Activation¶
Apply an activation function on an input tensor A and produce an output tensor B with the same dimensions.
See also
PRelu, SoftMax
Attributes¶
type activation function can be one of:
RELU\(output=max(0, input)\)SIGMOID\(output=\frac{1}{1+e^{-input}}\)TANH\(output=\frac{1-e^{-2 \cdot input}}{1+e^{-2 \cdot input}}\)LEAKY_RELU\(output=input \text{ if } input\geq0 \text{ else } \alpha \cdot input\)ELU\(output=input \text{ if } input\geq0 \text{ else } \alpha \cdot (e^{input} -1)\)SELU\(output=\beta \cdot input \text{ if } input\geq0 \text{ else } \beta \cdot (\alpha \cdot e^{input} - \alpha)\)SOFTSIGN\(output=\frac{input}{1+|input|}\)SOFTPLUS\(output=\alpha \cdot log(e^{\beta \cdot input} + 1)\)CLIP\(output=max(\alpha, min(\beta, input))\)HARD_SIGMOID\(output=max(0, min(1, \alpha \cdot input +\beta))\)SCALED_TANH\(output=\alpha \cdot tanh(\beta \cdot input)\)THRESHOLDED_RELU\(output=max(0, input - \alpha)\)
alpha parameter used when the activation function is one of: LEAKY_RELU, ELU, SELU, SOFTPLUS, CLIP, HARD_SIGMOID, SCALED_TANH, THRESHOLDED_RELU
beta parameter used when the activation function is one of: SELU, SOFTPLUS, CLIP, HARD_SIGMOID, SCALED_TANH
Inputs¶
input: tensor of type T1
Outputs¶
output: tensor of type T1
Data Types¶
T1: int8, float16, float32
Shape Information¶
The output has the same shape as the input.
DLA Restrictions¶
DLA supports the following activation types:
CLIPwhere \(\alpha=0\) and \(\beta\leq127\)RELUSIGMOIDTANHLEAKY_RELU
Examples¶
Activation
in1 = network.add_input("input1", dtype=trt.float32, shape=(2, 3))
layer = network.add_activation(in1, type=trt.ActivationType.RELU)
network.mark_output(layer.get_output(0))
inputs[in1.name] = np.array([[-3.0, -2.0, -1.0], [0.0, 1.0, 2.0]])
outputs[layer.get_output(0).name] = layer.get_output(0).shape
expected[layer.get_output(0).name] = np.array([[0.0, 0.0, 0.0], [0.0, 1.0, 2.0]])
C++ API¶
For more information about the C++ IActivationLayer operator, refer to the C++ IActivationLayer documentation.
Python API¶
For more information about the Python IActivationLayer operator, refer to the Python IActivationLayer documentation.