused an assertion to trigger while
building the model. This issue has been fixed in this release.

Known Issues

Functional

‣ TensorRT attempts to catch GPU memory allocation failure and avoid profiling tactics
whose memory requirements would trigger Out of Memory. However, GPU memory
allocation failure cannot be handled by CUDA gracefully on some platforms and
would lead to an unrecoverable application status. If this happens, consider lowering
the specified workspace size if a large size is set, or using the IAlgorithmSelector
interface to avoid tactics that require a lot of GPU memory.

‣ TensorRT may experience some instabilities when running networks containing TopK
layers on T4 under Azure VM.

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ When running ONNX models with dynamic shapes, there is a potential accuracy issue
if the dimension names of the inputs that are expected to be the same are not. For
example, if a model has two 2D inputs of which the dimension semantics are both
batch and seqlen, and in the ONNX model, the dimension name of the two inputs
are different, there is a potential accuracy issue when running with dynamic shapes.
Ensure you the dimension semantics match when exporting ONNX models from
frameworks.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fallback to using cuBLAS. (not applicable for Jetson platforms)

‣ For some networks with large amounts of weights and activation data, DLA may fail
compiling a subgraph, and that subgraph will fallback to GPU.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or above).

‣ On integrated GPUs, a memory tracking issue in TensorRT 8.0 that was artificially
restricting the amount of available memory has been fixed. A side effect is that the
TensorRT optimizer is able to choose layer implementations that use more memory,
which can cause the OOM Killer to trigger for networks where it previously didn't.
To work around this problem, use the IAlgorithmSelector interface to avoid layer
implementations that require a lot of memory, or use the layer precision API to reduce

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 44

precision of large tensors and use STRICT_TYPES, or reduce the size of the input
tensors to the builder by reducing batch or other higher dimensions.

‣ TensorRT bundles a version of libnvptxcompiler_static.a inside
libnvinfer_static.a. If an application links with a different version of PTXJIT than
the version used to build TensorRT, it may lead to symbol conflicts or undesired
behavior.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9. Any Python samples that depend on
TensorFlow 1.x cannot be run with Python 3.9.

‣ TensorRT has limited support for fusing IConstantLayer and IShuffleLayer. In
explicit-quantization mode, the weights of Convolutions and Fully-Connected layers
must be fused. Therefore, if a weights-shuffle is not supported, it may lead to failure
to quantize the layer.

‣ For DLA networks where a convolution layer consumes an NHWC network input, the
compute precision of the convolution layer must match the data type of the input
tensor.

‣ Hybrid precision is not supported with the Pooling layer. Data type of input and
output tensors should be the same as the layer precision.

‣ When running the Python engine_refit_mnist, network_api_pytorch_mnist, or
onnx_packnet samples, you may encounter Illegal instruction (core dumped)
when using the CPU version of PyTorch on Jetson TX2. The workaround is to install a
GPU enabled version of PyTorch as per the instructions in the sample READMEs.

‣ Intermittent accuracy issues are observed in sample_mnist with INT8 precision on
WSL2.

‣ The debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

‣ You may see the following error:
Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared
 object file: No such file or directory

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library
search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 45

model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

Performance

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and Pascal GPUs.

‣ There is an up to 8% performance regression compared to TensorRT 7.1 for some
networks with heavy FullyConnected operation like VGG16 on NVIDIA Jetson Nano™.

‣ There is an up to 10-11% performance regression on Xavier:

‣ compared to TensorRT 7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ compared to TensorRT 6 for ResNeXt networks with small batch (1 or 2) in FP32.

‣ For networks that use deconv with large kernel size, the engine build time can
increase a lot for this layer on Xavier. It can also lead to the launch timed out and
was terminated error message on Jetson Nano/TX1.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in
JetPack 4.5 for ResNet-like networks on NVIDIA DLA when the dynamic ranges of
the inputs of the ElementWise ADD layers are different. This is due to a fix for a bug in
DLA where it ignored the dynamic range of the second input of the ElementWise ADD
layers and caused some accuracy issues.

‣ DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve accuracy.
Thus, latency may be worse compared to an equivalent network using a different
activation like ReLU. To mitigate this, you can disable LeakyReLU layers from running
on DLA.

‣ The builder may require up to 60% more memory to build an engine.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 21% performance drop compared to TensorRT 8.0 for SSD-
Inception2 networks on NVIDIA Volta GPUs.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ There is an up to 25% performance drop for networks using the InstanceNorm plugin.
This issue is being investigated.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 46

‣ The engine building time for the networks using 3D convolution, like 3d_unet, is up
to 500% longer compared to TensorRT 8.0 due to many fast kernels being added in,
which enlarges the profiling time.

1.8. TensorRT Release 8.2.2
This is the TensorRT 8.2.2 release notes and is applicable to x86 Linux and Windows
users, as well as incorporates ARM® based CPU cores for Server Base System
Architecture (SBSA) users on Linux only.

These release notes are applicable to workstation, server, and NVIDIA JetPack™ users
unless appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 8.x.x release as well as
the following additional changes. For previous TensorRT documentation, see the NVIDIA
TensorRT Archived Documentation.

Deprecated API Lifetime

‣ APIs deprecated before TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.2.2 has been tested with the following:

‣ cuDNN 8.2.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

‣ 11.5

‣ 11.4 update 3

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-821
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 47

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used, however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Fixed Issues

‣ In order to install TensorRT using the pip wheel file, you had to ensure that the pip
version was less than 20. An older version of pip was required to workaround an issue
with the CUDA 11.4 wheel meta packages that TensorRT depends on. This issue has
been fixed in this release.

‣ An empty directory named deserializeTimer under the samples directory was left in
the package by accident. This issue has been fixed in this release.

‣ For some transformer based networks built with PyTorch Multi-head Attention API,
the performance could have been up to 45% slower than similar networks built with
other APIs due to different graph patterns. This issue has been fixed in this release.

‣ IShuffleLayer applied to the output of IConstantLayer was incorrectly transformed
when the constant did not have type kFLOAT, sometimes causing build failures. This
issue has been fixed in this release.

‣ ONNX models with MatMul operations that used QuantizeLinear/DequantizeLinear
operations to quantize the weights, and pre-transpose the weights (i.e. do not use a
separate Transpose operation) would suffer from accuracy errors due to a bug in the
quantization process. This issue has been fixed in this release.

Known Issues

Functional

‣ TensorRT attempts to catch GPU memory allocation failure and avoid profiling tactics
whose memory requirements would trigger Out of Memory. However, GPU memory
allocation failure cannot be handled by CUDA gracefully on some platforms and
would lead to an unrecoverable application status. If this happens, consider lowering
the specified workspace size if a large size is set, or using the IAlgorithmSelector
interface to avoid tactics that require a lot of GPU memory.

‣ TensorRT may experience some instabilities when running networks containing TopK
layers on T4 under Azure VM. To workaround this issue, disable CUBLAS_LT kernels
with --tacticSources=-CUBLAS_LT (setTacticSources).

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ When running ONNX models with dynamic shapes, there is a potential accuracy issue
if the dimension names of the inputs that are expected to be the same are not. For

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 48

example, if a model has two 2D inputs of which the dimension semantics are both
batch and seqlen, and in the ONNX model, the dimension name of the two inputs
are different, there is a potential accuracy issue when running with dynamic shapes.
Ensure you the dimension semantics match when exporting ONNX models from
frameworks.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fallback to using cuBLAS. (not applicable for Jetson platforms)

‣ For some networks with large amounts of weights and activation data, DLA may fail
compiling a subgraph, and that subgraph will fallback to GPU.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or above).

‣ On integrated GPUs, a memory tracking issue in TensorRT 8.0 that was artificially
restricting the amount of available memory has been fixed. A side effect is that the
TensorRT optimizer is able to choose layer implementations that use more memory,
which can cause the OOM Killer to trigger for networks where it previously didn't.
To work around this problem, use the IAlgorithmSelector interface to avoid layer
implementations that require a lot of memory, or use the layer precision API to reduce
precision of large tensors and use STRICT_TYPES, or reduce the size of the input
tensors to the builder by reducing batch or other higher dimensions.

‣ TensorRT bundles a version of libnvptxcompiler_static.a inside
libnvinfer_static.a. If an application links with a different version of PTXJIT than
the version used to build TensorRT, it may lead to symbol conflicts or undesired
behavior.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9. Any Python samples that depend on
TensorFlow 1.x cannot be run with Python 3.9.

‣ TensorRT has limited support for fusing IConstantLayer and IShuffleLayer. In
explicit-quantization mode, the weights of Convolutions and Fully-Connected layers
must be fused. Therefore, if a weights-shuffle is not supported, it may lead to failure
to quantize the layer.

‣ For DLA networks where a convolution layer consumes an NHWC network input, the
compute precision of the convolution layer must match the data type of the input
tensor.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 49

‣ Hybrid precision is not supported with the Pooling layer. Data type of input and
output tensors should be the same as the layer precision.

‣ When running the Python engine_refit_mnist, network_api_pytorch_mnist, or
onnx_packnet samples, you may encounter Illegal instruction (core dumped)
when using the CPU version of PyTorch on Jetson TX2. The workaround is to install a
GPU enabled version of PyTorch as per the instructions in the sample READMEs.

‣ Intermittent accuracy issues are observed in sample_mnist with INT8 precision on
WSL2.

‣ The debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

‣ You may see the following error:
Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared
 object file: No such file or directory

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library
search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF
model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

Performance

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is an up to 15% performance regression for networks with a Pooling layer
located before or after a Concatenate layer.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and Pascal GPUs.

‣ There is an up to 8% performance regression compared to TensorRT 7.1 for some
networks with heavy FullyConnected operation like VGG16 on NVIDIA Jetson Nano™.

‣ There is an up to 10-11% performance regression on Xavier:

‣ compared to TensorRT 7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ compared to TensorRT 6 for ResNeXt networks with small batch (1 or 2) in FP32.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 50

‣ For networks that use deconv with large kernel size, the engine build time can
increase a lot for this layer on Xavier. It can also lead to the launch timed out and
was terminated error message on Jetson Nano/TX1.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in
JetPack 4.5 for ResNet-like networks on NVIDIA DLA when the dynamic ranges of
the inputs of the ElementWise ADD layers are different. This is due to a fix for a bug in
DLA where it ignored the dynamic range of the second input of the ElementWise ADD
layers and caused some accuracy issues.

‣ DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve accuracy.
Thus, latency may be worse compared to an equivalent network using a different
activation like ReLU. To mitigate this, you can disable LeakyReLU layers from running
on DLA.

‣ The builder may require up to 60% more memory to build an engine.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 21% performance drop compared to TensorRT 8.0 for SSD-
Inception2 networks on NVIDIA Volta GPUs.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ There is an up to 25% performance drop for networks using the InstanceNorm plugin.
This issue is being investigated.

‣ The engine building time for the networks using 3D convolution, like 3d_unet, is up
to 500% longer compared to TensorRT 8.0 due to many fast kernels being added in,
which enlarges the profiling time.

1.9. TensorRT Release 8.2.1
This is the TensorRT 8.2.1 release notes and is applicable to x86 Linux and Windows
users, as well as incorporates ARM® based CPU cores for Server Base System
Architecture (SBSA) users on Linux only.

These release notes are applicable to workstation, server, and NVIDIA JetPack™ users
unless appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 8.x.x release as well as
the following additional changes. For previous TensorRT documentation, see the NVIDIA
TensorRT Archived Documentation.

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 51

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ WSL (Windows Subsystem for Linux) 2 is released as a preview feature in this
TensorRT 8.2.1 GA release.

Deprecated API Lifetime

‣ APIs deprecated prior to TensorRT 8.0 will be removed in TensorRT 9.0.

‣ APIs deprecated in TensorRT 8.0 will be retained until at least 8/2022.

‣ APIs deprecated in TensorRT 8.2 will be retained until at least 11/2022.

Refer to the API documentation (C++, Python) for how to update your code to remove
the use of deprecated features.

Compatibility

‣ TensorRT 8.2.1 has been tested with the following:

‣ cuDNN 8.2.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

‣ ONNX 1.9.0

‣ This TensorRT release supports NVIDIA CUDA®:

‣ 11.5

‣ 11.4 update 3

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used, however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ DLA does not support hybrid precision for pooling layer – data type of input and
output tensors should be the same as the layer precision i.e. either all INT8 or all
FP16.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-821
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0
https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 52

Deprecated And Removed Features

The following features are deprecated in TensorRT 8.2.1:

‣ BuilderFlag::kSTRICT_TYPES is deprecated. Its functionality has been split
into separate controls for precision constraints, reformat-free I/O, and failure of
IAlgorithmSelector::selectAlgorithms. This change enables users who need only
one of the subfeatures to build engines without encumbering the optimizer with the
other subfeatures. In particular, precision constraints are sometimes necessary for
engine accuracy, however, reformat-free I/O risks slowing down an engine with no
benefit. For more information, refer to BuilderFlags (C++, Python).

‣ The LSTM plugin has been removed. In addition, the Persistent LSTM Plugin section
has also been removed from the TensorRT Developer Guide.

Fixed Issues

‣ Closed the performance gap between linking with TensorRT static libraries and
linking with TensorRT dynamic libraries on x86_64 Linux CUDA-11.x platforms.

‣ When building a DLA engine with:

‣ networks with less than 4D tensors, some DLA subgraph IO tensors would lack
shuffle layers. It would fail compiling the engine. This issue has been fixed in this
release.

‣ kSUB ElementWise operation whose input has less than 4 dimensions, a scale
node was inserted. If the scale cannot run on DLA, it would fail compiling the
engine. This issue has been fixed in this release.

‣ There was a known issue with the engine_refit_mnist sample on Windows. The fix
was to edit the engine_refit_mnist/sample.py source file and move the import
model line before the sys.path.insert() line. This issue has been fixed in this
release and no edit is needed.

‣ There was an up to 22% performance regression compared to TensorRT 8.0 for
WaveRNN networks on NVIDIA Volta and NVIDIA Turing GPUs. This issue has been
fixed in this release.

‣ There was an up to 21% performance regression compared to TensorRT 8.0 for BERT-
like networks on NVIDIA Jetson Xavier platforms. This issue has been fixed in this
release.

‣ There was an up to 25% performance drop for networks using the InstanceNorm
plugin. This issue has been fixed in this release.

‣ There was an accuracy bug resulting in low mAP score with YOLO-like QAT networks
where a QuantizeLinear operator was immediately followed by a Concat operator.
This accuracy issue has been fixed in this release.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#abdc74c40fe7a0c3d05d2caeccfbc29c1
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/NetworkConfig.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 53

‣ There was a bug in TensorRT 8.2.0 EA where if a shape tensor is used by two different
nodes, it can sometimes lead to a functional or an accuracy issue. This issue has been
fixed in this release.

‣ There was a known 2% accuracy regression with NasNet Mobile network with NVIDIA
Turing GPUs. This issue has been fixed in this release. (not applicable for Jetson
platforms)

‣ There could have been build failures with IEinsumLayer when an input subscript label
corresponds to a static dimension in one tensor but dynamic dimension in another.
This issue has been fixed in this release.

‣ There was an up to 8% performance regression compared to TensorRT 8.0.3 for
Cortana ASR on NVIDIA Ampere Architecture GPUs with CUDA graphs and a single
stream of execution. This issue has been fixed in this release.

‣ Boolean input/output tensors were only supported when using explicit batch
dimensions. This has been fixed in this release.

‣ There was a possibility of an CUBLAS_STATUS_EXECUTION_FAILED error when running
with cuBLAS/cuBLASLt libraries from CUDA 11.4 update 1 and CUDA 11.4 update
2 on Linux-based platforms. This happened only for the use cases where cuBLAS
is loaded and unloaded multiple times. The workaround was to add the following
environment variable before launching your application:
LD_PRELOAD=libcublasLt.so:libcublasLt.so your_application

This issue has been fixed in this release.

‣ There was a known ~6% - ~29% performance regression on Google® BERT compared
to version 8.0.1.6 on NVIDIA A100 GPUs. This issue has been fixed in this release.

‣ There was an up to 6% performance regression compared to TensorRT 8.0.3 for Deep
Recommender on Tesla V100, NVIDIA Quadro® GV100, and NVIDIA TITAN V. This issue
has been fixed in this release.

Announcements

‣ The sample sample_reformat_free_io has been renamed to sample_io_formats, and
revised to remove the deprecated flag BuilderFlag::kSTRICT_TYPES. Reformat-free
I/O is still available with BuilderFlag::kDIRECT_IO, but generally should be avoided
since it can result in a slower than necessary engine, and can cause a build to fail if
the target platform lacks the kernels to enable building an engine with reformat-free
I/O.

‣ The NVIDIA TensorRT Release Notes PDF will no longer be available in the product
package after this release. The release notes will still remain available online here.

Known Issues

Functional

https://docs.nvidia.com/deeplearning/tensorrt/release-notes/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 54

‣ TensorRT attempts to catch GPU memory allocation failure and avoid profiling tactics
whose memory requirements would trigger Out of Memory. However, GPU memory
allocation failure cannot be handled by CUDA gracefully on some platforms and
would lead to an unrecoverable application status. If this happens, consider lowering
the specified workspace size if a large size is set, or using the IAlgorithmSelector
interface to avoid tactics that require a lot of GPU memory.

‣ TensorRT may experience some instabilities when running networks containing TopK
layers on T4 under Azure VM. To workaround this issue, disable CUBLAS_LT kernels
with --tacticSources=-CUBLAS_LT (setTacticSources).

‣ Under certain conditions on WSL2, an INetwork with Convolution layers that can
be horizontally fused before a Concat layer may create an internal error causing the
application to crash while building the engine. As a workaround, build your network
on Linux instead of WSL2.

‣ When running ONNX models with dynamic shapes, there is a potential accuracy issue
if the dimension names of the inputs that are expected to be the same are not. For
example, if a model has two 2D inputs of which the dimension semantics are both
batch and seqlen, and in the ONNX model, the dimension name of the two inputs
are different, there is a potential accuracy issue when running with dynamic shapes.
Ensure you the dimension semantics match when exporting ONNX models from
frameworks.

‣ There is a known functional issue (fails with a CUDA error during compilation) with
networks using ILoop layers on the WSL platform.

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fallback to using cuBLAS. (not applicable for Jetson platforms)

‣ For some networks with large amounts of weights and activation data, DLA may fail
compiling a subgraph, and that subgraph will fallback to GPU.

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or above).

‣ On integrated GPUs, a memory tracking issue in TensorRT 8.0 that was artificially
restricting the amount of available memory has been fixed. A side effect is that the
TensorRT optimizer is able to choose layer implementations that use more memory,
which can cause the OOM Killer to trigger for networks where it previously didn't.
To work around this problem, use the IAlgorithmSelector interface to avoid layer
implementations that require a lot of memory, or use the layer precision API to reduce
precision of large tensors and use STRICT_TYPES, or reduce the size of the input
tensors to the builder by reducing batch or other higher dimensions.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 55

‣ For some transformer based networks built with PyTorch Multi-head Attention API,
the performance may be up to 45% slower than similar networks built with other APIs
due to different graph patterns.

‣ TensorRT bundles a version of libnvptxcompiler_static.a inside
libnvinfer_static.a. If an application links with a different version of PTXJIT than
the version used to build TensorRT, it may lead to symbol conflicts or undesired
behavior.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

‣ TensorFlow 1.x is not supported for Python 3.9. Any Python samples that depend on
TensorFlow 1.x cannot be run with Python 3.9.

‣ TensorRT has limited support for fusing IConstantLayer and IShuffleLayer. In
explicit-quantization mode, the weights of Convolutions and Fully-Connected layers
must be fused. Therefore, if a weights-shuffle is not supported, it may lead to failure
to quantize the layer.

‣ For DLA networks where a convolution layer consumes an NHWC network input, the
compute precision of the convolution layer must match the data type of the input
tensor.

‣ Hybrid precision is not supported with the Pooling layer. Data type of input and
output tensors should be the same as the layer precision.

‣ When installing PyCUDA, NumPy must be installed first and as a separate step:
python3 -m pip install numpy
python3 -m pip install pycuda

For more information, refer to the NVIDIA TensorRT Installation Guide.

‣ When running the Python engine_refit_mnist, network_api_pytorch_mnist, or
onnx_packnet samples, you may encounter Illegal instruction (core dumped)
when using the CPU version of PyTorch on Jetson TX2. The workaround is to install a
GPU enabled version of PyTorch as per the instructions in the sample READMEs.

‣ If an IPluginV2 layer produces kINT8 outputs that are output tensors of an
INetworkDefinition that have floating-point type, an explicit cast is required to
convert the network outputs back to a floating point format. For example:
// out_tensor is of type nvinfer1::DataType::kINT8
auto cast_input = network->addIdentity(*out_tensor);
cast_input->setOutputType(0, nvinfer1::DataType::kFLOAT);
new_out_tensor = cast_input->getOutput(0);

‣ Intermittent accuracy issues are observed in sample_mnist with INT8 precision on
WSL2.

‣ The debian and RPM packages for the Python bindings, UFF, GraphSurgeon, and
ONNX-GraphSurgeon wheels do not install their dependencies automatically; when
installing them, ensure you install the dependencies manually using pip, or install the
wheels instead.

https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-pycuda

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 56

‣ You may see the following error:
Could not load library libcudnn_ops_infer.so.8. Error: libcublas.so.11: cannot
 open shared
 object file: No such file or directory

after installing TensorRT from the network repo. cuDNN depends on the RPM
dependency libcublas.so.11()(64bit), however, this dependency installs cuBLAS
from CUDA 11.0 rather than cuBLAS from the latest CUDA release. The library
search path will not be set up correctly and cuDNN will be unable to find the cuBLAS
libraries. The workaround is to install the latest libcublas-11-x package manually.

‣ There is a known issue on Windows with the Python sample uff_ssd when
converting the frozen TensorFlow graph into UFF. You can generate the UFF
model on Linux or in a container and copy it over to work around this issue. Once
generated, copy the UFF file to \path\to\samples\python\uff_ssd\models
\ssd_inception_v2_coco_2017_11_17\frozen_inference_graph.uff.

‣ ONNX models with MatMul operations that use QuantizeLinear/DequantizeLinear
operations to quantize the weights, and pre-transpose the weights (i.e. do not use
a separate Transpose operation) will suffer from accuracy errors due to a bug in the
quantization process.

Performance

‣ There is an up to 7.5% performance regression compared to TensorRT 8.0.1.6 on
NVIDIA Jetson AGX Xavier™ for ResNeXt networks in FP16 mode.

‣ There is an up to 15% performance regression for networks with a Pooling layer
located before or after a Concatenate layer.

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on NVIDIA Maxwell® and Pascal GPUs.

‣ There is an up to 8% performance regression compared to TensorRT 7.1 for some
networks with heavy FullyConnected operation like VGG16 on NVIDIA Jetson Nano™.

‣ There is an up to 10-11% performance regression on Xavier:

‣ compared to TensorRT 7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ compared to TensorRT 6 for ResNeXt networks with small batch (1 or 2) in FP32.

‣ For networks that use deconv with large kernel size, the engine build time can
increase a lot for this layer on Xavier. It can also lead to the launch timed out and
was terminated error message on Jetson Nano/TX1.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in
JetPack 4.5 for ResNet-like networks on NVIDIA DLA when the dynamic ranges of

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 57

the inputs of the ElementWise ADD layers are different. This is due to a fix for a bug in
DLA where it ignored the dynamic range of the second input of the ElementWise ADD
layers and caused some accuracy issues.

‣ DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve accuracy.
Thus, latency may be worse compared to an equivalent network using a different
activation like ReLU. To mitigate this, you can disable LeakyReLU layers from running
on DLA.

‣ The builder may require up to 60% more memory to build an engine.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 21% performance drop compared to TensorRT 8.0 for SSD-
Inception2 networks on NVIDIA Volta GPUs.

‣ There is an up to 5% performance drop for networks using sparsity in FP16 precision.

‣ There is an up to 25% performance drop for networks using the InstanceNorm plugin.
This issue is being investigated.

‣ The engine building time for the networks using 3D convolution, like 3d_unet, is up
to 500% longer compared to TensorRT 8.0 due to many fast kernels being added in,
which enlarges the profiling time.

1.10. TensorRT Release 8.2.0 Early
Access (EA)

This is the TensorRT 8.2.0 Early Access (EA) release notes and is applicable to x86 Linux
and Windows users, as well as ARM Server Base System Architecture (SBSA) users on
Linux only.

These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 8.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added support for the TensorRT Python API on Windows.

‣ Improved the quality of the TensorRT Developer Guide.

‣ Rewrote multiple chapters.

‣ Added a new chapter on Working With Conditionals.

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-conditionals

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 58

‣ Eliminated the global logger; each Runtime, Builder or Refitter now has its own
logger. New methods IBuilder::getLogger(), IRuntime::getLogger(), and
IRefitter::getLogger() have been added.

‣ Added three new APIs to IExecutionContext: getEnqueueEmitsProfile(),
setEnqueueEmitsProfile(), and reportToProfiler()which can be used to collect
layer profiling info when the inference is launched as a CUDA graph.

‣ Added the following:

‣ New operators:IAssertionLayer, IConditionLayer, IEinsumLayer,
IIfConditionalBoundaryLayer, IIfConditionalOutputLayer,
IIfConditionalInputLayer, and IScatterLayer.

‣ New IGatherLayer modes: kELEMENT and kND

‣ New ISliceLayer modes: kFILL, kCLAMP, and kREFLECT

‣ New IUnaryLayer operators: kSIGN and kROUND

‣ Added a new runtime class: IEngineInspector that can be used to inspect the
detailed information of an engine, including the layer parameters, the chosen tactics,
the precision used, etc. More instructions about IEngineInspector can be found in
the TensorRT Developer Guide.

‣ Added new trtexec flags --dumpLayerInfo and --exportLayerInfo=<file> that
can be used together with the --profilingVerbosity=detailed flag to inspect
the detailed information of a given engine using IEngineInspector.

‣ This sample, efficientnet, shows how to convert and execute a Google EfficientNet
model with TensorRT. The sample supports models from the original EfficientNet
implementation as well as newer EfficientNet V2 models. For more information, refer
to Scalable And Efficient Image Classification With EfficientNet Networks In Python
in the TensorRT Sample Support Guide.

Breaking API Changes

‣ Between TensorRT 8.0 EA and TensorRT 8.0 GA the function prototype for
getLogger() has been moved from NvInferRuntimeCommon.h to NvInferRuntime.h.
You may need to update your application source code if you’re using getLogger() and
were previously only including NvInferRuntimeCommon.h. Since the logger is no longer
global, calling the method on IRuntime, IRefitter, or IBuilder is recommended
instead.

Compatibility

‣ TensorRT 8.2.0 EA has been tested with the following:

‣ cuDNN 8.2.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.9.0

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#assertion-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#condtion-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#einsum-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#ifconditionalboundary-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#ifconditionaloutput-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#ifconditionaloutput-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#scatter-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#gather-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#scale-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#unary-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://developer.nvidia.com/tensorrt
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/google/automl/tree/master/efficientnetv2
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#efficientnet-sample
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-821
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.9.0

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 59

‣ ONNX 1.9.0

‣ This TensorRT release supports CUDA:

‣ 11.4 update 2

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used, however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Deprecated And Removed Features

The following features are deprecated in TensorRT 8.2.0 EA:

‣ Removed sampleMLP.

‣ The enums of ProfilingVerbosity have been updated to show their functionality
more explicitly:

‣ ProfilingVerbosity::kDEFAULT has been deprecated in favor of
ProfilingVerbosity::kLAYER_NAMES_ONLY.

‣ ProfilingVerbosity::kVERBOSE has been deprecated in favor of
ProfilingVerbosity::kDETAILED.

‣ Several flags of trtexec have been deprecated:

‣ --explicitBatch flag has been deprecated and has no effect. When the input
model is in UFF or in Caffe prototxt format, the implicit batch dimension mode is
used automatically; when the input model is in ONNX format, the explicit batch
mode is used automatically.

‣ --explicitPrecision flag has been deprecated and has no effect. When the
input ONNX model contains Quantization/Dequantization nodes, TensorRT
automatically uses explicit precision mode.

‣ --nvtxMode=[verbose|default|none] has been deprecated in favor of --
profilingVerbosity=[detailed|layer_names_only|none] to show its
functionality more explicitly.

‣ Relocated the content from the Best Practices For TensorRT Performance document
to the TensorRT Developer Guide. Removed redundancy between the two documents
and updated the reference information. Refer to Performance Best Practices in the
TensorRT Developer Guide for more information.

https://github.com/onnx/onnx/releases/tag/v1.9.0
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#performance

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 60

‣ IPaddingLayer is deprecated in TensorRT 8.2 and will be removed in TensorRT 10.0.
Use ISliceLayer to pad the tensor, which supports new non-constant, reflects
padding mode and clamp, and supports padding output with dynamic shape.

Fixed Issues

‣ Closed the performance gap between linking with TensorRT static libraries and
linking with TensorRT dynamic libraries.

‣ In the previous release, the TensorRT ARM SBSA cross packages in the CUDA network
repository could not be installed because cuDNN ARM SBSA cross packages were
not available, which is a dependency of the TensorRT cross packages. The cuDNN
ARM SBSA cross packages have been made available, which resolves this dependency
issue.

‣ There was an up to 6% performance regression compared to TensorRT 7.2.3 for
WaveRNN in FP16 on Volta and Turing platforms. This issue has been fixed in this
release.

‣ There was a known accuracy issue of GoogLeNet variants with NVIDIA Ampere GPUs
where TF32 mode was enabled by default on Windows. This issue has been fixed in
this release. (not applicable for Jetson platforms)

‣ There was an up to 10% performance regression when TensorRT was used with
CUDNN 8.1 or 8.2. When CUDNN 8.0 was used, the performance was restored. This
issue has been fixed in this release. (not applicable for Jetson platforms)

‣ The new Python sample efficientdet was only available in the OSS release. The
sample has been added to the core package in this release.

‣ The performance of IReduceLayer has been improved significantly when the output
size of the IReduceLayer is small.

‣ There was an up to 15% performance regression compared to TensorRT 7.2.3 for path
perception network (Pathnet) in FP32. This issue has been fixed in this release.

Announcements

‣ Python support for Windows included in the zip package is considered a preview
release and not ready for production use.

Known Issues

Functional

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fallback to using cuBLAS. (not applicable for Jetson platforms)

‣ For some networks with large amounts of weights and activation data, DLA may fail
compiling a subgraph, and that subgraph will fallback to GPU.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#slice-layer

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 61

‣ Under some conditions, RNNv2Layer can require a larger workspace size in TensorRT
8.0 than TensorRT 7.2 in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

‣ CUDA graph capture will capture inputConsumed and profiler events only when using
the build for 11.x and >= 11.1 driver (455 or above).

‣ On integrated GPUs, a memory tracking issue in TensorRT 8.0 that was artificially
restricting the amount of available memory has been fixed. A side effect is that the
TensorRT optimizer is able to choose layer implementations that use more memory,
which can cause the OOM Killer to trigger for networks where it previously didn't.
To work around this problem, use the IAlgorithmSelector interface to avoid layer
implementations that require a lot of memory, or use the layer precision API to reduce
precision of large tensors and use STRICT_TYPES, or reduce the size of the input
tensors to the builder by reducing batch or other higher dimensions.

‣ For some transformer based networks built with PyTorch MultiheadAttention API, the
performance may be up to 45% slower than similar networks built with other APIs
due to different graph patterns.

‣ When building a DLA engine with:

‣ networks with less than 4D tensors, some DLA subgraph IO tensors may lack
shuffle layers. It will fail compiling the engine.

‣ kSUB ElementWise operation whose input has less than 4 dimensions, a scale
node is inserted. If the scale cannot run on DLA, it will fail compiling the engine.

‣ There is a known 2% accuracy regression with NasNet Mobile network with NVIDIA
Turing GPUs. (not applicable for Jetson platforms)

‣ TensorRT bundles a version of libnvptxcompiler_static.a inside
libnvinfer_static.a. If an application links with a different version of PTXJIT than
the version used to build TensorRT, it may lead to symbol conflicts or undesired
behavior.

‣ Boolean input/output tensors are supported only when using explicit batch
dimensions.

‣ There is a possibility of an CUBLAS_STATUS_EXECUTION_FAILED error when running
with cuBLAS/cuBLASLt libraries from CUDA 11.4 update 1 and CUDA 11.4 update
2 on Linux-based platforms. This happens only for the use cases where cuBLAS
is loaded and unloaded multiple times. The workaround is to add the following
environment variable before launching your application:
LD_PRELOAD=libcublasLt.so:libcublasLt.so your_application

This issue will be resolved in a future CUDA 11.4 update.

‣ Installing the cuda-compat-11-4 package may interfere with CUDA enhanced
compatibility and cause TensorRT to fail even when the driver is r465. The
workaround is to remove the cuda-compat-11-4 package or upgrade the driver to
r470. (not applicable for Jetson platforms)

https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 62

‣ There may be build failures with IEinsumLayer when an input subscript label
corresponds to a static dimension in one tensor but dynamic dimension in another.

‣ TensorFlow 1.x is not supported for Python 3.9. Any Python samples that depend on
TensorFlow 1.x cannot be run with Python 3.9.

‣ TensorRT has limited support for fusing ConstantLayer and ShuffleLayer. In explicit-
quantization mode, the weights of Convolutions and Fully-Connected layers must
be fused. Therefore, if a weights-shuffle is not supported, it may lead to failure to
quantize the layer.

‣ There is a known issue with the engine_refit_mnist sample on Windows. To fix the
issue, edit the engine_refit_mnist/sample.py source file and move the import
model line before the sys.path.insert() line.

‣ An empty directory named deserializeTimer under the samples directory was left in
the package by accident. This empty directory can be ignored and does not indicate
that the package is corrupt or that files are missing. This issue will be corrected in
the next release.

‣ For DLA networks where a convolution layer consumes an NHWC network input, the
compute precision of the convolution layer must match the data type of the input
tensor.

‣ In order to install TensorRT using the pip wheel file, ensure that the pip version is
less than 20. An older version of pip is required to workaround an issue with the
CUDA 11.4 wheel meta packages that TensorRT depends on. This issue is being
worked on and should be resolved in a future CUDA release.

Performance

‣ There is a performance regression compared to TensorRT 7.1 for some networks
dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on Maxwell and Pascal GPUs.

‣ There is an up to 8% performance regression compared to TensorRT 7.1 for some
networks with heavy FullyConnected operation like VGG16 on Nano.

‣ There is an up to 10-11% performance regression on Xavier:

‣ compared to TensorRT 7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ compared to TensorRT 6 for ResNeXt networks with small batch (1 or 2) in FP32.

‣ For networks that use deconv with large kernel size, the engine build time can
increase a lot for this layer on Xavier. It can also lead to the launch timed out and
was terminated error message on Jetson Nano/TX1.

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. The regression does not exist with CUDA 11.0. (not
applicable for Jetson platforms)

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 63

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in
JetPack 4.5 for ResNet-like networks on NVIDIA DLA when the dynamic ranges of
the inputs of the ElementWise ADD layers are different. This is due to a fix for a bug in
DLA where it ignored the dynamic range of the second input of the ElementWise ADD
layers and caused some accuracy issues.

‣ TensorFlow 1.x is not supported for Python 3.9. Any Python samples that depend on
TensorFlow 1.x cannot be run with Python 3.9.

‣ DLA automatically upgrades INT8 LeakyRelu layers to FP16 to preserve accuracy.
Thus, latency may be worse compared to an equivalent network using a different
activation like ReLU. To mitigate this, you can disable LeakyReLU layers from running
on DLA.

‣ The builder may require up to 60% more memory to build an engine.

‣ There is a known ~6% - ~29% performance regression on Google BERT compared to
version 8.0.1.6 on NVIDIA A100 GPUs.

‣ There is an up to 6% performance regression compared to TensorRT 8.0.3 for Deep
Recommender on Tesla V100, Quadro GV100, and Titan V.

‣ There is an up to 22% performance regression compared to TensorRT 8.0 for
WaveRNN networks on Volta and Turing GPUs. This issue is being investigated.

‣ There is up to 8% performance regression compared to TensorRT 8.0.3 for Cortana
ASR on NVIDIA Ampere GPUs with CUDA graphs and a single stream of execution.

