Layer Base Classes
ITensor
- tensorrt.TensorLocation
- The physical location of the data. - Members: - DEVICE : Data is stored on the device. - HOST : Data is stored on the device. 
- tensorrt.TensorFormat
- Format of the input/output tensors. - This enum is used by both plugins and network I/O tensors. - For more information about data formats, see the topic “Data Format Description” located in the TensorRT Developer Guide (https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html). - Members: - LINEAR :
- Row major linear format. - For a tensor with dimensions {N, C, H, W}, the W axis always has unit stride, and the stride of every other axis is at least the the product of of the next dimension times the next stride. the strides are the same as for a C array with dimensions [N][C][H][W]. 
- CHW2 :
- Two wide channel vectorized row major format. - This format is bound to FP16. It is only available for dimensions >= 3. - For a tensor with dimensions {N, C, H, W}, the memory layout is equivalent to a C array with dimensions [N][(C+1)/2][H][W][2], with the tensor coordinates (n, c, h, w) mapping to array subscript [n][c/2][h][w][c%2]. 
- HWC8 :
- Eight channel format where C is padded to a multiple of 8. - This format is bound to FP16. It is only available for dimensions >= 3. - For a tensor with dimensions {N, C, H, W}, the memory layout is equivalent to the array with dimensions [N][H][W][(C+7)/8*8], with the tensor coordinates (n, c, h, w) mapping to array subscript [n][h][w][c]. 
- CHW4 :
- Four wide channel vectorized row major format. This format is bound to INT8. It is only available for dimensions >= 3. - For a tensor with dimensions {N, C, H, W}, the memory layout is equivalent to a C array with dimensions [N][(C+3)/4][H][W][4], with the tensor coordinates (n, c, h, w) mapping to array subscript [n][c/4][h][w][c%4]. 
- CHW16 :
- Sixteen wide channel vectorized row major format. - This format is bound to FP16. It is only available for dimensions >= 3. - For a tensor with dimensions {N, C, H, W}, the memory layout is equivalent to a C array with dimensions [N][(C+15)/16][H][W][16], with the tensor coordinates (n, c, h, w) mapping to array subscript [n][c/16][h][w][c%16]. 
- CHW32 :
- Thirty-two wide channel vectorized row major format. - This format is only available for dimensions >= 3. - For a tensor with dimensions {N, C, H, W}, the memory layout is equivalent to a C array with dimensions [N][(C+31)/32][H][W][32], with the tensor coordinates (n, c, h, w) mapping to array subscript [n][c/32][h][w][c%32]. 
- DHWC8 :
- Eight channel format where C is padded to a multiple of 8. - This format is bound to FP16, and it is only available for dimensions >= 4. - For a tensor with dimensions {N, C, D, H, W}, the memory layout is equivalent to an array with dimensions [N][D][H][W][(C+7)/8*8], with the tensor coordinates (n, c, d, h, w) mapping to array subscript [n][d][h][w][c]. 
- CDHW32 :
- Thirty-two wide channel vectorized row major format with 3 spatial dimensions. - This format is bound to FP16 and INT8. It is only available for dimensions >= 4. - For a tensor with dimensions {N, C, D, H, W}, the memory layout is equivalent to a C array with dimensions [N][(C+31)/32][D][H][W][32], with the tensor coordinates (n, d, c, h, w) mapping to array subscript [n][c/32][d][h][w][c%32]. 
- HWC :
- Non-vectorized channel-last format. This format is bound to FP32 and is only available for dimensions >= 3. 
- DLA_LINEAR :
- DLA planar format. Row major format. The stride for stepping along the H axis is rounded up to 64 bytes. - This format is bound to FP16/Int8 and is only available for dimensions >= 3. - For a tensor with dimensions {N, C, H, W}, the memory layout is equivalent to a C array with dimensions [N][C][H][roundUp(W, 64/elementSize)] where elementSize is 2 for FP16 and 1 for Int8, with the tensor coordinates (n, c, h, w) mapping to array subscript [n][c][h][w]. 
- DLA_HWC4 :
- DLA image format. channel-last format. C can only be 1, 3, 4. If C == 3 it will be rounded to 4. The stride for stepping along the H axis is rounded up to 32 bytes. - This format is bound to FP16/Int8 and is only available for dimensions >= 3. - For a tensor with dimensions {N, C, H, W}, with C’ is 1, 4, 4 when C is 1, 3, 4 respectively, the memory layout is equivalent to a C array with dimensions [N][H][roundUp(W, 32/C’/elementSize)][C’] where elementSize is 2 for FP16 and 1 for Int8, C’ is the rounded C. The tensor coordinates (n, c, h, w) maps to array subscript [n][h][w][c]. 
- HWC16 :
- Sixteen channel format where C is padded to a multiple of 16. This format is bound to FP16. It is only available for dimensions >= 3. - For a tensor with dimensions {N, C, H, W}, the memory layout is equivalent to the array with dimensions [N][H][W][(C+15)/16*16], with the tensor coordinates (n, c, h, w) mapping to array subscript [n][h][w][c]. 
 
