Attention

Generates an attention.

Attributes

normalizationOp activation function can be one of:

  • NONE No normalization is applied.

  • SOFTMAX Apply softmax normalization on the attention scores on the s_kv dimension.

causal boolean parameter determines whether the attention will run causal inference.

decomposable boolean parameter determines whether the attention can be decomposed to use multiple kernels if no fused kernel support found.

normalizationQuantizeToType optional parameter determines the datatype the attention normalization is quantized to.

  • DataType::kFP8: The attention normalization is quantized to FP8.

  • DataType::kINT8: The attention normalization is quantized to INT8.

Inputs

query a tensor of type T1

key a tensor of type T1

value a tensor of type T1

mask optional: tensor of type T2. For a bool mask, a True value indicates that the corresponding position is allowed to attend. For a float mask, the mask values will be added to the BMM1 output, known as an add mask.

normalizationQuantizeScale optional: tensor of type T1. The quantization scale for the attention normalization output.

Outputs

outputs tensors of type T1

Data Types

T1: float32, float16, bfloat16

T2: float32, float16, bfloat16, bool. T2 must be the same as T1 if not bool

Shape Information

query and outputs are tensors with the same shape of \([b, d_q, s_q, h]\)

key and value are tensors with the same shape of \([b, d_{kv}, s_{kv}, h]\)

mask is a tensor with the same shape of \([a_0, a_1, s_q, s_{kv}]\) where \(a_0\) and \(a_1\) must be broadcastable to b and h.

normalizationQuantizeScale is a tensor with a shape of \([a_0,...,a_n], 0 \leq n \geq 1\)

DLA Support

Not supported.

Examples

Attention
network = get_runner.builder.create_network(flags=1 << int(trt.NetworkDefinitionCreationFlag.STRONGLY_TYPED))
qkv_shape = (1, 8, 1, 16)
mask_shape = (1, 1, 1, 1)
query = network.add_input("query", dtype=trt.float16, shape=qkv_shape)
key = network.add_input("key", dtype=trt.float16, shape=qkv_shape)
value = network.add_input("value", dtype=trt.float16, shape=qkv_shape)
mask = network.add_input("mask", dtype=trt.bool, shape=mask_shape)
layer = network.add_attention(query, key, value, trt.AttentionNormalizationOp.SOFTMAX, False)
layer.mask = mask
network.mark_output(layer.get_output(0))

query_data = np.ones(qkv_shape, dtype=np.float16)
for i in range(qkv_shape[1]):
    query_data[0, i, 0, :] = i + 1
inputs[query.name] = query_data

key_data = np.ones(qkv_shape, dtype=np.float16)
for i in range(qkv_shape[1]):
    key_data[0, i, 0, :] = i + 1
inputs[key.name] = key_data

value_data = np.ones(qkv_shape, dtype=np.float16)
for i in range(qkv_shape[1]):
    value_data[0, i, 0, :] = i + 1
inputs[value.name] = value_data

mask_data = np.ones(mask_shape, dtype=np.bool_)
inputs[mask.name] = mask_data

outputs[layer.get_output(0).name] = layer.get_output(0).shape

# With identical query/key/values, each position will attend to itself most strongly
expected_data = np.ones(qkv_shape, dtype=np.float16)
for i in range(qkv_shape[1]):
    expected_data[0, i, 0, :] = i + 1
expected[layer.get_output(0).name] = expected_data

# Set get_runner.network back to the new STRONGLY_TYPED network
get_runner.network = network

C++ API

For more information about the C++ IAttention operator, refer to the C++ IAttention documentation.

Python API

For more information about the Python IAttention operator, refer to the Python IAttention documentation.