‣ There is an up to 21% performance regression compared to TensorRT 8.0 for BERT-
like networks on Xavier platforms. This issue is being investigated.

‣ There is an up to 126% performance drop when running some ConvNets on DLA in
parallel to the other DLA and the iGPU on Xavier platforms, compared to running on
DLA alone.

‣ There is an up to 21% performance drop compared to TensorRT 8.0 for SSD-
Inception2 networks on Volta GPUs.

‣ There is an up to 25% performance drop for networks using the InstanceNorm plugin.
This issue is being investigated.

1.11. TensorRT Release 8.0.3
This is the TensorRT 8.0.3 release notes. This is a bug fix release supporting Linux x86
and Windows users.

These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 8.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 64

Fixed Issues

‣ Fixed an invalid fusion assertion problem in the fusion optimization pass.

‣ Fixed other miscellaneous issues seen in proprietary networks.

‣ Fixed a CUDA 11.4 NVRTC issue during kernel generation on Windows.

1.12. TensorRT Release 8.0.2
This is the TensorRT 8.0.2 release notes. This is the initial release supporting A100 for
ARM server users. Only a subset of networks have been validated on ARM with A100.
This is a network repository release only.

These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 8.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

1.13. TensorRT Release 8.0.1
This is the TensorRT 8.0.1 release notes and is applicable to x86 Linux and Windows
users, as well as PowerPC and ARM Server Base System Architecture (SBSA) users on
Linux only.

These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 8.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added support for RedHat/CentOS 8.3, Ubuntu 20.04, and SUSE Linux Enterprise
Server 15 Linux distributions. Only a tar file installation is supported on SLES 15 at
this time. For more information, refer to the TensorRT Installation Guide.

‣ Added Python 3.9 support. Use a tar file installation to obtain the new Python wheel
files. For more information, refer to the TensorRT Installation Guide.

‣ Added ResizeCoordinateTransformation, ResizeSelector, and ResizeRoundMode;
three new enumerations to IResizeLayer, and enhanced IResizeLayer to support

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 65

more resize modes from TensorFlow, PyTorch, and ONNX. For more information, refer
to the IResizeLayer section in the TensorRT Developer Guide.

‣ Builder timing cache can be serialized and reused across builder instances. For more
information, refer to the Builder Layer Timing Cache and trtexec sections in the
TensorRT Developer Guide.

‣ Added convolution and fully-connected tactics which support and make use of
structured sparsity in kernel weights. This feature can be enabled by setting the
kSPARSE_WEIGHTS flag in IBuilderConfig. This feature is only available on NVIDIA
Ampere GPUs. For more information, refer to the Structured Sparsity section in the
Best Practices For TensorRT Performance guide. (not applicable for Jetson platforms)

‣ Added two new layers to the API: IQuantizeLayer and IDequantizeLayer which
can be used to explicitly specify the precision of operations and data buffers.
ONNX’s QuantizeLinear and DequantizeLinear operators are mapped to these new
layers which enables the support for networks trained using Quantization-Aware
Training (QAT) methodology. For more information, refer to the Explicit-Quantization,
IQuantizeLayer, and IDequantizeLayer sections in the TensorRT Developer Guide
and Q/DQ Fusion in the Best Practices For TensorRT Performance guide.

‣ Achieved QuartzNet optimization with support of 1D fused depthwise + pointwise
convolution kernel to achieve up to 1.8x end-to-end performance improvement on
A100. (not applicable for Jetson platforms)

‣ Added support for the following ONNX operators: Celu, CumSum, EyeLike,
GatherElements, GlobalLpPool, GreaterOrEqual, LessOrEqual, LpNormalization,
LpPool, ReverseSequence, and SoftmaxCrossEntropyLoss. For more information,
refer to the Supported Ops section in the TensorRT Support Matrix.

‣ Added Sigmoid/Tanh INT8 support for DLA. It allows DLA sub-graph with Sigmoid/
Tanh to compile with INT8 by auto-upgrade to FP16 internally. For more information,
refer to the DLA Supported Layers section in the TensorRT Developer Guide.

‣ Added DLA native planar format and DLA native gray-scale format support.

‣ Allow to generate reformat-free engine with DLA when EngineCapability is
EngineCapability::kDEFAULT.

‣ TensorRT now declares API’s with the noexcept keyword to clarify that exceptions
must not cross the library boundary. All TensorRT classes that an application inherits
from (such as IGpuAllocator, IPluginV2, etc…) must guarantee that methods called
by TensorRT do not throw uncaught exceptions, or the behavior is undefined.

‣ TensorRT reports errors, along with an associated ErrorCode, via the ErrorRecorder
API for all errors. The ErrorRecorder will fallback to the legacy logger reporting, with
Severity::kERROR or Severity::kINTERNAL_ERROR, if no error recorder is registered.
The ErrorCodes allow recovery in cases where TensorRT previously reported non-
recoverable situations.

‣ Improved performance of the GlobalAveragePooling operation, which is used in
some CNNs like EfficientNet. For transformer based networks with INT8 precision,

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#resize-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#builder-layer-timing
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#trtexec
https://docs.nvidia.com/deeplearning/tensorrt/best-practices/index.html#structured-sparsity
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-qat-networks
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#quantization-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dequantization-layer
https://docs.nvidia.com/deeplearning/tensorrt/best-practices/index.html#qdq-fusion
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#supported-ops
https://docs.google.com/document/d/1CYBuu4sE4QORKXCRdXhV_EDLrqWqSP76fbwpY7R3iU0/edit#heading=h.r6h71p659knf

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 66

it’s recommended to use a network which is trained using Quantization Aware
Training (QAT) and has IQuantizeLayer and IDequantizeLayer layers in the network
definition.

‣ TensorRT now supports refit weights via names. For more information, refer to
Refitting An Engine in the TensorRT Developer Guide.

‣ Refitting performance has been improved. The performance boost can be evident
when the weights are large or a large number of weights or layers are updated at the
same time.

‣ Added the following new samples.

‣ This sample, engine_refit_onnx_bidaf, builds an engine from the ONNX BiDAF
model, and refits the TensorRT engine with weights from the model. The new refit
APIs allow users to locate the weights via names from ONNX models instead of
layer names and weights roles. For more information, refer to the Refitting An
Engine Built From An ONNX Model In Python in the TensorRT Sample Support
Guide.

‣ This sample, efficientdet, demonstrates the conversion and execution of Google
EfficientDet models with TensorRT. For more information, refer to the Scalable
And Efficient Object Detection With EfficientDet Networks In Python in the
TensorRT Sample Support Guide.

‣ Improved performance for the transformer based networks such as BERT and other
networks that use Multi-Head Self-Attention.

‣ Added cuDNN to the IBuilderConfig::setTacticSources enum. Use of cuDNN
as a source of operator implementations can be enabled or disabled using the
IBuilderConfig::setTacticSources API function.

‣ The following C++ API functions were added:

‣ class IDequantizeLayer

‣ class IQuantizeLayer

‣ class ITimingCache

‣ IBuilder::buildSerializedNetwork()

‣ IBuilderConfig::getTimingCache()

‣ IBuilderConfig::setTimingCache()

‣ IGpuAllocator::reallocate()

‣ INetworkDefinition::addDequantize()

‣ INetworkDefinition::addQuantize()

‣ INetworkDefinition::setWeightsName()

‣ IPluginRegistry::deregisterCreator()

‣ IRefitter::getMissingWeights()

‣ IRefitter::getAllWeights()

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#engine_refit_onnx_bidaf
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#engine_refit_onnx_bidaf
https://github.com/google/automl/tree/master/efficientdet
https://github.com/google/automl/tree/master/efficientdet
https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#efficientdet-sample
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#efficientdet-sample
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_dequantize_layer.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_quantize_layer.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_timing_cache.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder.html#a476d264dd688d4e6acd1d5db9755c04b
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder_config.html#ab7dd69cc4463b557641b3e6b83d46f45
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder_config.html#a977b52fd96bf37033f3b5330a9d65e02
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_gpu_allocator.html#a14228836862c6a36dc0205116e49ed8f
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_network_definition.html#a609a8b4f9eeb52a5977fd44951a5d932
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_network_definition.html#acc14e9f8f939d01fa6f77772cddad578
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_network_definition.html#aee6513b53a5de9a7b05d45d232ad7c89
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin_registry.html#ab5228c16bc31fd7426c9ab3a9dc1888f
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_refitter.html#ac73c5fa7474b9503eaf5e79c73d0d82f
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_refitter.html#af55fca08d033110356c88946b0da06f3

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 67

‣ IRefitter::setNamedWeights()

‣ IResizeLayer::getCoordinateTransformation()

‣ IResizeLayer::getNearestRounding()

‣ IResizeLayer::getSelectorForSinglePixel()

‣ IResizeLayer::setCoordinateTransformation()

‣ IResizeLayer::setNearestRounding()

‣ IResizeLayer::setSelectorForSinglePixel()

‣ IScaleLayer::setChannelAxis()

‣ enum ResizeCoordinateTransformation

‣ enum ResizeMode

‣ BuilderFlag::kSPARSE_WEIGHTS

‣ TacticSource::kCUDNN

‣ TensorFormat::kDLA_HWC4

‣ TensorFormat::kDLA_LINEAR

‣ TensorFormat::kHWC16

‣ The following Python API functions were added:

‣ class IDequantizeLayer

‣ class IQuantizeLayer

‣ class ITimingCache

‣ Builder.build_serialized_network()

‣ IBuilderConfig.get_timing_cache()

‣ IBuilderConfig.set_timing_cache()

‣ IGpuAllocator.reallocate()

‣ INetworkDefinition.add_dequantize()

‣ INetworkDefinition.add_quantize()

‣ INetworkDefinition.set_weights_name()

‣ IPluginRegistry.deregister_creator()

‣ Refitter.get_all_weights()

‣ Refitter.get_missing_weights()

‣ Refitter::set_named_weights()

‣ IResizeLayer.coordinate_transformation

‣ IResizeLayer.nearest_rounding

‣ IResizeLayer.selector_for_single_pixel

‣ IScaleLayer.channel_axis

‣ enum ResizeCoordinateTransformationDoc

‣ enum ResizeMode

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_refitter.html#acb573130cfdd9e268be8ba3ceb639d77
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_resize_layer.html#afec6933e819d7d61e546183ae0fd91e2
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_resize_layer.html#aeb4f11df5adc71cbeef8c66c2af1a736
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_resize_layer.html#a9cb963653750ace47e97c32db83e5e6b
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_resize_layer.html#aaa9181d2108be6a57e3482cc584c62d1
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_resize_layer.html#a0b4a238259e4ca5daf8a7b329030db31
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_resize_layer.html#a0050dfc32e0de981e6d19ed27967f9b2
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_scale_layer.html#a72e83b6fccead7347348b43cf81a3df2
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#ade92861de2dda654089b55dbc8490317
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#a9e6ceb19c305153eef23cd02833e8625
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#abdc74c40fe7a0c3d05d2caeccfbc29c1a4dcb5aa89ea711783a2021b5ec4fd79a
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#a9e1d81e5a8bfeb38b86e22a66d5f836aa3e72308d4c9a3a0190ae4d1a15b9d88c
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#ac3e115b1a2b1e578e8221ef99d27cd45a71c9eebe99afdbeac36c38438b12e06d
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#ac3e115b1a2b1e578e8221ef99d27cd45a43ebf47f7ad3a3de6faa7a6fda3f01a2
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#ac3e115b1a2b1e578e8221ef99d27cd45a2130766f5a4aded4046a15fbb09f5430
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Layers.html?highlight=idequantizelayer#idequantizelayer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Layers.html?highlight=idequantizelayer#iquantizelayer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/TimingCache.html?highlight=itimingcache
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Builder.html?highlight=builder%20build_serialized_network#tensorrt.Builder.build_serialized_network
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=ibuilderconfig%20get_timing_cache#tensorrt.IBuilderConfig.get_timing_cache
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=ibuilderconfig%20set_timing_cache#tensorrt.IBuilderConfig.set_timing_cache
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/GpuAllocator.html?highlight=igpuallocator%20reallocate#tensorrt.IGpuAllocator.reallocate
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Network.html?highlight=inetworkdefinition%20add_dequantize#tensorrt.INetworkDefinition.add_dequantize
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Network.html?highlight=inetworkdefinition%20add_dequantize#tensorrt.INetworkDefinition.add_quantize
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Network.html?highlight=inetworkdefinition%20add_dequantize#tensorrt.INetworkDefinition.set_weights_name
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginRegistry.html?highlight=ipluginregistry%20deregister_creator#tensorrt.IPluginRegistry.deregister_creator
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Refitter.html?highlight=refitter%20get_missing_weights#tensorrt.Refitter.get_all_weights
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Refitter.html?highlight=refitter%20get_missing_weights#tensorrt.Refitter.get_missing_weights
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Refitter.html?highlight=refitter%20get_missing_weights#tensorrt.Refitter.set_named_weights
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Layers.html?highlight=iresizelayer%20coordinate_transformation#tensorrt.IResizeLayer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Layers.html?highlight=iresizelayer%20nearest_rounding#tensorrt.IResizeLayer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Layers.html?highlight=iresizelayer%20nearest_rounding#tensorrt.IResizeLayer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Layers.html?highlight=iscalelayer%20channel_axis#tensorrt.IScaleLayer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Layers.html?highlight=resizecoordinatetransformation#tensorrt.IResizeLayer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Layers.html?highlight=resizecoordinatetransformation#tensorrt.IResizeLayer

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 68

‣ BuilderFlag.SPARSE_WEIGHTS

‣ TacticSource.CUDNN

‣ TensorFormat.DLA_HWC4

‣ TensorFormat.DLA_LINEAR

‣ TensorFormat.HWC16

‣ The memory reporting mechanism on Linux platforms has been improved to include
large allocations that were not previously tracked due to being memory mapped
instead of heap allocated.

Breaking API Changes

‣ Support for Python 2 has been dropped. This means that TensorRT will no longer
include wheels for Python 2, and Python samples will not work with Python 2.

‣ All API's have been marked as noexcept where appropriate. The IErrorRecorder
interface has been fully integrated into the API for error reporting. The Logger is only
used as a fallback when the ErrorRecorder is not provided by the user.

‣ Callback changes are now marked noexcept, therefore, implementations must also be
marked noexcept. TensorRT has never catered to exceptions thrown by callbacks, but
this is now captured in the API.

‣ Methods that take parameters of type void** where the array of pointers is
unmodifiable are now changed to take type void*const*.

‣ Dims is now a type alias for class Dims32. Code that forward-declares Dims should
forward-declare class Dims32; using Dims = Dims32;.

‣ Between TensorRT 8.0 EA and TensorRT 8.0 GA the function prototype for
getLogger() has been moved from NvInferRuntimeCommon.h to NvInferRuntime.h.
You may need to update your application source code if you’re using getLogger() and
were previously only including NvInferRuntimeCommon.h.

Compatibility

‣ TensorRT 8.0.1 has been tested with the following:

‣ cuDNN 8.2.1

‣ TensorFlow 1.15.5

‣ PyTorch 1.8.1

‣ ONNX 1.8.0

‣ This TensorRT release supports CUDA:

‣ 11.3 update 1

‣ 11.2 update 2

‣ 11.1 update 1

‣ 11.0 update 1

https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=builderflag%20sparse_weights#tensorrt.BuilderFlag
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=tacticsource%20cudnn#tensorrt.TacticSource
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/LayerBase.html?highlight=tensorformat%20dla_hwc4#tensorrt.TensorFormat
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/LayerBase.html?highlight=tensorformat%20dla_hwc4#tensorrt.TensorFormat
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/LayerBase.html?highlight=tensorformat%20dla_hwc4#tensorrt.TensorFormat
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-821
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.8.1
https://pypi.org/project/onnx/1.8.0/
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 69

‣ 10.2

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used, however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ For QAT networks, TensorRT 8.0 supports per-tensor and per-axis quantization
scales for weights. For activations, only per-tensor quantization is supported. Only
symmetric quantization is supported and zero-point weights may be omitted or, if
zero-points are provided, all coefficients must have a value of zero.

‣ Loops and DataType::kBOOL are not supported when the static TensorRT library is
used. Performance improvements for transformer based architectures such as BERT
will also not be available when using the static TensorRT library.

‣ When using reformat-free I/O, the extent of a tensor in a vectorized dimension might
not be a multiple of the vector length. Elements in a partially occupied vector that are
not within the tensor are referred to here as vector-padding. For example:

‣ On GPU

‣ for input tensors, the application shall set vector-padding elements to zero.

‣ for output tensors, the value of vector-padding elements is undefined. In a
future release, TensorRT will support setting them to zero.

‣ On DLA

‣ for input tensors, vector-padding elements are ignored.

‣ for output tensors, vector-padding elements are unmodified.

‣ When running INT8 networks on DLA using TensorRT, operations must be added to
the same subgraph to reduce quantization errors across the subgraph of the network
that runs on the DLA by allowing them to fuse and retain higher precision for
intermediate results. Breaking apart the subgraph in order to inspect intermediate
results by setting the tensors as network output tensors, can result in different
levels of quantization errors due to these optimizations being disabled.

‣ If both kSPARSE_WEIGHTS and kREFIT flags are set in IBuilderConfig, the convolution
layers having structured sparse kernel weights cannot be refitted with new kernel
weights which do not have structured sparsity. The IRefitter::setWeights() will
print an error and return false in that case.

‣ Samples which require TensorFlow in order to run, which typically also use UFF
models, are not supported on ARM SBSA releases of TensorRT 8.0. There is no good
source for TensorFlow 1.15.x for AArch64 that also supports Python 3.8 which can be
used to run these samples.

https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 70

‣ Using CUDA graph capture on TensorRT execution contexts with CUDA 10.2 on
NVIDIA K80 GPUs may lead to graph capture failures. Upgrading to CUDA 11.0 or
above will solve the issue. (not applicable for Jetson platforms)

‣ On RHEL and CentOS, the TensorRT RPM packages for CUDA 11.3 cannot be installed
alongside any CUDA 11.x Toolkit packages, like the Debian packages, due to RPM
packaging limitations. The TensorRT runtime library packages can only be installed
alongside CUDA 11.2 and CUDA 11.3 Toolkit packages and the TensorRT development
packages can only be installed alongside CUDA 11.3 Toolkit packages. When using
the TAR package, the TensorRT CUDA 11.3 build can be used with any CUDA 11.x
Toolkit.

Deprecated And Removed Features

The following features are deprecated in TensorRT 8.0.1:

‣ Deprecation is used to inform developers that some APIs and tools are no longer
recommended for use. TensorRT has the following deprecation policy:

‣ This policy comes into effect beginning with TensorRT 8.0.

‣ Deprecation notices are communicated in the release notes. Deprecated API
elements are marked with the TRT_DEPRECATED macro where possible.

‣ TensorRT provides a 12-month migration period after the deprecation. For any
APIs and tools deprecated in TensorRT 7.x, the 12-month migration period starts
from the TensorRT 8.0 GA release date.

‣ APIs and tools will continue to work during the migration period.

‣ After the migration period ends, we reserve the right to remove the APIs and tools
in a future release.

‣ IRNNLayer was deprecated in TensorRT 4.0 and has been removed in TensorRT 8.0.
IRNNv2Layer was deprecated in TensorRT 7.2.1. IRNNv2Layer has been deprecated
in favor of the loop API, however, it is still available for backwards compatibility. For
more information about the loop API, refer to the sampleCharRNN sample with the --
Iloop option as well as the Working With Loops chapter.

‣ IPlugin and IPluginFactory interfaces were deprecated in TensorRT 6.0 and have
been removed in TensorRT 8.0. We recommend that you write new plugins or refactor
existing ones to target the IPluginV2DynamicExt and IPluginV2IOExt interfaces.
For more information, refer to the Migrating Plugins From TensorRT 6.x Or 7.x To
TensorRT 8.x.x section.

‣ We removed samplePlugin since it was meant to demonstrate the IPluginExt
interface, which is no longer supported in TensorRT 8.0.

‣ We have deprecated the Caffe Parser and UFF Parser in TensorRT 7.0. They are still
tested and functional in TensorRT 8.0, however, we plan to remove the support in the
future. Ensure you migrate your workflow to use tf2onnx, keras2onnx or TensorFlow-
TensorRT (TF-TRT) for deployment.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#migrating-plugins-6x-7x-to-8x
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#migrating-plugins-6x-7x-to-8x
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 71

If using UFF, ensure you migrate to the ONNX workflow through the enablement
of a plugin. ONNX workflow is not dependent on plugin enablement. For plugin
enablement of a plugin on ONNX, refer to Estimating Depth with ONNX Models and
Custom Layers Using NVIDIA TensorRT.

‣ For TensorFlow to ONNX and then to TensorRT, refer to Speeding up Deep
Learning Inference Using TensorFlow, ONNX, and TensorRT.

‣ For PyTorch to ONNX and then to TensorRT, refer to Speeding up Deep Learning
Inference Using TensorRT.

Caffe and UFF-specific topics in the Developer Guide have been moved to the
Appendix section until removal in the subsequent major release.

‣ Interface functions that provided a destroy function are deprecated in TensorRT 8.0.
The destructors will be exposed publicly in order for the delete operator to work as
expected on these classes.

‣ nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_PRECISION is deprecated.
Networks that have QuantizeLayer and DequantizeLayer layers will be automatically
processed using Q/DQ-processing, which includes explicit-precision semantics.
Explicit precision is a network-optimizer constraint that prevents the optimizer from
performing precision-conversions that are not dictated by the semantics of the
network. For more information, refer to the Working With QAT Networks section in
the TensorRT Developer Guide.

‣ nvinfer1::IResizeLayer::setAlignCorners and
nvinfer1::IResizeLayer::getAlignCorners are deprecated.
Use nvinfer1::IResizeLayer::setCoordinateTransformation,
nvinfer1::IResizeLayer::setSelectorForSinglePixel and
nvinfer1::IResizeLayer::setNearestRounding instead.

‣ Destructors for classes with destroy() methods were previously protected. They are
now public, enabling use of smart pointers for these classes. The destroy() methods
are deprecated.

‣ The CgPersistentLSTMPlugin_TRT plugin is deprecated.

‣ sampleMovieLens and sampleMovieLensMPS have been removed from the TensorRT
package.

‣ The following C++ API functions, types, and a field, which were previously deprecated,
were removed:

Core Library:

‣ DimensionType

‣ Dims::Type

‣ class DimsCHW

‣ class DimsNCHW

‣ class IOutputDimensionFormula

https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#deprecated-topics
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-qat-networks

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 72

‣ class IPlugin

‣ class IPluginFactory

‣ class IPluginLayer

‣ class IRNNLayer

‣ IBuilder::getEngineCapability()

‣ IBuilder::allowGPUFallback()

‣ IBuilder::buildCudaEngine()

‣ IBuilder::canRunOnDLA()

‣ IBuilder::createNetwork()

‣ IBuilder::getAverageFindIterations()

‣ IBuilder::getDebugSync()

‣ IBuilder::getDefaultDeviceType()

‣ IBuilder::getDeviceType()

‣ IBuilder::getDLACore()

‣ IBuilder::getFp16Mode()

‣ IBuilder::getHalf2Mode()

‣ IBuilder::getInt8Mode()

‣ IBuilder::getMaxWorkspaceSize()

‣ IBuilder::getMinFindIterations()

‣ IBuilder::getRefittable()

‣ IBuilder::getStrictTypeConstraints()

‣ IBuilder::isDeviceTypeSet()

‣ IBuilder::reset()

‣ IBuilder::resetDeviceType()

‣ IBuilder::setAverageFindIterations()

‣ IBuilder::setDebugSync()

‣ IBuilder::setDefaultDeviceType()

‣ IBuilder::setDeviceType()

‣ IBuilder::setDLACore()

‣ IBuilder::setEngineCapability()

‣ IBuilder::setFp16Mode()

‣ IBuilder::setHalf2Mode()

‣ IBuilder::setInt8Calibrator()

‣ IBuilder::setInt8Mode()

‣ IBuilder::setMaxWorkspaceSize()

‣ IBuilder::setMinFindIterations()

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 73

‣ IBuilder::setRefittable()

‣ IBuilder::setStrictTypeConstraints()

‣ ICudaEngine::getWorkspaceSize()

‣ IMatrixMultiplyLayer::getTranspose()

‣ IMatrixMultiplyLayer::setTranspose()

‣ INetworkDefinition::addMatrixMultiply()

‣ INetworkDefinition::addPlugin()

‣ INetworkDefinition::addPluginExt()

‣ INetworkDefinition::addRNN()

‣ INetworkDefinition::getConvolutionOutputDimensionsFormula()

‣ INetworkDefinition::getDeconvolutionOutputDimensionsFormula()

‣ INetworkDefinition::getPoolingOutputDimensionsFormula()

‣ INetworkDefinition::setConvolutionOutputDimensionsFormula()

‣ INetworkDefinition::setDeconvolutionOutputDimensionsFormula()

‣ INetworkDefinition::setPoolingOutputDimensionsFormula()

‣ ITensor::getDynamicRange()

‣ TensorFormat::kNHWC8

‣ TensorFormat::NCHW

‣ TensorFormat::kNC2HW2

Plugins: The following plugin classes were removed:

‣ class INvPlugin

‣ createLReLUPlugin()

‣ createClipPlugin()

‣ PluginType

‣ struct SoftmaxTree

Plugin interface methods: For plugins based on IPluginV2DynamicExt and
IPluginV2IOExt, certain methods with legacy function signatures (derived from
IPluginV2 and IPluginV2Ext base classes) which were deprecated and marked for
removal in TensorRT 8.0 will no longer be available. Plugins using these interface
methods must stop using them or implement the versions with updated signatures,
as applicable.

Unsupported plugin methods removed in TensorRT 8.0:

‣ IPluginV2DynamicExt::canBroadcastInputAcrossBatch()

‣ IPluginV2DynamicExt::isOutputBroadcastAcrossBatch()

‣ IPluginV2DynamicExt::getTensorRTVersion()

‣ IPluginV2IOExt::configureWithFormat()

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 74

‣ IPluginV2IOExt::getTensorRTVersion()

Use updated versions for supported plugin methods:

‣ IPluginV2DynamicExt::configurePlugin()

‣ IPluginV2DynamicExt::enqueue()

‣ IPluginV2DynamicExt::getOutputDimensions()

‣ IPluginV2DynamicExt::getWorkspaceSize()

‣ IPluginV2IOExt::configurePlugin()

Use newer methods for the following:

‣ IPluginV2DynamicExt::supportsFormat() has been removed,use
IPluginV2DynamicExt::supportsFormatCombination() instead.

‣ IPluginV2IOExt::supportsFormat() has been removed,use
IPluginV2IOExt::supportsFormatCombination() instead.

Caffe Parser:

‣ class IPluginFactory

‣ class IPluginFactoryExt

‣ setPluginFactory()

‣ setPluginFactoryExt()

UFF Parser:

‣ class IPluginFactory

‣ class IPluginFactoryExt

‣ setPluginFactory()

‣ setPluginFactoryExt()

‣ The following Python API functions, which were previously deprecated, were removed:

Core library:

‣ class DimsCHW

‣ class DimsNCHW

‣ class IPlugin

‣ class IPluginFactory

‣ class IPluginLayer

‣ class IRNNLayer

‣ Builder.build_cuda_engine()

‣ Builder.average_find_iterations

‣ Builder.debug_sync

‣ Builder.fp16_mode

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 75

‣ IBuilder.int8_mode

‣ Builder.max_workspace_size

‣ Builder.min_find_iterations

‣ Builder.refittable

‣ Builder.strict_type_constraints

‣ ICudaEngine.max_workspace_size

‣ IMatrixMultiplyLayer.transpose0

‣ IMatrixMultiplyLayer.transpose0

‣ INetworkDefinition.add_matrix_multiply_deprecated()

‣ INetworkDefinition.add_plugin()

‣ INetworkDefinition.add_plugin_ext()

‣ INetworkDefinition.add_rnn()

‣ INetworkDefinition.convolution_output_dimensions_formula

‣ INetworkDefinition.deconvolution_output_dimensions_formula

‣ INetworkDefinition.pooling_output_dimensions_formula

‣ ITensor.get_dynamic_range()

‣ Dims.get_type()

‣ TensorFormat.HWC8

‣ TensorFormat.NCHW

‣ TensorFormat.NCHW2

Caffe Parser:

‣ class IPluginFactory

‣ class IPluginFactoryExt

‣ setPluginFactory()

‣ setPluginFactoryExt()

UFF Parser:

‣ class IPluginFactory

‣ class IPluginFactoryExt

‣ setPluginFactory()

‣ setPluginFactoryExt()

Plugins:

‣ class INvPlugin

‣ createLReLUPlugin()

‣ createClipPlugin()

‣ PluginType

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 76

‣ struct SoftmaxTree

‣ The following Python API functions were removed:

Core library:

‣ class DimsCHW

‣ class DimsNCHW

‣ class IPlugin

‣ class IPluginFactory

‣ class IPluginLayer

‣ class IRNNLayer

‣ Builder.build_cuda_engine()

‣ Builder.average_find_iterations

‣ Builder.debug_sync

‣ Builder.fp16_mode

‣ IBuilder.int8_mode

‣ Builder.max_workspace_size

‣ Builder.min_find_iterations

‣ Builder.refittable

‣ Builder.strict_type_constraints

‣ ICudaEngine.max_workspace_size

‣ IMatrixMultiplyLayer.transpose0

‣ IMatrixMultiplyLayer.transpose0

‣ INetworkDefinition.add_matrix_multiply_deprecated()

‣ INetworkDefinition.add_plugin()

‣ INetworkDefinition.add_plugin_ext()

‣ INetworkDefinition.add_rnn()

‣ INetworkDefinition.convolution_output_dimensions_formula

‣ INetworkDefinition.deconvolution_output_dimensions_formula

‣ INetworkDefinition.pooling_output_dimensions_formula

‣ ITensor.get_dynamic_range()

‣ Dims.get_type()

‣ TensorFormat.HWC8

‣ TensorFormat.NCHW

‣ TensorFormat.NCHW2

Caffe Parser:

‣ class IPluginFactory

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 77

‣ class IPluginFactoryExt

‣ CaffeParser.plugin_factory

‣ CaffeParser.plugin_factory_ext

UFF Parser:

‣ class IPluginFactory

‣ class IPluginFactoryExt

‣ UffParser.plugin_factory

‣ UffParser.plugin_factory_ext

Fixed Issues

‣ The diagram in IRNNv2Layer was incorrect. The diagram has been updated and fixed.

‣ Improved build times for convolution layers with dynamic shapes and large range of
leading dimensions.

‣ TensorRT 8.0 no longer requires libcublas.so.* to be present on your system
when running an application which was linked with the TensorRT static library. The
TensorRT static library now requires cuBLAS and other dependencies to be linked at
link time and will no longer open these libraries using dlopen().

‣ TensorRT 8.0 no longer requires an extra Identity layer between the ElementWise
and the Constant whose rank is > 4. For TensorRT 7.x versions, cases like Convolution
and FullyConnected with bias where ONNX decomposes the bias to ElementWise,
there was a fusion which didn’t support per element scale. We previously inserted an
Identity to workaround this.

‣ There was a known performance regression compared to TensorRT 7.1 for
Convolution layers with kernel size greater than 5x5. For example, it could lead up to
35% performance regression of the VGG16 UFF model compared to TensorRT 7.1.
This issue has been fixed in this release.

‣ When running networks such as Cortana, LSTM Peephole, MLP, and Faster RCNN,
there was a 5% to 16% performance regression on GA102 devices and a 7% to 36%
performance regression on GA104 devices. This issue has been fixed in this release.
(not applicable for Jetson platforms)

‣ Some RNN networks such as Cortana with FP32 precision and batch size of 8 or
higher had a 20% performance loss with CUDA 11.0 or higher compared to CUDA
10.2. This issue has been fixed in this release.

‣ There was an issue when compiling the TensorRT samples with a GCC version
less than 5.x and using the static libraries which resulted in the error message
munmap_chunk(): invalid pointer. RHEL/CentOS 7.x users were most likely to have
observed this issue. This issue has been fixed in this release.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 78

‣ cuTENSOR, used by TensorRT 8.0 EA, was known to have significant performance
regressions with the CUDA 11.3 compiler. This regression has been fixed by the CUDA
11.3 update 1 compiler.

‣ The installation of PyTorch Quantization Toolkit requires Python version >=3.7, GCC
version >=5.4. The specific version of Python may be missing from some operating
systems and will need to be separately installed. Refer to the README instructions
for the workaround.

‣ On platforms with Python >= 3.8, TensorFlow 1.x must be installed from the NVIDIA
Python package index. For example:
pip install --extra-index-url https://pypi.ngc.nvidia.com nvidia-tensorflow;
 python_version==3.8

‣ There is an up to 15% performance regression compared to TensorRT 7.2.3 for
QuartzNet variants on Volta GPUs.

‣ MNIST images used by the samples previously had to be downloaded manually. These
images are now shipped with the samples.

‣ You may observe relocation issues during linking if the resulting binary exceeds 2
GB. This can occur if you are linking TensorRT and all of its dependencies into your
application statically. A workaround for this linking issue has been documented in the
TensorRT Sample Support Guide under Limitations.

‣ IProfiler would not correctly call user-implemented methods when used from the
Python API. This issue has been fixed in this release.

‣ TensorRT memory usage has improved and can be better managed via
IGpuAllocator::reallocate when more memory is required.

‣ TensorRT refitting performance has been improved, especially for large weights
and when multiple weights are refitted at the same time. Refitting performance will
continue to be optimized in later releases.

‣ The interfaces that took an argument of type void** (for example, enqueueV2) now
declare it as void*const*.

‣ There was an up to 24% performance regression in TensorRT 8.0.0 compared to
TensorRT 7.2.3 for networks containing Slice layers on Turing GPUs. This issue has
been fixed.

‣ There was an up to 8% performance regression in TensorRT 8.0.0 compared to
TensorRT 7.2.3 for DenseNet variants on Volta GPUs. This issue has been fixed in this
release.

‣ If input tensors with dynamic shapes were found to be inconsistent with the selected
optimization profile during engine building or during inference, an error message is
issued with graceful program exit instead of assertion failure and abnormal exit.

‣ When running TensorRT 8.0.0 with cuDNN 8.2.0, there is a known performance
regression for the deconvolution layer compared to running with previous cuDNN
releases. For example, some deconvolution layers can have up to 7x performance

https://github.com/NVIDIA/TensorRT/blob/master/tools/pytorch-quantization/README.md
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#building-samples-limitations

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 79

regression on Turing GPUs compared to running with cuDNN 8.0.4. This has been
fixed in the latest cuDNN 8.2.1 release.

Announcements

‣ TensorRT 8.0 will be the last TensorRT release that will provide support for Ubuntu
16.04. This also means TensorRT 8.0 will be the last TensorRT release that will
support Python 3.5.

‣ Python samples use a unified data downloading workflow. Each sample has a
YAML (download.yml) describing the data files that are required to download
via a link before running the sample, if any. The download tool parses the YAML
and downloads the data files. All other sample code assumes that the data has
been downloaded before the code is invoked. An error will be raised if the data is
not correctly downloaded. Refer to the Python sample documentation for more
information.

Known Issues

‣ The TensorRT ARM SBSA cross packages in the CUDA network repository cannot
be installed because cuDNN ARM SBSA cross packages are not available, which
is a dependency of the TensorRT cross packages. The TensorRT ARM SBSA cross
packages may be removed in the near future. You should use the native TensorRT
ARM SBSA packages instead.

‣ There is a known issue that graph capture may fail in some cases for
IExecutionContext::enqueue() and IExecutionContext::enqueueV2(). For
more information, refer to the documentation for IExecutionContext::enqueueV2(),
including how to work around this issue.

‣ On PowerPC, some RNN networks have up to a 15% performance regression
compared to TensorRT 7.0. (not applicable for Jetson platforms)

‣ Some fusions are not enabled when the TensorRT static library is used. This means
there is a performance loss of around 10% for networks like BERT and YOLO3 when
linking with the static library compared to the dynamic library. The performance loss
depends on precision used and batch size and it can be up to 60% in some cases.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit those weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation
type of the forward pass does not match the activation type of the reverse pass in
bidirectional cases.

