Source code for polygraphy.backend.onnxrt.loader

#
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from polygraphy import mod, util
from polygraphy.backend.base import BaseLoader
from polygraphy.logger import G_LOGGER

onnxrt = mod.lazy_import("onnxruntime")


[docs] @mod.export(funcify=True) class SessionFromOnnx(BaseLoader): """ Functor that builds an ONNX-Runtime inference session. """ def __init__(self, model_bytes, providers=None): """ Builds an ONNX-Runtime inference session. Args: model_bytes (Union[Union[bytes, str], Callable() -> Union[bytes, str]]): A serialized ONNX model or a path to a model or a callable that returns one of those. providers (Sequence[str]): A sequence of execution providers to use in order of priority. Each element of the sequence may be either an exact match or a case-insensitive partial match for the execution providers available in ONNX-Runtime. For example, a value of "cpu" would match the "CPUExecutionProvider". Defaults to ``["cpu"]``. """ self._model_bytes_or_path = model_bytes self.providers = util.default(providers, ["cpu"])
[docs] @util.check_called_by("__call__") def call_impl(self): """ Returns: onnxruntime.InferenceSession: The inference session. """ model_bytes, _ = util.invoke_if_callable(self._model_bytes_or_path) available_providers = onnxrt.get_available_providers() providers = [] for prov in self.providers: matched_prov = util.find_str_in_iterable(prov, available_providers) if matched_prov is None: G_LOGGER.critical( f"Could not find specified ONNX-Runtime execution provider.\nNote: Requested provider was: {prov}, but available providers are: {available_providers}" ) providers.append(matched_prov) G_LOGGER.start( f"Creating ONNX-Runtime Inference Session with providers: {providers}" ) return onnxrt.InferenceSession(model_bytes, providers=providers)