Quantize#
Quantize a float input tensor into an integer output tensor. The quantization computation is as follows: \(output_{i_0,..,i_n} = \text{clamp}(\text{round}(\frac{input_{i_0,..,i_n}}{scale} + \text{zero_point}))\).
Attributes#
axis
The axis to perform the quantization on.
toType
The DataType of the output tensor. Defaults to int8
.
Inputs#
input: tensor of type T1
.
scale: tensor of type T1
that provides the quantization scale. The scale tensor must be a build-time constant. Its dimensions must be a scalar for per-tensor quantization, a 1-D tensor for per-channel quantization, or the same rank as the input tensor for block quantization (supported for DataType::kINT4 only).
zero_point: tensor of type T2
that provides the quantization zero-point. The zero_point tensor is optional and will be assumed to be zero if not set. The zero_point must only contain zero-valued coefficients if set, and must have the same shape as scale.
Outputs#
output: tensor of type T3
.
Shape Information#
input and output are tensors with a shape of \([a_0,...,a_n]\).
scale and zero_point must have the same shape, if zero_point is defined.
Volume Limits#
input, scale, and zero_point can have up to \(2^{31}-1\) elements.
Examples#
Quantize
in1 = network.add_input("input1", dtype=trt.float32, shape=(1, 1, 3, 3))
scale = network.add_constant(shape=(1,), weights=np.array([1 / 127], dtype=np.float32))
quantize = network.add_quantize(in1, scale.get_output(0))
quantize.axis = 3
dequantize = network.add_dequantize(quantize.get_output(0), scale.get_output(0))
dequantize.axis = 3
network.mark_output(dequantize.get_output(0))
inputs[in1.name] = np.array(
[
[
[0.56, 0.89, 1.4],
[-0.56, 0.39, 6.0],
[0.67, 0.11, -3.6],
]
]
)
outputs[dequantize.get_output(0).name] = dequantize.get_output(0).shape
expected[dequantize.get_output(0).name] = np.array(
[
[
[0.56, 0.89, 1],
[-0.56, 0.39, 1.0],
[0.67, 0.11, -1.0],
]
]
)
Block Quantization
in1 = network.add_input("input1", dtype=trt.float32, shape=(1, 8))
weights = network.add_constant(shape=(4, 8), weights=np.array([
[1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0],
[1.1, 1.2, 2.1, 2.2, 3.1, 3.2, 4.1, 4.2],
[4.0, 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0],
[4.1, 4.2, 5.1, 5.2, 6.1, 6.2, 7.1, 7.2],
], dtype=np.float32))
scale = network.add_constant(shape=(2, 8), weights=np.array([
[1, 1, 2, 2, 3, 3, 4, 4],
[4, 4, 5, 5, 6, 6, 7, 7]
], dtype=np.float32))
quantize = network.add_quantize(weights.get_output(0), scale.get_output(0), trt.int4)
dequantize = network.add_dequantize(quantize.get_output(0), scale.get_output(0), trt.float32)
network.mark_output(dequantize.get_output(0))
inputs[in1.name] = np.array(
[
[2, 2, 2, 2, 2, 2, 2, 2],
]
)
outputs[dequantize.get_output(0).name] = dequantize.get_output(0).shape
expected[dequantize.get_output(0).name] = np.array(
[
[
[1, 1, 2, 2, 3, 3, 4, 4],
[1, 1, 2, 2, 3, 3, 4, 4],
[4, 4, 5, 5, 6, 6, 7, 7],
[4, 4, 5, 5, 6, 6, 7, 7],
]
]
)
C++ API#
For more information about the C++ IQuantizeLayer operator, refer to the C++ IQuantizeLayer documentation.
Python API#
For more information about the Python IQuantizeLayer operator, refer to the Python IQuantizeLayer documentation.