‣ There is a known performance regression compared to TensorRT 7.1 for some
networks dominated by FullyConnected with activation and bias operations:

https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=iexecutioncontext

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 80

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on Maxwell and Pascal GPUs.

‣ There is an up to 8% performance regression compared to TensorRT 7.1 for some
networks with heavy FullyConnected operation like VGG16 on Nano.

‣ There is a known issue that TensorRT selects kLINEAR format when the user uses
reformat-free I/O with vectorized formats and with input/output tensors which have
only 3 dimensions. The workaround is to add an additional dimension to the tensors
with size 1 to make them 4 dimensional tensors.

‣ As DLA Deconvolution layers with square kernels and strides between 23 and 32
significantly slow down compilation time, they are disabled by TensorRT to run on
DLA.

‣ There are some known false alarms reported by the Valgrind memory leak check
tool when detecting potential memory leaks from TensorRT applications. The
recommendation to suppress the false alarms is to provide a Valgrind suppression file
with the following contents when running the Valgrind memory leak check tool.
{
 Memory leak errors with dlopen.
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}

{

 Tegra ioctl false alarm
 Memcheck:Param
 ioctl(TCGETA)
 fun:ioctl
 ...
 obj:*libnvrm_gpu.so*
 ...
 obj:*libcuda.so*
}

The suppression file can resolve the false alarms about definite loss related to
dlopen() and ioctl() definite loss on the Tegra platform. The other false alarm
which can not be added to the suppression file is a sole malloc() call without any call
stack.

‣ There is an up to 150% performance regression compared to TensorRT 7.2.3 for
3D U-Net variants on NVIDIA Ampere GPUs, if the optimal algorithm choice is
constrained by the available workspace. To work around this issue, enlarge the
workspace size. (not applicable for Jetson platforms)

‣ PluginFieldCollection in the Python API may prematurely deallocate
PluginFields. To work around this, assign the list of plugin fields to a named
variable:
plugin_fields = [trt.PluginField(...), ...]
plugin_field_collection = trt.PluginFieldCollection(plugin_fields)

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 81

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fallback to using cuBLAS. (not applicable for Jetson platforms)

‣ On Jetson devices, the power consumption may increase for the sake of
performance improvement when compared against TensorRT 7.1. No significant drop
in the performance per watt has been observed.

‣ There is an up to 15% performance regression compared to TensorRT 7.2.3 for path
perception network (Pathnet) in FP32.

‣ There is an up to 10-11% performance regression on Xavier:

‣ compared to TensorRT 7.2.3 for ResNet-152 with batch size 2 in FP16.

‣ compared to TensorRT 6 for ResNeXt networks with small batch (1 or 2) in FP32.

‣ For networks that use deconv with large kernel size, the engine build time could drop
a lot for this layer on Xavier. It could also lead to the launch timed out and was
terminated error message on Jetson Nano/TX1.

‣ For some networks with large amounts of weights and activation data, DLA may fail
compiling the subgraph, and that subgraph will fallback to GPU.

‣ There is an up to 10% performance regression when TensorRT is used with CUDNN
8.1 or 8.2. When CUDNN 8.0 is used, the performance is recovered. (not applicable for
Jetson platforms)

‣ There is an up to 6% performance regression compared to TensorRT 7.2.3 for
WaveRNN in FP16 on Volta and Turing platforms.

‣ On embedded devices, TensorRT attempts to avoid testing kernel candidates whose
memory requirements would trigger the Out of Memory (OOM) killer. If it does
trigger, consider reducing the memory requirement for the model by reducing index
dimensions, or maximize the available memory by closing other applications.

‣ There is a known accuracy issue of GoogLeNet variants with NVIDIA Ampere GPUs
where TF32 mode is enabled by default on windows. (not applicable for Jetson
platforms)

‣ There is an up to 40% regression compared to TensorRT 7.2.3 for DenseNet with
CUDA 11.3 on P100 and V100. When CUDA 11.0 is used, the regression is recovered.
(not applicable for Jetson platforms)

‣ There is an up to 10% performance regression compared to TensorRT 7.2.3 in
JetPack 4.5 for ResNet-like networks on NVIDIA DLA when the dynamic ranges of
the inputs of the ElementWise ADD layers are different. This is due to a fix for a bug in
DLA where it ignored the dynamic range of the second input of the ElementWise ADD
layers and caused some accuracy issues.

‣ There is a known 4% accuracy regression with Faster R-CNN NasNet network with
NVIDIA Ampere and Turing GPUs. (not applicable for Jetson platforms)

‣ Under some conditions, RNNv2Layer can require a larger workspace size than previous
versions of TensorRT in order to run all supported tactics. Consider increasing the
workspace size to work around this issue.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 82

‣ Engine build times for TensorRT 8.0 may be slower than TensorRT 7.2 due to the
engine optimizer being more aggressive.

‣ There is an up to 30% performance regression with QAT (quantization-aware-training)
EfficientNet networks on V100 compared to TensorRT 7.2. (not applicable for Jetson
platforms)

‣ The new Python sample efficientdet is only available in the OSS release and will be
added in the core package in the next release.

1.14. TensorRT Release 8.0.0 Early
Access (EA)

This is the TensorRT 8.0.0 Early Access (EA) release notes and is applicable to Linux x86
users.

These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 7.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added support for RedHat/CentOS 8.3, Ubuntu 20.04, and SUSE Linux Enterprise
Server 15 Linux distributions. Only a tar file installation is supported on SLES 15 at
this time. For more information, refer to the TensorRT Installation Guide.

‣ Added Python 3.9 support. Use a tar file installation to obtain the new Python wheel
files. For more information, refer to the TensorRT Installation Guide.

‣ Added ResizeCoordinateTransformation, ResizeSelector, and ResizeRoundMode;
three new enumerations to IResizeLayer, and enhanced IResizeLayer to support
more resize modes from TensorFlow, PyTorch, and ONNX. For more information, refer
to the IResizeLayer section in the TensorRT Developer Guide.

‣ Builder timing cache can be serialized and reused across builder instances. For more
information, refer to the Builder Layer Timing Cache and trtexec sections in the
TensorRT Developer Guide.

‣ Added convolution and fully-connected tactics which support and make use of
structured sparsity in kernel weights. This feature can be enabled by setting the
kSPARSE_WEIGHTS flag in IBuilderConfig. This feature is only available on NVIDIA
Ampere GPUs. For more information, refer to the Structured Sparsity section in the
Best Practices For TensorRT Performance guide. (not applicable for Jetson platforms)

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#resize-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#builder-layer-timing
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#trtexec
https://docs.nvidia.com/deeplearning/tensorrt/best-practices/index.html#structured-sparsity

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 83

‣ Added two new layers to the API: IQuantizeLayer and IDequantizeLayer which
can be used to explicitly specify the precision of operations and data buffers.
ONNX’s QuantizeLinear and DequantizeLinear operators are mapped to these new
layers which enables the support for networks trained using Quantization-Aware
Training (QAT) methodology. For more information, refer to the Explicit-Quantization,
IQuantizeLayer, and IDequantizeLayer sections in the TensorRT Developer Guide
and Q/DQ Fusion in the Best Practices For TensorRT Performance guide.

‣ Achieved QuartzNet optimization with support of 1D fused depthwise + pointwise
convolution kernel to achieve up to 1.8x end-to-end performance improvement on
A100. (not applicable for Jetson platforms)

‣ Added support for the following ONNX operators: Celu, CumSum, EyeLike,
GatherElements, GlobalLpPool, GreaterOrEqual, LessOrEqual, LpNormalization,
LpPool, ReverseSequence, and SoftmaxCrossEntropyLoss. For more information,
refer to the Supported Ops section in the TensorRT Support Matrix.

‣ Added Sigmoid/Tanh INT8 support for DLA. It allows DLA sub-graph with Sigmoid/
Tanh to compile with INT8 by auto-upgrade to FP16 internally. For more information,
refer to the DLA Supported Layers section in the TensorRT Developer Guide.

‣ Added DLA native planar format and DLA native gray-scale format support.

‣ Allow to generate reformat-free engine with DLA when EngineCapability is
EngineCapability::kDEFAULT.

‣ TensorRT now declares API’s with the noexcept keyword to clarify that exceptions
must not cross the library boundary. All TensorRT classes that an application inherits
from (such as IGpuAllocator, IPluginV2, etc…) must guarantee that methods called
by TensorRT do not throw uncaught exceptions, or the behavior is undefined.

‣ TensorRT reports errors, along with an associated ErrorCode, via the ErrorRecorder
API for all errors. The ErrorRecorder will fallback to the legacy logger reporting, with
Severity::kERROR or Severity::kINTERNAL_ERROR, if no error recorder is registered.
The ErrorCodes allow recovery in cases where TensorRT previously reported non-
recoverable situations.

‣ Improved performance of the GlobalAveragePooling operation, which is used in
some CNNs like EfficientNet. For transformer based networks with INT8 precision,
it’s recommended to use a network which is trained using Quantization Aware
Training (QAT) and has IQuantizeLayer and IDequantizeLayer layers in the network
definition.

‣ TensorRT now supports refit weights via names. For more information, refer to
Refitting An Engine in the TensorRT Developer Guide.

‣ Refitting performance has been improved. The performance boost can be evident
when the weights are large or a large number of weights or layers are updated at the
same time.

‣ Added a new sample.This sample, engine_refit_onnx_bidaf, builds an engine from the
ONNX BiDAF model, and refits the TensorRT engine with weights from the model.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-qat-networks
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#quantization-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#dequantization-layer
https://docs.nvidia.com/deeplearning/tensorrt/best-practices/index.html#qdq-fusion
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#supported-ops
https://docs.google.com/document/d/1CYBuu4sE4QORKXCRdXhV_EDLrqWqSP76fbwpY7R3iU0/edit#heading=h.r6h71p659knf
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#refitting-engine-c

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 84

The new refit APIs allow users to locate the weights via names from ONNX models
instead of layer names and weights roles. For more information, refer to the Refitting
An Engine Built From An ONNX Model In Python in the TensorRT Sample Support
Guide.

‣ Improved performance for the transformer based networks such as BERT and other
networks that use Multi-Head Self-Attention.

‣ Added cuDNN to the IBuilderConfig::setTacticSources enum. Use of cuDNN
as a source of operator implementations can be enabled or disabled using the
IBuilderConfig::setTacticSources API function.

‣ The following C++ API functions were added:

‣ class IDequanzizeLayer

‣ class IQuantizeLayer

‣ class ITimingCache

‣ IBuilder::buildSerializedNetwork()

‣ IBuilderConfig::getTimingCache()

‣ IBuilderConfig::setTimingCache()

‣ IGpuAllocator::reallocate()

‣ INetworkDefinition::addDequantize()

‣ INetworkDefinition::addQuantize()

‣ INetworkDefinition::setWeightsName()

‣ IPluginRegistry::deregisterCreator()

‣ IRefitter::getMissingWeights()

‣ IRefitter::getAllWeights()

‣ IRefitter::setNamedWeights()

‣ IResizeLayer::getCoordinateTransformation()

‣ IResizeLayer::getNearestRounding()

‣ IResizeLayer::getSelectorForSinglePixel()

‣ IResizeLayer::setCoordinateTransformation()

‣ IResizeLayer::setNearestRounding()

‣ IResizeLayer::setSelectorForSinglePixel()

‣ IScaleLayer::setChannelAxis()

‣ enum ResizeCoordinateTransformation

‣ enum ResizeMode

‣ BuilderFlag::kSPARSE_WEIGHTS

‣ TacticSource::kCUDNN

‣ TensorFormat::kDLA_HWC4

‣ TensorFormat::kDLA_LINEAR

https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#engine_refit_onnx_bidaf
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#engine_refit_onnx_bidaf

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 85

‣ TensorFormat::kHWC16

‣ The following Python API functions were added:

‣ class IDequanzizeLayer

‣ class IQuantizeLayer

‣ class ITimingCache

‣ Builder.build_serialized_network()

‣ IBuilderConfig.get_timing_cache()

‣ IBuilderConfig.set_timing_cache()

‣ IGpuAllocator.reallocate()

‣ INetworkDefinition.add_dequantize()

‣ INetworkDefinition.add_quantize()

‣ INetworkDefinition.set_weights_name()

‣ IPluginRegistry.deregister_creator()

‣ IRefitter.get_missing_weights()

‣ IRefitter.get_all_weights()

‣ IRefitter::set_named_weights()

‣ IResizeLayer.coordinate_transformation

‣ IResizeLayer.nearest_rounding

‣ IResizeLayer.selector_for_single_pixel

‣ IScaleLayer.channel_axis

‣ enum ResizeCoordinateTransformation

‣ enum ResizeMode

‣ BuilderFlag.SPARSE_WEIGHTS

‣ TacticSource.CUDNN

‣ TensorFormat.DLA_HWC4

‣ TensorFormat.DLA_LINEAR

‣ TensorFormat.HWC16

Breaking API Changes

‣ Support for Python 2 has been dropped. This means that TensorRT will no longer
include wheels for Python 2, and Python samples will not work with Python 2.

‣ All API's have been marked as noexcept where appropriate. The IErrorRecorder
interface has been fully integrated into the API for error reporting. The Logger is only
used as a fallback when the ErrorRecorder is not provided by the user.

‣ Callback changes are now marked noexcept, therefore, implementations must also be
marked noexcept. TensorRT has never catered to exceptions thrown by callbacks, but
this is now captured in the API.

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 86

‣ Methods that take parameters of type void** where the array of pointers is
unmodifiable are now changed to take type void*const*.

‣ Dims is now a type alias for class Dims32. Code that forward-declares Dims should
forward-declare class Dims32; using Dims = Dims32;.

Compatibility

‣ TensorRT 8.0.0 EA has been tested with the following:

‣ cuDNN 8.2.0

‣ TensorFlow 1.15.5

‣ PyTorch 1.8.0

‣ ONNX 1.8.0

‣ This TensorRT release supports CUDA:

‣ 10.2

‣ 11.0 update 1

‣ 11.1 update 1

‣ 11.2 update 2

‣ 11.3

Note: There are two TensorRT binary builds for CUDA 11.0 and CUDA 11.3. The build
for CUDA 11.3 is compatible with CUDA 11.1 and CUDA 11.2 libraries. For both builds,
CUDA driver compatible with the runtime CUDA version is required (see Table 2
here). For the CUDA 11.3 build, driver version 465 or above is suggested for best
performance.

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used, however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ For QAT networks, TensorRT 8.0 supports per-tensor and per-axis quantization
scales for weights. For activations, only per-tensor quantization is supported. Only
symmetric quantization is supported and zero-point weights may be omitted or, if
zero-points are provided, all coefficients must have a value of zero.

‣ Loops and DataType::kBOOL are not supported when the static TensorRT library is
used. Performance improvements for transformer based architectures such as BERT
will also not be available when using static TensorRT library.

https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-820
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.5
https://github.com/pytorch/pytorch/releases/tag/v1.8.0
https://pypi.org/project/onnx/1.8.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 87

‣ When using reformat-free I/O, the extent of a tensor in a vectorized dimension might
not be a multiple of the vector length. Elements in a partially occupied vector that are
not within the tensor are referred to here as vector-padding. For example:

‣ On GPU

‣ for input tensors, the application shall set vector-padding elements to zero.

‣ for output tensors, the value of vector-padding elements is undefined. In a
future release, TensorRT will support setting them to zero.

‣ On DLA

‣ for input tensors, vector-padding elements are ignored.

‣ for output tensors, vector-padding elements are unmodified.

‣ When running INT8 networks on DLA using TensorRT, operations must be added to
the same subgraph to reduce quantization errors across the subgraph of the network
that runs on the DLA by allowing them to fuse and retain higher precision for
intermediate results. Breaking apart the subgraph in order to inspect intermediate
results by setting the tensors as network output tensors, can result in different
levels of quantization errors due to these optimizations being disabled.

‣ If both kSPARSE_WEIGHTS and kREFIT flags are set in IBuilderConfig, the convolution
layers having structured sparse kernel weights cannot be refitted with new kernel
weights which do not have structured sparsity. The IRefitter::setWeights() will
print an error and return false in that case.

Deprecated And Removed Features

The following features are deprecated in TensorRT 8.0.0:

‣ Deprecation is used to inform developers that some APIs and tools are no longer
recommended for use. TensorRT has the following deprecation policy:

‣ This policy comes into effect beginning with TensorRT 8.0.

‣ Deprecation notices are communicated in the release notes. Deprecated API
elements are marked with the TRT_DEPRECATED macro where possible.

‣ TensorRT provides a 12-month migration period after the deprecation. For any
APIs and tools deprecated in TensorRT 7.x, the 12-month migration period starts
from the TensorRT 8.0 GA release date.

‣ APIs and tools will continue to work during the migration period.

‣ After the migration period ends, we reserve the right to remove the APIs and tools
in a future release.

‣ IRNNLayer was deprecated in TensorRT 4.0 and has been removed in TensorRT 8.0.
IRNNv2Layer was deprecated in TensorRT 7.2.1. IRNNv2Layer has been deprecated
in favor of the loop API, however, it is still available for backwards compatibility. For
more information about the loop API, refer to the sampleCharRNN sample with the --
Iloop option as well as the Working With Loops chapter.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-loops

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 88

‣ IPlugin and IPluginFactory interfaces were deprecated in TensorRT 6.0 and have
been removed in TensorRT 8.0. We recommend that you write new plugins or refactor
existing ones to target the IPluginV2DynamicExt and IPluginV2IOExt interfaces.
For more information, refer to the Migrating Plugins From TensorRT 6.x Or 7.x To
TensorRT 8.x.x section.

‣ We removed samplePlugin since it was meant to demonstrate the IPluginExt
interface, which is no longer supported in TensorRT 8.0.

‣ We have deprecated the Caffe Parser and UFF Parser in TensorRT 7.0. They are still
tested and functional in TensorRT 8.0, however, we plan to remove the support in the
future. Ensure you migrate your workflow to use tf2onnx, keras2onnx or TensorFlow-
TensorRT (TF-TRT) for deployment.

If using UFF, ensure you migrate to the ONNX workflow through enablement
of a plugin. ONNX workflow is not dependent on plugin enablement. For plugin
enablement of a plugin on ONNX, refer to Estimating Depth with ONNX Models and
Custom Layers Using NVIDIA TensorRT.

‣ For TensorFlow to ONNX and then to TensorRT, refer to Speeding up Deep
Learning Inference Using TensorFlow, ONNX, and TensorRT.

‣ For PyTorch to ONNX and then to TensorRT, refer to Speeding up Deep Learning
Inference Using TensorRT.

Caffe and UFF-specific topics in the Developer Guide have been moved to the
Appendix section until removal in the subsequent major release.

‣ Interface functions that provided a destroy function are deprecated in TensorRT 8.0.
The destructors will be exposed publicly in order for the delete operator to work as
expected on these classes.

‣ nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_PRECISION is deprecated.
Networks that have QuantizeLayer and DequantizeLayer layers will be automatically
processed using Q/DQ-processing, which includes explicit-precision semantics.
Explicit precision is a network-optimizer constraint that prevents the optimizer from
performing precision-conversions that are not dictated by the semantics of the
network. For more information, refer to the Working With QAT Networks section in
the TensorRT Developer Guide.

‣ nvinfer1::IResizeLayer::setAlignCorners and
nvinfer1::IResizeLayer::getAlignCorners are deprecated.
Use nvinfer1::IResizeLayer::setCoordinateTransformation,
nvinfer1::IResizeLayer::setSelectorForSinglePixel and
nvinfer1::IResizeLayer::setNearestRounding instead.

‣ Destructors for classes with destroy() methods were previously protected. They are
now public, enabling use of smart pointers for these classes. The destroy() methods
are deprecated.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#migrating-plugins-6x-7x-to-8x
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#migrating-plugins-6x-7x-to-8x
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#deprecated-topics
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-qat-networks

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 89

‣ The following C++ API functions, types, and a field, which were previously deprecated,
were removed:

Core Library:

‣ DimensionType

‣ Dims::Type

‣ class DimsCHW

‣ class DimsNCHW

‣ class IOutputDimensionFormula

‣ class IPlugin

‣ class IPluginFactory

‣ class IPluginLayer

‣ class IRNNLayer

‣ IBuilder::getEngineCapability()

‣ IBuilder::allowGPUFallback()

‣ IBuilder::buildCudaEngine()

‣ IBuilder::canRunOnDLA()

‣ IBuilder::createNetwork()

‣ IBuilder::getAverageFindIterations()

‣ IBuilder::getDebugSync()

‣ IBuilder::getDefaultDeviceType()

‣ IBuilder::getDeviceType()

‣ IBuilder::getDLACore()

‣ IBuilder::getFp16Mode()

‣ IBuilder::getHalf2Mode()

‣ IBuilder::getInt8Mode()

‣ IBuilder::getMaxWorkspaceSize()

‣ IBuilder::getMinFindIterations()

‣ IBuilder::getRefittable()

‣ IBuilder::getStrictTypeConstraints()

‣ IBuilder::isDeviceTypeSet()

‣ IBuilder::reset()

‣ IBuilder::resetDeviceType()

‣ IBuilder::setAverageFindIterations()

‣ IBuilder::setDebugSync()

‣ IBuilder::setDefaultDeviceType()

‣ IBuilder::setDeviceType()

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 90

‣ IBuilder::setDLACore()

‣ IBuilder::setEngineCapability()

‣ IBuilder::setFp16Mode()

‣ IBuilder::setHalf2Mode()

‣ IBuilder::setInt8Calibrator()

‣ IBuilder::setInt8Mode()

‣ IBuilder::setMaxWorkspaceSize()

‣ IBuilder::setMinFindIterations()

‣ IBuilder::setRefittable()

‣ IBuilder::setStrictTypeConstraints()

‣ ICudaEngine::getWorkspaceSize()

‣ IMatrixMultiplyLayer::getTranspose()

‣ IMatrixMultiplyLayer::setTranspose()

‣ INetworkDefinition::addMatrixMultiply()

‣ INetworkDefinition::addPlugin()

‣ INetworkDefinition::addPluginExt()

‣ INetworkDefinition::addRNN()

‣ INetworkDefinition::getConvolutionOutputDimensionsFormula()

‣ INetworkDefinition::getDeconvolutionOutputDimensionsFormula()

‣ INetworkDefinition::getPoolingOutputDimensionsFormula()

‣ INetworkDefinition::setConvolutionOutputDimensionsFormula()

‣ INetworkDefinition::setDeconvolutionOutputDimensionsFormula()

‣ INetworkDefinition::setPoolingOutputDimensionsFormula()

‣ ITensor::getDynamicRange()

‣ TensorFormat::kNHWC8

‣ TensorFormat::NCHW

‣ TensorFormat::kNC2HW2

Plugins: The following plugin classes were removed:

‣ class INvPlugin

‣ createLReLUPlugin()

‣ createClipPlugin()

‣ PluginType

‣ struct SoftmaxTree

Plugin interface methods: For plugins based on IPluginV2DynamicExt and
IPluginV2IOExt, certain methods with legacy function signatures (derived from
IPluginV2 and IPluginV2Ext base classes) which were deprecated and marked for

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 91

removal in TensorRT 8.0 will no longer be available. Plugins using these interface
methods must stop using them or implement the versions with updated signatures,
as applicable.

Unsupported plugin methods removed in TensorRT 8.0:

‣ IPluginV2DynamicExt::canBroadcastInputAcrossBatch()

‣ IPluginV2DynamicExt::isOutputBroadcastAcrossBatch()

‣ IPluginV2DynamicExt::getTensorRTVersion()

‣ IPluginV2IOExt::configureWithFormat()

‣ IPluginV2IOExt::getTensorRTVersion()

Use updated versions for supported plugin methods:

‣ IPluginV2DynamicExt::configurePlugin()

‣ IPluginV2DynamicExt::enqueue()

‣ IPluginV2DynamicExt::getOutputDimensions()

‣ IPluginV2DynamicExt::getWorkspaceSize()

‣ IPluginV2IOExt::configurePlugin()

Use newer methods for the following:

‣ IPluginV2DynamicExt::supportsFormat() has been removed,use
IPluginV2DynamicExt::supportsFormatCombination() instead.

‣ IPluginV2IOExt::supportsFormat() has been removed,use
IPluginV2IOExt::supportsFormatCombination() instead.

Caffe Parser:

‣ class IPluginFactory

‣ class IPluginFactoryExt

‣ setPluginFactory()

‣ setPluginFactoryExt()

UFF Parser:

‣ class IPluginFactory

‣ class IPluginFactoryExt

‣ setPluginFactory()

‣ setPluginFactoryExt()

‣ The following Python API functions, which were previously deprecated, were removed:

Core library:

‣ class DimsCHW

‣ class DimsNCHW

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 92

‣ class IPlugin

‣ class IPluginFactory

‣ class IPluginLayer

‣ class IRNNLayer

‣ Builder.build_cuda_engine()

‣ Builder.average_find_iterations

‣ Builder.debug_sync

‣ Builder.fp16_mode

‣ IBuilder.int8_mode

‣ Builder.max_workspace_size

‣ Builder.min_find_iterations

‣ Builder.refittable

‣ Builder.strict_type_constraints

‣ ICudaEngine.max_workspace_size

‣ IMatrixMultiplyLayer.transpose0

‣ IMatrixMultiplyLayer.transpose0

‣ INetworkDefinition.add_matrix_multiply_deprecated()

‣ INetworkDefinition.add_plugin()

‣ INetworkDefinition.add_plugin_ext()

‣ INetworkDefinition.add_rnn()

‣ INetworkDefinition.convolution_output_dimensions_formula

‣ INetworkDefinition.deconvolution_output_dimensions_formula

‣ INetworkDefinition.pooling_output_dimensions_formula

‣ ITensor.get_dynamic_range()

‣ Dims.get_type()

‣ TensorFormat.HWC8

‣ TensorFormat.NCHW

‣ TensorFormat.NCHW2

Caffe Parser:

‣ class IPluginFactory

‣ class IPluginFactoryExt

‣ setPluginFactory()

‣ setPluginFactoryExt()

UFF Parser:

‣ class IPluginFactory

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 93

‣ class IPluginFactoryExt

‣ setPluginFactory()

‣ setPluginFactoryExt()

Plugins:

‣ class INvPlugin

‣ createLReLUPlugin()

‣ createClipPlugin()

‣ PluginType

‣ struct SoftmaxTree

‣ The following Python API functions were removed:

Core library:

‣ class DimsCHW

‣ class DimsNCHW

‣ class IPlugin

‣ class IPluginFactory

‣ class IPluginLayer

‣ class IRNNLayer

‣ Builder.build_cuda_engine()

‣ Builder.average_find_iterations

‣ Builder.debug_sync

‣ Builder.fp16_mode

‣ IBuilder.int8_mode

‣ Builder.max_workspace_size

‣ Builder.min_find_iterations

‣ Builder.refittable

‣ Builder.strict_type_constraints

‣ ICudaEngine.max_workspace_size

‣ IMatrixMultiplyLayer.transpose0

‣ IMatrixMultiplyLayer.transpose0

‣ INetworkDefinition.add_matrix_multiply_deprecated()

‣ INetworkDefinition.add_plugin()

‣ INetworkDefinition.add_plugin_ext()

‣ INetworkDefinition.add_rnn()

‣ INetworkDefinition.convolution_output_dimensions_formula

‣ INetworkDefinition.deconvolution_output_dimensions_formula

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 94

‣ INetworkDefinition.pooling_output_dimensions_formula

‣ ITensor.get_dynamic_range()

‣ Dims.get_type()

‣ TensorFormat.HWC8

‣ TensorFormat.NCHW

‣ TensorFormat.NCHW2

Caffe Parser:

‣ class IPluginFactory

‣ class IPluginFactoryExt

‣ CaffeParser.plugin_factory

‣ CaffeParser.plugin_factory_ext

UFF Parser:

‣ class IPluginFactory

‣ class IPluginFactoryExt

‣ UffParser.plugin_factory

‣ UffParser.plugin_factory_ext

Fixed Issues

‣ Improved build times for convolution layers with dynamic shapes and large range of
leading dimensions.

‣ TensorRT 8.0 no longer requires libcublas.so.* to be present on your system
when running an application which was linked with the TensorRT static library. The
TensorRT static library now requires cuBLAS and other dependencies to be linked at
link time and will no longer open these libraries using dlopen().

‣ TensorRT 8.0 no longer requires an extra Identity layer between the ElementWise
and the Constant whose rank is > 4. For TensorRT 7.x versions, cases like Convolution
and FullyConnected with bias where ONNX decomposes the bias to ElementWise,
there was a fusion which didn’t support per element scale. We previously inserted an
Identity to workaround this.

‣ There was a known performance regression compared to TensorRT 7.1 for
Convolution layers with kernel size greater than 5x5. For example, it could lead up to
35% performance regression of the VGG16 UFF model compared to TensorRT 7.1.
This issue has been fixed in this release.

‣ When running networks such as Cortana, LSTM Peephole, MLP, and Faster RCNN,
there was a 5% to 16% performance regression on GA102 devices and a 7% to 36%
performance regression on GA104 devices. This issue has been fixed in this release.
(not applicable for Jetson platforms)

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 95

‣ Some RNN networks such as Cortana with FP32 precision and batch size of 8 or
higher had a 20% performance loss with CUDA 11.0 or higher compared to CUDA
10.2. This issue has been fixed in this release.

Announcements

‣ TensorRT 8.0 will be the last TensorRT release that will provide support for Ubuntu
16.04. This also means TensorRT 8.0 will be the last TensorRT release that will
support Python 3.5.

‣ Python samples use a unified data downloading workflow. Each sample has a
YAML (download.yml) describing the data files that are required to download
via a link before running the sample, if any. The download tool parses the YAML
and downloads the data files. All other sample code assumes that the data has
been downloaded before the code is invoked. An error will be raised if the data is
not correctly downloaded. Refer to the Python sample documentation for more
information.

Known Issues

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in a future release.

‣ There is a known issue that graph capture may fail in some cases for
IExecutionContext::enqueue() and IExecutionContext::enqueueV2(). For
more information, refer to the documentation for IExecutionContext::enqueueV2(),
including how to work around this issue.

‣ Some fusions are not enabled when the TensorRT static library is used. This means
there is a performance loss of around 10% for networks like BERT and YOLO3 when
linking with the static library compared to the dynamic library. The performance loss
depends on precision used and batch size and it can be up to 60% in some cases.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit those weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation
type of the forward pass does not match the activation type of the reverse pass in
bidirectional cases.

‣ There is a known performance regression compared to TensorRT 7.1 for some
networks dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on Maxwell and Pascal GPUs.

‣ There is an up to 8% performance regression compared to TensorRT 7.1 for some
networks with heavy FullyConnected operation on Nano.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=iexecutioncontext

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 96

‣ There is an up to 15% performance regression compared to TensorRT 7.2.3 for
QuartzNet variants on Volta GPUs.

‣ There is an up to 150% performance regression compared to TensorRT 7.2.3 for
3D U-Net variants on NVIDIA Ampere GPUs if the workspace size is limited to 1GB.
Enlarging the workspace size (for example, to 2GB) can workaround this issue.

‣ There is a known issue that TensorRT selects kLINEAR format when the user uses
reformat-free I/O with vectorized formats and with input/output tensors which have
only 3 dimensions. The workaround is to add an additional dimension to the tensors
with size 1 to make them 4 dimensional tensors.

‣ CuTensor based algorithms on TensorRT 8.0 EA are known to have significant
performance regressions due to an issue with the CUDA 11.3 compiler (5x-10x slower
than CUDA 11.0 builds). This is due to a compiler regression and the performance
should be recovered with a future CUDA release.

‣ When running TensorRT 8.0.0 with cuDNN 8.2.0, there is a known performance
regression for the deconvolution layer compared to running with previous cuDNN
releases. For example, some deconvolution layers can have up to 7x performance
regression on Turing GPUs compared to running with cuDNN 8.0.4. This will be fixed
in a future cuDNN release.

‣ There is a known false alarm reported by the Valgrind memory leak check tool when
detecting potential memory leaks from TensorRT applications. The recommended
way for suppressing the false alarm is to provide a Valgrind suppression file with the
following contents when running the Valgrind memory leak check tool.
{
 Ignore the dlopen false alarm.
 Memcheck:Leak
 ...
 fun:_dl_open
 ...
}

‣ There is an up to 8% performance regression compared to TensorRT 7.2.3 for
DenseNet variants on Volta GPUs.

‣ There is an up to 24% performance regression compared to TensorRT 7.2.3 for
networks containing Slice layers on Turing GPUs.

‣ While using the TensorRT static library, users are still required to have the cuDNN/
cuBLAS dynamic libraries installed at runtime. This issue will be resolved in the GA
release so that cuDNN/cuBLAS static libraries will always be used instead.

‣ An issue was discovered while compiling the TensorRT samples using the TensorRT
static libraries with a GCC version older than 5.x. When using RHEL/CentOS 7.x, you
may observe a crash with the error message munmap_chunk(): invalid pointer if
the patch below is not applied. More details regarding this issue with a workaround
for your own application can be found in the TensorRT Sample Support Guide.
--- a/samples/Makefile.config
+++ b/samples/Makefile.config
@@ -331,13 +331,13 @@ $(OUTDIR)/$(OUTNAME_DEBUG) : $(DOBJS) $(CUDOBJS)
 else
 $(OUTDIR)/$(OUTNAME_RELEASE) : $(OBJS) $(CUOBJS)

https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#building-samples

TensorRT Release 8.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 97

 $(ECHO) Linking: $@
- (AT)(CC) -o $@ $^ $(LFLAGS) -Wl,--start-group $(LIBS) -Wl,--end-group
+ (AT)(CC) -o $@ $(LFLAGS) -Wl,--start-group $(LIBS) $^ -Wl,--end-group
 # Copy every EXTRA_FILE of this sample to bin dir
 $(foreach EXTRA_FILE,$(EXTRA_FILES), cp -f $(EXTRA_FILE)$(OUTDIR)/$(EXTRA_FILE);)

 $(OUTDIR)/$(OUTNAME_DEBUG) : $(DOBJS) $(CUDOBJS)
 $(ECHO) Linking: $@
- (AT)(CC) -o $@ $^ $(LFLAGSD) -Wl,--start-group $(DLIBS) -Wl,--end-group
+ (AT)(CC) -o $@ $(LFLAGSD) -Wl,--start-group $(DLIBS) $^ -Wl,--end-group
 endif

 $(OBJDIR)/%.o: %.cpp

‣ The tactic source cuBLASLt cannot be selected on SM 3.x devices for CUDA 10.x. If
selected, it will fallback to using cuBLAS.

NVIDIA TensorRT RN-08624-001_v8.4.3 | 98

Chapter 2. TensorRT Release 7.x.x

2.1. TensorRT Release 7.2.3

ATTENTION:

This is the TensorRT 7.2.3 GA release notes for Windows and Linux x86 users. For NVIDIA
Jetson Linux for Tegra users, TensorRT 7.2.3 is an Early Access (EA) release specifically
for MLPerf Inference. For production use of TensorRT, we recommend using the TensorRT
7.1.3 GA.

These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

Note: The release schedule for the TensorRT 7.2.3 Python pip packages is aligned to the
Deep Learning Frameworks 21.03 release and may not be available at the same time as the
TensorRT 7.2.3 general release.

This release includes several fixes from the previous TensorRT 7.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Updated the list of supported TensorFlow ops. See Supported Ops for more
information.

Breaking API Changes

‣ When building the TensorRT samples statically using the TRT_STATIC=1 make
option, the suffix _static will be appended to the output binary file name. For more
information, refer to the Building Samples Using Static Libraries section.

https://mlcommons.org/en/
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#supported-ops
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#building-samples

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 99

Compatibility

‣ TensorRT 7.2.3 has been tested with the following:

‣ cuDNN 8.1.1

‣ TensorFlow 1.15.3

‣ PyTorch 1.5.0

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2, 11.0 update 1, 11.1 update 1, and 11.2
update 1.

Note: If you are developing an application that is being compiled with CUDA 11.2 or
you are using CUDA 11.2 libraries to run your application, then you must install CUDA
11.1 using either the Debian/RPM packages or using a CUDA 11.1 tar/zip/exe package.
NVRTC from CUDA 11.1 is a runtime requirement of TensorRT and must be present to
run TensorRT applications. If you are using the network repo installation method, this
additional step is not needed.