- class tensorrt.ITensor
- A tensor in an - INetworkDefinition.- Variables
- name – - strThe tensor name. For a network input, the name is assigned by the application. For tensors which are layer outputs, a default name is assigned consisting of the layer name followed by the index of the output in brackets.
- shape – - DimsThe shape of a tensor. For a network input the shape is assigned by the application. For a network output it is computed based on the layer parameters and the inputs to the layer. If a tensor size or a parameter is modified in the network, the shape of all dependent tensors will be recomputed. This call is only legal for network input tensors, since the shape of layer output tensors are inferred based on layer inputs and parameters.
- dtype – - DataTypeThe data type of a tensor. The type is unchanged if the type is invalid for the given tensor.
- broadcast_across_batch – - boolWhether to enable broadcast of tensor across the batch. When a tensor is broadcast across a batch, it has the same value for every member in the batch. Memory is only allocated once for the single member. This method is only valid for network input tensors, since the flags of layer output tensors are inferred based on layer inputs and parameters. If this state is modified for a tensor in the network, the states of all dependent tensors will be recomputed.
- location – - TensorLocationThe storage location of a tensor.
- is_network_input – - boolWhether the tensor is a network input.
- is_network_output – - boolWhether the tensor is a network output.
- dynamic_range – - Tuple[float, float]A tuple containing the [minimum, maximum] of the dynamic range, or- Noneif the range was not set.
- is_shape – - boolWhether the tensor is a shape tensor.
- allowed_formats – - int32The allowed set of TensorFormat candidates. This should be an integer consisting of one or more- TensorFormats, combined via bitwise OR after bit shifting. For example,- 1 << int(TensorFormat.CHW4) | 1 << int(TensorFormat.CHW32).
 
 - get_dimension_name(self: tensorrt.tensorrt.ITensor, index: int) str
- Get the name of an input dimension. - Parameters
- index – index of the dimension. 
- Returns
- name of the dimension, or null if dimension is unnamed. 
 
 - reset_dynamic_range(self: tensorrt.tensorrt.ITensor) None
- Undo the effect of setting the dynamic range. 
 - set_dimension_name(self: tensorrt.tensorrt.ITensor, index: int, name: str) None
- Name a dimension of an input tensor. - Associate a runtime dimension of an input tensor with a symbolic name. Dimensions with the same non-empty name must be equal at runtime. Knowing this equality for runtime dimensions may help the TensorRT optimizer. Both runtime and build-time dimensions can be named. If the function is called again, with the same index, it will overwrite the previous name. If None is passed as name, it will clear the name of the dimension. - For example, setDimensionName(0, “n”) associates the symbolic name “n” with the leading dimension. - Parameters
- index – index of the dimension. 
- name – name of the dimension. 
 
 
 - set_dynamic_range(self: tensorrt.tensorrt.ITensor, min: float, max: float) bool
- Set dynamic range for the tensor. NOTE: It is suggested to use - tensor.dynamic_range = (min, max)instead.- Parameters
- min – Minimum of the dynamic range. 
- max – Maximum of the dyanmic range. 
 
