Source code for pytorch_quantization.nn.functional

# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.

"""Some supportive functions"""
from absl import logging

import torch
from torch.autograd import Function

[docs]class ClipFunction(Function): """An universal tensor clip function Pytorch's clamp() only supports scalar range and doesn't support broadcast. This implementation uses min/max which is more genaral. The gradient is defined according to IBM's PACT paper, which is also the behavior of Tensorflow's clip_by_value() """ @staticmethod def forward(ctx, input, clip_value_min, clip_value_max): output = torch.min(input, clip_value_max) output = torch.max(output, clip_value_min) ctx.save_for_backward(input, clip_value_min, clip_value_max) return output @staticmethod def backward(ctx, grad_output): input, clip_value_min, clip_value_max = ctx.saved_tensors min_mask = (input > clip_value_min).to(grad_output.dtype) max_mask = (input < clip_value_max).to(grad_output.dtype) grad_input = grad_output * min_mask * max_mask if clip_value_min.requires_grad or clip_value_max.requires_grad: logging.log_first_n(logging.WARNING, "Learning clip min/max is experimental, use at your own risk :).", 1) if clip_value_min.numel() != 1 or clip_value_max.numel() != 1: raise ValueError("Learnable min/max can only be scalar, got size %s and %s." % (clip_value_min.size(), clip_value_max.size())) # Ensure the dtypes of min/max grads matches the input dtype # This might be necessary if running w/ AMP which will cast to fp32 before `sum()` grad_clip_value_min = (grad_output * (1. - min_mask)).sum().to(clip_value_min.dtype) if clip_value_min.requires_grad else None grad_clip_value_max = (grad_output * (1. - max_mask)).sum().to(clip_value_min.dtype) if clip_value_max.requires_grad else None return grad_input, grad_clip_value_min, grad_clip_value_max
clip = ClipFunction.apply