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section. Other semantically compatible releases of cuDNN and cuBLAS
can be used, however, other versions may have performance improvements as well as
regressions. In rare cases, functional regressions might also be observed.

Limitations

‣ TensorRT 7.2 only supports per-tensor quantization scales for both activations and
weights in explicit precision mode. No shift weights are allowed for the QDQ scale
layer as only symmetric quantization is supported. For more information, refer to the
Working With Explicit Precision Using C++ section.

‣ Loops and DataType::kBOOL are not supported when the static TensorRT library is
used.

‣ When using reformat-free I/O, the extent of a tensor in a vectorized dimension might
not be a multiple of the vector length. Elements in a partially occupied vector that are
not within the tensor are referred to here as vector-padding. For example:

‣ On GPU

‣ for input tensors, the application shall set vector-padding elements to zero.

‣ for output tensors, the value of vector-padding elements is undefined. In a
future release, TensorRT will support setting them to zero.

‣ On DLA

‣ for input tensors, vector-padding elements are ignored.

https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-811
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.3
https://github.com/pytorch/pytorch/releases/tag/v1.5.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 100

‣ for output tensors, vector-padding elements are unmodified.

‣ When running INT8 networks on DLA using TensorRT, operations must be added to
the same subgraph to reduce quantization errors across the subgraph of the network
that runs on the DLA by allowing them to fuse and retain higher precision for
intermediate results. Breaking apart the subgraph in order to inspect intermediate
results by setting the tensors as network output tensors, can result in different
levels of quantization errors due to these optimizations being disabled.

‣ The IExecutionContext contains shared resources, therefore, calling enqueue or
enqueueV2 in from the same IExecutionContext object with different CUDA streams
concurrently results in undefined behavior. To perform inference concurrently in
multiple CUDA streams, use one IExecutionContext per CUDA stream.

Deprecated Features

The following features are deprecated in TensorRT 7.2.3:

‣ IRNNLayer was deprecated in TensorRT 4.0 and will be removed in TensorRT 8.0.
IRNNv2Layer was deprecated in TensorRT 7.2.1 and will be removed in TensorRT 9.0.
IRNNv2Layer has been deprecated in favor of the loop API, however, it is still available
for backwards compatibility. For more information about the loop API, refer to the
sampleCharRNN sample with the --Iloop option as well as the Working With Loops
chapter.

‣ We have deprecated the Caffe Parser and UFF Parser in TensorRT 7.0. They will
be tested and functional in the next major release of TensorRT 8.0, however, we
plan to remove the support in the subsequent major release. Ensure you migrate
your workflow to use tf2onnx, keras2onnx or TensorFlow-TensorRT (TF-TRT) for
deployment.

If using UFF, ensure you migrate to the ONNX workflow through enablement
of a plugin. ONNX workflow is not dependent on plugin enablement. For plugin
enablement of a plugin on ONNX, refer to Estimating Depth with ONNX Models and
Custom Layers Using NVIDIA TensorRT.

‣ For TensorFlow to ONNX and then to TensorRT, refer to Speeding up Deep
Learning Inference Using TensorFlow, ONNX, and TensorRT.

‣ For PyTorch to ONNX and then to TensorRT, refer to Speeding up Deep Learning
Inference Using TensorRT.

‣ We have deprecated TensorFormat::kCHW4 as the DLA color image format. Instead,
use TensorFormat::kDLA_HWC4 to specify the DLA color image formats.

‣ Interface functions that provided a destroy function will be deprecated in TensorRT
8.0 and will be removed in TensorRT 10.0. The destructors will be exposed publicly in
order for the delete operator to work as expected on these classes.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 101

Fixed Issues

‣ IIdentityLayer was broken prior to TensorRT 7.0, such that it worked only for
identity operations and FP16 to FP32 conversions. The problem was fixed in
TensorRT 7.0, however, the fix was omitted from the Release Notes. See comments in
NvInfer.h about class IIdentityLayer for a list of supported conversions.

‣ Fixed a bug in the builder where networks with depthwise separable convolution
layers whose output was also an FP32 output of the network would have failed
earlier.

Announcements

‣ Support for Python 2 will be dropped in the next major TensorRT release. This means
that TensorRT will no longer include wheels for Python 2, and Python samples will not
work with Python 2. Ensure you migrate your application to Python version 3.

Known Issues

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in a future release.

‣ There is a known issue that graph capture may fail in some cases for
IExecutionContext::enqueue() and IExecutionContext::enqueueV2(). For
more information, refer to the documentation for IExecutionContext::enqueueV2(),
including how to work around this issue.

‣ Some fusions are not enabled when the TensorRT static library is used. This means
there is a performance loss of around 10% for networks like BERT and YOLO3 when
linking with the static library compared to the dynamic library. The performance loss
depends on precision used and batch size and it can be up to 60% in some cases.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit those weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation
type of the forward pass does not match the activation type of the reverse pass in
bidirectional cases.

‣ Convolution layers with dynamic shapes and large range of possible index dimensions
in the profile have a known build time performance issue. This can be bypassed by
using IAlgorithmSelector and disabling cudnnConvolution tactics.

‣ There is a known performance regression compared to TensorRT 7.1 for some
networks dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on Maxwell and Pascal GPUs.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=iexecutioncontext

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 102

‣ There is a known performance regression compared to TensorRT 7.1 for Convolution
layers with kernel size greater than 5x5. For example, it can lead up to 35%
performance regression of the VGG16 UFF model compared to TensorRT 7.1. This will
be fixed in a future release.

‣ If the network contains an ElementWise layer, where one operand is a constant
and the const rank is > 4, there is going to be a fusion to the Scale layer which
doesn't support per element scale. The case can be seen for the Convolution
and FullyConnected layers with bias where ONNX decomposes the bias to
be ElementWise. To workaround this issue, add an Identity layer between the
ElementWise and the const to prevent the fusion.

‣ Due to limitations with how requirements can be specified with the RPM application
version supported by RHEL/CentOS 7.x, the cuBLAS development package from
CUDA 11.1 is required when you are developing applications using TensorRT and
CUDA 11.2. Your build environment can reference cuBLAS 11.2 without issues; this is
only a packaging issue. This issue will be resolved with the next major CUDA version.
Ubuntu does not have this limitation, therefore, cuBLAS 11.1 is not required for CUDA
11.2 development on those OS’s.

‣ Some RNN networks such as Cortana with FP32 precision and batch size of 8 or
higher have up to a 20% performance loss with CUDA 11.0 or higher compared to
CUDA 10.2.

‣ You must have libcublas.so.* present on your system while running an application
linked with the TensorRT static library. TensorRT now links to cuBLAS using dlopen()
rather than at compiler link time for both the dynamic and static libraries. A solution
to this problem will be worked out in a future release so that cuBLAS can be statically
linked once again for applications which require the TensorRT static library.

‣ There is an up to 8% performance regression compared to TensorRT 7.1 for some
networks with heavy FullyConnected operation on Nano.

‣ There is a known issue that TensorRT selects kLINEAR format when the user uses
reformat-free I/O with vectorized formats and with input/output tensors which have
only 3 dimensions. The workaround is to add an additional dimension to the tensors
with size 1 to make them 4 dimensional tensors.

‣ When running networks such as Cortana, LSTM Peephole, MLP, and Faster RCNN you
may observe a 5% to 16% performance regression on GA102 devices and a 7% to
36% performance regression on GA104 devices.

‣ When using TensorRT 7.2.3 with DLA, deconvolution layers with square kernels
and strides greater than 23 are known to slow down build time by hours. Use
IBuilderConfig:: setDeviceType(const ILayer* layer, DeviceType

deviceType) to run these layers on the GPU. [JetPack issue]

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 103

2.2. TensorRT Release 7.2.2
These are the TensorRT 7.2.2 release notes and are applicable to Windows and Linux x86
users.

These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 7.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added support for Python 3.8. The Linux tar packages now include TensorRT Python
binding wheel files that support Python 3.8.

Note: TensorFlow 1.15.x does not support Python 3.8. Continue to use an earlier
Python version if you require UFF support. Updating the TensorRT samples to support
TensorFlow 2.x will be done in a future release.

‣ Added the following debugging tools:

Note: Although these tools are shipped with TensorRT, their utility extends beyond the
TensorRT workflow.

ONNX GraphSurgeon API Reference
ONNX GraphSurgeon provides a convenient way to create and modify ONNX
models. For more information, see ONNX GraphSurgeon API Reference.

Polygraphy API Reference
Polygraphy is a toolkit designed to assist in running and debugging deep learning
models in various frameworks. For more information, refer to the Polygraphy API.

PyTorch-Quantization Toolkit User Guide
PyTorch-Quantization is a toolkit for training and evaluating PyTorch models with
simulated quantization. Quantization can be added to the model automatically,
or manually, allowing the model to be tuned for accuracy and performance. The
quantized model can be exported to ONNX and imported to an upcoming version
of TensorRT. For more information, refer to the PyTorch-Quantization Toolkit User
Guide.

‣ Added instructions and a list of limitations for how to build the TensorRT samples
using the TensorRT static libraries, including cuDNN and other CUDA libraries that

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/polygraphy/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/index.html

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 104

are statically linked. For more information, refer to the Building Samples Using Static
Libraries section in the Working With TensorRT Samples.

‣ Added a Quick Start Guide. This guide is a starting point for users who want to try
out TensorRT; specifically, this document enables users to quickly deploy and run
inference on a finished TensorRT engine.

Compatibility

‣ TensorRT 7.2.2 has been tested with the following:

‣ cuDNN 8.0.5

‣ TensorFlow 1.15.3

‣ PyTorch 1.5.0

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2, 11.0 update 1, 11.1 update 1, and 11.2.

Note: If you are developing an application that is being compiled with CUDA 11.2 or
you are using CUDA 11.2 libraries to run your application, then you must install CUDA
11.1 using either the Debian/RPM packages or using a CUDA 11.1 tar/zip/exe package.
NVRTC from CUDA 11.1 is a runtime requirement of TensorRT and must be present to
run TensorRT applications. If you are using the network repo installation method, this
additional step is not needed.

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section in the TensorRT Support Matrix. Other semantically compatible
releases of cuDNN and cuBLAS can be used, however, other versions may have
performance improvements as well as regressions. In rare cases, functional
regressions might also be observed.

Limitations

‣ TensorRT 7.2 only supports per-tensor quantization scales for both activations and
weights in explicit precision mode. No shift weights are allowed for the QDQ scale
layer as only symmetric quantization is supported. For more information, refer to the
Working With Explicit Precision Using C++ in the TensorRT Developer Guide for more
information.

‣ Loops and DataType::kBOOL are not supported when the static TensorRT library is
used.

‣ When using reformat-free I/O, the extent of a tensor in a vectorized dimension might
not be a multiple of the vector length. Elements in a partially occupied vector that are
not within the tensor are referred to here as vector-padding. For example:

‣ On GPU

https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#building-samples
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#building-samples
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-805
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.3
https://github.com/pytorch/pytorch/releases/tag/v1.5.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 105

‣ for input tensors, the application shall set vector-padding elements to zero.

‣ for output tensors, the value of vector-padding elements is undefined. In a
future release, TensorRT will support setting them to zero.

‣ On DLA

‣ for input tensors, vector-padding elements are ignored.

‣ for output tensors, vector-padding elements are unmodified.

‣ When running INT8 networks on DLA using TensorRT, operations must be added to
the same subgraph to reduce quantization errors across the subgraph of the network
that runs on the DLA by allowing them to fuse and retain higher precision for
intermediate results. Breaking apart the subgraph in order to inspect intermediate
results by setting the tensors as network output tensors, can result in different
levels of quantization errors due to these optimizations being disabled.

‣ There is a known issue that TensorRT selects kLINEAR format when the user uses
reformat-free I/O with vectorized formats and with input/output tensors which have
only 3 dimensions. The workaround is to add an additional dimension to the tensors
with size 1 to make them 4 dimensional tensors.

‣ The IExecutionContext contains shared resources, therefore, calling enqueue or
enqueueV2 in from the same IExecutionContext object with different CUDA streams
concurrently results in undefined behavior. To perform inference concurrently in
multiple CUDA streams, use one IExecutionContext per CUDA stream.

Deprecated Features

The following features are deprecated in TensorRT 7.2.2:

‣ IRNNLayer was deprecated in TensorRT 4.0 and will be removed in TensorRT 8.0.
IRNNv2Layer was deprecated in TensorRT 7.2.1 and will be removed in TensorRT 9.0.
IRNNv2Layer has been deprecated in favor of the loop API, however, it is still available
for backwards compatibility. For more information about the loop API, refer to the
sampleCharRNN sample with the --Iloop option as well as the Working With Loops
chapter in the TensorRT Developer Guide.

‣ We have deprecated the Caffe Parser and UFF Parser in TensorRT 7.0. They will
be tested and functional in the next major release of TensorRT 8.0, however, we
plan to remove the support in the subsequent major release. Ensure you migrate
your workflow to use tf2onnx, keras2onnx or TensorFlow-TensorRT (TF-TRT) for
deployment.

If using UFF, ensure you migrate to the ONNX workflow through enablement
of a plugin. ONNX workflow is not dependent on plugin enablement. For plugin
enablement of a plugin on ONNX, refer to Estimating Depth with ONNX Models and
Custom Layers Using NVIDIA TensorRT.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 106

‣ For TensorFlow to ONNX and then to TensorRT, refer to Speeding up Deep
Learning Inference Using TensorFlow, ONNX, and TensorRT.

‣ For PyTorch to ONNX and then to TensorRT, refer to Speeding up Deep Learning
Inference Using TensorRT.

Fixed Issues

‣ If you had started with a clean system installation and you had not installed the
CUDA Toolkit prior to installing the TensorRT samples, then you may of needed to
manually install cuda-nvcc-XX-Y and cuda-nvprof-XX-Y, where XX-Y matches the
CUDA major and minor version for your desired setup. Without these additional
packages, you may have encountered compile errors while building the TensorRT
samples. This issue has been fixed in this release.

‣ There was up to 23% performance regression on Volta GPUs for some RNN networks.
This issue has been fixed in this release. (not applicable for Jetson platforms)

‣ There was a known accuracy issue of 3D U-Net networks on NVIDIA Ampere GPUs
where TF32 mode is enabled by default. This issue has been fixed in this release.

Announcements

‣ Support for Python 2 will be dropped in a future TensorRT release. This means that
TensorRT will no longer include wheels for Python 2, and Python samples will not
work with Python 2. Ensure you migrate your application to Python version 3.

Known Issues

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in a future release.

‣ There is a known issue that graph capture may fail in some cases for
IExecutionContext::enqueue() and IExecutionContext::enqueueV2(). For more
information, refer to the documentation for IExecutionContext::enqueueV2(),
including how to work around this issue.

‣ Some fusions are not enabled when the static library is used. This means there is a
performance loss of around 10% for networks like BERT and YOLO3 when linking with
the static library compared to the dynamic library. The performance loss depends on
precision used and batch size and it can be up to 60% in some cases.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit those weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation
type of the forward pass does not match the activation type of the reverse pass in
bidirectional cases.

https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=iexecutioncontext

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 107

‣ Convolution layers with dynamic shapes and large range of possible index dimensions
in the profile have a known build time performance issue. This can be bypassed by
using IAlgorithmSelector and disabling cudnnConvolution tactics.

‣ There is a known performance regression compared to TensorRT 7.1 for some
networks dominated by FullyConnected with activation and bias operations:

‣ up to 12% in FP32 mode. This will be fixed in a future release.

‣ up to 10% in FP16 mode on Maxwell and Pascal GPUs.

‣ There is a known performance regression compared to TensorRT 7.1 for Convolution
layers with kernel size greater than 5x5. For example, it can lead up to 35%
performance regression of the VGG16 UFF model compared to TensorRT 7.1. This will
be fixed in a future release.

‣ If the network contains an ElementWise layer, where one operand is a constant
and the const rank is > 4, there is going to be a fusion to the Scale layer which
doesn't support per element scale. The case can be seen for the Convolution
and FullyConnected layers with bias where ONNX decomposes the bias to
be ElementWise. To workaround this issue, add an Identity layer between the
ElementWise and the const to prevent the fusion.

‣ Due to limitations with how requirements can be specified with the RPM version
supported by RHEL/CentOS 7.x, the cuBLAS development package from CUDA 11.1
is required when you are developing applications using TensorRT and CUDA 11.2. Your
build environment can reference cuBLAS 11.2 without issues; this is only a packaging
issue. This issue will be resolved with future CUDA versions. Ubuntu does not have
this limitation, therefore, cuBLAS 11.1 is not required for CUDA 11.2 development on
those OS’s.

‣ Some RNN networks such as Cortana with FP32 precision and batch size of 8 or
higher have up to a 20% performance loss with CUDA 11.0 or higher compared to
CUDA 10.2.

‣ You must have libcublas.so.* present on your system while running an application
linked with the TensorRT static library. TensorRT now links to cuBLAS using dlopen()
rather than at compiler link time for both the dynamic and static libraries. A solution
to this problem will be worked out in a future release so that cuBLAS can be statically
linked once again for applications which require the TensorRT static library.

2.3. TensorRT Release 7.2.1
These are the TensorRT 7.2.1 release notes and are applicable to Linux x86, Windows x64
and Linux ARM Server Base System Architecture (SBSA) users.

These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 108

This release includes several fixes from the previous TensorRT 7.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added support for CUDA 11.1 and GeForce devices with compute capability version
8.6.

‣ Added support for Linux ARM Server Base System Architecture (SBSA) users on
Ubuntu 18.04.

‣ Added instructions for installing TensorRT from a pip wheel file. For step-by-
step instructions, refer to the pip Wheel File Installation section in the TensorRT
Installation Guide.

Compatibility

‣ TensorRT 7.2.1 has been tested with the following:

‣ cuDNN 8.0.4

‣ TensorFlow 1.15.3

‣ PyTorch 1.5.0

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2, 11.0 update 1, and 11.1.

‣ It is suggested that you use TensorRT with a software stack that has been tested;
including cuDNN and cuBLAS versions as documented in the Features For Platforms
And Software section in the TensorRT Support Matrix. Other semantically compatible
releases of cuDNN and cuBLAS can be used, however, other versions may have
performance improvements as well as regressions. In rare cases, functional
regressions might also be observed.

Limitations

‣ TensorRT 7.2 only supports per-tensor quantization scales for both activations and
weights in explicit precision mode. No shift weights are allowed for the QDQ scale
layer as only symmetric quantization is supported. For more information, refer to the
Working With Explicit Precision Using C++ in the TensorRT Developer Guide for more
information.

‣ Replace IRNNLayer and IRNNv2Layer with loops. IRNNLayer was deprecated in
TensorRT 4.0 and will be removed in TensorRT 8.0. IRNNv2Layer was deprecated in
TensorRT 7.2.1 and will be removed in TensorRT 9.0. Use the loop API to synthesize
a recurrent subnetwork. For an example, see sampleCharRNN sample, method
SampleCharRNNLoop::addLSTMCell. The loop API lets you express general recurrent

https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-pip
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-804
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.3
https://github.com/pytorch/pytorch/releases/tag/v1.5.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/cuda/archive/11.1/
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 109

networks instead of being limited to the prefabricated cells in IRNNLayer and
IRNNv2Layer.

‣ When using reformat-free I/O, the extent of a tensor in a vectorized dimension might
not be a multiple of the vector length. Elements in a partially occupied vector that are
not within the tensor are referred to here as vector-padding. For example:

‣ On GPU

‣ for input tensors, the application shall set vector-padding elements to zero.

‣ for output tensors, the value of vector-padding elements is undefined. In a
future release, TensorRT will support setting them to zero.

‣ On DLA

‣ for input tensors, vector-padding elements are ignored.

‣ for output tensors, vector-padding elements are unmodified.

‣ Loops and DataType::kBOOL are not supported when the static TensorRT library is
used.

‣ When running INT8 networks on DLA using TensorRT, operations must be added to
the same subgraph to reduce quantization errors across the subgraph of the network
that runs on the DLA by allowing them to fuse and retain higher precision for
intermediate results. Breaking apart the subgraph in order to inspect intermediate
results by setting the tensors as network output tensors, can result in different
levels of quantization errors due to these optimizations being disabled.

‣ There is a known issue that TensorRT selects kLINEAR format when the user uses
reformat-free I/O with vectorized formats and with input/output tensors which have
only 3 dimensions. The workaround is to add an additional dimension to the tensors
with size 1 to make them 4 dimensional tensors.

Deprecated Features

The following features are deprecated in TensorRT 7.2.1:

‣ Documented the deprecation policy of TensorRT. For details, see TensorRT
Deprecation Policy in the TensorRT Developer Guide.

‣ IRNNLayer was deprecated in TensorRT 4.0 and will be removed in TensorRT 8.0.
IRNNv2Layer was deprecated in TensorRT 7.2.1 and will be removed in TensorRT 9.0.
IRNNv2Layer has been deprecated in favor of the loop API, however, it is still available
for backwards compatibility. For more information about the loop API, refer to the
sampleCharRNN sample with the --Iloop option as well as the Working With Loops
chapter in the TensorRT Developer Guide.

‣ We have deprecated the Caffe Parser and UFF Parser in TensorRT 7. They will
be tested and functional in the next major release of TensorRT 8, however, we
plan to remove the support in the subsequent major release. Ensure you migrate

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#deprecation
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#deprecation
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/sampleCharRNN
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-loops

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 110

your workflow to use tf2onnx, keras2onnx or TensorFlow-TensorRT (TF-TRT) for
deployment.

If using UFF, ensure you migrate to the ONNX workflow through enablement
of a plugin. ONNX workflow is not dependent on plugin enablement. For plugin
enablement of a plugin on ONNX, refer to Estimating Depth with ONNX Models and
Custom Layers Using NVIDIA TensorRT.

‣ For TensorFlow to ONNX and then to TensorRT, refer to Speeding up Deep
Learning Inference Using TensorFlow, ONNX, and TensorRT.

‣ For PyTorch to ONNX and then to TensorRT, refer to Speeding up Deep Learning
Inference Using TensorRT.

Fixed Issues

‣ A symbol conflict between the cuBLAS static library and the TensorRT plugin
static library has been resolved. The Logger class used internally by the TensorRT
plugin library has been moved to a namespace to avoid symbol conflicts. You may
experience unexpected crashes during initialization or when exiting your application
if linking with TensorRT static libraries prior to this fix.

‣ There was a known performance regression on P100:

‣ 30% regression on 3D networks like 3D U-Net in FP32 mode

This issue has been fixed in this release. (not applicable for Jetson platforms)

‣ For Windows users with CUDA 11.0, some fusions were not enabled. This means
there was a performance loss of around 10% - 60% for networks like BERT and
YOLO3. The performance loss depends on the precision used and batch size. This
issue has been fixed in this release.

‣ There was up to a 10% performance regression for Inception V4 networks in FP32
mode on P100 and V100. This issue has been fixed in this release. (not applicable for
Jetson platforms)

‣ MobileNetV1 and MobileNetV2 networks had up to a 14% performance regression in
FP32 mode. This issue has been fixed in this release.

Announcements

‣ Support for Python 2 will be dropped in a future TensorRT release. This means that
TensorRT will no longer include wheels for Python 2, and Python samples will not
work with Python 2. Ensure you migrate your application to Python version 3.

Known Issues

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in a future release.

‣ There is a known issue that graph capture may fail in some cases for
IExecutionContext::enqueue() and IExecutionContext::enqueueV2(). For more

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/estimating-depth-beyond-2d-using-custom-layers-on-tensorrt-and-onnx-models/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorflow-onnx-and-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/
https://developer.nvidia.com/blog/speeding-up-deep-learning-inference-using-tensorrt/
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 111

information, refer to the documentation for IExecutionContext::enqueueV2(),
including how to work around this issue.

‣ There is up to 23% performance regression on Volta GPUs for some RNN networks.
(not applicable for Jetson platforms)

‣ Some fusions are not enabled when the static library is used. This means there
is a performance loss of around 10% for networks like BERT and YOLO3. The
performance loss depends on precision used and batch size and it can be up to 60%
in some cases.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit those weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation
type of the forward pass does not match the activation type of the reverse pass in
bidirectional cases.

‣ There is a known accuracy issue of 3D U-Net networks on NVIDIA Ampere
GPUs where TF32 mode is enabled by default. To workaround this issue, TF32
mode can be disabled via TensorRT or by setting the environment variable
NVIDIA_TF32_OVERRIDE=0 when an engine is built. For more information and how to
control TF32, see Enabling TF32 Inference Using C++ in the TensorRT Developer Guide.

‣ Convolution layers with dynamic shapes and large range of possible index dimensions
in the profile have a known build time performance issue. This can be bypassed by
using IAlgorithmSelector and disabling cudnnConvolution tactics.

‣ If you are starting with a clean system installation and you have not installed
the CUDA Toolkit prior to installing the TensorRT samples, then you may need to
manually install cuda-nvcc-XX-Y and cuda-nvprof-XX-Y, where XX-Y matches the
CUDA major and minor version for your desired setup. Without these additional
packages, you may encounter compile errors while building the TensorRT samples.
These additional dependencies will be corrected in a future release.

2.4. TensorRT Release 7.2.0

ATTENTION:

This is the TensorRT 7.2.0 release notes. We recommend PowerPC users download the
TensorRT 7.2.0 build for production use. For Linux and JetPack users, TensorRT 7.2.0 is a
Release Candidate (RC). As an RC release, this is a Preview for early testing and feedback.
For production use of TensorRT for Linux and JetPack users, we recommend downloading

https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=iexecutioncontext
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#tf32-inference-c

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 112

TensorRT 7.1.3. The RC release is subject to change based on ongoing performance tuning
and functional testing. For feedback, submit a bug on the NVIDIA Developer website.

These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 7.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
FullyConnected Layer optimization

‣ Improved performance with Tensor Core in INT8 mode.

‣ TensorRT now uses cuBLASLt internally instead of cuBLAS. This decreases the
overall runtime memory footprint. Users can revert to the old behavior by using
the new setTacticSources API in IBuilderConfig.

Compatibility

‣ TensorRT 7.2.0 has been tested with the following:

‣ cuDNN 8.0.2 for x86 and Jetson and 8.0.3 for PowerPC

‣ TensorFlow 1.15.3

‣ PyTorch 1.5.1

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2 for Jetson and 11.0 update 1 for x86 and
PowerPC.

Limitations

‣ TensorRT 7.2 only supports per-tensor quantization scales for both activations and
weights in explicit precision mode. No shift weights are allowed for the QDQ scale
layer as only symmetric quantization is supported. For more information, refer to the
Working With Explicit Precision Using C++ in the TensorRT Developer Guide for more
information.

‣ When using reformat-free I/O, the extent of a tensor in a vectorized dimension might
not be a multiple of the vector length. Elements in a partially occupied vector that are
not within the tensor are referred to here as vector-padding. For example:

‣ On GPU

‣ for input tensors, the application shall set vector-padding elements to zero.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#bug-reporting
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-802
https://docs.nvidia.com/deeplearning/cudnn/release-notes/rel_8.html#rel-803
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.3
https://github.com/pytorch/pytorch/releases/tag/v1.5.1
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-whats-new-11Upd1
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 113

‣ for output tensors, the value of vector-padding elements is undefined. In a
future release, TensorRT will support setting them to zero.

‣ On DLA

‣ for input tensors, vector-padding elements are ignored.

‣ for output tensors, vector-padding elements are unmodified.

Fixed Issues

‣ When using an RPM file on RedHat for a cuDNN installation, upgrading from cuDNN
v7 to cuDNN v8 directly or indirectly via TensorRT 7.1.3 would cause installation
errors. This issue has been fixed in the cuDNN 8.0.2 release.

Known Issues

‣ There is a known package dependency issue when installing the python-libnvinfer
RPM package on RHEL/CentOS 8.x. You will encounter the following error:
- nothing provides python >= 2.7 needed by python-libnvinfer-7.2.0-1.cuda11.0.ppc64le

Listed below are two options you can choose from to workaround this packaging
issue:

Option 1: Install the RPM package by ignoring the missing dependency.
Install TensorRT and Python 2.x first
sudo yum install tensorrt python2
Download the RPM package and install the package directly
sudo yum install yum-utils
yumdownloader python-libnvinfer
sudo rpm -Uvh --nodeps python-libnvinfer-*.rpm

Option 2: Install the TensorRT Python bindings using the Python wheel file.

An alternative to installing the RPM package for the Python bindings is to instead
install the Python wheel file from the TAR package using pip. Refer to step 6 within
the Tar File Installation section of the TensorRT Installation Guide.

The Python 3.x RPM packages are not affected by this dependency issue. This issue
will be resolved in the next release.

(not applicable for Jetson platforms)

‣ There is a known performance regression on some RNN networks:

‣ up to 12% on Pascal and Turing GPUs

‣ up to 20% on Volta GPUs

(not applicable for Jetson platforms)

‣ There is a known performance regression on P100:

‣ 30% regression on 3D networks like 3D U-Net in FP32 mode

(not applicable for Jetson platforms)

https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 114

‣ There is up to a 10% performance regression for Inception V4 networks in FP32 mode
on P100 and V100. (not applicable for Jetson platforms)

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in a future release.

‣ There is a known issue that graph capture may fail in some cases for
IExecutionContext::enqueue() and IExecutionContext::enqueueV2(). For more
information, refer to the documentation for IExecutionContext::enqueueV2(),
including how to work around this issue.

‣ On PowerPC, some RNN networks have up to a 15% performance regression
compared to TensorRT 7.0. (not applicable for Jetson platforms)

‣ MobileNetV1 and MobileNetV2 networks have up to a 14% performance regression in
FP32 mode.

‣ Some fusions are not enabled in the following cases:

‣ Windows with CUDA 11.0

‣ When the static library is used

This means there is a performance loss of around 10% for networks like BERT and
YOLO3. The performance loss depends on precision used and batch size and it can be
up to 60% in some cases.

‣ Loops and DataType::kBOOL are not supported when the static TensorRT library is
used.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit the weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation
type of the forward pass does not match the activation type of the reverse pass in
bidirectional cases.

‣ When using concat on the DLA, all inputs to concat must be exact multiples of
the vector size (16 for FP16, 32 for INT8). This will be fixed in a future release of
TensorRT.

2.5. TensorRT Release 7.1.3

ATTENTION:

This is the TensorRT 7.1.3 GA release notes. For production use of TensorRT, we
recommend using the TensorRT 7.1.3 build for CUDA 10.2. The CUDA 11.0 RC build is a
Preview release for early testing and feedback on NVIDIA A100. This release is subject

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=iexecutioncontext

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 115

to change based on ongoing performance tuning and functional testing. For feedback,
submit a bug on the NVIDIA Developer website.

These release notes are applicable to JetPack users of TensorRT unless appended
specifically with (not applicable for Jetson platforms).

This release includes several fixes from the previous TensorRT 7.x.x release as well as the
following additional changes. For previous TensorRT documentation, see the TensorRT
Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

Working with empty tensors

TensorRT supports empty tensors. A tensor is an empty tensor if it has one or more
dimensions with length zero. Zero-length dimensions usually get no special treatment.
If a rule works for a dimension of length L for an arbitrary positive value of L, it usually
works for L=0 too. For more information, see Working With Empty Tensors in the
TensorRT Developer Guide.

Builder layer timing cache

The layer timing cache will cache the layer profiling information during the builder
phase. If there are other layers with the same input/output tensor configuration
and layer params, then the TensorRT builder will skip profiling and reuse the cached
result for the repeated layers. Models with many repeated layers (for example,
BERT, WaveGlow, etc...) will see a significant speedup in builder time. The builder
flag kDISABLE_TIMING_CACHE can be set if you want to disable this feature. For more
information, see Builder Layer Timing Cache in the TensorRT Developer Guide and
Initializing The Engine in the Best Practices For TensorRT Performance.

Pointwise fusion based on code generation

Pointwise fusion was introduced in TensorRT 6.0.1 to fuse multiple adjacent pointwise
layers into one single layer. In this release, its implementation has been updated to use
code generation and runtime compilation to further improve performance. The code
generation and runtime compilation happen during execution plan building. For more
information, see the TensorRT Best Practices Guide.

Dilation support for deconvolution

IDeconvolutionLayer now supports a dilation parameter. This is accessible through
the C++ API, Python API, and the ONNX parser (see ConvTranspose). For more
information, IDeconvolutionLayer in the TensorRT Developer Guide.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#bug-reporting
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-empty-tensors
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#builder-layer-timing
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#initialize-engine
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#pointwise-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ideconvolutionlayer
https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deconvolution-layer

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 116

Selecting FP16 and INT8 kernels

TensorRT supports Mixed Precision Inference with FP32, FP16, or INT8 as supported
precisions. Depending on the hardware support, you can choose to enable either of
the above precision to accelerate inference. You can also choose to execute trtexec
with the “--best” option directly, which would enable all supported precisions for
inference resulting in best performance. For more information, see Mixed Precision in
the Best Practices For TensorRT Performance.

Calibration with dynamic shapes

INT8 calibration with dynamic shapes supports the same functionality as a
standard INT8 calibrator but for networks with dynamic shapes. You will need to
provide a calibration optimization profile that would be used to set the dimensions
for calibration. If a calibration optimization profile is not set, the first network
optimization profile will be used as a calibration optimization profile. For more
information, see INT8 Calibration With Dynamic Shapes in the TensorRT Developer
Guide.

Algorithm selection

Algorithm selection provides a mechanism to select and report algorithms for
different layers in a network. This can also be used to deterministically build TensorRT
engine or to reproduce the same implementations for layers in the engine. For more
information, see the Algorithm Selection and Determinism And Reproducibility In The
Builder topics in the TensorRT Developer Guide.

INT8 calibration

The Legacy class IInt8LegacyCalibrator is un-deprecated. It is provided
as a fallback option if the other calibrators yield poor results. A new
kCALIBRATION_BEFORE_FUSION has been added which allows calibration before fusion.
For more information, see INT8 Calibration Using C++ in the TensorRT Developer Guide.

Quantizing and dequantizing scale layers

A quantizing scale layer can be specified as a scale layer with output precision type of
INT8. Similarly, a dequantizing scale layer can be specified as a scale layer with output
precision type of FP32. Networks must be created with Explicit Precision mode to
use these layers. Quantizing and dequantizing (QDQ) scale layers only support per-
tensor quantization scales i.e. a single scale per tensor. Also, No shift weights are
allowed for the QDQ scale layer as only symmetric quantization is supported. For more
information, see Working With Explicit Precision Using C++ in the TensorRT Developer
Guide.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#mixed-precision
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#int8-calib-dynamic-shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#algorithm-select
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deter-repro
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deter-repro
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#optimizing_int8_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 117

Samples compilation

A new Makefile option TRT_STATIC=1 has been added which allows you to build the
TensorRT samples with TensorRT and most dependent libraries statically linked into
the sample binary.

Group normalization plugin

A new group normalization plugin has been added. For details on group normalization,
refer to the Group Normalization paper.

TF32 support

TF32 is enabled by default for DataType::kFLOAT. On the NVIDIA Ampere
architecture-based A100/GA100 GPU, TF32 can speed up networks using FP32,
typically with no loss of accuracy. It combines FP32 dynamic range and format with
FP16 precision. TF32 can be disabled via TensorRT or by setting the environment
variable NVIDIA_TF32_OVERRIDE=0 when an engine is built. For more information
and how to control TF32, see Enabling TF32 Inference Using C++ in the TensorRT
Developer Guide. (not applicable for Jetson platforms)

New plugins

Added new plugins for common operators in the BERT model, including embedding
layer normalization, skip layer normalization and multi-head attention.
embLayerNormPlugin

This plugin performs the following two tasks:

‣ Embeds an input sequence consisting of token IDs and segment IDs. This
consists of token embedding lookup, segment embedding lookup, adding
positional embeddings and finally, layer normalization.