- Returns
- true if succeed in setting range. Otherwise false. 
 
 
ILayer
- tensorrt.LayerType
- Type of Layer - Members: - CONVOLUTION : Convolution layer - FULLY_CONNECTED : Fully connected layer - GRID_SAMPLE : Grid sample layer - NMS : NMS layer - ACTIVATION : Activation layer - POOLING : Pooling layer - LRN : LRN layer - SCALE : Scale layer - SOFTMAX : Softmax layer - DECONVOLUTION : Deconvolution layer - CONCATENATION : Concatenation layer - ELEMENTWISE : Elementwise layer - PLUGIN : Plugin layer - UNARY : Unary layer - PADDING : Padding layer - SHUFFLE : Shuffle layer - REDUCE : Reduce layer - TOPK : TopK layer - GATHER : Gather layer - MATRIX_MULTIPLY : Matrix multiply layer - RAGGED_SOFTMAX : Ragged softmax layer - CONSTANT : Constant layer - RNN_V2 : RNNv2 layer - IDENTITY : Identity layer - PLUGIN_V2 : PluginV2 layer - SLICE : Slice layer - SHAPE : Shape layer - PARAMETRIC_RELU : Parametric ReLU layer - RESIZE : Resize layer - TRIP_LIMIT : Loop Trip limit layer - RECURRENCE : Loop Recurrence layer - ITERATOR : Loop Iterator layer - LOOP_OUTPUT : Loop output layer - SELECT : Select layer - ASSERTION : Assertion layer - FILL : Fill layer - QUANTIZE : Quantize layer - DEQUANTIZE : Dequantize layer - CONDITION : If-conditional Condition layer - CONDITIONAL_INPUT : If-conditional input layer - CONDITIONAL_OUTPUT : If-conditional output layer - SCATTER : Scatter layer - EINSUM : Einsum layer - ONE_HOT : OneHot layer - NON_ZERO : NonZero layer 
- class tensorrt.ILayer
- Base class for all layer classes in an - INetworkDefinition.- Variables
 - get_input(self: tensorrt.tensorrt.ILayer, index: int) tensorrt.tensorrt.ITensor
- Get the layer input corresponding to the given index. - Parameters
- index – The index of the input tensor. 
- Returns
- The input tensor, or - Noneif the index is out of range.
 
 - get_output(self: tensorrt.tensorrt.ILayer, index: int) tensorrt.tensorrt.ITensor
- Get the layer output corresponding to the given index. - Parameters
- index – The index of the output tensor. 
- Returns
- The output tensor, or - Noneif the index is out of range.
 
 - get_output_type(self: tensorrt.tensorrt.ILayer, index: int) tensorrt.tensorrt.DataType
- Get the output type of the layer. - Parameters
- index – The index of the output tensor. 
- Returns
- The output precision. Default : DataType.FLOAT. 
 
 - output_type_is_set(self: tensorrt.tensorrt.ILayer, index: int) bool
- Whether the output type has been set for this layer. - Parameters
- index – The index of the output. 
- Returns
- Whether the output type has been explicitly set. 
 
 - reset_output_type(self: tensorrt.tensorrt.ILayer, index: int) None
- Reset output type of this layer. - Parameters
- index – The index of the output. 
 
 - reset_precision(self: tensorrt.tensorrt.ILayer) None
- Reset the computation precision of the layer. 
 - set_input(self: tensorrt.tensorrt.ILayer, index: int, tensor: tensorrt.tensorrt.ITensor) None
- Set the layer input corresponding to the given index. - Parameters
- index – The index of the input tensor. 
- tensor – The input tensor. 
 
 
 - set_output_type(self: tensorrt.tensorrt.ILayer, index: int, dtype: tensorrt.tensorrt.DataType) None
- Constraint layer to generate output data with given type. Note that this method cannot be used to set the data type of the second output tensor of the topK layer. The data type of the second output tensor of the topK layer is always - int32.- Parameters
- index – The index of the output tensor to set the type. 
- dtype – DataType of the output.