‣ Preprocesses input masks that are used to mark valid input tokens in
sequences that are padded to the target sequence length. It assumes
contiguous input masks and encodes the masks as a single number denoting
the number of valid elements. This plugin supports FP32 mode and FP16 mode.

skipLayerNormPlugin
This plugin adds a residual tensor, and applies layer normalization, meaning,
transforming the mean and standard deviation to beta and gamma, respectively.
Optionally, it can add a bias vector before layer normalization. This plugin supports
FP32 mode, FP16 mode, and INT8 mode. It may bring a negative impact on the end-
to-end prediction accuracy when running under INT8 mode.

bertQKVToContextPlugin
This plugin takes query, key, and value tensors and computes scaled multi-head
attention, that is to compute scaled dot product attention scores SoftMax(K'
* Q / sqrt(HeadSize)) and return values weighted by these attention scores.
This plugin supports FP32 mode, FP16 mode, and INT8 mode. It is optimized for

https://arxiv.org/abs/1803.08494
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#tf32-inference-c

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 118

sequence lengths 128 and 384, and INT8 mode is only available for those sequence
lengths.

These plugins only support GPUs with compute capability >= 7.0. For more
information about these new BERT-related plugins, see TensorRT Open Source
Plugins.

New sample
sampleAlgorithmSelector

sampleAlgorithmSelector shows an example of how to use the algorithm
selection API based on sampleMNIST. This sample demonstrates the usage of
IAlgorithmSelector to deterministically build TensorRT engines. It also shows
the usage of IAlgorithmSelector::selectAlgorithms to define heuristics for
selection of algorithms. For more information, see Algorithm Selection in the
TensorRT Developer Guide, Algorithm Selection API Usage Example Based On
sampleMNIST In TensorRT in the TensorRT Samples Support Guide.

onnx_packnet

onnx_packnet is a Python sample which uses TensorRT to perform inference with
the PackNet network. PackNet is a self-supervised monocular depth estimation
network used in autonomous driving. For more information, refer to TensorRT
Inference Of ONNX Models With Custom Layers in the TensorRT Sample Support
Guide.

Multi-Instance GPU (MIG)

Multi-instance GPU, or MIG, is a new feature in NVIDIA Ampere GPU architecture
that enables user-directed partitioning of a single GPU into multiple smaller GPUs.
This improves GPU utilization by enabling the GPU to be shared effectively by parallel
compute workloads on bare metal, GPU pass through, or on multiple vGPUs. For more
information, refer to Working With Multi-Instance GPU in the TensorRT Developer
Guide. (not applicable for Jetson platforms)

Improved ONNX Resize operator support

The ONNX resize modes asymmetric, align_corners, half_pixel, and
pytorch_half_pixel are now supported. For more information on these resize modes,
see the ONNX Resize Operator Specification.

Compatibility

‣ TensorRT 7.1.3 has been tested with the following:

‣ cuDNN 8.0.0 Preview

‣ TensorFlow 1.15.2

https://github.com/NVIDIA/TensorRT/tree/master/plugin
https://github.com/NVIDIA/TensorRT/tree/master/plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#algorithm-select
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplealgorithmselector
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplealgorithmselector
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#onnx_packnet
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#onnx_packnet
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#mig-ovr
https://github.com/onnx/onnx/blob/master/docs/Operators.md#Resize
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_8.html#rel-800-Preview
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 119

‣ PyTorch 1.4.0

Note: Due to a known issue in PyTorch (#32983), you need to use the CPU version
of PyTorch if you intend to load it with TensorRT; just as the TensorRT samples do.

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2 and CUDA 11.0 RC.

Limitations

‣ TensorRT 7.1 only supports per-tensor quantization scales for both activations and
weights in explicit precision mode. No shift weights are allowed for the QDQ scale
layer as only symmetric quantization is supported. For more information, refer to the
Working With Explicit Precision Using C++ in the TensorRT Developer Guide for more
information.

Deprecated Features

The following features are deprecated in TensorRT 7.1.3:

‣ The fc_plugin_caffe_mnist Python sample has been deprecated. The FCPlugin is not
selected by fc_plugin_caffe_mnist which was intended to demonstrate its usage.
This is because there is no default importer for FCPlugin in the Caffe parser.

‣ Python 2.7 support has been deprecated. A warning will be emitted when you import
the TensorRT bindings for Python 2.7. You should update your application to support
Python 3.x to prevent issues with future TensorRT releases. In addition, the legacy
Python bindings have been removed. You will need to migrate your application to the
new Python bindings if you haven’t done so already. Refer to the Python Migration
Guide for more information.

‣ Support for CUDA Compute Capability version 3.0 has been removed. Support for
CUDA Compute Capability versions 5.0 and lower may be removed in a future release.
Specifically:

CUDA Compute Capability Version Status

Maxwell SM 5.0 (2014-2017):

‣ GM10X - GeForce 745

‣ GM10X - GeForce 750

‣ GM10X - GeForce 830

‣ GM10X - GeForce 840

‣ Quadro K620

‣ Quadro K1200

‣ Quadro K2200

‣ M5XX

Supported

https://github.com/pytorch/pytorch/releases/tag/v1.4.0
https://github.com/pytorch/pytorch/issues/32983
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/archive/11.0/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/migrationGuide.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/migrationGuide.html

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 120

CUDA Compute Capability Version Status
‣ M6XX

‣ M1XXX

‣ M2000

Kepler SM 3.7 (2014):

‣ GK210 - K8

Deprecated

Kepler SM 3.5 (2013):

‣ GK110 - K20

‣ GeForce GTX 780 family

‣ GTX Titan

Deprecated

Kepler SM 3.0 (2012):

‣ GK10X GPUs

‣ GeForce 600 series

‣ K10

‣ GRID K1/K2

‣ Quadro K series

Removed

‣ Many methods of class IBuilder have been deprecated. The following table shows
deprecated methods of class IBuilder that have replacements in IBuilder:

Deprecated IBuilder Method IBuilder Replacement

createNetwork() createNetworkV2(0)

buildCudaEngine(network) buildEngineWithConfig(network,config)

reset(network) reset()

The next table shows the deprecated methods of IBuilder that have direct
equivalents in class IBuilderConfig with the same name.

Deprecated IBuilder Methods with Direct Equivalents in IBuilderConfig

‣ setMaxWorkspaceSize

‣ getMaxWorkspaceSize

setInt8Calibrator

‣ setDeviceType

‣ getDeviceType

‣ isDeviceTypeSet

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 121

Deprecated IBuilder Methods with Direct Equivalents in IBuilderConfig

‣ resetDeviceType

‣ setDefaultDeviceType

‣ getDefaultDeviceType

canRunOnDLA

‣ setDLACore

‣ getDLACore

‣ setEngineCapability

‣ getEngineCapability

Timing methods in IBuilder also have replacements in IBuilderConfig, with new
names.

Deprecated IBuilder Method Replacement In IBuilderConfig

setMinFindIterations setMinTimingIterations

getMinFindIterations getMinTimingIterations

setAverageFindIterations setAvgTimingIterations

getAverageFindIterations getAvgTimingIterations

Finally, some IBuilder methods related to boolean properties have been replaced
with methods for setting/getting flags. For example, these calls on an IBuilder:
builder.setHalf2Mode(true);
builder.setInt8Mode(false);

can be replaced with these calls on a IBuilderConfig:
config.setFlag(BuilderFlag::kFP16);
config.clearFlag(BuilderFlag::kINT8);

The following table lists the deprecated methods and the corresponding flag.

Deprecated IBuilder Method Corresponding Flag

‣ setHalf2Mode

‣ setFp16Mode

‣ getHalf2Mode

‣ getFp16Mode

BuilderFlag::kFP16

‣ setInt8Mode

‣ getInt8Mode

BuilderFlag::kINT8

setDebugSync BuilderFlag::kDEBUG

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 122

Deprecated IBuilder Method Corresponding Flag

‣ setRefittable

‣ getRefittable

BuilderFlag::kREFIT

‣ setStrictTypeConstraints

‣ getStrictTypeConstraints

BuilderFlag::kSTRICT_TYPES

allowGPUFallback BuilderFlag::kGPU_FALLBACK

‣ The INvPlugin creator function has been deprecated since TensorRT 5.1.x and has
now been fully removed. We recommend that users upgrade their plugins to one of
the later plugin interfaces, refer to Extending TensorRT With Custom Layers section
in the TensorRT Developer Guide for more information.

Fixed Issues

‣ Fixed memory leaks in engine serialization when UFF models are used.

‣ Fixed a crash during engine build for networks with RNNv2 on Windows.

‣ Statically linking with TensorRT library resulted in segfault in certain cases. The issue
is now fixed.

‣ Fixed multiple bugs related to dynamic shapes, specifically:

‣ padding modes for convolution and deconvolution,

‣ engines with multiple optimization profiles, and

‣ empty tensors (tensors with zero volume).

Announcements

‣ Boolean shape tensors now supported:

‣ IElementwiseLayer with kLESS, kEQUAL, kGREATER, kAND, kOR, kXOR can operate on
shape tensors.

‣ ISelectLayer can operate on shape tensors.

‣ IUnaryLayer with kNOT is not supported for shape tensors.

‣ NVIDIA TensorRT Inference Server has been renamed to NVIDIA Triton Inference
Server. For more information, refer to the Triton Inference Server documentation.

Known Issues

‣ In the CUDA 11.0 RC release, there is a known performance regression on some RNN
networks:

‣ up to 50% on Turing GPUs

‣ up to 12% on Pascal and Volta GPUs

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#elementwise-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#select-layer
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#unary-layer
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 123

‣ There is known performance regression between 30-80% for networks like ResNet-50
and MobileNet when run in FP16 mode on SM50 devices.

‣ The Windows library size is 600 MB bigger than the Linux library size. This will be
fixed in the next release.

‣ Static compiling of samples with the CentOS7 CUDA 11.0 RC build fails.

‣ There is a known performance regressions on P100:

‣ 50-100% regression on 3D networks like 3D U-Net

‣ 17% on Xception in FP16 mode

‣ There is a known performance regression for Inception V3 and V4 networks in FP32
mode:

‣ up to 60% on V100

‣ up to 15% on RTX6000

‣ Some fusions are not enabled on Windows with CUDA 11. This would mean
performance loss of around 10% for networks like YOLO3.

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in a future release.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit the weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation
type of the forward pass does not match the activation type of the reverse pass in
bidirectional cases.

‣ Some fusions are not enabled in the following cases:

‣ Windows with CUDA 11

‣ When the static library is used

This means there is a performance loss of around 10% for networks like BERT and
YOLO3. The performance loss depends on precision used and batch size and it can be
up to 60% in some cases.

‣ Loops and DataType::kBOOL are not supported when the static TensorRT library is
used.

‣ There is an error in the config.py file included in the
sampleUffFasterRCNN sample. Specifically, line 34 in the config
file should be changed from: dynamic_graph.remove('input_2')
todynamic_graph.remove(dynamic_graph.find_nodes_by_name('input_2'))

‣ Updated: June 25, 2020

When using an RPM file on RedHat for installation, installing cuDNN v8 directly or via
TensorRT 7.1.3 will enable users to build their application with cuDNN v8. However,

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 124

in order for the user to compile an application with cuDNN v7 after cuDNN v8 is
installed, the user will need to perform the following steps:

 1. Issue sudo mv /usr/include/cudnn.h /usr/include/cudnn_v8.h.

 2. Issue sudo ln -s /etc/alternatives/libcudnn /usr/include/cudnn.h.

 3. Switch to cuDNN v7 by issuing sudo update-alternatives --config libcudnn
and choose cuDNN v7 from the list.

Steps 1 and 2 are required for the user to be able to switch between v7 and v8
installations. After steps 1 and 2 are performed once, step 3 can be used repeatedly
and the user can choose the appropriate cuDNN version to work with. For more
information, refer to the Installing From An RPM File and Upgrading From v7 To v8
sections in the cuDNN Installation Guide.

2.6. TensorRT Release 7.1.2 Release
Candidate (RC)

These are the TensorRT 7.1.2 Release Candidate (RC) release notes and are applicable
to data center and workstation Linux users. This release includes several fixes from
the previous TensorRT 7.x.x release as well as the following additional changes. These
release notes are applicable to workstation, server, and JetPack users unless appended
specifically with (not applicable for Jetson platforms).

For previous TensorRT documentation, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
INT8 calibration

The Legacy class IInt8LegacyCalibrator is un-deprecated. It is provided
as a fallback option if the other calibrators yield poor results. A new
kCALIBRATION_BEFORE_FUSION has been added which allows calibration before fusion.
For more information, see INT8 Calibration Using C++ in the TensorRT Developer Guide.

Quantizing and dequantizing scale layers

A quantizing scale layer can be specified as a scale layer with output precision type of
INT8. Similarly, a dequantizing scale layer can be specified as a scale layer with output
precision type of FP32. Networks must be created with Explicit Precision mode to
use these layers. Quantizing and dequantizing (QDQ) scale layers only support per-
tensor quantization scales i.e. a single scale per tensor. Also, No shift weights are
allowed for the QDQ scale layer as only symmetric quantization is supported. For more
information, see Working With Explicit Precision Using C++ in the TensorRT Developer
Guide.

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-rpm
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#upgrade
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#optimizing_int8_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 125

Samples compilation

A new Makefile option TRT_STATIC=1 has been added which allows you to build the
TensorRT samples with TensorRT and most dependent libraries statically linked into
the sample binary.

Group normalization plugin

A new group normalization plugin has been added. For details on group normalization,
refer to the Group Normalization paper.

TF32 support

TF32 is enabled by default for DataType::kFLOAT. On the NVIDIA Ampere
architecture-based A100/GA100 GPU, TF32 can speed up networks using FP32,
typically with no loss of accuracy. It combines FP32 dynamic range and format with
FP16 precision. TF32 can be disabled via TensorRT or by setting the environment
variable NVIDIA_TF32_OVERRIDE=0 when an engine is built. For more information
and how to control TF32, see Enabling TF32 Inference Using C++ in the TensorRT
Developer Guide. (not applicable for Jetson platforms)

New plugins

Added new plugins for common operators in the BERT model, including embedding
layer normalization, skip layer normalization and multi-head attention.
embLayerNormPlugin

This plugin performs the following two tasks:

‣ Embeds an input sequence consisting of token IDs and segment IDs. This
consists of token embedding lookup, segment embedding lookup, adding
positional embeddings and finally, layer normalization.

‣ Preprocesses input masks that are used to mark valid input tokens in
sequences that are padded to the target sequence length. It assumes
contiguous input masks and encodes the masks as a single number denoting
the number of valid elements. This plugin supports FP32 mode and FP16 mode.

skipLayerNormPlugin
This plugin adds a residual tensor, and applies layer normalization, meaning,
transforming the mean and standard deviation to beta and gamma, respectively.
Optionally, it can add a bias vector before layer normalization. This plugin supports
FP32 mode, FP16 mode, and INT8 mode. It may bring a negative impact on the end-
to-end prediction accuracy when running under INT8 mode.

bertQKVToContextPlugin
This plugin takes query, key, and value tensors and computes scaled multi-head
attention, that is to compute scaled dot product attention scores SoftMax(K'
* Q / sqrt(HeadSize)) and return values weighted by these attention scores.
This plugin supports FP32 mode, FP16 mode, and INT8 mode. It is optimized for
sequence lengths 128 and 384, and INT8 mode is only available for those sequence
lengths.

https://arxiv.org/abs/1803.08494
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#tf32-inference-c

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 126

These plugins only support GPUs with compute capability >= 7.0. For more
information about these new BERT-related plugins, see TensorRT Open Source
Plugins.

Compatibility

‣ TensorRT 7.1.2 has been tested with the following:

‣ cuDNN 8.0.0 Preview

‣ TensorFlow 1.15.2

‣ PyTorch 1.4.0

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2 and 11.0 RC.

‣ Linux x86

Limitations

‣ TensorRT 7.1 only supports per-tensor quantization scales for both activations and
weights in explicit precision mode. No shift weights are allowed for the QDQ scale
layer as only symmetric quantization is supported. For more information, refer to the
Working With Explicit Precision Using C++ in the TensorRT Developer Guide for more
information.

Deprecated Features

The following features are deprecated in TensorRT 7.1.2:

‣ The fc_plugin_caffe_mnist Python sample has been deprecated. The FCPlugin is not
selected by fc_plugin_caffe_mnist which was intended to demonstrate its usage.
This is because there is no default importer for FCPlugin in the Caffe parser.

Announcements

‣ NVIDIA TensorRT Inference Server has been renamed to NVIDIA Triton Inference
Server. For more information, refer to the Triton Inference Server documentation.

Known Issues

‣ There is a known issue that graph capture may fail in some cases for
IExecutionContext::enqueue() and IExecutionContext::enqueueV2(). For more
information, refer to the documentation for IExecutionContext::enqueueV2(),
including how to work around this issue.

‣ There is a known ~40% performance regression on 3D networks like 3D Unet.

‣ There is a known ~50% performance regression on LSTM autoencoder with BS=8.

https://github.com/NVIDIA/TensorRT/tree/master/plugin
https://github.com/NVIDIA/TensorRT/tree/master/plugin
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel-800-Preview.html#rel-800-Preview
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2
https://github.com/pytorch/pytorch/releases/tag/v1.4.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/archive/11.0/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=iexecutioncontext

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 127

‣ There is a minor performance regression across a variety of networks that will be
fixed in TensorRT 7.1.x GA.

‣ The diagram in IRNNv2Layer is incorrect. This will be fixed in TensorRT 7.1.x GA.

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit the weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation
type of the forward pass does not match the activation type of the reverse pass in
bidirectional cases.

2.7. TensorRT Release 7.1.0 Early
Access (EA)

These are the TensorRT 7.1.0 Early Access (EA) release notes and are applicable to
NVIDIA® Jetson™ Linux for Tegra™ users. This release includes several fixes from the
previous TensorRT 6.0.0 and later releases as well as the following additional changes.
These release notes are applicable to workstation, server, and JetPack users unless
appended specifically with (not applicable for Jetson platforms).

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 7.0.0.

For previous TensorRT documentation, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
Working with empty tensors

TensorRT supports empty tensors. A tensor is an empty tensor if it has one or more
dimensions with length zero. Zero-length dimensions usually get no special treatment.
If a rule works for a dimension of length L for an arbitrary positive value of L, it usually
works for L=0 too. For more information, see Working With Empty Tensors in the
TensorRT Developer Guide.

Builder layer timing cache

The layer timing cache will cache the layer profiling information during the builder
phase. If there are other layers with the same input/output tensor configuration
and layer params, then the TensorRT builder will skip profiling and reuse the cached
result for the repeated layers. Models with many repeated layers (for example,
BERT, WaveGlow, etc...) will see a significant speedup in builder time. The builder
flag kDISABLE_TIMING_CACHE can be set if you want to disable this feature. For more

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#rnnv2-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-7.html#rel_7-0-0
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-empty-tensors

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 128

information, see Builder Layer Timing Cache in the TensorRT Developer Guide and
Initializing The Engine in the Best Practices For TensorRT Performance.

Pointwise fusion based on code generation

Pointwise fusion was introduced in TensorRT 6.0.1 to fuse multiple adjacent pointwise
layers into one single layer. In this release, its implementation has been updated to use
code generation and runtime compilation to further improve performance. The code
generation and runtime compilation happen during execution plan building. For more
information, see the TensorRT Best Practices Guide.

Dilation support for deconvolution

IDeconvolutionLayer now supports a dilation parameter. This is accessible through
the C++ API, Python API, and the ONNX parser (see ConvTranspose). For more
information, IDeconvolutionLayer in the TensorRT Developer Guide.

Selecting FP16 and INT8 kernels

TensorRT supports Mixed Precision Inference with FP32, FP16, or INT8 as supported
precisions. Depending on the hardware support, you can choose to enable either of
the above precision to accelerate inference. You can also choose to execute trtexec
with the “--best” option directly, which would enable all supported precisions for
inference resulting in best performance. For more information, see Mixed Precision in
the Best Practices For TensorRT Performance.

Calibration with dynamic shapes

INT8 calibration with dynamic shapes supports the same functionality as a
standard INT8 calibrator but for networks with dynamic shapes. You will need to
provide a calibration optimization profile that would be used to set the dimensions
for calibration. If a calibration optimization profile is not set, the first network
optimization profile will be used as a calibration optimization profile. For more
information, see INT8 Calibration With Dynamic Shapes in the TensorRT Developer
Guide.

Algorithm selection

Algorithm selection provides a mechanism to select and report algorithms for
different layers in a network. This can also be used to deterministically build TensorRT
engine or to reproduce the same implementations for layers in the engine. For more
information, see the Algorithm Selection and Determinism And Reproducibility In The
Builder topics in the TensorRT Developer Guide.

New sample

sampleAlgorithmSelector shows an example of how to use the algorithm
selection API based on sampleMNIST. This sample demonstrates the usage of
IAlgorithmSelector to deterministically build TensorRT engines. It also shows
the usage of IAlgorithmSelector::selectAlgorithms to define heuristics for
selection of algorithms. For more information, see Algorithm Selection in the TensorRT

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#builder-layer-timing
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#initialize-engine
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#pointwise-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ideconvolutionlayer
https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deconvolution-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#mixed-precision
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#int8-calib-dynamic-shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#algorithm-select
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deter-repro
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deter-repro
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#algorithm-select

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 129

Developer Guide, Algorithm Selection API Usage Example Based On sampleMNIST In
TensorRT in the TensorRT Samples Support Guide.

Compatibility

‣ TensorRT 7.1.0 has been tested with the following:

‣ cuDNN 8.0.0 Preview

‣ TensorFlow 1.15.2

‣ PyTorch 1.4.0

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 10.2.

‣ JetPack 4.4

Deprecated Features

The following features are deprecated in TensorRT 7.1.0:

‣ Python 2.7 support has been deprecated. A warning will be emitted when you import
the TensorRT bindings for Python 2.7. You should update your application to support
Python 3.x to prevent issues with future TensorRT releases. In addition, the legacy
Python bindings have been removed. You will need to migrate your application to the
new Python bindings if you haven’t done so already. Refer to the Python Migration
Guide for more information.

‣ Support for CUDA Compute Capability version 3.0 has been removed. Support for
CUDA Compute Capability versions 5.0 and lower may be removed in a future release.
Specifically:

CUDA Compute Capability Version Status

Maxwell SM 5.0 (2014-2017):

‣ GM10X - GeForce 745

‣ GM10X - GeForce 750

‣ GM10X - GeForce 830

‣ GM10X - GeForce 840

‣ Quadro K620

‣ Quadro K1200

‣ Quadro K2200

‣ M5XX

‣ M6XX

‣ M1XXX

‣ M2000

Supported

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplealgorithmselector
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplealgorithmselector
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel-800-Preview.html#rel-800-Preview
https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2
https://github.com/pytorch/pytorch/releases/tag/v1.4.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/migrationGuide.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/migrationGuide.html

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 130

CUDA Compute Capability Version Status

Kepler SM 3.7 (2014):

‣ GK210 - K8

Deprecated

Kepler SM 3.5 (2013):

‣ GK110 - K20

‣ GeForce GTX 780 family

‣ GTX Titan

Deprecated

Kepler SM 3.0 (2012):

‣ GK10X GPUs

‣ GeForce 600 series

‣ K10

‣ GRID K1/K2

‣ Quadro K series

Removed

‣ Many methods of class IBuilder have been deprecated. The following table shows
deprecated methods of class IBuilder that have replacements in IBuilder:

Deprecated IBuilder Method IBuilder Replacement

createNetwork() createNetworkV2(0)

buildCudaEngine(network) buildEngineWithConfig(network,config)

reset(network) reset()

The next table shows the deprecated methods of IBuilder that have direct
equivalents in class IBuilderConfig with the same name.

Deprecated IBuilder Methods with Direct Equivalents in IBuilderConfig

‣ setMaxWorkspaceSize

‣ getMaxWorkspaceSize

setInt8Calibrator

‣ setDeviceType

‣ getDeviceType

‣ isDeviceTypeSet

‣ resetDeviceType

‣ setDefaultDeviceType

‣ getDefaultDeviceType

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 131

Deprecated IBuilder Methods with Direct Equivalents in IBuilderConfig

canRunOnDLA

‣ setDLACore

‣ getDLACore

‣ setEngineCapability

‣ getEngineCapability

Timing methods in IBuilder also have replacements in IBuilderConfig, with new
names.

Deprecated IBuilder Method Replacement In IBuilderConfig

setMinFindIterations setMinTimingIterations

getMinFindIterations getMinTimingIterations

setAverageFindIterations setAvgTimingIterations

getAverageFindIterations getAvgTimingIterations

Finally, some IBuilder methods related to boolean properties have been replaced
with methods for setting/getting flags. For example, these calls on an IBuilder:
builder.setHalf2Mode(true);
builder.setInt8Mode(false);

can be replaced with these calls on a IBuilderConfig:
config.setFlag(BuilderFlag::kFP16);
config.clearFlag(BuilderFlag::kINT8);

The following table lists the deprecated methods and the corresponding flag.

Deprecated IBuilder Method Corresponding Flag

‣ setHalf2Mode

‣ setFp16Mode

‣ getHalf2Mode

‣ getFp16Mode

BuilderFlag::kFP16

‣ setInt8Mode

‣ getInt8Mode

BuilderFlag::kINT8

setDebugSync BuilderFlag::kDEBUG

‣ setRefittable

‣ getRefittable

BuilderFlag::kREFIT

‣ setStrictTypeConstraints BuilderFlag::kSTRICT_TYPES

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 132

Deprecated IBuilder Method Corresponding Flag
‣ getStrictTypeConstraints

allowGPUFallback BuilderFlag::kGPU_FALLBACK

‣ The INvPlugin creator function has been deprecated since TensorRT 5.1.x and has
now been fully removed. We recommend that users upgrade their plugins to one of
the later plugin interfaces, refer to Extending TensorRT With Custom Layers section
in the TensorRT Developer Guide for more information.

Fixed Issues

‣ DLA has restrictions on usage that were previously undocumented. Some programs
that might have worked, but violated these restrictions, are now expected to fail at
build time. For more information, see Restrictions With DLA and FAQs in the TensorRT
Developer Guide.

Announcements

‣ NVIDIA TensorRT Inference Server has been renamed to NVIDIA Triton Inference
Server. For more information, refer to the Triton Inference Server documentation.

Known Issues

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so any
attempt to refit the weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation
type of the forward pass does not match the activation type of the reverse pass in
bidirectional cases.

2.8. TensorRT Release 7.0.0
These are the TensorRT 7.0.0 release notes for Linux and Windows users. This release
includes fixes from the previous TensorRT 6.0.1 release as well as the following additional
changes. These release notes are applicable to workstation, server, and JetPack users
unless appended specifically with (not applicable for Jetson platforms).

For previous TensorRT release notes, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#extending
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#restrictions-with-dla
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#faqs-reformat
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 133

Working with loops

TensorRT supports loop-like constructs, which can be useful for recurrent networks.
TensorRT loops support scanning over input tensors, recurrent definitions of tensors,
and both “scan outputs” and “last value” outputs. For more information, see Working
With Loops in the TensorRT Developer Guide.

ONNX parser with dynamic shapes support

The ONNX parser supports full-dimensions mode only. Your network definition must
be created with the explicitBatch flag set. For more information, see Importing An
ONNX Model Using The C++ Parser API and Working With Dynamic Shapes in the
TensorRT Developer Guide for more information.

TensorRT container with OSS

The TensorRT monthly container release now contains pre-built binaries from the
TensorRT Open Source Repository. For more information, refer to the monthly
released TensorRT Container Release Notes starting in 19.12+.

BERT INT8 and mixed precision optimizations

Some GEMM layers are now followed by GELU activation in the BERT model. Since
TensorRT doesn’t have IMMA GEMM layers, you can implement those GEMM layers
in the BERT network with either IConvolutionLayer or IFullyConnectedLayer
layers depending on what precision you require. For example, you can leverage
IConvolutionLayer with H == W == 1 (CONV1x1) to implement a FullyConnected
operation and leverage IMMA math under INT8 mode. TensorRT supports the fusion
of Convolution/FullyConnected and GELU. For more information, refer to TensorRT
Best Practices Guide and Adding Custom Layers Using The C++ API in the TensorRT
Developer Guide.

Working with Quantized Networks

TensorRT now supports quantized models trained with Quantization Aware Training.
Support is limited to symmetrically quantized models, meaning zero_point = 0
using QuantizeLinear and DequantizeLinear ONNX ops. For more information, see
Working With Quantized Networks in the TensorRT Developer Guide and QDQ Fusions
in the Best Practices For TensorRT Performance Guide.

New layers
IFillLayer

The IFillLayer is used to generate an output tensor with the specified mode. For
more information, see the C++ class IFillLayer or the Python class IFillLayer.

IIteratorLayer

The IIteratorLayer enables a loop to iterate over a tensor. A loop is defined by
loop boundary layers. For more information, see the C++ class IIteratorLayer
or the Python class IIteratorLayer and Working With Loops in the TensorRT
Developer Guide.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_onnx_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_onnx_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://github.com/NVIDIA/TensorRT
https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#add_custom_layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-qat-networks
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#qdq-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fill_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2Ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_iterator_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IIteratorLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 134

ILoopBoundaryLayer

Class ILoopBoundaryLayer defines a virtual method getLoop() that returns
a pointer to the associated ILoop. For more information, see the C++ class
ILoopBoundaryLayer or the Python class ILoopBoundaryLayer and Working With
Loops in the TensorRT Developer Guide.

ILoopOutputLayer

The ILoopOutputLayer specifies an output from the loop. For more information,
see the C++ class ILoopOutputLayer or the Python class ILoopOutputLayer and
Working With Loops in the TensorRT Developer Guide.

IParametricReluLayer

The IParametricReluLayer represents a parametric ReLU operation, meaning,
a leaky ReLU where the slopes for x < 0 can be different for each element. For
more information, see the C++ class IParametricReluLayer or the Python class
IParametricReluLayer.

IRecurrenceLayer

The IRecurrenceLayer specifies a recurrent definition. For more information,
see the C++ class IRecurrenceLayer or the Python class IRecurrenceLayer and
Working With Loops in the TensorRT Developer Guide.

ISelectLayer

The ISelectLayer returns either of the two inputs depending on the condition.
For more information, see the C++ class ISelectLayer or the Python class
ISelectLayer.

ITripLimitLayer

The ITripLimitLayer specifies how many times the loop iterates. For more
information, see the C++ class ITripLayer or the Python class ITripLayer and
Working With Loops in the TensorRT Developer Guide.

New operations

ONNX: Added ConstantOfShape, DequantizeLinear, Equal, Erf, Expand,
Greater, GRU, Less, Loop, LRN, LSTM, Not, PRelu, QuantizeLinear, RandomUniform,
RandomUniformLike, Range, RNN, Scan, Sqrt, Tile, and Where.

For more information, see the full list of Supported Ops in the Support Matrix.

Boolean tensor support

TensorRT supports boolean tensors which can be marked as network input and
output. IElementWiseLayer, IUnaryLayer (only kNOT), IShuffleLayer, ITripLimit
(only kWHILE) and ISelectLayer support the boolean datatype. Boolean tensors can
be used only with FP32 and FP16 precision networks. For more information, refer to
the Layers section in the TensorRT Developer Guide.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_boundary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_boundary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iloopboundarylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_output_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.ILoopOutputLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_parametric_re_l_u_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iparametricrelulayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iparametricrelulayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_recurrence_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IRecurrenceLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_select_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iselectlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iselectlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_trip_limit_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.ITripLimitLayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#supported-ops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 135

Compatibility

‣ TensorRT 7.0.0 has been tested with the following:

‣ cuDNN 7.6.5

‣ TensorFlow 1.14.0

‣ PyTorch 1.3.0

‣ ONNX 1.6.0

‣ This TensorRT release supports CUDA 9.0, 10.0, and 10.2.

‣ For PowerPC users, Tesla V100 and Tesla T4 GPUs are supported.

Limitations

‣ UFF samples, such as sampleUffMNIST, sampleUffSSD, sampleUffPluginV2Ext,
sampleUffMaskRCNN, sampleUffFasterRCNN, uff_custom_plugin, and uff_ssd,
support TensorFlow 1.x and not models trained with TensorFlow 2.0.

‣ Loops and DataType::kBOOL are supported on limited platforms. On platforms
without loop support, INetworkDefinition::addLoop returns nullptr. Attempting
to build an engine using operations that consume or produce DataType::kBOOL on a
platform without support, results in validation rejecting the network. For details on
which platforms are supported with loops, refer to the Features For Platforms And
Software section in the TensorRT Support Matrix.

‣ Explicit precision networks with quantized and de-quantized nodes are only
supported on devices with hardware INT8 support. Running on devices without
hardware INT8 support results in undefined behavior.

Deprecated Features

The following features are deprecated in TensorRT 7.0.0:

‣ Backward Compatibility and Deprecation Policy - When a new function, for example
foo, is first introduced, there is no explicit version in the name and the version
is assumed to be 1. When changing the API of an existing TensorRT function
foo (usually to support some new functionality), first, a new routine fooV<N> is
created where N represents the Nth version of the function and the previous version
fooV<N-1> remains untouched to ensure backward compatibility. At this point,
fooV<N-1> is considered deprecated, and should be treated as such by users of
TensorRT.

Starting with TensorRT 7, we will be eliminating deprecated API per the following
policy.

‣ APIs already marked deprecated prior to TensorRT 7 (6 and older) will be removed
in the next major release of TensorRT 8.

https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_765.html#rel_765
https://github.com/tensorflow/tensorflow/releases/tag/v1.14.0
https://github.com/pytorch/pytorch/releases/tag/v1.3.0
https://pypi.org/project/onnx/1.6.0/
https://docs.nvidia.com/cuda/archive/9.0/
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#platform-matrix
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#platform-matrix

TensorRT Release 7.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 136

‣ APIs deprecated in TensorRT <M>, where M is the major version greater than or
equal to 7, will be removed in TensorRT <M+2>. This means that deprecated APIs
remain functional for two major releases before they are removed.

‣ Deprecation of Caffe Parser and UFF Parser - We are deprecating Caffe Parser and
UFF Parser in TensorRT 7. They will be tested and functional in the next major release
of TensorRT 8, but we plan to remove the support in the subsequent major release.
Plan to migrate your workflow to use tf2onnx, keras2onnx or TensorFlow-TensorRT
(TF-TRT) for deployment.

Fixed Issues

‣ You no longer have to build ONNX and TensorFlow from source in order to
workaround pybind11 compatibility issues. The TensorRT Python bindings are now
built using pybind11 version 2.4.3.

‣ Windows users are now able to build applications designed to use the TensorRT
refittable engine feature. The issue related to unresolved symbols has been resolved.

‣ A virtual destructor has been added to the IPluginFactory class.

Known Issues

‣ The UFF parser generates unused IConstantLayer objects that are visible via
method NetworkDefinition::getLayer but optimized away by TensorRT, so an
attempt to refit the weights with IRefitter::setWeights will be rejected. Given
an IConstantLayer* layer, you can detect whether it is used for execution by
checking: layer->getOutput(0)->isExecutionTensor().

‣ The ONNX parser does not support RNN, LSTM, and GRU nodes when the activation
type of the forward pass does not match the activation type of the reverse pass in
bidirectional cases.

‣ The INT8 calibration does not work with dynamic shapes. To workaround this issue,
ensure there are two passes in the code:

 1. Using a fixed shape input to build the engine in the first pass, allows TensorRT to
generate the calibration cache.

 2. Then, create the engine again using the dynamic shape input and the builder will
reuse the calibration cache generated in the first pass.

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

NVIDIA TensorRT RN-08624-001_v8.4.3 | 137

Chapter 3. TensorRT Release 6.x.x

3.1. TensorRT Release 6.0.1
This is the TensorRT 6.0.1 release notes for Linux and Windows users. This release
includes fixes from the previous TensorRT 5.x.x releases as well as the following
additional changes. These release notes are applicable to workstation, server, and
JetPack users unless appended specifically with (not applicable for Jetson platforms).

For previous TensorRT release notes, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.

‣ New layers:
IResizeLayer

The IResizeLayer implements the resize operation on an input tensor. For more
information, see IResizeLayer: TensorRT API and IResizeLayer: TensorRT Developer
Guide.

IShapeLayer

The IShapeLayer gets the shape of a tensor. For more information, see
IShapeLayer: TensorRT API and IShapeLayer: TensorRT Developer Guide.

PointWise fusion

Multiple adjacent pointwise layers can be fused into a single pointwise layer, to
improve performance. For more information, see the TensorRT Best Practices
Guide.

‣ New operators:
3-dimensional convolution

Performs a convolution operation with 3D filters on a 5D tensor. For more
information, see addConvolutionNd in the TensorRT API and IConvolutionalLayer in
the TensorRT Developer Guide.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_resize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#resize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#resize-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shape_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#shape-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#pointwise-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-best-practices/index.html#pointwise-fusion
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a8c7b60e83e453285ff85803e17a258ce
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#convolution-layer

TensorRT Release 6.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 138

3-dimensional deconvolution

Performs a deconvolution operation with 3D filters on a 5D tensor. For
more information, see addDeconvolutionNd in the TensorRT API and
IDeconvolutionLayer in the TensorRT Developer Guide.

3-dimensional pooling

Performs a pooling operation with a 3D sliding window on a 5D tensor. For more
information, see addPoolingNd in the TensorRT API and IPoolingLayer in the
TensorRT Developer Guide.

‣ New plugins:

Added a persistent LSTM plugin; a half precision persistent LSTM plugin that
supports variable sequence lengths. This plugin also supports bi-direction, setting
initial hidden/cell values, storing final hidden/cell values, and multi layers. You can
use it through the PluginV2 interface, achieves better performance with small batch
sizes, and is currently only supported on Linux. For more information, see Persistent
LSTM Plugin in the TensorRT Developer Guide. (not applicable for Jetson platforms)

‣ New operations:
TensorFlow

Added ResizeBilinear and ResizeNearest ops.

ONNX

Added Resize op.

For more information, see the full list of Supported Ops in the Support Matrix.

‣ New samples:
sampleDynamicReshape

Added sampleDynamicReshape which demonstrates how to use dynamic input
dimensions in TensorRT by creating an engine for resizing dynamically shaped
inputs to the correct size for an ONNX MNIST model. For more information, see
Working With Dynamic Shapes in the TensorRT Developer Guide, Digit Recognition
With Dynamic Shapes in the TensorRT Samples Support Guide and the GitHub:
sampleDynamicReshape directory.

sampleReformatFreeIO

Added sampleReformatFreeIO which uses a Caffe model that was trained on
theMNIST dataset and performs engine building and inference using TensorRT.
Specifically, it shows how to use reformat free I/O tensors APIs to explicitly
specify I/O formats to TensorFormat::kLINEAR, TensorFormat::kCHW2 and
TensorFormat::kHWC8 for Float16 and INT8 precision. For more information, see
Specifying I/O Formats Using The Reformat Free I/O Tensors APIs in the TensorRT
Samples Support Guide and the GitHub: sampleReformatFreeIO directory.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0660e807ff32f1f73666d825e51de1fb
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#deconvolution-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a6cbe5542f80352a630ebe8a809441ee0
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#pooling-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#persistent-lstm-plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#persistent-lstm-plugin
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#supported-ops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape
https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplereformatfreeio
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleReformatFreeIO

TensorRT Release 6.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 139

sampleUffPluginV2Ext

Added sampleUffPluginV2Ext which implements the custom pooling layer for the
MNIST model (data/samples/lenet5_custom_pool.uff) and demonstrates how
to extend INT8 I/O for a plugin. For more information, see Adding A Custom Layer
That Supports INT8 I/O To Your Network In TensorRT in the TensorRT Samples
Support Guide and the GitHub: sampleUffPluginV2Ext directory.

sampleNMT

Added sampleNMT which demonstrates the implementation of Neural Machine
Translation (NMT) based on a TensorFlow seq2seq model using the TensorRT API.
The TensorFlow seq2seq model is an open sourced NMT project that uses deep
neural networks to translate text from one language to another language. For
more information, see Neural Machine Translation (NMT) Using A Sequence To
Sequence (seq2seq) Model in the TensorRT Samples Support Guide and Importing
A Model Using The C++ API For Safety in the TensorRT Developer Guide and the
GitHub: sampleNMT directory.

sampleUffMaskRCNN

This sample, sampleUffMaskRCNN, performs inference on the Mask R-CNN
network in TensorRT. Mask R-CNN is based on the Mask R-CNN paper which
performs the task of object detection and object mask predictions on a target
image. This sample’s model is based on the Keras implementation of Mask R-CNN
and its training framework can be found in the Mask R-CNN Github repository.
For more information, see sampleUffMaskRCNN in the TensorRT Sample Support
Guide. This sample is available only in GitHub: sampleUffMaskRCNN and is not
packaged with the product. (not applicable for Jetson platforms)

sampleUffFasterRCNN

This sample, sampleUffFasterRCNN, is a UFF TensorRT sample for Faster-
RCNN in NVIDIA Transfer Learning Toolkit SDK. This sample serves as a demo
of how to use pretrained Faster-RCNN model in Transfer Learning Toolkit to
do inference with TensorRT. For more information, see sampleUffFasterRCNN
in the TensorRT Sample Support Guide. This sample is available only in GitHub:
sampleUffFasterRCNN and is not packaged with the product. (not applicable for
Jetson platforms)

‣ New optimizations:
Dynamic shapes

The size of a tensor can vary at runtime. IShuffleLayer, ISliceLayer, and the new
IResizeLayer now have optional inputs that can specify runtime dimensions.
IShapeLayer can get the dimensions of tensors at runtime, and some layers can
compute new dimensions. For more information, see Working With Dynamic
Shapes and TensorRT Layers in the TensorRT Developer Guide, Digit Recognition

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleUffPluginV2Ext
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleUffPluginV2Ext
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffPluginV2Ext
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplenmt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#samplenmt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import-model-c-safety
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import-model-c-safety
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleNMT
https://arxiv.org/abs/1703.06870
https://github.com/matterport/Mask_RCNN
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleuffmaskrcnn
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffMaskRCNN
https://developer.nvidia.com/transfer-learning-toolkit
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sampleufffasterrcnn
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffFasterRCNN
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleUffFasterRCNN
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape

TensorRT Release 6.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 140

With Dynamic Shapes in the TensorRT Samples Support Guide and the GitHub:
sampleDynamicReshape directory.

Reformat free I/O

Network I/O tensors can be different to linear FP32. Formats of network I/O
tensors now have APIs to be specified explicitly. The removal of reformatting
is beneficial to many applications and specifically saves considerable memory
traffic time. For more information, see Working With Reformat-Free Network I/O
Tensors and Example 4: Add A Custom Layer With INT8 I/O Support Using C++ in
the TensorRT Developer Guide.

Layer optimizations

Shuffle operations that are equivalent to identify operations on the underlying
data will be omitted, if the input tensor is only used in the shuffle layer and the
input and output tensors of this layer are not input and output tensors of the
network. TensorRT no longer executes additional kernels or memory copies for
such operations. For more information, see How Does TensorRT Work in the
TensorRT Developer Guide.

New INT8 calibrator

MinMaxCalibrator - Preferred calibrator for NLP tasks. Supports per activation
tensor scaling. Computes scales using per tensor absolute maximum value. For
more information, see INT8 Calibration Using C++.

Explicit precision

You can manually configure a network to be an explicit precision network in
TensorRT. This feature enables users to import pre-quantized models with explicit
quantizing and dequantizing scale layers into TensorRT. Setting the network
to be an explicit precision network implies that you will set the precision of all
the network input tensors and layer output tensors in the network. TensorRT
will not quantize the weights of any layer (including those running in lower
precision). Instead, weights will simply be cast into the required precision. For more
information about explicit precision, see Working With Explicit Precision Using C
++ and Working With Explicit Precision Using Python in the TensorRT Developer
Guide.

‣ Installation:

‣ Added support for RPM and Debian packages for PowerPC users. (not applicable
for Jetson platforms)

Compatibility

‣ TensorRT 6.0.1 has been tested with the following:

‣ cuDNN 7.6.5

‣ TensorFlow 1.14.0

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#sample-dynamic-reshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape
https://github.com/NVIDIA/TensorRT/tree/release/6.0/samples/opensource/sampleDynamicReshape
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#reformat-free-network-tensors
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#reformat-free-network-tensors
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#example4_add_custlay_int8
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#optimizing_int8_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#explicit-precision-work-python
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_765.html#rel_765
https://github.com/tensorflow/tensorflow/releases/tag/v1.14.0

TensorRT Release 6.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 141

‣ PyTorch 1.1.0

‣ ONNX 1.5.0

‣ This TensorRT release supports CUDA 9.0 (not applicable for Jetson platforms), 10.0,
and 10.1 update 2 (not applicable for Jetson platforms), and 10.2.

‣ For PowerPC users, Tesla V100 Volta and Turing T4 GPUs are supported.

Limitations

‣ Upgrading TensorRT to the latest version is only supported when the currently
installed TensorRT version is equal to or newer than the last two public releases. For
example, TensorRT 6.x.x supports upgrading from TensorRT 5.0.x and TensorRT 5.1.x.
(not applicable for Jetson platforms)

‣ Calibration for a network with INT8 I/O tensors requires FP32 calibration data.

‣ Shape tensors cannot be network inputs or outputs. Shape tensors can be created by
IConstantLayer, IShapeLayer, or any of the following operations on shape tensors:
IConcatenationLayer, IElementWiseLayer, IGatherLayer, IReduceLayer (kSUM,
kMAX, kMIN, kPROD), IShuffleLayer, or ISliceLayer.

Deprecated Features

The following features are deprecated in TensorRT 6.0.1:
Samples changes

‣ The PGM files for the MNIST samples have been removed. A script, called
generate_pgms.py (or download_pgms.py for CUDA 10.2), has been provided in the
samples/mnist/data directory to generate the images using the dataset.

‣ --useDLACore=0 is no longer a valid option for sampleCharRNN as DLA does not
support FP32 or RNN’s, and the sample is only written to work with FP32 in all
cases.

Fixed Issues

‣ Logging level Severity::kVERBOSE is now fully supported. Log messages with this
level of severity are verbose messages with debugging information.

‣ Deconvolution layer with stride > 32 is now supported on DLA.

‣ Deconvolution layer with kernel size > 32 is now supported on DLA.

Known Issues

‣ For Ubuntu 14.04 and CentOS7, in order for ONNX, TensorFlow and TensorRT to co-
exist in the same environment, ONNX and TensorFlow must be built from source
using your system's native compilers. It’s especially important to build ONNX and
TensorFlow from source when using the IBM Anaconda channel for PowerPC to avoid
compatibility issues with pybind11 and protobuf. (not applicable for Jetson platforms)

https://github.com/pytorch/pytorch/releases/tag/v1.1.0
https://pypi.org/project/onnx/1.5.0/
https://docs.nvidia.com/cuda/archive/9.0/
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://developer.nvidia.com/cuda-toolkit-archive
https://docs.nvidia.com/cuda/archive/10.2/index.html

TensorRT Release 6.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 142

‣ PointWise fusions will be disabled when the SM version is lower than 7.0 due to a
performance issue. This includes all pre-Volta GPUs, for example, Pascal, Maxwell,
Kepler, TX-1, TX-2, Nano.

‣ TensorRT assumes that all resources for the device it is building on are available for
optimization purposes. Concurrent use of multiple TensorRT builders (for example,
multiple trtexec instances) to compile on different targets (DLA0, DLA1 and
GPU) may oversubscribe system resources causing undefined behavior (meaning,
inefficient plans, builder failure, or system instability).

It is recommended to use trtexec with the --saveEngine argument to compile for
different targets (DLA and GPU) separately and save their plan files. Such plan files
can then be reused for loading (using trtexec with the --loadEngine argument) and
submitting multiple inference jobs on the respective targets (DLA0, DLA1, GPU). This
two step process alleviates over-subscription of system resources during the build
phase while also allowing execution of the plan file to proceed without interference
by the builder.

‣ Windows users are currently unable to refit an engine due to some linking issues. You
will encounter undefined symbols while building an application designed to use the
TensorRT refittable engine feature. (not applicable for Jetson platforms)

NVIDIA TensorRT RN-08624-001_v8.4.3 | 143

Chapter 4. TensorRT Release 5.x.x

4.1. TensorRT Release 5.1.5
This is the TensorRT 5.1.5 release notes for Linux and Windows users. This release
includes fixes from the previous TensorRT 5.1.x releases as well as the following
additional changes.

For previously released versions of TensorRT, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
TensorRT Open Source Software (OSS)

The TensorRT GitHub repository contains the Open Source Software (OSS)
components of NVIDIA TensorRT. Included are the sources for TensorRT plugins and
parsers (Caffe and ONNX) libraries, as well as sample applications demonstrating
usage and capabilities of the TensorRT platform. Refer to the README.md file
for prerequisites, steps for downloading, setting-up the build environment, and
instructions for building the TensorRT OSS components.

For more information, see the NVIDIA Developer news article NVIDIA open sources
parsers and plugins in TensorRT.

Compatibility

‣ TensorRT 5.1.5 has been tested with the following:

‣ cuDNN 7.5.0

‣ TensorFlow 1.12.0

‣ PyTorch 1.0

‣ ONNX 1.4.1

‣ This TensorRT release supports CUDA 9.0, CUDA 10.0, and CUDA 10.1.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://github.com/nvidia/TensorRT
https://github.com/nvidia/TensorRT/README.md
https://news.developer.nvidia.com/nvidia-open-sources-parsers-and-plugins-in-tensorrt/
https://news.developer.nvidia.com/nvidia-open-sources-parsers-and-plugins-in-tensorrt/
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_750.html#rel_750
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://github.com/onnx/onnx/releases/tag/v1.4.1
https://docs.nvidia.com/cuda/archive/9.0/index.html
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://docs.nvidia.com/cuda/archive/10.1/index.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 144

Deprecated Features

The following features are deprecated in TensorRT 5.1.5:

‣ getDIGITS has been removed from the TensorRT package.

Known Issues

‣ For Ubuntu 14.04 and CentOS7, there is a known bug when trying to import TensorRT
and ONNX Python modules together due to different compiler versions used to
generate their respective Python bindings. As a work around, build the ONNX module
from source using your system's native compilers.

‣ You may see the following warning when running programs linked with TensorRT
5.1.5 and CUDA 10.1 libraries:
[W] [TRT] TensorRT was compiled against cuBLAS 10.2.0 but is linked against cuBLAS
 10.1.0.

You can resolve this by updating your CUDA 10.1 installation to 10.1 update 1 here.

‣ There is a known issue in sample yolov3_onnx with ONNX versions > 1.4.1. To work
around this, install version 1.4.1 of ONNX through:
pip uninstall onnx; pip install onnx==1.4.1

4.2. TensorRT Release 5.1.3
This is the TensorRT 5.1.3 release notes for PowerPC users. This release includes fixes
from the previous TensorRT 5.1.x releases as well as the following additional changes.

For previously released versions of TensorRT, see the TensorRT Archived Documentation.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
Samples

The README.md files for many samples, located within each sample source directory,
have been greatly improved. We hope this makes it easier to understand the sample
source code and successfully run the sample.

ONNX parser
The ONNX parser now converts GEMMs and MatMuls using the MatrixMultiply layer,
and adds support for scaling the results with the alpha and beta parameters.

Asymmetric padding

‣ IConvolutionLayer, IDeconvolutionLayer and IPoolingLayer directly support
setting asymmetric padding. You do not need to add an explicit IPaddingLayer.

‣ The new APIs are setPaddingMode(), setPrePadding() and setPostPadding().
The setPaddingMode() method takes precedence over setPaddingMode() and
setPrePadding() when more than one padding method is used.

https://developer.nvidia.com/cuda-downloads
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 145

‣ The Caffe, UFF, and ONNX parsers have been updated to support the new
asymmetric padding APIs.

Precision optimization
TensorRT provides optimized kernels for mixed precision (FP32, FP16 and INT8)
workloads on Turing GPUs, and optimizations for depthwise convolution operations.
You can control the precision per-layer with the ILayer APIs.

Compatibility

‣ TensorRT 5.1.3 has been tested with the following:

‣ cuDNN 7.5.0

‣ TensorFlow 1.12.0

‣ PyTorch 1.0

‣ ONNX 1.4.1

‣ This TensorRT release supports CUDA 10.1.

‣ TensorRT will now emit a warning when the major, minor, and patch versions of
cuDNN and cuBLAS do not match the major, minor, and patch versions that TensorRT
is expecting.

Limitations

‣ For CentOS and RHEL users, when choosing Python 3:

‣ Only Python version 3.6 from EPEL is supported by the RPM installation.

‣ Only Python versions 3.4 and 3.6 from EPEL are supported by the tar installation.

‣ In order to run the UFF converter and its related C++ and Python samples on
PowerPC, it’s necessary to install TensorFlow for PowerPC. For more information, see
Install TensorFlow on Power systems.

‣ In order to run the PyTorch samples on PowerPC, it’s necessary to install PyTorch
specifically built for PowerPC, which is not available from PyPi. For more information,
see Install PyTorch on Power systems.

Deprecated Features

The following features are deprecated in TensorRT 5.1.3:

‣ sampleNMT has been removed from the TensorRT package. The public data source
files have changed and no longer work with the sample.

Fixed Issues

The following issues have been resolved in TensorRT 5.1.3:

https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_750.html#rel_750
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://github.com/onnx/onnx/releases/tag/v1.4.1
https://docs.nvidia.com/cuda/archive/10.1/index.html
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://developer.ibm.com/tutorials/install-tensorflow-on-power/
https://developer.ibm.com/tutorials/install-pytorch-on-power/

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 146

‣ Fixed the behavior of the Caffe crop layer when the layer has an asymmetric crop
offset.

‣ ITensor::getType() and ILayer::getOutputType() now report the type correctly.
Previously, both types reported DataType::kFLOAT even if the output type should
have been DataType::kINT32. For example, the output type of IConstantLayer with
DataType::kINT32 weights is now correctly reported as DataType::kINT32. The
affected layers include:

‣ IConstantLayer (when weights have type DataType::kINT32)

‣ IConcatentationLayer (when inputs have type DataType::kINT32)

‣ IGatherLayer (when first input has type DataType::kINT32)

‣ IIdentityLayer (when input has type DataType::kINT32)

‣ IShuffleLayer (when input has type DataType::kINT32)

‣ ISliceLayer (when input has type DataType::kINT32)

‣ ITopKLayer (second output)

‣ When using INT8 mode, dynamic ranges are no longer required for INT32 tensors,
even if you’re not using automatic quantization.

‣ Using an INT32 tensor where a floating-point tensor is expected, or vice-versa, issues
an error explaining the mismatch instead of asserting failure.

‣ The ONNX TensorRT parser now attempts to downcast INT64 graph weights to
INT32.

‣ Fixed an issue where the engine would fail to build when asymmetric padding
convolutions were present in the network.

Known Issues

‣ When running ShuffleNet with small batch sizes between 1 and 4, you may encounter
performance regressions of up to 15% compared to TensorRT 5.0.

‣ When running ResNeXt101 with a batch size of 4 using INT8 precision on a Volta
GPU, you may encounter intermittent performance regressions of up to 10%
compared to TensorRT 5.0. Rebuilding the engine may resolve this issue.

‣ There is a known issue in sample yolov3_onnx with ONNX versions > 1.4.1. To work
around this, install version 1.4.1 of ONNX through:
pip uninstall onnx; pip install onnx==1.4.1

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 147

4.3. TensorRT Release 5.1.2 Release
Candidate (RC)

This is the release candidate (RC) for TensorRT 5.1.2 and is applicable to Linux and
Windows users. This RC includes several enhancements and improvements compared to
the previously released TensorRT 5.0.2.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 5.0.2.

For previously released versions of TensorRT, see the TensorRT Documentation Archives.

Key Features And Enhancements

This TensorRT release includes the following key features and enhancements.
Improved performance of HMMA and IMMA convolution

The performance of Convolution, including Depthwise Separable Convolution and
Group Convolution has improved in FP16 and INT8 modes on Volta and Turing. For
example: ResNeXt-101 batch=1 INT8 3x speedup on Tesla T4.

Reload weights for an existing TensorRT engine
Engines can be refitted with new weights. For more information, see Refitting An
Engine.

New supported operations
Caffe: Added BNLL, Clip and ELU ops. Additionally, the leaky ReLU option for the
ReLU op (negative_slope != 0) was added.

UFF: Added ArgMax, ArgMin, Clip, Elu, ExpandDims, Identity, LeakyReLU,
Recip, Relu6, Sin, Cos, Tan, Asin, Acos, Atan, Sinh, Cosh, Asinh, Acosh,

Atanh, Ceil, Floor, Selu, Slice, Softplus and Softsign ops.

ONNX: Added ArgMax, ArgMin, Clip, Cast, Elu, Selu, HardSigmoid, Softplus,
Gather, ImageScaler, LeakyReLU, ParametricSoftplus, Sin, Cos, Tan, Asin,

Acos, Atan, Sinh, Cosh, Asinh, Acosh, Atanh, Ceil, Floor, ScaledTanh,

Softsign, Slice, ThresholdedRelu and Unsqueeze ops.

For more information, see the TensorRT Support Matrix.

NVTX support
NVIDIA Tools Extension SDK (NVTX) is a C-based API for marking events and ranges
in your applications. NVTX annotations were added in TensorRT to help correlate
the runtime engine layer execution with CUDA kernel calls. NVIDIA Nsight Systems
supports collecting and visualizing these events and ranges on the timeline. NVIDIA
Nsight Compute also supports collecting and displaying the state of all active NVTX
domains and ranges in a given thread when the application is suspended.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 148

New layer
Added support for the Slice layer. The Slice layer implements a slice operator for
tensors. For more information, see ISliceLayer.

RNNs
Changed RNNv1 and RNNv2 validation of hidden and cell input/output dimensions.
This affects only bidirectional RNNs.

EntropyCalibrator2
Added Entropy Calibration algorithm; which is the preferred calibrator.

Python support
Python 3 is now supported for CentOS and RHEL users. The Python 3 wheel files
have been split so that each wheel file now contains the Python bindings for only one
Python version and follows pip naming conventions.

New Python samples

‣ INT8 Calibration In Python - This sample demonstrates how to create an INT8
calibrator, build and calibrate an engine for INT8 mode, and finally run inference in
INT8 mode.

‣ Engine Refit In Python - This sample demonstrates the engine refit functionality
provided by TensorRT. The model first trains an MNIST model in PyTorch, then
recreates the network in TensorRT.

For more information, see the Samples Support Guide.
NVIDIA Machine Learning network repository installation

TensorRT 5.1 can now be directly installed from the NVIDIA Machine Learning network
repository when only the C++ libraries and headers are required. The intermediate
step of downloading and installing a local repo from the network repo is no longer
required. This simplifies the number of steps required to automate the TensorRT
installation. See the TensorRT Installation Guide for more information.

Breaking API Changes

‣ A kVERBOSE logging level was added in TensorRT 5.1, however, due to ABI implications,
kVERBOSE is not currently being used. Messages at the kVERBOSE logging level may be
emitted in a future release.

Compatibility

‣ TensorRT 5.1.2 RC has been tested with the following:

‣ cuDNN 7.5.0

‣ TensorFlow 1.12.0

‣ PyTorch 1.0

‣ This TensorRT release supports CUDA 9.0, CUDA 10.0 and CUDA 10.1.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#slice-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#int8_caffe_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#engine_refit_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-5.html#rel_5-1-0-RC
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_750.html#rel_750
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://docs.nvidia.com/cuda/archive/9.0/index.html
https://docs.nvidia.com/cuda/archive/10.0/index.html
https://docs.nvidia.com/cuda/archive/10.1/index.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 149

Limitations

‣ A few optimizations are disabled when building refittable engines:

‣ IScaleLayer operations that have non-zero count of weights for shift or scale
and are mathematically the identity function will not be removed, since a refit
of the shift or scale weights could make it a non-identity function. IScaleLayer
operations where the shift and scale weights have zero count are still removed if
the power weights are unity.

‣ Optimizations for multilayer perceptrons are disabled. These optimizations target
serial compositions of IFullyConnectedLayer, IMatrixMultiplyLayer, and
IActivationLayer.

Deprecated Features

The following features are deprecated in TensorRT 5.1.2 RC:

‣ The UFF Parser which is used to parse a network in UFF format will be deprecated
in a future release. The recommended method of importing TensorFlow models to
TensorRT is using TensorFlow with TensorRT (TF-TRT). For step-by-step instructions
on how to accelerate inference in TF-TRT, see the TF-TRT User Guide and Release
Notes. For source code from GitHub, see Examples for TensorRT in TensorFlow (TF-
TRT).

‣ Deprecated --engine=<filename> option in trtexec. Use --saveEngine=<filename>
and --loadEngine=<filename> instead for clarity.

Known Issues

‣ Using the current public data sources, sampleNMT produces incorrect results which
results in a low BLEU score. This sample will be removed in the next release so that
we can update the source code to work with the latest public data.

‣ There is a known multilayer perceptron (MLP) performance regression in TensorRT
5.1.2 compared to TensorRT 5.0. During the engine build phase the GPU cache state
may lead to different tactic selections on Turing. The magnitude of the regression
depends on the batch size and the depth of the network.

‣ On sampleSSD and sampleUffSSD during INT8 calibration, you may encounter a file
read error in TensorRT-5.1.x.x/data/samples/ssd/VOC2007/list.txt. This is due
to line-ending differences on Windows vs Linux. To workaround this problem, open
list.txt in a text editor and ensure that the file is using Unix-style line endings.

‣ Python sample yolov3_onnx is functional only for ONNX versions greater than 1.1.0
and less than 1.4.0.

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt-release-notes/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt-release-notes/index.html
https://github.com/tensorflow/tensorrt
https://github.com/tensorflow/tensorrt

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 150

4.4. TensorRT Release 5.1.1 Release
Candidate (RC)

This is the release candidate (RC) for TensorRT 5.1.1 and is applicable to automotive
users on PDK version 5.1.3. This RC includes several enhancements and improvements
compared to the previously released TensorRT 5.0.3.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 5.0.3.

For previously released versions of TensorRT, see the TensorRT Documentation Archives.

Key Features And Enhancements
This TensorRT release includes the following key features and enhancements.

‣ CUDA 10.1 is now supported. For more information, see the CUDA 10.1 Release
Notes.

Breaking API Changes

‣ A kVERBOSE logging level was added in TensorRT 5.1.0, however, due to ABI
implications, kVERBOSE is no longer being used in TensorRT 5.1.1. It may be used again
in a future release.

Compatibility

‣ TensorRT 5.1.1 RC has been tested with the following:

‣ cuDNN 7.5.0

‣ This TensorRT release supports CUDA 10.1.

Limitations

‣ The Python API is not included in this package.

Known Issues

‣ When linking against CUDA 10.1, performance regressions may occur under Drive
5.0 QNX and Drive 5.0 Linux because of a regression in cuBLAS. This affects the
FullyConnected layers in AlexNet, VGG19, and ResNet-50 for small batch sizes
(between 1 and 4).

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html
https://docs.nvidia.com/cuda/archive/10.1/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/archive/10.1/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/tensorrt-5.html#rel_5-1-0-RC
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/index.html
https://docs.nvidia.com/cuda/archive/10.1/index.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 151

‣ Performance regressions of around 10% may be seen when using group convolutions
caused by a CUDA mobile driver bug. These regressions might be seen in networks
such as ResNext and ShuffleNet.

4.5. TensorRT Release 5.1.0 Release
Candidate (RC)

This is the release candidate (RC) for TensorRT 5.1.0. It includes several enhancements
and improvements compared to the previously released TensorRT 5.0.x.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 5.0.2.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Improved performance of HMMA and IMMA convolution
The performance of Convolution, including Depthwise Separable Convolution and
Group Convolution has improved in FP16 and INT8 modes on Volta, Xavier and Turing.
For example:

‣ ResNet50 INT8 batch=8 1.2x speedup on Jetson AGX Xavier

‣ MobileNetV2 FP16 batch=8 1.2x speedup on Jetson AGX Xavier

‣ ResNeXt-101 batch=1 INT8 3x speedup on Tesla T4

Reload weights for an existing TensorRT engine
Engines can be refitted with new weights. For more information, see Refitting An
Engine.

DLA with INT8
Added support for running the AlexNet network on DLA using trtexec in INT8 mode.
For more information, see Working With DLA.

New supported operations
Caffe: Added BNLL, Clip and ELU ops. Additionally, the leaky ReLU option for the
ReLU op (negative_slope != 0) was added.

UFF: Added ArgMax, ArgMin, Clip, Elu, ExpandDims, Identity, LeakyReLU,
Recip, Relu6, Sin, Cos, Tan, Asin, Acos, Atan, Sinh, Cosh, Asinh, Acosh,

Atanh, Ceil, Floor, Selu, Slice, Softplus and Softsign ops.

ONNX: Added ArgMax, ArgMin, Clip, Cast, Elu, Selu, HardSigmoid, Softplus,
Gather, ImageScaler, LeakyReLU, ParametricSoftplus, Sin, Cos, Tan, Asin,

Acos, Atan, Sinh, Cosh, Asinh, Acosh, Atanh, Ceil, Floor, ScaledTanh,

Softsign, Slice, ThresholdedRelu and Unsqueeze ops.

For more information, see the TensorRT Support Matrix.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_5
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#refitting-engine-c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_topic
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 152

NVTX support
NVIDIA Tools Extension SDK (NVTX) is a C-based API for marking events and ranges
in your applications. NVTX annotations were added in TensorRT to help correlate
the runtime engine layer execution with CUDA kernel calls. NVIDIA Nsight Systems
supports collecting and visualizing these events and ranges on the timeline. NVIDIA
Nsight Compute also supports collecting and displaying the state of all active NVTX
domains and ranges in a given thread when the application is suspended.

New layer
Added support for the Slice layer. The Slice layer implements a slice operator for
tensors. For more information, see ISliceLayer.

RNNs
Changed RNNv1 and RNNv2 validation of hidden and cell input/output dimensions.
This affects only bidirectional RNNs.

EntropyCalibrator2
Added Entropy Calibration algorithm; which is the preferred calibrator. This is also the
required calibrator for DLA INT8 because it supports per activation tensor scaling.

ILogger
Added verbose severity level in ILogger for emitting debugging messages. Some
messages that were previously logged with severity level kINFO are now logged with
severity level kVERBOSE. Added new ILogger derived class in samples and trtexec.
Most messages should be categorized (using the severity level) as:
[V]

For verbose debug informational messages.
[I]

For "instructional" informational messages.
[W]

For warning messages.
[E]

For error messages.
[F]

For fatal error messages.

Python

‣ INT8 Calibration In Python - This sample demonstrates how to create an INT8
calibrator, build and calibrate an engine for INT8 mode, and finally run inference in
INT8 mode.

‣ Engine Refit In Python - This sample demonstrates the engine refit functionality
provided by TensorRT. The model first trains an MNIST model in PyTorch, then
recreates the network in TensorRT.

For more information, see the Samples Support Guide.

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#slice-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#int8_caffe_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#engine_refit_mnist
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 153

Python bindings
Added Python bindings to the aarch64-gnu release package (debian and tar).

RPM installation
Provided installation support for Red Hat Enterprise Linux (RHEL) and CentOS users
to upgrade from TensorRT 5.0.x to TensorRT 5.1.x. For more information, see the
upgrading instructions in the Installation Guide.

Breaking API Changes

‣ A new logging level, kVERBOSE, was added in TensorRT 5.1.0. Messages are being
emitted by the TensorRT builder and/or engine using this new logging level. Since
the logging level did not exist in TensorRT 5.0.x, some applications might not handle
the new logging level properly and in some cases the application may crash. In the
next release, more descriptive messages will appear when using the kINFO logging
level because the kVERBOSE messages will be produced using kINFO. However, the
kVERBOSE logging level will remain in the API and kVERBOSE messages may be emitted
in a future TensorRT release.

Compatibility

‣ TensorRT 5.1.0 RC has been tested with cuDNN 7.3.1.

‣ TensorRT 5.1.0 RC has been tested with TensorFlow 1.12.0.

‣ TensorRT 5.1.0 RC has been tested with PyTorch 1.0.

‣ This TensorRT release supports CUDA 10.0.

Limitations

‣ A few optimizations are disabled when building refittable engines.

‣ IScaleLayer operations that have non-zero count of weights for shift or scale
and are mathematically the identity function will not be removed, since a refit
of the shift or scale weights could make it a non-identity function. IScaleLayer
operations where the shift and scale weights have zero count are still removed if
the power weights are unity.

‣ Optimizations for multilayer perceptrons are disabled. These optimizations target
serial compositions of IFullyConnectedLayer, IMatrixMultiplyLayer, and
IActivationLayer.

‣ DLA limitations

‣ FP16 LRN is supported with the following parameters:

‣ local_size = 5

‣ alpha = 0.0001

https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html#upgrading-50x-51x-redhat

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 154

‣ beta = 0.75

‣ INT8 LRN, Sigmoid, and Tanh are not supported.

For more information, see DLA Supported Layers.

Deprecated Features

The following features are deprecated in TensorRT 5.1.0 RC:

‣ Deprecated --engine=<filename> option in trtexec. Use --saveEngine=<filename>
and --loadEngine=<filename> instead for clarity.

Known Issues

‣ When the tensor size is too large, such as a single tensor that has more than 4G
elements, overflow may occur which will cause TensorRT to crash. As a workaround,
you may need to reduce the batch size.

4.6. TensorRT Release 5.0.6
This is the release for TensorRT 5.0.6 and is applicable to JetPack 4.2.0 users.

This release includes several enhancements and improvements compared to the
previously released TensorRT Release 5.0.5.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements for JetPack
users.

‣ Python support for AArch64 Linux is included as an early access release. All
features are expected to be available, however, some aspects of functionality and
performance will likely be limited compared to a non-EA release.

‣ The UFF parser’s memory usage was significantly reduced to better accommodate
boards with small amounts of memory.

Compatibility

‣ TensorRT 5.0.6 has been tested with the following:

‣ cuDNN 7.3.1

‣ TensorFlow 1.12

‣ PyTorch 1.0

‣ This TensorRT release supports CUDA 10.0.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_731.html#rel_731
https://github.com/tensorflow/tensorflow/releases/tag/v1.12.0
https://github.com/pytorch/pytorch/releases/tag/v1.0.0
https://docs.nvidia.com/cuda/archive/10.0/index.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 155

Known Issues

‣ The default workspace size for sampleUffSSD is 1 GB. This may be too large for the
Jetson TX1 NANO, therefore, change the workspace for the builder in the source file
via the following code:
builder->setMaxWorkspaceSize(16_MB);

‣ In order to run larger networks or larger batch sizes with TensorRT, it may be
necessary to free memory on the board. This can be accomplished by running in
headless mode or killing processes with high memory consumption.

‣ Due to limited system memory on the Jetson TX1 NANO, which is shared
between the CPU and GPU, you may not be able run some samples, for example,
sampleFasterRCNN.

‣ Python sample yolov3_onnx is functional only for ONNX versions greater than 1.1.0
and less than 1.4.0.

4.7. TensorRT Release 5.0.5
This is the TensorRT 5.0.5 release notes for Android users. This release includes fixes
from the previous TensorRT 5.0.x releases as well as the following additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements for Android
users.

‣ TensorRT 5.0.5 has two sub-releases:

‣ TensorRT 5.0.5.0 (without DLA support)

‣ TensorRT 5.0.5.1 (with DLA support)

Compatibility

‣ TensorRT 5.0.5 supports CUDA 10.0

‣ TensorRT 5.0.5 supports cuDNN 7.3.1

‣ TensorRT 5.0.5 supports the Android platform with API level 26 or higher

Limitations In 5.0.5

‣ TensorRT 5.0.5.1 supports DLA while TensorRT 5.0.5.0 does not.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 156

Known Issues

‣ For TensorRT 5.0.5.0, some sample programs have --useDLACore in their command
line arguments, however, do not use it because this release does not support DLA.

‣ When running trtexec from a saved engine, the --output and --input command
line arguments are mandatory. For example:
./trtexec --onnx=data/mnist/mnist.onnx --fp16 --engine=./mnist_onnx_fp16.engine
./trtexec --engine=./mnist_onnx_fp16.engine --input=Input3 --output=Plus214_Output_0

‣ When running applications that use DLA on Xavier based platforms that also contain
a discrete GPU (dGPU), you may be required to select the integrated GPU (iGPU). This
can be done using the following command:
export CUDA_VISIBLE_DEVICES=1

4.8. TensorRT Release 5.0.4
This is the TensorRT 5.0.4 release notes for Windows users. This release includes fixes
from the previous TensorRT 5.0.x releases as well as the following additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements for the
Windows platform.

‣ ONNX model parsing support has been added.

‣ Two new samples showcasing ONNX model parsing functionality have been added:

‣ sampleOnnxMNIST

‣ sampleINT8API

‣ CUDA 9.0 support has been added.

Compatibility

‣ TensorRT 5.0.4 supports Windows 10

‣ TensorRT 5.0.4 supports CUDA 10.0 and CUDA 9.0

‣ TensorRT 5.0.4 supports CUDNN 7.3.1

‣ TensorRT 5.0.4 supports Visual Studio 2017

Limitations In 5.0.4

‣ TensorRT 5.0.4 does not support Python API on Windows.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 157

Known Issues

‣ NVIDIA’s Windows display driver sets timeout detection recovery to 2 seconds by
default. This can cause some timeouts within TensorRT’s builder and cause crashes.
For more information, see Timeout Detection & Recovery (TDR) to increase the
default timeout threshold if you encounter this problem.

‣ TensorRT Windows performance is slower than Linux due to the operating system
and driver differences. There are two driver modes:

‣ WDDM (around 15% slower than Linux)

‣ TCC (around 10% slower than Linux.) TCC mode is generally not supported for
GeForce GPUs, however, we recommend it for Quadro or Tesla GPUs. Detailed
instructions on setting TCC mode can be found here: Tesla Compute Cluster
(TCC).

‣ Volta FP16 performance on CUDA 9.0 may be up to 2x slower than on CUDA 10.0.
We expect to mitigate this issue in a future release.

‣ Most README files that are included with the samples assume that you are
working on a Linux workstation. If you are using Windows and do not have access
to a Linux system with an NVIDIA GPU, then you can try using VirtualBox to create
a virtual machine based on Ubuntu. You may also want to consider using a Docker
container for Ubuntu. Many samples do not require any training, therefore the
CPU versions of TensorFlow and PyTorch are enough to complete the samples.

‣ For sample_ssd and sample_uff_ssd, the INT8 calibration script is not
supported natively on Windows. You can generate the INT8 batches on a Linux
machine and copy them over in order to run sample_ssd in INT8 mode.

‣ For sample_uff_ssd, the Python script convert-to-uff is not packaged within
the .zip. You can generate the required .uff file on a Linux machine and copy it
over in order to run sample_uff_ssd. During INT8 calibration, you may encounter
a file reading error in TensorRT/data/samples/ssd/VOC2007/list.txt. This is due
to line-ending differences on Windows. To work around this, open list.txt in a
text editor and ensure that the file is using Unix-style line endings.

‣ For sample_int8_api,the legacy runtime option is not supported on Windows.

‣ When issuing -h for sampleINT8API, the --write_tensors option is missing. The
--write_tensors option generates a file that contains a list of network tensor
names. By default, it writes to the network_tensors.txt file. For information
about additional options, issue --tensors.

http://developer.download.nvidia.com/NsightVisualStudio/2.2/Documentation/UserGuide/HTML/Content/Timeout_Detection_Recovery.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm
https://www.virtualbox.org/
https://www.ubuntu.com/
https://store.docker.com/editions/community/docker-ce-desktop-windows

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 158

4.9. TensorRT Release 5.0.3
This is the TensorRT 5.0.3 release notes for Automotive and L4T users. This release
includes fixes from the previous TensorRT 5.0.x releases as well as the following
additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ For this TensorRT release, JetPack L4T and Drive D5L are supported by a single
package.

See the TensorRT Developer Guide for details.

Compatibility

TensorRT 5.0.3 supports the following product versions:

‣ CUDA 10.0

‣ cuDNN 7.3.1

‣ NvMedia DLA version 2.2

‣ NvMedia VPI Version 2.3

Known Issues

‣ For multi-process execution, and specifically when executing multiple inference
sessions in parallel (for example, of trtexec) target different accelerators, you may
observe a performance degradation if cudaEventBlockingSync is used for stream
synchronization.

One way to work around this performance degradation is to use the
cudaEventDefault flag when creating the events which internally uses the spin-wait
synchronization mechanism. In trtexec, the default behavior is to use blocking events,
but this can be overridden with the --useSpinWait option to specify spin-wait based
synchronization.

Note: The spin-wait mechanism can increase CPU utilization on the system.

For more information about CUDA blocking sync semantics, refer to Event
Management.

‣ There is a known issue when attempting to cross compile samples for mobile
platforms on an x86_64 host machine. As cross-platform CUDA packages

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 159

are structured differently, the following changes are required for samples/
Makefile.config when compiling cross platform.
Line 80

Add:
-L"$(CUDA_INSTALL_DIR)/targets/$(TRIPLE)/$(CUDA_LIBDIR)/stubs"

Line 109
Remove:
-lnvToolsExt

4.10. TensorRT Release 5.0.2
This is the TensorRT 5.0.2 release notes for Desktop users. This release includes fixes
from the previous TensorRT 5.0.x releases as well as the following additional fixes.

For previous TensorRT 5.0.x release notes, see TensorRT Release Notes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Platforms
Added support for CentOS 7.5, Ubuntu 18.04, and Windows 10.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution,
Deconvolution, ElementWise, FullyConnected, LRN, Pooling, and Scale. For layer
specific constraints, see DLA Supported Layers. AlexNet, GoogleNet, ResNet-50, and
LeNet for MNIST networks have been validated on DLA. Since DLA support is new
to this release, it is possible that other CNN networks that have not been validated
will not work. Report any failing CNN networks that satisfy the layer constraints by
submitting a bug via the NVIDIA Developer website. Ensure you log-in, click on your
name in the upper right corner, click My account > My Bugs and select Submit a New
Bug.

The trtexec tool can be used to run on DLA with the --useDLACore=N where N is 0 or
1, and --fp16 options. To run the MNIST network on DLA using trtexec, issue:
 ./trtexec --deploy=data/mnist/mnist.prototxt --output=prob --useDLACore=0 --fp16 --
allowGPUFallback

trtexec does not support ONNX models on DLA.

Redesigned Python API
The Python API has gone through a thorough redesign to bring the API up to modern
Python standards. This fixed multiple issues, including making it possible to support
serialization via the Python API. Python samples using the new API include parser

https://docs.nvidia.com/deeplearning/sdk/tensorrt-release-notes/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers
https://developer.nvidia.com/

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 160

samples for ResNet-50, a Network API sample for MNIST, a plugin sample using Caffe,
and an end-to-end sample using TensorFlow.

INT8
Support has been added for user-defined INT8 scales, using the new
ITensor::setDynamicRange function. This makes it possible to define dynamic
range for INT8 tensors without the need for a calibration data set. setDynamicRange
currently supports only symmetric quantization. A user must either supply a dynamic
range for each tensor or use the calibrator interface to take advantage of INT8
support.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, is a single registration point
for all plugins in an application and is used to find plugin implementations during
deserialization.

C++ Samples
sampleSSD

This sample demonstrates how to perform inference on the Caffe SSD network
in TensorRT, use TensorRT plugins to speed up inference, and perform INT8
calibration on an SSD network. To generate the required prototxt file for this
sample, perform the following steps:

 1. Download models_VGGNet_VOC0712_SSD_300x300.tar.gz from: https://
drive.google.com/file/d/0BzKzrI_SkD1_WVVTSmQxU0dVRzA/view

 2. Extract the contents of the tar file;
tar xvf
 ~/Downloads/models_VGGNet_VOC0712_SSD_300x300.tar.gz

 3. Edit the deploy.prototxt file and change all the Flatten layers to Reshape
operations with the following parameters:
reshape_param {
 shape {
 dim: 0
 dim: -1
 dim: 1
 dim: 1
 }

 4. Update the detection_out layer by adding the keep_count output, for example,
add:
top: "keep_count"

 5. Rename the deploy.prototxt file to ssd.prototxt and run the sample.

 6. To run the sample in INT8 mode, install Pillow first by issuing the $ pip
install Pillow command, then follow the instructions from the README.

sampleINT8API
This sample demonstrates how to perform INT8 Inference using per-tensor
dynamic range. To generate the required input data files for this sample, perform
the following steps:

https://drive.google.com/file/d/0BzKzrI_SkD1_WVVTSmQxU0dVRzA/view
https://drive.google.com/file/d/0BzKzrI_SkD1_WVVTSmQxU0dVRzA/view

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 161

Running the sample:

 1. Download the Model files from GitHub, for example:
wget https://s3.amazonaws.com/download.onnx/models/opset_3/resnet50.tar.gz

 2. Unzip the tar file:
tar -xvzf resnet50.tar.gz

 3. Rename resnet50/model.onnx to resnet50/resnet50.onnx, then copy the
resnet50.onnx file to the data/int8_api directory.

 4. Run the sample:
./sample_int8_api [-v or --verbose]

Running the sample with a custom configuration:

 1. Download the Model files from GitHub.

 2. Create an input image with a PPM extension. Resize it with the dimensions of
224x224x3.

 3. Create a file called reference_labels.txt. Ensure each line corresponds to
a single imagenet label. You can download the imagenet 1000 class human
readable labels from here. The reference label file contains only a single label
name per line, for example, 0:'tench, Tinca tinca' is represented as tench.

 4. Create a file called dynamic_ranges.txt. Ensure each line corresponds to the
tensor name and floating point dynamic range, for example <tensor_name> :
<float dynamic range>. In order to generate tensor names, iterate over the
network and generate the tensor names. The dynamic range can either be
obtained from training (by measuring the min/max value of activation tensors in
each epoch) or using custom post processing techniques (similar to TensorRT
calibration). You can also choose to use a dummy per tensor dynamic range to
run the sample.

Python Samples
yolov3_onnx

This sample demonstrates a full ONNX-based pipeline for inference with the
network YOLOv3-608, including pre- and post-processing.

uff_ssd
This sample demonstrates a full UFF-based inference pipeline for performing
inference with an SSD (InceptionV2 feature extractor) network.

IPluginV2
A plugin class IPluginV2 has been added together with a corresponding IPluginV2
layer. The IPluginV2 class includes similar methods to IPlugin and IPluginExt, so
if your plugin implemented IPluginExt previously, you will change the class name
to IPluginV2. The IPlugin and IPluginExt interfaces are to be deprecated in the
future, therefore, moving to the IPluginV2 interface for this release is strongly
recommended.

See the TensorRT Developer Guide for details.

https://github.com/onnx/models/tree/master/models/image_classification
https://github.com/onnx/models/tree/master/models/image_classification
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 162

Breaking API Changes

‣ The choice of which DLA core to run a layer on is now made at runtime. You can
select the device type at build time, using the following methods:
IBuilder::setDeviceType(ILayer* layer, DeviceType deviceType)
IBuilder::setDefaultDeviceType(DeviceType deviceType)

where DeviceType is:
{
 kGPU, //!< GPU Device
 kDLA, //!< DLA Core
};

The specific DLA core to execute the engine on can be set by the following methods:
IBuilder::setDLACore(int dlaCore)
IRuntime::setDLACore(int dlaCore)

The following methods have been added to get the DLA core set on IBuilder or
IRuntime objects:
int IBuilder::getDLACore()
int IRuntime::getDLACore()

Another API has been added to query the number of accessible DLA cores as follows:
int IBuilder::getNbDLACores()
Int IRuntime::getNbDLACores()

‣ The --useDLA=<int> on trtexec tool has been changed to --useDLACore=<int>, the
value can range from 0 to N-1, N being the number of DLA cores. Similarly, to run any
sample on DLA, use --useDLACore=<int> instead of --useDLA=<int>.

Compatibility

‣ TensorRT 5.0.2 has been tested with cuDNN 7.3.1.

‣ TensorRT 5.0.2 has been tested with TensorFlow 1.9.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA 9.2 are
no longer supported. On Windows only, CUDA 10.0 is supported for TensorRT 5.0.1
RC.

Limitations In 5.0.2

‣ TensorRT 5.0.2 does not include support for DLA with the INT8 data type. Only
DLA with the FP16 data type is supported by TensorRT at this time. DLA with INT8
support is planned for a future TensorRT release.

‣ Android is not supported in TensorRT 5.0.2.

‣ The Python API is only supported on x86-based Linux platforms.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python
bindings.

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 163

‣ ONNX models are not supported on DLA in TensorRT 5.0.2.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do not
support FP16 mode. This is because some of the weights fall outside the range of
FP16.

‣ The ONNX parser is not supported on Windows 10. This includes all samples which
depend on the ONNX parser. ONNX support will be added in a future release.

‣ Tensor Cores supporting INT4 were first introduced with Turing GPUs. This release of
TensorRT 5.0 does not support INT4.

‣ The yolov3_onnx Python sample is not supported on Ubuntu 14.04 and earlier.

‣ The uff_ssd sample requires tensorflow-gpu for performing validation only. Other
parts of the sample can use the CPU version of tensorflow.

‣ The Leaky ReLU plugin (LReLU_TRT) allows for only a parameterized slope on a per
tensor basis.

Deprecated Features

The following features are deprecated in TensorRT 5.0.2:

‣ The majority of the old Python API, including the Lite and Utils API, are deprecated. It
is currently still accessible in the tensorrt.legacy package, but will be removed in a
future release.

‣ The following Python examples are deprecated:

‣ caffe_to_trt

‣ pytorch_to_trt

‣ tf_to_trt

‣ onnx_mnist

‣ uff_mnist

‣ mnist_api

‣ sample_onnx

‣ googlenet

‣ custom_layers

‣ lite_examples

‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 164

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the
open-source ONNX parser.

‣ The DimensionTypes class is deprecated.

‣ The plugin APIs that return INvPlugin are being deprecated and they now return
IPluginV2. These APIs will be removed in a future release. Refer to NvInferPlugin.h
inside the TensorRT package.

‣ The nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt plugins are still available for backward
compatibility. However, it is still recommended to use the Plugin Registry and
implement IPluginCreator for all new plugins.

‣ The libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a libraries have
been renamed to libnvinfer_static.a, libnvinfer_plugin_static.a, and
libnvparsers_static.a respectively. This makes TensorRT consistent with CUDA,
cuDNN, and other NVIDIA software libraries. It also avoids some ambiguity between
dynamic and static libraries during linking.

Known Issues

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA. Other
networks may work, but they have not been extensively tested.

‣ For this TensorRT release, there are separate JetPack L4T and Drive D5L packages
due to differences in the DLA library dependencies. In a future release, this should
become unified.

‣ The static library libnvparsers_static.a requires a special build of protobuf
to complete static linking. Due to filename conflicts with the official protobuf
packages, these additional libraries are only included in the tar file at this time. The
two additional libraries that you will need to link against are libprotobuf.a and
libprotobuf-lite.a from the tar file.

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are missing from
the package in order to complete static linking. The two static libraries that are
required to complete linking are libonnx_proto.a and libnvonnxparser_plugin.a,
as well as the protobuf libraries mentioned earlier. You will need to build these two
missing static libraries from the open source ONNX project. This issue will be resolved
in a future release.

‣ The C++ API documentation is not included in the TensorRT zip file. Refer to the
online documentation if you want to view the TensorRT C++ API.

https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 165

‣ Most README files that are included with the samples assume that you are working
on a Linux workstation. If you are using Windows and do not have access to a Linux
system with an NVIDIA GPU, then you can try using VirtualBox to create a virtual
machine based on Ubuntu. Many samples do not require any training, therefore the
CPU versions of TensorFlow and PyTorch are enough to complete the samples.

‣ The TensorRT Developer Guide has been written with Linux users in mind. Windows
specific instructions, where possible, will be added in a future revision of the
document.

‣ If sampleMovieLensMPS crashes before completing execution, an artifact (/dev/shm/
sem.engine_built) will not be properly destroyed. If the sample complains about
being unable to create a semaphore, remove the artifact by running rm /dev/shm/
sem.engine_built.

‣ To create a valid UFF file for sampleMovieLensMPS, the correct command is:
python convert_to_uff.py sampleMovieLens.pb -p preprocess.py

where preprocess.py is a script that is shipped with sampleMovieLens. Do not use
the command specified by the README.

‣ The trtexec tool does not currently validate command-line arguments. If you
encounter failures, double check the command-line parameters that you provided.

4.11. TensorRT Release 5.0.1 Release
Candidate (RC)

This is the release candidate (RC) for TensorRT 5.0.1 release notes. This release is for
Windows users only. It includes several enhancements and improvements compared to
the previously released TensorRT 4.0.1.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 4.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Platforms
Added support for CentOS 7.5, Ubuntu 18.04, and Windows 10.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution,
Deconvolution, ElementWise, FullyConnected, LRN, Pooling, and Scale. For layer

https://www.virtualbox.org/
https://www.ubuntu.com/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_4

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 166

specific constraints, see DLA Supported Layers. Networks such as AlexNet,
GoogleNet, ResNet-50, and MNIST work with DLA. Other CNN networks may work, but
they have not been extensively tested and may result in failures including segfaults.

The trtexec tool can be used to run on DLA with the --useDLA=N and --fp16 options.
To run the AlexNet network on DLA using trtexec, issue:
 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLA=1 --fp16 --
allowGPUFallback

trtexec does not support ONNX models to run on DLA.

Redesigned Python API
The Python API has been rewritten from scratch and includes various improvements.
In addition to several bug fixes, it is now possible to serialize and deserialize an engine
to and from a file using the Python API. Python samples using the new API include
parser samples for ResNet-50, a Network API sample for MNIST, a plugin sample using
Caffe, and an end-to-end sample using TensorFlow.

INT8
Support for user-defined INT8 scales, using the new ITensor::setDynamicRange
function. This makes it possible to provide custom INT8 calibration without the
need for a calibration data set. setDynamicRange currently supports only symmetric
quantization. Furthermore, if no calibration table is provided, calibration scales must
be provided for each layer.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, that is a single registration point
for all plugins in an application and is used to find plugin implementations during
deserialization.

sampleSSD
This sample demonstrates how to preprocess the input to the SSD network, perform
inference on the SSD network in TensorRT, use TensorRT plugins to speed up
inference, and perform INT8 calibration on an SSD network.

See the TensorRT Developer Guide for details.

Breaking API Changes

‣ The IPluginExt API has 4 new methods, getPluginType, getPluginVersion, destroy
and clone. All plugins of type IPluginExt will have to implement these new methods
and re-compile. This is a temporary issue; we expect to restore compatibility with the
4.0 API in the GA release. For more information, see Migrating Plugins From TensorRT
5.0.0 RC To TensorRT 5.0.x for guidance on migration.

Compatibility

‣ TensorRT 5.0.1 RC has been tested with cuDNN 7.3.0.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins-50rc-50ga
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins-50rc-50ga

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 167

‣ TensorRT 5.0.1 RC has been tested with TensorFlow 1.9.

‣ TensorRT 5.0.1 RC for Windows has been tested with Visual Studio 2017.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA 9.2 are
no longer supported. On Windows only, CUDA 10.0 is supported for TensorRT 5.0.1
RC.

Limitations In 5.0.1 RC

‣ For this release, there are separate JetPack L4T and Drive D5L packages due to
differences in the DLA library dependencies. In a future release, this should become
unified.

‣ Android is not supported in TensorRT 5.0.1 RC.

‣ The Python API does not support DLA.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python
bindings.

‣ The choice of which DLA device to run on is currently made at build time. In GA, it will
be selectable at runtime.

‣ ONNX models are not supported on DLA in TensorRT 5.0.1 RC.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do not
support FP16 mode. This is because some of the weights fall outside the range of
FP16.

‣ Python is not supported on Windows 10. This includes the graphsurgeon and UFF
Python modules.

‣ The ONNX parser is not supported on Windows 10. This includes all samples which
depend on the ONNX parser. ONNX support will be added in a future release.

Deprecated Features

The following features are deprecated in TensorRT 5.0.1 RC:

‣ Majority of the old Python API, including the Lite and Utils API, is deprecated. It is
currently still accessible in the tensorrt.legacy package, but will be removed in a
future release.

‣ The following Python examples:

‣ caffe_to_trt

‣ pytorch_to_trt

‣ tf_to_trt

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 168

‣ onnx_mnist

‣ uff_mnist

‣ mnist_api

‣ sample_onnx

‣ googlenet

‣ custom_layers

‣ lite_examples

‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the
open-source ONNX parser.

‣ The DimensionTypes class.

‣ The plugin APIs that return IPlugin are being deprecated and they now
return IPluginExt. These APIs will be removed in a future release. Refer to the
NvInferPlugin.h file inside the package.

‣ nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt (still available for backward compatibility).
Instead, use the Plugin Registry and implement IPluginCreator for all new plugins.

‣ libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a have been renamed to
libnvinfer_static.a, libnvinfer_plugin_static.a, and libnvparsers_static.a
respectively. This makes TensorRT consistent with CUDA, cuDNN, and other NVIDIA
software libraries. It also avoids some ambiguity between dynamic and static libraries
during linking.

Known Issues

‣ The Plugin Registry will only register plugins with a unique {name, version} tuple.
The API for this is likely to change in future versions to support multiple plugins with
same name and version.

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA. Other
networks may work, but they have not been extensively tested.

‣ The static library libnvparsers_static.a requires a special build of protobuf
to complete static linking. Due to filename conflicts with the official protobuf
packages, these additional libraries are only included in the tar file at this time. The
two additional libraries that you will need to link against are libprotobuf.a and
libprotobuf-lite.a from the tar file.

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 169

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are missing from
the package in order to complete static linking. The two static libraries that are
required to complete linking are libonnx_proto.a and libnvonnxparser_plugin.a,
as well as the protobuf libraries mentioned earlier. You will need to build these two
missing static libraries from the open source ONNX project. This issue will be resolved
in a future release.

‣ If you upgrade only uff-converter-tf, for example using apt-get install
uff-converter-tf, then it will not upgrade graphsurgeon-tf due to inexact
dependencies between these two packages. You will need to specify both packages
on the command line, such as apt-get install uff-converter-tf graphsurgeon-
tf in order to upgrade both packages. This will be fixed in a future release.

‣ The fc_plugin_caffe_mnist python sample cannot be executed if the sample is built
using pybind11 v2.2.4. We suggest that you instead clone pybind11 v2.2.3 using the
following command:
git clone -b v2.2.3 https://github.com/pybind/pybind11.git

‣ The C++ API documentation is not included in the TensorRT zip file. Refer to the
online documentation if you want to view the TensorRT C++ API.

‣ Most README files that are included with the samples assume that you are working
on a Linux workstation. If you are using Windows and do not have access to a Linux
system with an NVIDIA GPU, then you can try using VirtualBox to create a virtual
machine based on Ubuntu. Many samples do not require any training, therefore the
CPU versions of TensorFlow and PyTorch are enough to complete the samples.

‣ The TensorRT Developer Guide has been written with Linux users in mind. Windows
specific instructions, where possible, will be added in a future revision of the
document.

4.12. TensorRT Release 5.0.0 Release
Candidate (RC)

This is the release candidate (RC) for TensorRT 5.0.0. It includes several enhancements
and improvements compared to the previously released TensorRT 4.0.1.

This preview release is for early testing and feedback, therefore, for production use of
TensorRT, continue to use TensorRT 4.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://www.virtualbox.org/
https://www.ubuntu.com/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/index.html#trt_4

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 170

Platforms
Added support for CentOS 7.5 and Ubuntu 18.04.

Turing
You must use CUDA 10.0 or later if you are using a Turing GPU.

DLA (Deep Learning Accelerator)
The layers supported by DLA are Activation, Concatenation, Convolution,
Deconvolution, ElementWise, FullyConnected, LRN, Pooling, and Scale. For layer
specific constraints, see DLA Supported Layers. Networks such as AlexNet,
GoogleNet, ResNet-50, and MNIST work with DLA. Other CNN networks may work, but
they have not been extensively tested and may result in failures including segfaults.

The trtexec tool can be used to run on DLA with the --useDLA=N and --fp16 options.
To run the AlexNet network on DLA using trtexec, issue:
 ./trtexec --deploy=data/AlexNet/AlexNet_N2.prototxt --output=prob --useDLA=1 --fp16 --
allowGPUFallback

trtexec does not support ONNX models to run on DLA.

Redesigned Python API
The Python API has been rewritten from scratch and includes various improvements.
In addition to several bug fixes, it is now possible to serialize and deserialize an engine
to and from a file using the Python API. Python samples using the new API include
parser samples for ResNet-50, a Network API sample for MNIST, a plugin sample using
Caffe, and an end-to-end sample using TensorFlow.

INT8
Support for user-defined INT8 scales, using the new ITensor::setDynamicRange
function. This makes it possible to provide custom INT8 calibration without the
need for a calibration data set. setDynamicRange currently supports only symmetric
quantization. Furthermore, if no calibration table is provided, calibration scales must
be provided for each layer.

Plugin Registry
A new searchable plugin registry, IPluginRegistry, that is a single registration point
for all plugins in an application and is used to find plugin implementations during
deserialization.

See the TensorRT Developer Guide for details.

Breaking API Changes

‣ The IPluginExt API has 4 new methods, getPluginType, getPluginVersion, destroy
and clone. All plugins of type IPluginExt will have to implement these new methods
and re-compile. This is a temporary issue; we expect to restore compatibility with the
4.0 API in the GA release. For more information, see Migrating Plugins From TensorRT
4.0.x To TensorRT 5.0 RC for guidance on migration.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#migrating-plugins

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 171

‣ Upcoming changes in TensorRT 5.0 GA for plugins

‣ A new plugin class IPluginV2 and a corresponding IPluginV2 layer will be
introduced. The IPluginV2 class includes similar methods to IPlugin and
IPluginExt, so if your plugin implemented IPluginExt previously, you will change
the class name to IPluginV2.

‣ The IPluginCreator class will create and deserialize plugins of type IPluginV2 as
opposed to IPluginExt.

‣ The create*Plugin() methods in NvInferPlugin.h will return plugin objects of
type IPluginV2 as opposed to IPluginExt.

Compatibility

‣ TensorRT 5.0.0 RC has been tested with cuDNN 7.3.0.

‣ TensorRT 5.0.0 RC has been tested with TensorFlow 1.9.

‣ This TensorRT release supports CUDA 10.0 and CUDA 9.0. CUDA 8.0 and CUDA 9.2 are
no longer supported.

Limitations In 5.0.0 RC

‣ For this release, there are separate JetPack L4T and Drive D5L packages due to
differences in the DLA library dependencies. In a future release, this should become
unified.

‣ Android is not supported in TensorRT 5.0.0 RC.

‣ The Python API does not support DLA.

‣ The create*Plugin functions in the NvInferPlugin.h file do not have Python
bindings.

‣ The choice of which DLA device to run on is currently made at build time. In GA, it will
be selectable at runtime.

‣ ONNX models are not supported on DLA in TensorRT 5.0 RC.

‣ The included resnet_v1_152, resnet_v1_50, lenet5, and vgg19 UFF files do not
support FP16 mode. This is because some of the weights fall outside the range of
FP16.

Deprecated Features

The following features are deprecated in TensorRT 5.0.0:

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 172

‣ Majority of the old Python API, including the Lite and Utils API, is deprecated. It is
currently still accessible in the tensorrt.legacy package, but will be removed in a
future release.

‣ The following Python examples:

‣ caffe_to_trt

‣ pytorch_to_trt

‣ tf_to_trt

‣ onnx_mnist

‣ uff_mnist

‣ mnist_api

‣ sample_onnx

‣ googlenet

‣ custom_layers

‣ lite_examples

‣ resnet_as_a_service

‣ The detectionOutput Plugin has been renamed to the NMS Plugin.

‣ The old ONNX parser will no longer be packaged with TensorRT; instead, use the
open-source ONNX parser.

‣ The DimensionTypes class.

‣ The plugin APIs that return IPlugin are being deprecated and they now
return IPluginExt. These APIs will be removed in a future release. Refer to the
NvInferPlugin.h file inside the package.

‣ nvinfer1::IPluginFactory, nvuffparser1::IPluginFactory, and
nvuffparser1::IPluginFactoryExt (still available for backward compatibility).
Instead, use the Plugin Registry and implement IPluginCreator for all new plugins.

‣ libnvinfer.a, libnvinfer_plugin.a, and libnvparsers.a have been renamed to
libnvinfer_static.a, libnvinfer_plugin_static.a, and libnvparsers_static.a
respectively. This makes TensorRT consistent with CUDA, cuDNN, and other NVIDIA
software libraries. It also avoids some ambiguity between dynamic and static libraries
during linking.

Known Issues

‣ The Plugin Registry will only register plugins with a unique {name, version} tuple.
The API for this is likely to change in future versions to support multiple plugins with
same name and version.

TensorRT Release 5.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 173

‣ Only AlexNet, GoogleNet, ResNet-50, and MNIST are known to work with DLA. Other
networks may work, but they have not been extensively tested.

‣ The static library libnvparsers_static.a requires a special build of protobuf
to complete static linking. Due to filename conflicts with the official protobuf
packages, these additional libraries are only included in the tar file at this time. The
two additional libraries that you will need to link against are libprotobuf.a and
libprotobuf-lite.a from the tar file.

‣ The ONNX static libraries libnvonnxparser_static.a and
libnvonnxparser_runtime_static.a require static libraries that are missing from
the package in order to complete static linking. The two static libraries that are
required to complete linking are libonnx_proto.a and libnvonnxparser_plugin.a,
as well as the protobuf libraries mentioned earlier. You will need to build these two
missing static libraries from the open source ONNX project. This issue will be resolved
in a future release.

‣ If you upgrade only uff-converter-tf, for example using apt-get install
uff-converter-tf, then it will not upgrade graphsurgeon-tf due to inexact
dependencies between these two packages. You will need to specify both packages
on the command line, such as apt-get install uff-converter-tf graphsurgeon-
tf in order to upgrade both packages. This will be fixed in a future release.

‣ The fc_plugin_caffe_mnist python sample cannot be executed if the sample is built
using pybind11 v2.2.4. We suggest that you instead clone pybind11 v2.2.3 using the
following command:
git clone -b v2.2.3 https://github.com/pybind/pybind11.git

https://github.com/onnx/onnx-tensorrt

NVIDIA TensorRT RN-08624-001_v8.4.3 | 174

Chapter 5. TensorRT Release 4.x.x

5.1. TensorRT Release 4.0.1
This TensorRT 4.0.1 General Availability release includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 4.0.1 GA has been tested with cuDNN 7.1.3 and now requires cuDNN 7.1.x.

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented.
ONNX is a standard for representing deep learning models that enable models to be
transferred between frameworks. TensorRT can now parse the network definitions in
ONNX format, in addition to NVCaffe and UFF formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or
FP16, inputs and return FP16 outputs.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce,
RNNv2 and TopK layers (for K up to 25).

‣ This release has optimizations which target recommender systems like Neural
Collaborative Filtering.

‣ Many layers now support the ability to broadcast across the batch dimension.

‣ In TensorRT 3.0, INT8 had issues with rounding and striding in the Activation layer.
This may have caused INT8 accuracy to be low. Those issues have been fixed.

‣ The C++ samples and Python examples were tested with TensorFlow 1.8 and PyTorch
0.4.0 where applicable.

‣ Added sampleOnnxMNIST. This sample shows the conversion of an MNIST network in
ONNX format to a TensorRT network.

TensorRT Release 4.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 175

‣ Added sampleNMT. Neural Machine Translation (NMT) using sequence to sequence
(seq2seq) models has garnered a lot of attention and is used in various NMT
frameworks. sampleNMT is a highly modular sample for inferencing using C++ and
TensorRT API so that you can consider using it as a reference point in your projects.

‣ Updated sampleCharRNN to use RNNv2 and converting weights from TensorFlow to
TensorRT.

‣ Added sampleUffSSD. This sample converts the TensorFlow Single Shot MultiBox
Detector (SSD) network to a UFF format and runs it on TensorRT using plugins. This
sample also demonstrates how other TensorFlow networks can be preprocessed and
converted to UFF format with support of custom plugin nodes.

‣ Memory management improvements (see the Memory Management section in the
Developer Guide for details.)

‣ Applications may now provide their own memory for activations and workspace
during inference, which is used only while the pipeline is running.

‣ An allocator callback is available for all memory allocated on the GPU. In addition,
model deserialization is significantly faster (from system memory, up to 10x
faster on large models).

Using TensorRT 4.0.1

Ensure you are familiar with the following notes when using this release.

‣ The builder methods setHalf2Mode and getHalf2Mode have been superseded by
setFp16Mode and getFp16Mode which better represent their intended usage.

‣ The sample utility giexec has been renamed to trtexec to be consistent with the
product name, TensorRT, which is often shortened to TRT. A compatibility script for
users of giexec has been included to help users make the transition.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available for
backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were
NV_GIE_MAJOR, NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct
alternatives are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH, and
NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension types are now ignored in the API, however, they are still available for
backwards compatibility.

TensorRT Release 4.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 176

Known Issues

‣ If the ONNX parser included with TensorRT is unable to parse your model, then try
updating to the latest open source ONNX parser, which may resolve your issue.

‣ PyTorch no longer supports Python 3.4 with their current release (0.4.0). Therefore,
the TensorRT PyTorch examples will not work when using Python 3 on Ubuntu 14.04.

‣ Reshape to a tensor that has a larger number of dimensions than the input tensor is
not supported.

‣ Reformat has a known memory overwrite issue on Volta when FP16 is used with the
Concatenation layer and the Reformat layer.

‣ If you have two different CUDA versions of TensorRT installed, such as CUDA 8.0 and
CUDA 9.0, or CUDA 9.2 using local repos, then you will need to execute an additional
command to install the CUDA 8.0 version of TensorRT and prevent it from upgrading
to the CUDA 9.0 or CUDA 9.2 versions of TensorRT.
sudo apt-get install libnvinfer4=4.1.2-1+cuda8.0 \
 libnvinfer-dev=4.1.2-1+cuda8.0
sudo apt-mark hold libnvinfer4 libnvinfer-dev

‣ sampleNMT

‣ Performance is not fully optimized

‣ sampleUffSSD

‣ Some precision loss was observed while running the network in INT8 mode,
causing some objects to go undetected in the image. Our general observation is
that having at least 500 images for calibration is a good starting point.

‣ Performance regressions

‣ Compared to earlier TensorRT versions, a 5% slowdown was observed on AlexNet
when running on GP102 devices with batch size 2 using the NvCaffeParser.

‣ Compared to earlier TensorRT versions, a 5% to 10% slowdown was observed on
variants of inception and some instances of ResNet when using the NvUffParser.

‣ The NvUffParser returns the output tensor in the shape specified by the user, and
not in NCHW shape as in earlier versions of TensorRT. In other words, the output
tensor shape will match the shape of the tensor returned by TensorFlow, for the
same network.

‣ The Python 3.4 documentation is missing from the Ubuntu 14.04 packages. Refer
to the Python 2.7 documentation or view the online Python documentation as an
alternative.

https://github.com/onnx/onnx-tensorrt

TensorRT Release 4.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 177

‣ Some samples do not provide a -h argument to print the sample usage. You can refer
to the README.txt file in the sample directory for usage examples. Also, if the data
files for some samples cannot be found it will sometimes raise an exception and
abort instead of exiting normally.

‣ If you have more than one version of the CUDA toolkit installed on your system and
the CUDA version for TensorRT is not the latest version of the CUDA toolkit, then
you will need to provide an additional argument when compiling the samples. For
example, you have CUDA 9.0 and CUDA 9.2 installed and you are using TensorRT for
CUDA 9.0.
make CUDA_INSTALL_DIR=/usr/local/cuda-9.0

‣ When you pip uninstall the tensorrtplugins Python package, you may see the
following error which can be ignored.
OSError: [Errno 2] No such file or directory: '/usr/local/lib/python2.7/dist-packages/
tensorrtplugins-4.0.1.0-py2.7-linux-x86_64.egg'

‣ Due to a bug in cuDNN 7.1.3, which is the version of cuDNN TensorRT has been
validated against, using RNNs with half precision on Kepler GPUs will cause TensorRT
to abort. FP16 support is non-native on Kepler GPUs, therefore, using any precision
other than FP32 is discouraged except for testing.

‣ sampleMovieLens is currently limited to running a maximum of 8 concurrent
processes on a Titan V and may result in suboptimal engines during parallel
execution. The sample will be enhanced in the near future to support a greater
degree of concurrency. Additionally, to ensure compatibility with TensorRT, use
TensorFlow <= 1.7.0 to train the model. There may be a conflict between the versions
of CUDA and/or cuDNN used by TensorRT and TensorFlow 1.7. We suggest that you
install TensorFlow 1.7 CPU in order to complete the sample.
python -m pip install tensorflow==1.7.0

5.2. TensorRT Release 4.0 Release
Candidate (RC) 2

This TensorRT 4.0 Release Candidate (RC) 2 includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4. TensorRT 4.0 RC2
supports desktop and Tegra platforms. This release candidate is for early testing and
feedback, for production use of TensorRT, continue to use 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ TensorRT 4.0 RC2 for mobile supports cuDNN 7.1.2.

‣ TensorRT 4.0 RC2 for desktop supports cuDNN 7.1.3.

TensorRT Release 4.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 178

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented.
TensorRT can now parse the network definitions in ONNX format, in addition to
NVCaffe and UFF formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or
FP16, inputs and return FP16 tensors.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce,
RNNv2 and TopK layers (for K up to 25).

‣ Added SampleONNXMNIST sample. Open Neural Network Exchange (ONNX) is a
standard for representing deep learning models that enable models to be transferred
between frameworks. This sample shows the conversion of an MNIST network in
ONNX format to a TensorRT network.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available for
backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were
NV_GIE_MAJOR, NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct
alternatives are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH, and
NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension Types are now ignored in the API, however, they are still available for
backwards compatibility.

Known Issues
SampleMLP and SampleNMT are included in this release, however, they are beta samples.
They are currently not optimized for mobile platforms.

5.3. TensorRT Release 4.0 Release
Candidate (RC)

This TensorRT 4.0 Release Candidate (RC) includes several enhancements and
improvements compared to the previously released TensorRT 3.0.4. TensorRT 4.0 RC
supports x86 desktop platforms only. This release candidate is for early testing and
feedback, for production use of TensorRT, continue to use 3.0.4.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

TensorRT Release 4.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 179

‣ Support for ONNX 1.0 (Open Neural Network Exchange) has been implemented.
TensorRT can now parse the network definitions in ONNX format, in addition to
NVCaffe and UFF formats.

‣ The Custom Layer API now supports user-defined layers that take half precision, or
FP16, inputs and return FP16 tensors.

‣ Added support for the MatrixMultiply, Constant, Gather, Ragged SoftMax, Reduce,
RNNv2 and TopK layers (for K up to 25).

‣ The samples were tested with TensorFlow 1.6. You must be using cuDNN 7.0.x in
order to use both TensorRT and TensorFlow at the same time since TensorFlow 1.6
does not support cuDNN 7.1.x yet.

‣ Added SampleMLP sample for multi-layer perceptrons.

‣ Added SampleONNXMNIST sample. Open Neural Network Exchange (ONNX) is a
standard for representing deep learning models that enable models to be transferred
between frameworks. This sample shows the conversion of an MNIST network in
ONNX format to a TensorRT network.

‣ Added SampleNMT sample. Neural Machine Translation (NMT) using sequence to
sequence (seq2seq) models has garnered a lot of attention and is used in various
NMT frameworks. SampleNMT is a highly modular sample for inferencing using C
++ and TensorRT API so that you can consider using it as a reference point in your
projects.

‣ Updated SampleCharRNN sample to use RNNv2 and converting weights from
TensorFlow to TensorRT.

Deprecated Features

‣ The RNN layer type is deprecated in favor of RNNv2, however, it is still available for
backwards compatibility.

‣ Legacy GIE version defines in NvInfer.h have been removed. They were
NV_GIE_MAJOR, NV_GIE_MINOR, NV_GIE_PATCH, and NV_GIE_VERSION. The correct
alternatives are NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH, and
NV_TENSORRT_VERSION which existed in TensorRT 3.0.4 as well.

‣ Dimension Types are now ignored in the API, however, they are still available for
backwards compatibility.

Known Issues

‣ If you were previously using the machine learning debian repository, then it will
conflict with the version of libcudnn7 that is contained within the local repository
for TensorRT. The following commands will downgrade libcudnn7 to version 7.0.5.15,

TensorRT Release 4.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 180

which is supported and tested with TensorRT, and hold the package at this version.
If you are using CUDA 8.0 for your application, ensure you replace cuda9.0 with
cuda8.0.
sudo apt-get install libcudnn7=7.0.5.15-1+cuda9.0 libcudnn7-dev=7.0.5.15-1+cuda9.0
sudo apt-mark hold libcudnn7 libcudnn7-dev

If you would like to later upgrade libcudnn7 to the latest version, then you can use
the following commands to remove the hold.
sudo apt-mark unhold libcudnn7 libcudnn7-dev
sudo apt-get dist-upgrade

‣ If you have both the CUDA 8.0 and CUDA 9.0 local repos installed for TensorRT, then
you will need to execute an additional command to install the CUDA 8.0 version of
TensorRT and prevent it from upgrading to the CUDA 9.0 version of TensorRT.
sudo apt-get install libnvinfer4=4.1.0-1+cuda8.0 libnvinfer-dev=4.1.0-1+cuda8.0
sudo apt-mark hold libnvinfer4 libnvinfer-dev

‣ If you installed the dependencies for the TensorRT python examples using pip
install tensorrt[examples] then it could replace the GPU accelerated version of
TensorFlow with the CPU accelerated version of TensorFlow. You will need to remove
the version of TensorFlow installed as a TensorRT dependency and install the GPU
accelerated version in its place.
pip uninstall tensorflow
pip install tensorflow-gpu

‣ SampleNMT

‣ Performance is not fully optimized

‣ SampleNMT does not support FP16

‣ The vocabulary files are expected to be in the ../../../../data/samples/nmt/
deen directory from the executable. The sample doesn’t print usage if vocabulary
files are not present in the above mentioned path. For more information, see the
README.txt file for usage details.

‣ SampleMLP

‣ Performance is not fully optimized

‣ SampleMLP does not support FP16

‣ The accuracy of MLPs for handwritten digit recognition is lower than CNNs,
therefore, the sample may give an incorrect prediction in some cases.

‣ SampleMLP usage has incorrect details on the -a parameter. It should be -a
<#>. The activation to use on the layers, defaults to 1. Valid values are 1[ReLU],
2[Sigmoid], and 3[TanH]; instead of -a <#>. The activation to use in on the layers,
defaults to 1. Valid values are 0[ReLU], 1[Sigmoid], and 2[TanH].

‣ The timing information printed by the sample may not be accurate.

‣ Performance regressions

TensorRT Release 4.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 181

‣ A 5% slowdown was observed on AlexNet when running on GP102 devices with
batch size 2 using the Caffe parser.

‣ A 5% to 10% slowdown was observed on variants of inception, some instances of
ResNet, and some instances of SSD when using the UFF parser.

NVIDIA TensorRT RN-08624-001_v8.4.3 | 182

Chapter 6. TensorRT Release 3.x.x

6.1. TensorRT Release 3.0.4
This TensorRT 3.0.4 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.2.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Fixed an issue with INT8 deconvolution bias. If you have seen an issue with
deconvolution INT8 accuracy especially regarding TensorRT. 2.1, then this fix should
solve the issue.

‣ Fixed an accuracy issue in FP16 mode for NVCaffe models.

Using TensorRT 3.0.4

Ensure you are familiar with the following notes when using this release.

‣ The UFF converter script is packaged only for x86 users. If you are not an x86
user, and you want to convert TensorFlow models into UFF, you need to obtain the
conversion script from the x86 package of TensorRT.

6.2. TensorRT Release 3.0.3
This TensorRT 3.0.3 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.2. This release
is for AArch64 only.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Added support for Xavier

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 183

Using TensorRT 3.0.3

Ensure you are familiar with the following notes when using this release.

‣ When building the samples in this release, it is necessary to specify
CUDA_INSTALL_DIR as an argument to the Makefile.

‣ This release does not support TensorRT Python bindings.

Known Issues

‣ When building the samples on aarch64 natively, there is an issue in the
Makefile.config file that requires you to provide an additional option to make,
namely CUDA_LIBDIR.

‣ The infer_caffe_static test fails on D5L Parker dGPU. This is a regression from the
previous release.

‣ QnX has known performance issues with the mmap and malloc() operating system
memory allocation routines. These issues can affect the performance of TensorRT; up
to 10X.

6.3. TensorRT Release 3.0.2
This TensorRT 3.0.2 General Availability release is a minor release and includes some
improvements and fixes compared to the previously released TensorRT 3.0.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

‣ Fixed a bug in one of the INT8 deconvolution kernels that was generating incorrect
results. This fixed accuracy regression from 2.1 for networks that use deconvolutions.

‣ Fixed a bug where the builder would report out-of-memory when compiling a low
precision network, in the case that a low-precision version of the kernel could not be
found. The builder now correctly falls back to a higher precision version of the kernel.

‣ Fixed a bug where the existence of some low-precision kernels were being incorrectly
reported to the builder.

Using TensorRT 3.0.2

Ensure you are familiar with the following notes when using this release.

‣ When working with large networks and large batch sizes on the Jetson TX1 you
may see failures that are the result of CUDA error 4. This error generally means a
CUDA kernel failed to execute properly, but sometimes this can mean the CUDA

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 184

kernel actually timed out. The CPU and GPU share memory on the Jetson TX1 and
reducing the memory used by the CPU would help the situation. If you are not using
the graphical display on L4T you can stop the X11 server to free up CPU and GPU
memory. This can be done using:
$ sudo systemctl stop lightdm.service

Known Issues

‣ INT8 deconvolutions with biases have the bias scaled incorrectly. U-Net based
segmentation networks typically have non-zero bias.

‣ For TensorRT Android 32-bit, if your memory usage is high, then you may see
TensorRT failures. The issue is related to the CUDA allocated buffer address being
higher or equal to 0x80000000 and it is hard to know the exact memory usage after
which this issue is hit.

‣ If you are installing TensorRT from a tar package (instead of using the .deb
packages and apt-get), you will need to update the custom_plugins example to
point to the location that the tar package was installed into. For example, in the
<PYTHON_INSTALL_PATH>/tensorrt/examples/custom_layers/tensorrtplugins/

setup.py file change the following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include
directory.

‣ Change TENSORRT_LIB_DIR to point to <TAR_INSTALL_ROOT>/lib directory.

‣ If you were previously using the machine learning debian repository, then it will
conflict with the version of libcudnn7 that is contained within the local repository for
TensorRT. The following commands will downgrad libcudnn7 to the CUDA 9.0 version,
which is supported by TensorRT, and hold the package at this version.
sudo apt-get install libcudnn7=7.0.5.15-1+cuda9.0
libcudnn7-dev=7.0.5.15-1+cuda9.0
sudo apt-mark hold libcudnn7 libcudnn7-dev

If you would like to later upgrade libcudnn7 to the latest version, then you can use
the following commands to remove the hold.
sudo apt-mark unhold libcudnn7 libcudnn7-dev
sudo apt-get dist-upgrade

6.4. TensorRT Release 3.0.1
This TensorRT 3.0.1 General Availability release includes several enhancements and
improvements compared to the previously released TensorRT 2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 185

NvCaffeParser
NVCaffe 0.16 is now supported.

New deep learning layers or algorithms

‣ The TensorRT deconvolution layer previously did not support non-zero padding, or
stride values that were distinct from kernel size. These restrictions have now been
lifted.

‣ The TensorRT deconvolution layer now supports groups.

‣ Non-determinism in the deconvolution layer implementation has been eliminated.

‣ The TensorRT convolution layer API now supports dilated convolutions.

‣ The TensorRT API now supports these new layers (but they are not supported via
the NvCaffeParser):

‣ unary

‣ shuffle

‣ padding

‣ The Elementwise (eltwise) layer now supports broadcasting of input dimensions.

‣ The Flatten layer flattens the input while maintaining the batch_size. This layer
was added in the UFF converter and NvUffParser.

‣ The Squeeze layer removes dimensions of size 1 from the shape of a tensor. This
layer was added in the UFF converter and NvUffParser.

Universal Framework Format 0.2
UFF format is designed to encapsulate trained neural networks so that they can be
parsed by TensorRT. It’s also designed in a way of storing the information about a
neural network that is needed to create an inference engine based on that neural
network.

Performance

‣ Performance regressions seen from v2.1 to 3.0.1 Release Candidate for INT8 and
FP16 are now fixed.

‣ The INT8 regression in LRN that impacted networks like GoogleNet and
AlexNet is now fixed.

‣ The FP16 regression that impacted networks like AlexNet and ResNet-50 is
now fixed.

‣ The performance of the Xception network has improved, for example, by more
than 3 times when batch size is 8 on Tesla P4.

‣ Changed how the CPU synchronizes with the GPU in order to reduce the overall
load on the CPU when running inference with TensorRT.

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 186

‣ The deconvolution layer implementation included with TensorRT was, in some
circumstances, using significantly more memory and had lower performance than
the implementation provided by the cuDNN library. This has now been fixed.

‣ MAX_TENSOR_SIZE changed from (1<<30) to ((1<<31)-1). This change enables the
user to run larger batch sizes for networks with large input images.

Samples

‣ All Python examples now import TensorRT after the appropriate framework is
imported. For example, the tf_to_trt.py example imports TensorFlow before
importing TensorRT. This is done to avoid cuDNN version conflict issues.

‣ The tf_to_trt and pytorch_to_trt samples shipped with the TensorRT 3.0
Release Candidate included network models that were improperly trained with
the MNIST dataset, resulting in poor classification accuracy. This version has new
models that have been properly trained with the MNIST dataset to provide better
classification accuracy.

‣ The pytorch_to_trt sample originally showed low accuracy with MNIST, however,
data and training parameters were modified to address this.

‣ The giexec command line wrapper in earlier versions would fail if users specify
workspace >= 2048 MB. This issue is now fixed.

Functionality
The AverageCountExcludesPadding attribute has been added to the pooling layer to
control whether to use inclusive or exclusive averaging. The default is true, as used
by most frameworks. The NvCaffeParser sets this to false, restoring compatibility of
padded average pooling between NVCaffe and TensorRT.

TensorRT Python API
TensorRT 3.0.1 introduces the TensorRT Python API, which provides developers
interfaces to:

‣ the NvCaffeParser

‣ the NvUffParser

‣ The nvinfer graph definition API

‣ the inference engine builder

‣ the engine executor

‣ the perform calibration for running inference with INT8

‣ a workflow to include C++ custom layer implementations

TensorRT Lite: A simplified API for inference
TensorRT 3.0.1 provides a streamlined set of API functions (tensorrt.lite) that allow
users to export a trained model, build an engine, and run inference, with only a few
lines of Python code.

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 187

Streamlined export of models trained in TensorFlow into TensorRT
With this release, you can take a trained model in TensorFlow saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow model exporter creates an
output file in a format called UFF (Universal Framework Format), which can then be
parsed by TensorRT.

Currently the export path is expected to support the following:

‣ TensorFlow 1.3

‣ FP32 CNNs

‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc.)

‣ RNNs

‣ INT8 CNNs

Volta
The NVIDIA Volta architecture is now supported, including the Tesla V100 GPU. On
Volta devices, the Tensor Core feature provides a large performance improvement, and
Tensor Cores are automatically used when the builder is set to half2mode.

QNX
TensorRT 3.0.1 runs on the QNX operating system on the Drive PX2 platform.

Release Notes 3.0.1 Errata

‣ Due to the cuDNN symbol conflict issues between TensorRT and TensorFlow, the
tf_to_trt Python example works with TensorFlow 1.4.0 only and not prior versions
of TensorFlow.

‣ If your system has multiple libcudnnX-dev versions installed, ensure that cuDNN 7
is used for compiling and running TensorRT samples. This problem can occur when
you have TensorRT and a framework installed. TensorRT uses cuDNN 7 while most
frameworks are currently on cuDNN 6.

‣ There are various details in the Release Notes and Developer Guide about the
pytorch_to_trt Python example. This sample is no longer part of the package
because of cuDNN symbol conflict issues between PyTorch and TensorRT.

‣ In the Installation and Setup section of the Release Notes, it is mentioned
that TENSORRT_LIB_DIR should point to <TAR_INSTALL_ROOT>/lib64. Instead,
TENSORRT_LIB_DIR should point to <TAR_INSTALL_ROOT>/lib.

‣ There are some known minor performance regressions for FP32 mode on K80 for
large batch sizes on CUDA 8. Update to CUDA 9 if you see similar performance
regression.

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 188

Using TensorRT 3.0.1

Ensure you are familiar with the following notes when using this release.

‣ Although networks can use NHWC and NCHW, TensorFlow users are encouraged to
convert their networks to use NCHW data ordering explicitly in order to achieve the
best possible performance.

‣ The libnvcaffe_parsers.so library file is now called libnvparsers.so. The links
for libnvcaffe_parsers are updated to point to the new libnvparsers library. The
static library libnvcaffe_parser.a is also linked to the new libnvparsers.

Known Issues

Installation and Setup

‣ If you are installing TensorRT from a tar package (instead of using the .deb
packages and apt-get), you will need to update the custom_plugins example to
point to the location that the tar package was installed into. For example, in the
<PYTHON_INSTALL_PATH>/tensorrt/examples/custom_layers/tensorrtplugins/

setup.py file change the following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include
directory.

‣ Change TENSORRT_LIB_DIR to point to <TAR_INSTALL_ROOT>/lib64 directory.

‣ The PyTorch based sample will not work with the CUDA 9 Toolkit. It will only work with
the CUDA 8 Toolkit.

‣ When using the TensorRT APIs from Python, import the tensorflow and uff
modules before importing the tensorrt module. This is required to avoid a potential
namespace conflict with the protobuf library as well as the cuDNN version. In a
future update, the modules will be fixed to allow the loading of these Python modules
to be in an arbitrary order.

‣ The TensorRT Python APIs are only supported on x86 based systems. Some
installation packages for ARM based systems may contain Python .whl files. Do not
install these on the ARM systems, as they will not function.

‣ The TensorRT product version is incremented from 2.1 to 3.0.1 because we added
major new functionality to the product. The libnvinfer package version number was
incremented from 3.0.2 to 4.0 because we made non-backward compatible changes
to the application programming interface.

‣ The TensorRT debian package name was simplified in this release to tensorrt.
In previous releases, the product version was used as a suffix, for example
tensorrt-2.1.2.

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 189

‣ If you have trouble installing the TensorRT Python modules on Ubuntu 14.04, refer to
the steps on installing swig to resolve the issue. For installation instructions, see Unix
Installation.

‣ The Flatten layer can only be placed in front of the Fully Connected layer. This
means that the Flatten layer can only be used if its output is directly fed to a Fully
Connected layer.

‣ The Squeeze layer only implements the binary squeeze (removing specific size 1
dimensions). The batch dimension cannot be removed.

‣ If you see the Numpy.core.multiarray failed to import error message, upgrade
your NumPy to version 1.13.0 or greater.

‣ For Ubuntu 14.04, use pip version >= 9.0.1 to get all the dependencies installed.

TensorFlow Model Conversion

‣ The TensorFlow to TensorRT model export works only when running TensorFlow with
GPU support enabled. The converter does not work if TensorFlow is running without
GPU acceleration.

‣ The TensorFlow to TensorRT model export does not work with network models
specified using the TensorFlow Slim interface, nor does it work with models specified
using the Keras interface.

‣ The TensorFlow to TensorRT model export does not support recurrent neural network
(RNN) models.

‣ The TensorFlow to TensorRT model export may produce a model that has extra
tensor reformatting layers compared to a model generated directly using the C++ or
Python TensorRT graph builder API. This may cause the model that originated from
TensorFlow to run slower than the model constructed directly with the TensorRT
APIs.

‣ Although TensorFlow models can use either NHWC or NCHW tensor layouts,
TensorFlow users are encouraged to convert their models to use the NCHW tensor
layout explicitly, in order to achieve the best possible performance when exporting
the model to TensorRT.

‣ The TensorFlow parser requires that input will be fed to the network in NCHW format.

Other known issues

‣ On the V100 GPU, running models with INT8 only works if the batch size is evenly
divisible by 4.

‣ TensorRT Python interface requires NumPy 1.13.0 while the installing TensorRT using
pip may only install 1.11.0. Use sudo pip install numpy -U to update if the NumPy
version on the user machine is not 1.13.0.

http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation
http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 190

6.5. TensorRT Release 3.0 Release
Candidate (RC)

This is the second preview release of TensorRT. For production use of TensorRT, continue
to use 2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Volta
The NVIDIA Volta architecture is now supported, including the Tesla V100 GPU. On
Volta devices, the Tensor Core feature provides a large performance improvement, and
Tensor Cores are automatically used when the builder is set to half2mode.

Streamlined export of models trained in TensorFlow into TensorRT
With this release you can take a trained model in TensorFlow saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow model exporter creates an
output file in a format called UFF (Universal Framework Format), which can then be
parsed by TensorRT.

Currently the export path is expected to support the following:

‣ Tensorflow 1.3

‣ FP32 CNNs

‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc.)

‣ RNNs

‣ INT8 CNNs

TensorFlow convenience functions
NVIDIA provides convenience functions so that when using UFF and TensorRT to
export a model and run inference, only a few lines of code is needed.

Universal Framework Format 0.1
UFF format is designed to encapsulate trained neural networks so they can be parsed
by TensorRT.

Python API
TensorRT 3.0 introduces the TensorRT Python API, which provides developers
interfaces to:

‣ the NvCaffeParser

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 191

‣ the NvUffParser

‣ The nvinfer graph definition API

‣ the inference engine builder

‣ the engine executor

TensorRT also introduces a workflow to include C++ custom layer implementations in
Python based TensorRT applications.

New deep learning layers or algorithms

‣ The TensorRT deconvolution layer previously did not support non-zero padding, or
stride values that were distinct from kernel size. These restrictions have now been
lifted.

‣ The TensorRT deconvolution layer now supports groups.

‣ Non-determinism in the deconvolution layer implementation has been eliminated.

‣ The TensorRT convolution layer API now supports dilated convolutions.

‣ The TensorRT API now supports these new layers (but they are not supported via
the NvCaffeParser):

‣ unary

‣ shuffle

‣ padding

‣ The Elementwise (eltwise) layer now supports broadcasting of input dimensions.

QNX
TensorRT 3.0 runs on the QNX operating system on the Drive PX2 platform.

Known Issues

Installation and Setup

‣ If you are installing TensorRT from a tar package (instead of using the .deb packages
and apt-get), then the custom_plugins example will need to be updated to
point to the location that the tar package was installed to. For example, in the
<PYTHON_INSTALL_PATH>/tensorrt/examples/custom_layers/tensorrtplugins/

setup.py file change the following:

‣ Change TENSORRT_INC_DIR to point to the <TAR_INSTALL_ROOT>/include
directory.

‣ Change TENSORRT_LIB_DIR to point to the <TAR_INSTALL_ROOT>/lib directory.

‣ The PyTorch based sample will not work with the CUDA 9 Toolkit. It will only work with
the CUDA 8 Toolkit.

‣ When using the TensorRT APIs from Python, import the tensorflow and uff
modules before importing the tensorrt module. This is required to avoid a potential

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 192

namespace conflict with the protobuf library. In a future update, the modules will be
fixed to allow the loading of these Python modules to be in an arbitrary order.

‣ The TensorRT Python APIs are only supported on x86 based systems. Some
installation packages for ARM based systems may contain Python .whl files. Do not
install these on the ARM systems, as they will not function.

‣ The TensorRT product version is incremented from 2.1 to 3.0 because we added
major new functionality to the product. The libnvinfer package version number was
incremented from 3.0.2 to 4.0 because we made non-backward compatible changes
to the application programming interface.

‣ The TensorRT debian package name was simplified in this release to tensorrt.
In previous releases, the product version was used as a suffix, for example
tensorrt-2.1.2.

‣ If you have trouble installing the TensorRT Python modules on Ubuntu 14.04, refer to
the steps on installing swig to resolve the issue. For installation instructions, see Unix
Installation.

‣ There is a performance regression in the LRN layer when the network is running
in INT8 mode. It impacts networks like GoogleNet and AlexNet but not ResNet-50,
VGG-19 etc.

TensorFlow Model Conversion

‣ The TensorFlow to TensorRT model export works only when running TensorFlow with
GPU support enabled. The converter does not work if TensorFlow is running without
GPU acceleration.

‣ The TensorFlow to TensorRT model export does not work with network models
specified using the TensorFlow Slim interface, nor does it work with models specified
using the Keras interface.

‣ The TensorFlow to TensorRT model export does not support recurrent neural network
(RNN) models.

‣ The TensorFlow to TensorRT model export does not support convolutional layers that
have asymmetric padding (a different number of zero-padded rows and columns).

‣ The TensorFlow to TensorRT model export may produce a model that has extra
tensor reformatting layers compared to a model generated directly using the C++ or
Python TensorRT graph builder API. This may cause the model that originated from
TensorFlow to run slower than the model constructed directly with the TensorRT
APIs.

‣ Although TensorFlow models can use either NHWC or NCHW tensor layouts,
TensorFlow users are encouraged to convert their models to use the NCHW tensor
layout explicitly, in order to achieve the best possible performance.

Other known issues

‣ The Inception v4 network models are not supported with this Release Candidate with
FP16 on V100.

http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation
http://www.swig.org/Doc3.0/Preface.html#Preface_unix_installation

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 193

‣ On V100, running models with INT8 do not work if the batch size is not divisible by 4.

‣ The Average Pooling behavior has changed to exclude padding from the computation,
which is how all other Pooling modes handle padding. This results in incorrect
behavior for network models which rely on Average Pooling and which include
padding, such as Inception v3. This issue will be addressed in a future release.

‣ In this Release Candidate, the arguments for the tensorrt_exec.py script are slightly
different than the ones for the giexec executable, and can be a source of confusion
for users. Consult the documentation carefully to avoid unexpected errors. The
command-line arguments will be changed to match giexec in a future update.

‣ The INT8 Calibration feature is not available in the TensorRT Python APIs.

‣ The examples/custom_layer sample will not work on Ubuntu 14.04 x86_64 systems,
however, it does work properly on Ubuntu 16.04 systems. This will be fixed in the next
update of the software.

6.6. TensorRT Release 3.0 Early Access
(EA)

This is a preview release of TensorRT. For production use of TensorRT, continue to use
2.1.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Streamlined export for models trained in TensorFlow to TensorRT
With this release you can take a TensorFlow trained model saved in a TensorFlow
protobuf and convert it to run in TensorRT. The TensorFlow to UFF converter creates
an output file in a format called UFF (Universal Framework Format) which can then be
read into TensorRT.

Currently the export path is expected to support the following:

‣ Tensorflow 1.0

‣ FP32 CNNs

‣ FP16 CNNs

The TensorFlow export path is currently not expected to support the following:

‣ Other versions of TensorFlow (0.9, 1.1, etc..)

‣ RNNs

‣ INT8 CNNs

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 194

TensorFlow convenience functions
NVIDIA provides convenience functions so that when using UFF and TensorRT to
export a model and run inference, only a few lines of code is needed.

Universal Framework Format 0.1
UFF format is designed as a way of storing the information about a neural network
that is needed to create an inference engine based on that neural network.

Python API
TensorRT 3.0 introduces the TensorRT Python API, allowing developers to access:

‣ the NvCaffeParser

‣ the NvUffParser

‣ The nvinfer graph definition API

‣ the inference engine builder

‣ the inference-time interface for engine execution within Python

TensorRT also introduces a workflow to include C++ custom layer implementations in
Python based TensorRT applications.

Using TensorRT 3.0

Ensure you are familiar with the following notes when using this release.

‣ Although networks can use NHWC and NCHW, TensorFlow users are encouraged to
convert their networks to use NCHW data ordering explicitly in order to achieve the
best possible performance.

‣ Average pooling behavior changed to exclude the padding from the computation.
The padding is now excluded from the computation in all of the pooling modes.
This results in incorrect behavior for networks which rely on average pooling which
includes padding, such as inceptionV3. This issue will be addressed in a future
release.

‣ The libnvcaffe_parsers.so library file is now called libnvparsers.so. The links
for libnvcaffe_parsers are updated to point to the new libnvparsers library. The
static library libnvcaffe_parser.a is also linked to the new libnvparsers. For
example:

‣ Old structure: libnvcaffe_parsers.4.0.0.so links to libnvcaffe_parsers.4.so
which links to libnvcaffe_parsers.so.

‣ New structure: libnvcaffe_parsers.4.0.0.so links to ibnvcaffe_parsers.4.so
which links to libnvcaffe_parsers.so which links to libnvparsers.so(actual
file).

Known Issues

‣ TensorRT does not support asymmetric padding.

TensorRT Release 3.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 195

‣ Some TensorRT optimizations disabled just for this Early Release (EA) to ensure that
the UFF model runs properly. This will be addressed in TensorRT 3.0.

‣ The TensorFlow conversion path is not fully optimized.

‣ INT8 Calibration is not available in Python.

‣ Deconvolution is not implemented in the UFF workflow.

NVIDIA TensorRT RN-08624-001_v8.4.3 | 196

Chapter 7. TensorRT Release 2.x.x

7.1. TensorRT Release 2.1
This TensorRT 2.1 General Availability release is a minor release and includes the
following improvements and fixes.

Key Features and Enhancements

This TensorRT release includes the following key features and enhancements.

Custom Layer API
If you want TensorRT to use novel, unique or proprietary layers in the evaluation of
certain networks, the Custom Layer API lets you provide a CUDA kernel function that
implements the functionality you want.

Installers
You have two ways you can install TensorRT 2.1:

 1. Ubuntu deb packages. If you have root access and prefer to use package
management to ensure consistency of dependencies, then you can use the apt-
get command and the deb packages.

 2. Tar file based installers. If you do not have root access or you want to install
multiple versions of TensorRT side-by-side for comparison purposes, then you
can use the tar file install. The tar file installation uses target dep-style directory
structures so that you can install TensorRT libraries for multiple architectures and
then do cross compilation.

INT8 support
TensorRT can be used on supported GPUs (such as P4 and P40) to execute networks
using INT8 rather than FP32 precision. Networks using INT8 deliver significant
performance improvements.

Recurrent Neural Network
LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) are two popular and
powerful variations of a Recurrent Neural Network cell. Recurrent neural networks are

TensorRT Release 2.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 197

designed to work with sequences of characters, words, sounds, images, etc. TensorRT
2.1 provides implementations of LSTM, GRU and the original RNN layer.

Using TensorRT 2.1

Ensure you are familiar with the following notes when using this release.

‣ Running networks in FP16 or INT8 may not work correctly on platforms without
hardware support for the appropriate reduced precision instructions.

‣ GTX 750 and K1200 users will need to upgrade to CUDA 8 in order to use TensorRT.

‣ If you have previously installed TensorRT 2.0 EA or TensorRT 2.1 RC and you install
TensorRT 2.1, you may find that the old meta package is still installed. It can be safely
removed with the apt-get command.

‣ Debian packages are supplied in the form of local repositories. Once you have
installed TensorRT, you can safely remove the TensorRT local repository debian
package.

‣ The implementation of deconvolution is now deterministic. In order to ensure
determinism, the new algorithm requires more workspace.

‣ FP16 performance was significantly improved for batch size = 1. The new algorithm is
sometimes slower for batch sizes greater than one.

‣ Calibration for INT8 does not require labeled data. SampleINT8 uses labels only to
compare the accuracy of INT8 inference with the accuracy of FP32 inference.

‣ Running with larger batch sizes gives higher overall throughput but uses more
memory. When trying TensorRT out on GPUs with smaller memory, be aware that
some of the samples may not work with batch sizes of 128.

‣ The included Caffe parser library does not currently understand the NVIDIA/Caffe
format for batch normalization. The BVLC/Caffe batch normalization format is parsed
correctly.

Deprecated Features

The parameterized calibration technique introduced in the 2.0 EA pre-release has been
replaced by the new entropy calibration mechanism.

‣ The Legacy class IInt8LegacyCalibrator is deprecated.

Known Issues

‣ When using reduced precision, either INT8 or FP16, on platforms with hardware
support for those types, pooling with window sizes other than 1,2,3,5 or 7 will fail.

‣ When using MAX_AVERAGE_BLEND or AVERAGE pooling in INT8 with a channel count that
is not a multiple of 4, TensorRT may generate incorrect results.

https://github.com/NVIDIA/caffe
https://github.com/BVLC/caffe

TensorRT Release 2.x.x

NVIDIA TensorRT RN-08624-001_v8.4.3 | 198

‣ When downloading the Faster R-CNN data on Jetson TX1 users may see the
following error:
ERROR: cannot verify dl.dropboxusercontent.com's certificate, issued by 'CN=DigiCert SHA2
 High Assurance Server CA,OU=www.digicert.com,O=DigiCert Inc,C=US':
 Unable to locally verify the issuer's authority.
To connect to dl.dropboxusercontent.com insecurely, use `--no-check-certificate`.

Adding the --no-check-certificate flag should resolve the issue.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of
such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Arm

Arm, AMBA and Arm Powered are registered trademarks of Arm Limited. Cortex, MPCore and Mali are trademarks of Arm Limited. "Arm" is used to represent
Arm Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France
SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS and Arm Sweden AB.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Blackberry/QNX

Copyright © 2020 BlackBerry Limited. All rights reserved.

Trademarks, including but not limited to BLACKBERRY, EMBLEM Design, QNX, AVIAGE, MOMENTICS, NEUTRINO and QNX CAR are the trademarks or
registered trademarks of BlackBerry Limited, used under license, and the exclusive rights to such trademarks are expressly reserved.

Google

Android, Android TV, Google Play and the Google Play logo are trademarks of Google, Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and BlueField, CUDA, DALI, DRIVE, Hopper, JetPack, Jetson AGX Xavier, Jetson Nano, Maxwell, NGC, Nsight, Orin, Pascal, Quadro,
Tegra, TensorRT, Triton, Turing and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2017-2024 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	TensorRT Release 8.x.x
	1.1. TensorRT Release 8.4.3
	1.2. TensorRT Release 8.4.2
	1.3. TensorRT Release 8.4.1
	1.4. TensorRT Release 8.4.0 Early Access (EA)
	1.5. TensorRT Release 8.2.5
	1.6. TensorRT Release 8.2.4
	1.7. TensorRT Release 8.2.3
	1.8. TensorRT Release 8.2.2
	1.9. TensorRT Release 8.2.1
	1.10. TensorRT Release 8.2.0 Early Access (EA)
	1.11. TensorRT Release 8.0.3
	1.12. TensorRT Release 8.0.2
	1.13. TensorRT Release 8.0.1
	1.14. TensorRT Release 8.0.0 Early Access (EA)

	TensorRT Release 7.x.x
	2.1. TensorRT Release 7.2.3
	2.2. TensorRT Release 7.2.2
	2.3. TensorRT Release 7.2.1
	2.4. TensorRT Release 7.2.0
	2.5. TensorRT Release 7.1.3
	2.6. TensorRT Release 7.1.2 Release Candidate (RC)
	2.7. TensorRT Release 7.1.0 Early Access (EA)
	2.8. TensorRT Release 7.0.0

	TensorRT Release 6.x.x
	3.1. TensorRT Release 6.0.1

	TensorRT Release 5.x.x
	4.1. TensorRT Release 5.1.5
	4.2. TensorRT Release 5.1.3
	4.3. TensorRT Release 5.1.2 Release Candidate (RC)
	4.4. TensorRT Release 5.1.1 Release Candidate (RC)
	4.5. TensorRT Release 5.1.0 Release Candidate (RC)
	4.6. TensorRT Release 5.0.6
	4.7. TensorRT Release 5.0.5
	4.8. TensorRT Release 5.0.4
	4.9. TensorRT Release 5.0.3
	4.10. TensorRT Release 5.0.2
	4.11. TensorRT Release 5.0.1 Release Candidate (RC)
	4.12. TensorRT Release 5.0.0 Release Candidate (RC)

	TensorRT Release 4.x.x
	5.1. TensorRT Release 4.0.1
	5.2. TensorRT Release 4.0 Release Candidate (RC) 2
	5.3. TensorRT Release 4.0 Release Candidate (RC)

	TensorRT Release 3.x.x
	6.1. TensorRT Release 3.0.4
	6.2. TensorRT Release 3.0.3
	6.3. TensorRT Release 3.0.2
	6.4. TensorRT Release 3.0.1
	6.5. TensorRT Release 3.0 Release Candidate (RC)
	6.6. TensorRT Release 3.0 Early Access (EA)

	TensorRT Release 2.x.x
	7.1. TensorRT Release 2.1

